
MySQL 8 Query
Performance
Tuning

A Systematic Method for Improving
Execution Speeds
—
Jesper Wisborg Krogh

www.allitebooks.com

http://www.allitebooks.org

MySQL 8 Query
Performance Tuning

A Systematic Method for Improving
Execution Speeds

Jesper Wisborg Krogh

www.allitebooks.com

http://www.allitebooks.org

MySQL 8 Query Performance Tuning: A Systematic Method for Improving Execution
Speeds

ISBN-13 (pbk): 978-1-4842-5583-4 ISBN-13 (electronic): 978-1-4842-5584-1
https://doi.org/10.1007/978-1-4842-5584-1

Copyright © 2020 by Jesper Wisborg Krogh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484255834. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jesper Wisborg Krogh
Hornsby, NSW, Australia

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5584-1
http://www.allitebooks.org

To the MySQL Support team, it has been a pleasure to
work with you all.

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Getting Started ��� 1

Chapter 1: MySQL Performance Tuning �� 3

Consider the Whole Stack ��� 3

Monitoring ��� 5

The Lifecycle of a Query�� 6

Summary��� 8

Chapter 2: Query Tuning Methodology�� 9

Overview ��� 9

Verify the Problem ��� 11

Determine the Cause �� 11

Determine the Solution ��� 12

Implement the Solution ��� 13

Work Proactively ��� 15

Summary��� 16

Chapter 3: Benchmarking with Sysbench �� 19

Best Practices ��� 19

Standard TPC Benchmarks ��� 22

Common Benchmarks Tools �� 23

Sysbench Installation �� 24

Executing Benchmarks ��� 32

Table of Contents

About the Author ��xxiii

About the Technical Reviewer ���xxv

Acknowledgments ���xxvii

Introduction ��xxix

www.allitebooks.com

http://www.allitebooks.org

vi

Creating Custom Benchmarks �� 40

Overview of the Custom Script �� 41

Defining the Options �� 43

The run Command ��� 45

The prepare Command �� 48

The cleanup Command �� 50

Registering Commands ��� 51

Summary��� 53

Chapter 4: Test Data ��� 55

Downloading the Example Databases ��� 55

The world Database �� 56

Schema�� 56

Installation ��� 57

The world_x Database �� 58

Schema�� 58

Installation ��� 59

The sakila Database �� 60

Schema�� 60

Installation ��� 66

The employees Database �� 67

Schema�� 67

Installation ��� 71

Other Databases ��� 72

Summary��� 73

Part II: Sources of Information ��� 75

Chapter 5: The Performance Schema ��� 77

Terminology �� 77

Threads ��� 78

Instruments ��� 83

Consumers �� 85

Table of ConTenTs

vii

Events ��� 87

Event Types �� 88

Event Scopes ��� 89

Event Nesting �� 90

Event Properties �� 92

Actors and Objects �� 94

Digests �� 94

Table Types �� 96

Dynamic Configuration �� 97

Summary��� 99

Chapter 6: The sys Schema �� 101

sys Schema Configuration �� 101

Formatting Functions �� 105

The Views �� 107

Helper Functions and Procedures ��� 109

Summary��� 110

Chapter 7: The Information Schema ��� 111

What Is the Information Schema? ��� 111

Privileges �� 112

Views �� 113

System Information ��� 113

Schema Information �� 115

Performance Information �� 121

Privilege Information ��� 126

Caching of Index Statistics Data ��� 128

Summary��� 131

Chapter 8: SHOW Statements ��� 133

Relationship to the Information Schema ��� 133

Relationship to the Performance Schema��� 135

Engine Status �� 137

Table of ConTenTs

viii

Replication and Binary Logs ��� 139

Listing Binary Logs �� 139

Viewing Log Events ��� 140

Show Connected Replicas ��� 145

Miscellaneous Statements �� 146

Summary��� 150

Chapter 9: The Slow Query Log��� 153

Configuration��� 154

Log Events��� 158

Aggregation ��� 160

Summary��� 164

Part III: Tools ��� 165

Chapter 10 MySQL Enterprise Monitor ��� 167

Overview ��� 167

Installation �� 170

Download ��� 170

Installation Process ��� 175

Starting and Stopping the Service Manager ��� 182

Microsoft Windows �� 183

Linux �� 184

Adding MySQL Instances �� 186

The Graphical User Interface��� 189

General Navigation �� 189

Advisors ��� 191

Timeseries Graphs ��� 193

The Query Analyzer �� 195

Summary��� 197

Table of ConTenTs

ix

Chapter 11: MySQL Workbench �� 199

Installation �� 199

Microsoft Windows �� 200

Enterprise Linux 7�� 207

Debian and Ubuntu �� 212

Creating Connections �� 216

Using MySQL Workbench �� 218

Overview �� 218

Configuration ��� 220

Safe Settings ��� 221

Reformatting Queries �� 222

EER Diagrams ��� 223

Summary��� 226

Chapter 12: MySQL Shell �� 227

Overview ��� 227

Installing MySQL Shell ��� 228

Invoking MySQL Shell �� 228

Creating Connections �� 229

Language Modes ��� 232

Built-in Help ��� 233

Built-in Global Objects ��� 235

The Prompt�� 236

Built-in Prompts �� 236

Custom Prompt Definition ��� 239

Powerline and Awesome Fonts ��� 242

Using External Modules �� 245

Table of ConTenTs

x

Reporting Infrastructure �� 248

Report Information and Help ��� 249

Executing Reports ��� 250

Adding Your Own Reports �� 252

Plugins �� 261

Summary��� 270

Part IV: Schema Considerations and the Query Optimizer �������������������������� 273

Chapter 13: Data Types ��� 275

Why Data Types? ��� 275

Data Validation ��� 276

Documentation �� 278

Optimized Storage ��� 278

Performance �� 279

Correct Sorting �� 280

MySQL Data Types ��� 280

Numeric Data Types ��� 281

Temporal Data Types ��� 283

String and Binary Data Types �� 284

JSON Data Type ��� 287

Spatial Data Types ��� 289

Hybrid Data Types �� 290

Performance ��� 293

Which Data Type Should You Choose? �� 293

Summary��� 296

Chapter 14: Indexes �� 297

What Is an Index? �� 297

Index Concepts�� 298

Key Versus Index ��� 299

Unique Index �� 299

Primary Key ��� 300

Table of ConTenTs

xi

Secondary Indexes �� 301

Clustered Index �� 301

Covering Index ��� 302

Index Limitations ��� 303

SQL Syntax �� 304

Creating Tables with Indexes ��� 305

Adding Indexes �� 306

Removing Indexes ��� 307

What Are the Drawbacks of Indexes? ��� 309

Storage �� 309

Updating the Index �� 310

The Optimizer �� 310

Index Types ��� 311

B-Tree Indexes ��� 312

Full Text Indexes �� 315

Spatial Indexes (R-Tree) �� 316

Multi-valued Indexes ��� 318

Hash Indexes ��� 323

Index Features �� 328

Functional Indexes �� 328

Prefix Indexes �� 329

Invisible Indexes �� 331

Descending Indexes �� 332

Partitioning and Indexes �� 332

Auto-generated Indexes �� 335

InnoDB and Indexes �� 335

The Clustered Index ��� 336

Secondary Indexes �� 336

Recommendations ��� 337

Optimal Use Cases ��� 337

Table of ConTenTs

xii

Index Strategies �� 338

When Should You Add or Remove Indexes? �� 338

Choice of the Primary Key ��� 340

Adding Secondary Indexes �� 341

Multicolumn Index ��� 342

Covering Indexes ��� 343

Summary��� 344

Chapter 15: Index Statistics ��� 347

What Are Index Statistics? �� 347

InnoDB and Index Statistics �� 348

How Statistics Are Collected�� 348

Sample Pages �� 349

Transaction Isolation Level �� 351

Configuring Statistics Type �� 352

Persistent Index Statistics �� 353

Configuration ��� 353

Index Statistics Tables ��� 356

Transient Index Statistics �� 362

Monitoring ��� 363

Information Schema STATISTICS View ��� 363

The SHOW INDEX Statement ��� 366

The Information Schema INNODB_TABLESTATS View ��� 370

The Information Schema TABLES View and SHOW TABLE STATUS �������������������������������������� 372

Updating the Statistics �� 377

Automatic Updates �� 377

The ANALYZE TABLE Statement ��� 378

The mysqlcheck Program �� 380

Summary��� 384

Table of ConTenTs

xiii

Chapter 16: Histograms �� 385

What Are Histograms? �� 385

When Should You Add Histograms? �� 386

Histogram Internals��� 389

Buckets �� 389

Cumulative Frequencies �� 390

Histogram Types �� 394

Adding and Maintaining Histograms ��� 396

Create and Update Histograms �� 397

Sampling ��� 399

Dropping a Histogram �� 400

Inspecting Histogram Data �� 401

Histogram Reporting Examples ��� 403

List All Histograms ��� 403

List All Information for a Single Histogram �� 404

List Bucket Information for a Singleton Histogram ��� 406

List Bucket Information for an Equi-height Histogram �� 409

Query Example �� 411

Summary��� 415

Chapter 17: The Query Optimizer �� 417

Transformations �� 418

Cost-Based Optimization��� 419

The Basics: Single Table SELECT ��� 419

Table Join Order �� 421

Default Filtering Effects ��� 422

The Query Cost �� 423

Join Algorithms ��� 426

Nested Loop ��� 426

Block Nested Loop ��� 432

Hash Join ��� 436

Table of ConTenTs

xiv

Join Optimizations �� 443

Index Merge ��� 443

Multi-Range Read (MRR) ��� 452

Batched Key Access (BKA) ��� 454

Other Optimizations ��� 456

Configuring the Optimizer ��� 462

Engine Costs �� 462

Server Costs �� 464

Optimizer Switches ��� 466

Optimizer Hints �� 469

Index Hints ��� 474

Configuration Options �� 475

Resource Groups ��� 476

Retrieving Information About Resource Groups��� 477

Managing Resource Groups �� 478

Assigning Resource Groups ��� 481

Performance Considerations ��� 483

Summary��� 484

Chapter 18: Locking Theory and Monitoring �� 487

Why Are Locks Needed? ��� 488

Lock Access Levels ��� 488

Lock Granularity �� 489

User-Level Locks ��� 489

Flush Locks�� 492

Metadata Locks ��� 494

Explicit Table Locks ��� 498

Implicit Table Locks ��� 499

Record Locks ��� 502

Gap Locks, Next-Key Locks, and Predicate Locks ��� 505

Table of ConTenTs

xv

Insert Intention Locks �� 507

Auto-increment Locks ��� 510

Backup Locks �� 511

Log Locks �� 513

Failure to Obtain Locks ��� 514

Metadata and Backup Lock Wait Timeouts �� 515

InnoDB Lock Wait Timeouts ��� 516

Deadlocks �� 517

Reduce Locking Issues ��� 521

Transaction Size and Age �� 521

Indexes �� 522

Record Access Order ��� 524

Transaction Isolation Levels �� 524

Preemptive Locking ��� 528

Monitoring Locks �� 528

The Performance Schema ��� 528

The sys Schema �� 530

Status Counters and InnoDB Metrics ��� 531

InnoDB Lock Monitor and Deadlock Logging ��� 532

Summary��� 537

Part V: Query Analysis �� 539

Chapter 19: Finding Candidate Queries for Optimization ������������������������������������� 541

The Performance Schema ��� 542

The Statement Event Tables �� 542

Prepared Statements Summary �� 551

Table I/O Summaries ��� 555

File I/O ��� 561

The Error Summary Tables �� 565

Table of ConTenTs

xvi

The sys Schema �� 567

Statement Views �� 568

Table I/O Views �� 571

File I/O Views ��� 573

Statement Performance Analyzer �� 576

MySQL Workbench �� 583

Performance Reports��� 584

Client Connections Report ��� 586

MySQL Enterprise Monitor �� 587

The Query Analyzer �� 587

Timeseries Graphs ��� 592

Ad Hoc Reports �� 594

The Slow Query Log �� 597

Summary��� 599

Chapter 20: Analyzing Queries ��� 601

EXPLAIN Usage �� 601

Usage for Explicit Queries ��� 602

EXPLAIN ANALYZE �� 603

Usage for Connections �� 604

EXPLAIN Formats �� 605

Traditional Format ��� 607

JSON Format ��� 610

Tree Format ��� 614

Visual Explain �� 619

EXPLAIN Output ��� 625

EXPLAIN Fields �� 626

Select Types ��� 630

Access Types ��� 632

Extra Information ��� 639

Table of ConTenTs

xvii

EXPLAIN Examples �� 643

Single Table, Table Scan �� 643

Single Table, Index Access ��� 644

Two Tables and a Covering Index ��� 646

Multicolumn Index ��� 648

Two Tables with Subquery and Sorting ��� 650

Optimizer Trace ��� 654

Performance Schema Events Analysis �� 658

Examining a Stored Procedure �� 659

Analyzing Stage Events ��� 666

Analysis with the sys�ps_trace_thread() Procedure ��� 669

Analysis with the ps_trace_statement_digest() Procedure �� 674

Summary��� 680

Chapter 21: Transactions �� 683

Impact of Transactions �� 683

Locks ��� 684

Undo Logs �� 685

INNODB_TRX ��� 687

InnoDB Monitor ��� 693

INNODB_METRICS and sys�metrics ��� 695

Performance Schema Transactions �� 699

Transaction Events and Their Statements ��� 699

Transaction Summary Tables ��� 709

Summary��� 711

Chapter 22: Diagnosing Lock Contention�� 713

Flush Locks ��� 714

The Symptoms ��� 714

The Cause �� 715

The Setup �� 716

The Investigation ��� 716

Table of ConTenTs

xviii

The Solution ��� 721

The Prevention ��� 722

Metadata and Schema Locks �� 723

The Symptoms ��� 723

The Cause �� 724

The Setup �� 724

The Investigation ��� 725

The Solution ��� 735

The Prevention ��� 735

Record-Level Locks��� 736

The Symptoms ��� 736

The Cause �� 740

The Setup �� 740

The Investigation ��� 741

The Solution ��� 743

The Prevention ��� 744

Deadlocks ��� 744

The Symptoms ��� 745

The Cause �� 745

The Setup �� 746

The Investigation ��� 747

The Solution ��� 757

The Prevention ��� 757

Summary��� 758

Part VI: Improving the Queries ��� 759

Chapter 23: Configuration��� 761

Best Practices ��� 761

InnoDB Overview ��� 766

The InnoDB Buffer Pool ��� 768

The Buffer Pool Size �� 770

Table of ConTenTs

xix

Buffer Pool Instances �� 773

Dumping the Buffer Pool ��� 773

The Old Blocks Sublist ��� 774

Flushing Pages �� 777

The Redo Log �� 779

Log Buffer �� 780

Log Files �� 781

Parallel Query Execution ��� 785

Query Buffers �� 786

Internal Temporary Tables ��� 787

Summary��� 791

Chapter 24: Change the Query Plan �� 793

Test Data ��� 793

Symptoms of Excessive Full Table Scans ��� 794

Wrong Query ��� 796

No Index Used ��� 799

Not a Left Prefix of Index ��� 800

Data Types Not Matching ��� 804

Functional Dependencies �� 809

Improving the Index Use ��� 813

Add a Covering Index ��� 813

Wrong Index �� 815

Rewriting Complex Index Conditions ��� 826

Rewriting Complex Queries ��� 828

Common Table Expressions ��� 829

Window Functions ��� 835

Rewrite Subquery As Join ��� 838

Splitting a Query Into Parts �� 839

Table of ConTenTs

xx

Queue System: SKIP LOCKED �� 841

Many OR or IN Conditions ��� 844

Summary��� 851

Chapter 25: DDL and Bulk Data Load �� 853

Schema Changes �� 853

Algorithm ��� 854

Other Considerations ��� 856

Dropping or Truncating Tables ��� 857

General Data Load Considerations �� 857

Insert in Primary Key Order ��� 872

Auto-increment Primary Key ��� 872

Inserting Existing Data��� 874

UUID Primary Keys ��� 876

InnoDB Buffer Pool and Secondary Indexes �� 878

Configuration��� 880

Transactions and Load Method ��� 883

MySQL Shell Parallel Load Data �� 883

Summary��� 887

Chapter 26: Replication �� 889

Replication Overview �� 890

Monitoring ��� 892

Connection Tables�� 894

Applier Tables �� 897

Log Status ��� 901

Group Replication Tables ��� 902

The Connection ��� 903

Replication Events ��� 903

The Network �� 904

Maintaining Source Info �� 905

Writing the Relay Log �� 906

Table of ConTenTs

xxi

The Applier �� 907

Parallel Applier �� 907

Primary Keys ��� 910

Relaxing Data Safety ��� 911

Replication Filters �� 912

Offloading Work to a Replica ��� 913

Read Scale-Out �� 914

Separation of Tasks ��� 914

Summary��� 915

Chapter 27: Caching ��� 917

Caching Is Everywhere�� 917

Caching Inside MySQL �� 919

Cache Tables �� 919

Histogram Statistics �� 922

Memcached �� 924

Standalone Memcached �� 925

MySQL InnoDB Memcached Plugin ��� 929

ProxySQL ��� 934

Caching Tips �� 944

Summary��� 944

Index ��� 947

Table of ConTenTs

xxiii

About the Author

Jesper Wisborg Krogh has worked with MySQL databases

since 2006 both as an SQL developer and a database

administrator and for more than eight years as part of the

Oracle MySQL Support team. He has spoken at MySQL

Connect and Oracle OpenWorld on several occasions, and in

addition to his books, he regularly blogs on MySQL topics and

has authored around 800 documents in the Oracle Knowledge

Base. He has contributed to the sys schema and four Oracle

Certified Professional (OCP) exams for MySQL 5.6–8.

He earned a PhD in computational chemistry before

changing to work with MySQL and other software

development in 2006. Jesper lives in Sydney, Australia,

and enjoys spending time outdoors walking, traveling, and

reading. His areas of expertise include MySQL Cluster, MySQL Enterprise Backup (MEB),

performance tuning, and the Performance and sys schemas.

xxv

About the Technical Reviewer

Charles Bell conducts research in emerging technologies.

He is a member of the Oracle MySQL development team

and is a senior software developer for the MySQL Enterprise

Backup team. He lives in a small town in rural Virginia with

his loving wife. He received his PhD in engineering from

Virginia Commonwealth University in 2005.

Charles is an expert in the database field and

has extensive knowledge and experience in software

development and systems engineering. His research interests include three-dimensional

printers/printing, microcontrollers, database systems, software engineering, high-

availability systems, the cloud, and sensor networks. He spends his limited free time

as a practicing maker, focusing on microcontroller projects and refinement of three-

dimensional printers.

xxvii

Acknowledgments

I would like to thank all of the people who made this book possible. The Apress team

has again been a great help, and I would in particular like to thank Jonathan Gennick, Jill

Balzano, and Laura Berendson, the three editors I worked with while getting this book

ready for production.

Several people have been invaluable sparring partners in technical discussions.

Thanks to Charles Bell for providing a thorough review; his comments were, as always,

very useful. The feedback about InnoDB locks from Jakub Lopuszanski has also been

invaluable. My work with the MySQL Support team, the countless discussions internally

in the team, and the work by my great colleagues have been a great inspiration and

source of ideas for this book. Also, a big thank you to Edwin Desouza for his support.

Last but not least, thanks to my wife, Ann-Margrete, for her patience and support

while I wrote this book.

xxix

Introduction

MySQL performance tuning is a very large subject that takes years to master. The length

of this book bears testimony to that, even with the scope reduced to focus on query-

related topics. There are no simple recipes for improving performance, and often a

solution requires understanding the relationship between various parts not only within

MySQL but also for other parts of the stack. If you feel that it is overwhelming to get

started, you are far from the first one, but do not despair as it is with performance tuning

like with other skills that practice makes perfect.

The aim of this book is to help you to get a good start on the journey to become

skilled at improving the performance of the queries executing on your MySQL instances.

As said, there are no simple recipes, so the best way forward is to learn how the various

components involved in performance tuning work. That is what the bulk of this book

tries to do as well as giving examples of what to look for and how to perform common

tasks. On the other hand, the scope has been limited to MySQL itself, so there is very

limited discussion about the operating system, file system, and hardware levels.

MySQL is famous for its support for storage engines. However, this book exclusively

covers the InnoDB storage engine except for the discussion of internal temporary tables.

With respect to MySQL versions, only MySQL 8 is considered. That said, most of the

discussion also applies to older versions of MySQL, and in general it is mentioned when

a feature is new in MySQL 8 or that MySQL 8 has a different behavior compared to older

versions.

 Book Audience
The book has been written for developers and database administrators who have

experience working with MySQL and want to expand their knowledge into the realm of

query performance tuning. No prior experience with performance tuning is required.

xxx

 Examples and the Book’s GitHub Repository
I have tried to add as many examples and outputs from examples as possible. Some of

the examples are quite short, some are quite long. In either case, I hope you are able to

follow them and reproduce the effect or result demonstrated. At the same time, please

do bear in mind that by nature there is often randomness involved (sometimes even

explicitly as with the index statistics), and the exact outcome of the examples may

depend on how the tables and data have been used prior to the example. In other words,

you may get different results even if you did everything right. This particularly applies to

numbers that relate to index statistics, timings, and the like.

Examples that are long or produce outputs that are either long or wide have been

added to this book’s GitHub repository. This includes some of the figures that may be

hard to read with the image size that the page format allows. The link to the repository

can be found from the book’s homepage at www.apress.com/gp/book/9781484255834.

The GitHub repository will also be the home of the errata for the book once that

is created. I will use the errata not only to communicate errors in the book but also to

provide updates when bug fixes and new features in MySQL 8 cause changes to book

content. If necessary, I will also update the examples in the repository to reflect the

behavior in the newer releases. For these reasons, I recommend that you keep an eye on

the repository.

 Book Structure
The book is divided into six parts with a total of 27 chapters. I have attempted to

keep each chapter relatively self-contained with the aim that you can use the book

as a reference book. The drawback of this choice is that there is some duplication of

information from time to time. An example is Chapter 18 which describes the more

theoretical side of locks and how to monitor locks, and Chapter 22 which provides

practical examples of investigating lock contention. Chapter 22 naturally draws on

the information in Chapter 18, so some of the information is repeated. This was a

deliberate choice, and I hope it helps you reduce the amount of page flipping to find the

information you need.

The six parts progressively move you through the topics starting with some basic

background and finishing with more solution-oriented tasks. The first part starts out

discussing the methodology, benchmarks, and test data. The second part focuses on the

InTroduCTIon

http://www.apress.com/gp/book/9781484255834

xxxi

sources of information such as the Performance Schema. The third part covers the tools

such as MySQL Shell used in this book. The fourth part provides the theoretical background

used in the last two parts. The fifth part focuses on analyzing queries, transactions,

and locks. Finally, the sixth part discusses how to improve performance through the

configuration, query optimization, replication, and caching. There are cases where some

content is a little out of place, like all replication information is contained in a single chapter.

 Part I: Getting Started
Part I introduces you to the concepts of MySQL query performance tuning. This includes

some high-level considerations, of which some are not unique to MySQL (but are of

course discussed in the context of MySQL). The four chapters are

 1. MySQL Performance Tuning – This introductory chapter covers

some high-level concepts of MySQL performance tuning such as

the importance of considering the whole stack and the lifecycle of

a query.

 2. Query Tuning Methodology – It is important to work in an

effective way to solve performance problems. This chapter

introduces a methodology to work effectively and emphasizes the

importance of working proactively rather than doing firefighting.

 3. Benchmarking with Sysbench – It is often necessary to use

benchmarks to determine the effect of a change. This chapter

introduces benchmarking in general and specifically discusses

the Sysbench tool including how to create your own custom

benchmarks.

 4. Test Data – The book mostly uses a few standard test databases

which are introduced in this chapter.

 Part II: Sources of Information
MySQL exposes information about the performance through a few sources. The

Performance Schema, the sys schema, the Information Schema, and the SHOW

statement are introduced in each their chapter. There are only relatively few examples

of using these sources in this part; however, these four sources of information are used

InTroduCTIon

xxxii

extensively in the remainder of the book. If you are not already familiar with them, you

are strongly encouraged to read this part. Additionally, the slow query log is covered. The

five chapters are

 5. The Performance Schema – The main source of performance-

related information in MySQL is – as the name suggests – the

Performance Schema. This chapter introduces the terminology,

the main concepts, the organization, and the configuration.

 6. The sys Schema – The sys schema provides reports through

predefined views and utilities in stored functions and programs.

This chapter provides an overview of what features are available.

 7. The Information Schema – If you need metadata about the MySQL

and the databases, the Information Schema is the place to look. It

also includes important information for performance tuning such

as information about indexes, index statistics, and histograms.

This chapter provides an overview of the views available in the

Information Schema.

 8. SHOW Statements – The SHOW statements are the oldest way to

obtain information ranging from which queries are executing to

schema information. This chapter relates the SHOW statements to

the Information Schema and Performance Schema and covers in

somewhat more detail the SHOW statements without counterparts

in the two schemas.

 9. The Slow Query Log – The traditional way to find slow queries

is to log them to the slow query log. This chapter covers how to

configure the slow query log, how to read the log events, and how

to aggregate the events with the mysqldump utility.

 Part III: Tools
MySQL provides several tools that are useful when performing the daily work as well as

specialized tasks. This part covers three tools ranging from monitoring to simple query

execution. This book uses Oracle’s dedicated MySQL monitoring solution (requires

commercial subscription but is also available as a trial) as an example of monitoring.

InTroduCTIon

xxxiii

Even if you are using other monitoring solutions, you are encouraged to study the

examples as there will be a large overlap. These three tools are also used extensively in

the remainder of the book. The three chapters in this part are

 10. MySQL Enterprise Monitor – Monitoring is one of the most

important aspects of maintaining a stable and well-performing

database. This chapter introduces MySQL Enterprise Monitor

(MEM) and shows how you can install the trial and helps you

navigate and use the graphical user interface (GUI).

 11. MySQL Workbench – MySQL provides a graphical user interface

through the MySQL Workbench product. This chapter shows

how you can install and use it. In this book, MySQL Workbench is

particularly important for its ability to create diagrams – known as

Visual Explain – representing the query execution plans.

 12. MySQL Shell – One of the newest tools around from Oracle for

MySQL is MySQL Shell which is a second-generation command-

line client with support for executing code in both SQL, Python,

and JavaScript. This chapter gets you up to speed with MySQL

Shell and teaches you about its support for using external code

modules, its reporting infrastructure, and how to create custom

modules, reports, and plugins.

 Part IV: Schema Considerations and the Query Optimizer
In Part IV, there is a change of pace, and the focus moves to the topics more directly

related to performance tuning starting with topics related to the schema, the query

optimizer, and locks. The six chapters are

 13. Data Types – In relational databases, each column has a data type.

This data type defines which values can be stored, which rules

apply when comparing two values, how the data is stored, and

more. This chapter covers the data types available in MySQL and

gives guidance on how to decide which data types to use.

InTroduCTIon

xxxiv

 14. Indexes – An index is used to locate data, and a good indexing

strategy can greatly improve the performance of your queries.

This chapter covers the index concepts, considerations about

indexes, index types, index features, and more. It also includes a

discussion on how InnoDB uses indexes and how to come up with

an indexing strategy.

 15. Index Statistics – When the optimizer needs to determine how

useful an index is and how many rows match a condition on an

indexed value, it needs information on the data in the index. This

information is index statistics. This chapter covers how index

statistics work in MySQL, how to configure them, monitoring, and

updating the index statistics.

 16. Histograms – If you want the optimizer to know how frequent a

value occurs for a given column, you need to create a histogram.

This is a new feature in MySQL 8, and this chapter covers how

histograms can be used, their internals, and how to query the

histogram metadata and statistics.

 17. The Query Optimizer – When you execute a query, it is the

query optimizer that determines how to execute it. This chapter

covers the tasks performed by the optimizer, join algorithms,

join optimizations, configuration of the optimizer, and resource

groups.

 18. Locking Theory and Monitoring – One of the problems that can

cause the most frustration is lock contention. The first part of this

chapter explains why locks are needed, lock access levels, and

lock types (granularities). The second part of the chapter goes into

what happens when a lock cannot be obtained, how to reduce

lock contention, and where to find information about locks.

 Part V: Query Analysis
With the information from Part IV, you are now ready to start analyzing queries. This

includes finding the queries for further analysis and then analyzing the query using

EXPLAIN or the Performance Schema. You also need to consider how transactions work

InTroduCTIon

xxxv

and investigate lock contention when you have two or more queries fighting for the same

locks. The four chapters are

 19. Finding Candidate Queries for Optimization – Whether part of the

daily maintenance or during an emergency, you need to find the

queries that you need to analyze and potentially optimize. This

chapter shows how you can use the Performance Schema, the sys

schema, MySQL Workbench, your monitoring solution, and the

slow query log to find the queries that are worth looking into.

 20. Analyzing Queries – Once you have a candidate query, you need

to analyze why it is slow or impacts the system too much. The

main tool is the EXPLAIN statement which provides information

about the query plan chosen by the optimizer. How to generate

and read – including examples – the query plans using EXPLAIN

is the main focus of the chapter. You can also use the optimizer

trace to get more information on how the optimizer arrived at the

selected query plan. An alternative way to analyze queries is to use

the Performance Schema and sys schema to break queries down

into smaller parts.

 21. Transactions – InnoDB executes everything as a transaction, and

transactions is an important concept. Proper use of transactions

ensures atomicity, consistency, and isolation. However,

transactions can also be the cause of severe performance and lock

problems. This chapter discusses how transactions can become a

problem and how to analyze them.

 22. Diagnosing Lock Contention – This chapter goes through four

scenarios with lock contention (flush locks, metadata locks,

record-level locks, and deadlocks) and discusses the symptoms,

the cause, how to set up the scenario, the investigation, the

solution, and how to prevent problems.

InTroduCTIon

xxxvi

 Part VI: Improving Queries
You have found your problem queries and analyzed them and their transaction to

understand why they are underperforming. But how do you improve the queries? This

chapter goes through the most important configuration options not covered elsewhere,

how to change the query plan, schema changes and bulk loading, replication, and

caching as means to improve the performance. The five chapters are

 23. Configuration – MySQL requires resources when executing a

query. This chapter covers the best practices for configuring these

resources and the most important configuration options that are

not covered in other discussions. There is also an overview of

the data lifecycle in InnoDB as background for the discussion of

configuring InnoDB.

 24. Change the Query Plan – While the optimizer usually does a good

job at finding the optimal query execution plan, you will from time

to time have to help it on its way. It may be that you end up with

full table scans because no indexes exist or the existing indexes

cannot be used. You may also wish to improve the index usage,

or you may need to rewrite complex conditions or entire queries.

This chapter covers these scenarios as well as shows how you can

use the SKIP LOCKED clause to implement a queue system.

 25. DDL and Bulk Data Load – When you perform schema changes

or load large data sets into the system, you ask MySQL to perform

a large amount of work. This chapter discusses how you can

improve the performance of such tasks including using the

parallel data load feature of MySQL Shell. There is also a section

on general data load considerations which also applies to data

modifications in general and shows the difference between

sequential and random order inserts. That discussion is followed

by considerations on what this means for the choice of primary

key.

InTroduCTIon

xxxvii

 26. Replication – The ability to replicate between instances is a

popular feature in MySQL. From a performance point of view,

replication has two sides: you need to ensure replication performs

well, and you can use replication to improve performance. This

chapter discusses both sides of the coin including covering

the Performance Schema tables that can be used to monitor

replication.

 27. Caching – One way to improve the performance of queries is

to not execute them at all, or at least avoid executing part of

the query. This chapter discusses how you can use caching

tables to reduce the complexity of queries and how you can

use Memcached, the MySQL InnoDB Memcached plugin, and

ProxySQL to avoid executing the queries altogether.

InTroduCTIon

PART I

Getting Started

3
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_1

CHAPTER 1

MySQL Performance
Tuning
Welcome to the world of MySQL performance tuning. It is a world that sometimes can

seem like it is dominated by black magic and luck, but hopefully this book can help you

work in a structured way and methodically work your way to a better performance.

This chapter introduces you to MySQL performance tuning by talking about the

whole stack as well as the importance of monitoring and basing your actions on data.

Since this book is mainly about working with queries, the lifecycle of a query is reviewed

before concluding the chapter.

Tip If you need a test instance, whether it is while reading this book or for
working on a problem at work, the cloud can be your friend. It allows you to
quickly spin up a test instance. If you just need a small instance, for example, to
explore examples in this book, you may even be able to use a free instance, such
as through Oracle Cloud’s free tier (registration and a credit card is still required):
https://mysql.wisborg.dk/oracle_cloude_free_tier.

 Consider the Whole Stack
When you investigate performance problems, it is important that you consider all parts

of the system from the end user through the application to MySQL. When someone

reports that the application is slow, and you know that MySQL is a central part of the

application, then it is easy to jump to the conclusion that “MySQL is slow.” That would

however rule out a large array of potential causes of the poor performance.

https://mysql.wisborg.dk/oracle_cloude_free_tier

4

When an application needs the result of the query or needs to store data in MySQL,

it sends the request over the network to MySQL, and in order to execute the request,

MySQL interacts with the operating system and uses host resources such as memory and

disk. Once the result of the request is ready, it is communicated back to the application

through the network. This is illustrated in Figure 1-1.

The pyramid is a very simplified picture which leaves out everything beyond the

application which may in turn communicate with a user and use its own resources.

Communicating over the network also involves both the host and operating system.

To illustrate how the layers can interact, consider a real-world example. A MySQL

user reported problems with MySQL experiencing temporary stalls. An investigation

using the perf tool on Linux revealed that stalls happened because the memory got

extremely fragmented, mainly caused by the I/O cache. When you submit data over the

network, Linux requests a contiguous piece of memory (using kmalloc), but because of

the severe memory fragmentation, Linux had to defragment (compact) the memory first.

While this compaction took place, everything including MySQL stalled, and as it in the

worst cases took up to a minute (the server had a large amount of memory available for

I/O caching), it caused a severe impact. In this case, changing the MySQL configuration

Figure 1-1. The stack focused around MySQL

Chapter 1 MySQL perfOrManCe tunIng

5

to use direct I/O worked around the issue. While this is an extreme case, it is worth

bearing in mind that interactions can cause surprising points of congestion.

A more straightforward real-world example was an application that used a

framework to generate queries. There was a bug in the framework that meant that a

WHERE clause was omitted for queries against a large table. That meant a cascading list of

problems including the application retrying the query and culminating with 50 copies

of the query finishing within a few seconds (because the data finally had been read into

the buffer pool making the last queries execute much faster than the first) and sending

a huge amount of data back to the application causing the network to overload and the

application to run out of memory.

This book focuses on MySQL and the aspects affecting queries, but do not forget the

rest of your system. That includes when you monitor your system.

 Monitoring
If you take just one thing with you from reading this book, then let it be that monitoring

is critical to maintain a healthy system. Everything you do should revolve around

monitoring. In some cases, monitoring through a dedicated monitoring solution

provides all the data you need, and in other cases you need to make ad hoc observations.

Your monitoring should use several sources of information. These include but are

not limited to

• The Performance Schema which includes information ranging from

low-level mutexes to query and transaction metrics. This is the single

most important source of information for query performance tuning.

The sys schema provides a convenient interface particularly for ad

hoc queries.

• The Information Schema which includes schema information,

InnoDB statistics, and more.

• SHOW statements which, for example, include information from

InnoDB with detailed engine statistics.

• The slow query log which can record queries matching certain

criteria such as taking longer than a predefined threshold.

Chapter 1 MySQL perfOrManCe tunIng

6

• The EXPLAIN statement to return the query execution plan. This is

an invaluable tool to investigate why a query is not performing well

due to missing indexes, the query being written in a suboptimal

way, or MySQL choosing a suboptimal way to execute the query.

The EXPLAIN statement is mostly used in an ad hoc fashion when

investigating a specific query.

• Operating system metrics such as disk utilization, memory usage,

and network usage. Do not forget simple metrics such as the amount

of free storage as running out of storage will cause an outage.

These sources of information are all discussed and used throughout this book.

When you use monitoring throughout the whole performance tuning process, you

can verify what the issue is, find the cause, and prove that you have solved the issue.

While working on a solution, it can also be useful to understand the lifecycle of a query.

 The Lifecycle of a Query
When you execute a query, it goes through several steps before the result of the query

is back at the application or client. Each step takes time and may itself be a complex

operation consisting of several subparts.

A simplified overview of the query lifecycle can be seen in Figure 1-2. In practice,

there are more steps involved, and if you install plugins such as the query rewriter, it will

add steps of their own. The figure does however cover the basic steps, and several of the

steps are covered in more detail later.

Chapter 1 MySQL perfOrManCe tunIng

7

MySQL Server can be divided into two layers. There is the SQL layer which, for

example, handles the connections and prepares statements for execution. The actual

data is stored by storage engines which are implemented as plugins which makes it

relatively easy to implement different ways to handle data. The main storage engine –

and the only one that will be considered in this book – is InnoDB which is fully

transactional and has very good support for high-concurrency workloads. An example of

another storage engine is NDBCluster which is also transactional and is used as part of

MySQL NDB Cluster.

When the application needs to execute a query, then the first thing is to create

a connection (this is not included in the figure as the connection may be reused to

execute more queries). When the query arrives, MySQL parses it. This includes splitting

the query into tokens, so the query type is known, and there is a list of the tables and

columns required by the query. This list is needed during the next step where it is

checked whether the user has the necessary permissions to execute the query.

At this time, the query has reached the important step of determining how to execute

the query. This is the job of the optimizer and involves rewriting the query as well as

determining the order to access the tables and which indexes to use.

Figure 1-2. The basic query lifecycle

Chapter 1 MySQL perfOrManCe tunIng

8

The actual execution step includes requesting the data from the storage engine layer.

The storage engine may itself be complex. For InnoDB, it includes a buffer pool used to

cache data and indexes, redo and undo logs, other buffers, as well as tablespace files.

If the query returns rows, these are sent back from the storage engine through the SQL

layer to the application.

In query tuning, the most important steps are the optimizer and execution steps

including the storage engine. Most of the information in this book relates to these three

parts either directly or indirectly.

 Summary
This chapter has scratched the surface of performance tuning and prepared you for

the journey of the rest of the book. The key takeaways are that you need to consider the

whole stack from the end user to the low-level details of the host and operating system

and monitoring is an absolute must in performance tuning. Executing a query includes

several steps, of which the optimizer and execution steps are the ones that you will learn

the most about in this book.

The next chapter will look closer at a methodology that is useful for solving

performance issues.

Chapter 1 MySQL perfOrManCe tunIng

9
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_2

CHAPTER 2

Query Tuning
Methodology
There are several approaches to solve problems. At an extreme, you can dive headfirst

and try making some changes. While this can seem like a time-saver, more often

than not, it just causes frustration, and even when the changes appear to work, you

do not know for sure whether you really solved the underlying issue or the issue just

temporarily got better.

Instead, the recommendation is to work methodologically by going through analysis

and using monitoring to confirm the effect of the changes. This chapter will introduce

you to a methodology that can be useful when solving MySQL problems with the focus

on performance tuning. The steps in the methodology are first introduced. Then the rest

of the chapter discusses each step in more detail as well as why it is important to spend

as much time as possible to work proactively.

Note The methodology described here is based on the methodology used in
Oracle support to solve the problems reported by customers.

 Overview
MySQL performance tuning can be seen as a never-ending process where an iterative

approach is used to gradually improve the performance over time. Obviously, there

will be times when there is a specific problem like a query taking half an hour to

complete, but it is important to keep in mind that performance is not a binary state, so

it is necessary to know what good enough performance is. Otherwise, you will never

complete even a single task.

10

Figure 2-1 shows an example of how the performance tuning lifecycle can be

described. The cycle starts in the upper left corner and consists of four phases, of which

the first is to verify the problem.

When you encounter a performance problem, the first phase is to verify what the

problem is including collecting evidence of the issue and define what the requirement is

to consider the problem solved.

The second phase involves determining the cause of the performance issue, and in

the third phase you determine the solution. Finally, in the fourth phase you implement

the solution. The implementation of the solution should include verifying the effect of

the changes.

Tip This cycle works both when doing firefighting during a crisis and when
working proactively.

Figure 2-1. Performance tuning lifecycle

ChapTer 2 Query Tuning MeThOdOlOgy

11

You are then ready to start all over, either doing a second iteration to improve the

performance further for the problem you have just been looking at, or you may need to

work on a second problem. It may also be that there will be a lengthy period between

the cycles.

 Verify the Problem
Before you try to determine what causes the problem and what the solution is, it is

important that you are clear about what problem you are trying to solve. It is not enough

to say “MySQL is slow” – what does that mean? A specific problem may be that “The

query used in the second section of the front web page takes five seconds” or that

“MySQL can only sustain 5000 transactions per second.” The more specific you are, the

better chance you have solving the problem.

The definition of the problem should also include verifying what the problem is.

There can be a difference between what the problem seems to be at first and what the real

problem is. Verifying the problem may be as simple as executing a query and observing if

the query really takes as long as claimed, or it may involve reviewing your monitoring.

The preparation work should also include collecting a baseline from your monitoring

or running a data collection that illustrates the problem. Without the baseline, you may

not be able to prove that you have solved the issue at the end of the troubleshooting.

Finally, you need to decide what the goal of the performance tuning is. To quote The

7 Habits of Highly Effective People by Stephen R. Covey

Begin with the end in mind.

What is the minimum acceptable target for how quickly the slow query should run,

or what is the minimum transaction throughput needed? This will ensure that you know

whether the target has been reached when you have made your changes.

When the problem has been clearly defined and verified, you can start analyzing the

issue and determine the cause.

 Determine the Cause
The second phase is where you determine what the cause of the poor performance is. Make

sure you are open-minded and consider the whole stack, so you do not end up staring

yourself blind on one aspect that turns out not to have anything to do with the problem.

ChapTer 2 Query Tuning MeThOdOlOgy

12

When you think you know the cause, you also need to argue why that is the cause.

You may have an output of the EXPLAIN statement clearly showing that the query

performs a full table scan, so that is likely the cause, or you may have a graph showing

that the InnoDB redo log was 75% full, so you likely had an asynchronous flush causing

temporary performance issues.

Finding the cause is often the hardest part of an investigation. Once the cause is

known, you can decide on a solution.

 Determine the Solution
It is a two-step process to determine the solution for the issue you investigate. The first

step is to find possible solutions; second, you must choose which one to implement.

When you look for possible solutions, it can be useful to do a brainstorm where

you write down all the ideas you can think of. It is important that you do not constrain

yourself to just consider a narrow area around where the root cause is as often it may be

possible to find a solution in a different area. An example are the stalls due to memory

fragmentation mentioned in the previous chapter where the solution was to change

the configuration of MySQL to use direct I/O to reduce the use of the operating system

I/O cache. You should also keep both short-term workarounds and long-term solutions

in mind as it may not always be possible to implement the full solution right away, if it

requires restarting or upgrading MySQL, changing hardware, or similar.

Tip a sometimes underappreciated solution is to upgrade MySQl or the
operating system to get access to new features. however, of course you need to do
careful testing to verify that your application works well with the new version with
particular care whether there are any changes by the optimizer that cause poor
performance for your queries.

The second part of determining the solution is to choose the candidate solution that

will work the best. In order to do that, you must argue for each solution why it works and

what the pros and cons are. It is important in this step to be honest with yourself and to

carefully consider possible side effects.

Once you have a good understanding of all the possible solutions, you can choose which

one to proceed with. You may also choose one solution as a temporary mitigation while you

work on a more solid solution. In either case, the next phase is to implement the solution.

ChapTer 2 Query Tuning MeThOdOlOgy

13

 Implement the Solution
You implement the solution by a series of steps where you define the action plan, test

the action plan, refine the action plan, and so forth until you finally apply the solution to

your production system. It is important not to rush this process as this is the last chance

to discover problems with the solution. In some cases, the testing may also show that

you will need to abandon the solution and go back to the previous phase and choose a

different solution. Figure 2-2 illustrates the workflow of implementing the solution.

You take the solution you picked and create an action plan for it. Here it is important

to be very specific, so you can ensure that the action plan you test is also the one you

end up applying on your production system. It can be useful to write down the exact

commands and statements that will be used, so you can copy and paste them, or to

collect them in a script, so they can be applied automatically.

Figure 2-2. Workflow to implement solution

ChapTer 2 Query Tuning MeThOdOlOgy

14

You then need to test the action plan on a test system. It is important that it reflects

production as closely as possible. The data you have on the test system must be

representative of your production data. One way to achieve this is to copy the production

data, optionally using data masking to avoid copying sensitive information such as

personal details and credit card information out of your production system.

Tip The MySQl enterprise edition subscription (paid subscription) includes a data
masking feature: www.mysql.com/products/enterprise/masking.html.

The test should verify that the solution solves the problem and that there are no

unexpected side effects. What testing is required depends on the problem you are trying

to solve and the proposed solution. If you have a slow query, it involves testing the

performance of the query after implementing the solution. If you modify the indexes

on one or more tables, you must also verify how that affects other queries. You may also

need to benchmark the system after implementing the solution. In all cases, you need to

compare to the baseline you collected during the issue verification.

It is possible that the first attempt does not work quite as expected. Often, it is just

some refinements of the action plan that are needed, other times you may have to

completely discard the proposed solution and go back to the previous phase and pick

another solution. If the proposed solution partially solves the problem, you may also

choose to apply that to the production system and go back to the beginning and evaluate

how you can continue to improve the performance.

When you are happy that the testing shows the solution works, you can apply it to

the staging system and, if all is still working, the production system. Once you have done

that, you again need to verify that it worked. No matter how careful you are at setting

up a test system that represents the production system, it is possible that for one reason

or another, the solution does not completely work as expected on production. One

possibility that the author of this book has encountered is that the index statistics that

are random in nature were different, so an ANALYZE TABLE statement to update the index

statistics was necessary when applying the solution on the production system.

If the solution works, you should collect a new baseline that you can use for future

monitoring and optimizations. If the solution turns out not to work, you need to decide

how to proceed by either rolling back the changes and looking for a new solution or

doing a new round of troubleshooting and determining why the solution did not work

and applying a second solution.

ChapTer 2 Query Tuning MeThOdOlOgy

http://www.mysql.com/products/enterprise/masking.html

15

 Work Proactively
Performance tuning is a never-ending process. If you have a fundamentally healthy

system, most of the work will be proactively where you work at preventing emergencies

and where the urgency is relatively low. This will not bring a lot of attention to your job,

but it will make your daily life less stressful and the users will be happier.

Note This discussion is to some degree based on the habit 3 “put first things
first” in Stephen r. Covey’s The 7 Habits of Highly Effective People.

Figure 2-3 shows how you can categorize your tasks into how urgent and how

important they are. Urgent tasks typically have the attention of other people, whereas

other tasks may be important, but they will only become visible if they are not done in a

timely matter, so they suddenly become urgent.

The tasks that are simplest to categorize are those that are related to a crisis such as

the production system is down and the company loses revenue, because the customers

cannot use the product or make purchases. These tasks are both urgent and important.

Spending a lot of time on these tasks may make you feel important, but it is also a very

stressful way to work.

Figure 2-3. Categorizing tasks according to urgency and importance

ChapTer 2 Query Tuning MeThOdOlOgy

16

The most effective way to work with performance problems is to work on important

but not urgent problems. This is the proactive work that prevents crisis from happening

and consists of monitoring, making improvements before the problems become visible,

and so forth. An important task in this category is also to prepare, so you are ready to

handle a crisis. This may, for example, be to set up a standby system that you can fail

over to in cases of a crisis or procedures to quickly spin up a replacement instance. This

can help reduce the duration of a crisis and bring it back into the important but not so

urgent category. The more time you spend working on tasks in this category, typically

the more successful you are.

The last two categories include the not so important tasks. Examples of urgent but

not important tasks include meetings you cannot reschedule, tasks pushed by other

people, and a perceived (but not real) crisis. Nonurgent and non-important tasks

include administrative tasks and checking emails. Of course, some of these tasks may

be required and important for you to keep your job, but they are not important to keep

MySQL performing well. While there will always be tasks in these categories that must be

handled, it is important to minimize the time spent here.

Part of avoiding working on non-important tasks includes that you understand how

important a task is, for example, by defining when the performance is good enough, so

you do not end up overoptimizing a query or the throughput. In practice, it can of course

be difficult to push back on non-important tasks if they have the attention of other

people in the organization (these often tend to be the urgent tasks), but it is important

that you do try as much as possible to shift the work back to the important but not urgent

tasks to avoid the crisis tasks to take over at a later time.

 Summary
This chapter has discussed a methodology that can be used to solve MySQL

performance problems (and other types of problems!) as well as the importance of

working proactively.

When a problem is reported, you start out verifying what the problem is and

determine what is considered to have solved it. For performance problems that are

open-ended by nature, it is important to know what is good enough, or you will risk

never to stop performing crisis management and go back to proactive work.

ChapTer 2 Query Tuning MeThOdOlOgy

17

Once you have a clear problem description, you can work on determining the

cause; and once the cause is clear, you can determine what you want to do to solve the

problem. The last phase is to implement the solution which may require you to revisit

the potential solutions, if it turns out that the solution you first chose does not work or

have unacceptable side effects. In that connection, it is important to test the solution in

as realistic a setup as possible.

The last part of the chapter discussed the importance of spending as much time as

possible doing proactive work that prevents a crisis from occurring and that helps you

be prepared when a crisis does occur. This will help you have a less stressful job and

manage a database in better health.

As this chapter has discussed, it is important to test the impact of your solution

before you deploy it to your production system. The next chapter covers benchmarking

with focus on the Sysbench benchmark.

ChapTer 2 Query Tuning MeThOdOlOgy

19
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_3

CHAPTER 3

Benchmarking with
Sysbench
It is very important to verify the impact of changes before you apply them to your

production systems. This applies to both small changes like modifying a query and large

changes such as refactoring the application and schema as well as MySQL upgrades.

You may think that the optimal performance test is based on your production schema

and data using the same queries that the application executes. However, it is not always

as simple as it sounds to recreate the right workload, so sometimes it is necessary to use

standard benchmark suites.

This chapter starts out with some best practices when executing benchmarks and an

overview of some of the most common benchmarks and tools used with MySQL. Then

Sysbench which is the most commonly used benchmark will be considered in more detail.

 Best Practices
It is easy to install a benchmark program and execute it. The difficult part is to use it

right. Performing MySQL benchmark tests shares some of the concepts of performance

tuning, and the first and most important point is that you need to work in an “informed

way.” This means that you must know your tools well and clearly define the goal and

success criteria of the tests. For your tools, you need to know how to use them correctly

as executing them with default parameters likely will not produce the test that you want.

This is tied together with the goal of the benchmark. What is it you need to

determine? For example, you may want to verify the effect of changing some

configuration variable in which case you must make sure your tests are set up, so that

area is tested. Consider an option such as innodb_io_capacity which influences how

fast InnoDB writes. If your benchmark is a read-only test, changing innodb_io_capacity

20

will not make any difference. In this context, you also need to make sure that you only

change one thing at a time and only make relatively small changes – just as you should

do when making changes to your production system. Otherwise, if you change several

settings at the same time, then some may contribute positively to the result and others

negatively, but you have no way to determine which changes to keep and which to

revert. If you make large changes, you may overshoot the optimal value, so you end up

discarding that change even though there is room for improvements.

When reading the results at the end of the test, you need to understand what the

benchmark measures; otherwise, the result is just a meaningless number. This also

includes defining which variables to adjust during the tests, and as for performance

tuning in general, it is important to keep the number of variables limited, so you easily

can identify the effect of each variable. For a result to be valid, you must also ensure that

the test is repeatable, that is, if you execute the same test twice, then you get the same

result. One requirement for a test to be repeatable is that you have a well-defined starting

state of the system.

Tip Do not assume that one client is enough to generate the load you are aiming
at. How many clients are required depends on the number of concurrent queries
and the benchmark you are executing.

That leads to the next important point. Your benchmarks should reflect the workload

of the application. It does not help you have used an online transaction processing

(OLTP) benchmark to prove that your configuration changes work great, if your

application has an online analytical processing (OLAP) workload, or that you have a

great read-only performance if your application is write-heavy.

You may think that the optimal way to design a benchmark is to capture all queries

executed in production and replay them as the benchmark. This definitely has some

merits, but there are also challenges. It is expensive to collect all queries executed,

though if you already have the MySQL Enterprise Audit log enabled for auditing

purposes, that can be used. There may also be data privacy problems of copying the

production data to the test system. Finally, it is difficult to scale the test to change the size

of the data set (whether down to make it more manageable or up to test growth) or to

increase the test workload compared to the current production load. For these reasons, it

is often necessary to use artificial benchmarks.

CHapter 3 BenCHmarking witH SySBenCH

21

Tip you can use the mySQL enterprise audit log (requires subscription) or the
general query log (very high overhead) to capture all queries for a period. this
includes timestamps when the queries were executed, so you can use the log to
replay the queries in the same order with the same concurrency. it does however
require that you create a script yourself to extract the queries and execute them.

The next point is about the benchmark results which also relates to the previous

points. When you have the result of a benchmark, it is important to understand what

the result means and that you do not discard results just because they look wrong. As

such, a benchmark result is “never wrong”; it is the result of some work. If the result is

unexpected, it is important to understand why it ended up that way. Maybe, you did

not use the parameters you intended or used a different table size than expected, but

it may also be that something else interfered with the benchmark, or something third.

If something interfered with the benchmark, is it something that could also happen in

production? If it can, then the benchmark is very much relevant, and you need to decide

how you will handle such a case in production.

To understand what happened during a benchmark, it is also important that

you monitor MySQL and the host system. One option is to use the same monitoring

solution as that you use for your production system. However, benchmarks on a test or

development system are a bit different than a production system as you are typically

interested in higher-frequency sampling but for a shorter duration during a benchmark,

so it can be useful using a dedicated monitoring solution specifically for benchmarks.

One such option is dim_STAT (http://dimitrik.free.fr/) developed by Dimitri

Kravtchuk who is a performance architect for MySQL and who is behind many of the

MySQL Server benchmarks.

In general, understanding the result is not a simple thing. One thing you also need to

be aware of is what happens during a benchmark if there is a temporary stall. Does the

benchmark hold back on subsequent queries, or does it keep submitting queries? If it

holds back, then the subsequent queries will effectively be faster than they should be as

in the real world as users do not stop submitting requests just because there is a backlog.

Finally, a benchmark typically produces several metrics, so you need to analyze

the result as it makes most relevance for your system. For example, is the latency or

throughput the most important? Or do you have requirements to both? Or are you more

interested in some third metric?

CHapter 3 BenCHmarking witH SySBenCH

http://dimitrik.free.fr/

22

 Standard TPC Benchmarks
There is an almost endless list of benchmarks, but in the end the ones that are commonly

used boils down to a handful of tests. This does not mean that you should not consider

other benchmarks; in the end the important thing is that the benchmark works for your

requirements.

The most commonly used standard benchmarks are defined by TPC (www.tpc.org/)

with new benchmarks being designed as the hardware and software changes making

older benchmarks too simple. The TPC web site includes detailed descriptions and

specifications of the benchmarks. Table 3-1 summarizes the current enterprise TPC

benchmarks.

The advantages of these standard benchmarks are that you are more likely to find

tools implementing them and you can compare with results obtained by other people.

Table 3-1. Common TPC benchmarks

Name Type Description

tpC-C OLtp this is maybe the most classic of the tpC benchmarks and dates back

to 1992. it simulates the queries of a wholesale supplier and uses nine

tables.

tpC-Di Data integration tests extract, transform, and load (etL) workloads.

tpC- DS Decision Support this benchmark includes complex queries of a data warehouse

(star schema).

tpC-e OLtp this is meant as a replacement for tpC-C with a more complex

schema and queries, so it is more realistic for modern databases.

it includes 33 tables.

tpC-H Decision Support this is another classic benchmark which is often used to test

optimizer features. it consists of 22 complex queries meant to

simulate the reporting side of an OLtp database.

tpC- VmS Virtualization this uses the tpC-C, tpC-DS, tpS-e, and tpC-H benchmarks to

determine performance metrics for virtualized databases.

CHapter 3 BenCHmarking witH SySBenCH

http://www.tpc.org/

23

Tip if you want to learn more about the tpC benchmarks as well as how to
perform database benchmarks the best way, consider the book by Bert Scalzo:
Database Benchmarking and Stress Testing (apress), www.apress.com/gp/
book/9781484240076.

In the same way as there are standard benchmarks, there are also some common

benchmark tools.

 Common Benchmarks Tools
Implementing a benchmark is far from trivial, so in most cases it is preferred to use a

preexisting benchmark tool that can execute the benchmark for you. Some tools are

cross-platform and/or can use several different database systems, whereas others are

more specific. You should choose the one that implements the benchmarks you need

and work on the platform that you have your production system on.

Table 3-2 summarizes some of the most commonly used benchmark tools to test the

performance of MySQL.

Table 3-2. Common benchmarks used with MySQL

Benchmark Description

Sysbench this is the most commonly used benchmark and the one that will be covered most

in this chapter. it has built-in tests for OLtp workloads, non-database tests (such

as pure i/O, CpU, and memory tests), and more. additionally, the latest versions

support custom workloads. it is open source and is mostly used on Linux. it can be

downloaded from https://github.com/akopytov/sysbench.

DBt2 DBt2 can be used to emulate OLtp workloads using an order system (tpC-C). DBt2

can also be used to automate Sysbench and is available from https://dev.mysql.

com/downloads/benchmarks.html.

DBt3 DBt3 implements the tpC-H benchmark and is used to test the performance of

complex queries. it is one of the favorite tests used by the mySQL optimizer developers

to verify the performance after implementing new optimizer features. a copy of DBt3 is

available from https://sourceforge.net/projects/osdldbt/.

(continued)

CHapter 3 BenCHmarking witH SySBenCH

http://www.apress.com/gp/book/9781484240076
http://www.apress.com/gp/book/9781484240076
https://github.com/akopytov/sysbench
https://dev.mysql.com/downloads/benchmarks.html
https://dev.mysql.com/downloads/benchmarks.html
https://sourceforge.net/projects/osdldbt/

24

The tool that is most commonly used with MySQL is Sysbench, and the remainder of

this chapter covers its installation and example usages.

 Sysbench Installation
Since Sysbench is an open source tool, there are several forks available. MySQL

maintains one of these forks; however, to get the version with the most recent features, it

is recommended to use the fork by Alexey Kopytov. (This is also the fork recommended

by MySQL performance architect Dimitri Kravtchuk.) The examples in this chapter all

Table 3-2. (continued)

Benchmark Description

HammerDB the HammerDB tool is a free cross-database tool with support for both microsoft

windows and Linux. it has support for the tpC-C and tpC-H benchmarks and is

available from https://hammerdb.com/.

Database

Factory

Database Factory is a powerful benchmark tool for microsoft windows that supports

several databases and benchmarks. it supports the tpC-H, tpC-C, tpC-D, and tpC-e

benchmarks and more. it is a commercial product (free trial available): www.quest.

com/products/benchmark-factory/.

iiBench iiBench is testing how fast you can insert data into the database and thus is useful

if you regularly need to ingest large amount of data. it can be downloaded from

https://github.com/tmcallaghan/iibench-mysql.

DVD Store

Version 3

the DVD Store combines data for a sample DVD store with a benchmark. it can

generate data for any given size with standard sizes being 10 mB, 1 gB, and 100 gB.

it is also useful as general test data and can be downloaded from https://github.

com/dvdstore/ds3. it is based on the older Dell DVD Store Database test Suite.

mysqlslap the mysqlslap tool is special as it is included with the mySQL installation. it can

be used to generate a concurrent workload against a table of your choice. it is a very

simple tool, so it cannot be used for too many purposes, but it is easy to use. the

manual page for mysqlslap can be found at https://dev.mysql.com/doc/

refman/en/mysqlslap.html.

CHapter 3 BenCHmarking witH SySBenCH

https://hammerdb.com/
http://www.quest.com/products/benchmark-factory/
http://www.quest.com/products/benchmark-factory/
https://github.com/tmcallaghan/iibench-mysql
https://github.com/dvdstore/ds3
https://github.com/dvdstore/ds3
https://dev.mysql.com/doc/refman/en/mysqlslap.html
https://dev.mysql.com/doc/refman/en/mysqlslap.html

25

use Kopytov’s fork version 1.0.17 (but note the version listed on outputs is 1.1.0), but the

examples will be similar for other Sysbench forks as long as the fork is new enough to

include the features demonstrated.

There is support for installing Sysbench using native Linux packages, from

Homebrew on macOS, or to compile it yourself. While installing using native packages

is simpler, it is in general better to compile yourself as it ensures you compile against the

MySQL 8 development libraries, and you can compile Sysbench on more platforms than

where there are packages available.

Tip For details about all the installation instructions, including required
dependencies and using native packages, see https://github.com/
akopytov/sysbench. Support for microsoft windows has been dropped in
Sysbench 1.0. it is currently unknown whether support will be reintroduced. if you
are using microsoft windows, the recommendation is to install Sysbench through
windows Subsystem for Linux (wSL) (https://msdn.microsoft.com/en-us/
commandline/wsl/about) in which case the instruction in this chapter should
work with minor modifications (depending on the Linux distribution you choose). an
alternative is to use a virtual machine, for example, in VirtualBox.

Compiling software may not be very common any longer, but fortunately it is

straightforward to compile Sysbench. You will need to download the source code and

then configure the build, compile it, and finally install it.

There are some tools you will need to install before you can compile Sysbench. The

exact tools required depend on your operating system. See the installation instructions

on the project’s GitHub page for details. For example, on Oracle Linux 7:

shell$ sudo yum install make automake libtool \

 pkgconfig libaio-devel \

 openssl-devel

You will also need to have the MySQL 8 development libraries installed. The easiest

way to do this on Linux is to install the MySQL repository for your Linux distribution

from https://dev.mysql.com/downloads/. Listing 3-1 shows an example of installing

the MySQL 8 development libraries on Oracle Linux 7.

CHapter 3 BenCHmarking witH SySBenCH

https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://dev.mysql.com/downloads/

26

Listing 3-1. Installing the MySQL 8 development libraries

shell$ wget https://dev.mysql.com/get/mysql80-community-release-el7-3.

noarch.rpm

...

Saving to: 'mysql80-community-release-el7-3.noarch.rpm'

100%[=================>] 26,024 --.-K/s in 0.006s

2019-10-12 14:21:18 (4.37 MB/s) - 'mysql80-community-release-el7-3.noarch.

rpm' saved [26024/26024]

shell$ sudo yum install mysql80-community-release-el7-3.noarch.rpm

Loaded plugins: langpacks, ulninfo

Examining mysql80-community-release-el7-3.noarch.rpm: mysql80-community-

release-el7-3.noarch

Marking mysql80-community-release-el7-3.noarch.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package mysql80-community-release.noarch 0:el7-3 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package

 Arch Version

 Repository Size

===

Installing:

 mysql80-community-release

 noarch el7-3

 /mysql80-community-release-el7-3.noarch 31 k

Transaction Summary

===

Install 1 Package

Total size: 31 k

CHapter 3 BenCHmarking witH SySBenCH

27

Installed size: 31 k

Is this ok [y/d/N]: y

Downloading packages:

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : mysql80-community-release-el7-3.noarc 1/1

 Verifying : mysql80-community-release-el7-3.noarc 1/1

Installed:

 mysql80-community-release.noarch 0:el7-3

Complete!

shell$ sudo yum install mysql-devel

...

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 mysql-community-client

 x86_64 8.0.17-1.el7 mysql80-community 32 M

 replacing mariadb.x86_64 1:5.5.64-1.el7

 mysql-community-devel

 x86_64 8.0.17-1.el7 mysql80-community 5.5 M

 mysql-community-libs

 x86_64 8.0.17-1.el7 mysql80-community 3.0 M

 replacing mariadb-libs.x86_64 1:5.5.64-1.el7

 mysql-community-libs-compat

 x86_64 8.0.17-1.el7 mysql80-community 2.1 M

 replacing mariadb-libs.x86_64 1:5.5.64-1.el7

 mysql-community-server

 x86_64 8.0.17-1.el7 mysql80-community 415 M

 replacing mariadb-server.x86_64 1:5.5.64-1.el7

CHapter 3 BenCHmarking witH SySBenCH

28

Installing for dependencies:

 mysql-community-common

 x86_64 8.0.17-1.el7 mysql80-community 589 k

Transaction Summary

===

Install 5 Packages (+1 Dependent package)

Total download size: 459 M

...

Complete!

The output depends on what you have already installed. Notice how several other

MySQL packages, including mysql-community-server, are pulled in as dependencies.

This is because the mysql-community-devel package in this case replaces another

preexisting package which triggers a chain of dependency updates.

Note if you have an older version of mySQL or a fork installed, all related
packages will be upgraded. For this reason, it is best to compile Sysbench on a
host where you can freely replace packages or the correct mySQL 8 development
libraries are already installed.

You are now ready to consider Sysbench itself. You can choose to either clone the

GitHub repository or download the source as a ZIP file. To clone the repository, you need

to have git installed and then use the git clone command:

shell$ git clone https://github.com/akopytov/sysbench.git

Cloning into 'sysbench'...

remote: Enumerating objects: 14, done.

remote: Counting objects: 100% (14/14), done.

remote: Compressing objects: 100% (12/12), done.

remote: Total 9740 (delta 4), reused 5 (delta 2), pack-reused 9726

Receiving objects: 100% (9740/9740), 4.12 MiB | 2.12 MiB/s, done.

Resolving deltas: 100% (6958/6958), done.

CHapter 3 BenCHmarking witH SySBenCH

29

The ZIP file with the source code can be downloaded from the GitHub repository, for

example, using wget:

shell$ wget https://github.com/akopytov/sysbench/archive/master.zip

...

Connecting to codeload.github.com (codeload.github.

com)|52.63.100.255|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: unspecified [application/zip]

Saving to: 'master.zip'

 [<=>] 2,282,636 3.48MB/s in 0.6s

2019-10-12 16:01:33 (3.48 MB/s) - 'master.zip' saved [2282636]

Alternatively, you can download the ZIP file using your browser as shown in

Figure 3-1.

Click Download ZIP and the file will download. Once the source code is

downloaded, unzip it.

Figure 3-1. Downloading the Sysbench source code from GitHub in a browser

CHapter 3 BenCHmarking witH SySBenCH

30

You are now ready to configure the compilation. Enter the top-level directory with

the source code. The directory listing should look similar to the following output:

shell$ ls

autogen.sh COPYING Makefile.am rpm tests

ChangeLog debian missing scripts third_party

config install-sh mkinstalldirs snap

configure.ac m4 README.md src

The configuration is done using the autogen.sh script followed by the configure

command as shown in Listing 3-2.

Listing 3-2. Configuring Sysbench for compilation and installation

shell$./autogen.sh

autoreconf: Entering directory `.'

...

parallel-tests: installing 'config/test-driver'

autoreconf: Leaving directory `.'

shell$./configure

checking build system type... x86_64-unknown-linux-gnu

checking host system type... x86_64-unknown-linux-gnu

...

===

sysbench version : 1.1.0-74f3b6b

CC : gcc -std=gnu99

CFLAGS : -O3 -funroll-loops -ggdb3 -march=core2 -Wall -Wextra

-Wpointer-arith -Wbad-function-cast -Wstrict-

prototypes -Wnested-externs -Wno-format-zero-length

-Wundef -Wstrict-prototypes -Wmissing-prototypes

-Wmissing-declarations -Wredundant-decls -Wcast-align

-Wvla -pthread

CPPFLAGS : -D_GNU_SOURCE -I$(top_srcdir)/src -I$(abs_top_

builddir)/third_party/luajit/inc -I$(abs_top_

builddir)/third_party/concurrency_kit/include

LDFLAGS : -L/usr/local/lib

LIBS : -laio -lm

CHapter 3 BenCHmarking witH SySBenCH

31

prefix : /usr/local

bindir : ${prefix}/bin

libexecdir : ${prefix}/libexec

mandir : ${prefix}/share/man

datadir : ${prefix}/share

MySQL support : yes

PostgreSQL support : no

LuaJIT : bundled

LUAJIT_CFLAGS : -I$(abs_top_builddir)/third_party/luajit/inc

LUAJIT_LIBS : $(abs_top_builddir)/third_party/luajit/lib/libluajit-

5.1.a -ldl

LUAJIT_LDFLAGS : -rdynamic

Concurrency Kit : bundled

CK_CFLAGS : -I$(abs_top_builddir)/third_party/concurrency_kit/

include

CK_LIBS : $(abs_top_builddir)/third_party/concurrency_kit/lib/

libck.a

configure flags :

===

The end of the configuration shows the options that will be used for the compilation.

Make sure that MySQL support says yes. The default is to install in /usr/local. You can

change that using the --prefix option when executing configure, for example,

./configure --prefix=/home/myuser/sysbench.

The next step is to compile the code which is done using the make command:

shell$ make -j

Making all in third_party/luajit

...

make[1]: Nothing to be done for `all-am'.

make[1]: Leaving directory `/home/myuser/git/sysbench'

The -j option tells make to compile the source in parallel which can reduce the

compilation time. However, Sysbench is in all cases quick to compile, so it is not of great

importance in this case.

CHapter 3 BenCHmarking witH SySBenCH

32

The final step is to install the compiled version of Sysbench:

shell$ sudo make install

Making install in third_party/luajit

...

make[2]: Leaving directory `/home/myuser/git/sysbench'

make[1]: Leaving directory `/home/myuser/git/sysbench'

That is it. You are now ready to use Sysbench to perform benchmark.

 Executing Benchmarks
Sysbench includes several benchmarks that are ready to use. This ranges from non-

database built-in tests to various database tests. The non-database tests are considered

built-in as they are defined within the Sysbench source code itself. The other tests are

defined in Lua scripts and are installed in the /usr/local/share/sysbench/ directory

(assuming you installed into the default location).

Note this and the next section assume you have a mySQL instance available for
testing on the same host as where you have installed Sysbench. if that is not the
case, you need to adjust the hostnames as necessary.

You can get general help to understand the Sysbench arguments by invoking

sysbench with the --help argument:

shell$ sysbench –help

...

Compiled-in tests:

 fileio - File I/O test

 cpu - CPU performance test

 memory - Memory functions speed test

 threads - Threads subsystem performance test

 mutex - Mutex performance test

See 'sysbench <testname> help' for a list of options for each test.

CHapter 3 BenCHmarking witH SySBenCH

33

At the bottom of the output is a list of the built-in tests and a hint on how to get more

information about a given test. You can get a list of the additional tests by listing the files

in the shared directory:

shell$ ls /usr/local/share/sysbench/

bulk_insert.lua oltp_update_index.lua

oltp_common.lua oltp_update_non_index.lua

oltp_delete.lua oltp_write_only.lua

oltp_insert.lua select_random_points.lua

oltp_point_select.lua select_random_ranges.lua

oltp_read_only.lua tests

oltp_read_write.lua

The files with the .lua extension except oltp_common.lua (shared code for the OLTP

tests) are the tests available. The Lua language1 is a lightweight programming language

that is often used for embedding code into programs. Working with Lua programs

is similar to working with scripting languages such as Python except your code gets

executed through another program (Sysbench in this case).

As mentioned, you can get additional help about the tests by providing the name of

the test and the help command. For example, to get additional information about the test

defined in oltp_read_only.lua, you can use the help command as shown in Listing 3-3.

Listing 3-3. Obtaining help for the oltp_read_only test

shell$ sysbench oltp_read_only help

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

oltp_read_only options:

 --auto_inc[=on|off] Use AUTO_INCREMENT column as Primary Key

(for MySQL), or its alternatives in other

DBMS. When disabled, use client- generated

IDs [on]

 --create_secondary[=on|off] Create a secondary index in addition to the

PRIMARY KEY [on]

 --create_table_options=STRING Extra CREATE TABLE options []

1 www.lua.org/ and https://en.wikipedia.org/wiki/Lua_(programming_language)

CHapter 3 BenCHmarking witH SySBenCH

https://www.lua.org/
https://en.wikipedia.org/wiki/Lua_(programming_language)

34

 --delete_inserts=N Number of DELETE/INSERT combinations per

transaction [1]

 --distinct_ranges=N Number of SELECT DISTINCT queries per

transaction [1]

 --index_updates=N Number of UPDATE index queries per

transaction [1]

 --mysql_storage_engine=STRING Storage engine, if MySQL is used [innodb]

 --non_index_updates=N Number of UPDATE non-index queries per

transaction [1]

 --order_ranges=N Number of SELECT ORDER BY queries per

transaction [1]

 --pgsql_variant=STRING Use this PostgreSQL variant when running

with the PostgreSQL driver. The only

currently supported variant is 'redshift'.

When enabled, create_secondary is

automatically disabled, and delete_inserts

is set to 0

 --point_selects=N Number of point SELECT queries per

transaction [10]

 --range_selects[=on|off] Enable/disable all range SELECT queries [on]

 --range_size=N Range size for range SELECT queries [100]

 --reconnect=N Reconnect after every N events. The default

(0) is to not reconnect [0]

 --secondary[=on|off] Use a secondary index in place of the

PRIMARY KEY [off]

 --simple_ranges=N Number of simple range SELECT queries per

transaction [1]

 --skip_trx[=on|off] Don't start explicit transactions and execute

all queries in the AUTOCOMMIT mode [off]

 --sum_ranges=N Number of SELECT SUM() queries per

transaction [1]

 --table_size=N Number of rows per table [10000]

 --tables=N Number of tables [1]

The values in square brackets are the default values.

CHapter 3 BenCHmarking witH SySBenCH

35

The help command is just one of several commands available (some tests may

not implement all of the commands). The other commands cover the phases of a

benchmark test:

• prepare: Executes the steps required to set up the test, for example,

by creating and populating the tables needed by the test.

• warmup: Ensures the buffers and caches are warm, for example, that

table data and indexes have been loaded into the InnoDB buffer pool.

This is special for the OLTP benchmarks.

• run: Executes the test itself. This command is provided by all tests.

• cleanup: Removes any tables used by the test.

As an example, consider the read-only OLTP test that you retrieved the help for

before. First, create a MySQL user that can execute the required queries. The default is to

use the sbtest schema for the benchmark, so a simple solution is to create a user with all

privileges on this schema:

mysql> CREATE USER sbtest@localhost IDENTIFIED BY 'password';

Query OK, 0 rows affected (0.02 sec)

mysql> GRANT ALL ON sbtest.* TO sbtest@localhost;

Query OK, 0 rows affected (0.01 sec)

mysql> CREATE SCHEMA sbtest;

Query OK, 1 row affected (0.01 sec)

In this case, the user is expected to connect from localhost. In general, that will not

be the case, so you need to change the hostname part of the account to reflect where

the Sysbench user is connecting from. The username was chosen as sbtest as that is

the default used by Sysbench. The sbtest schema is also created as the Sysbench tests

require it to exist when first connecting.

Note it is strongly recommended to choose a strong password for the account.

If you want to execute a benchmark that uses four tables each with 20000 rows, then

you can prepare that test like it is shown in Listing 3-4.

CHapter 3 BenCHmarking witH SySBenCH

36

Listing 3-4. Preparing the test

shell$ sysbench oltp_read_only \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --table_size=20000 \

 --tables=4 \

 --threads=4 \

 prepare

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

Initializing worker threads...

Creating table 'sbtest1'...

Creating table 'sbtest3'...

Creating table 'sbtest4'...

Creating table 'sbtest2'...

Inserting 20000 records into 'sbtest2'

Inserting 20000 records into 'sbtest3'

Inserting 20000 records into 'sbtest1'

Inserting 20000 records into 'sbtest4'

Creating a secondary index on 'sbtest3'...

Creating a secondary index on 'sbtest2'...

Creating a secondary index on 'sbtest4'...

Creating a secondary index on 'sbtest1'...

This creates the four tables as sbtest1, sbtest2, sbtest3, and sbtest4 using four

threads. The prepare step will be quick in this case as the tables are small; however, if you

perform benchmarks using large tables, it can take a significant amount of time to set up

the test. As benchmark testing typically involves executing a range of tests, you can speed

up the testing by creating a binary backup (copying the tables, either with MySQL shut

down or using a tool such as MySQL Enterprise Backup) or a file system snapshot. For

each subsequent test, you can restore the backup instead of recreating the tables.

Optionally, you can as the next step go through a warmup phase as shown in Listing 3-5.

CHapter 3 BenCHmarking witH SySBenCH

37

Listing 3-5. Warming MySQL up for the test

shell$ sysbench oltp_read_only \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --table_size=20000 \

 --tables=4 \

 --threads=4 \

 warmup

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

Initializing worker threads...

Preloading table sbtest3

Preloading table sbtest1

Preloading table sbtest2

Preloading table sbtest4

Here it is important that you include the --tables and --table-size options

as otherwise only the default number of rows (10,000) of the sbtest1 table will be

preloaded. The preloading consists of averaging the id column and a simple SELECT

COUNT(*) query with the rows fetched in a subquery (the queries have been reformatted):

SELECT AVG(id)

 FROM (SELECT *

 FROM sbtest1 FORCE KEY (PRIMARY)

 LIMIT 20000

) t

SELECT COUNT(*)

 FROM (SELECT *

 FROM sbtest1

 WHERE k LIKE '%0%'

 LIMIT 20000

) t

CHapter 3 BenCHmarking witH SySBenCH

38

So the warmup phase may not be equivalent to running the actual benchmark for

a while.

Tip you can also use the --warmup-time=N option when executing the
benchmark to disable statistics for the first N seconds.

The benchmark itself is executing using the run command. There are two options to

specify the duration of the test:

• --events=N: The maximum number of events to execute.

The default is 0.

• --time=N: The maximum duration in seconds. The default is 10.

When the value is 0 for one of the options, it means infinite. So, if you set both

--events and --time to 0, the test will run forever. This can, for example, be useful, if you

are not interested in the benchmark statistics themselves but want to collect monitoring

metrics or want to create a workload while performing some other task.

Tip the author of this book uses Sysbench with both the number of events and
time limits set to 0 to generate a concurrent workload for tests creating backups.

If you, for example, want to execute a test for one minute (60 seconds), you can use a

command like the one in Listing 3-6.

Listing 3-6. Executing a Sysbench test for one minute

shell$ sysbench oltp_read_only \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --table_size=20000 \

 --tables=4 \

CHapter 3 BenCHmarking witH SySBenCH

39

 --time=60 \

 --threads=8 \

 run

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

Running the test with following options:

Number of threads: 8

Initializing random number generator from current time

Initializing worker threads...

Threads started!

SQL statistics:

 queries performed:

 read: 766682

 write: 0

 other: 109526

 total: 876208

 transactions: 54763 (912.52 per sec.)

 queries: 876208 (14600.36 per sec.)

 ignored errors: 0 (0.00 per sec.)

 reconnects: 0 (0.00 per sec.)

Throughput:

 events/s (eps): 912.5224

 time elapsed: 60.0128s

 total number of events: 54763

Latency (ms):

 min: 3.26

 avg: 8.76

 max: 122.43

 95th percentile: 11.24

 sum: 479591.29

Threads fairness:

 events (avg/stddev): 6845.3750/70.14

 execution time (avg/stddev): 59.9489/0.00

CHapter 3 BenCHmarking witH SySBenCH

40

Notice that unlike the prepare and warmup phases, the run command was run with

eight threads. The number of threads is often one of the things that is varied in a series of

tests to determine how concurrent a workload the system can sustain. It is necessary to

specify the number of tables and rows that the run command should use as otherwise the

default values will be used (there is no state shared between the Sysbench commands).

Once you are done with the tests, you can tell Sysbench to clean up after itself using

the cleanup command as shown in Listing 3-7.

Listing 3-7. Cleaning up after a test

shell$ sysbench oltp_read_only \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --tables=4 \

 cleanup

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

Dropping table 'sbtest1'...

Dropping table 'sbtest2'...

Dropping table 'sbtest3'...

Dropping table 'sbtest4'...

Notice that it is necessary to specify the number of tables; otherwise, only the first

table will be dropped.

The built-in tests are great, but what makes Sysbench a really strong tool is that you

can also define your own benchmarks.

 Creating Custom Benchmarks
As you saw in the previous section, the database tests that are included with Sysbench

are defined in Lua scripts (www.lua.org/). This means that all that you need to do to

define your own tests is to create a Lua script with the definition of the test and save it

in Sysbench’s shared directory. One example where this can be useful is if you want to

CHapter 3 BenCHmarking witH SySBenCH

http://www.lua.org/

41

create a test based on the specific requirements of your application either to test the

effect of indexes, refactoring your application, or similar.

This section will put together a small example test script, so you can see the

principles of creating your own tests. The test can also be found in sequence.lua in this

book’s GitHub repository.

Tip a great way to learn how to write your own Sysbench Lua scripts is to study
the existing ones. in addition to the example in this chapter, you can look at the Lua
scripts shipped with Sysbench and another relatively simple example in https://
gist.github.com/utdrmac/92d00a34149565bc155cdef80b6cba12.

 Overview of the Custom Script
The example benchmark test will test the performance of a sequence implemented

by having a single row per sequence in a table. Such constructs are sometimes used to

implement custom sequences in applications. The table definition and an example of

the use of the table is shown in Listing 3-8.

Listing 3-8. Using a custom sequence table

mysql> SHOW CREATE TABLE sbtest.sbtest1\G

*************************** 1. row ***************************

 Table: sbtest1

Create Table: CREATE TABLE `sbtest1` (

 `id` varchar(10) NOT NULL,

 `val` bigint(20) unsigned NOT NULL DEFAULT '0',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.00 sec)

mysql> SELECT * FROM sbtest.sbtest1;

+--------+-----+

| id | val |

+--------+-----+

| sbkey1 | 0 |

+--------+-----+

1 row in set (0.00 sec)

CHapter 3 BenCHmarking witH SySBenCH

https://gist.github.com/utdrmac/92d00a34149565bc155cdef80b6cba12
https://gist.github.com/utdrmac/92d00a34149565bc155cdef80b6cba12

42

mysql> UPDATE sbtest1

 SET val = LAST_INSERT_ID(val+1)

 WHERE id = 'sbkey1';

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 1 |

+------------------+

1 row in set (0.00 sec)

mysql> SELECT * FROM sbtest.sbtest1;

+--------+-----+

| id | val |

+--------+-----+

| sbkey1 | 1 |

+--------+-----+

1 row in set (0.00 sec)

The LAST_INSERT_ID() function is used in the UPDATE statement to assign the session

value for the last inserted id, so it can be fetched afterward in the SELECT statement.

The example test will have the following features:

• Support for the prepare, run, cleanup, and help commands.

• The prepare and run commands can be executed in parallel.

• Support for specifying the number of tables, table size, and whether

explicit transactions are used.

• Validation that the number of rows per table is in the range 1–99999.

The id column of the tables is created as a varchar(10), and the keys

are prefixed with sbkey, so there can be at most five digits.

The functions that will be implemented are summarized in Figure 3-2.

CHapter 3 BenCHmarking witH SySBenCH

43

The Prepare, Run, and Cleanup groups represent commands, and the Helpers group

contains the two helper functions that will be used from multiple commands. The run

and help commands are special as they always exist. The help is automatically generated

based on the options that the script adds, so no special consideration is required for that.

There is also a little code that is outside functions, of which the first is a sanity check and

the options that the script will support.

 Defining the Options
The options that the script supports are configured by adding elements to the sysbench.

cmdline.options hash. This is one of the built-in features of Sysbench that you can

use in your scripts. Another is sysbench.cmdline.command which is the name of the

command that has been provided for the execution.

Listing 3-9 shows how you can verify that the command has been set and then add

the three options that this script supports.

Figure 3-2. Overview of the functions in the sequence test

CHapter 3 BenCHmarking witH SySBenCH

44

Listing 3-9. Verifying a command is specified and adding the options

-- Validate that a command was provided

if sysbench.cmdline.command == nil then

 error("Command is required. Supported commands: " ..

 "prepare, run, cleanup, help")

end

-- Specify the supported options for this test

sysbench.cmdline.options = {

 skip_trx = {"Don't start explicit transactions and " ..

 "execute all queries in the AUTOCOMMIT mode",

 false},

 table_size = {"The number of rows per table. Supported " ..

 "values: 1-99999", 1},

 tables = {"The number of tables", 1}

}

The built-in error() function is used to emit the error message with a list of

supported commands, if the command is not set. It is not necessary to verify whether the

command is one of the supported ones as Sysbench will automatically validate that.

The options are added with an array consisting of the help text and the default value.

With the definitions in this script, the generated help text becomes:

shell$ sysbench sequence help

sysbench 1.1.0-74f3b6b (using bundled LuaJIT 2.1.0-beta3)

sequence options

 -- skip_trx[=on|off] Don't start explicit transactions and execute all

queries in the AUTOCOMMIT mode [off]

 --table_size=N The number of rows per table. Supported values:

1-99999 [1]

 --tables=N The number of tables [1]

The option values are made available in the sysbench.opt hash, for example, to get

the number of tables in the test, you can use sysbench.opt.tables. The hash is available

globally, so you do not need to do anything before you can use it.

You are now ready to implement the three commands that the script supports. Since

the run command is mandatory, it is the first one that will be discussed.

CHapter 3 BenCHmarking witH SySBenCH

45

 The run Command
The run command is special as it is mandatory and that it always has support for parallel

execution. Unlike other commands that are implemented in a single function (optionally

invoking other functions), Sysbench uses three functions for the run command. The

three functions that must always exist are

• thread_init(): This is called when Sysbench initializes the script.

• thread_done(): This is called when Sysbench is done executing the

script.

• event(): This is where the actual test is implemented and is called

once per iteration.

For this example, the thread_init() function can be kept very simple:

-- Initialize the script

-- Initialize the global variables used in the rest of the script

function thread_init()

 -- Initialize the database driver and connections

 db = sysbench.sql.driver()

 cnx = db:connect()

end

For this simple test, all the initialization that is required is to create the connection

to MySQL which consists of initializing the database driver and to use that to create

the connection. The driver is available from the sysbench object. By creating the

connections in the thread_init() function, Sysbench can reuse the connections instead

of creating a new connection for each iteration. If you want to simulate creating a new

connection for each group of queries, you can also choose to do that by adding the code

in the event() function and make the connection object local in the same way as it will

be done later for the prepare and cleanup commands.

Similarly, the thread_done() function cleans up after the execution:

-- Clean up after the test

function thread_done()

 -- Close the connection to the database

 cnx:disconnect()

end

CHapter 3 BenCHmarking witH SySBenCH

46

All that is required in this case is to close the connection which is done using the

disconnect() method of the connection.

The most interesting of the three required functions is the event() function which

defines what is done when executing the test. The code for the example script can be

seen in Listing 3-10.

Listing 3-10. The event() function

-- Called for each iteration

function event()

 -- Check the --skip_trx option which determines

 -- whether explicit transactions are required.

 if not sysbench.opt.skip_trx then

 cnx:query("BEGIN")

 end

 -- Execute the customer test

 do_increment()

 -- If necessary, commit the transaction

 if not sysbench.opt.skip_trx then

 cnx:query("COMMIT")

 end

end

This code uses one option, the --skip_trx option. If --skip_trx is disabled, then

the test relies on the auto-commit feature; otherwise, explicit BEGIN and COMMIT are

executed.

Note in the Sysbench Lua scripts, you cannot use START TRANSACTION to
begin a transaction.

In this case, the event() function does not actually perform any work itself. That is

deferred to the do_increment() function to show how you can add extra functions to

separate out the work like in other programs. The do_increment() function together

with a couple of helper functions is shown in Listing 3-11.

CHapter 3 BenCHmarking witH SySBenCH

47

Listing 3-11. The do_increment() and helper functions

-- Generate the table name from the table number

function gen_table_name(table_num)

 return string.format("sbtest%d", table_num)

end

-- Generate the key from an id

function gen_key(id)

 return string.format("sbkey%d", id)

end

-- Increment the counter and fetch the new value

function do_increment()

 -- Choose a random table and id

 -- among the tables and rows available

 table_num = math.random(sysbench.opt.tables)

 table_name = gen_table_name(table_num)

 id = math.random(sysbench.opt.table_size)

 key = gen_key(id)

 query = string.format([[

UPDATE %s

 SET val = LAST_INSERT_ID(val+1)

 WHERE id = '%s']], table_name, key)

 cnx:query(query)

 cnx:query("SELECT LAST_INSERT_ID()")

end

The gen_table_name() function generates the table name based on an integer,

and the gen_key() function similarly generates a key value based on an integer id. The

table name and key value are used in a few other places in the script, so by splitting

the logic into helper functions, you can ensure they are generated in the same way

throughout the script.

The do_increment() function itself starts out generating the table name and key

based on random values based on the number of tables and the number of rows in each

table in the test. In a real application, you may not have such a uniform access to the

sequences, in which case you can modify the logic in the script. Finally, the UPDATE and

CHapter 3 BenCHmarking witH SySBenCH

48

SELECT statements are executed. A possible extension of the script is to use the generated

sequence number in some other query, but be careful that you do not end up doing work

that is not relevant to what you are trying to benchmark.

That is all that is required for the run command. Notice that nothing was done to

implement parallel execution; that is handled automatically by Sysbench unless you do

not want to treat all threads the same. An example where the threads should not perform

identical work is the prepare command where each thread will be responsible for its

own tables.

 The prepare Command
The prepare command is an example of a custom command that supports parallel

execution. The top-level code for the command is implemented in the do_prepare()

function which in turn uses the create_table() function to create one specific table based

on the table number passed to the function. The two functions can be seen in Listing 3-12.

Listing 3-12. The do_prepare() and create_table() functions

-- Prepare the table

-- Can be parallelized up to the number of tables

function do_prepare()

 -- The script only supports up to 99999 rows

 -- as the id column is a varchar(10) and five

 -- characters is used by 'sbkey'

 assert(sysbench.opt.table_size > 0 and

 sysbench.opt.table_size < 100000,

 "Only 1-99999 rows per table is supported.")

 -- Initialize the database driver and connection

 local db = sysbench.sql.driver()

 local cnx = db:connect()

 -- Create table based on thread id

 for i = sysbench.tid % sysbench.opt.threads + 1,

 sysbench.opt.tables,

 sysbench.opt.threads do

 create_table(cnx, i)

 end

CHapter 3 BenCHmarking witH SySBenCH

49

 -- Disconnect

 cnx:disconnect()

end

-- Create the Nth table

function create_table(cnx, table_num)

 table_name = gen_table_name(table_num)

 print(string.format(

 "Creating table '%s'...", table_name))

 -- Drop the table if it exists

 query = string.format(

 "DROP TABLE IF EXISTS %s", table_name)

 cnx:query(query)

 -- Create the new table

 query = string.format([[

CREATE TABLE %s (

 id varchar(10) NOT NULL,

 val bigint unsigned NOT NULL DEFAULT 0,

 PRIMARY KEY (id)

)]], table_name)

 cnx:query(query)

 -- Insert the rows inside a transaction

 cnx:query("BEGIN")

 for i = 1, sysbench.opt.table_size, 1 do

 query = string.format([[

INSERT INTO %s (id)

VALUES ('%s')]], table_name, gen_key(i))

 cnx:query(query)

 end

 cnx:query("COMMIT")

end

CHapter 3 BenCHmarking witH SySBenCH

50

The first thing that is done in the do_prepare() function is to verify that the number

of rows is within the range 1–99999. This is done using the assert() function where the

first argument must evaluate to true; otherwise, the error message given as the second

output is printed and the script exists.

The do_prepare() function is called once per thread, so the parallelization is

handled for you (more about this at the end of the example), but you need to ensure that

each table is only created once. That is done through the for loop where the modulus of

sysbench.tid (the Sysbench thread id) with the number of threads is used to determine

the table numbers handled by each thread.

The actual table creation is performed in create_table() to separate out the tasks

to make it easier to maintain the script. If the table already exists, it is dropped and

then created, and finally the table is populated with the number of rows requested. All

rows are inserted in a single transaction to improve the performance. If you need to

populate larger tables, it is worth committing after every few thousand rows, but since

the maximum number of rows in this table is 99999 and the rows are very small, it is fine

to keep things simple and just use a single transaction per table.

 The cleanup Command
The last command that must be implemented is cleanup which is an example of a

single-threaded command. The work for the command is done in the cleanup()

function as shown in Listing 3-13.

Listing 3-13. The cleanup() function

-- Cleanup after the test

function cleanup()

 -- Initialize the database driver and connection

 local db = sysbench.sql.driver()

 local cnx = db:connect()

 -- Drop each table

 for i = 1, sysbench.opt.tables, 1 do

 table_name = gen_table_name(i)

 print(string.format(

 "Dropping table '%s' ...", table_name))

CHapter 3 BenCHmarking witH SySBenCH

51

 query = string.format(

 "DROP TABLE IF EXISTS %s", table_name)

 cnx:query(query)

 end

 -- Disconnect

 cnx:disconnect()

end

The cleanup() function only supports serial execution, so it can just loop over the

tables and drop them one by one.

This leaves a question: How does Sysbench know that the prepare command can be

run on parallel, but the cleanup command cannot?

 Registering Commands
By default, all commands except run execute in serial, and the function implementing

the command is named the same as the command. So, for the prepare command, it is

necessary to set the prepare object in the script to point to the do_prepare() function

with an additional argument that do_prepare() should be called once per thread:

-- Specify the actions other than run that support

-- execution in parallel.

-- (Other supported actions are found based on the

-- function name except 'help' that is built-in.)

sysbench.cmdline.commands = {

 prepare = {do_prepare, sysbench.cmdline.PARALLEL_COMMAND}

}

The sysbench.cmdline.PARALLEL_COMMAND constant is built-in and specifies that

the command should be executed in parallel. It is important that this code is after

the definition of do_prepare() as otherwise a nil value is assigned. In practice, it is

convenient to add the code at the end of the script.

That concludes the script. You can now use it in the same way as the tests that ship

with Sysbench provided that you have copied it into the shared Sysbench directory

(/usr/local/share/sysbench/ with the default installation directory when you compile

Sysbench yourself). Assuming you have saved the script as sequence.lua, an example

use of the script is shown – without output – in Listing 3-14.

CHapter 3 BenCHmarking witH SySBenCH

52

Listing 3-14. Example commands for the sequence test

shell$ sysbench sequence \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --table_size=10 \

 --tables=4 \

 --threads=4 \

 prepare

shell$ sysbench sequence \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --table_size=10 \

 --tables=4 \

 --time=60 \

 --threads=8 \

 run

shell$ sysbench sequence \

 --mysql-host=127.0.0.1 \

 --mysql-port=3306 \

 --mysql-user=sbtest \

 --mysql-password=password \

 --mysql-ssl=REQUIRED \

 --mysql-db=sbtest \

 --tables=4 \

 cleanup

CHapter 3 BenCHmarking witH SySBenCH

53

Note that as for the oltp_read_only test, the sbtest schema must exist before

executing the prepare command. It is left as an exercise to the reader to try the script

with different values for --threads, --tables, --table_size, and --skip_trx.

 Summary
This chapter has discussed how benchmarks can be used with MySQL. First, some

general best practices using benchmarks were discussed. The single most important

things are that you have determined what to benchmark and what is considered the

success criteria. This is not all that different from performance tuning in general. It is also

important that you understand the tests the benchmark performs and what the result

means. Often, you will need to collect additional metrics either through your normal

monitoring solution or through specialized scripts to determine whether the benchmark

was a success.

Next, the standard TPC benchmarks were covered. The TPC-C and TPC-E

benchmarks are good for testing OLTP workloads with TPC-C being the most used as it

is the oldest, but TPC-E being the most realistic for modern applications. The TPC-H and

TPC-DS use complex queries that can be great, for example, to explore changes that can

affect the query plan.

While you can choose to implement a benchmark from scratch yourself, it is more

likely you will use a preexisting benchmark tool. The most commonly used tool with

MySQL is Sysbench which was covered in some detail. First, Sysbench was installed

by compiling it. Then it was shown how the standard Sysbench benchmarks can be

executed. The real strength of Sysbench, though, is that you can define your own custom

tests. A simple example was shown in the last section.

In the same way as it is not always possible to use a real-world benchmark, it is not

always possible to use read-world data for general testing. The next chapter explores

some generic data sets often used with MySQL and of which several are also used in

this book.

CHapter 3 BenCHmarking witH SySBenCH

55
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_4

CHAPTER 4

Test Data
Testing is a very important part of the performance tuning work as it is important that

you have verified that your changes work before you apply them to your production

system. The best data for verification of your changes closely relates to your production

data; however, for exploring how MySQL works, it can be better to use some generic test

data. This chapter introduces four standard data sets with installation instructions as

well as a few other data sets that are available.

Tip The world, world_x, and sakila databases are used as test data in the
remainder of this book.

First, however, you need to know how you can download the databases.

 Downloading the Example Databases
Common for the example databases that are discussed in detail in this chapter is that

they can be downloaded from https://dev.mysql.com/doc/index-other.html or there

is a link to where they can be downloaded from. For several of the databases, there is also

online documentation and PDF files linked from this page. The relevant part of the page

is shown in Figure 4-1.

https://dev.mysql.com/doc/index-other.html

56

The employee data (the employees database) is downloaded from Giuseppe Maxia’s

(also known as The Data Charmer) GitHub repository, whereas the other databases are

downloaded from Oracle’s MySQL’s site. The download with the employee data also

includes a copy of the sakila database. For the employee data, the world database, and

the sakila database, there is also documentation available.

Note If you are not using the latest version of the data, you may see warnings
about deprecated features, when you install the test databases. You can ignore
those warnings, however, it is recommended to get the latest version of the data.

The menagerie database is a tiny two-table database with a total of fewer than

20 rows that was created for the tutorials section in the MySQL manual. It will not be

discussed further.

 The world Database
The world sample database is one of the most commonly used databases for simple

tests. It consists of three tables with a few hundred to a few thousand rows. This makes it

a small data set which means it can easily be used even on small test instances.

 Schema
The database consists of the city, country, and countrylanguage tables. The

relationship between the tables is shown in Figure 4-2.

Figure 4-1. The table with links to the example databases

ChapTer 4 TesT DaTa

57

The country table includes information about 239 countries and serves as the parent

table in foreign keys from the city and countrylanguage tables. There are a total of 4079

cities in the database and 984 combinations of country and language.

 Installation
The downloaded file consists of a single file named world.sql.gz or world.sql.zip

depending on whether you chose the Gzip or Zip link. In either case, the downloaded

archive contains a single file world.sql. The installation of the data is straightforward as

all that is required is to execute the script.

If you use MySQL Shell with a copy of the world database from around January 2020

or before, you will need to use the traditional protocol as the X Protocol (the default)

requires UTF-8 and the world database used Latin 1. You use the \source command to

load the data from MySQL Shell:

MySQL [localhost ssl] SQL> \source world.sql

Figure 4-2. The world database

ChapTer 4 TesT DaTa

58

If you use the legacy mysql command-line client, use the SOURCE command instead:

mysql> SOURCE world.sql

In either case, add the path to the world.sql file if it is not located in the directory

where you started MySQL Shell or mysql.

A related database is world_x which contains the same data as world, but it is

organized differently.

 The world_x Database
MySQL 8 has added support for the MySQL Document Store which supports storing and

retrieving data as JavaScript Object Notation (JSON) documents. The world_x database

stores some of the data in JSON documents to give you a test database that can readily be

used for tests that include the use of JSON.

 Schema
The world_x database includes the same three tables as the world database, though

the columns are a little different, for example, the city table includes the JSON column

Info with the population instead of the Population column and the country table

has omitted several columns. Instead, there is the countryinfo table which is a pure

Document Store–type table with the information otherwise removed from the country

table. The schema diagram is shown in Figure 4-3.

ChapTer 4 TesT DaTa

59

While there are no foreign keys from the city and countryinfo tables, they can

be joined to the country table using the CountryCode column and doc->>'$.Code'

value, respectively. The _id column of the countryinfo table is an example of a stored

generated column where the value is extracted from the JSON document in the doc

column.

 Installation
The installation of the world_x database is very similar to the world database. You

download either the world_x-db.tar.gz or world_x-db.zip file and extract it. The

extracted files include a file named world_x.sql as well as a README file. The world_x.

sql file includes all the statements required to create the schema.

Since the world_x schema uses UTF-8, you can install it using either of the MySQL

protocols. For example, using MySQL Shell:

MySQL [localhost+ ssl] SQL> \source world_x.sql

Figure 4-3. The world_x database

ChapTer 4 TesT DaTa

60

Add the path to the world_x.sql file if it is not located in the current directory.

The world and world_x databases are very simple which makes them easy to use;

however, sometimes you will need something a little more complex which the sakila

database can deliver.

 The sakila Database
The sakila database is a realistic database that contains a schema for a film rental

business with information about the films, inventory, stores, staff, and customers. It adds

a full text index, a spatial index, views, and stored programs to provide a more complete

example of using MySQL features. The database size is still very moderate making it

suitable for small instances.

 Schema
The sakila database consists of 16 tables, seven views, three stored procedures, three

stored functions, and six triggers. The tables can be split into three groups, customer

data, business, and inventory. For brevity, not all columns are included in the diagrams

and most indexes are not shown. Figure 4-4 shows a complete overview of the tables,

views, and stored routines.

ChapTer 4 TesT DaTa

61

The tables with customer-related data (plus addresses for staff and stores) are in the

area in the top-left corner. The area in the lower left includes data related to the business,

and the area in the top right contains information about the films and inventory. The

lower right is used for the views and stored routines.

Tip You can view the entire diagram (though formatted differently) by opening the
sakila.mwb file included with the installation in MysQL Workbench. This is also a
good example of how you can use enhanced entity-relationship (eer) diagrams in
MysQL Workbench to document your schema.

As there is a relatively large number of objects, they will be split into five groups

(each of the table groups, views, and stored routines) when discussing the schema. The

first group is the customer-related data with the tables shown in Figure 4-5.

Figure 4-4. Overview of the sakila database

ChapTer 4 TesT DaTa

62

There are four tables with data related to the customers. The customer table is the

main table, and the address information is stored in the address, city, and country

tables.

There are foreign keys between the customer and business groups with a foreign

key from the customer table to the store table in the business group. There are also four

foreign keys from tables in the business group to the address and customer tables. The

business group is shown in Figure 4-6.

Figure 4-5. The tables with customer data in the sakila database

ChapTer 4 TesT DaTa

63

The business tables contain information about the stores, staff, rentals, and

payments. The store and staff tables have foreign keys in both directions with staff

belonging to a store and a store having a manager that is part of the staff. Rentals and

payments are handled by a staff member and thus indirectly linked to a store, and

payments are for a rental.

The business group of tables is the one with the most relations to other groups.

The staff and store tables have foreign keys to the address table, and the rental and

payment tables reference the customer. Finally, the rental table has a foreign key to the

inventory table which is in the inventory group. The diagram for the inventory group is

shown in Figure 4-7.

Figure 4-6. The tables with business data in the sakila database

ChapTer 4 TesT DaTa

64

Figure 4-7. The tables with inventory data in the sakila database

ChapTer 4 TesT DaTa

65

The main table in the inventory group is the film table which contains the metadata

about the films the stores offer. Additionally, there is the film_text table with the title

and description with a full text index.

There is a many-to-many relationship between the film and the category and actor

tables. Finally, there is a foreign key from the inventory table to the store table in the

business group.

That covers all the tables in the sakila database, but there are also some views as

shown in Figure 4-8.

Figure 4-8. The views in the sakila database

The views can be used like reports and can be divided into two categories. The

film_list, nicer_but_slower_film_list, and actor_info views are related to the films

stored in the database. The second category contains information related to the stores in

the sales_by_store, sales_by_film_category, staff_list, and customer_list views.

To complete the database, there are also the stored functions and procedures shown

in Figure 4-9.

ChapTer 4 TesT DaTa

66

The film_in_stock() and film_not_in_stock() procedures return a result set

consisting of the inventory ids for a given film and store based on whether the film

is in stock or not. The total number of inventory entries found is returned as an out

parameter. The rewards_report() procedure generates a report based on minimum

spends for the last month.

The get_customer_balance() function returns the balance for a given customer

on a given data. The two remaining functions check the status of an inventory id with

inventory_held_by_customer() returning customer id of the customer currently

renting that item (and NULL if no customer is renting it), and if you want to check whether

a given inventory id is in stock, you can use the inventory_in_stock() function.

 Installation
The downloaded file expands into a directory with three files, of which two create the

schema and data and the last file contains the ETL diagram in the format used by MySQL

Workbench.

Note This section and the examples later in the book use the copy of the sakila
database that is downloaded from MysQL’s homepage.

Figure 4-9. The stored routines in the sakila database

ChapTer 4 TesT DaTa

67

The files are

• sakila-data.sql: The INSERT statements needed to populate the

tables as well as the trigger definitions.

• sakila-schema.sql: The schema definition statements.

• sakila.mwb: The MySQL Workbench ETL diagram. This is similar to

that shown in Figure 4-4 with details in Figures 4-5 to 4-9.

You install the sakila database by first sourcing the sakila-schema.sql file and

then the sakila-data.sql file. For example, the following is using MySQL Shell:

MySQL [localhost+ ssl] SQL> \source sakila-schema.sql

MySQL [localhost+ ssl] SQL> \source sakila-data.sql

Add the path to the files if they are not located in the current directory.

Common for the three data sets thus far is that they contain little data. While this is in

many cases a nice feature as it makes it easier to work with, in some cases you need a bit

more data to explore the difference in query plans. The employees database is an option

with more data.

 The employees Database
The employees database (called employee data on the MySQL documentation download

page; the name of the GitHub repository is test_db) was originally created by Fusheng

Wang and Carlo Zaniolo and is the largest of the test data sets linked from MySQL’s

homepage. The total size of the data files is around 180 MiB for the non-partitioned

version and 440 MiB for the partitioned version.

 Schema
The employees database consists of six tables and two views. You can optionally install

two more views, five stored functions, and two stored procedures. The tables are shown

in Figure 4-10.

ChapTer 4 TesT DaTa

68

It is possible to choose to have the salaries and titles tables partitioned by the

year of the from_date column as shown in Listing 4-1.

Listing 4-1. The optional partitioning of the salaries and titles tables

PARTITION BY RANGE COLUMNS(from_date)

(PARTITION p01 VALUES LESS THAN ('1985-12-31') ENGINE = InnoDB,

 PARTITION p02 VALUES LESS THAN ('1986-12-31') ENGINE = InnoDB,

 PARTITION p03 VALUES LESS THAN ('1987-12-31') ENGINE = InnoDB,

 PARTITION p04 VALUES LESS THAN ('1988-12-31') ENGINE = InnoDB,

 PARTITION p05 VALUES LESS THAN ('1989-12-31') ENGINE = InnoDB,

Figure 4-10. The tables, views, and routines in the employees database

ChapTer 4 TesT DaTa

69

 PARTITION p06 VALUES LESS THAN ('1990-12-31') ENGINE = InnoDB,

 PARTITION p07 VALUES LESS THAN ('1991-12-31') ENGINE = InnoDB,

 PARTITION p08 VALUES LESS THAN ('1992-12-31') ENGINE = InnoDB,

 PARTITION p09 VALUES LESS THAN ('1993-12-31') ENGINE = InnoDB,

 PARTITION p10 VALUES LESS THAN ('1994-12-31') ENGINE = InnoDB,

 PARTITION p11 VALUES LESS THAN ('1995-12-31') ENGINE = InnoDB,

 PARTITION p12 VALUES LESS THAN ('1996-12-31') ENGINE = InnoDB,

 PARTITION p13 VALUES LESS THAN ('1997-12-31') ENGINE = InnoDB,

 PARTITION p14 VALUES LESS THAN ('1998-12-31') ENGINE = InnoDB,

 PARTITION p15 VALUES LESS THAN ('1999-12-31') ENGINE = InnoDB,

 PARTITION p16 VALUES LESS THAN ('2000-12-31') ENGINE = InnoDB,

 PARTITION p17 VALUES LESS THAN ('2001-12-31') ENGINE = InnoDB,

 PARTITION p18 VALUES LESS THAN ('2002-12-31') ENGINE = InnoDB,

 PARTITION p19 VALUES LESS THAN (MAXVALUE) ENGINE = InnoDB)

Table 4-1 shows the number of rows and size of the tablespace files for the tables in the

employees database (note that the size may vary a little when you load the data). The size

assumes you load the non-partitioned data; the partitioned tables are somewhat larger.

By today’s standards, it is still a relatively small amount of data, but it is big enough

that you can start to see some performance differences for different query plans.

The views and routines are summarized in Figure 4-11.

Table 4-1. The size of each table in

the employees database

Table # Rows Tablespace Size

departments 9 128 kiB

dept_emp 331603 25600 kiB

dept_manager 24 128 kiB

employees 300024 22528 kiB

salaries 2844047 106496 kiB

titles 443308 27648 kiB

ChapTer 4 TesT DaTa

70

The dept_emp_latest_date and current_dept_emp views are installed together with

the tables, whereas the rest of the objects are installed separately in the objects.sql file.

The stored routines come with their own built-in help which you can obtain by using the

employees_usage() function or the employees_help() procedure. The latter is shown in

Listing 4-2.

Listing 4-2. The built-in help for the stored routines in the employees database

mysql> CALL employees_help()\G

*************************** 1. row ***************************

info:

 == USAGE ==

 ====================

 PROCEDURE show_departments()

 shows the departments with the manager and

 number of employees per department

 FUNCTION current_manager (dept_id)

 Shows who is the manager of a given departmennt

 FUNCTION emp_name (emp_id)

 Shows name and surname of a given employee

Figure 4-11. The views and routines in the employees database

ChapTer 4 TesT DaTa

71

 FUNCTION emp_dept_id (emp_id)

 Shows the current department of given employee

1 row in set (0.00 sec)

Query OK, 0 rows affected (0.02 sec)

 Installation
You can download a ZIP file with the files required for the installation, or you can clone

the GitHub repository at https://github.com/datacharmer/test_db. At the time of

writing, there is only a single branch named master. If you have downloaded the ZIP file,

it will unzip into a directory named test_db-master.

There are several files. The two relevant for installing the employees database

in MySQL 8 are employees.sql and employees_partitioned.sql. The difference is

whether the salaries and titles tables are partitioned. (There is also employees_

partitioned_5.1.sql which is meant for MySQL 5.1 where the partitioning scheme

used in employees_partitioned.sql is not supported.)

The data is loaded by sourcing the .dump files using the SOURCE command. At the

time of writing, the SOURCE command is not supported in MySQL Shell, so you will need

to use the legacy mysql command-line client to import the data. Go to the directory with

the source files, and choose the employees.sql or employees_partitioned.sql file,

depending on whether you want to use partitioning or not, for example:

mysql> SOURCE employees.sql

The import takes a little time and completes by showing how long it took:

+---------------------+

| data_load_time_diff |

+---------------------+

| 00:01:51 |

+---------------------+

1 row in set (0.44 sec)

ChapTer 4 TesT DaTa

https://github.com/datacharmer/test_db

72

Optionally, you can load some extra views and stored routines by sourcing the

objects.sql file:

mysql> SOURCE objects.sql

In addition to the data sets discussed here, there are some other choices to obtain

example data to work with.

 Other Databases
It can happen that you need to perform testing that requires data with some

requirements that are not fulfilled by the standard example databases discussed thus far.

Fortunately, there are other options available.

Tip Do not discount the possibility to create your own custom example database,
for example, by using data masking on your production data.

If you are looking for a very large real-world example, then you can download

the Wikipedia database as described at https://en.wikipedia.org/wiki/

Wikipedia:Database_download. The English Wikipedia dump from September 20, 2019,

is 16.3 GiB in bzip2 compressed XML format.

If you are looking for JSON data, then an option is the earthquake information from

the United States Geological Survey (USGS) which is provided in GeoJSON format with

options to download information for earthquakes for the last hour, day, week, or month

optionally filtered by the strength of the earthquake. The format description and links

to the feeds can be found at https://earthquake.usgs.gov/earthquakes/feed/v1.0/

geojson.php. Since the data includes geographic information in the GeoJSON format, it

can be useful for testing that requires spatial indexes.

The benchmark tools described in the previous chapter also include test data or

support creating test data. This data may also be useful for your own testing.

There are other example databases available if you search the Internet. In the end,

the important things to consider are whether the data has a good size for your testing

and whether it uses the features you require.

ChapTer 4 TesT DaTa

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php

73

 Summary
This chapter has introduced four standard example databases and some other examples

of test data. The four standard databases that were discussed were world, world_x,

sakila, and employees. These can all be found through the MySQL manual at https://

dev.mysql.com/doc/index-other.html. Except for employees, these databases are used

for the examples in this book unless stated otherwise.

The world and world_x databases are the simplest with the difference that world_x

uses JSON to store some of the information, whereas the world database is purely

relational. These databases do not contain much data, but because of their small size

and simplicity, they are useful for simple tests and examples. Particularly the world

database is used extensively in this book.

The sakila database has a much more complex schema including different index

types, views, and stored routines. This makes it more realistic and allows for more

complex tests. Yet, the size of the data is still small enough to use it on even small MySQL

instances. It is also used extensively in this book.

The employees database has a schema that is in between the world and sakila

databases in complexity, but has significantly more data making it better for testing the

 difference between various query plans. It is also useful if you need to generate some

load on the instance, for example, using table scans. The employees database is not

directly used in this book, but if you want to reproduce some of the examples where

some load is required, then this is the best of the four standard test databases to use.

You should not limit yourself to consider the standard test databases. You may be

able to create your own, create one using a benchmark tool, or find data made available

on the Internet. Wikipedia’s database and the earthquake data from the United States

Geological Survey (USGS) are examples of data that can be downloaded.

This completes the introduction to MySQL query performance tuning. Part II

goes through the common sources of information in connection with diagnosing

performance problems starting with the Performance Schema.

ChapTer 4 TesT DaTa

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

PART II

Sources of Information

77
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_5

CHAPTER 5

The Performance Schema
The Performance Schema is the main source of diagnostics information related to

performance in MySQL. It was first introduced in MySQL in version 5.5, then heavily

modified to its current structure in version 5.6, and since then gradually improved in 5.7

and 8.

This chapter introduces and provides an overview of the Performance Schema, so it

is clear how it works when the Performance Schema is used throughout the remainder

of the book. Close relatives to the Performance Schema are the sys schema which will be

discussed in the next chapter and the Information Schema which is the topic of Chapter 7.

The chapter discusses the concepts unique to the Performance Schema with

particular focus on threads, instruments, consumers, events, digests, and dynamic

configuration. First, however, it is necessary to become familiar with the terminology

used in the Performance Schema.

 Terminology
One of the things that can be difficult when studying a new subject is the terminology,

and the Performance Schema is no exception. Since there is an almost cyclic relationship

between the terms, there is no clear order to describe them. Instead, this section will

provide a brief overview of the most important terms used in this chapter, so you have an

idea what the terms mean. By the end of the chapter, you should understand better what

the concepts mean and how they relate to each other.

Table 5-1 summarizes the most important terms in the Performance Schema.

78

As you read this chapter, it can be useful to refer back to this table if you encounter

terms that you are not sure what they mean.

 Threads
A thread is a fundamental concept in the Performance Schema. When anything is

done in MySQL, whether it is handling a connection or performing background work,

the work is done by a thread. MySQL has several threads at any given time as it allows

MySQL to perform work in parallel. For a connection, there is a single thread.

Table 5-1. The MySQL Performance Schema terminology

Term Description

Actor A combination of a username and hostname (an account).

Consumer The process collecting the data generated by the instruments.

Digest A checksum of a normalized query. The digest is used to aggregate statistics for

similar queries.

Dynamic

configuration

The Performance Schema can be configured at runtime which is called dynamic

configuration. This is done through setup tables rather than by changing system variables.

Event An event is what comes out of a consumer collecting the data from an instrument.
Thus, an event contains metrics and information on when and where the metrics

were collected.

Instrument The code points where the measurements are done.

Object A table, event, function, procedure, or trigger.

Setup table The Performance Schema has several tables used for dynamic configuration. These

are called setup tables, and the table name starts with setup_.

Summary

table

A table with aggregate data. The table name includes the word summary, and the

rest of the name indicates the type of data and what it is grouped by.

Thread A thread corresponds to a connection or a background thread. There is a one- to- one

correspondence between Performance Schema threads and operating system threads.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

79

Note The introduction of support for performing parallel reads of the clustered
index and partitions in InnoDB has somewhat muddied the picture of one thread
for one connection. however, since the threads that perform the parallel scans
are considered background threads, for this discussion you can consider the
connection single threaded.

Each thread has an id which is what uniquely identifies the thread, and the column

storing this id in the Performance Schema tables is called THREAD_ID. The main table

for inspecting threads is the threads table with Listing 5-1 showing a typical example of

the type of threads that exist in MySQL 8. The number of threads and exact thread types

available depend on your configuration and usage of the instance at the time of querying

the threads table.

Listing 5-1. Threads in MySQL 8

mysql> SELECT THREAD_ID AS TID,

 SUBSTRING_INDEX(NAME, '/', -2) AS THREAD_NAME,

 IF(TYPE = 'BACKGROUND', '*', ") AS B,

 IFNULL(PROCESSLIST_ID, ") AS PID

 FROM performance_schema.threads;

+-----+--------------------------------------+---+-----+

| TID | THREAD_NAME | B | PID |

+-----+--------------------------------------+---+-----+

| 1 | sql/main | * | |

| 2 | mysys/thread_timer_notifier | * | |

| 4 | innodb/io_ibuf_thread | * | |

| 5 | innodb/io_log_thread | * | |

| 6 | innodb/io_read_thread | * | |

| 7 | innodb/io_read_thread | * | |

| 8 | innodb/io_read_thread | * | |

| 9 | innodb/io_read_thread | * | |

| 10 | innodb/io_write_thread | * | |

| 11 | innodb/io_write_thread | * | |

| 12 | innodb/io_write_thread | * | |

| 13 | innodb/io_write_thread | * | |

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

80

| 14 | innodb/page_flush_coordinator_thread | * | |

| 15 | innodb/log_checkpointer_thread | * | |

| 16 | innodb/log_closer_thread | * | |

| 17 | innodb/log_flush_notifier_thread | * | |

| 18 | innodb/log_flusher_thread | * | |

| 19 | innodb/log_write_notifier_thread | * | |

| 20 | innodb/log_writer_thread | * | |

| 21 | innodb/srv_lock_timeout_thread | * | |

| 22 | innodb/srv_error_monitor_thread | * | |

| 23 | innodb/srv_monitor_thread | * | |

| 24 | innodb/buf_resize_thread | * | |

| 25 | innodb/srv_master_thread | * | |

| 26 | innodb/dict_stats_thread | * | |

| 27 | innodb/fts_optimize_thread | * | |

| 28 | mysqlx/worker | | 9 |

| 29 | mysqlx/acceptor_network | * | |

| 30 | mysqlx/acceptor_network | * | |

| 31 | mysqlx/worker | * | |

| 34 | innodb/buf_dump_thread | * | |

| 35 | innodb/clone_gtid_thread | * | |

| 36 | innodb/srv_purge_thread | * | |

| 37 | innodb/srv_purge_thread | * | |

| 38 | innodb/srv_worker_thread | * | |

| 39 | innodb/srv_worker_thread | * | |

| 40 | innodb/srv_worker_thread | * | |

| 41 | innodb/srv_worker_thread | * | |

| 42 | innodb/srv_worker_thread | * | |

| 43 | innodb/srv_worker_thread | * | |

| 44 | sql/event_scheduler | | 4 |

| 45 | sql/compress_gtid_table | | 6 |

| 46 | sql/con_sockets | * | |

| 47 | sql/one_connection | | 7 |

| 48 | mysqlx/acceptor_network | * | |

| 49 | innodb/parallel_read_thread | * | |

| 50 | innodb/parallel_read_thread | * | |

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

81

| 51 | innodb/parallel_read_thread | * | |

| 52 | innodb/parallel_read_thread | * | |

+-----+--------------------------------------+---+-----+

49 rows in set (0.0615 sec)

The TID column is the THREAD_ID for each thread, the THREAD_NAME column includes

the two last components of the thread name (the first component is thread for all

threads), the B column has an asterisk for the background threads, and the PID column

has the process list id for the foreground threads.

Note Unfortunately, the term thread is overloaded in mySQL and is in some
places used as a synonym for a connection. In this book, a connection refers to
a user connection, and a thread refers to a Performance Schema thread, that is,
it can either be a background or foreground (including connections) thread. The
exception is when discussing a table that explicitly violates that convention.

The list of threads shows several important concepts for threads. The process list

id and the thread id are not related. In fact, the thread with thread id = 28 has a higher

process list id (9) than the thread with thread id 44 (4). So it is not even guaranteed that

the order is the same (though for non-mysqlx threads it is in general the case).

For the mysqlx/worker threads, one is a foreground thread and the other a

background thread. This reflects how MySQL handles connections using the X Protocol

which is considerably different from how classic connections are handled.

There are also “hybrid” threads that are not fully a background nor fully a foreground

thread. An example is the sql/compress_gtid_table thread which compresses

the mysql.gtid_executed table. It is a foreground thread, yet if you execute SHOW

PROCESSLIST, then it will not be included.

Tip The performance_schema.threads table is very useful and also includes
all the information displayed by SHOW PROCESSLIST. As there is less overhead
querying this table compared to executing SHOW PROCESSLIST or querying the
information_schema.PROCESSLIST table, using the threads table along with
the sys.processlist and sys.session views is the recommended way to get
a list of connections.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

82

It can sometimes be useful to obtain the thread id for a connection. There are two

functions for this:

• PS_THREAD_ID(): Get the Performance Schema thread id for the

connection id provided as an argument.

• PS_CURRENT_THREAD_ID(): Get the Performance Schema thread id for

the current connection.

In MySQL 8.0.15 and earlier, use sys.ps_thread_id() instead and give an argument of

NULL to get the thread id for the current connection. An example of using the functions is

mysql> SELECT CONNECTION_ID(),

 PS_THREAD_ID(13),

 PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 CONNECTION_ID(): 13

 PS_THREAD_ID(13): 54

PS_CURRENT_THREAD_ID(): 54

1 row in set (0.0003 sec)

Using these functions is equivalent to querying the PROCESSLIST_ID and THREAD_ID

columns in the performance_schema.threads table to link a connection id with a thread

id. Listing 5-2 shows an example of using the PS_CURRENT_THREAD_ID() function to

query the threads table for the current connection.

Listing 5-2. Querying the threads table for the current connection

mysql> SELECT *

 FROM performance_schema.threads

 WHERE THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 THREAD_ID: 54

 NAME: thread/mysqlx/worker

 TYPE: FOREGROUND

 PROCESSLIST_ID: 13

 PROCESSLIST_USER: root

 PROCESSLIST_HOST: localhost

 PROCESSLIST_DB: performance_schema

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

83

PROCESSLIST_COMMAND: Query

 PROCESSLIST_TIME: 0

 PROCESSLIST_STATE: statistics

 PROCESSLIST_INFO: SELECT *

 FROM threads

 WHERE THREAD_ID = PS_CURRENT_THREAD_ID()

 PARENT_THREAD_ID: 1

 ROLE: NULL

 INSTRUMENTED: YES

 HISTORY: YES

 CONNECTION_TYPE: SSL/TLS

 THREAD_OS_ID: 31516

 RESOURCE_GROUP: SYS_default

1 row in set (0.0005 sec)

There are several of the columns that provide useful information in the context

of performance tuning and will be used in later chapters. Worth noting here are the

columns whose names start with PROCESSLIST_. These are equivalent of the information

returned by SHOW PROCESSLIST, but querying the threads table causes less impact on the

connections. The INSTRUMENTED and HISTORY columns specify whether instrumentation

data is collected for the thread and whether the history of events is kept for the thread.

You can update these two columns to change the behavior of a thread, or you can define

the default behavior for the threads based on the thread type in the setup_threads

table or based on the account using the setup_actors table. That begs the question

what instruments and events are. The three next sections discuss that as well as how the

instrumentations are consumed.

 Instruments
Instruments are the code points where the measurements are done. There are two types

of instruments: those that can be timed and those that cannot. The timed instruments

are events and the idle instrument (measuring when the thread is idle), whereas the

untimed instruments count errors and memory usage.

The instruments are grouped by their names which forms a hierarchy with the

components separated by /. There is no rule as to how many components a name has,

and some have as little as one component, whereas others have up to five components.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

84

An example of an instrument name is statement/sql/select which represents a

SELECT statement executed directly (i.e., not from within a stored procedure). Another

instrument is statement/sp/stmt which is a statement executed inside a stored procedure.

The number of instruments is ever increasing as new features are added, and more

instrumentation points are inserted into the existing code. In MySQL 8.0.18, there are

around 1229 instruments when no extra plugins or components have been installed

(the exact number of instruments depends on the platform as well). These instruments

are split among the top-level components listed in Table 5-2. The Timed column shows

whether the instruments can be timed, and the Count column shows the total number of

instruments for that top-level component and how many of them are enabled by default

in 8.0.18.

Table 5-2. The top-level instrument components in MySQL 8.0.18

Component Timed Count Description

error no Total: 1

Enabled: 1

Whether to collect information about errors and warnings

encountered. There are no subcomponents.

idle Yes Total: 1

Enabled: 1

Used to instrument when threads are idle. There are no

subcomponents.

memory no Total: 511

Enabled: 511

Collects the number and size of the memory allocations and

deallocations. The names have three components: memory,

the code area, and the instrument name.

stage Yes Total: 119

Enabled: 16

Collects information about the query stage events. The

names have three components: stage, the code area, and

the stage name.

statement Yes Total: 212

Enabled: 212

Collects information about statement events. There are one

to two subcomponents.

transaction Yes Total: 1

Enabled: 1

Collects information about transaction events. There are no

subcomponents.

wait Yes Total: 384

Enabled: 52

Collects information about wait events which are the

lowest-level events. This, for example, includes obtaining

locks and mutexes and doing I/O. There are up to three

subcomponents

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

85

The naming scheme makes it relatively easy to determine what an instrument

measures. You can find all the available instruments in the setup_instruments table

which also allows you to configure whether the instruments are enabled and timed.

For some of the instruments, there is also a short documentation of what data the

instrument collects.

If you want to enable or disable instruments at the time MySQL is started, you can

use the performance-schema-instrument option. It works differently than most options

as you can specify it several times to change the setting of several instruments, and you

can use the % wildcard to match a pattern. Examples of how you can use the option are

[mysqld]

performance-schema-instrument = "stage/sql/altering table=ON"

performance-schema-instrument = "memory/%=COUNTED"

The first option enables both counting and timing of the stage/sql/altering table

instrument, whereas the second enables counting of all memory instruments (which is

also the default).

Caution It may seem tempting to enable all instruments (and consumers that are
discussed next). however, the more that is instrumented and consumed, the larger
the overhead. Enabling everything can effectively cause an outage (the author of
this book has seen that happen). Particularly, the wait/synch/% instruments and
events_waits_% consumers add overhead. As a rule of thumb, the finer grained
the monitoring is, the more overhead it adds. In most cases, the default settings in
mySQL 8 provide a good compromise between observability and overhead.

The data generated by the instruments must be consumed in order for the data to be

available in the Performance Schema tables. This is done by consumers.

 Consumers
The consumers are what processes the data generated by the instruments and make

it available in the Performance Schema tables. The consumers are defined in the

setup_consumers table which in addition to the consumer name has a column to specify

whether the consumer is enabled.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

86

The consumers form a hierarchy as shown in Figure 5-1. The figure is split into two

parts with the high-level consumers above the dashed line and the event consumers

below the dashed line. The green (light colored) consumers are enabled by default, and

the red (dark) are disabled by default.

That the consumers form a hierarchy means that a consumer is only consuming

events if both itself and all consumers higher up in the hierarchy are enabled. Thus,

disabling the global_instrumentation consumer effectively disables all consumers.

Figure 5-1. The consumers hierarchy

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

87

You can use the sys schema function ps_is_consumer_enabled() to determine if the

consumer and the consumers it depend on are enabled, for example:

mysql> SELECT sys.ps_is_consumer_enabled(

 'events_statements_history'

) AS IsEnabled;

+-----------+

| IsEnabled |

+-----------+

| YES |

+-----------+

1 row in set (0.0005 sec)

The statements_digest consumer is the one responsible for collecting the data

grouped by statement digests that, for example, is made available through the events_

statements_summary_by_digest table. For query performance tuning, this is possibly

the most important consumer. It only depends on the global consumer. The thread_

instrumentation consumer determines whether threads are collecting thread-specific

instrumentation data. It also controls whether any of the event consumers collect data.

For the consumers, there is one configuration option per consumer with the option

name consisting of the performance-schema-consumer- prefix followed by the consumer

name, for example:

[mysqld]

performance-schema-consumer-events-statements-history-long = ON

This will enable the events_statements_history_long consumer.

You will rarely need to consider disabling any of the three high-level consumers. The

event consumers are more often configured specifically and will be discussed with the

concept of events.

 Events
An event is the result of a consumer recording the data collected by an instrument and

is what you can use to observe what is going on in MySQL. There are several event types,

and events are linked such that in general an event both has a parent and one or more

child events. This section covers how events work.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

88

 Event Types
There are four event types covering the various levels of details ranging from transactions

to waits. An event type also groups events of similar type, and the information collected

for an event depends on its type. For example, events representing the execution of

statements include the query and how many rows are examined, whereas an event for a

transaction has information such as the requested transaction isolation level. The event

types are illustrated in Figure 5-2.

The events correspond to different levels of details with the transactions being the

highest level (lowest details) and the wait events the lowest level (highest details):

• Transactions: The events describe the transactions and include

details such as the transaction isolation level requested (but not

necessarily used), transaction status, and so on. By default, the

current and the last ten transactions for each thread are collected.

Figure 5-2. The four event types

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

89

• Statements: This is the most commonly used event type with

information about the queries executed. It also includes information

about statements executed within a stored procedure. This includes

such information as the number of examined rows, rows returned,

whether indexes were used, and execution time. By default, the

current and the last ten statements for each thread are collected.

• Stages: This roughly corresponds to the states reported by SHOW

PROCESSLIST. These are not enabled by default (with InnoDB

progress information partially being an exception).

• Waits: These are the low-level events and include I/O and waiting

for mutexes. These are very specific and very useful for low-level

performance tuning, but they are also the most expensive. None of

the wait event consumers are enabled by default.

There is also the question of how long to keep the recorded events.

 Event Scopes
For each event type, there are three consumers which specify the lifetime of the

consumed events. The scopes are

• current: Events currently in progress and for idle threads the last

completed event. In some circumstances, there may be more than

one event of the same level at the same time. An example is when

a stored procedure is executed where there are both the statement

event for the procedure itself and the statement currently executing

within the procedure.

• history: The last ten (by default) events for each thread. The events

are discarded when the thread is closed.

• history_long: The last 10,000 (by default) events irrespective of the

thread generating the event. Events are kept even after a thread is

closed.

The event type and scope combine to form the 12 event consumers. There is a

Performance Schema table corresponding to each of the event consumers with the table

name being the same as the consumer name as shown in Listing 5-3.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

90

Listing 5-3. The correspondence between consumer and table names

mysql> SELECT TABLE_NAME

 FROM performance_schema.setup_consumers c

 INNER JOIN information_schema.TABLES t

 ON t.TABLE_NAME = c.NAME

 WHERE t.TABLE_SCHEMA = 'performance_schema'

 AND c.NAME LIKE 'events%'

 ORDER BY c.NAME;

+----------------------------------+

| TABLE_NAME |

+----------------------------------+

| events_stages_current |

| events_stages_history |

| events_stages_history_long |

| events_statements_current |

| events_statements_history |

| events_statements_history_long |

| events_transactions_current |

| events_transactions_history |

| events_transactions_history_long |

| events_waits_current |

| events_waits_history |

| events_waits_history_long |

+----------------------------------+

12 rows in set (0.0323 sec)

As Figure 5-2 hinted with the arrows between the event types, there is a relationship

between the types beyond the level of detail they represent. This relationship is not a

hierarchy but rather consists of event nesting.

 Event Nesting
In general, events are generated by other events, so the events form a tree with each

event having one parent event and possibly a number of child events. While it can seem

like the event types form a hierarchy with, for example, the transactions being parents of

statements, the relationship is more complicated than that and goes both ways. Take the

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

91

START TRANSACTION statement which begins a transaction, so the statement becomes

the parent of the transaction which in turn is the parent of other statements. Another

example is a CALL statement invoking a stored procedure which becomes the parent of

the statements executing in the procedure.

The nesting can become quite complex. Figure 5-3 shows an example of a chain of

events including all four event types.

For the statement events, an actual query is shown, while for the other event types,

the event name or part of the event name is shown. The chain starts with the START

TRANSACTION statement which starts a transaction. Inside the transaction the myproc()

procedure is called which makes it the parent of the SELECT statement which goes

through several stages including stage/sql/statistics, and the stage in turn includes

requesting the trx_mutex in InnoDB.

The event tables have two columns to keep track of the relationship between the events:

• NESTING_EVENT_ID: The parent event id

• NESTING_EVENT_TYPE: The event type (TRANSACTION, STATEMENT,

STAGE, or WAIT) of the parent event

Figure 5-3. Example of a chain of events

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

92

The statement event tables have some additional columns related to nested

statement events:

• OBJECT_TYPE: The object type of the parent statement event.

• OBJECT_SCHEMA: The schema the parent statement object is stored in.

• OBJECT_NAME: The name of the parent statement object.

• NESTING_EVENT_LEVEL: How deep the statement nesting is. The

topmost statement has level 0, and each time a child level is created,

NESTING_EVENT_LEVEL increments with one.

The sys.ps_trace_thread() procedure is an excellent example of how you can

automate generating a tree of the events. There is an example of using ps_trace_

thread() in Chapter 20.

 Event Properties
There are some properties of events that are shared among all events irrespective of

their type. These properties include the primary key, event ids, and how timings of the

events work.

The primary key of the events’ current and history (but not the long history) tables

consists of the THREAD_ID and EVENT_ID columns. The EVENT_ID column increments as

the thread creates more events, so if you want to get the events in order, you must order

by EVENT_ID. Each thread has its own sequence of event ids. There are two event id

columns in each of the event tables:

• EVENT_ID: This is the main event id of the event and is set when the

event starts.

• END_EVENT_ID: This id is set when the event ends. This means you

can determine whether an event is in progress by checking whether

the END_EVENT_ID column is NULL.

Additionally, the column EVENT_NAME has the name of the instrument responsible for

the event, and the SOURCE column for statements, stages, and waits has the filename and

line number from the source code where the instrument triggered.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

93

There are three columns related to the timings of events recording the start, end, and

duration of events:

• TIMER_START: When MySQL starts, the internal timer counter is set to 0

and incremented every picosecond. When an event starts, the value of

the counter is taken and assigned to TIMER_START.

However, since the unit is picoseconds, the counter may reach the

maximum supported value (this happens after around 30.5 weeks)

in which case the counter starts at 0 again.

• TIMER_END: For events in progress, this is the current time, and for

completed events it is the time when the event completed.

• TIMER_WAIT: This is the duration of the event. For events still in

progress, it is the amount of time since the event started.

An exception is transactions which do not include the timings.

Note Different event types use different timers, so you cannot use the TIMER_
START and TIMER_END columns to order events of different types.

Timings are done in picoseconds (10-12 seconds). The unit has been chosen

for performance reason as it allows MySQL to use multiplications (the cheapest

mathematical operation together with addition) in as many cases as possible. The timing

columns are 64-bit unsigned integers which means they will overflow after around 30.5

weeks at which time the values start from 0 again.

While it is good to work with picoseconds from a computational perspective, it is less

practical for humans. For this reason, the function FORMAT_PICO_TIME() exists to convert

picoseconds into a human-readable format, for example:

SELECT FORMAT_PICO_TIME(111577500000);

+--------------------------------+

| FORMAT_PICO_TIME(111577500000) |

+--------------------------------+

| 111.58 ms |

+--------------------------------+

1 row in set (0.0004 sec)

The function was added in MySQL 8.0.16. In earlier versions, you need to use the

sys.format_time() function instead.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

94

 Actors and Objects
The Performance Schema lets you configure which user accounts and schema objects

that by default should be instrumented. The accounts are configured through the

setup_actors table and the objects through the setup_objects table. By default, all

accounts and all schema objects except objects in the mysql, information_schema, and

performance_schema system schemas are instrumented.

 Digests
The Performance Schema generates statistics for the statements that are executed

based on a statement digest. This is a SHA-256 hash based on the normalized query.

Statements with the same digest are considered the same query.

The normalization consists of removing comments (but not optimizer hints),

changing whitespace to a single-space character, replacing values in WHERE clauses with

a question mark, and similar. You can use the function STATEMENT_DIGEST_TEXT() to

obtain the normalized query, for example:

mysql> SELECT STATEMENT_DIGEST_TEXT(

 'SELECT *

 FROM city

 WHERE ID = 130'

) AS DigestText\G

*************************** 1. row ***************************

DigestText: SELECT * FROM `city` WHERE `ID` = ?

1 row in set (0.0004 sec)

Similarly, you can use the STATEMENT_DIGEST() function to get the SHA-256 hash for

the query:

mysql> SELECT STATEMENT_DIGEST(

 'SELECT *

 FROM city

 WHERE ID = 130'

) AS Digest\G

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

95

*************************** 1. row ***************************

Digest: 26b06a0b2f651e04e61751c55f84d0d721d31041ea57cef5998bc475ab9ef773

1 row in set (0.0004 sec)

The STATEMENT_DIGEST() function can, for example, be useful if you want to query

one of the statement event tables, the events_statements_histogram_by_digest table

or the events_statements_summary_by_digest table, to find information about the

queries that have the same digest.

Note It is not guaranteed that the digest for a given query remains the same
when you upgrade mySQL. This means that you should not compare digests for
different mySQL releases.

When MySQL calculates the digest, the query is tokenized and in order to avoid

excessive memory usage, the amount of memory per connection that is allowed for this

process is capped. This means that if you have large queries (in terms of the query text),

the normalized queries (called the digest text) will be truncated. You can configure how

much memory the connection is allowed to use for the tokens during the normalization

with the max_digest_length variable (defaults to 1024 and requires a restart of MySQL).

If you have large queries, you may need to increase this avoid collisions between queries

longer than max_digest_length bytes. If you increase max_digest_length you may also

want to increase the performance_schema_max_digest_length option which specifies

the maximum length of the digest texts stored in the Performance Schema. However,

be careful as it will increase the size of all digest text values stored in the Performance

Schema, and since the Performance Schema tables are stored in memory, it can cause a

significant increase in memory usage. The author has seen several support tickets where

MySQL failed to start because the digest lengths were set too high, so MySQL ran out of

memory.

Caution Do not blindly increase the digest length options as you may end up
running out of memory.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

96

Table 5-3. Performance Schema table types

Table Type Description

Setup The tables with the dynamic configuration. This includes the setup_consumers and

setup_instruments. All the setup tables have names starting with setup_.

Event The tables storing the individual events either currently in progress or the history.

This includes the events_statements_current. All the tables have the same

name as one of the event consumers. Common is also that the table name starts

with events_ but does not include summary or histogram.

Instance The instance tables contain information about instances ranging from mutexes

to prepared statements. The most commonly used instance table is prepared_

statements_instances which includes statistics for server-side prepared

statements. The instance tables all have table names ending in _instances with

the exception of table_handles.

Summary The summary tables can be considered as a kind of reports. They aggregate the

events from the events tables, so you can get a longer-term overview. The most

commonly used summary table is events_statements_summary_by_digest

which groups the statement event data by the default schema and digest of the

statements. Another example of a summary table is file_summary_by_instance

which groups file-related statistics by the file instance.

All table names include _summary_ or start with status_. The table names also

include _by_ followed by a description of what the data is grouped by.

As of 8.0.18 there are 45 summary tables, which makes it the largest group of tables.

histogram The histogram tables are report tables like the summary tables but provide histogram

statistics for the statement latencies. There are currently two histogram tables:

events_statements_histogram_by_digest and events_statements_

histogram_global.

(continued)

 Table Types
You have already encountered some of the tables available in the Performance Schema.

The tables can be grouped according to the type of information they contain with the

setup tables and event tables encountered earlier in this chapter forming two of the

groups. Table 5-3 summarizes the types of tables available as of MySQL 8.0.18.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

97

The tables that are most used are the summary tables as they provide easy access

to data that on their own can be used as reports similar to what you will see in the next

chapter with the sys schema views.

 Dynamic Configuration
In addition to the traditional MySQL configuration options that can be set with SET

PERSIST_ONLY or in a configuration file, the Performance Schema also features its own

unique dynamic configuration through setup tables. This section explains how the

dynamic configuration works.

Table 5-4 lists the setup tables available in MySQL 8. For the tables that allow inserts

and deletes, all columns can be changed, but only the non-key columns are listed for

settable columns.

Table 5-3. (continued)

Table Type Description

Connections

and threads

Various tables with information about the connections and threads. This includes

the threads, session_account_connect_attrs, session_connect_attrs,

accounts, host_cache, hosts, and users tables.

replication Information about the replication configuration and status both for traditional

asynchronous replication and Group replication. All the table names except log_

status start with replication_.

Lock This group includes three tables with information about data and metadata locks:

data_locks, data_lock_waits, and metadata_locks.

Variable The variable tables contain information about system and status variables (both for

the global and session scopes) and user variables. All the table names include the

word variables or status.

Clone Information about the status and progress when using the clone plugin. The tables

include clone_progress and clone_status.

miscellaneous The keyring_keys and performance_timers tables.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

98

For the tables with a HISTORY column, the history can only be recorded if

instrumentation is also enabled. In the same way for the TIMED column, it only is

relevant if the instrument or object is enabled. For setup_instruments, note that not all

instruments support being timed in which case the TIMED column is always NULL.

The setup_actors and setup_objects tables are special among the setup tables

as you can insert and delete rows for them. This includes using the TRUNCATE TABLE

statement to remove all rows. Since the tables are stored in memory, you cannot freely

insert as many rows as you want. Instead, the maximum number of rows is defined

by the performance_schema_setup_actors_size and performance_schema_setup_

objects_size configuration options. Both options are autosized by default. It requires

restarting MySQL for a change to the table sizes to take effect.

Table 5-4. Performance Schema setup tables

Setup Table Key Columns Settable Columns Description

setup_

actors

HOST

USER

ROLE

ENABLED

HISTORY

This table is used to determine whether

foreground threads are instrumented and

has history collected by default based on the

account. The ROLE column is currently unused.

You can insert rows into and delete rows

from this table.

setup_

consumers

NAME ENABLED This table defines which consumers are

enabled.

setup_

instruments

NAME ENABLED

TIMED

This table defines which instruments are

enabled and timed.

setup_

objects

OBJECT_TYPE

OBJECT_SCHEMA

OBJECT_NAME`

ENABLED

TIMED

This table defines which schema objects

are enabled and timed.

You can insert rows into and delete rows

from this table.

setup_

threads

NAME ENABLED

HISTORY

This table defines which thread types are

instrumented and have history collected by

default.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

99

You use regular UPDATE statements to manipulate the configuration. For the setup_

actors and setup_objects tables, you can also use INSERT, DELETE, and TRUNCATE

TABLE. An example of enabling the events_statements_history_long consumer is

mysql> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME = 'events_statements_history_long';

Query OK, 1 row affected (0.2674 sec)

Rows matched: 1 Changed: 1 Warnings: 0

This configuration is not persistent when restarting MySQL, so if you want to

change the configuration of these tables for the cases where there are no configuration

options, add the SQL statements required to an init file and execute it through the

init_file option.

That concludes the introduction to the Performance Schema, but you will see many

examples of using the tables in the remainder of the book.

 Summary
This chapter has covered the most important concepts of the Performance Schema.

MySQL is a multi-threaded process, and the Performance Schema includes information

for all threads, both foreground threads (connections) and background threads.

The instruments correspond to the instrumented code points in the source code and

thus determine which data is collected. When an instrument is enabled, it can optionally

also be timed with the exception of memory and error instruments.

The consumers take the data collected by the instruments and process it and make

it available through the Performance Schema tables. Twelve of the consumers represent

the four event types with three scopes for each type.

The four event types are transactions, statements, stages, and waits which cover

different detail levels. The three event scopes are current for the current or last

completed events, history for the ten last events for each thread that still exists, and the

last 10,000 events irrespective of the thread generating them. Events can trigger other

events, so they form a tree.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

100

An important concept is also the digests which allow MySQL to aggregate data

grouping by the normalized queries. This is a feature that will prove particularly useful

when you will be looking for candidates for query tuning.

At the end, the various types of tables in the Performance Schema were summarized.

The most commonly used group of tables is the summary tables which are essentially

reports that make it easy to access aggregate data from the Performance Schema.

Another example of reports based on the Performance Schema – and in several cases of

summary tables – is the information made available in the sys schema which is the topic

of the next chapter.

ChAPTEr 5 ThE PErfOrmAnCE SChEmA

101
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_6

CHAPTER 6

The sys Schema
The sys schema is the brainchild of Mark Leith, who has also for long been part of the

team that develops MySQL Enterprise Monitor. He started the ps_helper project to

experiment with monitoring ideas and to showcase what the Performance Schema was

able to do while making it simpler at the same time. The project was later renamed to the

sys schema and moved into MySQL. There have since been contributions from several

other people, including the author of this book.

The sys schema is available for MySQL Server 5.6 and later. In MySQL 5.7 it became

part of the standard installation, so you do not need to do anything to install the sys

schema or upgrade it. As of MySQL 8.0.18, the sys schema source code is part of the

MySQL Server source.

The sys schema is used throughout the book for analyzing queries, locks, and

more. This chapter will give the high-level overview of the sys schema including how to

configure it, formatting functions, how the views work, and various helper routines.

Tip The sys schema source code (https://github.com/mysql/mysql-
server/tree/8.0/scripts/sys_schema and for older MySQL versions
https://github.com/mysql/mysql-sys/) is also a useful resource to learn
how to write queries against the Performance Schema.

 sys Schema Configuration
The sys schema uses its own configuration system as it was originally implemented

independent of MySQL Server. There are two ways to change the configuration

depending on whether you want to change the setting permanently or just for the session.

https://github.com/mysql/mysql-server/tree/8.0/scripts/sys_schema
https://github.com/mysql/mysql-server/tree/8.0/scripts/sys_schema
https://github.com/mysql/mysql-sys/

102

The persisted configuration is stored in the sys_config table which includes the

name of the variable, its value, and when the value was last set and by which user.

Listing 6-1 shows the default content (the set_time will depend on when the sys

schema was last installed or upgraded).

Listing 6-1. The sys schema persisted configuration

mysql> SELECT * FROM sys.sys_config\G

*************************** 1. row ***************************

variable: diagnostics.allow_i_s_tables

 value: OFF

set_time: 2019-07-13 19:19:29

 set_by: NULL

*************************** 2. row ***************************

variable: diagnostics.include_raw

 value: OFF

set_time: 2019-07-13 19:19:29

 set_by: NULL

*************************** 3. row ***************************

variable: ps_thread_trx_info.max_length

 value: 65535

set_time: 2019-07-13 19:19:29

 set_by: NULL

*************************** 4. row ***************************

variable: statement_performance_analyzer.limit

 value: 100

set_time: 2019-07-13 19:19:29

 set_by: NULL

*************************** 5. row ***************************

variable: statement_performance_analyzer.view

 value: NULL

set_time: 2019-07-13 19:19:29

 set_by: NULL

ChaPTer 6 The SyS SCheMa

103

*************************** 6. row ***************************

variable: statement_truncate_len

 value: 64

set_time: 2019-07-13 19:19:29

 set_by: NULL

6 rows in set (0.0005 sec)

Currently the set_by column is always NULL unless the @sys.ignore_sys_config_

triggers user variable is set to a value that evaluated to FALSE but is not NULL.

The option you are most likely to change is statement_truncate_len which specifies

the maximum length the sys schema will use for statements in the formatted views

(more about these later). The default of 64 was chosen to increase the probability that

querying views will fit in the width of your console; however, sometimes it is too little to

get enough useful information about the statement.

You can update the configuration settings by updating the value in sys_config.

This will persist the change and apply immediately to all connections unless they have

set their own session value (this happens implicitly when using something in the sys

schema that formats statements). As sys_config is a normal InnoDB table, the change

will also remain after restarting MySQL.

Alternatively, you can change the setting just for the session. This is done by taking

the name of the configuration variable and prepending sys. and turning it into a user

variable. Listing 6-2 shows examples both of using the sys_config table and a user

variable to change the configuration of statement_truncate_len. The result is tested

with the format_statement() function which is what the sys schema uses to truncate

statements.

Listing 6-2. Changing the sys schema configuration

mysql> SET @query = 'SELECT * FROM world.city INNER JOIN world.city ON

country.Code = city.CountryCode';

Query OK, 0 rows affected (0.0003 sec)

mysql> SELECT sys.sys_get_config(

 'statement_truncate_len',

 NULL

) AS TruncateLen\G

ChaPTer 6 The SyS SCheMa

104

*************************** 1. row ***************************

TruncateLen: 64

1 row in set (0.0007 sec)

mysql> SELECT sys.format_statement(@query) AS Statement\G

*************************** 1. row ***************************

Statement: SELECT * FROM world.city INNER ... ountry.Code = city.CountryCode

1 row in set (0.0019 sec)

mysql> UPDATE sys.sys_config SET value = 48 WHERE variable = 'statement_

truncate_len';

Query OK, 1 row affected (0.4966 sec)

mysql> SET @sys.statement_truncate_len = NULL;

Query OK, 0 rows affected (0.0004 sec)

mysql> SELECT sys.format_statement(@query) AS Statement\G

*************************** 1. row ***************************

Statement: SELECT * FROM world.ci ... ode = city.CountryCode

1 row in set (0.0009 sec)

mysql> SET @sys.statement_truncate_len = 96;

Query OK, 0 rows affected (0.0003 sec)

mysql> SELECT sys.format_statement(@query) AS Statement\G

*************************** 1. row ***************************

Statement: SELECT * FROM world.city INNER JOIN world.city ON country.Code =

city.CountryCode

1 row in set (0.0266 sec)

First, a query is set in the @query user variable. This is purely for convenience, so it is

easy to keep referencing the same query. The sys_get_config() function is used to get

the current configuration value for the statement_truncate_len option. This takes into

account whether the @sys.statement_trauncate_len user variable is set. The second

argument provides the value to return if the provided option does not exist.

The format_statement() function is used to demonstrate formatting the statement

in @query, first with the default value of 64 for statement_truncate_len, then updating

sys_config to have a value of 48, and finally setting the value for the session to 96.

Notice how the @sys.statement_truncate_len user variable is set to NULL after updating

the sys_config table to make MySQL apply the updated setting to the session.

ChaPTer 6 The SyS SCheMa

105

Note There are a few configuration options supported by some of the sys
schema features that are not in the sys_config table by default, for example,
the debug option. The documentation of the sys schema objects (https://
dev.mysql.com/doc/refman/en/sys-schema-reference.html) includes
information on which configuration options are supported.

The format_statement() function is not the only formatting function in the sys

schema, so let’s take a look at all of them.

 Formatting Functions
The sys schema includes four functions to help you format the output of the queries

against the Performance Schema to make the result easier to read or take up less space.

Two of the functions have been deprecated in MySQL 8.0.16 as native Performance

Schema functions have been added to replace them.

Table 6-1 summarizes the four functions and the new native functions that replace

them for the case of format_time() and format_bytes().

Table 6-1. sys schema formatting functions

sys Schema Function Native Function Description

format_bytes() FORMAT_BYTES() Converts a value in bytes into a string with a

unit (1024-based).

format_path() Takes a path to a file and replaces the data

directory, temporary directory, and so on with

a string representing the corresponding global

variable.

format_

statement()

Truncates a statement to at most the number of

characters set by the statement_truncate_

len configuration option by replacing the

middle of the statement with ellipses (...).

format_time() FORMAT_PICO_TIME() Converts a time in picoseconds to a human-

readable string.

ChaPTer 6 The SyS SCheMa

https://dev.mysql.com/doc/refman/en/sys-schema-reference.html
https://dev.mysql.com/doc/refman/en/sys-schema-reference.html

106

Listing 6-3 shows an example of using the formatting functions, and for format_

bytes() and format_time(), the results will be compared to the native Performance

Schema functions.

Listing 6-3. Using the formatting functions

mysql> SELECT sys.format_bytes(5000) AS SysBytes,

 FORMAT_BYTES(5000) AS P_SBytes\G

*************************** 1. row ***************************

SysBytes: 4.88 KiB

P_SBytes: 4.88 KiB

1 row in set, 1 warning (0.0015 sec)

Note (code 1585): This function 'format_bytes' has the same name as a

native function

mysql> SELECT @@global.datadir AS DataDir,

 sys.format_path(

 'D:\\MySQL\\Data_8.0.18\\ib_logfile0'

) AS LogFile0\G

*************************** 1. row ***************************

 DataDir: D:\MySQL\Data_8.0.18\

LogFile0: @@datadir\ib_logfile0

1 row in set (0.0027 sec)

mysql> SELECT sys.format_statement(

 'SELECT * FROM world.city INNER JOIN world.city ON

country.Code = city.CountryCode'

) AS Statement\G

*************************** 1. row ***************************

Statement: SELECT * FROM world.city INNER ... ountry.Code = city.CountryCode

1 row in set (0.0016 sec)

mysql> SELECT sys.format_time(123456789012) AS SysTime,

 FORMAT_PICO_TIME(123456789012) AS P_STime\G

*************************** 1. row ***************************

SysTime: 123.46 ms

P_STime: 123.46 ms

1 row in set (0.0006 sec)

ChaPTer 6 The SyS SCheMa

107

Notice that the use of sys.format_bytes() triggers a warning (but only the first time

a connection uses it) because the sys schema function name is the same as the native

function name. The format_path() function expects backslashes for path names on

Microsoft Windows and forward slashes on other platforms. The result of the format_

statement() function assumes the value of the statement_truncate_len option has

been reset to its default value of 64.

Tip While the sys schema implementations of format_time() and format_
bytes() still exist, it is best to use the new native functions as the sys schema
implementations are likely to get removed in a future version and the native
functions are much faster.

These functions are not only useful on their own, they are also used by the sys

schema to implement views that return formatted data. As it is in some cases necessary

to work with the unformatted data, there exist two implementations of most sys schema

views as you will see next.

 The Views
The sys schema provides a number of views that work as predefined reports. The views

mostly use the Performance Schema tables, but a few also use the Information Schema.

The views are there both to make it easy to get information out of the Performance

Schema and to serve as examples of how to query the Performance Schema.

As the views are ready-made reports that you can use as a database administrator

or developer, they are defined with a default ordering. This means that a typical way of

using the views is to do a plain SELECT * FROM <view name>, for example:

mysql> SELECT *

 FROM sys.schema_tables_with_full_table_scans\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

rows_full_scanned: 4079

 latency: 269.13 ms

ChaPTer 6 The SyS SCheMa

108

*************************** 2. row ***************************

 object_schema: sys

 object_name: sys_config

rows_full_scanned: 18

 latency: 328.80 ms

2 rows in set (0.0021 sec)

The result depends on which tables have been used with a full table scan. Notice

how the latencies have been formatted like with the FORMAT_PICO_TIME() or sys.

format_time() function.

Most of the sys schema views exist in two forms with one having statements, paths,

byte values, and timings formatted and the other returning the raw data. The formatted

views are very useful if you query a view at the console and look at the data yourself,

whereas the unformatted views work better if you need to process the data in a program

or want to change the default sorting. The performance reports in MySQL Workbench use

the unformatted views, so you can change the ordering from within the user interface.

You can distinguish between the formatted and unformatted views from the name.

If a view contains formatting, there will also be an unformatted view with the same

name, but with x$ prepended to the name. For example, for the schema_tables_with_

full_table_scans view that was used in the previous example, the unformatted view is

named x$schema_tables_with_full_table_scans:

mysql> SELECT *

 FROM sys.x$schema_tables_with_full_table_scans\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

rows_full_scanned: 4079

 latency: 269131954854

*************************** 2. row ***************************

 object_schema: sys

 object_name: sys_config

rows_full_scanned: 18

 latency: 328804286013

2 rows in set (0.0017 sec)

The last topic for the sys schema is the helper functions and procedures that are

provided.

ChaPTer 6 The SyS SCheMa

109

 Helper Functions and Procedures
The sys schema provides several utilities that can help you when working with

MySQL. These include the ability to execute dynamically created queries, manipulating

lists, and more. The most important of the helper functions and procedures are

summarized in Table 6-2.

Table 6-2. Helper functions and procedures in the sys schema

Routine Name Routine Type Description

extract_schema_

from_file_name

Function extracts the schema name from a path for a file-per-table

InnoDB tablespace file.

extract_table_

from_file_name

Function extracts the table name from a path for a file-per-table InnoDB

tablespace file.

list_add Function adds an element to a list unless it already exists in the list. This

is, for example, useful if you need to change the SQL mode.

list_drop Function removes an element from a list.

quote_

identifier

Function Quotes an identifier (e.g., table name) with backticks (`).

version_major Function returns the major version for the instance you are querying.

For example, it returns 8 for 8.0.18.

version_minor Function returns the minor version for the instance you are querying.

For example, it returns 0 for 8.0.18.

version_patch Function returns the patch release version for the instance you are

querying. For example, it returns 18 for 8.0.18.

execute_

prepared_stmt

Procedure executes a query given as a string. The query is executed

using a prepared statement, and the procedure deallocates the

prepared statement after the execution has completed.

table_exists Procedure returns whether a table exists and if so whether it is a base

table, temporary table, or a view.

ChaPTer 6 The SyS SCheMa

110

Several of these utilities are also used internally in the sys schema. The most

common use of the routines is in stored programs where you need to handle data and

queries dynamically.

Tip The sys schema functions and procedures come with built-in help in the form
of routine comments. you can obtain the help by querying the ROUTINE_COMMENT
column of the information_schema.ROUTINES view.

 Summary
This chapter has provided a brief introduction to the sys schema, so you know what it is

and how to use it when you see examples in later chapters. The sys schema is a useful

addition that provides ready-made reports and utilities that can simplify your daily tasks

and investigations. The sys schema is a system schema in MySQL 5.7 and later, so no

action is required from your side to start using it.

First, the sys schema configuration was discussed. The global configuration is stored

in the sys.sys_config table which can be updated, if you prefer different default values

than what is provided when MySQL is installed. You can also change the configuration

option for a session by setting a user variable with sys. prefixed to the name of the

configuration option.

Then the sys schema formatting functions were covered with mention of the cases

where native Performance Schema functions have been added as replacement for the

sys schema functions. The formatting functions are also used in several of the views

to help make the data easier to read for humans. For the views using the formatting

functions, there is also a corresponding unformatted view with x$ prefixed to the name.

Finally, several helper functions and procedures were discussed. These can help you

when you try to do work dynamically, such as executing a query generated in a stored

procedure.

The next chapter is about the Information Schema.

ChaPTer 6 The SyS SCheMa

111
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_7

CHAPTER 7

The Information Schema
When you need to optimize a query, it is common that you need information about the

schema, indexes, and the like. In that case, the Information Schema is a good resource of

data. This chapter introduces the Information Schema together with an overview of the

views it contains. The Information Schema is used on several occasions in the rest of the

book.

 What Is the Information Schema?
The Information Schema is a schema common to several of the relational databases

including MySQL where it was added in MySQL 5.0. MySQL mostly follows the SQL:2003

standard for F021 Basic information schema with the changes necessary to reflect the

unique features of MySQL and with additional views that are not part of the standard.

Note The Information Schema is virtual in the sense that no data is stored in it.
For this reason, this chapter refers to all views and tables as views even if a SHOW
CREATE TABLE displays it as if it was a regular table. This is also in line with
the information_schema.TABLES view that has the table type set to SYSTEM
VIEW for all the objects.

After the introduction of the Performance Schema in MySQL 5.5, the aim is to make

relatively static data such as schema information available through the Information

Schema and more volatile data belonging to the Performance Schema. That said, it is not

always clear-cut what belongs where, for example, index statistics are relatively volatile,

but are also part of the schema information. There is also some information such as the

InnoDB metrics that for historical reasons still reside in the Information Schema.

112

As such, you can consider the Information Schema a collection of data describing

the MySQL instance. In MySQL 8 with the relational data dictionary, several of the views

are simple SQL views on the underlying data dictionary tables. This means that the

performance of many Information Schema queries in MySQL 8 will be vastly superior

to what you may have experienced in older versions. This is particularly the case when

querying schema data that does not require retrieving information from the storage engine.

Caution If you are still using MySQL 5.7 or earlier, be careful with queries
against views such as the TABLES and COLUMNS views in the Information Schema.
They can take a long time if the tables they contain data for are not yet in the table
definition cache or if the cache is not large enough to hold all tables. An example of
the performance difference of the Information Schema between MySQL 5.7 and 8
is discussed in a blog by the MySQL Server team: https://mysqlserverteam.
com/mysql-8-0-scaling-and-performance-of-information_schema/.

 Privileges
The Information Schema is a virtual database, and the access to the views works a little

different from other tables. All users will see that the information_schema schema exists,

and they will see all views. However, the result of querying the views depends on the

privileges assigned to the account. For example, an account that has no other privileges

than the global USAGE privilege will only see the Information Schema views when

querying the information_schema.TABLES view.

Some views require additional privileges in which case an ER_SPECIFIC_ACCESS_

DENIED_ERROR (error number 1227) error is returned with a description of which privilege

is missing. For example, the INNODB_METRICS view requires the PROCESS privilege, so if a

user without the PROCESS privilege queries that view, the following error occurs:

mysql> SELECT *

 FROM information_schema.INNODB_METRICS;

ERROR: 1227: Access denied; you need (at least one of) the PROCESS

privilege(s) for this operation

Now, it is time to look at what kind of information you can find in the Information

Schema views.

ChApTer 7 The InForMATIon SCheMA

https://mysqlserverteam.com/mysql-8-0-scaling-and-performance-of-information_schema/
https://mysqlserverteam.com/mysql-8-0-scaling-and-performance-of-information_schema/

113

 Views
The data that is available in the Information Schema ranges from high-level information

about the system to low-level InnoDB metrics. This section provides an overview of the

views but will not go into detail as the most important of the views from a performance

tuning perspective are discussed in the relevant parts of later chapters.

Note Some plugins add their own views to the Information Schema. The extra
plugin views are not considered here.

 System Information
The highest level of information that is available in the Information Schema concerns

the whole MySQL instance. This includes such information as which character sets are

available and which plugins are installed.

The views with system information are summarized in Table 7-1.

Table 7-1. Information Schema views with system information

View Name Description

CHARACTER_SETS The character sets available.

COLLATIONS The collations available for each character set. This includes the id of

the collation which in some cases (e.g., in the binary log) is used to

uniquely specify both the collation and character set.

COLLATION_CHARACTER_

SET_APPLICABILITY

The mapping of collations to character sets (the same as the first two

columns of COLLATIONS).

ENGINES The storage engines that are known and whether they are loaded.

INNODB_FT_DEFAULT_

STOPWORD

A list of the default stopwords that are used when creating a full text

index on an InnoDB table.

KEYWORDS A list of the keywords in MySQL and whether the keyword is reserved.

(continued)

ChApTer 7 The InForMATIon SCheMA

114

The system-related views largely work as reference views with the RESOURCE_GROUPS

table being somewhat a difference as it is possible to add resource groups as it will be

discussed in Chapter 17.

The KEYWORDS view is, for example, useful when testing an upgrade as you can use

it to verify whether any of your schema, table, column, routine, or parameter names

matches a keyword in the new version. If that is the case, you will need to update the

application to quote the identifier, if that is not already the case. To find all column

names matching a keyword:

SELECT TABLE_SCHEMA, TABLE_NAME,

 COLUMN_NAME, RESERVED

 FROM information_schema.COLUMNS

 INNER JOIN information_schema.KEYWORDS

 ON KEYWORDS.WORD = COLUMNS.COLUMN_NAME

 WHERE TABLE_SCHEMA NOT IN ('mysql',

 'information_schema',

 'performance_schema',

 'sys'

)

 ORDER BY TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME;

The query uses the COLUMNS view to find all column names except for the system

schemas (you can choose to include those, if you use those in your application or in

scripts). The COLUMNS view is one of several views describing the schema objects.

View Name Description

PLUGINS The plugins known to MySQL including the status.

RESOURCE_GROUPS The resource groups that are used by threads to do their work. A

resource group specifies the priority of a thread and which CpUs it

can use.

ST_SPATIAL_REFERENCE_

SYSTEMS

A list of the spatial reference systems including the SRS_ID column

which contains the id used to specify a reference system for spatial

columns.

Table 7-1. (continued)

ChApTer 7 The InForMATIon SCheMA

115

 Schema Information
The views with information about the schema objects are among the most useful views

in the Information Schema. These are also the source for several of the SHOW statements.

You can use the views to find information from everything from parameters for a stored

routine to database names. The views with schema information are summarized in

Table 7-2.

Table 7-2. Information Schema views with schema information

View Name Description

CHECK_CONSTRAINTS This view contains information about the CHECK constraints and

is available in MySQL 8.0.16 and later.

COLUMN_STATISTICS The definition of histograms including the statistics. This is a very

useful view for query performance tuning.

COLUMNS The column definitions.

EVENTS The definitions of the stored events.

FILES Information about InnoDB tablespace files.

INNODB_COLUMNS Metadata information for columns in InnoDB tables.

INNODB_DATAFILES This view links the InnoDB tablespace ids to the file system paths.

INNODB_FIELDS Metadata for columns included in InnoDB indexes.

INNODB_FOREIGN Metadata for the InnoDB foreign keys.

INNODB_FOREIGN_COLS Lists the child and parent columns of InnoDB foreign keys.

INNODB_FT_BEING_DELETED A snapshot of the INNODB_FT_DELETED view during an

OPTIMIZE TABLE statement for the InnoDB table specified in

the innodb_ft_aux_table option.

INNODB_FT_CONFIG Configuration information for full text indexes on the InnoDB table

specified in the innodb_ft_aux_table option.

INNODB_FT_DELETED rows that have been deleted from full text indexes for the InnoDB

table specified in the innodb_ft_aux_table option. InnoDB

uses this extra list for performance reasons to avoid having to

update the index itself for each DML statement.

(continued)

ChApTer 7 The InForMATIon SCheMA

116

View Name Description

INNODB_FT_INDEX_CACHE newly inserted rows into the full text indexes for the InnoDB table

specified in the innodb_ft_aux_table option. InnoDB uses

this extra list for performance reasons to avoid having to update

the index itself for each DML statement.

INNODB_FT_INDEX_TABLE The inverted full text index for the InnoDB table specified in the

innodb_ft_aux_table option.

INNODB_INDEXES Information about indexes on InnoDB tables. This includes internal

information such as the page number of the root page and the

merge threshold.

INNODB_TABLES Metadata for the InnoDB tables.

INNODB_TABLESPACES Metadata for the InnoDB tablespaces.

INNODB_TABLESPACES_BRIEF This view combines the SPACE, NAME, FLAG, and SPACE_TYPE

columns from INNODB_TABLESPACES with the PATH column

from INNODB_DATAFILES to provide a summary of the InnoDB

tablespace.

INNODB_TABLESTATS Table statistics for InnoDB tables. Some of these statistics

are updated at the same time as index statistics; others are

maintained at an ongoing basis.

INNODB_TEMP_TABLE_INFO Metadata for InnoDB temporary tables (both internal and explicit).

INNODB_VIRTUAL Internal metadata information about virtual generated columns on

InnoDB tables.

KEY_COLUMN_USAGE Information about the primary keys, unique keys, and foreign

keys.

PARAMETERS Information about the parameters for stored functions and stored

procedures.

PARTITIONS Information about table partitions.

REFERENTIAL_CONSTRAINTS Information about foreign keys.

Table 7-2. (continued)

(continued)

ChApTer 7 The InForMATIon SCheMA

117

View Name Description

ROUTINES The definition of stored functions and stored procedures.

SCHEMATA Information about the schemas (databases). (Schemata is

technically the correct word for the plural form of schema, but

most use schemas nowadays.)

ST_GEOMETRY_COLUMNS Information about columns with a spatial data type.

STATISTICS The index definitions and statistics. This is one of the most useful

views when it comes to query performance turning.

TABLE_CONSTRAINTS Summary of the primary, unique, and foreign keys and CHECK

constraints.

TABLES Information about tables and views and their properties.

TABLESPACES This view is only used for nDB Cluster tablespaces.

TRIGGERS The trigger definitions.

VIEW_ROUTINE_USAGE Lists the stored functions used in views. This table was added in

8.0.13.

VIEW_TABLE_USAGE Lists the tables referenced by views. This view was added in

8.0.13.

VIEWS The view definitions.

Table 7-2. (continued)

Several of the views are closely related, for example, the columns are in tables which

are in schemas and constraints refer to tables and columns. This means that some of the

column names are present in several of the views. The most commonly used column

names that relate to these views are

• TABLE_NAME: Used in the views not specific to InnoDB for the table

name.

• TABLE_SCHEMA: Used in the views not specific to InnoDB for the

schema name.

• COLUMN_NAME: Used in the views not specific to InnoDB for the

column name.

ChApTer 7 The InForMATIon SCheMA

118

• SPACE: Used in the InnoDB-specific views for the tablespace id.

• TABLE_ID: Used in the InnoDB-specific views to uniquely identify the

table. This is also used internally in InnoDB.

• NAME: The InnoDB-specific views use a column called NAME to give the

name of the object irrespective of the object type.

In addition to the use of the names as in this list, there are also examples where these

column names are slightly modified like in the view KEY_COLUMN_USAGE where you

find the columns REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME, and

REFERENCED_COLUMN_NAME that are used in the description of foreign keys. As

an example, if you want to use the KEY_COLUMN_USAGE view to find the tables with

foreign keys referencing the sakila.film table, you can use a query like this:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME

 FROM information_schema.KEY_COLUMN_USAGE

 WHERE REFERENCED_TABLE_SCHEMA = 'sakila'

 AND REFERENCED_TABLE_NAME = 'film';

+--------------+---------------+

| TABLE_SCHEMA | TABLE_NAME |

+--------------+---------------+

| sakila | film_actor |

| sakila | film_category |

| sakila | inventory |

+--------------+---------------+

3 rows in set (0.0078 sec)

This shows that the film_actor, film_category, and inventory tables all have foreign

keys where the film table is the parent table. For example, if you look at the table

definition for film_actor:

mysql> SHOW CREATE TABLE sakila.film_actor\G

*************************** 1. row ***************************

 Table: film_actor

Create Table: CREATE TABLE `film_actor` (

 `actor_id` smallint(5) unsigned NOT NULL,

 `film_id` smallint(5) unsigned NOT NULL,

ChApTer 7 The InForMATIon SCheMA

119

 ̀last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 PRIMARY KEY (`actor_id`,`film_id`),

 KEY `idx_fk_film_id` (`film_id`),

 CONSTRAINT `fk_film_actor_actor` FOREIGN KEY (`actor_id`) REFERENCES

`actor` (`actor_id`) ON DELETE RESTRICT ON UPDATE CASCADE,

 CONSTRAINT `fk_film_actor_film` FOREIGN KEY (`film_id`) REFERENCES `film`

(`film_id`) ON DELETE RESTRICT ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8

1 row in set (0.0097 sec)

The fk_film_actor_film constraint references the film_id column in the film

table. You can use this as the starting point for finding the full chain of foreign keys

either by manually executing the query for each table returned in the query against the

KEY_COLUMN_USAGE view or by creating a recursive common table expression (CTE). This

is left as an exercise for the reader.

Tip For an example where the KEY_COLUMN_USAGE view is used in a recursive
common table expression to find the chain of foreign key dependencies, see
https://mysql.wisborg.dk/tracking-foreign-keys.

For completeness, a visual representation of the tables depending on the film table

through foreign keys can be found in Figure 7-1.

ChApTer 7 The InForMATIon SCheMA

https://mysql.wisborg.dk/tracking-foreign-keys

120

The diagram is created using the reverse engineering feature of MySQL Workbench.

The views with information specific to InnoDB use the SPACE and TABLE_ID

to identify the tablespace and table. Each tablespace has a unique id with ranges

reserved for different tablespace types. For example, the data dictionary tablespace

file (<datadir>/mysql.ibd) has space id 4294967294, the temporary tablespace has

id 4294967293, undo log tablespaces start with 4294967279 and decrement, and user

tablespaces start at 1.

The views with information about InnoDB full text indexes are special as they require

you to set the innodb_ft_aux_table global variable with the name of the table you want

to get information for. For example, to get the full text index configuration of the sakila.

film_text table:

Figure 7-1. A visual representation of the foreign key chain from sakila.film

ChApTer 7 The InForMATIon SCheMA

121

mysql> SET GLOBAL innodb_ft_aux_table = 'sakila/film_text';

Query OK, 0 rows affected (0.0685 sec)

mysql> SELECT *

 FROM information_schema.INNODB_FT_CONFIG;

+---------------------------+-------+

| KEY | VALUE |

+---------------------------+-------+

| optimize_checkpoint_limit | 180 |

| synced_doc_id | 1002 |

| stopword_table_name | |

| use_stopword | 1 |

+---------------------------+-------+

4 rows in set (0.0009 sec)

The values in the INNODB_FT_CONFIG view may differ for you.

InnoDB also includes views with information that relates to performance. These will

be discussed together with a few other performance-related tables.

 Performance Information
The group of views that relate to performance are those that you will likely use the most

in your performance tuning work together with the COLUMN_STATISTICS and STATISTICS

views from the previous group of views. The views with performance-related information

are listed in Table 7-3.

ChApTer 7 The InForMATIon SCheMA

122

Table 7-3. Information Schema views with performance-related information

View Name Description

INNODB_BUFFER_PAGE A list of the pages in the InnoDB buffer pool which can be

used to determine which tables and indexes are currently

cached.

Warning: There is a high overhead of querying this table

particularly for large buffer pools and many tables and

indexes. It is best used on test systems.

INNODB_BUFFER_PAGE_LRU Information about the pages in the InnoDB buffer pool and

how they are ordered in the least recently used (LrU) list.

Warning: There is a high overhead of querying this table

particularly for large buffer pools and many tables and

indexes. It is best used on test systems.

INNODB_BUFFER_POOL_STATS Statistics about the usage of the InnoDB buffer pool. The

information is similar to what can be found in the SHOW

ENGINE INNODB STATUS output in the BUFFER POOL AND

MEMORY section. This is one of the most useful views.

INNODB_CACHED_INDEXES A summary of the number of index pages cached in the

InnoDB buffer pool for each index.

INNODB_CMP

INNODB_CMP_RESET

Statistics about operations related to compressed InnoDB

tables.

INNODB_CMP_PER_INDEX

INNODB_CMP_PER_INDEX_RESET

The same as INNODB_CMP but grouped by the index.

INNODB_CMPMEM

INNODB_CMPMEM_RESET

Statistics about compressed pages in the InnoDB buffer pool.

INNODB_METRICS Similar to the global status variables but specific to InnoDB.

INNODB_SESSION_TEMP_

TABLESPACES

Metadata including the connection id, file path, and size for

InnoDB temporary tablespace files (each session gets its own

file in MySQL 8.0.13 and later). It can be used to link a session

to a tablespace file which is very useful if you notice one file

becoming large. The view was added in 8.0.13.

(continued)

ChApTer 7 The InForMATIon SCheMA

123

View Name Description

INNODB_TRX Information about InnoDB transactions.

OPTIMIZER_TRACE When the optimizer trace is enabled, the trace can be queried

from this view.

PROCESSLIST The same as SHOW PROCESSLIST.

PROFILING When profiling is enabled, the profiling statistics can

be queried from this view. This is deprecated, and it is

recommended to use the performance Schema instead.

Table 7-3. (continued)

For the views with information about InnoDB compressed tables, the table with _

RESET as the suffix returns the operation and timing statistics as deltas since the last time

the view was queried.

The INNODB_METRICS view includes metrics similar to the global status variables but

specific to InnoDB. The metrics are grouped into subsystems (the SUBSYSTEM column),

and for each metric there is a description of what the metric measures in the COMMENT

column. You can enable, disable, and reset the metrics using global system variables:

• innodb_monitor_disable: Disable one or more metrics.

• innodb_monitor_enable: Enable one or more metrics.

• innodb_monitor_reset: Reset the counter for one or more metrics.

• innodb_monitor_reset_all: Reset all statistics including the counter,

minimum, and maximum values for one or more metrics.

The metrics can be turned on and off as needed with the current status found in the

STATUS column. You specify the name of the metric as the value to the innodb_monitor_

enable or innodb_monitor_disable variable, and you can use % as a wildcard. The

value all works as a special value to affect all metrics. Listing 7-1 shows an example of

enabling and using all the metrics matching %cpu% (which happens to be the metrics in

the cpu subsystem). The counter values depend on the workload you have at the time of

the query.

ChApTer 7 The InForMATIon SCheMA

124

Listing 7-1. Using the INNODB_METRICS view

mysql> SET GLOBAL innodb_monitor_enable = '%cpu%';

Query OK, 0 rows affected (0.0005 sec)

mysql> SELECT NAME, COUNT, MIN_COUNT,

 MAX_COUNT, AVG_COUNT,

 STATUS, COMMENT

 FROM information_schema.INNODB_METRICS

 WHERE NAME LIKE '%cpu%'\G

*************************** 1. row ***************************

 NAME: module_cpu

 COUNT: 0

MIN_COUNT: NULL

MAX_COUNT: NULL

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: CPU counters reflecting current usage of CPU

*************************** 2. row ***************************

 NAME: cpu_utime_abs

 COUNT: 51

MIN_COUNT: 0

MAX_COUNT: 51

AVG_COUNT: 0.4358974358974359

 STATUS: enabled

 COMMENT: Total CPU user time spent

*************************** 3. row ***************************

 NAME: cpu_stime_abs

 COUNT: 7

MIN_COUNT: 0

MAX_COUNT: 7

AVG_COUNT: 0.05982905982905983

 STATUS: enabled

 COMMENT: Total CPU system time spent

ChApTer 7 The InForMATIon SCheMA

125

*************************** 4. row ***************************

 NAME: cpu_utime_pct

 COUNT: 6

MIN_COUNT: 0

MAX_COUNT: 6

AVG_COUNT: 0.05128205128205128

 STATUS: enabled

 COMMENT: Relative CPU user time spent

*************************** 5. row ***************************

 NAME: cpu_stime_pct

 COUNT: 0

MIN_COUNT: 0

MAX_COUNT: 0

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: Relative CPU system time spent

*************************** 6. row ***************************

 NAME: cpu_n

 COUNT: 8

MIN_COUNT: 8

MAX_COUNT: 8

AVG_COUNT: 0.06837606837606838

 STATUS: enabled

 COMMENT: Number of cpus

6 rows in set (0.0011 sec)

mysql> SET GLOBAL innodb_monitor_disable = '%cpu%';

Query OK, 0 rows affected (0.0004 sec)

First, the metrics are enabled using the innodb_monitor_enable variable; then

the values are retrieved. In addition to the values shown, there is also a set of columns

with the _RESET suffix which are reset when you set the innodb_monitor_reset (only

the counter) or innodb_monitor_reset_all system variable. Finally, the metrics are

disabled again.

ChApTer 7 The InForMATIon SCheMA

126

Caution The metrics have varying overheads, so you are recommended to test
with your workload before enabling metrics in production.

The InnoDB metrics are also included in the sys.metrics view together with the

global status variables and a few other metrics and when the metrics are retrieved.

The remaining Information Schema views contain information about privileges.

 Privilege Information
MySQL uses privileges assigned to the accounts to determine which accounts can access

which schemas, tables, and columns. The common way to determine the privileges for

a given account is to use the SHOW GRANTS statement, but the Information Schema also

includes views that allow you to query the privileges.

The Information Schema privilege views are summarized in Table 7-4. The views are

ordered from global privileges to column privileges.

In all views, the account is called GRANTEE and is in the form 'username'@'hostname'

with the quotes always present. Listing 7-2 shows an example of retrieving the privileges

for the mysql.sys@localhost account and comparing it to the output of the SHOW

GRANTS statement.

Table 7-4. Information Schema tables with privilege information

Table Name Description

USER_PRIVILEGES The global privileges.

SCHEMA_PRIVILEGES privileges to access schemas.

TABLE_PRIVILEGES privileges to access tables.

COLUMN_PRIVILEGES privileges to access columns.

ChApTer 7 The InForMATIon SCheMA

127

Listing 7-2. Using the Information Schema privilege views

mysql> SHOW GRANTS FOR 'mysql.sys'@'localhost'\G

*************************** 1. row ***************************

Grants for mysql.sys@localhost: GRANT USAGE ON *.* TO `mysql.

sys`@`localhost`

*************************** 2. row ***************************

Grants for mysql.sys@localhost: GRANT TRIGGER ON `sys`.* TO `mysql.

sys`@`localhost`

*************************** 3. row ***************************

Grants for mysql.sys@localhost: GRANT SELECT ON `sys`.`sys_config` TO

`mysql.sys`@`localhost`

3 rows in set (0.2837 sec)

mysql> SELECT *

 FROM information_schema.USER_PRIVILEGES

 WHERE GRANTEE = '''mysql.sys''@''localhost'''\G

*************************** 1. row ***************************

 GRANTEE: 'mysql.sys'@'localhost'

 TABLE_CATALOG: def

PRIVILEGE_TYPE: USAGE

 IS_GRANTABLE: NO

1 row in set (0.0006 sec)

mysql> SELECT *

 FROM information_schema.SCHEMA_PRIVILEGES

 WHERE GRANTEE = '''mysql.sys''@''localhost'''\G

*************************** 1. row ***************************

 GRANTEE: 'mysql.sys'@'localhost'

 TABLE_CATALOG: def

 TABLE_SCHEMA: sys

PRIVILEGE_TYPE: TRIGGER

 IS_GRANTABLE: NO

1 row in set (0.0005 sec)

mysql> SELECT *

 FROM information_schema.TABLE_PRIVILEGES

 WHERE GRANTEE = '''mysql.sys''@''localhost'''\G

ChApTer 7 The InForMATIon SCheMA

128

*************************** 1. row ***************************

 GRANTEE: 'mysql.sys'@'localhost'

 TABLE_CATALOG: def

 TABLE_SCHEMA: sys

 TABLE_NAME: sys_config

PRIVILEGE_TYPE: SELECT

 IS_GRANTABLE: NO

1 row in set (0.0005 sec)

mysql> SELECT *
 FROM information_schema.COLUMN_PRIVILEGES

 WHERE GRANTEE = '''mysql.sys''@''localhost'''\G

Empty set (0.0005 sec)

Notice how the single quotes around the username and hostname are escaped by

doubling the quotes.

While the views with the privilege information are not directly usable for

performance tuning, they are very useful for maintaining a stable system as you can use

them to easily identify whether any accounts have privileges that they do not need.

Tip It is best practice to limit accounts to have just the privileges they need and
no more. That is one of the steps to keep the system secure.

The last topic to consider about the Information Schema is how data related to index

statistics are cached.

 Caching of Index Statistics Data
One thing that is important to understand is where the information in the index

statistics–related views (and the equivalent SHOW statements) comes from. Most of the

data comes from the MySQL data dictionary. In MySQL 8, the data dictionary is stored

in an InnoDB table, so the views are just normal SQL views on top of the data dictionary.

(You can, for example, try to execute SHOW CREATE VIEW information_schema.

STATISTICS to get the definition of the STATISTICS view.)

ChApTer 7 The InForMATIon SCheMA

129

The index statistics themselves are however still originating from the storage engine

layer, so it is relatively expensive to query those. To improve the performance, the

statistics are cached in the data dictionary. You can control how old the statistics are

allowed to be before MySQL refreshes the cache. This is done with the information_

schema_stats_expiry variable which defaults to 86400 seconds (one day). If you set the

value to 0, you will always get the latest values available from the storage engine; this

is the equivalent of the MySQL 5.7 behavior. The variable can be set both at the global

and session scopes, so you can set it to 0 for the session, if you are investigating an issue

where it is important to see the current statistics, for example, if the optimizer is not

using the index you expect.

Tip Use the information_schema_stats_expiry variable to control how
long index statistics can be cached in the data dictionary. This is only for displaying
purposes – the optimizer always uses the latest statistics. Setting information_
schema_stats_expiry to 0 to disable caching can, for example, be useful when
investigating an issue with the wrong index being used by the optimizer. You can
change the value both at the global and session scopes as needed.

The caching affects the columns listed in Table 7-5. The SHOW statements displaying

the same data are also affected.

ChApTer 7 The InForMATIon SCheMA

130

Table 7-5. Columns affected by information_schema_stats_expiry

View Name Column Name Description

STATISTICS CARDINALITY The estimate for the number of unique values for the part of

the index up and including to the column in the same row.

TABLES AUTO_INCREMENT The next value for the auto-increment counter for the table.

AVG_ROW_LENGTH The estimated data length divided with the estimated number

of rows.

CHECKSUM The table checksum. It is not used by InnoDB, so the value is

NULL.

CHECK_TIME When the table was last checked (CHECK TABLE). For

partitioned tables, InnoDB always returns NULL.

CREATE_TIME When the table was created.

DATA_FREE An estimate of the amount of free space in the tablespace the

table belongs to. For InnoDB, this is the size of completely free

extents minus a safety margin.

DATA_LENGTH The estimated size of the row data. For InnoDB, it is the size of

the clustered index, which is found as the number of pages in

the clustered index multiplied with the page size.

INDEX_LENGTH The estimated size of secondary indexes. For InnoDB, this is

the sum of pages in non-clustered indexes times the page

size.

MAX_DATA_

LENGTH

The maximum allowed size of the data length. It is not used by

InnoDB, so the value is NULL.

TABLE_ROWS The estimated number of rows. For InnoDB tables, this comes

from the cardinality of the primary key or clustered index.

UPDATE_TIME When the tablespace file was last updated. For tables in the

InnoDB system tablespace, the value is NULL. As data is

written to the tablespace asynchronously, the time will not in

general reflect the time of the last statement changing the

data.

ChApTer 7 The InForMATIon SCheMA

131

You can force an update of this data for a given table by executing ANALYZE TABLE for

the table.

There are times when querying the data does not update the cached data:

• When the cached data has not yet expired, that is, it was refreshed

less than information_schema_stats_expiry seconds ago

• When information_schema_stats_expiry is set to 0

• When MySQL or InnoDB is running in a read-only mode, that is,

when one of the modes, read_only, super_read_only, transaction_

read_only, or innodb_read_only, is enabled.

• When the query also includes data from the Performance Schema

 Summary
This chapter introduced the Information Schema by first discussing what the

Information Schema is and how the user privileges work. The remainder of the chapter

walked through the standard views and how caching works. The Information Schema

views can be grouped by the type of information they contain: system, schema,

performance, and privilege information.

The system information includes the character sets and collations, resource groups,

keywords, and information related to spatial data. This is useful as an alternative to using

the reference manual.

The schema information is the largest group of views and includes all the

information available from schema data down to columns, indexes, and constraints.

These views together with the performance views that have information such as metrics

and InnoDB buffer pool statistics are the most commonly used views in performance

tuning. The privilege-related views are not so often used for performance tuning, but

they are very useful to help maintain a stable system.

A common shortcut to obtain information from the Information Schema views is to

use a SHOW statement. These will be discussed in the next chapter.

ChApTer 7 The InForMATIon SCheMA

133
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_8

CHAPTER 8

SHOW Statements
The SHOW statements are the good old workhorse in MySQL for database administrators

to obtain information about the schema objects and what happens on the system. While

today most of the information can be found in the Information Schema or Performance

Schema, the SHOW command is still very popular for interactive use due to its short

syntax.

Tip It is recommended to query the underlying Information Schema views and
Performance Schema tables. This particularly applies to noninteractive access to
the data. Querying the underlying sources is also more powerful as it allows you to
join to other views and tables.

This chapter starts out with an overview of how the SHOW statements match up with

the Information Schema views and Performance Schema tables. The remainder of the

chapter covers SHOW statements that do not have views or tables in the Information

Schema and Performance Schema including obtaining engine status information with

a little more in-depth view of the InnoDB monitor output provided by the SHOW ENGINE

INNODB STATUS statement as well as getting replication and binary log information.

 Relationship to the Information Schema
For the SHOW statements returning information about the schema objects or privileges,

the same information that can be found in the Information Schema. Table 8-1 lists the

SHOW statements that get the information from Information Schema views and which

views the information can be found in.

134

Table 8-1. Correlation between SHOW statements and the Information Schema

SHOW Statement I_S Views Comments

CHARACTER SET CHARACTER_SETS

COLLATION COLLATIONS

COLUMNS COLUMNS

CREATE DATABASE SCHEMATA

CREATE EVENT EVENTS

CREATE FUNCTION ROUTINES ROUTINE_TYPE = 'FUNCTION'

CREATE PROCEDURE ROUTINES ROUTINE_TYPE = 'PROCEDURE'

CREATE TABLE TABLES

CREATE TRIGGER TRIGGERS

CREATE VIEW VIEWS

DATABASES SCHEMATA

ENGINES ENGINES

EVENTS EVENTS

FUNCTION STATUS ROUTINES ROUTINE_TYPE = 'FUNCTION'

GRANTS COLUMN_PRIVILEGES

SCHEMA_PRIVILEGES

TABLE_PRIVILEGES

USER_PRIVILEGES

INDEX STATISTICS SHOW INDEXES and SHOW INDEXES are

synonyms for SHOW INDEX.

PLUGINS PLUGINS

PROCEDURE STATUS ROUTINES ROUTINE_TYPE = 'PROCEDURE'

PROCESSLIST PROCESSLIST It is recommended to use performance_

schema.threads instead.

PROFILE PROFILING Deprecated – use the Performance Schema

instead.

(continued)

ChaPTer 8 ShOW STaTemenTS

135

The information will not always be identical between the SHOW statement and the

corresponding Information Schema views. In some cases, there is more information

available using the views, and in general the views are more flexible.

There are also several SHOW statements where the underlying data can be found in

the Performance Schema.

 Relationship to the Performance Schema
After the Performance Schema was introduced, some of the information that was

originally placed in the Information Schema has been moved to the Performance

Schema where it logically belongs. That is also reflected in the relationship to the SHOW

statements where there are now several tables as shown in Table 8-2 that get their data

from Performance Schema tables.

Table 8-1. (continued)

SHOW Statement I_S Views Comments

PROFILES PROFILING Deprecated – use the Performance Schema

instead.

TABLE STATUS TABLES

TABLES TABLES

TRIGGERS TRIGGERS

ChaPTer 8 ShOW STaTemenTS

136

The SHOW MASTER STATUS includes information about what filtering is enabled when

writing events to the binary log. This information is not available from the Performance

Schema, so if you are using the binlog-do-db or binlog-ignore-db option (not

recommended as they can prevent point-in-time recoveries), then you still need to use

SHOW MASTER STATUS.

There are a few columns in the SHOW SLAVE STATUS output that cannot be found in

the Performance Schema tables. Some of those can be found in the slave_master_info

and slave_relay_log_info tables in the mysql schema (if master_info_repository and

relay_log_info_repository have been set to TABLE which is the default).

For SHOW STATUS and SHOW VARIABLES, one difference is that the SHOW statements

returning session scope values will include the global values if there is no session value.

When querying the session_status and session_variables, only the values belonging

to the requested scope are returned. Additionally, the SHOW STATUS statement includes

the Com_% counters, whereas when querying the Performance Schema directly, these

Table 8-2. Correlation between SHOW statements and the Performance Schema

SHOW Statement Performance Schema Tables

MASTER STATUS log_status

SLAVE STATUS log_status

replication_applier_configuration

replication_applier_filters

replication_applier_global_filters

replication_applier_status

replication_applier_status_by_coordinator

replication_applier_status_by_worker

replication_connection_configuration

replication_connection_status

STATUS global_status

session_status

events_statements_summary_global_by_event_name

events_statements_summary_by_thread_by_event_name

VARIABLES global_variables

session_variables

ChaPTer 8 ShOW STaTemenTS

137

counters correspond to events in the events_statements_summary_global_by_event_

name and events_statements_summary_by_thread_by_event_name tables (depending

on whether the global or session scope is queried).

There are also some SHOW statements that do not have any corresponding tables. The

first group of these that will be discussed is for the engine status.

 Engine Status
The SHOW ENGINE statement can be used to get storage engine–specific information. It is

currently implemented for the InnoDB, Performance_Schema, and NDBCluster engines.

For all three engines, it is possible to request the status, and for the InnoDB engine, it is

also possible to get mutex information.

The SHOW ENGINE PERFORMANCE_SCHEMA STATUS statement can be useful to get

some status information about the Performance Schema including the size of the tables

and their memory usage. (The memory usage can also be obtained from the memory

instrumentation.)

By far, the most used engine status statement is SHOW ENGINE INNODB STATUS which

provides a comprehensive report called the InnoDB monitor report which includes

some information that cannot be obtained from other sources. The rest of this section

introduces the InnoDB monitor report.

Tip You can also make InnoDB output the monitor report to the error log at
regular intervals by enabling the innodb_status_output system variable. When
the innodb_status_output_locks option is set, the InnoDB monitor (whether
generated because of innodb_status_output = ON or using SHOW ENGINE
INNODB STATUS) includes additional lock information.

The InnoDB monitor report starts out with the header and a note saying how long

the averages cover:

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************

 Type: InnoDB

 Name:

Status:

ChaPTer 8 ShOW STaTemenTS

138

=====================================

2019-09-14 19:52:40 0x6480 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 59 seconds

The report itself is divided into several sections, including

• BACKGROUND THREAD: The work done by the main background thread.

• SEMAPHORES: Semaphore statistics. The section is most important in

cases where contention causes long semaphore waits in which case

the section can be used to get information about the locks and who

holds them.

• LATEST FOREIGN KEY ERROR: If a foreign key error has been

encountered, this section includes details of the error. Otherwise, the

section is omitted.

• LATEST DETECTED DEADLOCK: If a deadlock has occurred, this section

includes details of the two transactions and the locks that caused the

deadlock. Otherwise, the section is omitted.

• TRANSACTIONS: Information about the InnoDB transactions. Only

transactions that have modified InnoDB tables are included. If the

innodb_status_output_locks option is enabled, the locks held

for each transaction are listed; otherwise, it is just locks involved

in lock waits. It is in general better to use the information_schema.

INNODB_TRX view to query the transaction information and for

lock information to use the performance_schema.DATA_LOCKS and

performance_schema.DATA_LOCK_WAITS tables.

• FILE I/O: Information about the I/O threads used by InnoDB

including the insert buffer thread, log thread, read threads, and write

threads.

• INSERT BUFFER AND ADAPTIVE HASH INDEX: Information about the

change buffer (this was formerly called the insert buffer) and the

adaptive hash index.

• LOG: Information about the redo log.

ChaPTer 8 ShOW STaTemenTS

139

• BUFFER POOL AND MEMORY: Information about the InnoDB buffer

pool. This information is better obtained from the information_

schema.INNODB_BUFFER_POOL_STATS view.

• INDIVIDUAL BUFFER POOL INFO: If innodb_buffer_pool_instances

is greater than 1, this section includes information about the

individual buffer pool instances with the same information as for the

global summary in the previous section. Otherwise, the section is

omitted. This information is better obtained from the information_

schema.INNODB_BUFFER_POOL_STATS view.

• ROW OPERATIONS: This section shows various information about

InnoDB including the current activity, what the main thread is doing,

and the row activity for inserts, updates, deletes, and reads.

Several of the sections will be used in later chapters when their content is used to

analyze performance or lock problems.

 Replication and Binary Logs
The SHOW statements have always been important when working with replication. While

the Performance Schema replication tables have now largely replaced the SHOW SLAVE

STATUS and SHOW MASTER STATUS statements, if you want to see which replicas are

connected and inspect events in the binary log or relay log from inside MySQL, then you

still need to use SHOW statements.

 Listing Binary Logs
The SHOW BINARY LOGS statement is useful to check which binary logs exist. This can be

useful if you want to know how much space the binary logs occupy, whether they are

encrypted, and for position-based replication whether the logs required by a replica still

exist.

ChaPTer 8 ShOW STaTemenTS

140

An example of what the output can look like is

mysql> SHOW BINARY LOGS;

+---------------+-----------+-----------+

| Log_name | File_size | Encrypted |

+---------------+-----------+-----------+

| binlog.000044 | 2616 | No |

| binlog.000045 | 886 | No |

| binlog.000046 | 218 | No |

| binlog.000047 | 218 | No |

| binlog.000048 | 218 | No |

| binlog.000049 | 575 | No |

+---------------+-----------+-----------+

6 rows in set (0.0018 sec)

The Encrypted column was added in MySQL 8.0.14 together with the support for

encrypted binary logs.

In general, the file size will be larger than in the example as the autorotation of the

binary log files happens when the size exceeds max_binlog_size (defaults to 1 GiB) after

writing a transaction. Since transactions are not split between files, if you have large

transactions, the file can become somewhat larger than max_binlog_size.

 Viewing Log Events
The SHOW BINLOG EVENTS and SHOW RELAYLOG EVENTS statements read the binary log

and relay log, respectively, and return the events matching the arguments. There are four

arguments, of which one only applies to relay log events:

• IN: The name of the binary log or relay log file to read events from.

• FROM: The position in bytes to start reading from.

• LIMIT: The number of events to include with an optional offset. The

syntax is the same as for SELECT statements: [offset], row_count.

• FOR CHANNEL: For relay logs, the replication channel to read

events for.

ChaPTer 8 ShOW STaTemenTS

141

All arguments are optional. If the IN argument is not given, events from the first log

are returned. An example of using SHOW BINLOG EVENTS is shown in Listing 8-1. If you

want to try the example, you will need to replace the binary log filename, position, and

limit.

Listing 8-1. Using SHOW BINLOG EVENTS

mysql> SHOW BINLOG EVENTS IN 'binlog.000049' FROM 195 LIMIT 5\G

*************************** 1. row ***************************

 Log_name: binlog.000049

 Pos: 195

 Event_type: Gtid

 Server_id: 1

End_log_pos: 274

 Info: SET @@SESSION.GTID_NEXT= '4d22b3e5-a54f-11e9-8bdb-ace2d35785be:603'

*************************** 2. row ***************************

 Log_name: binlog.000049

 Pos: 274

 Event_type: Query

 Server_id: 1

End_log_pos: 372

 Info: BEGIN

*************************** 3. row ***************************

 Log_name: binlog.000049

 Pos: 372

 Event_type: Table_map

 Server_id: 1

End_log_pos: 436

 Info: table_id: 89 (world.city)

*************************** 4. row ***************************

 Log_name: binlog.000049

 Pos: 436

 Event_type: Update_rows

 Server_id: 1

End_log_pos: 544

 Info: table_id: 89 flags: STMT_END_F

ChaPTer 8 ShOW STaTemenTS

142

*************************** 5. row ***************************

 Log_name: binlog.000049

 Pos: 544

 Event_type: Xid

 Server_id: 1

End_log_pos: 575

 Info: COMMIT /* xid=44 */

5 rows in set (0.0632 sec)

The example illustrates some of the limitations of using SHOW statements to inspect

binary and relay logs. The result is a normal result set from a query, and since the files

typically are around 1 GiB in size, it means the result can be equally large. You can do

as in the example where only specific events are chosen, but it is not always trivial to

know where the interesting events start, and you cannot filter by the event types or which

tables they affect. Finally, the default event format (the binlog_format option) is the

row format, and as it can be seen from the third and fourth rows in the result, all you can

see from SHOW BINGOG EVENTS is that the transaction updated the world.city table. You

cannot see which rows were updated and what the values are.

In practice, if you have access to the file system, it is in most cases better to use the

mysqlbinlog utility that is shipped with MySQL. (The SHOW BINLOG EVENTS and SHOW

RELAYLOG EVENTS statements can still be useful in controlled testing or when replication

stops and you quickly want to inspect the event that caused the error.) The equivalent

command using the mysqlbinlog utility to the previous SHOW BINLOG EVENTS statement

is shown in Listing 8-2. That example also uses the verbose flag to show the before and

after images of the row-based event that updates the world.city table.

Listing 8-2. Inspecting the binary log using the mysqlbinlog utility

shell> mysqlbinlog -v --base64-output=decode-rows --start-position=195

--stop-position=575 binlog.000049

/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=1*/;

/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

DELIMITER /*!*/;

at 124

#190914 20:38:43 server id 1 end_log_pos 124 CRC32 0x751322a6 Start:

binlog v 4, server v 8.0.18 created 190914 20:38:43 at startup

ChaPTer 8 ShOW STaTemenTS

143

Warning: this binlog is either in use or was not closed properly.

ROLLBACK/*!*/;

at 195

#190915 10:18:45 server id 1 end_log_pos 274 CRC32

0xe1b8b9a1 GTID last_committed=0 sequence_number=1

rbr_only=yes original_committed_timestamp=1568506725779031

immediate_commit_timestamp=1568506725779031 transaction_length=380

/*!50718 SET TRANSACTION ISOLATION LEVEL READ COMMITTED*//*!*/;

original_commit_timestamp=1568506725779031 (2019-09-15 10:18:45.779031

AUS Eastern Standard Time)

immediate_commit_timestamp=1568506725779031 (2019-09-15 10:18:45.779031

AUS Eastern Standard Time)

/*!80001 SET @@session.original_commit_timestamp=1568506725779031*//*!*/;

/*!80014 SET @@session.original_server_version=80018*//*!*/;

/*!80014 SET @@session.immediate_server_version=80018*//*!*/;

SET @@SESSION.GTID_NEXT= '4d22b3e5-a54f-11e9-8bdb-ace2d35785be:603'/*!*/;

at 274

#190915 10:18:45 server id 1 end_log_pos 372 CRC32 0x2d716bd5 Query

thread_id=8 exec_time=0 error_code=0

SET TIMESTAMP=1568506725/*!*/;

SET @@session.pseudo_thread_id=8/*!*/;

SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0,

@@session.unique_checks=1, @@session.autocommit=1/*!*/;

SET @@session.sql_mode=1168113696/*!*/;

SET @@session.auto_increment_increment=1, @@session.auto_increment_

offset=1/*!*/;

/*!\C utf8mb4 *//*!*/;

SET @@session.character_set_client=45,@@session.collation_connection=45,

@@session.collation_server=255/*!*/;

SET @@session.lc_time_names=0/*!*/;

SET @@session.collation_database=DEFAULT/*!*/;

/*!80011 SET @@session.default_collation_for_utf8mb4=255*//*!*/;

BEGIN

/*!*/;

at 372

ChaPTer 8 ShOW STaTemenTS

144

#190915 10:18:45 server id 1 end_log_pos 436 CRC32 0xb62c64d7 Table_map:

`world`.`city` mapped to number 89

at 436

#190915 10:18:45 server id 1 end_log_pos 544 CRC32 0x62687b0b

Update_rows: table id 89 flags: STMT_END_F

UPDATE `world`.`city`

WHERE

@1=130

@2='Sydney'

@3='AUS'

@4='New South Wales'

@5=3276207

SET

@1=130

@2='Sydney'

@3='AUS'

@4='New South Wales'

@5=3276208

at 544

#190915 10:18:45 server id 1 end_log_pos 575 CRC32 0x149e2b5c Xid = 44

COMMIT/*!*/;

SET @@SESSION.GTID_NEXT= 'AUTOMATIC' /* added by mysqlbinlog */ /*!*/;

DELIMITER ;

End of log file

/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=0*/;

The -v arguments request verbose mode and can be given up to two times to

increase the amount of information included. A single -v is what generates the

comment with the pseudo query in the event starting at position 436. The --base64-

output=decode-rows argument tells mysqlbinlog not to include a base64 encoded

version of the events in row format. The --start-position and --stop-position

arguments specify the start and stop offsets in bytes.

ChaPTer 8 ShOW STaTemenTS

145

The most interesting event in the transaction is the one starting with the comment

at 436 which means the event starts at offset 436 (in bytes). It is written as a pseudo

update statement with the WHERE part showing the values before the change and the SET

part the values after the update. This is also known as the before and after images.

Note If you use encrypted binary logs, you cannot directly use mysqlbinlog to
read the files. One option is to make mysqlbinlog connect to the server and read
them which returns the logs unencrypted. another option if you use the keyring_
file plugin to store the encryption key is to use Python or standard Linux tools to
decrypt the file. These methods are described in https://mysql.wisborg.dk/
decrypt-binary-logs and https://mysqlhighavailability.com/how-
to- manually-decrypt-an-encrypted-binary-log-file/.

 Show Connected Replicas
Another useful command is to ask a source of replication to list all replicas connected to

it. This can be used for auto-discovering a replication topology in monitoring tools.

The command to list the connected replicas is SHOW SLAVE HOSTS, for example:

mysql> SHOW SLAVE HOSTS\G

*************************** 1. row ***************************

 Server_id: 2

 Host: replica.example.com

 Port: 3308

 Master_id: 1

Slave_UUID: 0b072c80-d759-11e9-8423-ace2d35785be

1 row in set (0.0003 sec)

If no replicas are connected at the time the statement is executed, the result will be

empty. The Server_id and Master_id columns are the values of the server_id system

variable on the replica and source, respectively. The Host is the hostname of the replica

as specified with the report_host option. Similarly, the Port column is the replica’s

report_port value. Finally, the Slave_UUID column is the value of @@global.server_

uuid on the replica.

ChaPTer 8 ShOW STaTemenTS

https://mysql.wisborg.dk/decrypt-binary-logs
https://mysql.wisborg.dk/decrypt-binary-logs
https://mysqlhighavailability.com/how-to-manually-decrypt-an-encrypted-binary-log-file/
https://mysqlhighavailability.com/how-to-manually-decrypt-an-encrypted-binary-log-file/

146

The only group of SHOW statements left consists of various statements to get information

about privileges, users, open tables, warnings, and errors.

 Miscellaneous Statements
There are a few SHOW statements that are useful but that do not fit into any of the groups

that have been discussed thus far. They can be used to list the available privileges, return

the CREATE USER statement for an account, list the open tables, and list warnings or

errors after executing a statement. The statements are summarized in Table 8-3.

The three most commonly used of the miscellaneous SHOW statements are SHOW

CREATE USER, SHOW GRANTS, and SHOW WARNINGS.

The SHOW CREATE USER statement can be used to retrieve the CREATE USER statement

for an account. This is useful for inspecting metadata for the account without querying

the underlying mysql.user table directly. All users are allowed to execute the statement

for the current user. For example:

mysql> SET print_identified_with_as_hex = ON;

Query OK, 0 rows affected (0.0200 sec)

Table 8-3. Miscellaneous SHOW statements

SHOW Statement Description

PRIVILEGES Lists the available privileges, which context they apply to, and for some

privileges a description of what the privilege controls.

CREATE USER returns the CREATE USER statement for an account.

GRANTS Lists the assigned privileges for the current account or another account.

OPEN TABLES Lists the tables in the table cache, the number of table locks or lock requests,

and whether the name of the table is locked (happens during DROP TABLE or

RENAME TABLE).

WARNINGS Lists the warnings and errors and if sql_notes is enabled (the default) notes

for the last executed statement.

ERRORS Lists the errors for the last executed statement.

ChaPTer 8 ShOW STaTemenTS

147

mysql> SHOW CREATE USER CURRENT_USER()\G

*************************** 1. row ***************************

CREATE USER for root@localhost: CREATE USER 'root'@'localhost' IDENTIFIED

WITH 'caching_sha2_password' AS 0x24412430303524377B743F5E176E1A77494F574

D216C41563934064E58364E385372734B77314E43587745314F506F59502E747079664957

776F4948346B526B59467A642F30 REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT

UNLOCK PASSWORD HISTORY DEFAULT PASSWORD REUSE INTERVAL DEFAULT PASSWORD

REQUIRE CURRENT DEFAULT

1 row in set (0.0003 sec)

The print_identified_with_as_hex variable (available in 8.0.17 and later) is

enabled to return the password digest in hexadecimal notation. This is the preferred

when returning the value to the console as the digest may include unprintable

characters. The SHOW CREATE USER output is equivalent to how the user was created and

can be used to create a new user with the same settings, including password.

Note Specifying the authentication digest in hexadecimal notation when creating
a user is only supported in mySQL 8.0.17 and later.

The SHOW GRANTS statement complements SHOW CREATE USER by returning the

privileges assigned to the account. The default is to return for the current user, but if

you have the SELECT privilege for the mysql system database, you can also obtain the

privileges assigned to other accounts. For example, to list the privileges for the root@

localhost account:

mysql> SHOW GRANTS FOR root@localhost\G

*************************** 1. row ***************************

Grants for root@localhost: GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,

DROP, RELOAD, SHUTDOWN, PROCESS, FILE, REFERENCES, INDEX, ALTER, SHOW

DATABASES, SUPER, CREATE TEMPORARY TABLES, LOCK TABLES, EXECUTE,

REPLICATION SLAVE, REPLICATION CLIENT, CREATE VIEW, SHOW VIEW, CREATE

ROUTINE, ALTER ROUTINE, CREATE USER, EVENT, TRIGGER, CREATE TABLESPACE,

CREATE ROLE, DROP ROLE ON *.* TO `root`@`localhost` WITH GRANT OPTION

ChaPTer 8 ShOW STaTemenTS

148

*************************** 2. row ***************************

Grants for root@localhost: GRANT APPLICATION_PASSWORD_ADMIN,AUDIT_

ADMIN,BACKUP_ADMIN,BINLOG_ADMIN,BINLOG_ENCRYPTION_ADMIN,CLONE_

ADMIN,CONNECTION_ADMIN,ENCRYPTION_KEY_ADMIN,GROUP_REPLICATION_

ADMIN,INNODB_REDO_LOG_ARCHIVE,PERSIST_RO_VARIABLES_ADMIN,REPLICATION_

APPLIER,REPLICATION_SLAVE_ADMIN,RESOURCE_GROUP_ADMIN,RESOURCE_GROUP_

USER,ROLE_ADMIN,SERVICE_CONNECTION_ADMIN,SESSION_VARIABLES_ADMIN,SET_USER_

ID,SYSTEM_USER,SYSTEM_VARIABLES_ADMIN,TABLE_ENCRYPTION_ADMIN,XA_RECOVER_

ADMIN ON *.* TO `root`@`localhost` WITH GRANT OPTION

*************************** 3. row ***************************

Grants for root@localhost: GRANT PROXY ON “@” TO 'root'@'localhost' WITH

GRANT OPTION

3 rows in set (0.0129 sec)

The SHOW WARNINGS statement is one of the most underused statements in MySQL. If

MySQL encounters a problem but is able to continue, it will generate a warning but

otherwise complete the execution of the statement. While the statement completes without

error, the warning may be a sign of a larger problem, and it is best practice to always check

for warnings and aim at never having warnings in the queries executed by your application.

Note mySQL Shell does not support the SHOW WARNINGS statement as it will
automatically fetch warnings if the \W mode has been enabled (the default) and
otherwise not make the warnings available. The statement is however still useful in
the legacy mysql command-line client and from some connectors such as mySQL
Connector/Python.

Listing 8-3 shows an example where SHOW WARNINGS is used with the legacy mysql

command-line client to identify that the schema definition and data do not match.

Listing 8-3. Using SHOW WARNINGS to identify problems

mysql> SELECT @@sql_mode\G

*************************** 1. row ***************************

@@sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,

NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION

1 row in set (0.0004 sec)

ChaPTer 8 ShOW STaTemenTS

149

mysql> SET sql_mode = sys.list_drop(

 @@sql_mode,

 'STRICT_TRANS_TABLES'

);

Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

*************************** 1. row ***************************

 Level: Warning

 Code: 3135

Message: 'NO_ZERO_DATE', 'NO_ZERO_IN_DATE' and 'ERROR_FOR_DIVISION_BY_ZERO'

sql modes should be used with strict mode. They will be merged with strict

mode in a future release.

1 row in set (0.00 sec)

mysql> UPDATE world.city

 SET Population = Population/0

 WHERE ID = 130;

Query OK, 0 rows affected, 2 warnings (0.00 sec)

Rows matched: 1 Changed: 0 Warnings: 2

mysql> SHOW WARNINGS\G

*************************** 1. row ***************************

 Level: Warning

 Code: 1365

Message: Division by 0

*************************** 2. row ***************************

 Level: Warning

 Code: 1048

Message: Column 'Population' cannot be null

2 rows in set (0.00 sec)

mysql> SELECT *

 FROM world.city

 WHERE ID = 130\G

ChaPTer 8 ShOW STaTemenTS

150

*************************** 1. row ***************************

 ID: 130

 Name: Sydney

CountryCode: AUS

 District: New South Wales

 Population: 0

1 row in set (0.03 sec)

The example starts with the SQL mode set to the default in MySQL 8. First, the SQL

mode is changed using the sys.list_drop() function to remove the STRICT_TRANS_

TABLES mode which triggers a warning as disabling the strict mode should be done

together with other modes as they will be merged together at a later date. Then the

population of one of the cities in the world.city table is updated, but the calculation

ends up dividing with 0 which triggers two warnings. One warning is for division by 0

which is not defined, so MySQL uses a NULL value which causes the second warning

as the Population column is a NOT NULL column. The result is that a population of 0 is

assigned to the city, which is probably not what is expected in the application. This also

illustrates why it is important to enable the strict SQL mode as that would have made the

division by zero an error and prevented the update.

Caution Do not disable the STRICT_TRANS_TABLES SQL mode as it makes it
more likely that you end up with invalid data in your tables.

 Summary
This chapter introduced the SHOW statements which date back to before the Information

Schema and Performance Schema were implemented. Nowadays, it is often better to

use the underlying data sources in the Information Schema and Performance Schema.

The mapping between the SHOW statements and data sources was given in the first two

sections.

There are also some SHOW statements that return data that cannot be accessed through

other sources. A commonly used feature is the InnoDB monitor report from InnoDB

obtained with the SHOW ENGINE INNODB STATUS statement. The report is split into several

sections, of which some will be used when investigating performance and lock issues.

ChaPTer 8 ShOW STaTemenTS

151

There are also some statements for replication and the binary logs that are useful.

The most commonly used statement of these is SHOW BINARY LOGS which lists the binary

logs that MySQL knows of for that instance. The information includes the size and

whether the log is encrypted. You can also list events in the binary logs or relay logs, but

in practice the mysqlbinlog utility is usually a better option.

Finally, a group of miscellaneous SHOW statements were covered. The three most

used of these are SHOW CREATE USER to display a statement that can be used to recreate

the user, SHOW GRANTS that returns the privileges assigned to a user, and SHOW WARNINGS

which lists the errors, warnings, and by default notes that occurred for the last executed

query. Checking the warnings is an often-overlooked aspect of executing queries as

warnings can be an indication that the result of a query is not what you expect. It is

recommended to always check for warnings and to enable the STRICT_TRANS_TABLES

SQL mode.

The final chapter about sources of information is about the slow query log.

ChaPTer 8 ShOW STaTemenTS

153
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_9

CHAPTER 9

The Slow Query Log
In the days before it was possible to get query statistics from the Performance Schema,

the slow query log was the main source of information to find queries that are candidates

for optimization. Even today, the slow query log should not be completely dismissed.

The slow query log has three main advantages over the statement digest information

in the Performance Schema. The logged queries are persisted, so you can review the

information after MySQL has been restarted, the queries are logged with timestamps,

and the actual queries are logged. For these reasons, the slow query log is often used

together with the Performance Schema.

Tip A monitoring solution like MySQL Enterprise Monitor (https://dev.
mysql.com/doc/mysql-monitor/en/mem-qanal-using.html) can
overcome these limitations of the Performance Schema, so if you have a
monitoring solution that includes detailed query information, you are less likely to
need the slow query log.

There are also disadvantages of the slow query log. The overhead is higher than

for the Performance Schema as the queries are written to a plain text file and there is

no concurrency support when writing the events. There is also only limited support

for querying the log (you can store the slow query log in a table, but that has its own

disadvantages) which makes it less practical to use it during an investigation.

This chapter will look at how you can configure the slow query log, how the raw log

events look, and how you can use the mysqldumpslow (mysqldumpslow.pl on Microsoft

Windows) script to aggregate the log.

https://dev.mysql.com/doc/mysql-monitor/en/mem-qanal-using.html
https://dev.mysql.com/doc/mysql-monitor/en/mem-qanal-using.html

154

 Configuration
There are several options that you can use to configure the slow query log and which

queries are logged. As the overhead of having the log enabled goes up with the number

of queries you log, a well-configured slow query log is important. Logging “just the right

amount” of queries also makes it easier to identify queries of interest.

The slow query log is not enabled by default, and when the log is enabled, the

default is only to log nonadministrative queries executed directly on the local instance

and where the query takes more than 10 seconds to execute. Table 9-1 summarizes

the configuration options you have at your disposal for fine-tuning this behavior. The

information includes the default value and whether the option is used in the global

scope or session scope or both. The options are listed alphabetically.

Table 9-1. Configuration options for the slow query log

Option/Default Value/Scope Description

min_examined_row_limit

Default: 0

Scope: Global, Session

Only queries examining more rows than this value will

be logged. This can particularly be useful when enabling

logging of all queries doing full scans.

log_output

Default: FILE

Scope: Global

Controls whether the slow query log and general query log

are logged to a file, a table, or both or not at all.

log_queries_not_using_

indexes

Default: OFF

Scope: Global

When enabled, all queries that perform a full table or index

scan are logged irrespective of how long they take.

log_short_format

Default: OFF

Scope: Global

When enabled, less information is logged. This option can

only be set in the configuration file.

log_slow_admin_statements

Default: OFF

Scope: Global

When enabled, administrative statements like ALTER

TABLE and OPTIMIZE TABLE are eligible for logging.

(continued)

ChAPTEr 9 ThE SLOW QuEry LOG

155

Option/Default Value/Scope Description

log_slow_extra

Default: OFF

Scope: Global

When enabled, there is extra information such as the value

of the Handler_% status variables for the query. It is only

supported when logging to a file and in MySQL 8.0.14 and

later.

The main reason to not enable log_slow_extra is if you

have scripts that require the old format.

log_slow_slave_statements

Default: OFF

Scope: Global

When enabled, replicated statements are also eligible for

logging. This only applies for binary log events in statement

format.

log_throttle_queries_not_

using_indexes

Default: 0

Scope: Global

When you have enabled logging of all queries doing a full

scan, this option can throttle the maximum number of times

the query can be logged per minute.

log_timestamps

Default: UTC

Scope: Global

Whether to use uTC or the system time zone for the

timestamps. This option also applies to the error log and

general query log. It only applies when logging to a file.

long_query_time

Default: 10

Scope: Global, Session

The minimum query latency in seconds before a query is

logged (unless it is doing full scans and you have enabled

logging those queries). Fractional seconds are supported.

Set to 0 to log all queries.

Warning: Logging all queries has a significant overhead

and is best done on test systems or for short periods of

time.

slow_query_log

Default: OFF

Scope: Global

Whether to enable the slow query log.

slow_query_log_file

Default: <hostname>-slow.log

Scope: Global

The path and filename of the slow query log file. The

default location is in the data directory and is named from

the hostname of the system.

Table 9-1. (continued)

ChAPTEr 9 ThE SLOW QuEry LOG

156

It is recommended to leave log_output at the default and log the events to the file

set by slow_query_log_file. It may seem attractive to get the slow query log as a table;

however, the data is in that case saved as comma-separated values (CSV), and queries

against the table cannot use indexes. There are also some features such as log_slow_

extra that are not supported with log_output = TABLE.

The options mean that you have fine-grained control of which queries are logged.

All the options except log_short_format can be changed dynamically, so you can make

changes as the situation requires. If you feel it can be hard to determine how the options

interact, then Figure 9-1 shows a flowchart of the decision process determining whether

a query should be logged. (The flowchart is illustrative only – the actual code path is

different.)

ChAPTEr 9 ThE SLOW QuEry LOG

157

Figure 9-1. Flowchart to determine whether a query is logged to the slow log

ChAPTEr 9 ThE SLOW QuEry LOG

158

The flow starts with the query type. For administrative and replicated statements,

they only proceed if the respective option is enabled. Regular queries first check whether

they qualify as not using indexes and then fall back on checking the query execution time

(latency). If either condition is fulfilled, it is checked whether enough rows were examined.

Some finer details such as throttling of statements not using indexes are left out of the figure.

Once you have the query settings that you want, you need to look at the events in the

log to determine whether any queries need attention.

 Log Events
The slow query log is built up of events in plain text. This means that you can use any text

viewer that you like to inspect the file. On Linux and Unix, the less command is a good

option as it has good support for handling large files. On Microsoft Windows, Notepad++

is a common choice, but there is not the same good support for large files. Another

option on Windows is to install Windows Subsystem for Linux (WSL) which allows you to

install a Linux distribution and, in that way, get access to commands like less.

The format of the event depends on the settings. Listing 9-1 shows an example of an

event in the default format with long_query_time = 0 to log all queries. Note that some

of the lines have wrapped because of the limited width of the page.

Listing 9-1. A slow query log event in the default format

Time: 2019-09-17T09:37:53.269881Z

User@Host: root[root] @ localhost [::1] Id: 22

Query_time: 0.032531 Lock_time: 0.000221 Rows_sent: 10 Rows_examined: 4089

SET timestamp=1568713073;

SELECT CountryCode, COUNT(*) FROM world.city GROUP BY CountryCode ORDER BY

COUNT(*) DESC LIMIT 10;

The first line shows when the query was executed. This is the timestamp where you

can control whether UTC or the system time is used with the log_timestamp option. The

second line shows which account executed the query and the connection id. The third

line includes some basic statistics for the query: the query execution time, the time spent

waiting for a lock, the number of rows returned to the client, and the number of rows

examined.

ChAPTEr 9 ThE SLOW QuEry LOG

159

The SET timestamp query sets the timestamp of the query measured in the number

of seconds since epoch (January 1, 1970 00:00:00 UTC), and finally the slow query is in

the last line.

In the statistics, the query time and the ratio between the number of examined rows

and sent rows are of particular interest. The more rows that are examined compared

to the number of returned rows, the less effective indexes are in general. However, you

should always look at the information in context of the query. In this case, the query

finds the ten country codes with the most cities. There is no way that can be found

without performing a full table or index scan, so in this case there is a good reason for

the poor ratio of examined rows to the number of sent rows.

If you enable log_slow_extra in versions 8.0.14 and later, then you get additional

information for the query as shown in Listing 9-2.

Listing 9-2. Using log_slow_extra with the slow query log

Time: 2019-09-17T10:09:50.054970Z

User@Host: root[root] @ localhost [::1] Id: 22

Query_time: 0.166589 Lock_time: 0.099952 Rows_sent: 10 Rows_examined:

4089 Thread_id: 22 Errno: 2336802955 Killed: 0 Bytes_received: 0 Bytes_

sent: 0 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 4079 Read_

prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_

count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables:

0 Created_tmp_tables: 0 Start: 2019-09-17T10:09:49.888381Z End:

2019-09-17T10:09:50.054970Z

SET timestamp=1568714989;

SELECT CountryCode, COUNT(*) FROM world.city GROUP BY CountryCode ORDER BY

COUNT(*) DESC LIMIT 10;

The statistics of main interest from a performance perspective are the ones starting

with Bytes_received and finishing with Created_tmp_tables. Several of these statistics

are the equivalent of the Handler_% status variables for the query. In this case, you can

see that it is the Read_next counter that is the main contributor to the large number of

examined rows. Read_next is used when scanning an index to find rows, so it can be

concluded that the query performs an index scan.

Viewing the raw events can be very useful if you need to know what was executed

at a given time. If you are more interested in knowing which queries are in general

contributing the most to the load on the system, you need to aggregate the data.

ChAPTEr 9 ThE SLOW QuEry LOG

160

 Aggregation
It is possible to aggregate the data in the slow query log using the mysqldumpslow

(mysqldumpslow.pl on Microsoft Windows) script that is included in the MySQL

installation. mysqldumpslow is a Perl script that by default normalizes the queries in the

log by replacing numeric values with N and string values with 'S'. This allows the script

to aggregate the queries in a similar way to what is done in the events_statements_

summary_by_digest table in the Performance Schema.

Note The script requires Perl to be installed on your system. This is not a
problem on Linux and unix where Perl is always present, but on Microsoft
Windows, you will need to install Perl yourself. One option is to install Strawberry
Perl from http://strawberryperl.com/.

There are a few options to control the behavior of mysqldumpslow. These are

summarized in Table 9-2. Additionally, the slow query log file can be given as an

argument without an option name.

Table 9-2. Command-line arguments for mysqldumpslow

Option Default Value Description

-a Do not replace number and string values with N and 'S'.

--debug Execute in debug mode.

-g Perform pattern matching (using the same syntax as for grep)

on the queries and only include matching queries.

-h * By default, mysqldumpslow searches for files in the datadir

set in the MySQL configuration file. This option specifies the

hostnames that the files should match assuming the default

slow query log filename is used. Wildcards can be used.

--help Display a help text.

-i The instance name in the mysql.server startup script to use

in the automatic algorithm to look for slow query log files.

-l Do not extract the lock time for the queries.

(continued)

ChAPTEr 9 ThE SLOW QuEry LOG

http://strawberryperl.com/

161

The -s, -t, and -r options are the most commonly used. While mysqldumpslow can

search for the slow query log using the MySQL configuration file in the default paths

and hostname, it is more common to specify the path to the slow query log file as an

argument on the command line.

The -s option is used to specify how to sort the queries included in the result. For

some of the sorting options, there is the choice between using the total and the average

for the sorting. The sorting options are listed in Table 9-3 and are also available from the

mysqldumpslow --help output. The Total column specifies the option to use to sort by

the total, and the Average column shows the option to sort by the average.

Table 9-3. The sorting options for mysqldumpslow

Total Average Description

c Sort by the number of times (count) the query has

been executed.

l al Sort by the lock time.

r ar Sort by the number of rows sent.

t at Sort by the query time.

Option Default Value Description

-n 0 The minimum number of digits that must be in numbers before

they are abstracted to N.

-r reverse the order the queries are returned.

-s at how to sort the queries. The default is to sort according to the

average query time. The full list of sort options will be covered

separately.

-t (All) The maximum number of queries to return in the result.

--verbose Print additional information during the execution of the script.

Table 9-2. (continued)

ChAPTEr 9 ThE SLOW QuEry LOG

162

It can sometimes be useful to generate several reports using different sorting options

to get a better picture of the queries being executed on the instance.

As a case study, consider an instance starting out with an empty slow query log file;

then the queries in Listing 9-3 are executed. These queries are executed with long_

query_time set to 0 for the session to record all queries which is useful to avoid having to

spend a long time executing the queries.

Listing 9-3. The queries used to create slow query log events for a case study

SET GLOBAL slow_query_log = ON;

SET long_query_time = 0;

SELECT * FROM world.city WHERE ID = 130;

SELECT * FROM world.city WHERE ID = 131;

SELECT * FROM world.city WHERE ID = 201;

SELECT * FROM world.city WHERE ID = 2010;

SELECT * FROM world.city WHERE ID = 1;

SELECT * FROM world.city WHERE ID = 828;

SELECT * FROM world.city WHERE ID = 131;

SELECT * FROM world.city WHERE CountryCode = 'AUS';

SELECT * FROM world.city WHERE CountryCode = 'CHN';

SELECT * FROM world.city WHERE CountryCode = 'IND';

SELECT * FROM world.city WHERE CountryCode = 'GBR';

SELECT * FROM world.city WHERE CountryCode = 'USA';

SELECT * FROM world.city WHERE CountryCode = 'NZL';

SELECT * FROM world.city WHERE CountryCode = 'BRA';

SELECT * FROM world.city WHERE CountryCode = 'AUS';

SELECT * FROM world.city WHERE CountryCode = 'DNK';

SELECT * FROM world.city ORDER BY Population DESC LIMIT 10;

SELECT * FROM world.city ORDER BY Population DESC LIMIT 4;

SELECT * FROM world.city ORDER BY Population DESC LIMIT 9;

There are three basic queries with different values for the WHERE clause or LIMIT

clause. First, the city is found by the primary key which will search one row in order to

return one row. Second, cities are found by the CountryCode which is a secondary index,

so several rows are found but still the same number of rows are examined as returned.

Third, all cities are examined to return the most populous cities.

ChAPTEr 9 ThE SLOW QuEry LOG

163

Assuming the slow query log file is named mysql-slow.log and you are executing

mysqldumpslow from the same directory where the file is located, then you can group

the queries and order them by the number of times the queries have been executed

as shown in Listing 9-4. The -t option is used to limit the report to include three

(normalized) queries.

Listing 9-4. Using mysqldumpslow to sort the queries by count

shell$ mysqldumpslow -s c -t 3 mysql-slow.log

Reading mysql slow query log from mysql-slow.log

Count: 9 Time=0.00s (0s) Lock=0.00s (0s) Rows=150.1 (1351), root[root]

@localhost

 SELECT * FROM world.city WHERE CountryCode = 'S'

Count: 7 Time=0.02s (0s) Lock=0.00s (0s) Rows=1.0 (7), root[root]

@localhost

 SELECT * FROM world.city WHERE ID = N

Count: 3 Time=0.00s (0s) Lock=0.00s (0s) Rows=7.7 (23), root[root]

@localhost

 SELECT * FROM world.city ORDER BY Population DESC LIMIT N

Notice how the WHERE and LIMIT clauses have been modified to use N and 'S'. The

query time is listed as Time=0.00s (0s) which has the average query time first (0.00s)

and the total time in parenthesis. Similar for the lock and row statistics.

Since the mysqldumpslow script is written in Perl, it is relatively easy to modify the

script if you want to include support for new sorting options or to change the output. For

example, if you want to include more decimals for the average execution time, you can

modify the printf statement just before the usage subroutine (lines 168–169 in the script

included with MySQL 8.0.18) like

 printf "Count: %d Time=%.6fs (%ds) Lock=%.2fs (%ds) Rows=%.1f (%d),

$user\@$host\n%s\n\n",

 $c, $at,$t, $al,$l, $ar,$r, $_;

The change is in the Time=%.6fs part of the first line. That will print the average

execution time with microseconds.

ChAPTEr 9 ThE SLOW QuEry LOG

164

 Summary
This chapter has shown how the slow query log can be used to collect information about

the queries executed on the MySQL instance. The slow query log is focused on capturing

queries based on the execution time and whether they use indexes (in practice whether

they perform full table or index scans). The main advantages of the slow query log over

the Performance Schema are that the log includes the exact statements executed and

that it is persisted. The disadvantages are the overhead and that it is harder to get a

report returning the queries you are interested in.

First, the configuration options used to configure the slow query log were discussed.

There are options to control the minimum execution time, whether queries not using

indexes should be logged irrespective of the execution time, the types of queries to log,

and more. In MySQL 8.0.14 and later, you can use the log_slow_extra to include more

detailed information about the slow queries.

Second, two examples of the slow query log events were discussed. There was an

example with the default information and one with log_slow_extra enabled. The raw

events can be useful if you are looking for information of the queries executing at a given

point in time. For more general queries, aggregating the data with the mysqldumpslow

script is more useful. The use of mysqldumpslow was discussed in the last section.

The next part covers some tools that are useful in performance tuning starting with a

discussion of monitoring using MySQL Enterprise Monitor as an example.

ChAPTEr 9 ThE SLOW QuEry LOG

PART III

Tools

167
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_10

CHAPTER 10

MySQL Enterprise
Monitor
Monitoring is one of the keystones of performance tuning whether you are looking at

improving the performance at the system or query level. This chapter will look at one of

the monitoring solutions available for MySQL, MySQL Enterprise Monitor, also known as

MEM.

This chapter will start out with an overview of the architecture and principles of

MySQL Enterprise Monitor. Then there is a section with installation instructions if you

want to try MySQL Enterprise Monitor followed by a discussion of starting and stopping

the Service Manager and how to add MySQL instances to the list of monitored instances.

Finally, there is a tour of the user interface.

The rest of the book uses graphs and reports from MySQL Enterprise Monitor to

illustrate the use of a monitoring tool, but you can also use other monitoring solutions.

If you have no interest in MySQL Enterprise Monitor, you can skip this chapter.

 Overview
MySQL Enterprise Monitor is Oracle’s monitoring solution that is dedicated to MySQL.

It is available for customers as a companion to MySQL Server and is developed by the

MySQL development team.

Note MySQL Enterprise Monitor requires a MySQL Enterprise Edition or MySQL
Cluster CGE (Carrier Grade Edition) subscription to be used beyond the 30-day trial
version (see also the download instructions in the next section). You can review the
MySQL commercial features at www.mysql.com/products/enterprise/.

http://www.mysql.com/products/enterprise/

168

MySQL Enterprise Monitor consists of components which each serves its role in the

overall monitoring solution. In version 8, there are two main components:

• Service Manager: This component stores the collected metrics and

provides the front-end interface to view the data and manage the

configuration. The Service Manager consists of two parts which are a

Tomcat server that is the application side of the Service Manager and

the repository which is a MySQL database storing the data.

• Agent: MySQL Enterprise Monitor uses Agents to connect to the

MySQL instances that are monitored. The Service Manager includes

a built-in Agent that by default monitors the repository. An Agent can

monitor the local operating system as well as both local and remote

MySQL instances.

Note This book follows the convention from the MySQL Enterprise Monitor
manual (https://dev.mysql.com/doc/mysql-monitor/en/) to write
Service Manager and Agent in title case.

Since the Agent can only monitor the operating system on which it runs – metrics

such as CPU and memory usage, disk capacity, and so on – it is best to install an Agent

on each host where you monitor MySQL instances. This will allow you to correlate the

host metrics with the MySQL activities. If you are not able to install the Agent locally, for

example, if you are using a cloud solution that does not give you access to the operating

system, you can use an Agent installed on another host to monitor the MySQL metrics.

One option in this case is to use the built-in Agent in the Service Manager. Figure 10- 1

shows an example of a setup with three hosts, of which one is used for the Service

Manager and two hosts have the monitored MySQL instances installed.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

https://dev.mysql.com/doc/mysql-monitor/en/

169

The host at the top is the one with the MySQL Enterprise Monitor Service Manager

installed. It consists of the front end – here depicted with a web page with a graph – and

the built-in Agent and the repository. The built-in Agent monitors the repository and can

optionally be used to monitor other MySQL instances as well (not shown in the figure)

which can be useful if you do not have access to the host, as is the case for some cloud

products, or if you are testing and want to monitor a second MySQL instance on the

same host as where the Service Manager is installed.

Host 1 and Host 2 are two hosts with MySQL Server installed. There is a MySQL

Enterprise Monitor Agent installed on each host. The Agents query the MySQL instance

for metrics and send the metrics to the Service Manager which stores them in the

repository. The Service Manager can also send requests to the Agents, for example, to

run an ad hoc report or to change the frequency the Agent collects metrics.

The installation process is similar for the Service Manager and the Agent and uses

a customer installation program. The next section covers how to install the Service

Manager. It is left as an exercise for the reader to install the Agent, if you want to try that.

Figure 10-1. Overview of the MySQL Enterprise Monitor components

ChApTEr 10 MYSQL EnTErpriSE MoniTor

170

 Installation
The installation of MySQL Enterprise Monitor is quite straightforward though different

from other MySQL products. Downloading the software is different from what you may

be used to if you use the community editions of MySQL, and the installation is always

done through a dedicated installer. This section will guide you through the download,

installation process, and setup of MySQL Enterprise Monitor.

 Download
The first step of the installation is to download MySQL Enterprise Monitor. There are

two places you can download MySQL Enterprise Monitor. Existing MySQL customers

can download it from the Patches & Updates tab in My Oracle Support (MOS). This

is the recommended location for customers as Patches & Updates gets updated more

frequently and includes all versions since 2011. The alternative location is the Oracle

Software Delivery Cloud at https://edelivery.oracle.com/ which also allows

registered users to download a 30-day trial version. These instructions cover the Oracle

Software Delivery Cloud.

Note new accounts and accounts that have not been used for a while may need
to undergo export validation which can take a few days.

You start out at the “homepage” as shown in Figure 10-2.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

https://edelivery.oracle.com/

171

If you do not have a login, you need to create a new user using the New User? Register

Here icon. Once you have logged in, you get to the search page. Figure 10-3 shows part of

the search form.

Figure 10-2. The Oracle Software Delivery Cloud homepage

ChApTEr 10 MYSQL EnTErpriSE MoniTor

172

Choose Release in the drop box to the left of the text field. If you are interested in

other products as well, you leave it on the default value which is All Categories which

includes software packages. In the text field, enter MySQL Enterprise Monitor and click

MySQL Enterprise Monitor in the search list that shows up or click the Search button to

the right of the text field (neither the list nor button is shown in the figure). Then click

Add to Cart next to the result for MySQL Enterprise Monitor.

When the product has been added to the cart, you can click the Checkout link near

the top right of the page (also not shown in the figure). The next screen is shown in

Figure 10-4 and allows you to choose which platforms to download for.

Figure 10-3. The Oracle Software Delivery Cloud search form

ChApTEr 10 MYSQL EnTErpriSE MoniTor

173

Choose the platforms you are interested in. If you plan on having the Service

Manager on one platform while monitoring instances with an Agent installed on another

platform, you need to choose both platforms. When you have decided which platforms

you want to download for, click Continue.

The next step is to accept the license agreement. Please read carefully before

accepting it. The Oracle Trial License Agreement is at the end of the document. Once

you have accepted the terms and conditions, click Continue.

Note You may be asked to complete a survey about the usability of oracle
Software Delivery Cloud as one of the steps.

The last step is to choose which parts of MySQL Enterprise Monitor you want to

download. This is shown in Figure 10-5.

Figure 10-4. Choose the platforms to download for

ChApTEr 10 MYSQL EnTErpriSE MoniTor

174

There are two packages for each platform with one package for the Service Manager

and one for the Agent. Optionally (recommended), you can click the View Digest Details

link at the center bottom of the screenshot to show the SHA-1 and SHA-256 checksums

for each file. You can use these to validate the download completed successfully.

You can download the files in two ways. If you click the filename, you download the

files one by one. Alternatively, check the files you want and click the Download button

to start the download using a download manager. If you do not have the download

manager installed, you will be guided through installing it before the download

commences.

Tip oracle Software Delivery Cloud uses generic filenames such as
V982880- 01.zip. it is useful to rename the file to a name that includes
information about the product, platform, and version you have downloaded.

Once the download has completed, you can start the installation process.

Figure 10-5. Choose which parts of MySQL Enterprise Monitor to download

ChApTEr 10 MYSQL EnTErpriSE MoniTor

175

 Installation Process
MySQL Enterprise Monitor uses its own installer which works the same on all platforms.

There is support for performing the installation using a wizard mode either through a

graphical user interface or in text mode, or you can provide all the arguments on the

command line and use the unattended mode.

The names of the downloaded files depend on which platform you have downloaded

for and the version of MySQL Enterprise Monitor. For example, the Service Manager

version 8.0.17 for Microsoft Windows is named V982881-01.zip. The names for other

files are similar. If you unpack the ZIP file, you will find several files:

PS> ls | select Length,Name

 Length Name

 ------ ----

 6367299 monitor.a4.pdf

 6375459 monitor.pdf

 5275639 mysql-monitor-html.tar.gz

 5300438 mysql-monitor-html.zip

281846252 mysqlmonitor-8.0.17.1195-windows64-installer.exe

281866739 mysqlmonitor-8.0.17.1195-windows64-update-installer.exe

 975 README_en.txt

 975 READ_ME_ja.txt

The exact filenames and sizes depend on the platform and MySQL Enterprise

Monitor version. Notice that there are two executables, in this case mysqlmonitor-

8.0.17.1195-windows64-installer.exe and mysqlmonitor-8.0.17.1195-windows64-

update-installer.exe. The former is for installing MySQL Enterprise Monitor from

scratch, while the other (also sometimes called the update installer) is for performing

an upgrade of an existing installation. The PDF and HTML files are the manual, but you

are usually better off using the online manual at https://dev.mysql.com/doc/mysql-

monitor/en/ as that is updated regularly.

Tip if you want to use the text-based wizard or the unattended mode, invoke the
installer with the --help argument to get a list of supported arguments.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

https://dev.mysql.com/doc/mysql-monitor/en/
https://dev.mysql.com/doc/mysql-monitor/en/

176

This discussion will continue using the graphical user interface for the installation.

You start the installation by executing the installer without any arguments. The first step

is to choose the language (English, Japanese, and Simplified Chinese are available). Then

you are told that you need to make sure you keep the usernames and passwords you

enter during the installation in a secure location.

After passing the welcome screen, the configuration starts in proper by specifying the

installation location. On Microsoft Windows, the default location is C:\Program Files\

MySQL\Enterprise\Monitor, and on Linux it is /opt/mysql/enterprise/monitor when

installing as the root user or mysql/enterprise/monitor relative to the home directory

when installing as a non-privileged user.

The next screen shown in Figure 10-6 asks you to choose how large a system you will

monitor.

The system size determines the default settings for things like the memory

configuration of the Service Manager. You can tune the memory settings manually after

the installation has completed, but choosing the correct system size means you do not

have to worry about these settings initially. Unless you just want to try MySQL Enterprise

Monitor with a few instances, choose the medium or large system.

Figure 10-6. Choosing the size of the system

ChApTEr 10 MYSQL EnTErpriSE MoniTor

177

Next, you need to specify the port numbers to use. MySQL Enterprise Monitor uses

Tomcat server for the front end with port 18080 as the default unencrypted port and

18443 as the default SSL port. You will always be using the SSL port. (The non-SSL port is

there for legacy reasons but cannot be used for the front end.)

At this point, if you are installing on Linux using the root account, you will be asked

which user account you want to run the Tomcat processes under (the MySQL Server

repository process will use the mysql user). The default is mysqlmem. If you are installing

on Linux with a non-root account, you will be notified that it is not possible for the

installer to set up auto-start.

The Service Manager uses a MySQL instance to store the data including the collected

metrics. You have a choice (see Figure 10-7) between using the MySQL instance bundled

with the installer and using an existing MySQL instance.

Unless you have very good reasons to choose otherwise, it is recommended to

use the bundled MySQL database. This not only allows the installer to use a base

configuration that is known to work well with the Service Manager, it also simplifies

upgrades.

Figure 10-7. Choose which MySQL instance to use

ChApTEr 10 MYSQL EnTErpriSE MoniTor

178

Caution Do not be tempted to use the MySQL instance you want to monitor as
the repository for the Service Manager. MySQL Enterprise Monitor does cause a
significant amount of database activity, and if you use your production database,
your monitoring will stop working if the database it is supposed to monitor shuts
down.

You now get to choose the username and password for the connection the Service

Manager uses to the MySQL instance as well as the port number and schema name. This

is shown in Figure 10-8.

Do not take the choice of password lightly. The monitoring will include many details

about your system including the hostnames and queries. This means it is important to

choose a strong password.

That is the end of the configuration, and the installer is ready to commence the

actual installation step. The installation takes a little while as it includes both installing a

MySQL Server instance and the Tomcat server front end. When the installation is done, a

confirmation screen is shown followed by the warning in Figure 10-9.

Figure 10-8. Choosing the settings for the bundled MySQL Server

ChApTEr 10 MYSQL EnTErpriSE MoniTor

179

The installer creates a self-signed certificate for the SSL connections. This will

encrypt the communication just fine, but it does not allow for validating that you are

connected to the correct server. You can choose to purchase a certificate signed by a

trusted provider and make MySQL Enterprise Monitor use that. If you continue to use

the default self-signed certificate (which is assumed here), the browser will complain the

first time you connect to the Service Manager that you cannot trust the connection (this

is harmless in this case).

That completes the installation. The final screen shows a confirmation that you

have completed the wizard, and you can choose to open the readme file and launch the

browser. The installer has started the Service Manager in the background, so you do not

need to do anything else than open the URL to the Service Manager in the browser. If

your browser is on the same host as where you installed the Service Manager and you

chose the default SSL port (18443), the URL is https://localhost:18443/.

Note it can take a little while for Tomcat to be ready to respond to the
connections which can make the first connection attempt take a while to complete.

As mentioned, if you use the default self-signed certificate, the browser will warn

you that there is a potential security risk. An example of this from Firefox is shown in

Figure 10-10.

Figure 10-9. Warning about the self-signed certificates used by default

ChApTEr 10 MYSQL EnTErpriSE MoniTor

180

You will need to accept this risk. How to do this depends on your browser and

version. In the case of Firefox 68, you go to the Advanced option and choose Accept the

Risk and Continue.

The first step when you connect to the Service Manager is a little more configuration.

Most of this is collected in one screen as shown in Figure 10-11.

Figure 10-10. The warning by Firefox that the site cannot be verified

ChApTEr 10 MYSQL EnTErpriSE MoniTor

181

Figure 10-11. The Service Manager configuration screen

ChApTEr 10 MYSQL EnTErpriSE MoniTor

182

The top part requires you to configure two users. The user with the manager role

is the administration user that you use to log in to the Service Manager through the

browser (you can later create more users with less privileges if required). The user with

the Agent role is the user that you use if you install Agents to monitor MySQL instances

on other hosts. Make sure you choose strong passwords for both users.

The lower left allows you to configure whether MySQL Enterprise Monitor should

check for upgrades automatically and, if so, whether proxy settings are required. To the

lower right, you can configure how long data should be kept. The longer you keep data,

the further you can go back in time to investigate issues, and the more details you keep.

The cost is that the size of the database increases.

Once you have completed the setup, you will be taken to a What’s New page, and you

can set the time zone and locale you want to use for the newly created administration user.

Tip if you want to uninstall the Service Manager again, then you can do so using
the uninstaller program. on Microsoft Windows, you do this through the programs
application in the Control panel. on other platforms, use the uninstall command
in the topmost installation directory.

Since it is likely you will need to start and stop the Service Manager during you

testing, the next section will show how to do that.

 Starting and Stopping the Service Manager
The Service Manager is designed to be started and stopped as a service. On Microsoft

Windows and when you install the Service Manager using the root account on Linux,

the installer will always install the services for you. If you install it as a non-root user on

Linux, you can execute the service script manually to start and stop the Service Manager.

Tip if you manually start the processes, start the MySQL repository service first
and then Tomcat. When stopping it, it is the other way around, first stop Tomcat
and then the MySQL repository service.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

183

 Microsoft Windows
On Microsoft Windows, the installer always requires the administrator privilege to run,

which means it can also install the Service Manager processes as services. By default,

the services are set to automatically start and stop when you boot and shut down the

computer.

You can edit the settings for the services by opening the Services application. On

Windows 10, the easiest way to do this is to use the Windows key on the keyboard

(alternatively open the Start menu by clicking the Windows icon in the lower-left corner)

and type Services as shown in Figure 10-12.

The search result may look different to some degree compared to the screenshot.

Click the Services app match under Best match. This opens the application where you

can control the services. From the Services application, you can control the services by

starting, stopping, pausing, or restarting the service. The repository service is named

MySQL Enterprise MySQL, and the Tomcat service is named MySQL Enterprise Tomcat as

shown in Figure 10-13.

Figure 10-12. Opening the Services application

Figure 10-13. Controlling the services

ChApTEr 10 MYSQL EnTErpriSE MoniTor

184

When you click a service, you get the basic control actions in the pane to the left

of the services list. You can also right-click the service to get the actions as well as

the option to edit the properties of the service. These properties include whether to

automatically start and stop the service.

 Linux
How you start and stop MySQL Enterprise Monitor on Linux depends on whether you

performed the installation using the root operating system user. If you used the root

user, you start and stop the processes using the service command (there is no native

support for systemd) with the mysql-monitor-server service; otherwise, you use the

mysqlmonitorctl.sh script that is to the base of the installation directory. Either way, you

can add the tomcat or mysql argument to just change the status of one of the processes.

Listing 10-1 shows how to use the service command to start, restart, and stop

MySQL Enterprise Monitor.

Listing 10-1. Changing the status of the services with the service command

shell$ sudo service mysql-monitor-server start

Starting mysql service [OK]

2019-08-24T06:45:43.062790Z mysqld_safe Logging to '/opt/mysql/enterprise/

monitor/mysql/data/ol7.err'.

2019-08-24T06:45:43.168359Z mysqld_safe Starting mysqld daemon with

databases from /opt/mysql/enterprise/monitor/mysql/data

Starting tomcat service [OK]

shell$ sudo service mysql-monitor-server restart

Stopping tomcat service . [OK]

Stopping mysql service 2019-08-24T06:47:57.907854Z mysqld_safe mysqld from

pid file /opt/mysql/enterprise/monitor/mysql/runtime/mysqld.pid ended

. [OK]

Starting mysql service [OK]

2019-08-24T06:48:04.441201Z mysqld_safe Logging to '/opt/mysql/enterprise/

monitor/mysql/data/ol7.err'.

2019-08-24T06:48:04.544643Z mysqld_safe Starting mysqld daemon with

databases from /opt/mysql/enterprise/monitor/mysql/data

Starting tomcat service [OK]

ChApTEr 10 MYSQL EnTErpriSE MoniTor

185

shell$ sudo service mysql-monitor-server stop tomcat

Stopping tomcat service . [OK]

shell$ sudo service mysql-monitor-server stop mysql

Stopping mysql service 2019-08-24T06:48:54.707288Z mysqld_safe mysqld from

pid file /opt/mysql/enterprise/monitor/mysql/runtime/mysqld.pid ended

. [OK]

First, both services are started and then restarted, and finally the services are

stopped one by one. It is not necessary to stop the services one by one, but it can be

useful, for example, if you need to do maintenance on the repository.

Listing 10-2 shows the same example using the mysqlmonitorctl.sh script.

Listing 10-2. Changing the status of the services with mysqlmonitorctl.sh

shell $./mysqlmonitorctl.sh start

Starting mysql service [OK]

2019-08-24T06:52:34.245379Z mysqld_safe Logging to '/home/myuser/mysql/

enterprise/monitor/mysql/data/ol7.err'.

2019-08-24T06:52:34.326811Z mysqld_safe Starting mysqld daemon with

databases from /home/myuser/mysql/enterprise/monitor/mysql/data

Starting tomcat service [OK]

shell$./mysqlmonitorctl.sh restart

Stopping tomcat service . [OK]

Stopping mysql service 2019-08-24T06:53:08.292547Z mysqld_safe mysqld from

pid file /home/myuser/mysql/enterprise/monitor/mysql/runtime/mysqld.pid

ended

. [OK]

Starting mysql service [OK]

2019-08-24T06:53:15.310640Z mysqld_safe Logging to '/home/myuser/mysql/

enterprise/monitor/mysql/data/ol7.err'.

2019-08-24T06:53:15.397898Z mysqld_safe Starting mysqld daemon with

databases from /home/myuser/mysql/enterprise/monitor/mysql/data

Starting tomcat service [OK]

shell$./mysqlmonitorctl.sh stop tomcat

Stopping tomcat service . [OK]

ChApTEr 10 MYSQL EnTErpriSE MoniTor

186

shell$./mysqlmonitorctl.sh stop mysql

Stopping mysql service 2019-08-24T06:54:39.592847Z mysqld_safe mysqld from

pid file /home/myuser/mysql/enterprise/monitor/mysql/runtime/mysqld.pid

ended

. [OK]

The steps are very similar to the previous example with the service command. In

fact, the script invoked by the service command is the same as the mysqlmonitorctl.

sh script except that the paths and usernames in it depend on the operating user used to

install the Service Manager and the installation path.

 Adding MySQL Instances
If you just want to play around with MySQL Enterprise Monitor, you do not need to

do any more than you already have. The built-in Agent of the Service Manager will

automatically monitor the repository instance, so already when you log in to the user

interface the first time, there is monitoring data available. If you have installed an Agent,

the Agent will also register the instance it is monitoring automatically. The last option,

which will be discussed in this section, is to add an instance from the user interface.

If the MySQL instance you want to add monitoring for is installed on the same host

as the Service Manager or an existing Agent, it will be detected automatically, and the

icon with a dolphin and a question mark in the upper-right part of the page will be

highlighted as it is shown in Figure 10-14.

Notice how it says 1 to the right of the dolphin with a question mark in a (yellow)

circle. This is the number of MySQL instances that have been found but are not

monitored. When you hover over the icon, a tooltip with the number of unmonitored

instances will be displayed. If you click the dolphin or the number, it will take you to the

MySQL instance configuration screen which you can also access through the menu in

the left-hand pane.

Figure 10-14. One instance is shown as unmonitored

ChApTEr 10 MYSQL EnTErpriSE MoniTor

187

Note instances added through the user interface will be monitored by an existing
Agent (the built-in Agent if you did not install any Agents yourself). only those
systems with the Agent installed will have their operating system monitored.

The instance configuration screen both includes the option of adding new instances,

a list of unmonitored instances found by MySQL Enterprise Monitor, and a list of the

monitored instances. Figure 10-15 shows part of the page related to start monitoring new

and unmonitored instances.

You can add monitoring of any MySQL instance by using the Add MySQL Instance

or Add Bulk MySQL Instances button at the top of the page. If the instance you want

to monitor is listed in the Unmonitored MySQL Instances list, you can also choose it

there and click the Monitor Instances button which will take you to the same form as

Add MySQL Instance with the difference that the known connection settings have been

prefilled. The form has several tabs, of which the Connection Settings tab is shown in

Figure 10-16.

Figure 10-15. The instance configuration page

ChApTEr 10 MYSQL EnTErpriSE MoniTor

188

The main thing to note about the connection settings is that you can choose to

have MySQL Enterprise Monitor auto-create users with fewer privileges than the

administration user that is used to set up the monitoring. It is recommended to allow

these users to be created as it allows the Agent to use a user with as few privileges as

possible for the task it performs.

If you have encryption requirements, you can edit those in the Encryption Settings

tab. The Advanced Settings tab is rarely needed. If you are setting up monitoring of

several instances, you may want to specify a group for the instance in the Group Settings

tab. These settings can also be changed after the instance has been added.

It will take a little time to add the instance. When it is ready, you can start exploring

the rest of the user interface.

Figure 10-16. The Connection Settings tab of the add instance form

ChApTEr 10 MYSQL EnTErpriSE MoniTor

189

 The Graphical User Interface
The user interface provided by the Service Manager’s Tomcat server is where you will

spend most of the time using MySQL Enterprise Monitor. As you have already seen, it

can be used to add new instances. This section will dive further into the user interface

and discuss general navigation, advisors, timeseries graphs, and the Query Analyzer.

 General Navigation
The MySQL Enterprise Monitor user interface divides the features into logical groups

with support for filtering by the group, host, Agent, or instance. This section will give a

brief tour of the interface with the aim that when graphs or reports are mentioned later

in the book, you can find them in the interface, if you want to explore it closer.

Figure 10-17 shows the top-left part of the page in the user interface. This is where

you choose which feature to access and for which targets you want data to be displayed.

Figure 10-17. The top left of the page in MySQL Enterprise Monitor

ChApTEr 10 MYSQL EnTErpriSE MoniTor

190

The navigation to the features is centered on the left-hand pane with the filters

applied in the two search fields at the top of the page. The search field with the label

Global Summaries in the screenshot allows you to choose a group of instances. Groups

can be created manually but are also created automatically for instances that are

replicating between each other. Global Summaries is a special group that includes all

instances. The right-hand search field allows you to limit the instances, Agents, or hosts

included from the group.

The features include dashboards, graphs, reports, and more. The list of available

features depends on which filters you have applied. The menu items are

• Overview: This is a high-level dashboard.

• Topology: This option is only available when a replication group has

been chosen. It takes you to a diagram showing the topology of the

group with the status of the replication for each instance.

• Events: Returns a report of the monitoring events for the instances.

The events are raised when some condition set by the advisors (more

shortly) is met. The events have different severities ranging from a

notice to an emergency.

• Metrics: This takes you to the reports displaying metrics collected

by the Agents. No matter the filter, the timeseries graphs are always

available (but which graphs depends on the filter). For individual

instances, there are also reports for table statistics, user statistics,

memory usage, database file I/O, the InnoDB buffer pool, processes,

and lock waits. Several of these reports will be used in later chapters.

• Queries: This is the MySQL Query Analyzer which allows you

to investigate which queries are executed on the instance. The

timeseries graphs are linked to the Query Analyzer, so you can go

from examining the graphs to seeing which queries were executing

during the period being investigated.

• Replication: The replication dashboard and other replication-related

reports.

• Backups: Information about backups created by MySQL Enterprise

Backup (MEB).

ChApTEr 10 MYSQL EnTErpriSE MoniTor

191

• Configuration: Configuration of the various aspects of MySQL

Enterprise Monitor including instances and advisors.

• Help: The documentation including What’s New that you have

already seen and access to download a diagnostic report that can

be used to troubleshoot problems. The diagnostic report is mostly

used if you have a MySQL support contract and need to provide

diagnostics in a support ticket.

One term that is necessary to explain further is advisors.

 Advisors
Advisor is the name MySQL Enterprise Monitor uses for the rules that define how often

data is collected, which conditions trigger events, and which severity the event is. This is

an important concept that you should take some time to understand and configure.

One of the most important steps to get a useful monitoring solution is to ensure you

get the right events (alerts) at the right time but avoid unnecessary events. This includes

ensuring that each alert is set to the appropriate severity. You may at first think that

the more events the better, so that you know everything that goes on. However, that is

not how you best use a monitoring system. If you have many false positives when you

examine the events or you get woken up unnecessarily at 3:00 a.m. for an issue that easily

can wait until the morning, then you start ignoring events, and that is the sure recipe to

miss an important event sooner or later. In short, your work with the advisors should be

ongoing to keep improving them to trigger “just the right” events at “just the right” time.

Tip An important part of the work with monitoring is to ensure the monitoring
system triggers an event with a severity that matches the urgency of the issue. The
goal should be never to ignore an event and that you always get alerted at a time
and in a way that is appropriate for the urgency.

The advisors can be configured under the Configuration item in the left-hand pane.

The advisors are organized in groups as shown in Figure 10-18.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

192

Each group covers advisors of similar type, for example, there is the Performance

group with 22 advisors such as Excessive Number of Locked Processes and Indexes Not

Being Used Efficiently.

By default, all advisors are enabled with the thresholds for the severity levels set to

values that work well in many cases. However, as no two systems are the same, you will

need to fine-tune the settings which you do by expanding the group and clicking the

menu icon to the left of the name of the advisor as shown in Figure 10-19.

Figure 10-18. The advisors are organized into groups

ChApTEr 10 MYSQL EnTErpriSE MoniTor

193

You can also expand the advisor using the + icon to the left of the advisor item

which allows you to edit the advisor for a specific group of instances or a single instance.

The ? icon in the Info column provides additional information such as the expression

evaluated or the source of the data for the advisor. There is additional information

available which is not shown in the figure.

 Timeseries Graphs
The timeseries graphs are the graphs that show the metrics over time. This is a standard

feature of all monitoring solutions. You can filter which graphs to display and change the

time frame to plot as well as the plotting style.

Figure 10-19. Menu to edit an advisor configuration

ChApTEr 10 MYSQL EnTErpriSE MoniTor

194

Figure 10-20 shows a part of the timeseries graphs page focusing on the controls to

access filtering and the plotting style.

Above the graphs are the options to choose which graphs to display and the time

frame of the graphs. The search field to the left in the screenshot allows you to choose

between saved timeseries groups. By default, there is a single group called All Timeseries

Graphs that – as the name suggests – includes all timeseries graphs appropriate for the

instance filtering in place.

You access the options for the timeseries graphs by using the funnel icon in the top-

right corner of the screenshot. This will open a frame that allows you to choose which

graphs to display and the time frame to cover.

The two small buttons below each graph allow you to toggle between using the

line and stacked plotting modes. The screenshot shows an example of the stacked

mode in the topmost graph and the line mode in the lower graph. The line mode is the

default. You can also change the height of the graphs using a slider (not included in the

screenshot) to the left of the field to select between saved graph groups.

Figure 10-20. The timeseries graphs

ChApTEr 10 MYSQL EnTErpriSE MoniTor

195

The three icons above the graph become visible when you hover above the graph

and allows you to export the data for the graph in CSV format, open the graph as a PNG

image, or move the graph which allow you to reorder the graphs as it suits you best. In

this case where there are two graphs grouped together, the controls apply to both graphs.

An alternative way to change the time frame of the graphs is to highlight the part of a

graph that is of interest and zoom in on that part. This also allows you to go to the Query

Analyzer to examine which queries were executed during that period. Figure 10-21

shows an example of highlighting a time frame in a graph.

Notice that in the upper-right part of the highlighted area, there are three icons

to control what to do with the selection. The X in the box discards the selection, the

database cylinder opens the graph for the selected time frame in the Query Analyzer, and

the magnifying glass zooms the timeseries graphs to use the selected time frame.

 The Query Analyzer
The Query Analyzer is a feature that makes MySQL Enterprise Monitor stand out from

other monitoring solutions. It allows you to see which queries execute on the instance in

a given period which is invaluable when investigating performance problems.

The Query Analyzer page is divided into three areas. At the top there is access to

filtering options, then optionally there is one or more graphs, and the rest of the page is a

list of statements. Figure 10-22 shows an example of this.

Figure 10-21. Selecting a part of a timeseries graph

ChApTEr 10 MYSQL EnTErpriSE MoniTor

196

The drop box at the top saying All Statements in the screenshot allows you to choose

the statement type to show statements for. The default is to include all statements. To

the right there is the Configuration View button which takes you to a page where you

can configure how the Query Analyzer page should be configured. This includes the

time frame to cover, which graphs to display, filtering options, and which information to

include for each statement.

By default, the Query Analyzer includes the graph for the Query Response Time index

(QRTi). The definition of the Query Response Time index and how to use it will be covered

in Chapter 19 when the Query Analyzer is used to find candidates for optimization.

Figure 10-22. The Query Analyzer

ChApTEr 10 MYSQL EnTErpriSE MoniTor

197

That concludes the tour of MySQL Enterprise Monitor. You are encouraged to

explore the user interface further on your own.

 Summary
This chapter has provided a brief introduction to MySQL Enterprise Monitor with the

aim at allowing you to get it installed and monitor a MySQL instance. First, an overview

of the architecture and principles was discussed. MySQL Enterprise Monitor consists

of a Service Manager where the data is aggregated, and you can access the monitoring

system through the user interface. The monitoring of the hosts and instances is done by

the Agent. There is a built-in Agent in the Service Manager, and you can install additional

Agents on the hosts of your MySQL instances.

The overview was followed by download and installation instructions. Since MySQL

Enterprise Monitor is a commercial-only product, you download it either from Oracle

Software Delivery Cloud or My Oracle Support. The installation is done using an

installer. This chapter showed how to use the graphical user interface of the installer for

the Service Manager.

Starting and stopping the Service Manager is based on having it installed as a service.

On Linux and Unix, you can also have the Service Manager installed as a non-root user

in which case the same script that the service command uses can be invoked directly

from the installation directory.

There are two main ways to add an instance to be monitored. If you install an Agent

to monitor the instance, the Agent will register the instance. You can also add an instance

from the user interface of the Service Manager.

Finally, there was a quick tour of the graphical user interface of the Service Manager.

The focus was on the filtering of the instances you see data for and the list of features,

the timeseries graphs, and the Query Analyzer. Several of these features will be used to

demonstrate monitoring in the remainder of the book.

The next chapter will look at another useful tool that is used in the later chapters:

MySQL Workbench.

ChApTEr 10 MYSQL EnTErpriSE MoniTor

199
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_11

CHAPTER 11

MySQL Workbench
MySQL Workbench is Oracle’s graphical user interface for querying and managing MySQL

Server. It can be seen as one of the two Swiss army knives for working with MySQL,

with the other being MySQL Shell that is discussed in the next chapter.

The main feature of MySQL Workbench is the query mode where you can execute

queries. There are however also several other features such as the performance reports,

Visual Explain, the ability to manage the configuration and inspect the schema, and

more.

If you compare MySQL Workbench with MySQL Enterprise Monitor, then MySQL

Enterprise Monitor is dedicated to monitoring and is a server solution, whereas MySQL

Workbench is a desktop solution which is primarily a client for working with MySQL

Server. Similarly, the monitoring that is included in MySQL Workbench is all ad hoc

monitoring, whereas MySQL Enterprise Monitor as a server solution includes support

for storing historical data.

This chapter will introduce MySQL Workbench and go through installation, basic

usage, and how to create EER diagrams. The performance reports and Visual Explain will

be covered in later chapters.

Tip If you are already familiar MySQL Workbench, you can consider skipping this
chapter or skim it.

 Installation
You install MySQL Workbench in the same way as other MySQL programs except there

is only support for using the package manager (thus no standalone installations). The

MySQL Workbench version numbers follow the MySQL Server versions so that MySQL

Workbench 8.0.18 is released at the same time as MySQL Server 8.0.18. A MySQL

200

Workbench version supports the MySQL Server versions that are still being maintained

at the time of release, so MySQL Workbench 8.0.18 supports connecting to MySQL

Server 5.6, 5.7, and 8.

Tip It is best to use the latest MySQL Workbench release. You can see the
compatibility of the MySQL tools at https://dev.mysql.com/doc/mysql-
compat- matrix/en/.

This section will show examples of how to install MySQL Workbench on Microsoft

Windows, on “Enterprise Linux 7” (Oracle Linux, Red Hat Enterprise Linux, and

CentOS), and on Ubuntu 19.10. Other Linux platforms are similar in concept to the two

Linux examples.

Tip If you are a MySQL customer, it is recommended to download MySQL
Workbench from Patches & Updates in My Oracle Support (MOS). This will give
you access to the commercial version of MySQL Workbench which has some extra
features such as an audit log inspector and a graphical user interface for MySQL
Enterprise Backup (MEB).

 Microsoft Windows
On Microsoft Windows, the preferred way to install MySQL Workbench is to use MySQL

Installer for Windows. If you have other MySQL products installed, you may already have

MySQL Installer installed in which case you can skip the first steps of these instructions

and instead click Add on the main screen which takes you to the point of Figure 11-5.

You can download MySQL Installer from https://dev.mysql.com/downloads/

installer/. Figure 11-1 shows the download section.

ChaPTEr 11 MYSQL WOrkBEnCh

https://dev.mysql.com/doc/mysql-compat-matrix/en/
https://dev.mysql.com/doc/mysql-compat-matrix/en/
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/

201

There are two choices for the installer. The first called the web installer (mysql-

installer- web-community-8.0.18.0.msi) is just MySQL Installer, whereas the second

(mysql-installer-community-8.0.18.0.msi) also includes MySQL Server. If you plan

to install MySQL Server as well, it makes sense to choose the download that includes

both MySQL Installer and MySQL Server as you avoid waiting for the installer to

download the MySQL Server installation files later. This example assumes you choose

the web installer.

You click the Download button to access the download. If you are not logged in, it

will take you to the Begin Your Download page where you can choose between logging in

and starting the download straight away. This is shown in Figure 11-2.

Figure 11-1. The MySQL Workbench download page

ChaPTEr 11 MYSQL WOrkBEnCh

202

If you already have an account, you can sign in. Otherwise, you can choose to sign up

to an Oracle account. You can also choose to download the installer without logging in

by clicking the No thanks, just start my download link.

When the download has completed, launch the downloaded file. Other than

confirming that you will allow the installer and MySQL Installer to modify the installed

programs, there are no actions required to install MySQL Installer. Once the installation

has completed, MySQL Installer automatically launches and detects MySQL programs

already installed using an MSI installer as shown in Figure 11-3.

Figure 11-2. The second step in downloading MySQL Workbench

ChaPTEr 11 MYSQL WOrkBEnCh

203

If you do not have any MySQL programs installed, you are taken to a screen that

asks you to confirm that you agree with the license terms. Please read the license terms

carefully before proceeding. If you can accept the license, tick the I accept the license

terms check box and click the button labelled Next ➤ to continue.

The next step is to choose what to install. The setup type selection screen is shown in

Figure 11-4.

Figure 11-3. The MySQL Installer detects previously installed MySQL programs

ChaPTEr 11 MYSQL WOrkBEnCh

204

You can choose between several bundles such as the developer bundle (called

Developer Default) which installs the products typically used in a development

environment. When you choose a setup type, the description in the right of the screen

includes a list of the products that will be installed. For this example, the custom

installation type will be used.

The next step is to choose which products to install. That uses the selector shown in

Figure 11-5.

Figure 11-4. The MySQL Installer setup type chooser

ChaPTEr 11 MYSQL WOrkBEnCh

205

You find MySQL Workbench in the available products list under Applications.

Click the arrow pointing to the right to add MySQL Workbench to the list of products

and features to be installed. Feel free to choose additional products; for this book, it is

recommended to also include MySQL Shell. When you have added all the products you

need, click Next ➤ to proceed.

The following screen provides a summary of the products that will be installed.

Click Execute to start the installation. The installation process includes downloading

the product if MySQL Installer does not already have a local copy. The installation may

take a little while to complete. When it has completed, click Next ➤ to continue. The

final screen lists the installed programs and gives you the option to launch MySQL

Workbench and MySQL Shell. Click Finish to close MySQL Installer.

If you later want to install more products or perform upgrades or remove products,

you can launch MySQL Installer again which takes you to the main MySQL Installer

screen as shown in Figure 11-6.

Figure 11-5. Select what to install

ChaPTEr 11 MYSQL WOrkBEnCh

206

You choose the action you want to perform in the rightmost part of the screen. The

actions are

• Add: Install products and features.

• Modify: Change the installation of an existing product. This is mainly

useful for MySQL Server.

• Upgrade: Upgrade a product that is already installed.

• Remove: Uninstall a product.

• Catalog: Update MySQL Installer’s list of available MySQL products.

These five actions allow you to perform all steps required during the lifecycle of the

MySQL products.

Figure 11-6. The main MySQL Installer screen

ChaPTEr 11 MYSQL WOrkBEnCh

207

 Enterprise Linux 7
If you are using Linux, you install MySQL Workbench using the package manager. On

Oracle Linux, Red Hat Enterprise Linux, and CentOS 7, the preferred package manager

is yum as it will help resolve dependencies of the packages that you install or upgrade.

MySQL has a yum repository for its community products. This example will show how to

install that and use it to install MySQL Workbench.

You can find the URL to the repository definition at https://dev.mysql.com/

downloads/repo/yum/. There are also repositories for APT and SUSE. Choose the file

that corresponds to your Linux distribution and click Download. Figure 11-7 shows the

file for Enterprise Linux 7.

If you are not logged in, it will take you to a second screen like in the example of

installing MySQL Workbench on Microsoft Windows. This will allow you to log in to

your Oracle Web account, create an account, or download without logging in. Either

download the RPM file and save it in the directory you want to install it from or right-

click the Download button (if you are logged in) or the No thanks, just start my download

link and copy the URL as shown in Figure 11-8.

Figure 11-7. The repository definition download for Enterprise Linux 7

ChaPTEr 11 MYSQL WOrkBEnCh

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/

208

You can now install the repository definition as shown in Listing 11-1.

Listing 11-1. Installing the MySQL community repository

shell$ wget https://dev.mysql.com/get/mysql80-community-release-el7-3.

noarch.rpm

...

HTTP request sent, awaiting response... 200 OK

Length: 26024 (25K) [application/x-redhat-package-manager]

Saving to: 'mysql80-community-release-el7-3.noarch.rpm'

100%[=========================>] 26,024 --.-K/s in 0.001s

2019-08-18 12:13:47 (20.6 MB/s) - 'mysql80-community-release-el7-3.noarch.rpm'

saved [26024/26024]

Figure 11-8. Copying the link to the repository installation file

ChaPTEr 11 MYSQL WOrkBEnCh

209

shell$ sudo yum install mysql80-community-release-el7-3.noarch.rpm

Loaded plugins: langpacks, ulninfo

Examining mysql80-community-release-el7-3.noarch.rpm: mysql80-community-

release-el7-3.noarch

Marking mysql80-community-release-el7-3.noarch.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package mysql80-community-release.noarch 0:el7-3 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package

 Arch Version

 Repository Size

===

Installing:

 mysql80-community-release

 noarch el7-3 /mysql80-community-release-el7-3.noarch 31 k

Transaction Summary

===

Install 1 Package

Total size: 31 k

Installed size: 31 k

Is this ok [y/d/N]: y

Downloading packages:

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : mysql80-community-release-el7-3.noarch 1/1

 Verifying : mysql80-community-release-el7-3.noarch 1/1

ChaPTEr 11 MYSQL WOrkBEnCh

210

Installed:

 mysql80-community-release.noarch 0:el7-3

Complete!

MySQL Workbench requires some packages from the EPEL repository. On Oracle

Linux 7, you can enable it like

sudo yum install oracle-epel-release-el7

On Red Hat Enterprise Linux and CentOS, you need to download the repository

definition from Fedora:

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo yum install epel-release-latest-7.noarch.rpm

You are now able to install MySQL Workbench as shown in Listing 11-2.

Listing 11-2. Installing MySQL Workbench on Enterprise Linux 7

shell$ sudo yum install mysql-workbench

...

Dependencies Resolved

==

 Package Arch Version Repository Size

==

Installing:

 mysql-workbench-community

 x86_64 8.0.18-1.el7 mysql-tools-community 26 M

Transaction Summary

==

Install 1 Package

Total download size: 26 M

Installed size: 116 M

Is this ok [y/d/N]: y

Downloading packages:

ChaPTEr 11 MYSQL WOrkBEnCh

211

warning: /var/cache/yum/x86_64/7Server/mysql-tools-community/packages/

mysql-workbench-community-8.0.18-1.el7.x86_64.rpm: Header V3 DSA/SHA1

Signature, key ID 5072e1f5: NOKEY

Public key for mysql-workbench-community-8.0.18-1.el7.x86_64.rpm is not

installed

mysql-workbench-community-8.0.18-1. | 31 MB 00:14

Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Importing GPG key 0x5072E1F5:

 Userid : "MySQL Release Engineering <mysql-build@oss.oracle.com>"

 Fingerprint: a4a9 4068 76fc bd3c 4567 70c8 8c71 8d3b 5072 e1f5

 Package : mysql80-community-release-el7-3.noarch (@/mysql80-community-

release-el7-3.noarch)

 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Is this ok [y/N]: y

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : mysql-workbench-community-8.0.18-1.el7.x86 1/1

 Verifying : mysql-workbench-community-8.0.18-1.el7.x86 1/1

Installed:

 mysql-workbench-community.x86_64 0:8.0.17-1.el7

Complete!

Your output will likely look different, for example, depending on which packages

you already have installed, dependencies may be pulled in. The first time you install a

package from the MySQL repository, you will be asked to accept the GPG key used to

validate the downloaded packages. If you installed the EPEL repository from Fedora,

then you will also need to accept the GPG key from that repository.

ChaPTEr 11 MYSQL WOrkBEnCh

212

 Debian and Ubuntu
Installing MySQL Workbench on Debian and Ubuntu follows the same principles as in

the previous example. For the steps demonstrated here, Ubuntu 19.10 will be used.

Tip See https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
for the full documentation on using the MySQL aPT repository.

For Debian and Ubuntu, you need to install the MySQL APT repository for which the

definition file can be downloaded from https://dev.mysql.com/downloads/repo/apt/.

At the time of writing, there is just one file available – see Figure 11-9 – which is

architecture independent and works for all supported Debian and Ubuntu versions.

Figure 11-9. The APT repository configuration file

If you are not logged in, you will be taken to the screen where you can choose

between logging in and starting the download straight away. Either download the DEB

package or right-click the Download button (if you are logged in) or the No thanks, just

start my download link and copy the URL as shown in Figure 11-10.

ChaPTEr 11 MYSQL WOrkBEnCh

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/apt/

213

You can now install the MySQL repository as shown in Listing 11-3.

Listing 11-3. Installing the DEB package definition

shell$ wget https://dev.mysql.com/get/mysql-apt-config_0.8.14-1_all.deb

...

Connecting to repo.mysql.com (repo.mysql.com)|23.202.169.138|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 35564 (35K) [application/x-debian-package]

Saving to: 'mysql-apt-config_0.8.14-1_all.deb'

mysql-apt-config_0. 100%[==================>] 34.73K --.-KB/s in 0.02s

2019-10-26 17:16:46 (1.39 MB/s) - 'mysql-apt-config_0.8.14-1_all.deb' saved

[35564/35564]

Figure 11-10. Copying the link to the repository installation file

ChaPTEr 11 MYSQL WOrkBEnCh

214

shell$ sudo dpkg -i mysql-apt-config_0.8.14-1_all.deb

Selecting previously unselected package mysql-apt-config.

(Reading database ... 161301 files and directories currently installed.)

Preparing to unpack mysql-apt-config_0.8.14-1_all.deb ...

Unpacking mysql-apt-config (0.8.14-1) ...

Setting up mysql-apt-config (0.8.14-1) ...

Warning: apt-key should not be used in scripts (called from postinst

maintainerscript of the package mysql-apt-config)

OK

During the second step (the dpkg -i command), you can choose which MySQL

products should be available through the repository. The screen where this is set up is

shown in Figure 11-11.

Figure 11-11. Package configuration for the MySQL APT repository

ChaPTEr 11 MYSQL WOrkBEnCh

215

The default is to enable MySQL Server and Cluster as well as the tools and

connectors. For MySQL Server and Cluster, you can also choose which version you want

to use with the default being 8. In order to install MySQL Shell, you need to ensure that

MySQL Tools & Connectors is set to be enabled. Select Ok when you have made your

changes.

Before you can start to use the repository, you need to execute the update command

for apt-get:

shell$ sudo apt-get update

Hit:1 http://repo.mysql.com/apt/ubuntu eoan InRelease

Hit:2 http://au.archive.ubuntu.com/ubuntu eoan InRelease

Hit:3 http://au.archive.ubuntu.com/ubuntu eoan-updates InRelease

Hit:4 http://au.archive.ubuntu.com/ubuntu eoan-backports InRelease

Hit:5 http://security.ubuntu.com/ubuntu eoan-security InRelease

Reading package lists... Done

You can now install MySQL products using the install command for apt-get. Listing 11-4

shows an example of installing MySQL Workbench (notice that the package name is

mysql-workbench-community – the “-community” at the end is important).

Listing 11-4. Installing MySQL Workbench from the APT repository

shell$ sudo apt-get install mysql-workbench-community

Reading package lists... Done

Building dependency tree

Reading state information... Done

...

Setting up mysql-workbench-community (8.0.18-1ubuntu19.10) ...

Setting up libgail-common:amd64 (2.24.32-4ubuntu1) ...

Processing triggers for libc-bin (2.30-0ubuntu2) ...

Processing triggers for man-db (2.8.7-3) ...

Processing triggers for shared-mime-info (1.10-1) ...

Processing triggers for desktop-file-utils (0.24-1ubuntu1) ...

Processing triggers for mime-support (3.63ubuntu1) ...

Processing triggers for hicolor-icon-theme (0.17-2) ...

Processing triggers for gnome-menus (3.32.0-1ubuntu1) ...

ChaPTEr 11 MYSQL WOrkBEnCh

216

The output is quite verbose and includes a list of changes to other packages that are

required to install MySQL Workbench. The list of packages depends on what you have

installed already.

You are now ready to start using MySQL Workbench.

 Creating Connections
The first time you launch MySQL Workbench, you will need to define the connection to

the MySQL Server instance. If you have MySQL Notifier1 installed, MySQL Workbench

will automatically create a connection for the root user to each instance monitored by

MySQL Notifier.

You can also create connections as needed. One option is to do this from the MySQL

Workbench connections screen which is shown in Figure 11-12.

1 www.mysql.com/why-mysql/windows/notifier/

Figure 11-12. The MySQL Workbench connections screen

ChaPTEr 11 MYSQL WOrkBEnCh

https://www.mysql.com/why-mysql/windows/notifier

217

The connections screen is accessed by clicking the icon at the upper left showing a

database with a dolphin. The icon below with the tables connected by lines takes you

to the database modeling feature, and the last of the three icons opens a tab for the data

migration feature.

The screenshot shows the connections screen with the welcome message and with

one connection already present. You can right-click the connection to access the options

for the connection – these include opening the connection (creating a connection to the

MySQL instance), editing the connection, adding it to a group, and more.

You add a new connection by clicking + to the right of MySQL Connections. The

dialog for configuring a connection is shown in Figure 11-13. The dialogs for creating a

new connection and editing an existing one are very similar.

Figure 11-13. The dialog for creating a new connection

ChaPTEr 11 MYSQL WOrkBEnCh

218

You can name the connection with a name of your choice. It is a free-form string that

is just used to make it easier to identify the purpose of the connection. The rest of the

options are the usual connection options.

Once you have your connection, you can double-click it from the connections screen

to create a connection.

 Using MySQL Workbench
The most used feature in MySQL Workbench is the ability to execute queries. This is

done from the query tab which includes several features in addition to the ability to

execute the queries. These features include showing the result set, obtaining a visual

representation of the query plan called Visual Explain, getting context help, reformatting

queries, and more. This section will look at some of the features starting with an

overview.

 Overview
The query tab consists of two areas with one being an editor where you write your

queries and the other the query result. There are also support for showing context help

and query statistics. These two additional areas are technically not part of the query tab,

but since they are mostly used with the query tab, they will also be discussed here.

Figure 11-14 shows MySQL Workbench with the query tab and with the most

important features numbered.

ChaPTEr 11 MYSQL WOrkBEnCh

219

The area marked as ① is where you write your queries. You can keep several queries

here, and MySQL Workbench will save them, so they are restored when you open

the connection again. This makes it convenient as a scratch pad to store your most

frequently used queries.

You execute the query or queries using one of the three lightning icons marked as ②.

The left icon is a plain lightning symbol and executes the query or queries selected in the

query editor part. This is the same as using the keyboard shortcut Ctrl+Shift+Enter. The

middle icon with the lightning symbol and a cursor executes the query where the cursor

is. Using this icon is the same as using shortcut Ctrl+Enter while in the editor. The third

icon has a magnifier in front of the lightning symbol and creates the query plan in form

for the query where the cursor is currently placed. The default way to display the query

plan is as a Visual Explain diagram. You can also obtain the query plan by using the

keyboard shortcut Ctrl+Alt+X.

Figure 11-14. MySQL Workbench and the query tab

ChaPTEr 11 MYSQL WOrkBEnCh

220

The result is displayed below the query editor ③, and you can choose between

several formats by using the items to the right of the query result. The last of these items

is Execution Plan ④ which brings up the query plan for the query in the same way if you

had requested it directly from the query editor.

Below the query tab is the output frame ⑤ which by default shows statistics for the

last executed query. This includes when the query was executed, the query, the number

of rows found, and how long it took to execute it. To the right there is a frame with SQL

additions ⑥ which by default shows context help. You can enable automatic context help

or request it manually using the icons above the help text.

 Configuration
There are several settings that can be changed for MySQL Workbench ranging from the

colors to the behavior and paths to programs such as mysqldump that MySQL Workbench

depends on.

There are a couple of ways to get to the settings as shown in Figure 11-15. The figure

shows the upper-left and upper-right part of the MySQL Workbench window.

Figure 11-15. Accessing the MySQL Workbench preferences

ChaPTEr 11 MYSQL WOrkBEnCh

221

In the left-hand side, you can get the preferences from the menu by using Edit and

go to the Preferences item at the bottom. Alternatively, you can click the gear icon in the

right-hand side of the window. Either way, you get to the preferences pop-up that is

shown in Figure 11-16.

Figure 11-16. The MySQL Workbench preferences

The General Editors settings include settings such as the SQL mode to consider for

the syntax checker and whether to use spaces or tabs for indentation. The SQL Editor

settings include whether to use the safe settings, whether to save the editors, and the

general behavior of the editor and query tab. The Administration settings specify the

paths to use including for mysqldump if you do not want to use the bundled binary. The

Modeling settings are for the database modeling feature. The Fonts & Colors settings

allow you to change the visual appearance of MySQL Workbench. The SSH settings

are used when you use a feature that requires an SSH connection to a remote host.

Finally, the Others settings include a few settings that do not fit in the other categories

such as whether the welcome message should be displayed on the start screen with the

connections.

The settings include safe settings. What are those?

 Safe Settings
MySQL Workbench has two safe settings enabled by default to help prevent changing

or deleting all rows in a table and to avoid fetching too many rows. The safety settings

mean that UPDATE and DELETE statements are blocked if they do not have a WHERE clause,

ChaPTEr 11 MYSQL WOrkBEnCh

222

and SELECT statements have LIMIT 1000 added (the maximum number of rows can be

configured). The WHERE clause for UPDATE and DELETE statements cannot be a trivial one.

Caution Do not become complacent just because the safety settings are
enabled. UPDATE and DELETE statements can still do a lot of damage with a
WHERE clause, and a SELECT query with LIMIT 1000 can still require MySQL to
examine many more rows.

It is usually best to leave these settings enabled, but for some queries you will need

to change the settings for them to work as expected. The SELECT limit can be changed in

the settings as just described. The limit is set under the SQL Execution submenu under

SQL Editor. Alternatively, an easier way is to use the drop box above the editor as shown

in Figure 11-17.

Figure 11-17. Changing the SELECT limit

Changing the limit this way updates the same setting as if you go through the

preferences.

The UPDATE and DELETE safe setting can be changed in the SQL Editor settings

furthest down. It is recommended to keep it on unless you really need to update or

delete all rows in a table. Note that disabling the setting requires reconnecting.

 Reformatting Queries
One nice feature of MySQL Workbench that does not usually get a lot of attention is the

query beautifier tool. This can also be useful for query tuning as a well-formatted query

can make it easier to understand what the query is doing.

ChaPTEr 11 MYSQL WOrkBEnCh

223

The query beautifier takes a query and splits the select list, tables, and filters into

separate lines and adds indentation. An example of this is shown in Figure 11-18.

Figure 11-18. The query beautifier feature

The first query is the original query with the whole query in a single line. The second

query is the reformatted query. For a simple query like in this example, the beautification

is of little value, but for a more complex query, it can make the query much easier to

read.

The beautification by default includes changing SQL keywords to uppercase. You

can change whether that should happen in the Query Editor submenu of the SQL Editor

settings in the preferences.

 EER Diagrams
The last feature that will be explored is the support for reverse engineering a schema and

creating an enhanced entity-relationship (EER) diagram. This is a useful way to get an

overview of the schema you are working with. If foreign keys have been defined, MySQL

Workbench will use the definitions to link the tables together.

You can start the reverse engineering wizard from the Database menu option and

then choose Reverse Engineering. Alternatively, the Ctrl+R keyboard combination will

also take you there. This is shown in Figure 11-19.

ChaPTEr 11 MYSQL WOrkBEnCh

224

The wizard will take you through the steps to import the schema starting with

choosing which of your stored connections to use or optionally configuring the

connection manually. The next step connects and imports a list of the available schemas

which are shown in the third step. Here you choose one or more schemas to reverse

engineer as shown in Figure 11-20.

Figure 11-19. Opening the reverse engineering feature

Figure 11-20. Choosing which schemas to reverse engineer

ChaPTEr 11 MYSQL WOrkBEnCh

225

In this example, the world schema has been chosen. The next steps fetch the schema

objects and allow you to filter which objects to include. Finally, the objects are imported

and placed in the diagram, and a confirmation is shown. The resulting EER diagram is

shown in Figure 11-21.

Tip If MySQL Workbench crashes when creating the diagram, try opening Edit
➤ Configuration… ➤ Modelling in the menu and check the Force use of software
based rendering for EER diagrams option.

Figure 11-21. The EER diagram for the world database

ChaPTEr 11 MYSQL WOrkBEnCh

226

The diagram shows the three tables in the world database. When you hover over a

table, the relations to the other tables will be highlighted in green for a child table and

in blue for a parent table. This allows you to quickly explore the relations between the

tables to give you knowledge that can be crucial when you need to tune queries.

 Summary
This chapter introduced MySQL Workbench which is MySQL’s graphical user interface

solution. It was shown how to install MySQL Workbench and create connections. Then

an overview of the main query view was given, and it was shown how you can configure

MySQL Workbench. By default, you cannot execute UDPATE and DELETE statements

without a real WHERE clause, and SELECT queries are limited to 1000 rows.

Two features that were discussed are query beautification and EER diagrams. These

are not the only features, and later chapters will show examples of the performance

reports and the Visual Explain query plan diagrams.

The next chapter will discuss MySQL Shell which is the second of the two “Swiss

army knives” provided by MySQL.

ChaPTEr 11 MYSQL WOrkBEnCh

227
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_12

CHAPTER 12

MySQL Shell
MySQL Shell is the second-generation command-line client which stands out compared

to the traditional mysql command-line client by supporting the X Protocol as well as

the Python and JavaScript languages. It also comes with several utilities and is highly

extensible. This makes it a great tool for not only day-to-day tasks but also when

investigating performance issues.

This chapter starts out with an overview of what the MySQL Shell offers including

the built-in help and the rich prompt. The second part of the chapter covers how you can

extend the functionality of MySQL Shell through the use of external code modules, the

reporting infrastructure, and plugins.

 Overview
The first MySQL Shell release with the status of general availability was in 2017, so it is

still a very new tool in the MySQL toolbox. Yet, it already has a large array of features

well beyond what the traditional mysql command-line client has. These features

are not limited to those required to use MySQL Shell as part of the MySQL InnoDB

Cluster solution; there are also several features that are useful for day-to-day database

administration tasks and performance optimization.

An advantage of MySQL Shell over the mysql command-line client is that the MySQL

Shell editor behaves the same on Linux and Microsoft Windows, so if you work on both

platforms, you get a consistent user experience. This means that Ctrl+D exists the shell

both on Linux, macOS, and Microsoft Windows, Ctrl+W deletes the previous word, and

so forth.

228

Tip Charles Bell (the technical reviewer of this book and a MySQL developer)
has written the book Introducing MySQL Shell (Apress) with a comprehensive
introduction to MySQL Shell: www.apress.com/gp/book/9781484250822.
Additionally, the author of this book has published several blogs about MySQL
Shell. See https://mysql.wisborg.dk/mysql-shell-blogs/.

This section will look at installing MySQL Shell, invoking it, and some of the basic

features. It is however not possible to go into details with all features of MySQL Shell. You

are encouraged to consult the online manual at https://dev.mysql.com/doc/mysql-

shell/en for more information as you are using MySQL Shell.

 Installing MySQL Shell
MySQL Shell is installed in the same way as other MySQL products (except for MySQL

Enterprise Monitor). You can download it from https://dev.mysql.com/downloads/

shell/; and it is available for Microsoft Windows, Linux, and macOS and as a source

code. For Microsoft Windows, you can also install it through MySQL Installer.

If you install MySQL Shell using a native package format and MySQL Installer for

Microsoft Windows, the installation instructions are the same as for MySQL Workbench

except for the names. Please see the previous chapter for details.

You can also install MySQL Shell using a ZIP archive on Microsoft Windows or a

TAR archive on Linux and macOS. If you choose that option, you simply unpack the

downloaded file, and you are done.

 Invoking MySQL Shell
MySQL Shell is invoked using the mysqlsh (or mysqlsh.exe on Microsoft Windows)

binary which is in the bin directory of the installation directory. When you install MySQL

Shell using a native package, the binary will be in your PATH environment variable, so the

operating system can find it without you explicitly providing the path.

ChApter 12 MySQL SheLL

http://www.apress.com/gp/book/9781484250822
https://mysql.wisborg.dk/mysql-shell-blogs/
https://dev.mysql.com/doc/mysql-shell/en
https://dev.mysql.com/doc/mysql-shell/en
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/shell/

229

This means that the simplest way to start MySQL Shell is just to execute mysqlsh:

shell> mysqlsh

MySQL Shell 8.0.18

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

MySQL JS>

The prompt will look different than in this output as the default prompt cannot be

fully represented in plain text. Unlike the mysql command line, MySQL Shell does not

require a connection to be present, and by default none is created.

 Creating Connections
There are several ways to create a connection for MySQL Shell including from the

command line and from inside MySQL Shell.

If you add any connection-related argument when invoking mysqlsh, then MySQL

Shell will create a connection as part of starting up. Any connection options that are not

specified will use their default values. For example, to connect as the root MySQL user

to a MySQL instance on the local host using the default port (and on Linux and macOS

socket) values, you just need to specify the --user argument:

shell> mysqlsh --user=root

Please provide the password for 'root@localhost': ********

Save password for 'root@localhost'? [Y]es/[N]o/Ne[v]er (default No): yes

MySQL Shell 8.0.18

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights

reserved.

ChApter 12 MySQL SheLL

230

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 39581 (X protocol)

Server version: 8.0.18 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

MySQL localhost:33060+ ssl JS >

The first time you connect, you will be asked to enter the password for the account.

If MySQL Shell finds the mysql_config_editor command in the path or you are on

Microsoft Windows where MySQL Shell can use the Windows keyring service, MySQL

Shell will offer to save the password for you, so you do not need to enter it in the future.

Alternatively, you can use a URI to specify the connection options, for example:

shell> mysqlsh root@localhost:3306?schema=world

After MySQL Shell has started up, notice how the prompt has changed. MySQL Shell

features an adaptive prompt that changes to reflect the status of your connection. The

default prompt includes the port number you are connected to. If you connect to MySQL

Server 8, then the default port used is 33060 instead of port 3306 as MySQL Shell by

default uses the X Protocol when the server supports it rather than the traditional MySQL

protocol. That is the reason the port number is not what you may expect.

You can also create (or change) the connection from within MySQL Shell. You can

even have multiple connections, so you can work on two or more instances concurrently.

There are several ways to create a session, including those listed in Table 12-1. The table

also includes how to set and retrieve a global session. The Language Commands column

shows the commands or methods to invoke depending on the language mode in use.

ChApter 12 MySQL SheLL

231

Table 12-1. Various ways to create and work with a connection

Method Language Commands Description

Global session All modes:
\connect (or \c for short)

Creates a global session (the default

session). this is the equivalent of a

connection in the mysql command-

line client.

General session JavaScript:
mysqlx.getSession()

Python:
mysqlx.get_session()

returns the session so it can be

assigned to a variable. Can be used

both for a connection using the

X protocol and the classic protocol.

Classic session JavaScript:
mysql.getClassicSession()

Python:
mysql.get_classic_session()

Similar to a general session, but

always returns a classic session.

Set global session JavaScript:
shell.setSession()

Python:
shell.set_session()

Sets the global session from a

variable containing a session.

Get global session JavaScript:
shell.getSession()

Python:
shell.get_session()

returns the global session, so it can

be assigned to a variable.

reconnect All modes:
\reconnect

reconnects using the same

arguments as for the existing global

connection.

All the commands and methods to create a session support a URI in the format

[scheme://][user[:password]@]<host[:port]|socket>[/schema][?option=value&op

tion=value...]. The methods also support supplying the options in a dictionary. If you

do not include the password and MySQL Shell does not have a stored password for the

account, you will be prompted to enter the password interactively (unlike the traditional

command-line client, MySQL Shell can prompt for information during the execution of a

command). For example, to connect as the myuser user to localhost

ChApter 12 MySQL SheLL

232

MySQL JS> \connect myuser@localhost

Creating a session to 'myuser@localhost'

Please provide the password for 'myuser@localhost': *******

The language mode has been mentioned a few times. The next subsection will look

at how you work with it.

 Language Modes
One of the biggest features of MySQL Shell is that you are not restricted to executing SQL

statements. You have the full power of both JavaScript and Python at your disposal – and

of course SQL statements. This makes MySQL Shell very powerful for automating tasks.

You work in one language mode at a time, though it is possible to execute queries

through the API in both JavaScript and Python. Table 12-2 summarizes how you can

choose the language mode you want to use from the command line and from within

MySQL Shell.

Table 12-2. Choosing the MySQL Shell language mode

Mode Command-Line MySQL Shell

JavaScript --js \js

python --py \py

SQL --sql \sql

The default mode is JavaScript. The prompt reflects which language mode you are in,

so you always know which mode you are using.

Tip In MySQL Shell 8.0.16 and later, you can in the python and JavaScript modes
prefix a command with \sql which makes MySQL Shell execute the command as
an SQL statement.

ChApter 12 MySQL SheLL

233

One thing to be aware of that also was hinted when listing how to create connections

is that MySQL Shell like the X DevAPI tries to keep the naming convention normally used

for the language. This means that in JavaScript mode, the functions and methods use

camel case (e.g., getSession()), whereas in Python mode snake case (get_session())

is used. If you use the built-in help, the help will reflect the names used for the language

mode you are in.

 Built-in Help
It can be hard to keep on top of all of the features of MySQL Shell and how to use them.

Fortunately, there is an extensive built-in help feature that lets you get information on

the features without having to go back to the online manual each time.

If you execute mysqlsh with the --help argument, you will get information about

all the supported command-line arguments. After starting a shell, you can also get help

about the commands, objects, and methods. The topmost help is obtained using the

\h, \? or \help command which is available from all language modes. This lists the

commands and the global objects and how to get further help.

The second level of help is for the commands and global objects. You can specify

the name of a command of a global object with one of the help commands to get more

information about the command or object. For example:

mysql-js> \h \connect

NAME

 \connect - Connects the shell to a MySQL server and assigns the global

session.

SYNTAX

 \connect [<TYPE>] <URI>

 \c [<TYPE>] <URI>

DESCRIPTION

...

The final level of help is for the features of the global objects. The global objects and

modules of global objects all have a help() method that provides help for the object

or module. The help() method can also take the name of a method of the module or

ChApter 12 MySQL SheLL

234

object as a string which will return help for that method. Some examples are (the output

is omitted as it is quite verbose – it is recommended to try the commands for yourself to

see the help text that is returned):

MySQL JS> \h shell

MySQL JS> shell.help()

MySQL JS> shell.help('reconnect')

MySQL JS> shell.reports.help()

MySQL JS> shell.reports.help('query')

The two first commands retrieve the same help text. It is worth familiarizing yourself

with the help feature as it can greatly improve how efficiently you can work with MySQL

Shell.

The context awareness of the help goes further than to detect whether a global

object exists and whether a method name follows the JavaScript or Python convention.

Consider a request for help about “select.” There are several possibilities of what you

mean by that. It can be one of the select() methods in the X DevAPI, or you may think

of the SELECT SQL statement. If you request the help in the SQL mode, MySQL Shell

assumes you mean the SQL statement. However, in the Python and JavaScript modes,

you will be asked which one you mean:

MySQL Py> \h select

Found several entries matching select

The following topics were found at the SQL Syntax category:

- SQL Syntax/SELECT

The following topics were found at the X DevAPI category:

- mysqlx.Table.select

- mysqlx.TableSelect.select

For help on a specific topic use: \? <topic>

e.g.: \? SQL Syntax/SELECT

ChApter 12 MySQL SheLL

235

The reason MySQL Shell can provide the help for the SELECT statement in the SQL

mode without considering the X DevAPI is that the X DevAPI methods can only be

accessed from Python and JavaScript. On the other hand, all three meanings of “select”

make sense in the Python and JavaScript modes.

As noted earlier, there exist several global objects. What are those?

 Built-in Global Objects
MySQL Shell uses global objects to group features. Much of the functionality that makes

MySQL Shell so powerful can be found in the global objects. As you will see in the

“Plugins” section, it is also possible to add your own global objects.

The built-in global objects include

• db: When a default schema has been set, db holds the X DevAPI

schema object for the default schema. X DevAPI table objects can be

found as properties of the db object (unless the table or view name

is the same as an existing property). The session object can also be

obtained from the db object.

• dba: For administrating MySQL InnoDB Cluster.

• mysql: For connecting to MySQL using the classic MySQL protocol.

• mysqlx: For working with MySQL X Protocol sessions.

• session: For working with the current global session (connection to a

MySQL instance).

• shell: Various general-purpose methods and properties.

• util: Various utilities such as the upgrade checker, importing JSON

data, and importing data in CSV files to relational tables.

That concludes the general overview of MySQL Shell. Next, you will learn more about

the prompt and how to customize it.

ChApter 12 MySQL SheLL

236

 The Prompt
One of the features setting MySQL Shell apart from the traditional command-line client

is the rich prompt which not only makes it easy to see which host and schema you are

working with but also can add information such as whether you are connected to a

production instance, whether SSL is used, and custom fields.

 Built-in Prompts
The MySQL Shell installation comes with several predefined prompt templates that you

can choose from. The default is to use a prompt that provides information about the

connection and supports 256 colors, but there are also simpler prompts.

The location of the prompt definition templates depends on how you installed

MySQL Shell. Examples of the location include

• ZIP and TAR archives: The share/mysqlsh/prompt directory in the

archive.

• RPM on Oracle Linux 7: /usr/share/mysqlsh/prompt/

• MySQL Installer on Microsoft Windows: C:\Program Files\MySQL\
MySQL Shell 8.0\share\mysqlsh\prompt

The prompt definitions are JSON files with the definitions that are included as of

MySQL Shell 8.0.18 being

• prompt_16.json: A colored prompt limited to use 16/8 color ANSI

colors and attributes.

• prompt_256.json: The prompt uses 256 indexed colors. This is the

one that is used by default.

• prompt_256inv.json: Like the prompt_256.json, but with an

“invisible” background color (it just uses the same as for the

terminal) and with different foreground colors.

• prompt_256pl.json: Same as prompt_256.json but with extra

symbols. This requires a Powerline patched font such as the one that

is installed with the Powerline project. This will add a padlock with

the prompt when you use SSL to connect to MySQL and use “arrow”

separators. An example of installing the Powerline font is shown later.

ChApter 12 MySQL SheLL

237

• prompt_256pl+aw.json: Same as prompt_256pl.json but with

“awesome symbols.” This additionally requires the awesome symbols

to be included in the Powerline font. An example of installing the

awesome symbols is shown later.

• prompt_classic.json: This is a very basic prompt that just shows

mysql-js>, mysql-py>, or mysql-sql> based on the mode in use.

• prompt_dbl_256.json: A two-line version of the prompt_256.json

prompt.

• prompt_dbl_256pl.json: A two-line version of the prompt_256pl.

json prompt.

• prompt_dbl_256pl+aw.json: A two-line version of the

prompt_256pl+aw.json prompt.

• prompt_nocolor.json: Gives the full prompt information, but

completely without colors. An example of a prompt is MySQL

[localhost+ ssl/world] JS>.

The two-line templates are particularly useful if your shell window is of limited width

as they will put the information on one line and allow you to type your command on the

next without having it preceded by the full prompt.

There are two ways to specify which prompt you want to use. MySQL Shell first

looks for the file prompt.json in the user’s MySQL Shell directory. The default location

depends on your operating system:

• Linux and macOS: ~/.mysqlsh/prompt.json – that is in the

.mysqlsh directory in the user’s home directory.

• Microsoft Windows: %AppData%\MySQL\mysqlsh\prompt.json – that

is in AppData\Roaming\MySQL\mysqlsh directory from the user’s

home directory.

You can change the directory by setting the MYSQLSH_HOME environment variable.

If you prefer a different prompt than the default, you can copy that definition into the

directory and name the file prompt.json.

ChApter 12 MySQL SheLL

238

The other way to specify the location of the prompt definition is to set the MYSQLSH_

PROMPT_THEME environment variable, for example, on Microsoft Windows using the

command prompt:

C:\> set MYSQLSH_PROMPT_THEME=C:\Program Files\MySQL\MySQL Shell 8.0\share\

mysqlsh\prompt\prompt_256inv.json

In PowerShell the syntax is a little different:

PS> $env:MYSQLSH_PROMPT_THEME = "C:\Program Files\MySQL\MySQL Shell 8.0\

share\mysqlsh\prompt\prompt_256inv.json";

On Linux and Unix:

shell$ export MYSQLSH_PROMPT_THEME=/usr/share/mysqlsh/prompt/prompt_256inv.

json

This can be useful if you temporarily want to use a different prompt than your usual

prompt.

As it has already been hinted, there are several parts to most of the prompt

definitions. The easiest way is to take a look at an example of the prompt such as the

default (prompt_256.json) prompt shown in Figure 12-1.

Figure 12-1. The default MySQL Shell prompt

There are several parts to the prompt. First, it says PRODUCTION on a red background

which is to warn you that you are connected to a production instance. Whether an

instance is considered a production instance is based on whether the hostname you are

connected to is included in the PRODUCTION_SERVERS environment variable. The second

element is the MySQL string which does not have any special meaning.

Third is the host and port you are connected to, whether you use the X Protocol, and

whether SSL is used. In this case, there is a + after the port number which indicates that

the X Protocol is in use. The fourth element is the default schema.

The fifth and last element (not counting the > at the end) is the language mode. It

will show SQL, Py, or JS depending on whether you have enabled the SQL, Python, or

JavaScript mode, respectively. The background color of this element also changes with

the language. SQL uses orange, Python blue, and JavaScript yellow.

ChApter 12 MySQL SheLL

239

In general, you will not see all elements of the prompt as MySQL Shell only includes

those that are relevant. For example, the default schema is only included when you

have set a default schema, and the connection information is only present when you are

connected to an instance.

As you work with MySQL Shell, you may realize that you would like to make some

changes to the prompt definition. Let’s look at how you can do that.

 Custom Prompt Definition
The prompt definitions are JSON files, and there is nothing that prevents you from

editing a definition to change according to your preferences. The best way to do this is to

copy the template that is closest to what you want and then make your changes.

Tip the best source for help to create your own prompt definition is the
README.prompt file that is located in the same directory as the template files.

Instead of going through the specification in details, it is easier to look at the

prompt_256.json template and discuss some parts of it. Listing 12-1 shows the end of

the file is where the elements of the prompt are defined.

Listing 12-1. The definition of the elements of the prompt

 "segments": [

 {

 "classes": ["disconnected%host%", "%is_production%"]

 },

 {

 "text": " My",

 "bg": 254,

 "fg": 23

 },

 {

 "separator": "",

 "text": "SQL ",

 "bg": 254,

ChApter 12 MySQL SheLL

240

 "fg": 166

 },

 {

 "classes": ["disconnected%host%", "%ssl%host%session%"],

 "shrink": "truncate_on_dot",

 "bg": 237,

 "fg": 15,

 "weight": 10,

 "padding" : 1

 },

 {

 "classes": ["noschema%schema%", "schema"],

 "bg": 242,

 "fg": 15,

 "shrink": "ellipsize",

 "weight": -1,

 "padding" : 1

 },

 {

 "classes": ["%Mode%"],

 "text": "%Mode%",

 "padding" : 1

 }

]

There are a few things that are interesting to note here. First, notice that there is an

object with the classes disconnected%host% and %is_production%. The names within

the percentage signs are variables defined in the same file or that come from MySQL

Shell itself (it has variables such as the host and port). For example, is_production is

defined as

 "variables" : {

 "is_production": {

 "match" : {

 "pattern": "*;%host%;*",

 "value": ";%env:PRODUCTION_SERVERS%;"

 },

ChApter 12 MySQL SheLL

241

 "if_true" : "production",

 "if_false" : ""

 },

So a host is considered to be a production instance if it is included in the

environment variable PRODUCTION_SERVERS.

The second thing to note about the list of elements is that there are some special

fields such as shrink which can be used to define how the text is kept relatively short.

For example, the host element uses truncate_on_dot, so only the part before the first

dot in the hostname is displayed if the full hostname is too long. Alternatively ellipsize

can be used to add … after the truncated value.

Third, the background and foreground colors are defined using the bg and fg

elements, respectively. This allows you to completely customize the prompt to your

liking with respect to colors. The color can be specified in one of the following ways:

• By Name: There are a few colors that are known by name: black, red,

green, yellow, blue, magenta, cyan, and white.

• By Index: A value between 0 and 255 (both inclusive) where 0 is

black, 63 light blue, 127 magenta, 193 yellow, and 255 white.

• By RGB: Use a value in the #rrggbb format. This requires that the

terminal supports TrueColor colors.

One group of built-in variables that deserve an example are the ones that in some

way depend on the environment or the MySQL instance you are connected to. These are

• %env:varname%: This uses an environment variable. The way it is

determined whether you are connected to a production server is an

example of using an environment variable.

• %sysvar:varname%: This uses the value of a global system variable

from MySQL, that is, the value returned by SELECT @@global.

varname.

• %sessvar:varname%: Similar to the previous but using a session

system variable.

ChApter 12 MySQL SheLL

242

• %status:varname%: This uses the value of a global status variable

from MySQL, that is, the value returned by SELECT VARIABLE_VALUE

FROM performance_schema.global_status WHERE VARIABLE_NAME

= 'varname'.

• %status:varname%: Similar to the previous, but using a session status

variable.

If you, for example, want to include the MySQL version of the instance you are

connected to in the prompt, you can add an element like

 {

 "separator": "",

 "text": "%sysvar:version%",

 "bg": 250,

 "fg": 166

 },

You are encouraged to play around with the definition until you get a color scheme

and the elements that work best for you. An alternative way to improve the prompt on

Linux is to install the Powerline and Awesome fonts.

 Powerline and Awesome Fonts
If you feel that the normal MySQL Shell prompts are too square and you use MySQL

Shell on Linux, you can consider using one of the templates that rely on the Powerline

and the Awesome fonts. The fonts are not installed by default.

This example will show you how to do a minimal installation of the Powerline

fonts1 and install the Awesome font using the patching-strategy branch of gabrielelana’s

awesome-terminal-fonts project on GitHub.2

1 https://powerline.readthedocs.io/en/latest/index.html
2 https://github.com/gabrielelana/awesome-terminal-fonts/tree/patching-strategy

ChApter 12 MySQL SheLL

https://powerline.readthedocs.io/en/latest/index.html
https://github.com/gabrielelana/awesome-terminal-fonts/tree/patching-strategy

243

Tip Another option is the Fantasque Awesome powerline fonts (https://
github.com/ztomer/fantasque_awesome_powerline) which include both
the powerline and Awesome fonts. these fonts look a little different from those
installed in this example. Choose those that you prefer.

You install the Awesome fonts by cloning the GitHub repository and change to the

patching-strategy branch. Then it is a matter of copying the required files to .local/

share/fonts/ under the home directory and rebuilding the font information cache files.

The steps are shown in Listing 12-2. The output is also available in listing_12_2.txt in

this book’s GitHub repository to make it easier to copy the commands.

Listing 12-2. Installing the Awesome fonts

shell$ git clone https://github.com/gabrielelana/awesome-terminal-fonts.git

Cloning into 'awesome-terminal-fonts'...

remote: Enumerating objects: 329, done.

remote: Total 329 (delta 0), reused 0 (delta 0), pack-reused 329

Receiving objects: 100% (329/329), 2.77 MiB | 941.00 KiB/s, done.

Resolving deltas: 100% (186/186), done.

shell$ cd awesome-terminal-fonts

shell$ git checkout patching-strategy

Branch patching-strategy set up to track remote branch patching-strategy

from origin.

Switched to a new branch 'patching-strategy'

shell$ mkdir -p ~/.local/share/fonts/

shell$ cp patched/SourceCodePro+Powerline+Awesome+Regular.* ~/.local/share/

fonts/

shell$ fc-cache -fv ~/.local/share/fonts/

/home/myuser/.local/share/fonts: caching, new cache contents: 1 fonts,

0 dirs

/usr/lib/fontconfig/cache: not cleaning unwritable cache directory

ChApter 12 MySQL SheLL

https://github.com/ztomer/fantasque_awesome_powerline
https://github.com/ztomer/fantasque_awesome_powerline

244

/home/myuser/.cache/fontconfig: cleaning cache directory

/home/myuser/.fontconfig: not cleaning non-existent cache directory

/usr/bin/fc-cache-64: succeeded

This requires that you have git installed. The next part is to install the Powerline

fonts which is shown in Listing 12-3. The output is also available in listing_12_3.txt in

this book’s GitHub repository to make it easier to copy the commands.

Listing 12-3. Installing the Powerline font

shell$ wget --directory-prefix="${HOME}/.local/share/fonts" https://github.

com/powerline/powerline/raw/develop/font/PowerlineSymbols.otf

...

2019-08-25 14:38:41 (5.48 MB/s) - '/home/myuser/.local/share/fonts/

PowerlineSymbols.otf' saved [2264/2264]

shell$ fc-cache -vf ~/.local/share/fonts/

/home/myuser/.local/share/fonts: caching, new cache contents: 2 fonts,

0 dirs

/usr/lib/fontconfig/cache: not cleaning unwritable cache directory

/home/myuser/.cache/fontconfig: cleaning cache directory

/home/myuser/.fontconfig: not cleaning non-existent cache directory

/usr/bin/fc-cache-64: succeeded

shell$ wget --directory-prefix="${HOME}/.config/fontconfig/conf.d" https://

github.com/powerline/powerline/raw/develop/font/10-powerline-symbols.conf

...

2019-08-25 14:39:11 (3.61 MB/s) - '/home/myuser/.config/fontconfig/

conf.d/10-powerline-symbols.conf' saved [2713/2713]

This does not do a full installation of the Powerline font, but it is all that is required

if you just want to use the Powerline font with MySQL Shell. The two wget commands

download the font and configuration files, and the fc-cache command rebuilds the font

information cache files. You will need to restart Linux for the changes to take effect.

Once the restart has completed, you can copy one of the pl+aw templates to become

your new prompt, for example:

shell$ cp /usr/share/mysqlsh/prompt/prompt_dbl_256pl+aw.json ~/.mysqlsh/

prompt.json

ChApter 12 MySQL SheLL

245

The resulting prompt can be seen in Figure 12-2.

This example also shows how the prompt changes as you change the language mode

and set a default schema. Regarding support for multiple modules, then that is largely

why MySQL Shell is such a powerful tool, so the next section will look at how you can use

external modules in MySQL Shell.

 Using External Modules
The support for JavaScript and Python makes it easy to perform tasks in MySQL Shell.

You are not limited to the core functionality but can also import both standard modules

and your own custom modules. This section will start out with the basics of using

external modules (as opposed to the built-in MySQL Shell modules). The next section

will go into the reporting infrastructure, and after that plugins will be covered.

Figure 12-2. The double-line Powerline + Awesome fonts prompt

ChApter 12 MySQL SheLL

246

Note the discussion in this book focuses on python. If you prefer JavaScript, the
usage is very similar. One main difference is that python uses snake case (e.g.,
import_table()), whereas JavaScript uses camel case (importTable()). See
also https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-code-
execution.html for general information about code execution in MySQL Shell.

You use Python modules in MySQL Shell in the same way as when you use the

interactive Python interpreter, for example:

mysql-py> import sys

mysql-py> print(sys.version)

3.7.4 (default, Sep 13 2019, 06:53:53) [MSC v.1900 64 bit (AMD64)]

mysql-py> import uuid

mysql-py> print(uuid.uuid1())

fd37319e-c70d-11e9-a265-b0359feab2bb

The exact output depends on the version of MySQL Shell and the platform you use

it on.

Note MySQL Shell 8.0.17 and earlier provide python 2.7, whereas MySQL Shell
8.0.18 and later come with python 3.7.

The MySQL Shell interpreter allows you to import all the usual modules included

with Python. If you want to import your own modules, you will need to adjust the search

path. You can do this directly in the interactive session, for example:

mysql-py> sys.path.append('C:\MySQL\Shell\Python')

Modifying the path this way is fine for a one-off use of a module; however, it is

inconvenient if you have created a module you will be using on a regular basis.

When MySQL Shell starts, it reads two configuration files, one for Python and one for

JavaScript. For Python the file is mysqlshrc.py and for JavaScript mysqlshrc.js. MySQL

Shell searches in four places for the files. On Microsoft Windows, the paths are in the

order they are searched:

ChApter 12 MySQL SheLL

https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-code-execution.html
https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-code-execution.html

247

 1. %PROGRAMDATA%\MySQL\mysqlsh\

 2. %MYSQLSH_HOME%\shared\mysqlsh\

 3. <mysqlsh binary path>\

 4. %APPDATA%\MySQL\mysqlsh\

On Linux and Unix:

 1. /etc/mysql/mysqlsh/

 2. $MYSQLSH_HOME/shared/mysqlsh/

 3. <mysqlsh binary path>/

 4. $HOME/.mysqlsh/

All four paths are always searched, and if the file is found in multiple locations, each

file will be executed. This means that the last found file takes precedence if the files affect

the same variables. If you make changes meant for you personally, the best place to

make the changes is in the fourth location. The path in step 4 can be overridden with the

MYSQLSH_USER_CONFIG_HOME environment variable.

If you add modules that you want to use on a regular basis, you can modify the

search path in the mysqlshrc.py file. That way, you can import the module as any other

Python module.

Tip A great example of the power of the support for external modules is the
MySQL Shell port of Innotop (https://github.com/lefred/mysql-shell-
innotop). It also reveals two of the limitations. Because the reporting part of
Innotop is implemented using the curses library, it does not work on Microsoft
Windows, and because the implementation uses python, it requires that you
execute Innotop in the python language mode. the reporting infrastructure and
plugins discussed later in the chapter avoid these limitations.

As a simple example, consider a very simple module which has a function to roll a

virtual dice and return a value between one and six:

import random

def dice():

 return random.randint(1, 6)

ChApter 12 MySQL SheLL

https://github.com/lefred/mysql-shell-innotop
https://github.com/lefred/mysql-shell-innotop

248

The example is also available from the file example.py in this book’s GitHub

repository. If you save the file to the directory C:\MySQL\Shell\Python, add the following

code to the mysqlshrc.py file (adjust the path in the sys.path.append() line according

to where you save the file):

import sys

sys.path.append('C:\MySQL\Shell\Python')

The next time you start MySQL Shell, you can use the module, for example (since the

dice() function returns a random value, your output will vary):

mysql-py> import example

mysql-py> example.dice()

5

mysql-py> example.dice()

3

This is the simplest way of extending MySQL Shell. Another way is to add reports to

the reporting infrastructure.

 Reporting Infrastructure
Starting with MySQL Shell 8.0.16, there is a reporting infrastructure available that you

can use with both built-in reports and your own custom reports. This is a very powerful

way to use MySQL Shell to monitor a MySQL instance and collect information when you

encounter performance problems.

Tip Since the reporting infrastructure is still very new, it is recommended to
check each new release for new built-in reports.

This section will start out showing how you get help about the available reports and

then discuss how to execute the reports and finally how to add your own reports.

ChApter 12 MySQL SheLL

249

 Report Information and Help
The built-in help of MySQL Shell also extends to the reports, so you can easily obtain

help of how to use the reports. You can start out using the \show command without any

arguments to get a list of available reports. If you add a report name as an argument

together with the --help option, you get detailed help for that report. Listing 12-4 shows

an example of both uses.

Listing 12-4. Obtaining a list of reports and help for the query report

mysql-py> \show

Available reports: query, thread, threads.

mysql-py> \show query --help

NAME

 query - Executes the SQL statement given as arguments.

SYNTAX

 \show query [OPTIONS] [ARGS]

 \watch query [OPTIONS] [ARGS]

DESCRIPTION

 Options:

 --help, -h Display this help and exit.

 --vertical, -E

 Display records vertically.

 Arguments:

 This report accepts 1-* arguments.

The output of the \show command shows there are three reports available. These are

the built-in reports as of version 8.0.18. The second command returns the help for the

query report which shows it takes one or more arguments and has two options: --help

for returning the help text and --vertical or -E to return the query result in the vertical

format.

ChApter 12 MySQL SheLL

250

The built-in reports are

• query: Execute the query provided as an argument.

• thread: Return information about the current connection.

• threads: Return information about all connections for the current

user, foreground threads, or background threads.

Another thing that you should notice in the help output is that it lists two ways

to execute the report. You can either use the \show command that was also used to

generate the help, or you can use the \watch command. You can get more help about

each command using the usual built-in help:

mysql-py> \h \show

mysql-py> \h \watch

The help output is rather verbose, so it has been omitted here. Instead, the next

subsection will discuss how to use the two commands.

 Executing Reports
There are two different ways to execute a report. You can either ask for the report to be

executed a single time, or you can request the report to be executed over and over at a

fixed interval.

There are two commands available to execute a report:

• \show: Execute the report a single time.

• \watch: Keep executing the report at the interval provided like the

watch command on Linux.

Both commands can be used from either of the language modes. The \show

command does not have any arguments of its own (but a report may add arguments

specific to it). The \watch command has two options that specify when and how to

output the report. These options are

• --interval=float, -i float: The number of seconds to wait

between each execution of the report. The value must be in the range

0.1–86400 (one day) seconds. The default is 2 seconds.

ChApter 12 MySQL SheLL

251

• --nocls: Do not clear the screen when outputting the result of the

report. This appends the new result below the previous ones and

allows you to see the history of the report results until the oldest

scroll out of view.

When you execute a report with the \watch command, you stop the execution with

Ctrl+C.

As an example of executing a report, consider the query report which you give a

query that will be executed. If you want the result to be returned in a vertical format, you

can use the --vertical argument. Listing 12-5 shows an example of the result of first

executing the report fetching active queries from the sys.session view with the \show

command and then with the \watch command refreshing every 5 seconds and without

clearing the screen. To ensure that there is some data returned, you can, for example,

execute the query SELECT SLEEP(60) in a second connection.

Listing 12-5. Using the query report

mysql-sql> \show query --vertical SELECT conn_id, current_statement AS

stmt, statement_latency AS latency FROM sys.session WHERE command = 'Query'

AND conn_id <> CONNECTION_ID()

*************************** 1. row ***************************

conn_id: 34979

 stmt: SELECT SLEEP(60)

latency: 32.62 s

mysql-sql> \watch query --interval=5 --nocls --vertical SELECT conn_id,

current_statement AS stmt, statement_latency AS latency FROM sys.session

WHERE command = 'Query' AND conn_id <> CONNECTION_ID()

*************************** 1. row ***************************

conn_id: 34979

 stmt: SELECT SLEEP(60)

latency: 43.02 s

*************************** 1. row ***************************

conn_id: 34979

 stmt: SELECT SLEEP(60)

latency: 48.09 s

ChApter 12 MySQL SheLL

252

*************************** 1. row ***************************

conn_id: 34979

 stmt: SELECT SLEEP(60)

latency: 53.15 s

*************************** 1. row ***************************

conn_id: 34979

 stmt: SELECT SLEEP(60)

latency: 58.22 s

Report returned no data.

If you execute the same commands, your output will depend on which statements

are executing in other threads at the time the report is run. The query used for the

report adds a condition that the connection id must be different from the one for the

connection generating the report. The \show command with the query report has little

value on its own as you could just as well execute the query. It is more useful with other

reports and to check the query before using it with \watch command.

The \watch command is more interesting as it allows you keep getting the result

updated. In the example, the report runs five times before it is stopped. The four first

times, there is another connection executing a query, and the fifth time the report

generates no data. Notice that more than five seconds are added to the statement latency

for the query between successive executions. That is because the 5 seconds is the time

MySQL Shell waits from the result of one iteration has been displayed until it starts

executing the query again. So the overall time between two outputs is the interval plus

the query execution time plus the time it takes to process the result.

The reporting infrastructure not only allows you to use the built-in reports. You can

also add your own reports.

 Adding Your Own Reports
The real power of the reporting infrastructure is that it is easily extendable, so both the

MySQL development team and you can add more reports. While you can use the support

for external modules to add reports as it is done with Innotop, that approach requires

you to implement the reporting infrastructure yourself, and you must use the language

mode of the modules to execute the report. When you use the reporting infrastructure,

that is all handled for you, and the report is available for all language modes.

ChApter 12 MySQL SheLL

253

Note the report code in this section is not meant to be executed in a MySQL
Shell session (and it will cause errors if you copy and paste it as the code stands
because blank lines inside a block are used by MySQL Shell in interactive mode
to exit the block). Instead, the code must be saved to a file that is loaded when
invoking MySQL Shell. Instructions how to install the code follow at the end of the
example.

A good way to discuss how to create your own reports is to create a simple report

and discuss the various parts that make it up. Listing 12-6 shows the code necessary to

create a report that queries the sys.session view. The code is also available from the file

listing_12_6.py in this book’s GitHub repository. Where to save the code so it becomes

available as a report in MySQL Shell will be discussed later.

Listing 12-6. Report querying the sys.session view

'''Defines the report "sessions" that queries the sys.x$session view

for active queries. There is support for specifying what to order by

and in which direction, and the maximum number of rows to include in

the result.'''

SORT_ALLOWED = {

 'thread': 'thd_id',

 'connection': 'conn_id',

 'user': 'user',

 'db': 'db',

 'latency': 'statement_latency',

 'memory': 'current_memory',

}

def sessions(session, args, options):

 '''Defines the report itself. The session argument is the MySQL

 Shell session object, args are unnamed arguments, and options

 are the named options.'''

 sys = session.get_schema('sys')

 session_view = sys.get_table('x$session')

 query = session_view.select(

ChApter 12 MySQL SheLL

254

 'thd_id', 'conn_id', 'user', 'db',

 'sys.format_statement(current_statement) AS statement',

 'sys.format_time(statement_latency) AS latency',

 'format_bytes(current_memory) AS memory')

 # Set what to sort the rows by (--sort)

 try:

 order_by = options['sort']

 except KeyError:

 order_by = 'latency'

 if order_by in ('latency', 'memory'):

 direction = 'DESC'

 else:

 direction = 'ASC'

 query.order_by('{0} {1}'.format(SORT_ALLOWED[order_by], direction))

 # If ordering by latency, ignore those statements with a NULL latency

 # (they are not active)

 if order_by == 'latency':

 query.where('statement_latency IS NOT NULL')

 # Set the maximum number of rows to retrieve is --limit is set.

 try:

 limit = options['limit']

 except KeyError:

 limit = 0

 if limit > 0:

 query.limit(limit)

 result = query.execute()

 report = [result.get_column_names()]

 for row in result.fetch_all():

 report.append(list(row))

 return {'report': report}

The code first defines a dictionary with the supported values for sorting the result.

This will be used later in the code both inside the sessions() function and when

ChApter 12 MySQL SheLL

255

registering the report. The sessions() function is where the report is created. The

function takes three arguments:

• session: This is a MySQL Shell Session object (what defines the

connection to the MySQL instance).

• args: A list with the unnamed arguments passed to the report. This

is what is used for the query report where you just specify the query

without adding an argument name before the query.

• options: A dictionary with the named arguments for the report.

The sessions report uses named options, so the args argument is not used.

The next eight lines use the X DevAPI to define the base query. First, the schema

object for the sys schema is obtained from the session. Then the sessions view is

obtained from the schema object (you use get_table() both to fetch a view and a table).

Finally, a select query is created with the arguments specifying which columns that

should be retrieved and which aliases to use for the columns.

Next, the --sort argument is handled which is available as the sort key in the

options dictionary. If the key does not exist, the report falls back to sorting by latency.

The sort order is defined as descending in case the output is sorted according to the

latency or memory usage; otherwise, the sort order is ascending. The order_by()

method is used to add the sorting information to the query. Additionally, when sorting

by latency, only sessions where the latency is not NULL are included.

The --limit argument is handled in a similar fashion, and a value of 0 is taken to

mean all matching sessions. Finally, the query is executed. The report is generated as a

list with the first item being the column headers and the rest the rows in the result. The

report returns a dictionary with the report list in the report item.

This report returns the result formatted as a list. There are two other formats as well.

Overall, the following result formats are supported:

• List Type: The result is returned as a list with the first item the

headers and the remaining the rows in the order they should be

displayed. The headers and the rows are themselves lists.

• Report Type: The result is a list with a single item. MySQL Shell uses

YAML to display the result.

• Print Type: The result is printed directly to the screen as is.

ChApter 12 MySQL SheLL

256

All that remains is to register the report. That is done using the register_report()

method of the shell object as shown in Listing 12-7 (this is also included in the file

listing_12-6.py).

Listing 12-7. Registering the sessions report

Make the report available in MySQL Shell.

shell.register_report(

 'sessions',

 'list',

 sessions,

 {

 'brief': 'Shows which sessions exist.',

 'details': ['You need the SELECT privilege on sys.session view and ' +

 'the underlying tables and functions used by it.'],

 'options': [

 {

 'name': 'limit',

 'brief': 'The maximum number of rows to return.',

 'shortcut': 'l',

 'type': 'integer'

 },

 {

 'name': 'sort',

 'brief': 'The field to sort by.',

 'shortcut': 's',

 'type': 'string',

 'values': list(SORT_ALLOWED.keys())

 }

],

 'argc': '0'

 }

)

ChApter 12 MySQL SheLL

257

The register_report() method takes four arguments that define the report and

provides the help information returned by MySQL Shell’s built-in help feature. The

arguments are

• name: The name of the report. You can choose the name relatively

freely as long as it is a single word and it is unique for all reports.

• type: The result format: 'list', 'report', or 'print'.

• report: The object of the function generating the report, in this case

sessions.

• description: An optional argument that describes the report. If you

provide the description, you use a dictionary as described shortly.

The description is the most complex of the arguments. It consists of a dictionary with

the following keys (all items are optional):

• brief: A short description of the report.

• details: A detailed description of the report provided as a list of

strings.

• options: The named arguments as a list of dictionaries.

• argc: The number of unnamed arguments. You specify that either as

an exact number like in this example, an asterisk (*) for any number

of arguments, a range with exact numbers (like '1-3'), or a range

with a minimum number of arguments ('3-*').

The options element is used to define the named arguments of the report. Each

dictionary object of the list must include the name of the argument, and there is support

for several optional arguments to provide more information about the argument.

Table 12-3 lists the dictionary keys along with their default values and a description. The

name key is required; the rest are optional.

ChApter 12 MySQL SheLL

258

The typical way you import a report is to save the report definition and
registration code in the init.d directory under the user configuration path which

defaults to %AppData%\MySQL\mysqlsh\ on Microsoft Windows and $HOME/.mysqlsh/

on Linux and Unix (the same as the fourth path searched for the configuration files). All

scripts with the filename extension .py will be executed as a Python script (and .js for

JavaScript) when starting up MySQL Shell.

Tip If there are errors in the scripts, information about the problems will be
logged to the MySQL Shell log which is stored in the file mysqlsh.log in the user
configuration path.

If you copy the listing_12_6.py file into this directory and restart MySQL Shell

(make sure you connect using the MySQL X port – by default port 33060), you can use

the sessions report as shown in Listing 12-8. The result of the report varies, so you will

not see the same if you execute the report.

Table 12-3. The dictionary keys used to define the report argument

Key Default Value Description

name the argument name which is used with double dashes

(e.g., --sort) when invoking the report.

brief A short description of the argument.

details A detailed description of the argument provided as a list of strings.

shortcut A single alphanumeric character that can be used to access the

argument.

type string the argument type. Supported values at the time of writing are

string, bool, integer, and float. When a Boolean is chosen, the

argument works as a switch defaulting to False.

required False Whether the argument is mandatory.

values the allowed values for a string argument. If values are not

provided, all values are supported. this is what is used in the

example to restrict the allowed sorting options.

ChApter 12 MySQL SheLL

259

Listing 12-8. Using the sessions report

mysql-py> \show

Available reports: query, sessions, thread, threads.

mysql-py> \show sessions --help

NAME

 sessions - Shows which sessions exist.

SYNTAX

 \show sessions [OPTIONS]

 \watch sessions [OPTIONS]

DESCRIPTION

 You need the SELECT privilege on sys.session view and the underlying

 tables and functions used by it.

 Options:

 --help, -h Display this help and exit.

 --vertical, -E

 Display records vertically.

 --limit=integer, -l

 The maximum number of rows to return.

 --sort=string, -s

 The field to sort by. Allowed values: thread, connection,

 user, db, latency, memory.

mysql-py> \show sessions --vertical

*************************** 1. row ***************************

 thd_id: 81

 conn_id: 36

 user: mysqlx/worker

 db: NULL

statement: SELECT `thd_id`,`conn_id`,`use ... ER BY `statement_latency` DESC

 latency: 40.81 ms

 memory: 1.02 MiB

ChApter 12 MySQL SheLL

260

mysql-py> \js

Switching to JavaScript mode...

mysql-js> \show sessions --vertical

*************************** 1. row ***************************

 thd_id: 81

 conn_id: 36

 user: mysqlx/worker

 db: NULL

statement: SELECT `thd_id`,`conn_id`,`use ... ER BY `statement_latency` DESC

 latency: 71.40 ms

 memory: 1.02 MiB

mysql-js> \sql

Switching to SQL mode... Commands end with ;

mysql-sql> \show sessions --vertical

*************************** 1. row ***************************

 thd_id: 81

 conn_id: 36

 user: mysqlx/worker

 db: NULL

statement: SELECT `thd_id`,`conn_id`,`use ... ER BY `statement_latency` DESC

 latency: 44.80 ms

 memory: 1.02 MiB

The new sessions report shows up in the same way as the built-in reports, and you

have the same features as for the built-in report, for example, support for displaying the

result in the vertical output. The reason the vertical output is supported is because the

report returns the result as a list, so MySQL Shell handles the formatting. Notice also how

the report can be used in all three language modes even though it was written in Python.

There is an alternative way to import the report. Instead of saving the file to the

init.d directory, you can include the report as part of a plugin.

ChApter 12 MySQL SheLL

261

 Plugins
MySQL Shell added support for plugins in version 8.0.17. A plugin consists of one or

more code modules which can include reports, utilities, or anything else that may be

of use to you and that can be executed as Python or JavaScript code. This is the most

powerful way to extend MySQL Shell. The price is that it is also relatively complex, but

the benefit is that it is easier to share and import a package of features. Another benefit of

plugins is that not only can reports be executed from any language mode; the rest of your

code can also be used from both Python and JavaScript.

Tip For all the details of adding plugins including the description of the
parameters for the methods used to create plugin objects and register them, see
https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-plugins.
html. there is also an example plugin available at Mike Zinner’s (MySQL
development manager whose team includes the MySQL Shell developers) Github
repository that is worth studying: https://github.com/mzinner/mysql-
shell- ex.

You create a plugin by adding a directory with the name of the plugin to the plugins

directory under the user configuration path which defaults to %AppData%\MySQL\

mysqlsh\ on Microsoft Windows and $HOME/.mysqlsh/ on Linux and Unix (the same

as the fourth path searched for the configuration files). The plugin can consist of any

number of files and directories, but all files must use the same programming language.

Note All code within a plugin must use the same programming language. If you
need to use both python and JavaScript, you must split the code into two different
plugins.

An example plugin called myext is included in the directory Chapter_12/myext in

this book’s GitHub repository. It includes the directories and files depicted in Figure 12- 3.

The light-colored (yellow) rectangles with rounded corners represent directories, and the

darker (red) document shapes are a list of files in a directory.

ChApter 12 MySQL SheLL

https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-plugins.html
https://dev.mysql.com/doc/mysql-shell/en/mysql-shell-plugins.html
https://github.com/mzinner/mysql-shell-ex
https://github.com/mzinner/mysql-shell-ex

262

Note the example plugin is very basic with the aim at demonstrating how the
plugin infrastructure works. If you use plugins in productions, make sure to add
appropriate validation and error handling to your code.

Figure 12-3. The directories and files for the myext plugin

You can view the structure of the plugin like Python packages and modules. Two

important things to be aware of are that there must be a __init__.py file in each

directory and when the plugin is imported, only the init.py files (init.js for a

JavaScript module) are executed. This means that you must include the code that is

necessary to register the public parts of the plugin in init.py files. In this example

plugin, all the __init__.py files are empty.

Note plugins are not meant to be created interactively. Make sure you save the
code to files and at the end restart MySQL Shell to import the plugin. More details
are given in the remainder of this section.

ChApter 12 MySQL SheLL

263

The sessions.py file in the reports directory is the same as the sessions report

that was generated in Listing 12-6 except that the registration of the report is done in

reports/init.py and the report is renamed to sessions_myext to avoid two reports

with the same name.

The utils directory includes a module with the get_columns() function that is used

by the describe() function in tools/example.py. The get_columns() function is also

registered as util.get_columns() in utils/init.py. Listing 12-9 shows the

get_columns() function from utils/util.py.

Listing 12-9. The get_columns() function from utils/util.py

'''Define utility functions for the plugin.'''

def get_columns(table):

 '''Create query against information_schema.COLUMNS to obtain

 meta data for the columns.'''

 session = table.get_session()

 i_s = session.get_schema("information_schema")

 i_s_columns = i_s.get_table("COLUMNS")

 query = i_s_columns.select(

 "COLUMN_NAME AS Field",

 "COLUMN_TYPE AS Type",

 "IS_NULLABLE AS `Null`",

 "COLUMN_KEY AS Key",

 "COLUMN_DEFAULT AS Default",

 "EXTRA AS Extra"

)

 query = query.where("TABLE_SCHEMA = :schema AND TABLE_NAME = :table")

 query = query.order_by("ORDINAL_POSITION")

 query = query.bind("schema", table.schema.name)

 query = query.bind("table", table.name)

 result = query.execute()

 return result

ChApter 12 MySQL SheLL

264

The function takes a table object and uses the X DevAPI to construct a query against

the information_schema.COLUMNS view. Notice how the function obtains the session and

schema through the table object. At the end, the result object of executing the query is

returned.

Listing 12-10 shows how to register the get_columns() function, so it is available as

util.get_columns() in the myext plugin. The registration happens in utils/init.py.

Listing 12-10. Registering the get_columns() function as util.get_columns()

'''Import the utilities into the plugin.'''

import mysqlsh

from myext.utils import util

shell = mysqlsh.globals.shell

Get the global object (the myext plugin)

try:

 # See if myext has already been registered

 global_obj = mysqlsh.globals.myext

except AttributeError:

 # Register myext

 global_obj = shell.create_extension_object()

 description = {

 'brief': 'Various MySQL Shell extensions.',

 'details': [

 'More detailed help. To be added later.'

]

 }

 shell.register_global('myext', global_obj, description)

Get the utils extension

try:

 plugin_obj = global_obj.utils

except IndexError:

 # The utils extension does not exist yet, so register it

 plugin_obj = shell.create_extension_object()

 description = {

ChApter 12 MySQL SheLL

265

 'brief': 'Utilities.',

 'details': ['Various utilities.']

 }

 shell.add_extension_object_member(global_obj, "util", plugin_obj,

 description)

definition = {

 'brief': 'Describe a table.',

 'details': ['Show information about the columns of a table.'],

 'parameters': [

 {

 'name': 'table',

 'type': 'object',

 'class': 'Table',

 'required': True,

 'brief': 'The table to get the columns for.',

 'details': ['A table object for the table.']

 }

]

}

try:

 shell.add_extension_object_member(plugin_obj, 'get_columns',

 util.get_columns, definition)

except SystemError as e:

 shell.log("ERROR", "Failed to register myext util.get_columns ({0})."

 .format(str(e).rstrip()))

The first important observation is that the mysqlsh module is imported. Both the

shell and the session objects can be obtained through the mysqlsh module, so this is

an important module when working with extensions in MySQL Shell. Notice also how

the util module is imported. It is always required to use full paths starting from the

plugin name to import plugin modules.

In order to register the function, first, it is checked whether the myext plugin already

exists in mysqlsh.globals. If not, it is created with shell.create_extension_object()

and registered using the shell.register_global() method. This dance is necessary as

there are multiple init.py files and you should not rely on the order they are executed.

ChApter 12 MySQL SheLL

266

Next, the utils module is registered in a similar fashion using the shell.create_

extension_object() and shell.add_extension_object_member() methods. There is

potential for ending up duplicating code and performing similar steps a lot if you have a

large plugin, so you can consider creating utility functions to avoid repeating yourself.

Finally, the function itself is registered using the shell.add_extension_object_

member() method. Since the table argument takes an object, it is possible to specify the

type of object that is required.

For the registration of the module and function, there is no requirement that the

name in the code and the registered name are the same. The registration of the report

in reports/init.py includes an example of changing the name, if you are interested.

However, in most cases, it is the preferred way to keep the names the same to make it

easier to find the code behind a feature.

The tools/example.py file adds two functions that are both registered. There is the

dice() function from earlier as well as the describe() function that uses get_columns()

to get the column information. The part of the code relevant for the describe() function

is shown in Listing 12-11.

Listing 12-11. The describe() function in tools/example.py

import mysqlsh

from myext.utils import util

def describe(schema_name, table_name):

 shell = mysqlsh.globals.shell

 session = shell.get_session()

 schema = session.get_schema(schema_name)

 table = schema.get_table(table_name)

 columns = util.get_columns(table)

 shell.dump_rows(columns)

The most important thing to notice is that the shell object is obtained as mysqlsh.

globals.shell and from there the session, schema, and table objects can be obtained.

The shell.dump_rows() method is used to generate the output of the result. The method

takes a result object and optionally the format (defaults to the table format). In the

process of outputting the result, the result object is consumed.

ChApter 12 MySQL SheLL

267

You are now ready to try the plugin. You need to copy the whole myext directory into

the plugins directory and restart MySQL Shell. Listing 12-12 shows the global objects

from the help content.

Tip If MySQL Shell encounters errors importing the plugin, a line like WARNING:
Found errors loading plugins, for more details look at the
log at: C:\Users\myuser\AppData\Roaming\MySQL\mysqlsh\
mysqlsh.log will be generated when starting MySQL Shell.

Listing 12-12. The global objects in the help content

mysql-py> \h

...

GLOBAL OBJECTS

The following modules and objects are ready for use when the shell starts:

 - dba Used for InnoDB cluster administration.

 - myext Various MySQL Shell extensions.

 - mysql Support for connecting to MySQL servers using the classic MySQL

 protocol.

 - mysqlx Used to work with X Protocol sessions using the MySQL X DevAPI.

 - session Represents the currently open MySQL session.

 - shell Gives access to general purpose functions and properties.

 - util Global object that groups miscellaneous tools like upgrade checker

 and JSON import.

For additional information on these global objects use: <object>.help()

Notice how the myext plugin shows up as a global object. You can use the myext

plugin just as any of the built-in global objects. This includes obtaining help for the

subparts of the plugin such as shown in Listing 12-13 for myext.tools.

ChApter 12 MySQL SheLL

268

Listing 12-13. Obtaining help for myext.tools

mysql-py> myext.tools.help()

NAME

 tools - Tools.

SYNTAX

 myext.tools

DESCRIPTION

 Various tools including describe() and dice().

FUNCTIONS

 describe(schema_name, table_name)

 Describe a table.

 dice()

 Roll a dice

 help([member])

 Provides help about this object and it's members

As a last example, consider how the describe() and get_columns() methods can be

used. Listing 12-14 uses both methods for the world.city table in the Python language

mode.

Listing 12-14. Using the describe() and get_columns() methods in Python

mysql-py> myext.tools.describe('world', 'city')

+-------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+----------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| CountryCode | char(3) | NO | MUL | | |

| District | char(20) | NO | | | |

| Population | int(11) | NO | | 0 | |

+-------------+----------+------+-----+---------+----------------+

ChApter 12 MySQL SheLL

269

mysql-py> \use world

Default schema `world` accessible through db.

mysql-py> result = myext.util.get_columns(db.city)

mysql-py> shell.dump_rows(result, 'json/pretty')

{

 "Field": "ID",

 "Type": "int(11)",

 "Null": "NO",

 "Key": "PRI",

 "Default": null,

 "Extra": "auto_increment"

}

{

 "Field": "Name",

 "Type": "char(35)",

 "Null": "NO",

 "Key": "",

 "Default": "",

 "Extra": ""

}

{

 "Field": "CountryCode",

 "Type": "char(3)",

 "Null": "NO",

 "Key": "MUL",

 "Default": "",

 "Extra": ""

}

{

 "Field": "District",

 "Type": "char(20)",

 "Null": "NO",

 "Key": "",

ChApter 12 MySQL SheLL

270

 "Default": "",

 "Extra": ""

}

{

 "Field": "Population",

 "Type": "int(11)",

 "Null": "NO",

 "Key": "",

 "Default": "0",

 "Extra": ""

}

5

First, the describe() method is used. The schema and table are provided as strings

using their names, and the result is printed as a table. Then, the current schema is set to

the world schema which allows you to access the tables as properties of the db object.

The shell.dump_rows() method is then used to print the result as pretty printed JSON.

Tip Because MySQL Shell detects if you use a method interactively, if you do
not assign the result of get_columns() to a variable, MySQL Shell will output it
directly to the console.

That concludes the discussion of MySQL Shell. If you do not already take advantage

of the features it provides, you are encouraged to start using it.

 Summary
This chapter has introduced MySQL Shell. It started out with an overview of how to

install and use MySQL Shell, including working with connections; the SQL, Python,

and JavaScript language modes; the built-in help; and the global objects. The rest of the

chapter covered customization of MySQL Shell, reports, and extending MySQL.

The MySQL Shell prompt is more than a static label. It adapts according to the

connection and default schema, and you can customize it to include information such as

the version of MySQL you are connected to, and you can change the theme that is used.

ChApter 12 MySQL SheLL

271

The power of MySQL Shell comes from the built-in complex features and its support

for creating complex methods. The simplest way to extend the features is to use external

modules for JavaScript or Python. You can also use the reporting infrastructure including

creating your own custom reports. Finally, MySQL Shell 8.0.17 and later have support

for plugins which you can use to add your features in a global object. The reporting

infrastructure and plugins have the advantage that the features you add become

language independent.

All examples that use a command-line interface in the remainder of the book are

created with MySQL Shell unless noted otherwise. To minimize the space used, the

prompt has been replaced with just mysql> unless the language mode is important in

which case the language mode is included, for example, mysql-py> for Python mode.

That concludes the discussion about tools for performance turning. Part IV covers

schema considerations and the query optimizer with the next chapter discussing data

types.

ChApter 12 MySQL SheLL

PART IV

Schema Considerations
and the Query Optimizer

275
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_13

CHAPTER 13

Data Types
When you create a table in MySQL (and other relational databases), you specify the

data type for each column. Why not just store everything as strings? After all, when the

number 42 is used in this book, it is represented as a string, so why not just use strings

for everything and allow all kinds of values for every column? There is some merit to that

idea. This is partly how NoSQL databases work (though there is more to it than that), and

the author of this book has seen tables with all columns defined as varchar(255) strings.

Why bother with integers, decimals, floats, dates, strings, and so on? There are several

reasons for this, and that is the topic of this chapter.

First, the benefits of using different data types for different types of values will be

discussed. Then there will be an overview of the data types supported in MySQL. Finally,

it will be discussed how data types affect query performance and how to choose the data

type for a column.

 Why Data Types?
The data type of a column defines what type of values can be stored and how the values

are stored. Additionally, there may be meta properties associated with the data type, such

as the size (e.g., number of bytes used for numbers and maximum number of characters

in strings) and for strings the character set and collation. While the data type properties

may seem like an unnecessary restriction, they also have benefits. These benefits include

• Data validation

• Documentation

• Optimized storage

• Performance

• Correct sorting

The rest of this section will discuss these benefits.

276

 Data Validation
At their core, data types define what kind of values are allowed. A column defined as an

integer data type can only store integer values. This is also a safeguard. If you make a

mistake and try to store a value into a column with a different data type than what was

defined, it is possible to reject it or convert the value.

Tip Whether assigning a value of a wrong data type to a column results in an
error or the data type being converted depends on whether you have the STRICT_
TRANS_TABLES (for transactional storage engines) and STRICT_ALL_TABLES
(for all storage engines) SQL modes enabled and whether it is considered safe
to convert the data type. Some conversions that are considered safe are always
allowed, for example, converting '42' to 42 and vice versa. It is recommended
to always enable strict mode which makes DML queries fail when an unsafe
conversion or a truncation of data is attempted.

When you can be sure the data stored in your tables always have the expected data

types, it makes life easier for you. If you query a column with an integer, you know it is

safe to do arithmetic operations on the returned value. Likewise, if you know the value

is a string, you can safely perform string operations. It requires a little more planning

up front, but once it is done, you will learn to appreciate that you know the data type of

your data.

There is one more consideration about the data type and data validation. In general,

there are properties associated with the data type. In the simplest case, you have the

maximum size. An integer can, for example, be 1, 2, 3, 4, or 8 bytes in size. This affects

the range of values that can be stored. Additionally, integers can be signed or unsigned.

A more complex example is strings which not only have a limit on how much text they

store but also need a character set to define how the data is encoded and a collation to

define how the data sorts.

Listing 13-1 shows an example of how MySQL validates the data against the data

type.

Chapter 13 Data typeS

277

Listing 13-1. Data validation based on data type

mysql> SELECT @@sql_mode\G

*************************** 1. row ***************************

@@sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,

NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION

1 row in set (0.0003 sec)

mysql> SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `val1` int(10) unsigned DEFAULT NULL,

 `val2` varchar(5) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0011 sec)

mysql> INSERT INTO t1 (val1) VALUES ('abc');

ERROR: 1366: Incorrect integer value: 'abc' for column 'val1' at row 1

mysql> INSERT INTO t1 (val1) VALUES (-5);

ERROR: 1264: Out of range value for column 'val1' at row 1

mysql> INSERT INTO t1 (val2) VALUES ('abcdef');

ERROR: 1406: Data too long for column 'val2' at row 1

mysql> INSERT INTO t1 (val1, val2) VALUES ('42', 42);

Query OK, 1 row affected (0.0825 sec)

The SQL mode is set to the default which includes STRICT_TRANS_TABLES. The table

has two columns in addition to the primary key, of which one column is an unsigned

integer and the other is a varchar(5) meaning it can store up to five characters. When

it is attempted to insert a string or a negative integer into the val1 column, the value is

rejected as it cannot be converted safely to an unsigned integer. Similarly, attempting to

store a string with six characters into the val2 column fails. However, storing the string

'42' into val1 and the integer 42 into val2 is considered safe and is thus allowed.

Chapter 13 Data typeS

278

A side effect of the data validation is that you also describe what data you expect –

this is an implicit documentation of the column.

 Documentation
When you design a table, you know what the expected usage of the table is. This is

however not necessarily clear when you or someone else uses the table later. There are

several ways to document the columns: use a column name that describes the values,

the COMMENT column clause, CHECK constraints, and the data type.

While not the most detailed way to document a column – and it certainly should

not stand on its own – the data type does help to describe what kind of data you expect.

If you choose the date column instead of datetime, you are clearly only intending for

the date part to be stored. Similarly, using tinyint instead of int shows you only expect

relatively small values. This all helps for yourself or others to understand what kind of

data can be expected. The better understanding of the data, the better change you have

to succeed when you need to optimize queries, so in that way it can indirectly help in

query optimization.

Tip the best way to provide documentation within the table is to use the
COMMENT clause and CHECK constraints. these are however often not visible in
table diagrams which is where the data type helps to give a better mental picture
of the kind of data that is expected.

On the topic of performance, there are benefits of explicitly choosing the data type as

well. One of them is related to how the values are stored.

 Optimized Storage
MySQL does not store all data in the same way. The storage format for a given data type

is chosen to be as compact as possible to reduce the storage needed. As an example,

consider the value 123456. If this is stored as a string, it will require at least 6 bytes plus

possible 1 byte to store the length of the string. If you instead choose an integer, you

only need 3 bytes (for integers, all values are always using the same number of bytes

depending on the maximum storage allowed for the column). Additionally, reading

Chapter 13 Data typeS

279

an integer from storage does not require any interpretation of the value,1 whereas for a

string it is necessary to decode the value using its character set.

Choosing the correct maximum size of a column can reduce the amount of storage

needed. If you need to store integers and know that you never need values that need

more than 4 bytes of storage, you can use the int data type instead of bigint which

uses 8 bytes of storage. This is half the amount of storage needed for the column. If you

work with big data, the storage (and memory) savings may become large enough to be

significant. However, be careful not to overoptimize. Changing the data type or size of a

column in many cases requires rebuilding the whole table which can be an expensive

operation, if the table is large. In that way, it can be better to use a little more storage now

to save work later.

Tip as with other types of optimization, be careful not to overoptimize the data
types. a relatively small saving in storage now can cause pain later.

How the data is stored also affects the performance.

 Performance
Not all data types are created equal. Integers are very cheap to use in computations and

comparisons, whereas strings where the bytes stored must be decoded using a character

set are relatively expensive. By choosing the correct data type, you can significantly

improve the performance of your queries. Particularly, if you need to compare values

in two columns (possibly in different tables), make sure they have the same data type

including character set and collation for strings. Otherwise, the data in one of the

columns will have to be converted before it can be compared with the other column.

While it is simple to understand why an integer performs better than a string, exactly

what makes one data type perform better or worse than another is relatively complex

and depends on how the data type is implemented (stored on disk). Thus, further

discussion of performance will be deferred until after the walkthrough of the MySQL

data types in the next section.

The last benefit that will be discussed is sorting.

1 This is not strictly true, but the interpretation is at a lower level, for example, the endianness that
is used.

Chapter 13 Data typeS

280

 Correct Sorting
The date type has a major impact on how values are sorted. While the human

brain usually can make sense of the data intuitively, a computer needs some help

understanding how two values compare to each other. The data type and for strings the

collation are the key properties that are used to ensure your data is sorted correctly.

Why is sorting important? There are a couple of reasons for this:

• Correct sorting requires knowledge of whether two values are equal

or whether a value is in a given range. This is essential to have WHERE

clauses and join conditions work as expected.

• When you create indexes, the sorting is used to ensure that MySQL

quickly can find the row(s) with the value you are looking for.2

Indexes are covered in detail in the next chapter.

Consider the values 8 and 10. How do they sort? If you consider them to be integers,

8 comes before 10. However, if you consider them as strings, then ‘10’ (ASCII: 0x3130)

comes before ‘8’ (ASCII: 0x38). Whether you expect one or the other depends on your

application, but unless there are also values with non-numeric parts, you likely expect

the integer behavior which requires the data type to be of an integer type.

Now that it has been discussed what the benefits of explicit data types are, it is time

to go through the data types that MySQL supports.

 MySQL Data Types
There are more than 30 different data types in MySQL. Several of these can be fine-

tuned with respect to the size, precision, and whether they accept signed values. It can

at first seem overwhelming, but if you group the data types into categories, you can do a

stepwise approach to select the correct data type for your data.

2 There are several different index types, and the implementation of them differs a lot. Not all
index types use sorting; most notable hash indexes calculate a hash of the value.

Chapter 13 Data typeS

281

The data types in MySQL can be considered as part of one of the following

categories:

• Numeric: This includes integers, fixed precision decimal types,

approximate precision floating point types, and bit types.

• Temporal: This includes years, dates, times, datetime, and

timestamp values.

• Strings: This includes both binary objects and strings with a

character set.

• JSON: The JSON data type can store JSON documents.

• Spatial: These types are used to store values that describe one or

more points in a coordinate system.

• Hybrid: MySQL has two data types that both can be used as integers

and as strings.

Tip the MySQL reference manual has a comprehensive discussion about data
types in https://dev.mysql.com/doc/refman/8.0/en/data-types.html
and references therein.

The rest of this section will go through the data types and discuss their specifics.

 Numeric Data Types
Numeric data types are the simplest of the data types supported by MySQL. You can

choose between integers, fixed precision decimal values, and approximate floating point

values.

Table 13-1 summarizes the numeric data types including their storage requirements

in bytes and the supported range of values. For integers, you can choose whether the

values are signed or unsigned which affects the range of supported values. For the

supported values, both the start and end values are included in the range of allowed

values.

Chapter 13 Data typeS

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

282

The integer data types are the simplest with a fixed storage requirement and fixed

ranges of supported values. A synonym for tinyint is bool (for a Boolean value).

The decimal data type (numeric is a synonym) takes two arguments, M and N, which

define the precision and scale of the values. If you have decimal(5,2), the values will

have at most five digits, of which two are decimals (to the right of the decimal point).

That means that values between -999.99 and 999.99 are allowed. Up to 65 digits are

supported. The amount of storage for decimals depends on the number of digits with

each multiple of nine digits using 4 bytes and the remaining digits using 0–4 bytes.

The float and double data types store approximate values. These types are efficient

for numeric calculations, but at the cost that there is an uncertainty in their values. They

use 4 and 8 bytes, respectively, for storage.

Table 13-1. The numeric data types (integers, fixed point, and floating point)

Data Type Bytes Stored Range

tinyint 1 Signed: -128–127

Unsigned: 0–255

smallint 2 Signed: -32768–32767

Unsigned: 0–65535

mediumint 3 Signed: -8388608–8388607

Unsigned: 0–16777215

int 4 Signed: -2147483648–2147483647

Unsigned: 0–4294967295

bigint 8 Signed: -263–263-1

Unsigned: 0–264-1

decimal(M, N) 1–29 Depends on M and N

float 4 Variable

double 8 Variable

bit(M) 1–8

Chapter 13 Data typeS

283

Tip Never use floating point data types to store exact data, such as monetary
amounts. Use the exact precision decimal data type instead. For approximate
floating point data types, you should never use the equal (=) and not equal (<>)
operators as comparing two approximate values will in general not return that they
are equal even if they are meant to be.

The final numeric data type is the bit type. It can store between 1 and 64 bits in one

value. This can, for example, be used for bit masks. The storage required depends on the

number of bits required (the M value); it can be approximated as FLOOR((M+7)/8) bytes.

A category of data types related to the numeric types are temporal data types, which

are the next category that will be covered.

 Temporal Data Types
Temporal data defines a point in time. The precision can range from a year to a

microsecond. Except for the year data type, values are entered as strings, but internally

an optimized format is used, and the values will sort correctly according to the point in

time the values represent.

Table 13-2 shows the temporal data types supported by MySQL, the amount of

storage in bytes each type uses, and the range of values supported.

Table 13-2. The temporal data types

Data Type Bytes Stored Range

year 1 1901–2155

date 3–6 '1000-01-01' to '9999-12-31'

datetime 5–8 '1000-01-01 00:00:00.000000' to '9999-12- 31

23:59:59.999999'

timestamp 4–7 '1970-01-01 00:00:01.000000' to '2038-01- 19

03:14:07.999999'

time 3–6 '-838:59:59.000000' to '838:59:59.000000'

Chapter 13 Data typeS

284

The datetime, timestamp, and time types all support fractional seconds up to

microsecond resolution. The storage requirement for the fractional seconds is 0–3 bytes

depending on the number of digits (1 byte per two digits).

The datetime and timestamp columns differ in a subtle way. When you store a

value in a datetime column, MySQL stores it as you specify it. For a timestamp column

on the other hand, the value is converted to UTC using the time zone MySQL has been

configured to use – the @@session.time_zone variable (by default the system time

zone). In the same way, when you retrieve the data, datetime values are returned as you

originally specified them, whereas timestamp columns are converted to the time zone

set in the @@session.time_zone variable.

Tip When using datetime columns, store the data in the UtC time zone and
convert to the time zone required when using the data. By always storing the value
in UtC, there is less chance of problems if the operating system time zone or
MySQL Server time zone is changed, or you share data with users from different
time zones.

While you enter and retrieve dates and times using a string, they are stored internally

in a dedicated format. What about actual strings? Let’s take a look at the string and

binary data types.

 String and Binary Data Types
Strings and binary data types are very flexible types for storing arbitrary data. The

difference between a binary value and a string is that the string has a character set

associated with it, so MySQL knows how to interpret the data. Binary values on the

other hand store raw data which means you can use them for any kind of data including

images and custom data formats.

While strings and binary data are very flexible, they come with a cost. For strings,

MySQL needs to interpret the bytes to determine which characters they represent. This is

relatively expensive in terms of the computational power required. Some character sets,

including UTF-8 which is the default character set in MySQL 8, are variable width, that

is, a character uses a variable number of bytes; for UTF-8 it ranges from 1 to 4 bytes per

character. This means that if you request the first four characters of a string, it can require

reading between 4 and 16 bytes depending on which characters it is, so MySQL will need

Chapter 13 Data typeS

285

to analyze the bytes to determine when four characters have been found. For binary

strings, the interpretation of the meaning of the data is put back on the application.

Table 13-3 shows the data types in MySQL representing strings and binary data. The

table includes the maximum amount of data that can be stored as well as a description of

the storage requirements. For the data types, (M) is the maximum number of characters

that the column must be able to store, and in bytes stored L is the number of bytes

required to represent the string value in character set used for the encoding.

The storage requirements for strings and binary objects depend on the length of the

data. L is the number of bytes required to store the value; for text strings, the character

set must be taken into account as well. For variable width types, 1–4 bytes are used to

store the length of the value. For char(M) columns, the required storage may be less than

M times the character width when the compact family of InnoDB storage formats is used

and the string is encoded with a variable width character set.

Table 13-3. The string and binary data types

Data Type Bytes stored Max Length

char(M) M*char width 255 chars

varchar(M) L+1 or L+2 16383 chars for utf8mb4 and 65532

for latin1

tinytext L+1 255 bytes

text L+2 65535 bytes

mediumtext L+3 16777216 bytes

longtext L+4 4294967296 bytes

binary(M) M 255 bytes

varbinary(M) L+1 or L+2 65532 bytes

tinyblob L+1 255 bytes

blob L+2 65536 bytes

mediumblob L+3 16777216 bytes

longblob L+4 4294967296 bytes

Chapter 13 Data typeS

286

For all but char and varchar, the maximum supported length of the strings is

specified in bytes. This means that the number of characters that can be stored in

string types depends on the character set. Additionally, char, varchar, binary, and

varbinary columns count toward the row width which in total must be less than 64 kiB,

which in practice means that it rarely is possible to create columns using the theoretical

maximum length. (This is also the reason that varchar and varbinary columns at most

can store 65532 characters/bytes.) For longtext and longblob columns, it should be

noted that while they in principle can store up to 4 GiB of data, in practice the storage is

limited by the max_allowed_packet variable which at most can be 1 GiB.

One additional consideration for the data types that store strings is that you

must choose a character set and collation for the column. If you do not choose one

explicitly, then the default for the table will be used. In MySQL 8, the default character

set is utf8mb4 using the utf8mb4_0900_ai_ci collation. What does utf8mb4 and

utf8mb4_0900_ai_ci mean?

The utf8mb4 character set is UTF-8 supporting up to 4 bytes per character (required,

e.g., for some emojis). Originally, MySQL only supported up to 3 bytes per character for

UTF-8, and later utf8mb4 was added to extend the support. Today, you should not use

utf8mb3 (at most 3 bytes per character) or its utf8 alias (deprecated, so it later can be

changed to mean utf8mb4). When you use UTF-8, always choose the 4-byte variant as

there is little benefit from the 3-byte variant and it has been deprecated. In MySQL 5.7

and earlier, Latin 1 was the default character set, but with the improvements for UTF-8 in

MySQL 8, it is recommended to use utf8mb4 unless you have a specific reason to choose

another character set.

The utf8mb4_0900_ai_ci collation is a general-purpose collation for utf8mb4.

A collation defines the sorting and comparison rules, so when you compare two strings

they compare correctly. The rules can be quite complex and include that some character

sequences compare as equal to other single characters (e.g., the German sharp ß is the

same as “ss” in some collations). The collation name consists of several parts which are

• utf8mb4: The character set the collation belongs to.

• 0900: This means the collation is one of the Unicode Collation

Algorithm (UCA) 9.0.0–based collations. These were introduced

in MySQL 8 and provide a significant performance improvement

compared to older UTF-8 collations.

Chapter 13 Data typeS

287

• ai: A collation can be accent insensitive (ai) or accent sensitive (as).

When a collation is accent insensitive, an accented character like à is

considered equal to the non-accented character a. In this case, it is

accent insensitive.

• ci: A collation can be case insensitive (ci) or case sensitive (cs). In this

case, it is case insensitive.

The name can include other parts as well, and other character sets have other

collations. Particularly, there are several country-specific character sets to take local

sorting and comparison rules into account; for those, the country code is added to the

name. It is recommended to use one of the UCA 9.0.0 collations as these have better

performance and are more modern than the other collations. The information_schema.

COLLATIONS view includes all collations supported by MySQL with support for filtering by

the character set. As of 8.0.18, there are 75 collations available for utf8mb4, of which 49

are UCA 9.0.0 collations.

Tip Character sets and collations are a large and interesting topic on their own.
If you would like to dive further into that topic, a starting point is the following
blog by the author of this book and the references therein: https://mysql.
wisborg.dk/mysql-8_charset.

A special kind of strings is JSON documents. MySQL has a dedicated data type for

them.

 JSON Data Type
A popular format for storing data with more flexibility than relational tables is the

JavaScript Object Notation (JSON) format. This is also the format that has been chosen

for the MySQL Document Store that is available in MySQL 8. Support for the json data

type was introduced in MySQL 5.7.

Chapter 13 Data typeS

https://mysql.wisborg.dk/mysql-8_charset
https://mysql.wisborg.dk/mysql-8_charset

288

A JSON document is a combination of JSON objects (keys and values), JSON arrays,

and JSON values. A simple example of a JSON document can be seen in the following:

{

 "name": "Sydney",

 "demographics": {

 "population": 5500000

 },

 "geography": {

 "country": "Australia",

 "state": "NSW"

 },

 "suburbs": [

 "The Rocks",

 "Surry Hills",

 "Paramatta"

]

}

As a JSON document is a string (or binary object) as well, it can also be stored in a

string or binary object column. However, by having a dedicated data type, it is possible

to add validation, and the storage is optimized for accessing specific elements in the

document.

One great performance-related feature of JSON documents in MySQL 8 is that there

is support for partial updates. That makes the change in-place which reduces not only

the amount of work done during the update, but it is also possible to write just the partial

change to the binary log. There are some requirements for a partial in-place update to be

possible. These are as follows:

• Only the JSON_SET(), JSON_REPLACE(), and JSON_REMOVE() functions

are supported.

• Only updates within a column are supported. That is, setting a

column to the return value of one of the three JSON functions

working on another column is not supported.

• It must be an existing value that is replaced. Adding new object or

array elements causes the whole document to be rewritten.

Chapter 13 Data typeS

289

• The new value must at most be the same size as the value that is

replaced. The exceptions are cases where space freed by a previous

partial update can be reused.

In order to log the partial updates to the binary log as partial updates, you need

to set the binlog_row_value_options option to PARTIAL_JSON. The option can be set

dynamically both at the session and global levels.

Internally, the document is stored as a long binary object (longblob) with the

text interpreted using the utf8mb4 character set. The maximum storage is limited to 1

GiB. The storage requirements are similar to those for longblob, but it is necessary to

take the overhead of metadata and the dictionaries used for lookups into account.

Thus far, numbers, temporal data, strings, binary objects, and JSON documents have

been covered. What about data specifying a point in space? This is the next category of

data types to cover.

 Spatial Data Types
Spatial data specifies one or more points in a coordinate system, possibly forming an

object such as a polygon. This is useful, for example, to specify the location of an item on

a map.

MySQL 8 added support for specifying which reference system is used; this is called

the Spatial Reference System Identifier (SRID). The reference systems supported can be

found in the information_schema.ST_SPATIAL_REFERENCE_SYSTEMS view (the SRS_ID

column has the value to use for the SRID); there are more than 5000 to choose from.

Each spatial value has a reference system associated with it in order to make it possible

for MySQL to correctly identify the relation between two values, for example, to

calculate the distance between two points. To use Earth as the reference system, set the

SRID to 4326.

There is support for eight different spatial data types, of which four are single-value

types and four are collections of values. Table 13-4 summarizes the spatial types with the

required storage listed in bytes.

Chapter 13 Data typeS

290

MySQL uses a binary format to store the data. The storage requirements for the

geometry, multilinestring, multipolygon, and geometrycollection types depend on

the size of the objects contained in the value. The storage for these collections of objects

is a little larger than storing the objects in individual columns. You can use the LENGTH()

function to get the size of the spatial object and then add 4 bytes to store the SRID to get

the total storage required for the data.

That leaves one category of data types to be discussed: hybrids between numeric and

string data types.

 Hybrid Data Types
There are two special data types that combine the properties of integers and strings: enum

and set. Both can be considered a collection of possible values with the difference that

the enum data type allows you to choose exactly one of the possible values, whereas the

set data type allows you to choose any of the possible values.

What makes the enum and set data types hybrid is that you can both use them as

integers and as strings. The latter is the most common and the most user-friendly.

Internally, the values are stored as integers which gives compact and efficient storage

Table 13-4. The spatial data types

Data Type Bytes Stored Description

geometry Variable a single spatial object of any type.

point 25 a single point, for example, the location of a person.

linestring 9+16*#points a set of points that form a line, that is, it is not a

closed object.

polygon 13+16*#points a set of points that encloses an area. One polygon

can include several such sets, for example, to

create an inner and outer ring of a donut-shaped

object.

multipoint 13+21*#points a collection of points.

multilinestring Variable a collection of linestring values.

multipolygon Variable a collection of polygons.

geometrycollection Variable a collection of geometry values.

Chapter 13 Data typeS

291

while still allowing to use strings when setting or querying the columns. Both data types

can as an alternative be implemented using lookup tables.

The enum data type is the most commonly used of the two. When you create the

column, you specify a list of allowed values, for example:

CREATE TABLE t1 (

 id int unsigned NOT NULL PRIMARY KEY,

 val enum('Sydney', 'Melbourne', 'Brisbane')

);

The numeric value is the position in the list starting with 1. That is, Sydney has the

integer value 1, Melbourne 2, and Brisbane 3. The total storage requirement is just 1 or

2 bytes depending on the number of members in the list, and up to 65535 members are

supported.

The set data type works similarly to enum except you can select more than one of the

options. To create it, list the members you want to be available, for example:

CREATE TABLE t1 (

 id int unsigned NOT NULL PRIMARY KEY,

 val set('Sydney', 'Melbourne', 'Brisbane')

);

Each member in the list gets a numeric value in the series 1, 2, 4, 8, and so on based

on the member’s position in the list. In the example, Sydney has the value 1, Melbourne

2, and Brisbane 4. What does the value 3 then represent? It is Sydney and Melbourne.

If you want to include multiple values, you sum their individual values. In this way, the

set data type works the same as the bit type. It is simpler when you specify the value as a

string, as you include the members for the value in a comma-separated list. Listing 13-2

shows two examples of inserting set values with each example inserting the same value

twice using both the numeric and string values.

Listing 13-2. Working with set values

mysql> INSERT INTO t1

 VALUES (1, 4),

 (2, 'Brisbane');

Query OK, 2 rows affected (0.0812 sec)

Chapter 13 Data typeS

292

Records: 2 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t1

 VALUES (3, 7),

 (4, 'Sydney,Melbourne,Brisbane');

Query OK, 2 rows affected (0.0919 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT *

 FROM t1\G

*************************** 1. row ***************************

 id: 1

val: Brisbane

*************************** 2. row ***************************

 id: 2

val: Brisbane

*************************** 3. row ***************************

 id: 3

val: Brisbane,Melbourne,Sydney

*************************** 4. row ***************************

 id: 4

val: Brisbane,Melbourne,Sydney

4 rows in set (0.0006 sec)

First, the value of 'Brisbane' is inserted. Since it is the third element in the set, it has

a numeric value of 4. Then the sets Sydney, Melbourne, and Brisbane are inserted. Here

you need to sum 1, 2, and 4. Notice in the SELECT query that the order of the elements is

not the same as in the set definition.

A set column uses 1, 2, 3, 4, or 8 bytes of storage depending on the number of

members in the set. It is possible to have up to 64 members in a set.

This concludes the discussion of the available data types. How does the data type

influence the performance of your queries? Potentially quite a lot, so that is worth some

consideration.

Chapter 13 Data typeS

293

 Performance
The choice of data type is not only important with respect to the data integrity and to tell

what kind of data is expected, but also different data types have different performance

characteristics. This section will discuss how the performance varies when comparing

data types.

In general, the simpler the data type, the better it performs. Integers have the best

performance, and floating point (approximate values) follows closely. Decimal (exact)

values have a higher overhead than the approximate floating point values. Binary objects

perform better than text strings as binary objects do not have the overhead of character

sets.

When it comes to a data type like JSON, you may think it performs worse than using

a binary object as JSON documents have some storage overhead as described earlier

in the chapter. However, exactly this storage overhead means that a JSON data type will

perform better than storing the same data as a blob. The overhead consists of metadata

and a dictionary for lookups, and that means accessing the data is faster. Additionally,

JSON documents support in-place updates, whereas the text and blob data types replace

the entire object even if only a single character or byte is replaced.

Within a given family of data types (e.g., int versus bigint), the smaller data type

performs better than the larger; however, in practice, there are also considerations about

the alignment within the registers of the hardware, so for in-memory workloads the

difference may be negligible or even the reverse.

So which data types should you use? That’s the final topic of the chapter.

 Which Data Type Should You Choose?
In the beginning of the chapter, it was discussed how it could seem like a good idea just

to store all data in strings or binary objects to have the greatest flexibility. During the

course of the chapter, it has been discussed how there are benefits from using specific

data types, and in the previous section the performance of different data types was

discussed. So which data type should you choose?

Chapter 13 Data typeS

294

You can start asking yourself some questions about the data you need to store in the

column. Some examples of questions are as follows:

• What is the native format for the data?

• How large values can be expected initially?

• Will the size of the values grow over time? If so, how much and how

quickly?

• How often will the data be retrieved in queries?

• How many unique values do you expect?

• Do you need to index the values? Particularly, is it the primary key of

the table?

• Do you need to store the data, or can it, for example, be fetched

through a foreign key in another table (using an integer reference

column)?

You should choose a data type that is native for the data you need to store. If you

need to store integers, choose an integer data type, usually int or bigint depending

on how large values you need. You can choose a smaller integer type if you want to

restrict the values; for example, the number of children for a table storing data about

parents need not be a bigint, but a tinyint suffices. Similarly, if you want to store JSON

documents, use the json type instead of longtext or longblob.

For the size of the data type, you need to consider both the current need and the

future need. If you expect within long to need larger values, it is likely best to choose

the larger data type right away. That saves changing the table definition at a later date.

However, if the expected change is years away, it may be better to go with the smaller

data type now and reevaluate your needs over time. For the varchar and varbinary, you

can also change the width in-place as long as you do not change the number of bytes

required to store the length of the string or the character set.

When you work with strings and binary objects, you can also consider storing the data

in a separate table and reference the values using an integer. This will add a join when you

need to retrieve the values; however, if you only rarely need the actual string values, it may

be an overall win to keep the main table small. The benefit of this approach also depends

on the number of rows in the table and how you query the rows; large scans retrieving

many rows will benefit more than single-row lookups, and using SELECT * even when not

all columns are needed will benefit more than selecting just the columns needed.

Chapter 13 Data typeS

295

If you only have a few unique string values, it can also be worth considering using

the enum data type. It works similar to a lookup table but saves the join and allows you to

retrieve the string values directly.

For non-integer numeric data, you have the choice between the exact decimal data

type and the approximate float and double data types. If you need to store data such as

monetary values that must be exact, you should always choose the decimal data type.

This is also the type to choose if you need to do equality and non-equality comparisons.

If you do not need the data to be exact, the float and double data types perform better.

With respect to string values, then the char, varchar, tinytext, text, mediumtext,

and longtext data types require a character set and a collation. In general, it is

recommended to choose utf8mb4 with one of the UCA 9.0.0–based collations (the

collations with _0900_ in the name). The default utf8mb4_0900_ai_ci is a good choice, if

you do not have specific requirements. Latin 1 will perform marginally better, but rarely

enough to warrant the added complexity of having different character sets for different

needs. The UCA 9.0.0 collations also provide more modern sorting rules than those

collations that are available for Latin 1.

When you need to decide how large values to allow, go for the smallest data type or

width that supports the values you need now and in the near future. Smaller data types

also mean that less space is used toward the row size limit (64 kiB) and more data can

fit into an InnoDB page. As the InnoDB buffer pool can store a certain number of pages

according the size of the buffer pool and the pages, it in turn means more data can fit

into the buffer pool and thus help to reduce disk I/O. At the same time, remember that

optimization is also about knowing when you have optimized enough. Do not spend a

long time to shave off a few bytes, just to end up having to do an expensive table rebuild

in a year.

A last thing to consider is whether the value is included in indexes. The larger the

values, the larger the index also becomes. This is a particular issue for the primary key.

InnoDB organizes the data according to the primary key (as the clustered index), so

when you add a secondary index, the primary key is added to the end of the index to

provide the link to the row. Additionally, this organization of the data means that in

general monotonically increasing values perform best for the primary key. If the column

with the primary key changes randomly over time and/or it is large, you may likely be

better off adding a dummy column with an auto-increment integer and using that as the

primary key.

Chapter 13 Data typeS

296

Indexes are themselves an important and large topic which will be discussed in the

next chapter.

 Summary
This chapter has gone through the concept of data types. There are several benefits from

using data types: data validation, documentation, optimized storage, performance, and

correct sorting.

MySQL supports a large range of data types, from simple integers over strings and

spatial objects to complex JSON documents. Each data type was discussed with focus

on the supported values, the supported size of the values, and the amount of storage

required.

The final part of the chapter discussed how the data type can impact performance

and how to determine which data type to choose for a column. This included

considerations of whether the column will be indexed, which also relates to one of the

benefits of data types: correct sorting. Indexes is a very important topic, and indeed the

next chapter will be covering them.

Chapter 13 Data typeS

297
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_14

CHAPTER 14

Indexes
Adding indexes to a table is a very powerful way to improve the query performance. An

index allows MySQL to quickly find the data needed for a query. When the right indexes

are added to your tables, query performance can potentially be improved by several

orders of magnitude. The trick is to know which indexes to add. Why not just add indexes

on all columns? Indexes have overhead as well, so you need to analyze your needs before

adding random indexes.

This chapter starts out discussing what an index is, some index concepts, and

what drawbacks adding an index can have. Then the various index types and features

supported by MySQL are covered. The next part of the chapter starts out discussing how

InnoDB uses indexes particularly related to index-organized tables. Finally, it is discussed

how to choose which indexes you should add to your tables and when to add them.

 What Is an Index?
In order to be able to use indexes to properly improve performance, it is important to

understand what an index is. This section will not cover different index types – that will

be discussed in the section “Index Types” later in the chapter – but rather the higher-

level idea of an index.

The concept of an index is nothing new and existed well before computer databases

became known. As a simple example, consider this book. At the end of the book, there is

an index of some words and terms that have been selected as the most relevant search

terms for the text in this book. The way that book index works is similar in concept to

how database indexes work. It organizes the “terms” in the database, so your queries can

find the relevant data more quickly than by reading all of the data and checking whether

it matches the search criteria. The word terms is quoted here as it is not necessarily

human-readable words that the index is made up of. It is also possible to index binary

data such as spatial data.

298

In short, an index organizes your data in such a way that it is possible to narrow

down the number of rows queries need to examine. The speedup from well-chosen

indexes can be tremendous – several order of magnitudes. Again consider this book: if

you want to read about B-tree indexes, you can either start from page 1 and keep reading

the whole book or look up the term “B-tree index” in the book’s index and jump straight

to the pages of relevance. When querying a MySQL database, the improvements are

similar with the difference that queries can be much more complex than looking for

information about something in a book, and thus the importance of indexes increases.

Clearly then, you just need to add all possible indexes, right? No. Other than the

administrative complexity of adding the indexes, indexes themselves not only improve

performance when used right; they also add overhead. So you need to pick your indexes

with care.

Another thing is that even when an index can be used, it is not always more efficient

than scanning the whole table. If you want to read significant parts of this book, looking

up each term of interest in the index to find out where the topic is discussed and then

going to read it will eventually become slower than just reading the whole book from

cover to cover. In the same say, if your query anyway needs to access a large part of the

data in the table, it will become faster to just read the whole table from one end to the

other. Exactly what the threshold is where it becomes cheaper to scan the whole table

depends on several factors. These factors include the disk type, the performance of

sequential I/O compared to random I/O, whether the data fits in memory, and so on.

Before diving into the details of indexes, it is worth taking a quick look at some key

indexing concepts.

 Index Concepts
Given how big a topic indexes are, it is no surprise that there are several terms used to

describe indexes. There are of course the names of the index types such as B-tree, full

text, spatial, and so on, but there are also more general terms that are important to be

aware of. The index types will be covered later in this chapter, so here the more general

terms will be discussed.

Chapter 14 Indexes

299

 Key Versus Index
You may have noticed that sometimes the word “index” is used and other times the

word “key” is used. What is the difference? An index is a list of keys. However, in MySQL

statements, the two terms are often interchangeable.

An example where it does matter is “primary key” – in that case, “key” must be used.

On the other hand, when you add an index, you can write ALTER TABLE table_name ADD

INDEX ... or ALTER TABLE table_name ADD KEY ... as you wish. The manual uses

“index” in that case, so for consistency it is recommended to stick with index.

There are several terms to describe which kind of an index you are using. The first of

these that will be discussed is a unique index.

 Unique Index
A unique index is an index that only allows one row for each value in the index. Consider

a table with data about people. You may include the social security number or a similar

identifier for the person. No two persons should share social security numbers, so it

makes sense to define a unique index on the column storing the social security number.

In this sense, “unique” more refers to a constraint than an indexing feature. However,

the index part is critical for MySQL to be able to quickly determine whether a new value

already exists.

An important consideration when using unique indexes in MySQL is how NULL

values are handled. Comparing two NULL values is undefined (or in other words NULL

does not equal NULL), so a unique index on a column that allows NULL values does not

put any limit on how many rows can have NULL for the column. If you want to restrict

your unique constraint to only allow a single NULL value, use a trigger to check whether

there is already a NULL value and raise an error with the SIGNAL statement. An example of

a trigger can be seen in Listing 14-1.

Listing 14-1. Trigger checking for unique constraint violations

CREATE TABLE my_table (

 Id int unsigned NOT NULL,

 Name varchar(50),

 PRIMARY KEY (Id),

 UNIQUE INDEX (Name)

);

Chapter 14 Indexes

300

DELIMITER $$

CREATE TRIGGER befins_my_table

BEFORE INSERT ON my_table

 FOR EACH ROW

BEGIN

 DECLARE v_errmsg, v_value text;

 IF EXISTS(SELECT 1 FROM my_table WHERE Name <=> NEW.Name) THEN

 IF NEW.Name IS NULL THEN

 SET v_value = 'NULL';

 ELSE

 SET v_value = CONCAT('''', NEW.Name, '''');

 END IF;

 SET v_errmsg = CONCAT('Duplicate entry ',

 v_value,

 ' For key ''Name''');

 SIGNAL SQLSTATE '23000'

 SET MESSAGE_TEXT = v_errmsg,

 MYSQL_ERRNO = 1062;

 END IF;

END$$

DELIMITER ;

This handles any kind of duplicate values for the Name column. It uses the NULL safe

equal operator (<=>) to determine whether the new value for Name already exists in the

table. If it does, it quotes the value if it is not NULL and otherwise does not quote it, so it

is possible to distinguish between the string “NULL” and the NULL value. Finally, a signal

with SQL state 23000 and the MySQL error number 1062 is emitted. The error message,

SQL state, and error number are the same as the normal duplicate key constraint error.

A special kind of unique index is the primary key.

 Primary Key
The primary key for a table is an index which uniquely defines the row. NULL values are

never allowed for a primary key. If you have multiple NOT NULL unique indexes on your

table, either can serve the purpose of being the primary key. For reasons that will be

explained shortly when discussing the clustered index, you should choose one or more

Chapter 14 Indexes

301

columns with immutable values for the primary key. That is, aim at never changing the

primary key for a given row.

The primary key is very special for InnoDB, while for other storage engines, it may

more be a matter of convention. However, in all cases, it is best to always have some

value that uniquely identifies a row as that, for example, allows replication to quickly

determine which row to modify (more on this in Chapter 26), and the Group Replication

feature explicitly requires all tables to have a primary key or a not NULL unique index. In

MySQL 8.0.13 and later, you can enable the sql_require_primary_key option to require

that all new tables must have a primary key. The restriction also applies if you change the

structure of an existing table.

Tip enable the sql_require_primary_key option (disabled by default).
tables without a primary key can cause performance problems, sometimes in
unexpected and subtle ways. this also ensures your tables are ready, if you want
to use Group replication in the future.

If there are primary keys, are there secondary keys as well?

 Secondary Indexes
The term “secondary index” is used for an index that is not a primary key. It does not

have any special meaning, so the name is just used to make it explicit that the index is

not the primary key whether it is a unique or nonunique index.

As mentioned, the primary key has a special meaning for InnoDB as it is used for the

clustered index.

 Clustered Index
The clustered index is specific to InnoDB and is the term used for how InnoDB organizes

the data. If you are familiar with Oracle DB, you may know of index-organized tables;

that describes the same thing.

Everything in InnoDB is an index. The row data is in the leaf pages of a B-tree index

(B-tree indexes will be described shortly). This index is called the clustered index. The

name comes from the fact that index values are clustered together. The primary key is

used for the clustered index. If you do not specify an explicit primary key, InnoDB will

Chapter 14 Indexes

302

look for a unique index that does not allow NULL values. If that does not exist either,

InnoDB will add a hidden 6-byte integer column using a global (for all InnoDB tables)

auto-increment value to generate a unique value.

The choice of primary key also has performance implications. These will be

discussed in the section “Index Strategies” later in the chapter. The clustered index can

also be seen as a special case of a covering index. What is this? You are about to find out.

 Covering Index
An index is said to be a covering index if it includes all the columns that are required

from the indexed table for a given query. That is, whether the index is covering depends

on the query you are using the index for. An index may be covering for one query but not

for another. Consider an index that indexes the columns (a, b) and a query selecting

those two columns:

SELECT a, b

 FROM my_table

 WHERE a = 10;

In this case, the query just needs the columns a and b, so it is not necessary to look

up the rest of the row – the index is enough to retrieve all the required data. On the

other hand, if the query also needs column c, the index is no longer covering. When you

analyze a query using the EXPLAIN statement (this will be covered in Chapter 20) and a

covering index is used for the table, the Extra column in the EXPLAIN output will include

“Using index.”

A special case of a covering index is InnoDB’s clustered index (though EXPLAIN will

not say “Using index” for it). The clustered index includes all the row data in the leaf

node (even though in general only a subset of columns is actually indexed), so the index

will always include all required data. Some databases support an include clause when

creating indexes that can be used to simulate how the clustered index works.

Clever creation of indexes so they can be used as covering indexes for the most

executed queries can greatly improve performance as it will be discussed in the “Index

Strategies” section.

When you add indexes, there are some limitations you need to adhere to. These

limitations are the next thing to cover.

Chapter 14 Indexes

303

 Index Limitations
There are a few limitations with respect to InnoDB indexes. These range from the index

size to the number of indexes allowed on a table. The most important limitations are as

follows:

• The maximum width of a B-tree index is 3072 bytes or 767 bytes

depending on the InnoDB row format. The maximum size is based

on 16 kiB InnoDB pages with lower limits for smaller page sizes.

• Blob- and text-type columns can only be used in an index other than

full text indexes when a prefix length is specified. Prefix indexes are

discussed later in the chapter in the section “Index Features.”

• Functional key parts count toward the limit of 1017 columns in a

table.

• There can be at most 64 secondary indexes on each table.

• A multicolumn index can include at most 16 columns and functional

key parts.

The limitation you are likely to encounter is the maximum index width for B-tree

indexes. No index can be more than 3072 bytes when you use the DYNAMIC (the default)

or COMPRESSED row format and no more than 767 bytes for the REDUNDANT and COMPACT

row formats. The limit for tables using the DYNAMIC and COMPRESSED row formats is

reduced to the half (1536 bytes) for 8 KiB pages and to a quarter (768 bytes) for 4 KiB

pages. This is particularly a restriction for indexes on string and binary columns as not

only are these values by nature often large, it is also the maximum possible amount of

storage required that is used in the size calculation. That means that a varchar(10)

using the utf8mb4 character set contributes 40 bytes to the limit even if you never store

anything by single- byte characters in the column.

When you add a B-tree index to a text- or blob-type column, you must always

provide a key length specifying how much of a prefix of the column you want to include

in the index. This applies even for tinytext and tinyblob that only support 256 bytes

of data. For char, varchar, binary, and varbinary columns, you only need to specify a

prefix length if the maximum size of the values in bytes exceeds the maximum allowed

index width for the table.

Chapter 14 Indexes

304

Tip For text- and blob-type columns, instead of using a prefix index, it is often
better to index using a full text index (more later), to add a generated column with
the hash of the blob, or to optimize the access in some other way.

If you add functional indexes to a table, then each functional key part counts toward

the limit for columns on a table. If you create an index with two functional parts, then

this counts as two columns toward the table limit. For InnoDB there can be at most 1017

columns in a table.

The final two limitations are related to the number of indexes that can be included

in a table and the number of columns and functional key parts you can have in a

single index. You can have at most 64 secondary indexes on a table. In practice, if you

are getting close to this limit, you can probably benefit from rethinking your indexing

strategy. As it will be discussed in “What Are the Drawbacks of Indexes?” later in this

chapter, there are overheads associated with indexes, so in all cases it is best to limit the

number of indexes to those really benefitting queries. Similarly, the more parts you add

to an index, the larger the index becomes. The InnoDB limit is that you can at most add

16 parts.

What do you do if you need to add an index to a table or remove a superfluous index?

Indexes can be created together with the table or later, and it is also possible to drop

indexes as discussed next.

 SQL Syntax
When you first create your schema, you will in general have some ideas which indexes

to add. Then as time passes, your monitoring may determine that some indexes are

no longer needed but others should be added instead. These changes to indexes may

be due to a misconception of the required indexes; the data may have changed, or the

queries may have changed.

There are three distinct operations when it comes to changing the indexes on a table:

creating indexes when the table itself is created, adding indexes to an existing table, or

removing indexes from a table. The index definition is the same whether you add the

index together with the table or as a following action. When dropping an index, you just

need the index name.

Chapter 14 Indexes

305

This section will show the general syntax for adding and removing indexes.

Throughout the rest of the chapter, there will be further examples based on the specific

index types and features.

 Creating Tables with Indexes
When you create a table, you can add the index definition to the CREATE TABLE

statement. The indexes are defined right after the columns. You can optionally specify

the name of the index; if you do not, the index will be named after the first column in the

index.

Listing 14-2 shows an example of a table where several indexes are created. Do not

worry if you do not know what all the index types are doing – that will be discussed later

in the chapter.

Listing 14-2. Example of creating a table with indexes

CREATE TABLE db1.person (

 Id int unsigned NOT NULL,

 Name varchar(50),

 Birthdate date NOT NULL,

 Location point NOT NULL SRID 4326,

 Description text,

 PRIMARY KEY (Id),

 INDEX (Name),

 SPATIAL INDEX (Location),

 FULLTEXT INDEX (Description)

);

This creates the table person with four indexes in the db1 schema (which must exist

beforehand). The first is a primary key which is a B-tree index (more about that shortly)

on the Id column. The second is also a B-tree index, but it is a so-called secondary index

and indexes the Name column. The third index is a spatial index on the Location column.

The fourth is a full text index on the Description column.

Chapter 14 Indexes

306

You can also create an index that includes more than a single column. This is useful

if you need to put conditions on more than one column, put a condition on the first

column and sort by the second, and so on. To create a multicolumn index, specify the

column names as a comma-separated list:

INDEX (Name, Birthdate)

The order of the columns is very important as it will be explained in “Index

Strategies.” In short, MySQL will only be able to use the index from the left, that is, the

Birthdate part of the index can only be used if Name is also used. That means that the

index (Name, Birthdate) is not the same index as (Birthdate, Name).

The indexes on a table will not in general remain static, so what do you do if you

want to add an index to an existing table?

 Adding Indexes
You can add indexes to an existing table, if you determine that is needed. To do this, you

need to use the ALTER TABLE or CREATE INDEX statement. Since ALTER TABLE can be

used for all modifications of the table, you may want to stick to that; however, the work

made is the same with either statement.

Listing 14-3 shows two examples of how to create indexes using ALTER TABLE.

The first example adds a single index; the second adds two indexes on one statement.

Listing 14-3. Adding indexes using ALTER TABLE

ALTER TABLE db1.person

 ADD INDEX (Birthdate);

ALTER TABLE db1.person

 DROP INDEX Birthdate;

ALTER TABLE db1.person

 ADD INDEX (Name, Birthdate),

 ADD INDEX (Birthdate);

The first and last ALTER TABLE statements use the ADD INDEX clause to tell MySQL that

an index should be added to the table. The third statement adds two such clauses separated

by a comma to add both indexes in one statement. In between, the index is dropped as it is

bad practice to have duplicate indexes, and MySQL will also warn against it.

Chapter 14 Indexes

307

Does it make a difference if you use two statements to add two indexes or add both

indexes with one statement? Yes, there can potentially be a big difference. When an

index is added, it is necessary to perform a full table scan to read all the values needed

for the index. A full table scan is an expensive operation for a large table, so in that sense,

it is better to add both indexes in one statement. On the other hand, it is considerably

faster to create the index as long as the index can be kept fully in the InnoDB buffer pool.

Splitting the creation of the two indexes into two statements can reduce the pressure on

the buffer pool and thus improve the index creation performance.

The last action is to remove indexes that are no longer needed.

 Removing Indexes
The act of removing an index is similar to adding one. You can use the ALTER TABLE or

DROP INDEX statement. When you use ALTER TABLE, you can combine dropping an index

with other data definition manipulations of the table.

When you drop an index, you will need to know the name of the index. There are

several ways to do this as shown in Listing 14-4.

Listing 14-4. Find the index names for a table

mysql> SHOW CREATE TABLE db1.person\G

*************************** 1. row ***************************

 Table: person

Create Table: CREATE TABLE `person` (

 `Id` int(10) unsigned NOT NULL,

 `Name` varchar(50) DEFAULT NULL,

 `Birthdate` date NOT NULL,

 `Location` point NOT NULL /*!80003 SRID 4326 */,

 `Description` text,

 PRIMARY KEY (`Id`),

 KEY `Name` (`Name`),

 SPATIAL KEY `Location` (`Location`),

 KEY `Name_2` (`Name`,`Birthdate`),

 KEY `Birthdate` (`Birthdate`),

 FULLTEXT KEY `Description` (`Description`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0010 sec)

Chapter 14 Indexes

308

mysql> SELECT INDEX_NAME, INDEX_TYPE,

 GROUP_CONCAT(COLUMN_NAME

 ORDER BY SEQ_IN_INDEX) AS Columns

 FROM information_schema.STATISTICS

 WHERE TABLE_SCHEMA = 'db1'

 AND TABLE_NAME = 'person'

 GROUP BY INDEX_NAME, INDEX_TYPE;

+-------------+------------+----------------+

| INDEX_NAME | INDEX_TYPE | Columns |

+-------------+------------+----------------+

| Birthdate | BTREE | Birthdate |

| Description | FULLTEXT | Description |

| Location | SPATIAL | Location |

| Name | BTREE | Name |

| Name_2 | BTREE | Name,Birthdate |

| PRIMARY | BTREE | Id |

+-------------+------------+----------------+

6 rows in set (0.0013 sec)

The indexes may be listed in a different order in your case. The first query uses

the SHOW CREATE TABLE statement to get the full table definition which also includes

the indexes and their names. The second query queries the information_schema.

STATISTICS view. This view is very useful to obtain information about indexes and will

be discussed in detail in the next chapter. Once you have decided which index you want

to drop, you can use ALTER TABLE as shown in Listing 14-5.

Listing 14-5. Dropping an index using ATLER TABLE

ALTER TABLE db1.person DROP INDEX name_2;

This drops the index named name_2 – that is, the index on the (Name, Birthdate)

columns.

The rest of this chapter will cover various details of what indexes are, and at the end

of the chapter, the section “Index Strategies” discusses how to choose which data to

index. First, it is important to understand why indexes have overhead.

Chapter 14 Indexes

309

 What Are the Drawbacks of Indexes?
Very few things in life come for free – indexes are no exception. While indexes are great

for improving query performance, they also need to be stored and kept up to date.

Additionally, a less obvious overhead is when you execute a query, the more indexes you

have, the more work the optimizer needs to do. This section will go through these three

drawbacks of indexes.

 Storage
One of the most obvious costs of adding an index is that the index needs to be stored,

so it is readily available when it is needed. You do not want to first create the index each

time it is needed as that would kill the performance benefit of the index.1 The storage

overhead is twofold: the index is stored on disk to persist it, and it requires memory in

the InnoDB buffer pool for queries to use it.

The disk storage means that you may need to add disks or block storage to your

system. If you use a backup solution such as MySQL Enterprise Backup (MEB) that

copies the raw tablespace files, your backups will also become larger and take longer to

complete.

InnoDB always uses its buffer pool to read the data needed for a query. If the data

does not already exist in the buffer pool, it is first read into it and then used for the query.

So, when you use an index, both the index and the row data will in general be read into

the buffer pool (one exception is when covering indexes are used). The more you need

to fit into the buffer pool, the less room there is for other indexes and data – unless you

make the buffer pool larger. It is of course more complex than that as avoiding a full

table scan also prevents reading the whole table into the buffer pool which relieves the

pressure on the buffer pool. The overall benefit versus overhead comes back to how

much of the table you avoid examining by using the index and whether other queries

anyway read the data the index otherwise avoids accessing.

All in all, you will need extra disk as you add indexes, and in general you will need a

larger InnoDB buffer pool to keep the same buffer pool hit rate. Another overhead is that

an index is only useful if it is kept up to date. That adds work when you update the data.

1 Actually, there are cases where MySQL will auto-generate indexes specific to a single query.
More about this later when discussing index features.

Chapter 14 Indexes

310

 Updating the Index
Whenever you make changes to your data, the indexes will have to be updated. This

ranges from adding or removing links to rows as data is inserted or deleted to modifying

the index as values are updated. You may not think much of this, but it can be a

significant overhead. In fact, during bulk data loads such as restoring a logical backup

(a file that typically includes SQL statements for creating the data, e.g., created with the

mysqlpump program), the overhead of keeping the indexes updated is often what limits

the insert rate.

Tip the overhead of keeping indexes up to date can be so high that it is generally
recommended to remove the secondary indexes while doing a large import into an
empty table and then recreate the indexes when the import has completed.

For InnoDB, the overhead also depends on whether the secondary indexes fit into

the buffer pool or not. As long as the whole index is in the buffer pool, it is relatively

cheap to keep the index up to date, and it is not very likely to become a severe

bottleneck. If the index does not fit, InnoDB will have to keep shuffling the pages

between the tablespace files and the buffer pool which is when the overhead becomes a

major bottleneck causing severe performance problems.

There is one less obvious performance overhead as well. The more indexes, the more

work for the optimizer to determine the optimal query plan.

 The Optimizer
When the optimizer analyzes a query to determine what it believes is the optimal query

execution plan, it needs to evaluate the indexes on each table to determine if the index

should be used and possibly whether to do an index merge of two indexes. The goal is of

course to have the query evaluate as quickly as possible. However, the time spent in the

optimizer is in general non-negligible and in some cases can even become a bottleneck.

Consider an example of a really simple query, selecting some rows from a single table:

SELECT ID, Name, District, Population

 FROM world.city

 WHERE CountryCode = 'AUS';

Chapter 14 Indexes

311

In this case, if there are no indexes on the table city, it is clear that a table scan is

required. If there is one index, it is also necessary to evaluate the query cost using the

index, and so forth. If you have a complex query involving many tables each with a

dozen possible indexes, it will make for so many combinations that it will be reflected in

the query execution time.

Tip If the time spent in the optimizer becomes a problem, you can add optimizer
and join order hints as discussed in Chapters 17 and 24 to help the optimizer, so it
does not need to evaluate all possible query plans.

While these pages describing the overhead of adding indexes can make it sound like

indexes are bad, do not avoid indexes. An index that has a great selectivity for queries

that are executed frequently will be a great benefit. However, do not add indexes for the

sake of adding indexes. It will be discussed at the end of the chapter in the section “Index

Strategies” what some ideas to choosing indexes are, and there will also be examples

in the rest of the book where indexes are discussed. Before getting that far, it is worth

discussing the various index types supported by MySQL as well as other index features.

 Index Types
The optimal type of index is not the same for all uses. An index optimized to find rows

in a given range of values, for example, all dates in the year 2019, needs to be vastly

different from an index that searches a large amount of text for a given word or phrase.

This means that when you choose to add an index, you must decide which index type is

needed. MySQL currently supports five different index types:

• B-tree indexes

• Full text indexes

• Spatial indexes (R-tree indexes)

• Multi-valued indexes

• Hash indexes

This section will go through these five index types and discuss what type of questions

they can be used to speed up.

Chapter 14 Indexes

312

 B-Tree Indexes
B-tree indexes are by far the most commonly used index type in MySQL. In fact, all

InnoDB tables include at least one B-tree index as the data is organized in a B-tree index

(the clustered index).

A B-tree index is an ordered index, so it is good at finding rows where you are looking

for a column that is equal to some value, where a column is greater than or less than

a given value, or where the column is between two values. This makes it a very useful

index for many queries.

Another good feature of B-tree indexes is that they have predictable performance.

As the name suggests, the index is organized as a tree starting with the root page and

finishing with the leaf pages. InnoDB uses an extension of the B-tree index which is

called B+-tree. The + means that the nodes at the same level are linked, so it is easy to

scan the index without the need to go back up to the parent node when reaching the last

record in a node.

Note In MysQL the terms B-tree and B+-tree are used interchangeably.

An example of the index tree for an index with city names can be seen in Figure 14-1.

(The figure is oriented left to right for the index levels which is different from the top-

to- bottom orientation by some other illustrations of B-tree indexes. This is done largely

because of space reasons.)

Chapter 14 Indexes

313

Figure 14-1. Example of a B+-tree index

Chapter 14 Indexes

314

In the figure, the document shapes represent an InnoDB page, and the shapes

with multiple documents stacked on top of each other (e.g., the one in Level 0 labeled

“Christchurch”) represent several pages. The arrows going from the left to the right go

from the root page toward the leaf pages. The root page is where the index search starts,

and the leaf pages are where the index records exist. Pages in between are typically

called internal pages or branch pages. Pages may also be called nodes. The double

arrows connecting the pages at the same level are what distinguishes a B-tree and a

B+-tree index and allow InnoDB to quickly move to the previous or next sibling page

without having to go through the parent.

For small indexes, there may only be a single page serving both as the root and leaf

page. In the more general case, the index has a root page illustrated in the leftmost part

of the figure. In the rightmost part of the figure are the leaf pages. For large indexes, there

may also be more levels in between. The leaf nodes have Level 0, their parent pages

Level 1, and so forth until the root page is reached.

In the figure, the value noted for a page, for example, “A Coruña,” denotes the first

value covered by that part of the tree. So, if you are at Level 1 and are looking for the

value “Adelaide,” you know it will be in the topmost page of the leaf pages as that page

contains the values starting with “A Coruña” and finishing with the last value earlier than

“Beijing” in the order the values are sorted. This is an example of where the collation

discussed in the previous chapter comes into play.

A key feature is that irrespective of which of the branches you traverse, the number

of levels will always be the same. For example, in the figure, that means no matter

which value you look for, there will be four pages read, one for each of the four levels (if

several rows have the same value and for range scans, more pages in the leaf level may

be read). Thus, it is said that the tree is balanced. It is this feature that gives predictable

performance, and the number of levels scales well – that is, the number of levels grows

slowly with the number of index records. That is a property that is particularly important

when the data needs to be accessed from relatively slow storage such as disks.

Note You may have heard of t-tree indexes as well. While B-tree indexes are
optimized for disk access, t-tree indexes are similar to B-tree indexes except they
are optimized for in-memory access. therefore, the NDBCluster storage engine
which stores all indexed data in memory uses t-tree indexes even when they at
the sQL level are called B-tree indexes.

Chapter 14 Indexes

315

In the beginning of this section, it was stated that B-tree indexes are by far the most

commonly used index type in MySQL. In fact, if you have any InnoDB tables, even if

you never added any indexes yourself, you are using B-tree indexes. InnoDB stores the

data index organized – using the clustered index – which really just means the rows are

stored in a B+-tree index. B-tree indexes are also not just used in relational databases, for

example, several file systems organize their metadata in a B-tree structure.

One property of B-tree indexes that is important to be aware of is that they can only

be used for comparing the whole value of the indexed column(s) or a left prefix. This

means that if you want to check if the month of an indexed date is May, the index cannot

be used. This is the same if you want to check whether an indexed string contains a given

phrase.

When you include multiple columns in an index, the same principle applies.

Consider the index (Name, Birthdate): in this case, you can use the index to search for

a given name or a combination of a name and a birthday. However, you cannot use the

index to search for a person with a given birthdate without knowing the name.

There are several ways to handle this limitation. In some cases, you can use

functional indexes, or you can extract information about the column into a generated

column that you can index. In other cases, another index type can be used. As discussed

next, a full text index can, for example, be used to search for columns with the phrase

“query performance tuning” somewhere in the string.

 Full Text Indexes
Full text indexes are specialized at answering questions such as “Which document

contains this string?” That is, they are not optimized to find rows where a column exactly

matches a string – for that, a B-tree index is a better choice.

A full text index works by tokenizing the text that is being indexed. Exactly how

this is done depends on the parser used. InnoDB supports using a custom parser, but

typically the built-in parser is used. The default parser assumes the text uses whitespace

as the word separator. MySQL includes two alternative parsers: the ngram parser2

which supports Chinese, Japanese, and Korean and the MeCab parser which supports

Japanese.

2 https://dev.mysql.com/doc/refman/en/fulltext-search-ngram.html

Chapter 14 Indexes

https://dev.mysql.com/doc/refman/en/fulltext-search-ngram.html

316

InnoDB links the full text index to the rows using a special column named

FTS_DOC_ID which is a bigint unsigned NOT NULL column. If you add a full text index

and the column does not already exist, InnoDB will add it as a hidden column. Adding

the hidden column requires a table rebuild, so you need to take that into consideration if

you are adding a full text index to a large table. If you know that you intend to use full text

indexes for a table, you can add the column yourself up front together with the unique

index FTS_DOC_ID_INDEX for the column. You can also choose to use the FTS_DOC_ID

column as your primary key, but be aware that FTS_DOC_ID values are not allowed to be

reused. An example of preparing the table yourself is as follows:

DROP TABLE IF EXISTS db1.person;

CREATE TABLE db1.person (

 FTS_DOC_ID bigint unsigned NOT NULL auto_increment,

 Name varchar(50),

 Description text,

 PRIMARY KEY (FTS_DOC_ID),

 FULLTEXT INDEX (Description)

);

If you do not have the FTS_DOC_ID column and you add a full text column to an existing

table, MySQL will return a warning to tell the table has been rebuilt to add the column:

Warning (code 124): InnoDB rebuilding table to add column FTS_DOC_ID

If you are planning to use full text indexes, it is recommended from a performance

perspective to explicitly add the FTS_DOC_ID column and either set it as the primary

key on the table or create a secondary unique index for it. The downside of creating the

column yourself is that you must manage the values yourself.

Another specialized index type is for spatial data. Where full text indexes are for text

documents (or strings), spatial indexes are for spatial data types.

 Spatial Indexes (R-Tree)
Historically, spatial features have not been used much in MySQL. However, with support

for spatial indexes in InnoDB in version 5.7 and additional improvements such as

support for specifying a Spatial Reference System Identifier (SRID) for spatial data in

MySQL 8, chances are that you may need spatial indexes at some point.

Chapter 14 Indexes

317

A typical use case for spatial indexes is a table with points of interest with the

location of each point stored together with the rest of the information. The user may, for

example, ask to get all electrical vehicle charging stations within 50 kilometers of their

current location. To answer such a question as efficiently as possible, you will need a

spatial index.

MySQL implements spatial indexes as R-trees. The R stands for rectangle and hints at

the usage of the index. An R-tree index organizes the data such that points that are close

in space are stored close to each other in the index. This is what makes it effective to

determine whether a spatial value fulfills some boundary condition (e.g., a rectangle).

Spatial indexes can only be used if the column is declared NOT NULL and the Spatial

Reference System Identifier has been set. The spatial condition is specified using one of

the functions such as MBRContains() which takes two spatial values and returns whether

the first value contains the other. Otherwise, there are no special requirements for using

spatial indexes. Listing 14-6 shows an example of a table with a spatial index and a query

that can use the index.

Listing 14-6. Using a spatial index

mysql> CREATE TABLE db1.city (

 id int unsigned NOT NULL,

 Name varchar(50) NOT NULL,

 Location point SRID 4326 NOT NULL,

 PRIMARY KEY (id),

 SPATIAL INDEX (Location));

Query OK, 0 rows affected (0.5578 sec)

mysql> INSERT INTO db1.city

 VALUES (1, 'Sydney',

 ST_GeomFromText('Point(-33.8650 151.2094)',

 4326));

Query OK, 1 row affected (0.0783 sec)

mysql> SET @boundary = ST_GeomFromText('Polygon((-9 112, -45 112, -45 160,

-9 160, -9 112))', 4326);

Query OK, 0 rows affected (0.0004 sec)

Chapter 14 Indexes

318

mysql> SELECT id, Name

 FROM db1.city

 WHERE MBRContains(@boundary, Location);

+----+--------+

| id | Name |

+----+--------+

| 1 | Sydney |

+----+--------+

1 row in set (0.0006 sec)

In the example, a table with city locations has a spatial index on the Location

column. The Spatial Reference System Identifier (SRID) is set to 4326 to represent Earth.

For this example, a single row is inserted, and a boundary is defined (if you are curious,

then the boundary contains Australia). You can also specify the polygon directly in the

MBRContains() function, but here it is done in two steps to make the parts of the query

stand out clearer.

So spatial indexes help to answer if some geometrical shape is within some

boundary. Similarly, a multi-valued index can help answer whether a given value is in a

list of values.

 Multi-valued Indexes
MySQL introduced support for the JSON data type in MySQL 5.7 and extended the

feature with the MySQL Document Store in MySQL 8. You can use indexes on generated

columns or functional indexes to create indexes on JSON documents; however, a use

case that is not covered by the index types discussed thus far is to search for documents

where a JSON array includes some value. An example is a collection of cities, and for

each city there is an array of suburbs. The example JSON document from the previous

chapter had just that:

{

 "name": "Sydney",

 "demographics": {

 "population": 5500000

 },

Chapter 14 Indexes

319

 "geography": {

 "country": "Australia",

 "state": "NSW"

 },

 "suburbs": [

 "The Rocks",

 "Surry Hills",

 "Paramatta"

]

}

If you want to search all of the cities in your city collection and return those cities

that have a suburb called “Surry Hills,” then you need a multi-valued index. MySQL

8.0.17 has added support for multi-valued indexes.

The easiest way to explain how multi-valued indexes are useful is to look at an

example. Listing 14-7 takes the countryinfo table from the world_x example database,

copies it to the mvalue_index table, and modifies it so each JSON document includes

an array of cities with their population and the district they are located in. Finally, a

query is included to show an example of retrieving all the city names for Australia (_id

= 'AUS'). The queries are also available in the file listing_14_7.sql from this book’s

GitHub repository and can be executed in MySQL Shell using the command \source

 listing_14_7.sql.

Listing 14-7. Preparing the mvalue_index table for multi-valued indexes

mysql> \use world_x

Default schema set to `world_x`.

Fetching table and column names from `world_x` for auto-completion...

Press ^C to stop.

mysql> DROP TABLE IF EXISTS mvalue_index;

Query OK, 0 rows affected, 1 warning (0.0509 sec)

Note (code 1051): Unknown table 'world_x.mvalue_index'

mysql> CREATE TABLE mvalue_index LIKE countryinfo;

Query OK, 0 rows affected (0.3419 sec)

Chapter 14 Indexes

320

mysql> INSERT INTO mvalue_index (doc)

 SELECT doc

 FROM countryinfo;

Query OK, 239 rows affected (0.5781 sec)

Records: 239 Duplicates: 0 Warnings: 0

mysql> UPDATE mvalue_index

 SET doc = JSON_INSERT(

 doc,

 '$.cities',

 (SELECT JSON_ARRAYAGG(

 JSON_OBJECT(

 'district', district,

 'name', name,

 'population',

 Info->'$.Population'

)

)

 FROM city

 WHERE CountryCode = mvalue_index.doc->>'$.Code'

)

);

Query OK, 239 rows affected (3.6697 sec)

Rows matched: 239 Changed: 239 Warnings: 0

mysql> SELECT JSON_PRETTY(doc->>'$.cities[*].name')

 FROM mvalue_index

 WHERE doc->>'$.Code' = 'AUS'\G

*************************** 1. row ***************************

JSON_PRETTY(doc->>'$.cities[*].name'): [

 "Sydney",

 "Melbourne",

 "Brisbane",

 "Perth",

Chapter 14 Indexes

321

 "Adelaide",

 "Canberra",

 "Gold Coast",

 "Newcastle",

 "Central Coast",

 "Wollongong",

 "Hobart",

 "Geelong",

 "Townsville",

 "Cairns"

]

1 row in set (0.0022 sec)

The listing starts out making the world_x schema the default, then drops the

mvalue_index table if it exists, and creates it again using the same definition as for the

countryinfo table and with the same data. You can also modify the countryinfo table

directly, but by working on the mvalue_index copy, you can easily reset the world_x

schema by dropping the mvalue_index table. The table consists of a JSON document

column named doc and a generated column named _id which is the primary key:

mysql> SHOW CREATE TABLE mvalue_index\G

*************************** 1. row ***************************

 Table: mvalue_index

Create Table: CREATE TABLE `mvalue_index` (

 `doc` json DEFAULT NULL,

 ̀_id` varbinary(32) GENERATED ALWAYS AS

(json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL,

 ̀_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}')

VIRTUAL,

 PRIMARY KEY (`_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0006 sec)

The UPDATE statement uses the JSON_ARRAYAGG() function to create a JSON array

with three JSON objects, the district, name, and population, for each country. Finally, a

SELECT statement is executed to return the names of the Australian cities.

Chapter 14 Indexes

322

You can now add a multi-valued index for the city names:

ALTER TABLE mvalue_index

 ADD INDEX (((CAST(doc->>'$.cities[*].name'

 AS char(35) ARRAY))));

The index extracts the name object from all elements of the cities array at the root of

the doc document. The resulting data is casted to an array of char(35) values. The data

type was chosen as the city table where the city names originate from is char(35). In

the CAST() function, you use char for both the char and varchar data types.

The new index can be used for WHERE clauses using the MEMBER OF operator and

the JSON_CONTAINS() and JSON_OVERLAPS() functions. The MEMBER OF operator asks

whether a given value is a member of the array. JSON_CONTAINS() is very similar, but

requires a range search compared to a reference search for MEMBER OF. JSON_OVERLAPS()

can be used to find documents that contain at least one of several values. Listing 14-8

shows an example of using the operator and each of the functions.

Listing 14-8. Queries taking advantage of a multi-valued index

mysql> SELECT doc->>'$.Code' AS Code, doc->>'$.Name'

 FROM mvalue_index

 WHERE 'Sydney' MEMBER OF (doc->'$.cities[*].name');

+------+----------------+

| Code | doc->>'$.Name' |

+------+----------------+

| AUS | Australia |

+------+----------------+

1 row in set (0.0032 sec)

mysql> SELECT doc->>'$.Code' AS Code, doc->>'$.Name'

 FROM mvalue_index

 WHERE JSON_CONTAINS(

 doc->'$.cities[*].name',

 '"Sydney"'

);

Chapter 14 Indexes

323

+------+----------------+

| Code | doc->>'$.Name' |

+------+----------------+

| AUS | Australia |

+------+----------------+

1 row in set (0.0033 sec)

mysql> SELECT doc->>'$.Code' AS Code, doc->>'$.Name'

 FROM mvalue_index

 WHERE JSON_OVERLAPS(

 doc->'$.cities[*].name',

 '["Sydney", "New York"]'

);

+------+----------------+

| Code | doc->>'$.Name' |

+------+----------------+

| AUS | Australia |

| USA | United States |

+------+----------------+

2 rows in set (0.0060 sec)

The two queries using MEMBER OF and JSON_CONTAINS() both look for countries that

have a city named Sydney. The last query using JSON_OVERLAPS() looks for countries that

have a city named Sydney or New York or both.

There is one index type left in MySQL: hash indexes.

 Hash Indexes
If you want to search for rows where a column is exactly equal to some value, you can use

a B-tree index as discussed earlier in the chapter. There is an alternative though: create

a hash for each of the column values and use the hash to search for the matching rows.

Why would you want to do that? The answer is that it is a very fast way to look up rows.

Hash indexes are not used much in MySQL. A notable exception is the NDBCluster

storage engine that uses hash indexes to ensure uniqueness for the primary key and

unique indexes and also uses them to provide fast lookups using those indexes. In terms

of InnoDB, there is no direct support for hash indexes; however, InnoDB has a feature

called adaptive hash indexes which is worth considering a little more.

Chapter 14 Indexes

324

The adaptive hash index feature works automatically within InnoDB. If InnoDB

detects that you are using a secondary index frequently and adaptive hash indexes are

enabled, it will build a hash index on the fly of the most frequently used values. The hash

index is exclusively stored in the buffer pool and thus is not persisted, when you restart

MySQL. If InnoDB detects that the memory can be used better for loading more pages

into the buffer pool, it will discard part of the hash index. This is what is meant when it is

said that it is an adaptive index: InnoDB will try to adapt it to be optimal for your queries.

You can enable or disable the feature using the innodb_adaptive_hash_index option.

In theory, the adaptive hash index is a win-win situation. You get the advantages of

having a hash index without the need to consider which columns you need to add it for,

and the memory usage is all automatically handled. However, there is an overhead of

having it enabled, and not all workloads benefit from it. In fact, for some workloads, the

overhead can become so large that there are severe performance issues.

There are two ways to monitor the adaptive hash index: the INNODB_METRICS table in

the Information Schema and the InnoDB monitor. The INNODB_METRICS table includes

eight metrics for the adaptive hash index with two of them enabled by default.

Listing 14- 9 shows the eight metrics included in INNODB_METRICS.

Listing 14-9. The metrics for the adaptive hash index in INNODB_METRICS

mysql> SELECT NAME, COUNT, STATUS, COMMENT

 FROM information_schema.INNODB_METRICS

 WHERE SUBSYSTEM = 'adaptive_hash_index'\G

*************************** 1. row ***************************

 NAME: adaptive_hash_searches

 COUNT: 10717

 STATUS: enabled

COMMENT: Number of successful searches using Adaptive Hash Index

*************************** 2. row ***************************

 NAME: adaptive_hash_searches_btree

 COUNT: 29515

 STATUS: enabled

COMMENT: Number of searches using B-tree on an index search

Chapter 14 Indexes

325

*************************** 3. row ***************************

 NAME: adaptive_hash_pages_added

 COUNT: 0

 STATUS: disabled

COMMENT: Number of index pages on which the Adaptive Hash Index is built

*************************** 4. row ***************************

 NAME: adaptive_hash_pages_removed

 COUNT: 0

 STATUS: disabled

COMMENT: Number of index pages whose corresponding Adaptive Hash Index

entries were removed

*************************** 5. row ***************************

 NAME: adaptive_hash_rows_added

 COUNT: 0

 STATUS: disabled

COMMENT: Number of Adaptive Hash Index rows added

*************************** 6. row ***************************

 NAME: adaptive_hash_rows_removed

 COUNT: 0

 STATUS: disabled

COMMENT: Number of Adaptive Hash Index rows removed

*************************** 7. row ***************************

 NAME: adaptive_hash_rows_deleted_no_hash_entry

 COUNT: 0

 STATUS: disabled

COMMENT: Number of rows deleted that did not have corresponding Adaptive

Hash Index entries

*************************** 8. row ***************************

 NAME: adaptive_hash_rows_updated

 COUNT: 0

 STATUS: disabled

COMMENT: Number of Adaptive Hash Index rows updated

8 rows in set (0.0015 sec)

Chapter 14 Indexes

326

The number of successful searches using the adaptive hash index (adaptive_hash_

searches) and the number of searches completed using the B-tree index (adaptive_

hash_searches_btree) are enabled by default. You can use those to determine how

often InnoDB resolves queries using the hash index compared to the underlying B-tree

index. The other metrics are less often needed and thus disabled by default. That said,

if you want to explore the usefulness of the adaptive hash index in more detail, you can

safely enable the six metrics.

The other way to monitor the adaptive hash index is to use the InnoDB monitor as

shown in Listing 14-10. The data in the output will be different in your case.

Listing 14-10. Using the InnoDB monitor to monitor the adaptive hash index

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************

 Type: InnoDB

 Name:

Status:

=====================================

2019-05-05 17:22:14 0x1a7c INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 16 seconds

BACKGROUND THREAD

srv_master_thread loops: 52 srv_active, 0 srv_shutdown, 25121 srv_idle

srv_master_thread log flush and writes: 0

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 8

OS WAIT ARRAY INFO: signal count 11

RW-shared spins 12, rounds 12, OS waits 0

RW-excl spins 102, rounds 574, OS waits 8

RW-sx spins 0, rounds 0, OS waits 0

Spin rounds per wait: 1.00 RW-shared, 5.63 RW-excl, 0.00 RW-sx

...

Chapter 14 Indexes

327

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges

merged operations:

 insert 0, delete mark 0, delete 0

discarded operations:

 insert 0, delete mark 0, delete 0

Hash table size 2267, node heap has 2 buffer(s)

Hash table size 2267, node heap has 1 buffer(s)

Hash table size 2267, node heap has 2 buffer(s)

Hash table size 2267, node heap has 1 buffer(s)

Hash table size 2267, node heap has 1 buffer(s)

Hash table size 2267, node heap has 1 buffer(s)

Hash table size 2267, node heap has 2 buffer(s)

Hash table size 2267, node heap has 3 buffer(s)

0.00 hash searches/s, 0.00 non-hash searches/s

...

The first point to check is the semaphores section. If the adaptive hash index is a

major source of contention, there will be semaphores around the btr0sea.ic file (where

the adaptive hash index is implemented in the source code). If you once in a while – but

rarely – see semaphores, it is not necessarily a problem, but if you see frequent and long

semaphores, you are likely better off disabling the adaptive hash index.

The other part of interest is the section for the insert buffer and adaptive hash index.

This includes the amount of memory used for the hash indexes and the rate queries are

answered using hash and non-hash searches. Be aware that these rates are for the period

listed near the top of the monitor output – in the example, for the last 16 seconds prior to

2019-05-05 17:22:14.

That concludes the discussion of the supported index types. There is still more to

indexes as there are several features that are worth familiarizing yourself with.

Chapter 14 Indexes

328

 Index Features
It is one thing to know which types of indexes exist, but another thing is to be able to get

the full advantage of them. For that to happen, you need to know more about the index-

related features that are available in MySQL. These range from sorting the values in the

index in reverse order to functional indexes and auto-generated indexes. This section

will go through these features, so you can use them in your daily work.

 Functional Indexes
Thus far, the indexes have been applied directly to the columns. It is the most common

way to add indexes, but there are cases where you need to work with derived values. An

example is a query that requests all persons with a birthday in May:

DROP TABLE IF EXISTS db1.person;

CREATE TABLE db1.person (

 Id int unsigned NOT NULL,

 Name varchar(50),

 Birthdate date NOT NULL,

 PRIMARY KEY (Id)

);

SELECT *

 FROM db1.person

 WHERE MONTH(Birthdate) = 5;

If you add an index on the Birthdate column, this cannot be used to answer that

query as the dates are stored according to their full value and you are not matching

against the leftmost part of the column. (On the other hand, searching for all born in

1970 can use a B-tree index on the Birthdate column.)

One way to do this is to have a generated column with the derived values. In MySQL 5.7

and later, you can tell MySQL to keep the column up to date automatically, for example:

CREATE TABLE db1.person (

 Id int unsigned NOT NULL,

 Name varchar(50) NOT NULL,

 Birthdate date NOT NULL,

Chapter 14 Indexes

329

 BirthMonth tinyint unsigned

 GENERATED ALWAYS AS (MONTH(Birthdate))

 VIRTUAL NOT NULL,

 PRIMARY KEY (Id),

 INDEX (BirthMonth)

);

In MySQL 8.0.13 there is a more direct way to achieve this. You can directly index the

result of a function:

CREATE TABLE db1.person (

 Id int unsigned NOT NULL,

 Name varchar(50) NOT NULL,

 Birthdate date NOT NULL,

 PRIMARY KEY (Id),

 INDEX ((MONTH(Birthdate)))

);

The advantage of using the functional index is that is it more explicit what you want

to index, and you do not have the extra BirthMonth column. Otherwise, the two ways of

adding functional indexes work the same way.

 Prefix Indexes
It is not uncommon for the index part of a table to become larger than the table data

itself. This can particularly be the case if you index large string values. There are also

limitations on the maximum length of the indexed data for B-tree indexes – 3072

bytes for InnoDB tables using the DYNAMIC or COMPRESSED row format and smaller for

other tables. This effectively means you cannot index a text column, not to mention a

longtext column. One way to mitigate large string indexes is to only index the first part

of the value. That is called a prefix index.

You create a prefix index by specifying the number of characters for strings or

number of bytes for binary objects you want to index. If you want to index the first ten

characters of the Name column in the city table (from the world database), you can do

it like

ALTER TABLE world.city ADD INDEX (Name(10));

Chapter 14 Indexes

330

Notice how the number of characters to index has been added in parenthesis. As

long as you choose enough characters to give a good selectivity, this index will work

almost as good as indexing the whole name, and on the upside, it uses less storage and

memory. How many characters do you need to include? That entirely depends on the

data you are indexing. You can query the data to get an idea of how unique a prefix is.

Listing 14-11 shows an example of examining how many city names share the first ten

characters.

Listing 14-11. The frequency of city names based on the first ten characters

mysql> SELECT LEFT(Name, 10), COUNT(*),

 COUNT(DISTINCT Name) AS 'Distinct'

 FROM world.city

 GROUP BY LEFT(Name, 10)

 ORDER BY COUNT(*) DESC, LEFT(Name, 10)

 LIMIT 10;

+----------------+----------+----------+

| LEFT(Name, 10) | COUNT(*) | Distinct |

+----------------+----------+----------+

| San Pedro | 6 | 6 |

| San Fernan | 5 | 3 |

| San Miguel | 5 | 3 |

| Santiago d | 5 | 5 |

| San Felipe | 4 | 3 |

| San José | 4 | 1 |

| Santa Cruz | 4 | 4 |

| São José d | 4 | 4 |

| Cambridge | 3 | 1 |

| Ciudad de | 3 | 3 |

+----------------+----------+----------+

10 rows in set (0.0049 sec)

This shows that with this index prefix, you will at most read six cities to find a match.

While that is more than a complete match, it is still much better than scanning all the

table. In this comparison, you of course also need to verify whether the number of prefix

matches is due to prefix collisions, or the city names are the same. For example, for

“Cambridge,” there are three cities with that name, so whether you index the first ten

Chapter 14 Indexes

331

characters or the whole name makes no difference. You can do this kind of analysis for

different prefix lengths to get an idea for the threshold where increasing the size of the

index gives a diminutive return. In many cases, you do not need all that many characters

for the index to work well.

What do you do if you believe you can delete an index or you want to roll out an

index but not let it take effect immediately? The answer is invisible indexes.

 Invisible Indexes
MySQL 8 has introduced a new feature called invisible indexes. It allows you to have an

index that is maintained and ready for use, but the optimizer will ignore the index until

you decide to make it visible. This allows you to roll out a new index in a replication

topology or to disable an index you believe is not required or similar. You can quickly

enable or disable the index as it only requires an update of the metadata for the table, so

the change is “instant.”

If you, for example, believe an index is not needed, making it invisible first allows you

to monitor how the database works without it before telling MySQL to drop the index.

Should it turn out that some queries – for example, monthly reporting queries that just

had not been executed in the period you monitored – do need the index, you can quickly

reenable it.

You mark an index as invisible with the INVISIBLE keyword and make an invisible

index visible again with the VISIBLE keyword. For example, to create an index on the

Name column of the world.city table as invisible and to make it visible later, you can use

mysql> ALTER TABLE world.city ADD INDEX (Name) INVISIBLE;

Query OK, 0 rows affected (0.0649 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE world.city ALTER INDEX Name VISIBLE;

Query OK, 0 rows affected (0.0131 sec)

Records: 0 Duplicates: 0 Warnings: 0

If you disable an index and a query uses an index hint that refers to the hidden index,

the query will return an error:

ERROR: 1176: Key 'Name' doesn't exist in table 'city'

Chapter 14 Indexes

332

You can override the invisibility of an index by enabling the optimizer switch

use_invisible_indexes (defaults to off). This can be useful if you experience problems

because an index has been made invisible and you cannot reenable it immediately or

if you want to test with a new index before making it generally available. An example of

temporarily enabling invisible indexes for a connection is

SET SESSION optimizer_switch = 'use_invisible_indexes=on';

Even with the use_invisible_indexes optimizer switch enabled, you are not

allowed to refer to the index in an index hint.

Another new feature in MySQL 8 is descending indexes.

 Descending Indexes
In MySQL 5.7 and older, when you added a B-tree index, it was always sorted in

ascending order. This is great for finding exact matches, retrieving rows in ascending

order of the index, and so on. However, while ascending indexes can speed up queries

looking for rows in descending order, they are not as effective. MySQL 8 added

descending indexes to help with those use cases.

There is nothing particular you need to do to take advantage of descending indexes.

All that is required is that the DESC keyword is used with the index, for example:

ALTER TABLE world.city ADD INDEX (Name DESC);

If there are multiple columns in the index, the columns do not all need to be

included in ascending or descending order. You can mix ascending and descending

columns as it works best in your queries.

 Partitioning and Indexes
If you create a partitioned table, the partitioning column must be part of the primary key

and all unique keys. The reason for this is that MySQL does not have a concept of global

indexes, so it must be ensured that uniqueness checks only need to consider a single

partition.

With respect to performance tuning, then partitions can be used to effectively use

two indexes to resolve a query without using index merging. When the column that is

used for partitioning is used in a condition in a query, MySQL will prune the partitions,

so only the partitions that can be matched by the condition are searched. Then an index

can be used to resolve the rest of the query.

Chapter 14 Indexes

333

Consider a table t_part that is partitioned according to the Created column which

is a timestamp and with one partition per month. If you query for all rows with a value

of the val column less than 2 in the month of March 2019, then the query will first prune

the partitions on the value of Created and then use the index on val. Listing 14-12 shows

an example of this.

Listing 14-12. Combining partition pruning and filtering using an index

mysql> CREATE TABLE db1.t_part (

 id int unsigned NOT NULL AUTO_INCREMENT,

 Created timestamp NOT NULL,

 val int unsigned NOT NULL,

 PRIMARY KEY (id, Created),

 INDEX (val)

) ENGINE=InnoDB

 PARTITION BY RANGE (unix_timestamp(Created))

(PARTITION p201901 VALUES LESS THAN (1548939600),

 PARTITION p201902 VALUES LESS THAN (1551358800),

 PARTITION p201903 VALUES LESS THAN (1554037200),

 PARTITION p201904 VALUES LESS THAN (1556632800),

 PARTITION p201905 VALUES LESS THAN (1559311200),

 PARTITION p201906 VALUES LESS THAN (1561903200),

 PARTITION p201907 VALUES LESS THAN (1564581600),

 PARTITION p201908 VALUES LESS THAN (1567260000),

 PARTITION pmax VALUES LESS THAN MAXVALUE);

1 row in set (5.4625 sec)

-- Insert random data

-- 1546261200 is 2019-01-01 00:00:00 UTC

-- The common table expression (CTE) is just

-- a convenient way to quickly generate 1000 rows.

mysql> INSERT INTO db1.t_part (Created, val)

 WITH RECURSIVE counter (i) AS (

 SELECT 1

 UNION SELECT i+1

 FROM counter

 WHERE i < 1000)

Chapter 14 Indexes

334

 SELECT FROM_UNIXTIME(

 FLOOR(RAND()*(1567260000-1546261200))

 +1546261200

), FLOOR(RAND()*10) FROM counter;

Query OK, 1000 rows affected (0.0238 sec)

Records: 1000 Duplicates: 0 Warnings: 0

mysql> EXPLAIN

 SELECT id, Created, val

 FROM db1.t_part

 WHERE Created BETWEEN '2019-03-01 00:00:00'

 AND '2019-03-31 23:59:59'

 AND val < 2\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t_part

 partitions: p201903

 type: range

possible_keys: val

 key: val

 key_len: 4

 ref: NULL

 rows: 22

 filtered: 11.110000610351562

 Extra: Using where; Using index

1 row in set, 1 warning (0.0005 sec)

The t_part table is partitioned by range using the Unix timestamp of the Created

column. The EXPLAIN output (EXPLAIN is covered in detail in Chapter 20) shows that only

the p201903 partition will be included in the query and that the val index will be used as

the index. The exact output of EXPLAIN may differ given the example uses random data.

Thus far, everything that has been discussed about indexes has been for explicitly

created indexes. For certain queries, MySQL will also be able to auto-generate indexes.

That is the last index feature to discuss.

Chapter 14 Indexes

335

 Auto-generated Indexes
For queries that include subqueries joined to other tables or subqueries, the join can be

expensive as subqueries cannot include explicit indexes. To avoid doing full table scans

on these temporary tables generated by subqueries, MySQL can add an automatically

generated index on the join condition.

As an example, consider the film table from the sakila sample database. It has a

column called release_year with the year the film was released. If you want to query

how many films were released in each of the years there are data for, you can use the

following query (yes, this query can be written better without the subquery, but it is

written this way to demonstrate the auto-generated index feature):

SELECT release_year, COUNT(*)

 FROM sakila.film

 INNER JOIN (SELECT DISTINCT release_year

 FROM sakila.film

) release_years USING (release_year)

 GROUP BY release_year;

MySQL chooses to do a full table scan on the film table and add an auto-generated

index on the subquery. When MySQL adds an auto-generated index, the EXPLAIN output will

include <auto_key0> (or 0 replaced with a different value) as the possible key and used key.

Auto-generated indexes can drastically improve the performance of queries that

include subqueries that the optimizer cannot rewrite as normal joins. The best of it all is

that it happens automatically.

That concludes the discussion of index features. Before discussing how you should

use indexes, it is also necessary to understand how InnoDB uses indexes.

 InnoDB and Indexes
The way InnoDB has organized its tables since its first versions in the mid-1990s has

been to use a clustered index to organize the data. This fact has led to the common

saying that everything in InnoDB is an index. The organization of the data is literally

an index. By default, InnoDB uses the primary key for the clustered index. If there is no

primary key, it will look for a unique index not allowing NULL values. As a last resort, a

hidden column will be added to the table using a sort of auto-increment counter.

Chapter 14 Indexes

336

With index-organized tables, it is true that everything in InnoDB is an index. The

clustered index is itself organized as a B+-tree index with the actual row data in the leaf

pages. This has some consequences when it comes to query performance and indexes.

The next sections will look at how InnoDB uses the primary key and what it means for

secondary keys, provide some recommendations, and look at the optimal use cases for

index-organized tables.

 The Clustered Index
Since the data is organized according to the clustered index (the primary key or

substitutes thereof), the choice of primary key is very important. If you insert a new row

with a primary key value between existing values, InnoDB will have to reorganize the

data to make room for the new row. In the worst case, InnoDB will have to split existing

pages into two as the pages are fixed size. Page splits can cause the leaf pages to be out

of order on the underlying storage causing more random I/O which in turn leads to

worse query performance. Page splits will be discussed as part of the DDL and bulk data

loading in Chapter 25.

 Secondary Indexes
The leaf pages of a secondary index store the reference to the row itself. Since the row is

stored in a B+-tree index according to the clustered index, all secondary indexes must

include the value of the clustered index. If you have chosen a column where the values

require many bytes, for example, a column with long and potentially multi-byte strings,

this greatly adds to the size of the secondary indexes.

It also means that effectively when you perform a lookup using a secondary index,

then two index lookups are made: first is the expected secondary key lookup, and then

from the leaf page, the primary key value is fetched and used for a primary key lookup to

get the actual data.

For nonunique secondary indexes, if you have an explicit primary key or a NOT NULL

unique index, it is the columns used for the primary key that are added to the index.

MySQL knows about these extra columns even though they have not been explicitly

made part of the index, and MySQL will use them if it will improve the query plan.

Chapter 14 Indexes

337

 Recommendations
Because of the way InnoDB uses the primary key and how it is added to the secondary

indexes, it is best to use a monotonical incrementing primary key that uses as few bytes

as possible. An auto-incrementing integer fulfills these properties and thus makes a good

primary key.

The hidden column used for the clustered index if the table does not have any

suitable indexes uses an auto-increment–like counter to generate new values. However,

as that counter is global for all InnoDB tables in the MySQL instance with a hidden

primary key, it can become a contention point. The hidden key also cannot be used

in replication to locate the rows that are affected by an event, and Group Replication

requires a primary key or NOT NULL unique index for its conflict detection. The

recommendation is therefore always to explicitly choose a primary key for all tables.

An UUID on the other hand is not monotonical incrementing and is not a good

choice. An option in MySQL 8 is to use the UUID_TO_BIN() function with a second

argument set to 1 which will make MySQL swap the first and third groups of hexadecimal

digits. The third group is the high field of the timestamp part of the UUID, so bringing

that up to the beginning of the UUID helps ensure the IDs keep increasing and

storing them as binary data requires less than half the amount of storage compared to

hexadecimal values.

 Optimal Use Cases
Index-organized tables are particularly useful for queries that use that index. As the

name “clustered index” suggests, rows that have similar values for the clustered index

are stored near each other. Since InnoDB always reads entire pages into memory, it also

means that two rows with similar values for the primary key are likely read in together. If

you need both in your query or in queries executed shortly after each other, the second

row is already available in the buffer pool.

You should now have a good background knowledge of indexes in MySQL and how

InnoDB uses indexes including its organization of data. It is time to put it all together

and discuss index strategies.

Chapter 14 Indexes

338

 Index Strategies
The big question when it comes to indexes is what to index and secondly what kind of

index and which index features to use. It is not possible to create ultimate step-by-step

instructions to ensure the optimal indexes; for that, experience and good understanding

of the schema, data, and queries are required. It is however possible to give some general

guidelines as it will be discussed in this section.

The first thing to consider is when you should add the indexes; whether you should

do it at the time you originally create the table or later. Then there is the choice of

primary key and the considerations how to choose it. Finally, there are the secondary

indexes including how many columns to add to the index and whether the index can be

used as a covering index.

 When Should You Add or Remove Indexes?
Index maintenance is a never-ending task. It starts when you first create the table

and continues throughout the lifetime of the table. Do not take index work lightly – as

mentioned, the difference between great and poor indexing can be several orders of

magnitude. You cannot buy yourself out of a situation with poor indexes by pouring more

hardware resources at it. Indexes affect not only the raw query performance but also

locking (as will be further discussed in Chapter 18), memory usage, and CPU usages.

When you create the table, you should particularly spend time on choosing a good

primary key. The primary key will typically not change during the life of the table, and if

you do decide to change the primary key, with index-organized tables it will necessarily

require a full rebuild of the table. Secondary indexes can to a larger degree be tuned over

time. In fact, if you plan on importing a large amount of data for the initial population

of the table, it is best to wait to add the secondary indexes until after the data has been

loaded. A possible exception is unique indexes as they are required for data validation.

Once the table has been created and populated with its initial data, you need to

monitor the usage of the table. There are two views in the sys schema that can be used to

find tables and statements with full table scans:

• schema_tables_with_full_table_scans: This view shows all

tables where rows are read without using an index and ordered in

descending order by that number. If a table has a large number of

rows read without using an index, you can look for queries using

Chapter 14 Indexes

339

this table and see if indexes can help. The view is based on the

table_io_waits_summary_by_index_usage Performance Schema

table which can also be used directly, for example, if you want to do a

more advanced analysis, such as finding the percentage of rows read

without using an index.

• statements_with_full_table_scans: This view shows the

normalized version of the statements that do not use an index at

all or do not use a good index. The statements are ordered by the

number of times they have been executed without using an index at

all and then by the number of times they have not been using a good

index – both in descending order. The view is based on the events_

statements_summary_by_digest Performance Schema table.

Chapters 19 and 20 will cover the use of these views and the underlying Performance

Schema tables in more detail.

When you identify that queries can benefit from additional indexes, then you need to

evaluate whether the cost of having an extra benefit is worth the gain when executing the

query.

At the same time, you also need to keep an eye on whether you have indexes that are

no longer used. The Performance Schema and the sys schema are particularly useful

to find indexes that are unused or not used very much. Three sys schema views that are

useful are

• schema_index_statistics: This view has statistics for how often

an index is used to read, insert, update, and delete rows using

a given index. Like the schema_tables_with_full_table_scan

view, schema_index_statistics is based on the table_io_waits_

summary_by_index_usage Performance Schema table.

• schema_unused_indexes: This view will return the names of the

indexes that have not been used since the data was last reset (no

longer than since the last restart). This view is also based on the

table_io_waits_summary_by_index_usage Performance Schema

table.

Chapter 14 Indexes

340

• schema_redundant_indexes: If you have two indexes covering the

same columns, you double the amount of effort for InnoDB to keep

the indexes up to date and add a burden on the optimizer, but do not

gain anything. The schema_redundant_indexes view can as the name

suggests be used to find redundant indexes. The view is based on the

STATISTICS Information Schema table.

When you use the first two of these views, you must remember that the data comes

from in-memory tables in the Performance Schema. If you have some queries that are

only executed very occasionally, the statistics may not reflect what your overall index

needs are. This is one of the cases where the invisible index feature can come in handy as

it allows you to disable the index and at the same time keep the index until you are sure

it is safe to drop it. If it turns out some rarely executed queries need the index, you can

easily enable the index again.

As mentioned, the first consideration is what to choose as the primary key. Which

columns should you include? That is the next thing to discuss.

 Choice of the Primary Key
When you work with index-organized tables, the choice of the primary index is very

important. The primary key can impact the ratio between random and sequential I/O,

the size of secondary indexes, and how many pages need to be read into the buffer pool.

The primary key for InnoDB tables is always a B+-tree index.

An optimal primary key with respect to the clustered index is as small (in bytes) as

possible, keeps increasing monotonically, and groups the rows you query frequently and

within short time of each other. In practice, it may not be possible to fulfill all of this in

which case you need to make the best possible compromise. For many workloads, an

auto-incrementing unsigned integer, either int or bigint depending on the number

of rows that are expected for the table, is a good choice; however, there may be special

considerations such as requirements for uniqueness across multiple MySQL instances.

The most important feature of the primary key is that it should be as sequential as

possible and immutable. If you change the value of the primary key for a row, it requires

moving the whole row to the new position in the clustered index.

Chapter 14 Indexes

341

Tip an unsigned integer that auto-increments is often a good choice as a primary
key. It keeps incrementing monotonically, it does not require much storage, and it
groups recent rows together in the clustered index.

You may think that the hidden primary key may be as good a choice for the clustered

index as any other column. After all, it is an auto-incrementing integer. However, there

are two major drawbacks of the hidden key: it only identifies the row for that local

MySQL instance, and the counter is global to all InnoDB tables (in the instance) without

a user-defined primary key. That the hidden key is only useful locally means that in

replication, the hidden value cannot be used to identify which row to update on replicas.

That the counter is global means that it can become a point of contention and cause

performance degradation when inserting data.

The bottom line is that you should always explicitly define what you want as your

primary key. For secondary indexes, there are more choices as it will be seen next.

 Adding Secondary Indexes
Secondary indexes are all those indexes that are not the primary key. They can be either

unique or not unique, and you can choose between all the supported index types and

features. How do you choose which indexes to add? This section will make it easier for

you to make that decision.

Be careful not to add too many indexes to a table up front. Indexes have overhead,

so when you add indexes that end up not being used, queries and the system overall will

perform worse. This does not mean you should not add any secondary indexes when

you create the table. It’s just that you need to put some thought into it.

Secondary indexes can be used in several ways when executing queries. Some of

these are as follows:

• Reduce the rows examined: This is used when you have a WHERE

clause or join condition to find the required rows without scanning

the whole table.

• Sort data: B-tree indexes can be used to read the rows in the order

the query needs allowing MySQL to bypass the ordering step.

Chapter 14 Indexes

342

• Validate data: This is what the uniqueness in unique indexes is

used for.

• Avoid reading the row: Covering indexes can return all the required

data without reading the whole row.

• Find MIN() and MAX() values: For GROUP BY queries, the minimum

and maximum values for an indexed column can be found by just

checking the first and last records in the index.

The primary key can obviously also be used for all these purposes. From a query

perspective, there is no difference between a primary key and a secondary key.

When you need to decide whether to add an index, you need to ask yourself which of

the purposes the index is needed for and whether it will be able to fulfill them. Once you

have confirmed that it is the case, you can look at which order columns should be added

in for multicolumn indexes and whether additional columns should be added. The next

two subsections will discuss this in more detail.

 Multicolumn Index
You can add up to 16 columns or functional parts to an index as long as you do not

exceed the maximum width of the index. This applies both for the primary key and for

secondary indexes. InnoDB has a limit of 3072 bytes per index. If you include strings

using variable width character sets, then it is the maximum possible width that counts

toward the index width.

An advantage of adding multiple columns to an index is that it allows you to use

the index for multiple conditions. This is a very effective way to improve the query

performance. Consider, for example, a query looking for cities in a given country with a

minimum requirement of the population of the city:

SELECT ID, Name, District, Population

 FROM world.city

 WHERE CountryCode = 'AUS'

 AND Population > 1000000;

You can use an index on the CountryCode column to look for cities with the country

code set to AUS, and you can use an index on the Population column to look for cities

with a population greater than 1 million. Even better, you can combine it into one index

that includes both columns.

Chapter 14 Indexes

343

How you do this is important. The country code uses an equal reference, whereas the

population is a range search. Once a column in an index is used for a range search or for

sorting, no more columns in the index can be used except as part of a covering index. For

this example, you need to add the CountryCode column before the Population column

in order to use the index for both conditions:

ALTER TABLE world.city

 ADD INDEX (CountryCode, Population);

In this example, the index can even be used to order the result using the population.

If you need to add several columns that all are used for equality conditions, then

there are two things to consider: which columns are most often used and how well does

the column filter the data. When there are multiple columns in an index, MySQL will

only use a left prefix of the index. If you, for example, have an index (col_a, col_b,

col_c), you can only use the index to filter on col_b, if you also filter on col_a (and that

must be an equality condition). So you need to choose the order carefully. In some cases,

it can be necessary to add more than one index for the same columns where the column

order differs between the indexes.

If you cannot decide in which order to include the columns based on the usage, then

add them with the most selective column first. The next chapter will discuss selectivity of

indexes, but in short, the more distinct values a column has, the more selective it is. By

adding the most selective columns first, you will more quickly narrow down the number

of rows that the part of the index contains.

You may also want to include columns that are not used for filtering. Why would you

want to do that? The answer is that it can help form a covering index.

 Covering Indexes
A covering index is an index on a table where the index for a given query includes all

columns needed from that table. This means that when InnoDB reaches the leaf page

of the index, it has all the information it needs, and it does not need to read the whole

row. Depending on your table, this can potentially give a good improvement in query

performance, particularly if you can use it to exclude large parts of the row such as large

text or blob columns.

Chapter 14 Indexes

344

You can also use a covering index to simulate a secondary clustered index.

Remember that the clustered index is just a B+-tree index with the whole row included in

the leaf pages. A covering index has a complete subset of the rows in the leaf pages and

thus emulates a clustered index for that subset of columns. Like for a clustered index,

any B- tree index groups similar values together, and thus it can be used to reduce the

number of pages read into the buffer pool, and it helps doing sequential I/O when you

perform an index scan.

There are a couple of limitations for a covering index compared to a clustered index

though. A covering index only emulates a clustered index for reads. If you need to write

data, the changes always must access the clustered index. Another thing is that due to

InnoDB’s multi-version concurrency control (MVCC), even when you use a covering

index, it is necessary to check the clustered index to verify whether another version of

the row exists.

When you add an index, it is worth considering which columns will be needed for the

queries the index is intended for. It may be worth adding any extra columns used in the

select part even if the index will not be used for filtering or sorting on those columns. You

need to balance the benefit of the covering index with the added size of the index. Thus,

this strategy is mostly useful if you just miss one or two small columns. The more queries

the covering index benefits, the more extra data you can accept adding to the index.

 Summary
This chapter has been a journey through the world of indexes. A good indexing

strategy can mean the difference of a database coming to a grinding halt and a well-

oiled machine. Indexes can help reduce the number of rows examined in queries, and

additionally covering indexes can avoid reading the whole row. On the other hand,

there are overheads associated with indexes both in terms of storage and ongoing

maintenance. It is thus necessary to balance out the need for indexes and the cost of

having them.

MySQL supports several different index types. The most important is B-tree indexes

which are also what InnoDB uses to organize the rows in its index-organized tables using

a clustered index. Other index types include full text indexes, spatial (R-tree) indexes,

multi-valued indexes, and hash indexes. The latter type is special in InnoDB as it is only

supported using the adaptive hash index feature which decides which hash indexes to

add automatically.

Chapter 14 Indexes

345

There is a range of index features that have been discussed. Functional indexes can

be used to index the result of using a column in an expression. Prefix indexes can be

used to reduce the size of indexes for text and binary data types. Invisible indexes can be

used during a rollout of new indexes or when soft deleting existing indexes. Descending

indexes improve the effectiveness of traversing the indexed values in descending order.

Indexes also play a role in connection with partitioning, and you can use partitioning to

effectively implement support for using two indexes for a single table in a query. Finally,

MySQL is able to auto-generate indexes in connection with subqueries.

The final part of the chapter started out with the specifics of InnoDB and the

considerations of using index-organized tables. These are optimal for primary key–

related queries but work less well for data inserted in random primary key order and

querying data by secondary indexes.

The last section discussed indexing strategies. Choose your primary key carefully

when you first create the table. Secondary indexes can to a larger extent be added and

removed over time based on observations of metrics. You can use multicolumn indexes

to use the index to filter on multiple columns and/or for sorting. Finally, covering

indexes can be used to emulate secondary clustered indexes.

This concludes the discussion of what indexes are and when to use them. There

is a little more to indexes as will be seen in the next chapter when index statistics are

 discussed.

Chapter 14 Indexes

347
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_15

CHAPTER 15

Index Statistics
In the previous chapter, you learned about indexes. It was mentioned that the optimizer

evaluates each index to decide whether to use the index or not. How does it do that? That

is largely the topic of this chapter where index statistics, how to view information about

the index statistics, and how to maintain the statistics are covered.

The chapter starts out with a discussion of what index statistics are and how InnoDB

works with index statistics. Then you will learn about transient and persistent statistics.

The rest of the chapter covers how you can monitor the statistics and update them.

 What Are Index Statistics?
When MySQL decides whether to use an index or not use it, it boils down to how

effective MySQL thinks the index is for the query. Remember that when you use a

secondary index, there will effectively be an extra primary key lookup to get to the data.

Secondary indexes are also not ordered in the same way as the rows, so using the index

will in general mean random I/O (this can be helped using covering indexes). A table

scan on the other hand is to a larger degree sequential I/O. So, row for row, doing a table

scan is cheaper than finding the same row using a secondary index.

This means that for an index to be effective, it must filter out a large part of the table.

Exactly how much must be filtered out depends on the performance characteristics of your

hardware, how much of the table is in the buffer pool, the table definition, and more. In

the days of the old spinning disks, the rule of thumb used to be that if more than 30% of the

rows were needed, then a table scan is preferred. The more of the rows that are in memory

and the better the random I/O performance of your disks, the higher this threshold will be.

Note Covering indexes changes this picture as they reduce the amount of
random I/O required from jumping to the actual row data.

348

This is where index statistics come into the picture. The optimizer – which is the part

of MySQL that decides which query plan to use – needs some simple way to determine

how good an index is for a given query plan. The optimizer obviously knows which

columns the index includes, but additionally it needs some measure of how well the

index filters the rows. This information is what the index statistics provide. Thus, index

statistics are a measure of the selectivity of the index. There are two main statistics: the

number of unique values and the number of values in some range.

The number of unique values is what is most often thought of when discussing index

statistics. That is known as the cardinality of the index. The higher the cardinality, the

more unique values. For the primary key and other unique indexes not allowing NULL

values, the cardinality is the number of rows in the table as all values must be unique.

The number of rows in a given range is requested by the optimizer on a query-by-

query basis. This is useful for range conditions such as WHERE val > 5 as well as IN()

conditions or a series of OR conditions. One exception that this information is collected

ad hoc for a single query is histograms which MySQL 8 supports. Histograms will be

discussed in the next chapter.

In short, index statistics are approximate information about the distribution of data

in an index. In MySQL it is the storage engines that are responsible for providing the

index statistics. So it is worth looking more into how InnoDB handles index statistics.

 InnoDB and Index Statistics
It is the storage engine that provides the index statistics to the server layer and the

optimizer. Thus, it is important to understand how InnoDB determines its statistics.

InnoDB supports two ways to store the statistics: persistent and transient. Either way,

the statistics are determined the same way. This section will start out with a discussion

of how the statistics are collected and then go through the specifics of persistent and

transient statistics.

 How Statistics Are Collected
InnoDB calculates its index statistics by analyzing random leaf pages of the index. It may,

for example, be that 20 random index pages are sampled (this is also called 20 index

dives), and it is examined which index values those pages consist of. InnoDB then scales

this based on the total size of the index.

Chapter 15 Index StatIStICS

349

An important implication of this is that InnoDB index statistics are not exact. When

you see that a given query condition means that 100 rows will be read, it is only an

estimate based on the samples analyzed. This even includes the primary key and other

unique indexes as well as the total number of rows reported in the information_schema.

TABLES view. The estimated number of rows in the table is the same as the estimated

cardinality of the primary key.

Another consideration is how to handle NULL values as NULL has the property that

it does not equal NULL. So, when you collect statistics, should you group all NULL values

into one bucket or consider them separate? The optimal solution depends on your

queries. Treating all NULL values as different values increases the cardinality of the index,

particularly if you have many rows with NULL for the indexed column. This is good for

queries looking for non-NULL values. On the other hand, if you treat all NULLs as the

same, it reduces the cardinality which makes sense for queries where NULL is included.

You can choose how InnoDB should handle NULL values using the innodb_stats_method

option. It can take one of three values:

• nulls_equal: In this case, all NULL values are considered the same.

This is the default. If you are not sure which value to choose, choose

nulls_equal.

• nulls_unequal: In this case, NULL values are considered different

values.

• nulls_ignored: In this case, NULL values are ignored when collecting

the statistics.

Why are estimates used instead of exact statistics (meaning a full index scan)? The

reason is performance. For large indexes, it will take a long time to perform complete

index scans. It will in general also include disk I/O which makes the performance issue

even worse. To avoid that calculating the index statistics has an adverse effect on the

query performance, it has been chosen to limit the scans to a relatively small number of

pages.

 Sample Pages
The downside of using approximate statistics is that they are not always a good

representation of the actual distribution of values. When this happens, the optimizer

may choose the wrong index or the wrong join order causing slower than necessary

Chapter 15 Index StatIStICS

350

queries. However, it is also possible to adjust the number of random index dives to make.

How to do this depends on whether persistent or transient statistics are used:

• Persistent statistics use the innodb_stats_persistent_sample_

pages option as the default number of pages to sample. The table

option STATS_SAMPLE_PAGES can be used to specify the number of

pages for a given table.

• Transient statistics use the number of pages specified by the innodb_

stats_transient_sample_pages option for all tables.

The two subsections on persistent and transient statistics have more details for the

specifics of the two ways to handle index statistics.

What does it mean to set the number of sample pages to a given value? It depends

on the number of columns in the index. If there is just a single column, the value literally

means that that number of leaf pages is sampled. However, for multicolumn indexes, the

number of pages is per column. If you, for example, set the number of sample pages to

20 and have four columns in an index, a total of 4*20=80 pages are sampled.

Note In practice, index statistics sampling is more complex than described in this
chapter. For example, it is not always necessary to descend all the way to the leaf
pages. Consider when two neighboring non-leaf nodes have the same value. then
it can be concluded that all leaf pages of the leftmost (as per the ordering) part
have the same value. If you are interested in learning more, a good starting point is
the comment at the top of the storage/innobase/ dict/dict0stats.cc file
in the source code: https://github.com/mysql/mysql-server/blob/8.0/
storage/innobase/dict/dict0stats.cc.

How many pages must be examined to get a good estimate? That depends on the

table. If the data is uniform, that is, roughly the same number of rows per index value,

then only a relatively small number of pages need to be examined and the default

number of pages is usually enough. On the other hand, if you have data that has a very

irregular distribution, you may need to increase the number of pages sampled. An

example of data that is very irregular is the status of tasks in a queue. Over time, most

tasks will be in a completed status. In the worst case, you may experience that all the

random dives see the same status making InnoDB conclude there is only one value and

the index is worthless as a filter.

Chapter 15 Index StatIStICS

https://github.com/mysql/mysql-server/blob/8.0/storage/innobase/dict/dict0stats.cc
https://github.com/mysql/mysql-server/blob/8.0/storage/innobase/dict/dict0stats.cc

351

Tip For data with just a few rows with the values used for filtering, histograms as
discussed in the next chapter can be very useful to improve the query plan.

The table size is also a factor to consider. The larger the table, in general the more

pages must be examined to get a good estimate. The reason is that the larger the table,

the more likely entire leaf pages point to rows with the same index value. This lowers the

value of each sampled page, so to compensate, it is necessary to sample more pages.

A special case is when InnoDB has been configured to make more index dives than

there are leaf pages. In that case, InnoDB examines all the leaf pages and stops at that

point. This will give as accurate statistics as possible. If there are no active transactions

for the duration of the analysis, the statistics will be exact for that point in time. That

includes the number of pages in the table. You will learn how to find the number of leaf

pages in the index and table for tables using persistent statistics later in this chapter.

In practice, it is impossible to use exact values. InnoDB supports multi-versioning

to allow for high concurrency of transactions even if they involve writes. Since each

transaction has its own view of the data, exact statistics would imply each transaction

has its own index statistics. That is not feasible, so how does InnoDB handle that? That’s

the next thing to consider.

 Transaction Isolation Level
A related question is what transaction isolation level is used when collecting the

statistics. InnoDB supports four isolation levels: read uncommitted, read committed,

repeatable read (the default), and serializable. When collecting index statistics, the

choice has been made to use read uncommitted. This makes sense as it is a good

assumption that most transactions end up being committed or if they fail that they are

retried. The statistics are for future queries, so there is little reason to add overhead of

maintaining a read view while gathering the statistics.

However, this does have implications for transactions that make large changes to a

table. For an extreme (but not unlikely) case, consider a cache table where the data is

refreshed by a transaction consisting of two steps:

 1. Delete all existing data from the table.

 2. Rebuild the table with updated data.

Chapter 15 Index StatIStICS

352

Index statistics are by default updated when “a large part” of the table has changed.

(What constitutes “a large part” will be covered in the “Persistent Index Statistics” and

“Transient Index Statistics” sections later in the chapter.) This means that when step

1 completes, InnoDB will recalculate the statistics. This is easy – the table is empty, so

there are none. If a query executes just at that point, the optimizer will see the table as

empty. However, unless the query is executed in the read uncommitted transaction

isolation level, the query will still read all the old rows, and it is likely the query plan

causes inefficient query execution.

For issues like the one that has just been discussed, you need persistent statistics as

there are better configuration options to deal with special cases. Before getting to discuss

the details of persistent statistics, it is worth learning how to choose between persistent

and transient statistics.

 Configuring Statistics Type
As mentioned, there are two ways for InnoDB to store the index statistics. It can either

use persistent storage, or it can use transient storage. You can set the default method

for tables using the innodb_stats_persistent option. When this is set to 1 or ON (the

default), then persistent statistics are used; setting it to 0 or OFF changes the method to

transient statistics. You can also configure the method for each table using the STATS_

PERSISTENT table option. For example, to enable persistent statistics for the world.city

table, you can use ALTER TABLE like

ALTER TABLE world.city

 STATS_PERSISTENT = 1;

The STATS_PERSISTENT option can also be set when a new table is created using the

CREATE TABLE statement. For STATS_PERSISTENT only 0 and 1 can be used as values.

Persistent index statistics have been the default since they got introduced and are

also the recommended choice unless you encounter problems that testing shows

that transient statistics work around. There are some differences between persistent

and transient statistics that are important to understand. These differences are

discussed next.

Chapter 15 Index StatIStICS

353

 Persistent Index Statistics
Persistent index statistics were introduced in MySQL 5.6 to make query plans more stable

than for the older transient index statistics. As the name suggests, with persistent index

statistics enabled, then the statistics are saved so they are not lost when MySQL is restarted.

There are more differences than the persistence alone though as will become clear.

Other than stable query plans, persistent statistics allow detailed configuration of

the number of pages to sample and have good monitoring, and you can even directly

query the tables where the statistics are saved. Since monitoring has a large overlap with

transient statistics, that is deferred until later in the chapter, so this section will focus on

the configuration of persistent statistics and the tables storing the statistics.

 Configuration
Persistent statistics can be configured to give a good balance between the cost of

collecting statistics and the accuracy of the statistics. Unlike transient statistics, it is

possible to configure the behavior both at the global level and per table. The global

configuration serves as the default when table-specific options are not set.

There are three global options that are specific to persistent statistics. These are

• innodb_stats_persistent_sample_pages: The number of pages to

sample. The more pages, the more accurate statistics but also the

higher the cost. If the value is larger than the number of leaf pages for

an index, the whole index is sampled. The default value is 20.

• innodb_stats_auto_recalc: Whether to automatically update the

statistics when more than 10% of the rows in the table have been

changed. The default is enabled (ON).

• innodb_stats_include_delete_marked: Whether to include rows

that are marked as deleted but not yet committed in the statistics. This

option will be discussed more shortly. The default is disabled (OFF).

The innodb_stats_persistent_sample_pages and innodb_stats_auto_recalc

options can also be set per table. This allows you to fine-tune the requirements based

on the size, data distribution, and workload associated with specific tables. While

micromanaging is not recommended, it can be used to handle cases such as the cache

Chapter 15 Index StatIStICS

354

table scenario discussed earlier as well as other tables that cannot be covered by a

general default value.

The recommendation is to try to find a good compromise for innodb_stats_

persistent_sample_pages that gives good enough statistics so the optimizer can

determine the best query plan while avoiding excessive scans to calculate the statistics.

If you find that your queries perform badly because inaccurate index statistics cause

the optimizer to choose an inefficient plan, then you need to increase the number of

sampled pages. On the other hand, you can consider decreasing the number of sampled

pages, if ANALYZE TABLE takes too long. You can then use the table-specific options as

described shortly to decrease or increase the number of sampled pages for specific

tables as required.

For most tables, it is recommended to enable innodb_stats_auto_recalc. This

will help ensure the statistics are not outdated due to a large amount of changes. The

auto-recalculation occurs in the background, so it does not delay the response to the

application that triggered the update. The table will be queued for an index statistics

update when more than 10% of the table has changed. To avoid constantly recalculating

statistics for small tables, there is also a requirement that there must be at least 10

seconds between each index statistics update.

There are of course exceptions where automatically recalculating the statistics is not

desired, for example, if you have a cache table to make reporting queries execute faster

and the data in the cache table is completely recreated from time to time but otherwise

does not change. In that case, it can be an advantage to disable auto-recalculation of the

statistics and explicitly recalculate them when the rebuild is done. Another option is to

include delete marked rows in the statistics.

Remember that index statistics are calculated using the read uncommitted

transaction isolation level. While this is in most cases what gives the best statistics, there

is an exception. When a transaction temporarily completely changes the distribution of

data, it can lead to incorrect statistics. A complete rebuild of a table is the most extreme

case and where the issue is most often seen. It was for cases like that the innodb_stats_

include_delete_marked option was introduced. Instead of considering uncommitted

deleted rows as deleted, InnoDB will still include them in the statistics. The option only

exists as a global option, so it will affect all tables even if you only have one table that

suffers from the issue. As mentioned, an alternative is to disable auto-recalculation of

statistics for the affected tables and handle it yourself.

Chapter 15 Index StatIStICS

355

Tip If you have transactions that make large changes to a table such as deleting
all rows and then rebuilding the table, consider disabling automatic recalculation of
index statistics for the table or enable innodb_stats_include_delete_marked.

Thus far, only the global options have been mentioned. How do you change the

index statistics settings for a table? As you can use the STATS_PERSISTENT table option to

override the global value of innodb_stats_persistent for a table, there are options to

control how persistent statistics behave for the table. The table options are

• STATS_AUTO_RECALC: Overwrites whether automatic recalculation of

index statistics is enabled for the table.

• STATS_SAMPLE_PAGES: Overwrites the number of pages sampled for

the table.

You can set these options either when you create the table using CREATE TABLE or

later using ALTER TABLE as it is shown in Listing 15-1.

Listing 15-1. Setting the persistent statistics options for a table

mysql> CREATE SCHEMA IF NOT EXISTS chapter_15;

Query OK, 1 row affected (0.4209 sec)

mysql> use chapter_15

Default schema set to `chapter_15`.

Fetching table and column names from `chapter_15` for auto-completion...

Press ^C to stop.

mysql> CREATE TABLE city (

 City_ID int unsigned NOT NULL auto_increment,

 City_Name varchar(40) NOT NULL,

 State_ID int unsigned DEFAULT NULL,

 Country_ID int unsigned NOT NULL,

 PRIMARY KEY (City_ID),

 INDEX (City_Name, State_ID, City_ID)

) STATS_AUTO_RECALC = 0,

 STATS_SAMPLE_PAGES = 10;

Query OK, 0 rows affected (0.0637 sec)

Chapter 15 Index StatIStICS

356

mysql> ALTER TABLE city

 STATS_AUTO_RECALC = 1,

 STATS_SAMPLE_PAGES = 20;

Query OK, 0 rows affected (0.0280 sec)

Records: 0 Duplicates: 0 Warnings: 0

First, the table city is created with auto-recalculation disabled and ten sample

pages. Then the settings are changed to enable auto-recalculation and increase the

number of sample pages to 20. Notice how the ALTER TABLE returns 0 rows affected.

Changing the persistent stats options only changes the metadata for the table, so they

occur instantly and do not affect the data. This means you can change the settings as

needed without worrying about performing an expensive operation. For example, you

may want to disable auto-recalculation during bulk operations.

With the opportunities to tune the index statistics, it is important to be able to look

into the data collected. There are some general methods for this that will be discussed

in the “Monitoring” section after the discussion of transient statistics. However, what

makes persistent statistics persistent is that they are stored in tables and those also

provide valuable information.

 Index Statistics Tables
InnoDB uses two tables in the mysql schema for storing the data related to persistent

statistics. These can be useful not only to investigate the statistics and the data that was

sampled but also to learn more about the indexes in general.

The table that is most often useful to look at is the innodb_index_stats table. This

table has several rows per B-tree index providing information about the number of

unique values (the cardinality) for each part of the index, the number of leaf pages in the

index, and the total size of the index. Table 15-1 summarizes the columns in the table.

Chapter 15 Index StatIStICS

357

The primary key consists of the columns database_name, table_name, index_name,

and stat_name. The database, table, and index name define which index the statistics

are for. The last_update column is useful to see how long time has passed since the

statistics were last updated. The stat_name and stat_value are what give you the actual

statistics. The sample_size is the number of leaf pages that were examined to determine

the statistics. This will be the smaller of the number of leaf pages in the index and the

sample pages set for the table. Finally, the stat_description column gives some more

information about the statistic. For the cardinalities, the description shows which

columns in the index were included and there will be one row per column (an example

is provided shortly).

As mentioned, there are several statistics included in the innodb_index_stats table.

The name can have one of the following values:

• n_diff_pfxNN: The cardinality for the first NN columns in the index.

NN is 1-based, so for an index with two columns, n_diff_pfx01

and n_diff_pfx02 exist. For the rows with these statistics, stat_

description includes the columns included for the statistic.

Table 15-1. The innodb_index_stats table

Column Name Data Type Description

database_name varchar(64) the schema where the table with the index is

located.

table_name varchar(199) the name of the table with the index.

index_name varchar(64) the name of the index.

last_update timestamp When the index statistics were last updated.

stat_name varchar(64) the name of the statistic that the stat_value is

for. See also after this table.

stat_value bigint unsigned the value for the statistic.

sample_size bigint unsigned how many pages that were sampled.

stat_

description

varchar(1024) a description of the statistic. For the cardinalities, it

is the columns included in calculating the cardinality.

Chapter 15 Index StatIStICS

358

• n_leaf_pages: The total number of leaf pages in the index. You can

compare this to the sample size for the n_diff_pfxNN statistics to

determine the fraction of the index that has been sampled.

• size: The total number of pages in the index. This includes non-leaf

pages.

It can be useful to look at an example to get a better understanding of what this data

represents. The world.city table has two indexes: the primary key which is on the ID

column and the CountryCode index which is on the CountryCode column. Listing 15-2

shows the statistics for the two indexes. Note that the statistics values may be different if

you execute the same query, and if you still have the extra indexes added in Chapter 14,

there will be more rows.

Listing 15-2. The innodb_index_stats table for the world.city table

mysql> SELECT index_name, stat_name,

 stat_value, sample_size,

 stat_description

 FROM mysql.innodb_index_stats

 WHERE database_name = 'world'

 AND table_name = 'city'\G

*************************** 1. row ***************************

 index_name: CountryCode

 stat_name: n_diff_pfx01

 stat_value: 232

 sample_size: 7

stat_description: CountryCode

*************************** 2. row ***************************

 index_name: CountryCode

 stat_name: n_diff_pfx02

 stat_value: 4079

 sample_size: 7

stat_description: CountryCode,ID

Chapter 15 Index StatIStICS

359

*************************** 3. row ***************************

 index_name: CountryCode

 stat_name: n_leaf_pages

 stat_value: 7

 sample_size: NULL

stat_description: Number of leaf pages in the index

*************************** 4. row ***************************

 index_name: CountryCode

 stat_name: size

 stat_value: 8

 sample_size: NULL

stat_description: Number of pages in the index

*************************** 5. row ***************************

 index_name: PRIMARY

 stat_name: n_diff_pfx01

 stat_value: 4188

 sample_size: 20

stat_description: ID

*************************** 6. row ***************************

 index_name: PRIMARY

 stat_name: n_leaf_pages

 stat_value: 24

 sample_size: NULL

stat_description: Number of leaf pages in the index

*************************** 7. row ***************************

 index_name: PRIMARY

 stat_name: size

 stat_value: 25

 sample_size: NULL

stat_description: Number of pages in the index

7 rows in set (0.0007 sec)

Rows 1–4 are for the CountryCode index, whereas rows 5–7 are for the primary key.

The first thing to notice is that there are both the n_diff_pfx01 and n_diff_pfx02

statistics for the CountryCode index. How come, considering the index only included one

column? Remember that InnoDB uses a clustered index and that nonunique indexes

Chapter 15 Index StatIStICS

360

always get the primary key appended since it is anyway needed to locate the actual rows.

That is what you see here with n_diff_pfx01 representing the CountryCode column and

n_diff_pfx02 the combination of the CountryCode and ID columns.

The CountryCode index is eight pages large, of which seven pages are leaf nodes.

That means that the index has two levels with the leaf nodes being level 0 and the root

node being level 1. You are encouraged to go back to the discussion in the previous

chapter about B-tree indexes and review it while looking at the size statistics for some of

the indexes in your tables.

The primary key is simpler as it just consists of one column. Here there are 24 leaf

pages, so only a subset of the index has been sampled. (Remember, for the primary

key, the index is the table.) A consequence of this is that the statistics are not exact. The

n_diff_pfx01 for the primary key predicts 4188 unique values. Since it is the primary

key, that is also the estimate for the total number of rows. However, if you look at the

statistics for CountryCode, it is predicted that there are 4079 different combinations of the

CountryCode and ID values. Since the CountryCode index only has seven leaf pages, all

pages have been examined, and the row estimate is exact.

The other table related to persistent statistics is the innodb_table_stats table. It is

similar to innodb_index_stats, except that it is aggregate statistics for the whole table

that is included. The columns of innodb_table_stats are summarized in Table 15-2.

Table 15-2. The innodb_table_stats table

Column Name Data Type Description

database_name varchar(64) the schema where the table is located.

table_name varchar(199) the name of the table.

last_update timestamp When the statistics for the table were last

updated.

n_rows bigint unsigned the estimated number of rows in the table.

clustered_index_size bigint unsigned the number of pages in the clustered index.

sum_of_other_index_

sizes

bigint unsigned the total number of pages for secondary

indexes.

Chapter 15 Index StatIStICS

361

The primary key consists of the columns database_name and table_name. An

important point to note with the table statistics is that they are as approximate as the

index statistics. The number of rows in the table is simply the estimated cardinality of the

primary key. Similarly, the clustered index size is the same as the size of the primary key

from the innodb_index_stats table. The number of secondary index pages is the sum of

the size of each of the secondary indexes. Listing 15-3 shows an example of the content

of the innodb_table_stats table for the world.city table using the same index statistics

as in the previous example.

Listing 15-3. The innodb_table_stats table for the world.city table

mysql> SELECT *

 FROM mysql.innodb_table_stats

 WHERE database_name = 'world'

 AND table_name = 'city'\G

*************************** 1. row ***************************

 database_name: world

 table_name: city

 last_update: 2019-05-25 13:51:40

 n_rows: 4188

 clustered_index_size: 25

sum_of_other_index_sizes: 8

1 row in set (0.0005 sec)

Tip the innodb_index_stats and innodb_table_stats are regular tables.
It is useful to include the tables in backups, so you can go back and compare the
statistics if the query plan suddenly changes.

It is also possible to update the table for users with the UPDATE privilege. this can
seem like a very useful property, but be careful. If you do not know the correct
statistics, you will end up with very poor query plans. Manually modifying the index
statistics should almost never be done. If done, the changes only take effect after
flushing the table.

Chapter 15 Index StatIStICS

362

If you feel the discussion of the information that is available in the innodb_index_

stats and innodb_table_stats sounds similar to what you may be used to see with the

SHOW INDEX statement and the TABLES and STATISTICS Information Schema tables, then

you are right. There is some overlap. Since these sources also apply to transient statistics,

discussion of them will be deferred until after the transient index statistics have been

covered.

 Transient Index Statistics
Transient index statistics is the original method implemented in InnoDB to handle

index statistics. As the name suggests, the statistics are not persistent, that is, they do not

persist when MySQL is restarted. Instead, the statistics are calculated when the table is

first opened (among other times) and kept only in memory. Since the statistics are not

persisted, they are less stable, and thus it is more likely to see changes to the query plans.

There are two configuration options to influence the behavior of transient statistics.

These are

• innodb_stats_transient_sample_pages: The number of pages to

sample when updating the index statistics. The default is 8.

• innodb_stats_on_metadata: Whether to recalculate the statistics

when metadata for the table is queried. The default is OFF and has

been so since MySQL 5.6.

The innodb_stats_transient_sample_pages option is equivalent to innodb_stats_

persistent_sample_pages except it applies to tables using transient statistics. Tables

using transient statistics not only have the statistics recalculated when they are first

opened but also when just 6.25% (1/16) of the rows have changed with a requirement

that at least 16 updates have occurred. Additionally, transient statistics do not use

background threads when the statistics are auto-recalculated, so updates are more

likely to impact the performance. For this reason, the default value of innodb_stats_

transient_sample_pages is just eight pages.

If you want to have the transient index statistics updated more often, you can enable

the innodb_stats_on_metadata option. When that is enabled, querying the TABLES and

STATISTICS tables in the Information Schema or using their equivalent SHOW statements

triggers an update of the index statistics. In practice, there is rarely any reason for this,

and it is safe to leave the option turned off.

Chapter 15 Index StatIStICS

363

There are no special tables available for transient statistics. There are however the

tables and statements that are available for all tables in MySQL.

 Monitoring
The index statistics are important for the optimizer to help determine the optimal way to

execute a query. Thus, it is also important to know how you can check the index statistics

for your tables. It has already been discussed that for persistent statistics there are the

mysql.innodb_index_stats and mysql.innodb_table_stats tables. There are however

also general methods, and those are the ones that will be discussed here.

Tip remember that the information_schema_stats_expiry variable affects
how often the data dictionary refreshes its view of the data related to index statistics.

 Information Schema STATISTICS View
The main table for getting detailed information about the index statistics is the

STATISTICS view in the Information Schema. The view not only contains the index

statistics themselves but also meta-information about the indexes. In fact, you can

recreate the index definitions based on the data in the STATISTICS view. This is the view

that was used in the previous chapter to look up the index names on a table.

Table 15-3 contains a summary of the columns in the view. You will often only need

a subset of the columns, but it is convenient to have access to all the information for

the cases when it is needed. The CARDINALITY column is the only one affected by the

information_schema_stats_expiry variable.

Chapter 15 Index StatIStICS

364

Table 15-3. The STATISTICS Information Schema view

Column Name Data Type Description

TABLE_

CATALOG

varchar(64) the catalogue the table belongs to. the value will always be def.

TABLE_SCHEMA varchar(64) the schema where the table is located.

TABLE_NAME varchar(64) the table where the index is located.

NON_UNIQUE int Whether the index is unique (0) or not unique (1).

INDEX_SCHEMA varchar(64) the same as TABLE_SCHEMA (as indexes are always co-

located with the table).

INDEX_NAME varchar(64) the name of the index.

SEQ_IN_INDEX int unsigned the position in the index the column has. For single-column

indexes, this is always 1.

COLUMN_NAME varchar(64) the name of the column.

COLLATION varchar(1) how the index is sorted. Values can be NULL (not sorted), a

(ascending), or d (descending).

CARDINALITY bigint the estimate for the number of unique values for the part of

the index up and including to the column in the row.

SUB_PART bigint For prefix indexes, it is the number of characters or bytes that

is indexed. If the whole column is indexed, the value is NULL.

PACKED binary(0) For InnodB tables, this is always NULL.

NULLABLE varchar(3) Whether NULL values are allowed. the column will either be

an empty string or YES.

INDEX_TYPE varchar(11) the index type, for example, BTREE for B-tree indexes.

COMMENT varchar(8) extra information about the index. this is not used for InnodB

tables.

INDEX_COMMENT varchar(2048) the comment specified when the index was added.

IS_VISIBLE varchar(3) Whether the index is visible (YES) or invisible (NO).

EXPRESSION longtext For functional indexes, this column contains the expression

used to generate the indexed values. For nonfunctional

indexes, the value is always NULL.

Chapter 15 Index StatIStICS

365

The STATISTICS view is not only useful in relation to index statistics but also for the

indexes themselves, and it includes information about all indexes irrespective of the

index type. You can, for example, use it to find invisible indexes and the expressions used

for functional indexes. With respect to index statistics, the most interesting column is

CARDINALITY which is the number of unique values estimated to exist in the index.

When you query the STATISTICS view, it is recommended to order the result by the

TABLE_SCHEMA, TABLE_NAME, INDEX_NAME, and SEQ_IN_INDEX columns. That will group

related rows together, and for multicolumn indexes, the rows will be returned in the

order of the columns in the index. Listing 15-4 shows an example for the indexes on the

world.countrylanguage table. In this case, ordering is only on the index name and the

sequence in the index as the table schema and table name are fixed. As the values are

inexact in nature, your result may differ.

Listing 15-4. The STATISTICS view for the world.countrylanguage table

mysql> SELECT INDEX_NAME, NON_UNIQUE,

 SEQ_IN_INDEX, COLUMN_NAME,

 CARDINALITY, INDEX_TYPE,

 IS_VISIBLE

 FROM information_schema.STATISTICS

 WHERE TABLE_SCHEMA = 'world'

 AND TABLE_NAME = 'countrylanguage'

 ORDER BY INDEX_NAME, SEQ_IN_INDEX\G

*************************** 1. row ***************************

 INDEX_NAME: CountryCode

 NON_UNIQUE: 1

SEQ_IN_INDEX: 1

 COLUMN_NAME: CountryCode

 CARDINALITY: 233

 INDEX_TYPE: BTREE

 IS_VISIBLE: YES

*************************** 2. row ***************************

 INDEX_NAME: PRIMARY

 NON_UNIQUE: 0

SEQ_IN_INDEX: 1

 COLUMN_NAME: CountryCode

Chapter 15 Index StatIStICS

366

 CARDINALITY: 233

 INDEX_TYPE: BTREE

 IS_VISIBLE: YES

*************************** 3. row ***************************

 INDEX_NAME: PRIMARY

 NON_UNIQUE: 0

SEQ_IN_INDEX: 2

 COLUMN_NAME: Language

 CARDINALITY: 984

 INDEX_TYPE: BTREE

 IS_VISIBLE: YES

3 rows in set (0.0010 sec)

The countrylanguage table has two indexes. There is a primary key on the

CountryCode and Language columns, and there is a secondary index on the CountryCode

alone. Unlike the mysql.innodb_index_stats table where there also was a row for when

the primary key was appended to the secondary nonunique index, the STATISTICS view

does not include that information.

Note the secondary index on the CountryCode column alone is redundant as
the CountryCode column is the first column in the primary key. this means the
primary key could just as well be used as the secondary index. Best practice is to
avoid redundant indexes.

You may want to keep a record of the data in the STATISTICS view and compare

how the data changes over time. A sudden change may indicate that there is something

unexpected happening to the data or that the latest recalculation of the index statistics

can lead to different query plans.

Some of the information in the STATISTICS view is also available through the SHOW

INDEX statement.

 The SHOW INDEX Statement
The SHOW INDEX statement was the original way to obtain information about indexes

in MySQL. Today it gets the data from the same source as information_schema.

STATISTICS, so you can use either as it works best for you. One major advantage of the

Chapter 15 Index StatIStICS

367

STATISTICS view is that you can choose what information you want and how to order

it; with the SHOW INDEX statement, you always get indexes for a single table and ordered

with an option to filter based on the available fields.

The columns returned by SHOW INDEX are the same as in the STATISTICS view, except

that the table catalogue, table schema, and index schema are omitted. On the other

hand, SHOW INDEX optionally takes the EXTENDED keyword which includes information

about hidden parts of the indexes. This should not be confused with invisible indexes

but is rather additional parts such as the primary key appended to the secondary

indexes. The standard and extended outputs have the same information for the rows that

are in common.

Listing 15-5 shows an example of the output of SHOW INDEX for the world.city table

(the result assumes the indexes from Chapter 14 have been removed). First, the standard

output is returned, followed by the extended output. As the extended output is several

pages long, it has been abbreviated by removing some of the columns and rows. To see

the full output, execute the statement yourself or see the listing_15_5.txt file available

from this book’s GitHub repository.

Listing 15-5. The SHOW INDEX output for the world.city table

mysql> SHOW INDEX FROM world.city\G

*************************** 1. row ***************************

 Table: city

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 1

 Column_name: ID

 Collation: A

 Cardinality: 4188

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Visible: YES

 Expression: NULL

Chapter 15 Index StatIStICS

368

*************************** 2. row ***************************

 Table: city

 Non_unique: 1

 Key_name: CountryCode

 Seq_in_index: 1

 Column_name: CountryCode

 Collation: A

 Cardinality: 232

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Visible: YES

 Expression: NULL

2 rows in set (0.0013 sec)

mysql> SHOW EXTENDED INDEX FROM world.city\G

*************************** 1. row ***************************

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 1

 Column_name: ID

 Cardinality: 4188

*************************** 2. row ***************************

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 2

 Column_name: DB_TRX_ID

 Cardinality: NULL

*************************** 3. row ***************************

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 3

 Column_name: DB_ROLL_PTR

 Cardinality: NULL

Chapter 15 Index StatIStICS

369

*************************** 4. row ***************************

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 4

 Column_name: Name

 Cardinality: NULL

...

*************************** 8. row ***************************

 Non_unique: 1

 Key_name: CountryCode

 Seq_in_index: 1

 Column_name: CountryCode

 Cardinality: 232

*************************** 9. row ***************************

 Non_unique: 1

 Key_name: CountryCode

 Seq_in_index: 2

 Column_name: ID

 Cardinality: NULL

9 rows in set (0.0013 sec)

Notice how the column names are not identical to what the STATISTICS view uses.

The order of the columns is however the same and the names similar, so it is easy to map

the two outputs to each other.

In the extended output, the primary key has two hidden columns internal to InnoDB:

DB_TRX_ID which is the 6-byte transaction identifier and DB_ROLL_PTR which is a 7-byte

roll pointer pointing to an undo log record written to the rollback segment. These are

part of the InnoDB multi-versioning support.1 After the two internal fields, each of the

remaining columns in the table is added. This reflects that InnoDB uses a clustered

index for its rows, so the primary key is the row.

For the secondary index on the CountryCode, the primary key now appears as a

second part of the index. This is expected and reflects what was also seen in the mysql.

innodb_index_stats table.

1 If you are interested in reading more about the InnoDB multi-versioning control, see https://
dev.mysql.com/doc/refman/en/innodb-multi-versioning.html

Chapter 15 Index StatIStICS

https://dev.mysql.com/doc/refman/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/en/innodb-multi-versioning.html

370

While the extended output is usually not of great interest when investigating

performance issues, it is of value when exploring how InnoDB works.

Another Information Schema view that is useful when working with index statistics is

the INNODB_TABLESTATS view.

 The Information Schema INNODB_TABLESTATS View
The INNODB_TABLESTATS view in the Information Schema is a view on top of the InnoDB

internal memory structures holding information about the indexes. It does not contain

any information that can be used to verify the cardinality and sizes of the indexes that is

not included in the tables and views already described. It does however provide some

insight into the status of the index statistics and the number of modifications since the

table was last analyzed. The view includes information for all InnoDB tables irrespective

of whether they use persistent or transient statistics. Table 15-4 summarizes the columns

of the INNODB_TABLESTATS view.

Table 15-4. The INNODB_TABLESTATS Information Schema view

Column Name Data Type Description

TABLE_ID bigint unsigned the internal InnodB table Id. You can, for example,

use this to look up the table in the INNODB_

TABLES Information Schema view.

NAME varchar(193) the table name in the format

<schema>/<table>, for example, world/city.

STATS_INITIALIZED varchar(193) Whether the memory structure has been initialized

for the table. this is not the same as whether

the index statistics exist. possible values are

Uninitialized and Initialized.

NUM_ROWS bigint unsigned the estimated number of rows in the table.

CLUST_INDEX_SIZE bigint unsigned the number of pages in the clustered index.

OTHER_INDEX_SIZE bigint unsigned the sum of the number of pages for secondary

indexes.

(continued)

Chapter 15 Index StatIStICS

371

The initialized status can cause confusion. This shows whether the index statistics

and related metadata (as exposed in this view) have been loaded into memory. The

status always starts out as Uninitialized even if the statistics exist. When some

connection or a background thread needs the data, InnoDB loads it into memory, and

the status becomes Initialized. Whenever no threads hold a reference to the table,

InnoDB is free to evict the information again, and the status becomes Uninitialized.

This can, for example, happen when the table is flushed or ANALYZE TABLE is executed

for the table.

The modified counter is interesting as it can be used to see how many rows have

been changed since the index statistics were last updated. The counter only increases

when a DML query affects an index. This means that if you update a non-indexed

column and otherwise leave the row as it is, the counter will not increment. The counter

is related to the automatic updates that are triggered when a given amount of changes

have been made.

Listing 15-6 has an example output from the INNODB_TABLESTATS view for the

world.city table. The table ID, number of rows, and reference count may be different,

if you execute the same query.

Column Name Data Type Description

MODIFIED_COUNTER bigint unsigned the number of rows changed using dML

statements since the last update of the index

statistics.

AUTOINC bigint unsigned the value of the auto-increment counter if it exists.

For tables without an auto-increment column, the

value is 0.

REF_COUNT int how many references there are to the metadata.

When the reference counter reached zero, InnodB

may evict the data, and the initialized status

returns to Uninitialized.

Table 15-4. (continued)

Chapter 15 Index StatIStICS

372

Listing 15-6. The INNODB_TABLESTATS view for the world.city table

mysql> SELECT *

 FROM information_schema.INNODB_TABLESTATS

 WHERE NAME = 'world/city'\G

*************************** 1. row ***************************

 TABLE_ID: 1670

 NAME: world/city

STATS_INITIALIZED: Initialized

 NUM_ROWS: 4188

 CLUST_INDEX_SIZE: 25

 OTHER_INDEX_SIZE: 8

 MODIFIED_COUNTER: 0

 AUTOINC: 4080

 REF_COUNT: 2

1 row in set (0.0009 sec)

The output shows that the index statistics are up to date as there have been no rows

modified since the last analysis. The number of rows and the size of the clustered and

secondary indexes are the same as have been found using the mysql.innodb_index_

stats table. These table size–related numbers are also used for the information_

schema.TABLES view and the SHOW TABLE STATUS statement.

 The Information Schema TABLES View and SHOW TABLE
STATUS
The index statistics collection is also what is used to populate some of the columns in

the tables used by the information_schema.TABLES view and the SHOW TABLE STATUS

statement. This includes the estimate for the number of rows and the size of the data and

indexes.

Table 15-5 shows a summary of the columns in the TABLES view. The SHOW TABLE

STATUS statement has the same columns in its output except for the TABLE_CATALOG,

TABLE_SCHEMA, TABLE_TYPE, and TABLE_COMMENT columns, and a few columns have

slightly different names. The columns marked with an asterisk (*) are affected by the

information_schema_stats_expiry variable.

Chapter 15 Index StatIStICS

373

Table 15-5. The TABLES Information Schema view

Column Name Data Type Description

TABLE_CATALOG varchar(64) the catalogue the table belongs to. the value will

always be def.

TABLE_SCHEMA varchar(64) the schema where the table is located.

TABLE_NAME varchar(64) the name of the table.

TABLE_TYPE enum What kind of table it is. possible values are BASE

TABLE, VIEW, and SYSTEM VIEW. a base table

is created with CREATE TABLE and a view with

CREATE VIEW, and system views are views such as

the Information Schema views created by MySQL.

ENGINE varchar(64) the storage engine used by the table.

VERSION int Unused in MySQL 8 as it was related to the .frm

files in MySQL 5.7 and earlier. the version value is

now hardcoded to 10.

ROW_FORMAT enum the row format used for the table. possible values

are Fixed, dynamic, Compressed, redundant,

Compact, and paged.

TABLE_ROWS* bigint unsigned the estimated number of rows. For InnodB tables,

this comes from the cardinality of the primary key or

clustered index.

AVG_ROW_LENGTH* bigint unsigned the estimated data length divided with the estimated

number of rows.

DATA_LENGTH* bigint unsigned the estimated size of the row data. For InnodB, it is

the size of the clustered index, which is found as the

number of pages in the clustered index multiplied

with the page size.

MAX_DATA_LENGTH* bigint unsigned the maximum allowed size of the data length. not

used by InnodB, so the value is NULL.

(continued)

Chapter 15 Index StatIStICS

374

Column Name Data Type Description

INDEX_LENGTH* bigint unsigned the estimated size of secondary indexes. For InnodB,

this is the sum of pages in non-clustered indexes

times the page size.

DATA_FREE* bigint unsigned an estimate of the amount of free space in the

tablespace the table belongs to. For InnodB, this is

the size of completely free extents minus a safety

margin.

AUTO_INCREMENT* bigint unsigned the next value for the auto-increment counter for the

table.

CREATE_TIME* timestamp When the table was created.

UPDATE_TIME* datetime When the tablespace file was last updated. For tables

in the InnodB system tablespace, the value is NULL.

as data is written to the tablespace asynchronously,

the time will not in general reflect the time of the last

statement changing the data.

CHECK_TIME* datetime When the table was last checked (CHECK TABLE).

For partitioned tables, InnodB always returns NULL.

TABLE_COLLATION varchar(64) the default collation used for sorting and

comparisons of values for string columns (where it is

not explicitly set for the column).

CHECKSUM bigint the table checksum. not used by InnodB, so the

value is NULL.

CREATE_OPTIONS varchar(256) table options, such as STATS_AUTO_RECALC and

STATS_SAMPLE_PAGES.

TABLE_COMMENT text the comment specified when the table was created.

Table 15-5. (continued)

Of the information available, the number of rows and the size of the data and indexes

are the most closely related to the index statistics. The TABLES view is not only useful

for querying estimates of the table size, but it can also be used to query which tables

have the persistent statistics variables set explicitly. Listing 15-7 shows an example

Chapter 15 Index StatIStICS

375

chapter_15.t1 table, populating it with exactly 1 million rows and then querying the

content of the TABLES view for the table.

Listing 15-7. The TABLES view for the table chapter_15.t1

mysql> CREATE TABLE chapter_15.t1 (

 id int unsigned NOT NULL auto_increment,

 val varchar(36) NOT NULL,

 PRIMARY KEY (id)

) STATS_PERSISTENT=1,

 STATS_SAMPLE_PAGES=50,

 STATS_AUTO_RECALC=1;

Query OK, 0 rows affected (0.5385 sec)

mysql> SET SESSION cte_max_recursion_depth = 1000000;

Query OK, 0 rows affected (0.0003 sec)

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

mysql> INSERT INTO chapter_15.t1 (val)

 WITH RECURSIVE seq (i) AS (

 SELECT 1

 UNION ALL

 SELECT i + 1

 FROM seq WHERE i < 1000000

)

 SELECT UUID()

 FROM seq;

Query OK, 1000000 rows affected (15.8552 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> COMMIT;

Query OK, 0 rows affected (0.8306 sec)

Chapter 15 Index StatIStICS

376

mysql> SELECT *

 FROM information_schema.TABLES

 WHERE TABLE_SCHEMA = 'chapter_15'

 AND TABLE_NAME = 't1'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: chapter_15

 TABLE_NAME: t1

 TABLE_TYPE: BASE TABLE

 ENGINE: InnoDB

 VERSION: 10

 ROW_FORMAT: Dynamic

 TABLE_ROWS: 996442

 AVG_ROW_LENGTH: 64

 DATA_LENGTH: 64569344

MAX_DATA_LENGTH: 0

 INDEX_LENGTH: 0

 DATA_FREE: 7340032

 AUTO_INCREMENT: 1048561

 CREATE_TIME: 2019-11-02 11:48:28

 UPDATE_TIME: 2019-11-02 11:49:25

 CHECK_TIME: NULL

TABLE_COLLATION: utf8mb4_0900_ai_ci

 CHECKSUM: NULL

 CREATE_OPTIONS: stats_sample_pages=50 stats_auto_recalc=1 stats_

persistent=1

 TABLE_COMMENT:

1 row in set (0.0653 sec)

The table is populated with random data using a recursive common table expression

to ensure exactly 1 million rows are inserted. For this to work, it is necessary to set

cte_max_recursion_depth to 1000000 as otherwise the common table expression will

fail with a too high recursion depth.

Notice how the estimated number of rows is only 996442 rows, or around 0.3% less

than the actual number of rows. This is within the expected range – differences up to

10% or more are not unusual. The table also has several table options set to explicitly

Chapter 15 Index StatIStICS

377

configure that persistent statistics are used for the table with auto-recalculation enabled

and 50 sample pages used.

If you prefer to use the SHOW TABLE STATUS statement instead, you can use it

without an argument in which case the table status for all tables in the default schema is

returned. Alternatively, you can add a LIKE clause to only include a subset of tables. To

retrieve the table status for tables in a non-default schema, use a FROM clause to specify

the schema name. For example, consider the world schema being the default, and then

the following queries will all return the table status for the city table:

mysql> use world

mysql> SHOW TABLE STATUS LIKE 'city';

mysql> SHOW TABLE STATUS LIKE 'ci%';

mysql> SHOW TABLE STATUS FROM world LIKE 'city';

The two first queries rely on the default schema to know where to look for tables. The

third query explicitly looks for the city table in the world schema.

If the index statistics are out of data, how can you update them? That is the last topic

to explore before rounding off this chapter.

 Updating the Statistics
Up-to-date index statistics are important in order for the optimizer to arrive at the

optimal query execution plans. There are two ways for the indexes to update: automatic

because there have been enough changes to the table to trigger a recalculation of the

statistics and manually triggering an update.

 Automatic Updates
The automatic update mechanism has already been discussed to some degree when

covering persistent and transient statistics. Table 15-6 summarizes the feature based on

the index statistics type.

Chapter 15 Index StatIStICS

378

The summary shows that persistent statistics are in general updated less frequently

and have less impact as the automatic updates happen in the background. Persistent

statistics also have better configuration options.

It is also possible to manually trigger updates of the index statistics. You can use

either the ANALYZE TABLE statement or the mysqlcheck command-line program as

discussed in the next sections.

 The ANALYZE TABLE Statement
The ANALYZE TABLE statement is convenient to use when you are working in the mysql

command-line client or MySQL Shell or the update is to be triggered by a stored

procedure. The statement can both update index statistics and histograms. The latter will

be discussed in the next chapter, so here only updates of index statistics are covered.

There is one argument to ANALYZE TABLE which is whether to log the statement

to the binary log or not. If you specify either NO_WRITE_TO_BINLOG or LOCAL between

ANALYZE and TABLE, the statement will only be applied to the local instance and not

written to the binary log.

When you execute ANALYZE TABLE, it forces a refresh of the index statistics and table

cache values that are otherwise subject to the information_schema_stats_expiry

variable. So, if you force an update of the index statistics, you do not need to change

Table 15-6. Summary of auto-recalculation of InnoDB index statistics

Property Persistent Transient

rows changed 10% of table 6.25% of table

Minimum time between updates

due to changed rows

10 seconds 16 updates

Other actions triggering changes First opening of table,

optionally when querying

table metadata.

Background updates Yes no

Configuration the innodb_stats_auto_recalc

variable and the STATS_AUTO_

RECALC table option

none

Chapter 15 Index StatIStICS

379

information_schema_stats_expiry to have the information_schema.STATISTICS view

and similarly reflect the updated values.

You can optionally specify multiple tables to have their index statistics updated. You

achieve this by listing the tables in a comma-separated list. An example of updating the

statistics of three tables in the world schema can be seen in Listing 15-8.

Listing 15-8. Analyzing the index statistics for the tables in the world schema

mysql> ANALYZE LOCAL TABLE

 world.city, world.country,

 world.countrylanguage\G

*************************** 1. row ***************************

 Table: world.city

 Op: analyze

Msg_type: status

Msg_text: OK

*************************** 2. row ***************************

 Table: world.country

 Op: analyze

Msg_type: status

Msg_text: OK

*************************** 3. row ***************************

 Table: world.countrylanguage

 Op: analyze

Msg_type: status

Msg_text: OK

3 rows in set (0.0248 sec)

In the example, the LOCAL keyword is used to avoid logging the statement to the

binary log. If you do not specify the schema name together with the table name (e.g.,

city instead of world.city), MySQL looks for the table in the current default schema.

Chapter 15 Index StatIStICS

380

Note While it is possible to query the tables concurrently with the ANALYZE
TABLE, do be aware that as a last step (after returning to the client), the analyzed
tables are flushed (an implicit FLUSH TABLES statement). the table flush can
only happen after all queries in progress have completed, so you should not use
ANALYZE TABLE (or mysqlcheck) while you have long-running queries.

The ANALYZE TABLE statement is great for ad hoc updates and when you know

exactly which tables you want to analyze. It is less useful for analyzing all tables in a

given schema or all tables in the instance. For that, mysqlcheck which is discussed next

is a better option.

 The mysqlcheck Program
The mysqlcheck program is convenient, if you, for example, want to trigger the update from

a shell script, through the cron daemon, or Windows Task Scheduler. It can be used not

only to update the index statistics on a single table or multiple tables like ANALYZE TABLE,

but you can also tell mysqlcheck to update the index statistics on all tables in a schema or

all tables in the instance altogether. What mysqlcheck does is to execute ANALYZE TABLE

for the tables matching your criteria, so from an index statistics point of view, there is no

difference between manually executing ANAYZE TABLE and using mysqlcheck.

Note the mysqlcheck program can do much more than just analyzing tables
to update the index statistics. Only the analyze feature is covered here. to read
the full documentation of the mysqlcheck program, see https://dev.mysql.
com/doc/refman/en/mysqlcheck.html.

You use the --analyze option to make mysqlcheck update index statistics and

the --write-binlog/--skip-write-binlog arguments to tell whether you want the

statements logged to the binary log. The default is to log the statements. You will also

need to tell how to connect to MySQL; for that you use the standard connection options.

There are three ways to specify which tables to analyze. The default is to analyze one

or more tables in the same schema, like for the ANALYZE TABLE statement. If you choose

that, you do not need to add any extra options, and the first value specified is interpreted

as the schema name and optional arguments as table names. Listing 15-9 shows how to

Chapter 15 Index StatIStICS

https://dev.mysql.com/doc/refman/en/mysqlcheck.html
https://dev.mysql.com/doc/refman/en/mysqlcheck.html

381

analyze all tables in the world schema in two ways: by explicitly listing the table names

and without listing the tables.

Listing 15-9. Using mysqlcheck to analyze all tables in the world schema

shell$ mysqlcheck --user=root --password --host=localhost --port=3306

--analyze world city country countrylanguage

Enter password: ********

world.city OK

world.country OK

world.countrylanguage OK

shell$ mysqlcheck --user=root --password --host=localhost --analyze world

Enter password: ********

world.city OK

world.country OK

world.countrylanguage OK

In both cases, the output lists the three tables that were analyzed.

If you want to analyze all tables in more than one schema, but still list which schemas

to include, you can use the --databases argument. When that is present, all the object

names listed on the command line are interpreted as schema names. Listing 15- 10 shows

an example of analyzing all tables in the sakila and world schemas.

Listing 15-10. Analyze all tables in the sakila and world schemas

shell$ mysqlcheck --user=root --password --host=localhost --port=3306

--analyze --databases sakila world

Enter password: ********

sakila.actor OK

sakila.address OK

sakila.category OK

sakila.city OK

sakila.country OK

sakila.customer OK

sakila.film OK

sakila.film_actor OK

sakila.film_category OK

Chapter 15 Index StatIStICS

382

sakila.film_text OK

sakila.inventory OK

sakila.language OK

sakila.payment OK

sakila.rental OK

sakila.staff OK

sakila.store OK

world.city OK

world.country OK

world.countrylanguage OK

The final option is to use the --all-databases option to analyze all tables

irrespective of the schema they are located in. This will include system tables as well

except for the Information Schema and Performance Schema. Listing 15-11 shows an

example of using mysqlcheck with --all-databases.

Listing 15-11. Analyzing all tables

shell$ mysqlcheck --user=root --password --host=localhost --port=3306

--analyze --all-databases

Enter password: ********

mysql.columns_priv OK

mysql.component OK

mysql.db OK

mysql.default_roles OK

mysql.engine_cost OK

mysql.func OK

mysql.general_log

note : The storage engine for the table doesn't support analyze

mysql.global_grants OK

mysql.gtid_executed OK

mysql.help_category OK

mysql.help_keyword OK

mysql.help_relation OK

mysql.help_topic OK

mysql.innodb_index_stats OK

Chapter 15 Index StatIStICS

383

mysql.innodb_table_stats OK

mysql.password_history OK

mysql.plugin OK

mysql.procs_priv OK

mysql.proxies_priv OK

mysql.role_edges OK

mysql.server_cost OK

mysql.servers OK

mysql.slave_master_info OK

mysql.slave_relay_log_info OK

mysql.slave_worker_info OK

mysql.slow_log

note : The storage engine for the table doesn't support analyze

mysql.tables_priv OK

mysql.time_zone OK

mysql.time_zone_leap_second OK

mysql.time_zone_name OK

mysql.time_zone_transition OK

mysql.time_zone_transition_type OK

mysql.user OK

sakila.actor OK

sakila.address OK

sakila.category OK

sakila.city OK

sakila.country OK

sakila.customer OK

sakila.film OK

sakila.film_actor OK

sakila.film_category OK

sakila.film_text OK

sakila.inventory OK

sakila.language OK

sakila.payment OK

sakila.rental OK

sakila.staff OK

Chapter 15 Index StatIStICS

384

sakila.store OK

sys.sys_config OK

world.city OK

world.country OK

world.countrylanguage OK

Notice how there are two tables that reply that their storage engine does not support

analyze. The mysqlcheck program tries to analyze all tables irrespective of their storage

engine, so messages like in the example are expected. The mysql.general_log and

mysql.slow_log tables both use the CSV storage engine by default which does not

support indexes and thus neither ANALYZE TABLE.

 Summary
This chapter picked up where the previous ended by looking at how InnoDB handles

index statistics. There are two ways for InnoDB to store the statistics: either persistent in

the mysql.innodb_index_stats and mysql.innodb_table_stats tables or transient in

memory. Persistent statistics are in general preferred as they give more consistent query

plans, allow to sample more pages, update in the background, and can be configured to

a larger degree including support for table-level options.

There are several tables, views, and SHOW statements that can be used to investigate

and learn about InnoDB indexes and their statistics. Of particular interest is the

information_schema.STATISTICS view which has details of all indexes in MySQL. The

information_schema.INNODB_TABLESTATS and information_schema.TABLES views, the

SHOW INDEX, and the SHOW TABLE STATUS statements were also discussed.

You can update the index statistics in two ways: either using the ANALYZE TABLE

statement or the mysqlcheck program. The former is useful from an interactive client

or inside a stored procedure, whereas the latter is more useful for shell scripts and to

update all tables in one or more schemas. Both methods also force an update of cached

values of the table metadata and the index cardinality in the MySQL data dictionary.

When discussing the ANALYZE TABLE statement, it was mentioned that MySQL also

supports histograms. These are related to indexes and are the topic of the next chapter.

Chapter 15 Index StatIStICS

385
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_16

CHAPTER 16

Histograms
In the previous two chapters, you learned about indexes and index statistics. The purpose

of indexes is to reduce the reads required to access the row required for the query and

for index statistics to help the optimizer determine the optimal query plan. That is all

great, but indexes are not for free and there are cases where indexes are not very effective

and do not warrant the overhead, but you still need the optimizer to be aware of the data

distribution. That is where histograms can be useful.

This chapter starts out discussing what histograms are and for which workloads

histograms are useful. Then the more practical side of working with histograms is

covered including adding, maintaining, and inspecting histogram data. Finally, there is

an example of a query where the query plan changes as a histogram is added.

 What Are Histograms?
The support for histograms is a new feature in MySQL 8. It makes it possible to analyze

and store information about the distribution of data in a table. While histograms have

some similarity with indexes, they are not the same, and you can have histograms for

columns that do not have any index.

When you create a histogram, you tell MySQL to divide the data into buckets. This

can be done either by putting one value into each bucket or having values for a roughly

equal number of rows in each bucket. The knowledge about the distribution of the data

can help the optimizer estimate more accurately how much of the data in the table a

given WHERE clause or join condition will filter out. Without this knowledge, the optimizer

may, for example, assume a condition returns a third of the table, whereas a histogram

may tell that only 5% of the rows match the condition. That knowledge is critical for the

optimizer to choose the best query plan.

386

At the same time, it is important to realize that a histogram is not the same as an

index. MySQL cannot use the histogram to reduce the number of rows examined for

the table with the histogram compared to the same query plan executing without the

histogram. However, by knowing how much of a table will be filtered, the optimizer can

do a better job to determine the optimal join order.

One advantage of histograms is that they only have a cost when they are created or

updated. Unlike indexes, there are no changes to the histograms when you change the

data. You may from time to time recreate the histogram to ensure the statistics are up

to date, but there is no overhead for the DML queries. In general, histograms should be

compared to index statistics rather than with indexes.

Note It is important to understand a fundamental difference between indexes
and histograms. Indexes can be used to reduce the work required to access the
required rows, histograms cannot. When a histogram is used for the query, it does
not reduce the number of examined rows directly, but it can help the optimizer to
choose a more optimal query plan.

Just like for indexes, you should choose with care which column you add histograms

for. So let’s discuss which columns should be considered as good candidates.

 When Should You Add Histograms?
The important factor for the benefit of adding histograms is that you add them to the

right columns. In short, histograms are most beneficial for columns that are not the first

column in an index, that has a non-uniform distribution of values, and where you apply

conditions to these columns. This may sound like a very limited use case, and indeed

histograms are not quite as useful in MySQL as in some other databases. This is because

MySQL is efficient in estimating the number of rows in a range for indexed columns

and thus histograms are not used together with an index on the same column. Note

also that while histograms are particularly useful for columns with a nonuniform data

distribution, they can also be useful for a uniform data distribution in cases where it is

not worth adding an index.

Chapter 16 hIstograms

387

Tip Do not add a histogram to a column that is the first column in an index.
For columns that appear later in indexes, a histogram can still be of value for
queries where the index cannot be used for the column due to the requirement of
using a left prefix of the index.

That said, there are still cases where histograms can greatly improve the query

performance. A typical use case is a query with one or more joins and some secondary

conditions on columns with a nonuniform distribution of the data. In this case, a

histogram can help the optimizer determine the optimal join order so as much of the

rows are filtered out as early as possible.

Some examples of data with a nonuniform data distribution are status values,

categories, time of day, weekday, and price. A status column may have the vast number

of rows in a terminal state such as “completed” or “failed” and a few values in a working

state. Similarly, a product table may have more products in some categories than

others. Time of day and weekday values may not be uniform as certain events are more

likely to happen at certain times or days than others. For example, the weekday a ball

game occurs may (depending on the sport) be much more likely to occur during a

weekend than on a weekday. For the price, you may have most products in a relatively

narrow price range, but the minimum and maximum prices are well outside this range.

Examples of columns with low selectivity are columns of the enum data type, Boolean

values, and other columns with just a few unique values.

One benefit of histograms compared to indexes is that histograms are cheaper than

index dives to determine the number of rows in a range, for example, for long IN clauses

or many OR conditions. The reason for this is that the histogram statistics are readily

available for the optimizer, whereas the index dives to estimate the number of rows in a

range are done while determining the query plan and thus repeated for each query.

Tip For indexed columns, the optimizer will switch from doing the relatively
expensive but very accurate index dives to just using the index statistics to
estimate the number of matching rows when there are eq_range_index_dive_
limit (defaults to 200) or more equality ranges.

Chapter 16 hIstograms

388

You can argue why bother with histograms when you can add an index, but

remember it is not without a cost to maintain indexes as data changes. They need to be

maintained when you execute DML queries, and they add to the size of the tablespace

files. Additionally, statistics for the number of values in a range (including equality

range) are calculated on the fly during the optimization stage of executing a query.

That is, they are calculated as needed for each query. Histograms on the other hand just

store the statistics, and they are only updated when explicitly requested. The histogram

statistics are also always readily available for the optimizer.

In summary, the best candidates for histograms are the columns that match the

following criteria:

• Has a nonuniform distribution of data or has so many values that the

optimizer’s rough estimates (discussed in the next chapter) are not

good estimates of the selectivity of the data.

• Has a poor selectivity (otherwise an index is likely a better choice).

• Is used to filter the data in the table in either a WHERE clause or a join

condition. If you do not filter on the column, the optimizer cannot

use the histogram.

• Has a stable distribution of data over time. The histogram statistics

are not updated automatically, so if you add a histogram on a column

where the distribution of data changes frequently, the histogram

statistics are likely to be inaccurate. A prime example where a

histogram is a poor choice is a column storing the date and time of an

event.

One exception to these rules is if you can use the histogram statistics to replace

expensive queries. The histogram statistics can be queried as it will be shown in the

“Inspecting Histogram Data” section, so if you only need approximate results for the

distribution of data, you may be able to query the histogram statistics instead.

Tip If you have queries that determine the number of values in a given range
and you only need approximate values, then you can consider creating a histogram
even if you do not intend to use the histogram to improve the query plans.

Chapter 16 hIstograms

389

Since the histograms store values from the column, it is not allowed to add

histograms to encrypted tables. Otherwise, encrypted data can inadvertently end up

being written unencrypted to disk. Additionally, there is no support for histograms on

temporary tables.

In order to apply histograms in the most optimal way, you need to know a little of the

internals of how histograms work, including the supported histogram types.

 Histogram Internals
There are a couple of internals around histograms that are necessary to know in order

to use them efficiently. The concepts that you should understand are buckets, the

cumulative frequency, and the histogram types. This section will go through each of

these concepts.

 Buckets
When a histogram is created, the values are distributed to buckets. Each bucket

may contain one or more distinct values, and for each bucket, MySQL calculates the

cumulative frequency. Thus, the concept of a bucket is important as it is tightly related to

the accuracy of the histogram statistics.

MySQL supports up to 1024 buckets. The more buckets you have, the less values are

in each bucket, and so the more buckets, the more accurate statistics you have for each

value. In the best case, you have just one value per bucket, so you know “exactly” (to the

extent the statistics are accurate) the number of rows for that value. If you have more

than one value per bucket, the number of rows for the range of values is calculated.

It is important to understand in this context what constitutes a distinct value.

For strings, only the first 42 characters are considered in the comparison of values,

and for binary values the first 42 bytes are considered. If you have long strings or binary

values with the same prefix, histograms may not work well for you.

Note only the first 42 characters for strings and the first 42 bytes for binary
objects are used to determine the values that exist for a histogram.

Chapter 16 hIstograms

390

Values are added in order, so if you order the buckets from left to right and inspect

a given bucket, then you know that all buckets to the left have smaller values and all

buckets to the right have larger values. The concept of buckets is illustrated in Figure 16- 1.

Figure 16-1. Values distributed into buckets and the cumulative frequency

In the figure, the dark columns in the front are the frequency of values in each

bucket. The frequency is the percentage of the rows having that value. In the background

(the brighter-colored columns) is the cumulative frequency which has the same value

as the count column for bucket 0 and then increases gradually until it reaches 100 for

bucket 7. What are cumulative frequencies? That is the second concept of histograms

that you should understand.

 Cumulative Frequencies
The cumulative frequency of a bucket is the percentage of rows that is in the current

bucket and the previous buckets. If you are looking at bucket number 3 and the cumulative

frequency is 50%, then 50% of the rows fit into buckets 0, 1, 2, and 3. This makes it very

easy for the optimizer to determine the selectivity of a column with a histogram.

There are two scenarios to consider when the selectivity is calculated: an equality

condition and a range condition. For an equality condition, the optimizer determines

which bucket the value of the condition is in, then takes the cumulative frequency for

that bucket, and subtracts the cumulative frequency of the previous bucket (for bucket

0, nothing is subtracted). If there is just one value in the bucket, that is all that is needed.

Otherwise, the optimizer assumes each value in the bucket occurs at the same frequency,

so the frequency for the bucket is divided with the number of values in the bucket.

Chapter 16 hIstograms

391

For a range condition, it works in a very similar way. The optimizer finds the bucket

where the edge condition is located. For example, for val < 4, the bucket with the value

4 is located. The cumulative frequency used depends on the number of values in the

bucket and the condition type. As for equality conditions, for multi-valued buckets, the

cumulative frequency is found by assuming an equal distribution of the values in the

bucket. Depending on the condition type, the cumulative frequency is used as follows:

• Less Than: The cumulative frequency for the previous value is used.

• Less Than or Equal: The cumulative frequency of the value in the

condition is used.

• Greater Than or Equal: The cumulative frequency of the previous

value subtracted from 1.

• Greater Than: The cumulative frequency of the value in the

condition is subtracted from 1.

This means that by using the cumulative frequency, it is at most necessary to

consider two buckets to determine how well the condition will filter the rows in the table.

It can be useful to look at an example to better understand exactly how the cumulative

frequencies work. Table 16-1 shows an example of a histogram with one value per bucket

with the cumulative frequency per bucket.

Table 16-1. Histogram with one value per bucket

Bucket Value Cumulative Frequency

0 0 0.1

1 1 0.25

2 2 0.37

3 3 0.55

4 4 0.63

5 5 0.83

6 6 0.95

7 7 1.0

Chapter 16 hIstograms

392

In this example, the values are the same as the bucket numbers, but that is in general

not the case. The cumulative frequency starts out with 0.1 (10%) and increases with

the percentage of rows in each bucket until 100% is reached in the last bucket. This

distribution is the same as that seen in Figure 16-1.

If you look at the five condition types compared to the value 4, then the number of

rows estimated for each type is as follows:

• val = 4: The cumulative frequency of bucket 3 is subtracted from the

cumulative frequency of bucket 4: estimate = 0.63 – 0.55 = 0.08.

So 8% of the rows are estimated to be included.

• val < 4: The cumulative frequency of bucket 3 is used, so 55% of the

rows are estimated to be included.

• val <= 4: The cumulative frequency of bucket 4 is used, so 63% of

the rows are estimated to be included.

• val >= 4: The cumulative frequency of bucket 3 is subtracted from 1,

so 45% of the rows are estimated to be included.

• val > 4: The cumulative frequency of bucket 4 is subtracted from 1,

so 37% of the rows are estimated to be included.

It becomes a little more complex when more than one value is included in each

bucket. Table 16-2 shows the same table and distribution of values, but this time the

histogram only has four buckets, so on average there are two values per bucket.

Table 16-2. Histogram with more than

one value per bucket

Bucket Values Cumulative Frequency

0 0-1 0.25

1 2-3 0.55

2 4-5 0.83

3 6-7 1.0

Chapter 16 hIstograms

393

In this case, there happens to be two values in each bucket, but in general that is not

the case (more about that when discussing histogram types). Evaluating the same five

conditions now needs to take into account that each bucket includes estimates for the

number of rows of more than one value:

• val = 4: The cumulative frequency of bucket 1 is subtracted from

the cumulative frequency of bucket 2; then the result is divided with

the number of values in bucket 2: estimate = (0.83 – 0.55)/2 =

0.14. So 14% of the rows are estimated to be included. This is higher

than the more accurate estimate with one value per bucket as the

frequencies for the values 4 and 5 are considered together.

• val < 4: The cumulative frequency of bucket 1 is the only one that

is required as buckets 0 and 1 include all values less than 4. Thus, it

is estimated that 55% of the rows will be included (this is the same as

for the previous example since in both cases the estimate only needs

to consider complete buckets).

• val <= 4: This is more complex as half the values in bucket 2 are

included in the filtering and half are not. So the estimate will be the

cumulative frequency for bucket 1 plus the frequency for bucket 2

divided with the number of values in the bucket: estimate =

0.55 + (0.83 – 0.55)/2 = 0.69 or 69%. This is higher and less

accurate than the estimate using one value per bucket. The reason

this estimate is less accurate is that it is assumed that values 4 and 5

have the same frequency.

• val >= 4: This condition requires all values in buckets 2 and 3, so the

estimate is to include 1 minus the cumulative frequency of bucket 1;

that is 45% – the same as the estimate for the case with one value

per bucket.

• val > 4: This case is similar to val <= 4, just that the values to

include are the opposite, so you can take the 0.69 and subtract from

1 which gives 0.31 or 31%. Again, since two buckets are involved, the

estimate is not as accurate as for the single value per bucket.

Chapter 16 hIstograms

394

As you have seen, there are two different scenarios when distributing the values

into buckets: either there are at least as many buckets as values and each value can be

assigned its own bucket or multiple values will have to share a bucket. These are two

different types of histograms, and the specifics of those are discussed next.

 Histogram Types
There are two types of histograms in MySQL 8. The histogram type is chosen

automatically when creating or updating the histogram based on whether there are more

values than buckets. The two histogram types are

• Singleton: For singleton histograms, there is exactly one value

per bucket. These are the most accurate histograms as there is an

estimate for every value that exists at the time the histogram is

created.

• Equi-height: When there are more values for the column than there

are buckets, MySQL will distribute the values, so each bucket roughly

has the same number of rows – that is, each bucket will be roughly

the same height. Since all rows with the same value are distributed

to the same bucket, the buckets will not be exactly the same height.

For equi-height histograms, there are a different number of values

represented for each bucket.

You have already encountered both histogram types when the cumulative

frequencies were explored. The singleton histograms are the simplest and most accurate,

but equi-height histograms are the most flexible as they can work with any data set.

To demonstrate a singleton and equi-height histogram, you can create the city_

histogram table from the world.city table with a subset of cities based on eight country

codes. The table can be created using the following queries:

use world

CREATE TABLE city_histogram LIKE city;

INSERT INTO city_histogram

SELECT *
 FROM city

Chapter 16 hIstograms

395

 WHERE CountryCode IN

 ('AUS', 'BRA', 'CHN', 'DEU',

 'FRA', 'GBR', 'IND', 'USA');

Figure 16-2 shows an example of a singleton histogram on the CountryCode column.

Since there are eight values, the histogram has eight buckets. (You will learn later in the

chapter how to create and retrieve the histogram statistics.)

Figure 16-2. A singleton histogram

The histogram has exactly one value per bucket. The frequencies range from 1.0%

for Australia (AUS) to 24.9% for China (CHN). This is an example where a histogram

can greatly help giving more accurate estimates of the filtering if there is no index on

the CountryCode column. The original world.city table has 232 distinct CountryCode

values, so a singleton histogram works well.

Figure 16-3 shows the equi-height histogram for the same data but with just four

buckets for the statistics.

Chapter 16 hIstograms

396

For an equi-height histogram, MySQL aims at having the same frequency (height)

of each bucket. However, since a column value will fully be in one bucket and values are

distributed in sequence, it is in general not possible to get the exact same height. This is

also the case in this example where buckets 0 and 3 have somewhat smaller frequencies

than buckets 1 and 2.

The graph also shows a disadvantage of equi-height histograms. The high frequency

of cities in Brazil (BRA), China (CHN), and India (IND) is somewhat masked by the low

frequency of the countries they share buckets with. Thus, the accuracy of equi-height

histograms is not as great as for singleton histograms. This is particularly the case when

the frequencies of the values vary a lot. The reduced accuracy is in general a bigger issue

for equality conditions than for range conditions, so equi-height histograms are best

suited for columns mainly used for range conditions.

Before you can use the histogram statistics, you will need to create them, and once

created you need to maintain the statistics. How to do that is the topic of the next section.

 Adding and Maintaining Histograms
Histograms only exist as statistics unlike indexes that have a physical presence in the

tablespaces. It is not too surprising then that histograms are created, updated, and

dropped using the ANALYZE TABLE statement that is also used to update index statistics.

There are two variants of the statement: to update and to drop the statistics. When

creating and updating histograms, you also need to be aware of the sampling rate.

This section goes through each of these topics.

Figure 16-3. An equi-height histogram

Chapter 16 hIstograms

397

 Create and Update Histograms
You create or update a histogram by adding the UPDATE HISTOGRAM clause to the ANALYZE

TABLE statement. If there are no statistics and a request to update is made, then the

histogram is created; otherwise, the existing histogram is replaced. You will need to

specify how many buckets that you want to divide the statistics into.

To add histograms to the length column of the sakila.film table using at most 256

buckets (length is in minutes, so 256 buckets should be enough to ensure a singleton

histogram), you can use a statement like the following example:

mysql> ANALYZE TABLE sakila.film

 UPDATE HISTOGRAM ON length

 WITH 256 BUCKETS\G

**************************** 1. row *****************************
 Table: sakila.film

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics created for column 'length'.

1 row in set (0.0057 sec)

Optionally, you can add the NO_WRITE_TO_BINLOG or LOCAL keyword between

ANALYZE and TABLE to avoid writing the statement to the binary log. This works the same

way as when updating index statistics.

Tip If you do not want to write the ANALYZE TABLE statement to the binary
log, add the NO_WRITE_TO_BINLOG or LOCAL keyword, for example, ANALYZE
LOCAL TABLE

When the ANALYZE TABLE completes the creation of the histogram without error, the

Msg_type will be equal to status, and the Msg_text shows that the histogram statistics

have been created and for which column. If an error occurs, the Msg_type is equal to

Error with Msg_text explaining the issue. For example, if you try to create a histogram

for a nonexistent column, the error will look similar to this example:

mysql> ANALYZE TABLE sakila.film

 UPDATE HISTOGRAM ON len

 WITH 256 BUCKETS\G

Chapter 16 hIstograms

398

**************************** 1. row ***************************
 Table: sakila.film

 Op: histogram

Msg_type: Error

Msg_text: The column 'len' does not exist.

1 row in set (0.0004 sec)

You can also update the histograms for several columns in the same table using

the same statement. For example, if you want to update the histograms on the length

and rating columns of the sakila.film table, you can use a statement like the one in

Listing 16-1.

Listing 16-1. Updating histograms for multiple columns

mysql> ANALYZE TABLE sakila.film

 UPDATE HISTOGRAM ON length, rating

 WITH 256 BUCKETS\G

*************************** 1. row ***************************
 Table: sakila.film

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics created for column 'length'.

**************************** 2. row ***************************
 Table: sakila.film

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics created for column 'rating'.

2 rows in set (0.0119 sec)

How many buckets should you choose? If you have fewer than 1024 unique values,

it is recommended to have enough buckets to create a singleton histogram (i.e., at least

as many buckets as unique values). If you choose more buckets than there are values,

MySQL will just use the buckets needed to store the frequencies for each value. In this

sense, the number of buckets should be taken as the maximum number of buckets to use.

If there are more than 1024 distinct values, you need enough buckets to get a good

representation of the data. Between 25 and 100 buckets is often a good starting point.

With 100 buckets, an equi-height histogram will on average have 1% of the rows in each

Chapter 16 hIstograms

399

bucket. The more uniform a distribution of the rows, the less buckets are needed, and

the larger the difference in distribution, the more buckets are needed. Aim at having the

most frequently occurring values in their own bucket. For example, for the subset of the

world.city table used in the previous section, five buckets place China (CHN), India

(IND), and the USA in their own buckets.

The histogram is created by sampling the values. How that is done depends on the

amount of memory available.

 Sampling
When MySQL creates a histogram, it needs to read the rows to determine the possible

values and their frequencies. This is done in a similar but yet different way to sampling

for index statistics. When the index statistics are calculated, the number of unique values

is determined, which is a simple task as it just requires counting. Thus, all you need to

specify is how many pages you want to sample.

For histograms, MySQL must determine not only the number of different values but

also their frequency and how to distribute the values into buckets. For this reason, the

sampled values are read into memory and then used to create the buckets and calculate

the histogram statistics. This means that it is more natural to specify the amount of

memory that can be used for the sampling rather than the number of pages. Based on the

amount of memory available, MySQL will determine how many pages can be sampled.

Tip In mysQL 8.0.18 and earlier, a full table scan is always required. In mysQL
8.0.19 and later, InnoDB can directly perform the sampling itself, so it can skip
pages that will not be used in the sampling. this makes the sampling much more
efficient for large tables. the sampled_pages_read and sampled_pages_
skipped counters in information_schema.INNODB_METRICS provide
statistics about the sampled and skipped pages for InnoDB.

The memory available during an ANALYZE TABLE .. UPDATE HISTOGRAM … statement

is specified with the histogram_generation_max_mem_size option. The default is

20,000,000 bytes. The information_schema.COLUMN_STATISTICS view that is discussed

in the “Inspecting Histogram Data” section includes information about the resulting

sampling rate. If you do not get the expected accuracy of the filtering, you can check the

Chapter 16 hIstograms

400

sample rate, and if it is low, you can increase the value of histogram_generation_max_

mem_size. The number of pages sampled scales linearly with the amount of memory

available, whereas the number of buckets does not have any impact on the sampling rate.

 Dropping a Histogram
If you determine that you no longer need a histogram, you can drop it again. Like for

updating histogram statistics, you drop the statistics using the ANALYZE TABLE statement

using the DROP HISTOGRAM clause. You can drop one or more histograms in one

statement. An example of dropping the histograms on the length and rating columns

of the sakila.film table is shown in Listing 16-2. The section with examples later in the

chapter includes a query that you can use to find all existing histograms.

Listing 16-2. Dropping histograms

mysql> ANALYZE TABLE sakila.film

 DROP HISTOGRAM ON length, rating\G

*************************** 1. row ***************************
 Table: sakila.film

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics removed for column 'length'.

*************************** 2. row ***************************
 Table: sakila.film

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics removed for column 'rating'.

2 rows in set (0.0120 sec)

The output of the ANALYZE TABLE statement is similar to creating statistics. You can

also optionally add the NO_WRITE_TO_BINLOG or LOCAL keyword between ANALYZE and

TABLE to avoid writing the statement to the binary log.

Once you have histograms, how do you inspect the statistics and the metadata of

them? You can use the Information Schema for this as discussed next.

Chapter 16 hIstograms

401

 Inspecting Histogram Data
Knowing what information is available to the optimizer is important when the query

plan is not what you expect. Like you have various views for the index statistics, the

Information Schema also contains a view, so you can review the histogram statistics.

The data is available through the information_schema.COLUMN_STATISTICS view.

The next section includes examples of using this view to retrieve information about the

histograms.

The COLUMN_STATISTICS view is a view on the part of the data dictionary that

contains the histogram information. Table 16-3 summarizes the four columns.

Table 16-3. The COLUMN_STATISTICS view

Column Name Data Type Description

SCHEMA_NAME varchar(64) the schema in which the table is located.

TABLE_NAME varchar(64) the table in which the column for the histogram is located.

COLUMN_NAME varchar(64) the column with the histogram.

HISTOGRAM json the details of the histogram.

The first three columns (SCHEMA_NAME, TABLE_NAME, COLUMN_NAME) form the primary

key and allow you to query the histograms you are interested in. The HISTOGRAM column

is the most interesting as it stores the metadata for the histogram as well as the histogram

statistics.

The histogram information is returned as a JSON document with several objects that

include information such as when the statistics were created, the sampling rate, and the

statistics themselves. Table 16-4 shows the fields that are included in the document. The

fields are listed alphabetically and may be different from the order they are included,

when you query the COLUMN_STATISTICS view.

Chapter 16 hIstograms

402

Table 16-4. The fields in the JSON document for the HISTOGRAM column

Field Name JSON Type Description

buckets array an array with one element per bucket. the information

available for each bucket depends on the histogram type

and is described later.

collation- id Integer the id for the collation of the data. this is only relevant

for string data types. the id is the same as the ID

column in the INFORMATION_SCHEMA.COLLATIONS

view.

data-type string the data type of the data in the column the histogram

has been created for. this is not a mysQL data type but

rather a more generic type such as “string” for string

types. possible values are int, uint (unsigned integer),

double, decimal, datetime, and string.

histogram- type string the histogram type, either singleton or equi-height.

last- updated string When the statistics were last updated. the format is

YYYY-mm-dd HH:MM:SS.uuuuuu.

null-values Decimal the fraction of the sampled values that is NULL.

the value is between 0.0 and 1.0.

number-of- buckets-

specified

Integer the number of buckets requested. For singleton

histograms, this may be larger than the actual number of

buckets.

sampling- rate Decimal the fraction of pages in the table that were sampled. the

value is between 0.0 and 1.0. When the value is 1.0, the

whole table was read, and the statistics are exact.

The view is not only useful to determine the histogram statistics, but you can also use

it to check metadata, for example, to determine how long it has been since the statistics

were last updated and use that to ensure the statistics are updated regularly.

The buckets field deserves some more attention as it is where the statistics

are stored. It is an array with one element per bucket. The per bucket elements are

themselves JSON arrays. For singleton histograms, there are two elements per bucket,

whereas for equi-height histograms there are four elements.

Chapter 16 hIstograms

403

The elements that are included for singleton histograms are

• Index 0: The column value for the bucket.

• Index 1: The cumulative frequency.

The information for equi-height statistics is similar, but there are a total of four

elements to account for the fact that each bucket may contain information for more than

one column value. The elements are

• Index 0: The lower bound of the column values included in the bucket.

• Index 1: The upper bound of the column values included in the bucket.

• Index 2: The cumulative frequency.

• Index 3: The number of values included in the bucket.

If you go back and consider the examples of calculating the expected filtering effect

of various conditions, you can see that the bucket information includes everything that is

necessary, but also it does not include any extra information.

Since the histogram data is stored as a JSON document, it is worth having a look at a

few example queries that retrieve various information.

 Histogram Reporting Examples
The COLUMN_STATISTICS view is very useful for querying the histogram data. Since the

metadata and statistics are stored in a JSON document, it is useful to consider some of the

JSON manipulating functions that are available, so you can retrieve histogram reports.

This section will show several examples of generating reports for the histograms you have

in your system. All examples are also available from this book’s GitHub repository, for

example, the query in Listing 16-3 is available in the file listing_16_3.sql.

 List All Histograms
A basic report is to list all histograms in your MySQL instance. Some relevant

information to include is the schema information for the histogram, the histogram type,

when the histogram was last updated, the sampling rate, the number of buckets, and

so on. Listing 16-3 shows the query and the output for one histogram (you may see a

different list of histograms depending on which histograms you have created).

Chapter 16 hIstograms

404

Listing 16-3. Listing all histograms

mysql> SELECT SCHEMA_NAME, TABLE_NAME, COLUMN_NAME,

 HISTOGRAM->>'$."histogram-type"' AS Histogram_Type,

 CAST(HISTOGRAM->>'$."last-updated"'

 AS DATETIME(6)) AS Last_Updated,

 CAST(HISTOGRAM->>'$."sampling-rate"'

 AS DECIMAL(4,2)) AS Sampling_Rate,

 JSON_LENGTH(HISTOGRAM->'$.buckets')

 AS Number_of_Buckets,

 CAST(HISTOGRAM->'$."number-of-buckets-specified"'AS UNSIGNED)

AS Number_of_Buckets_Specified

 FROM information_schema.COLUMN_STATISTICS\G

**************************** 1. row ****************************
 SCHEMA_NAME: sakila

 TABLE_NAME: film

 COLUMN_NAME: length

 Histogram_Type: singleton

 Last_Updated: 2019-06-02 08:49:18.261357

 Sampling_Rate: 1.00

 Number_of_Buckets: 140

Number_of_Buckets_Specified: 256

1 row in set (0.0006 sec)

The query gives a high-level view of the histograms. The -> operator extracts a value

from the JSON document, and the ->> operator additionally unquotes the extracted

value which can be useful when extracting strings. From the example output, you can,

for example, see that the histogram on the length column in the sakila.film table has

140 buckets but 256 buckets were requested. You can also see it is a singleton histogram,

which is not surprising since not all requested buckets were used.

 List All Information for a Single Histogram
It can be useful to take a look at the entire output of a histogram. As an example,

consider the world.city_histogram table that was created and populated with data for

eight countries earlier in the chapter. You can create an equi-height histogram with four

buckets on the CountryCode column like

Chapter 16 hIstograms

405

ANALYZE TABLE world.city_histogram

 UPDATE HISTOGRAM ON CountryCode

 WITH 4 BUCKETS;

Listing 16-4 queries the data for this histogram. This is the same histogram that was

used for Figure 16-3 when equi-histograms were discussed.

Listing 16-4. Retrieving all data for a histogram

mysql> SELECT JSON_PRETTY(HISTOGRAM) AS Histogram

 FROM information_schema.COLUMN_STATISTICS

 WHERE SCHEMA_NAME = 'world'

 AND TABLE_NAME = 'city_histogram'

 AND COLUMN_NAME = 'CountryCode'\G

**************************** 1. row ****************************
Histogram: {

 "buckets": [

 [

 "base64:type254:QVVT",

 "base64:type254:QlJB",

 0.1813186813186813,

 2

],

 [

 "base64:type254:Q0hO",

 "base64:type254:REVV",

 0.4945054945054945,

 2

],

 [

 "base64:type254:RlJB",

 "base64:type254:SU5E",

 0.8118131868131868,

 3

],

Chapter 16 hIstograms

406

 [

 "base64:type254:VVNB",

 "base64:type254:VVNB",

 1.0,

 1

]

],

 "data-type": "string",

 "null-values": 0.0,

 "collation-id": 8,

 "last-updated": "2019-06-03 10:35:42.102590",

 "sampling-rate": 1.0,

 "histogram-type": "equi-height",

 "number-of-buckets-specified": 4

}

1 row in set (0.0006 sec)

There are a couple of interesting things for this query. The JSON_PRETTY() function

is used to make it easier to read the histogram information. Without the JSON_PRETTY()

function, the whole document would be returned as a single line.

Notice also that the lower and upper bounds for each are returned as base64-

encoded strings. This is to ensure that any value in string and binary columns can be

handled by the histograms. Other data types have their values stored directly.

 List Bucket Information for a Singleton Histogram
In the previous example, the raw data for the histogram was queried. It is possible to

handle the bucket information nicer by using the JSON_TABLE() function to convert the

array into a table output. The table used in the example is city_histogram which is a

copy of the world.city table for eight countries to avoid an excessive amount of output.

There is a singleton histogram on the CountryCode column:

ANALYZE TABLE world.city_histogram

 UPDATE HISTOGRAM ON CountryCode

 WITH 8 BUCKETS;

Chapter 16 hIstograms

407

This is the same histogram that was used for the example in Figure 16-2 when

singleton histograms were discussed. Listing 16-5 shows an example of doing this for a

singleton histogram.

Listing 16-5. Listing the bucket information for a singleton histogram

mysql> SELECT (Row_ID - 1) AS Bucket_Number,

 SUBSTRING_INDEX(Bucket_Value, ':', -1) AS

 Bucket_Value,

 ROUND(Cumulative_Frequency * 100, 2) AS

 Cumulative_Frequency,

 ROUND((Cumulative_Frequency - LAG(Cumulative_Frequency, 1, 0)

OVER()) * 100, 2) AS Frequency

 FROM information_schema.COLUMN_STATISTICS

 INNER JOIN JSON_TABLE(

 histogram->'$.buckets',

 '$[*]' COLUMNS(

 Row_ID FOR ORDINALITY,

 Bucket_Value varchar(42) PATH '$[0]',

 Cumulative_Frequency double PATH '$[1]'

)

) buckets

 WHERE SCHEMA_NAME = 'world'

 AND TABLE_NAME = 'city_histogram'

 AND COLUMN_NAME = 'CountryCode'

 ORDER BY Row_ID\G

**************************** 1. row *****************************
 Bucket_Number: 0

 Bucket_Value: AUS

Cumulative_Frequency: 0.96

 Frequency: 0.96

**************************** 2. row ****************************
 Bucket_Number: 1

 Bucket_Value: BRA

Cumulative_Frequency: 18.13

 Frequency: 17.17

Chapter 16 hIstograms

408

**************************** 3. row *****************************
 Bucket_Number: 2

 Bucket_Value: CHN

Cumulative_Frequency: 43.06

 Frequency: 24.93

**************************** 4. row *****************************
 Bucket_Number: 3

 Bucket_Value: DEU

Cumulative_Frequency: 49.45

 Frequency: 6.39

**************************** 5. row *****************************
 Bucket_Number: 4

 Bucket_Value: FRA

Cumulative_Frequency: 52.2

 Frequency: 2.75

**************************** 6. row *****************************
 Bucket_Number: 5

 Bucket_Value: GBR

Cumulative_Frequency: 57.76

 Frequency: 5.56

**************************** 7. row *****************************
 Bucket_Number: 6

 Bucket_Value: IND

Cumulative_Frequency: 81.18

 Frequency: 23.42

**************************** 8. row *****************************
 Bucket_Number: 7

 Bucket_Value: USA

Cumulative_Frequency: 100

 Frequency: 18.82

8 rows in set (0.0008 sec)

Chapter 16 hIstograms

409

The query joins the COLUMN_STATISTICS view on the JSON_TABLE() function1 to

convert the JSON document into an SQL table. The function takes two arguments, of

which the first is the JSON document and the second is the path to the values and a

column definition for the resulting table. The column definition includes three columns

that are created for each bucket:

• Row_ID: This column has a FOR ORDINALITY clause which makes it

a 1-based auto-increment counter, so it can be used for the bucket

number by subtracting 1.

• Bucket_Value: The column value used with the bucket. Notice

that the value is returned after it has been decoded from its base64

encoding, so the same query works for strings and numeric values.

• Cumulative_Frequency: The cumulative frequency for the bucket as

a decimal number between 0.0 and 1.0.

The result of the JSON_TABLE() function can be used in the same way as a derived

table. The cumulative frequency is in the SELECT part of the query converted to a

percentage, and the LAG() window function2 is used to calculate the frequency (also as a

percentage) for each bucket.

 List Bucket Information for an Equi-height Histogram
The query to retrieve the bucket information for an equi-height histogram is very similar

to the query just discussed for a singleton histogram. The only difference is that an equi-

height histogram has two values (the start and end of the interval) defining the bucket

and the number of values in the bucket.

For example, you can create a histogram on the CountryCode column in the world.

city_histogram table with four buckets:

ANALYZE TABLE world.city_histogram

 UPDATE HISTOGRAM ON CountryCode

 WITH 4 BUCKETS;

1 https://dev.mysql.com/doc/refman/en/json-table-functions.html#function_json-table
2 https://dev.mysql.com/doc/refman/en/window-function-descriptions.html#function_lag

Chapter 16 hIstograms

https://dev.mysql.com/doc/refman/en/json-table-functions.html#function_json-table
https://dev.mysql.com/doc/refman/en/window-function-descriptions.html#function_lag

410

Listing 16-6 shows an example of extracting the bucket information for CountryCode

column in the world.city_histogram table with four buckets.

Listing 16-6. Listing the bucket information for an equi-height histogram

mysql> SELECT (Row_ID - 1) AS Bucket_Number,

 SUBSTRING_INDEX(Bucket_Value1, ':', -1) AS

 Bucket_Lower_Value,

 SUBSTRING_INDEX(Bucket_Value2, ':', -1) AS

 Bucket_Upper_Value,

 ROUND(Cumulative_Frequency * 100, 2) AS

 Cumulative_Frequency,

 ROUND((Cumulative_Frequency - LAG(Cumulative_Frequency, 1, 0)

OVER()) * 100, 2) AS Frequency,

 Number_of_Values

 FROM information_schema.COLUMN_STATISTICS

 INNER JOIN JSON_TABLE(

 histogram->'$.buckets',

 '$[*]' COLUMNS(

 Row_ID FOR ORDINALITY,

 Bucket_Value1 varchar(42) PATH '$[0]',

 Bucket_Value2 varchar(42) PATH '$[1]',

 Cumulative_Frequency double PATH '$[2]',

 Number_of_Values int unsigned PATH '$[3]'

)

) buckets

 WHERE SCHEMA_NAME = 'world'

 AND TABLE_NAME = 'city_histogram'

 AND COLUMN_NAME = 'CountryCode'

 ORDER BY Row_ID\G

**************************** 1. row *****************************
 Bucket_Number: 0

 Bucket_Lower_Value: AUS

 Bucket_Upper_Value: BRA

Cumulative_Frequency: 18.13

 Frequency: 18.13

 Number_of_Values: 2

Chapter 16 hIstograms

411

**************************** 2. row *****************************
 Bucket_Number: 1

 Bucket_Lower_Value: CHN

 Bucket_Upper_Value: DEU

Cumulative_Frequency: 49.45

 Frequency: 31.32

 Number_of_Values: 2

**************************** 3. row *****************************
 Bucket_Number: 2

 Bucket_Lower_Value: FRA

 Bucket_Upper_Value: IND

Cumulative_Frequency: 81.18

 Frequency: 31.73

 Number_of_Values: 3

**************************** 4. row *****************************
 Bucket_Number: 3

 Bucket_Lower_Value: USA

 Bucket_Upper_Value: USA

Cumulative_Frequency: 100

 Frequency: 18.82

 Number_of_Values: 1

4 rows in set (0.0011 sec)

Now you have some tools to inspect the histogram data, all that is left is to show an

example of how histograms can change a query plan.

 Query Example
The main goal of histograms is to help the optimizer to realize the optimal way to

execute a query. It can be useful to see an example of how a histogram can influence the

optimizer to change the query plan, so to round off this chapter, a query that changes

the plan when a histogram is added to one of the columns in the WHERE clause will be

discussed.

Chapter 16 hIstograms

412

The query uses the sakila sample database and queries for films that are shorter

than 55 minutes and features an actor with the first name Elvis. This may seem like a

contrived example, but similar queries are common, for example, to find orders for

customers fulfilling some conditions. This example query can be written as follows:

SELECT film_id, title, length,

 GROUP_CONCAT(

 CONCAT_WS(' ', first_name, last_name)

) AS Actors

 FROM sakila.film

 INNER JOIN sakila.film_actor USING (film_id)

 INNER JOIN sakila.actor USING (actor_id)

 WHERE length < 55 AND first_name = 'Elvis'

 GROUP BY film_id;

The film_id, title, and length columns come from the film table and the first_

name and last_name columns from the actor table. The GROUP_CONCAT() function is used

in case there is more than one actor in the movie that is named Elvis. (An alternative

for this query is to use EXISTS(), but this way the full name of the actors with first name

Elvis is included in the query result.)

There are no indexes on the length and first_name columns, so the optimizer

cannot know how well the conditions on these columns filter. By default, it assumes that

the condition on length returns around a third of the rows in the film table and that the

condition on first_name returns 10% of the rows. (The next chapter includes where

these default filter values come from.)

Figure 16-4 shows the query plan when no histograms exist. The query plan is shown

as a Visual Explain diagram which will be discussed in Chapter 20.

Tip You can create a Visual explain diagram by executing the query in mysQL
Workbench and clicking the Execution Plan button to the right of the query result.

Chapter 16 hIstograms

413

The important thing to notice in the query plan is that the optimizer has chosen to

start with a full table scan on the actor table, then goes through the film_actor table,

and finally joins on the film table. The total query cost (in the upper-right corner of the

figure) is calculated as 467.20 (the query cost numbers in the diagram may differ from

what you get as they depend on the index – and histogram – statistics).

As mentioned, the optimizer by default estimates that around a third of the films

have a length less than 55 minutes. Just given the range of possible values for the length,

it suggests this is a poor estimate (but the optimizer does not know anything about

movies, so it cannot see that). In fact, only 6.6% of the films have a length in that range.

This makes the length column a good candidate for a histogram which you can add like

it was previously shown:

ANALYZE TABLE sakila.film

 UPDATE HISTOGRAM ON length

 WITH 256 BUCKETS;

Figure 16-4. The query plan without a histogram

Chapter 16 hIstograms

414

Now the query plan changes as shown in Figure 16-5.

The histogram means that now the optimizer knows exactly how many rows will

be returned if the film table is scanned first. This reduces the total cost of the query to

282.26 which is a good improvement. (Again, depending on your index statistics, you

may see a different change. The important thing in the example is that the histogram

changes the query plan and the estimated cost.)

Note In practice, there are so few rows in the tables used for this example that it
hardly matters which order the query executes. however, in real-world examples,
using a histogram can provide large gains, in some cases more than an order of
magnitude.

Figure 16-5. The query plan with a histogram on the length column

Chapter 16 hIstograms

415

What is also interesting with this example is that if you change the condition to look

for movies shorter than 60 minutes, then the join order changes back to first scanning

the actor table. The reason is that with that condition, enough films will be included

based on the length that it is better to start finding candidate actors. In the same way, if

you additionally add a histogram on the first_name of the actor table, the optimizer will

realize the first name is a rather good filter for the actors in this database; particularly,

there is only one actor named Elvis. It is left as an exercise for the reader to try to change

the WHERE clause and the histograms and see how the query plan changes.

 Summary
This chapter has shown how histograms can be used to improve the information the

optimizer has available when it tries to determine the optimal query plan. Histograms

divide the column values into buckets, either one value per bucket called a singleton

histogram or multiple values per bucket called an equi-height histogram. For each

bucket, it is determined how frequent the values are encountered, and the cumulative

frequency is calculated for each bucket.

Histograms are mainly useful for columns that are not candidate to have indexes, but

they are still used for filtering in queries featuring joins. In this case, the histogram can

help the optimizer determine the optimal join order. An example was given at the end of

the chapter showing how a histogram changes the join order for a query.

The metadata and statistics for a histogram can be inspected in the information_

schema.COLUMN_STATISTICS view. The information includes all the data for each

bucket that the optimizer uses as well as metadata such as when the histogram was last

updated, the histogram type, and the number of buckets requested.

During the query example, it was mentioned that the optimizer has some defaults for

the estimated filtering effect of various conditions. Thus far, in the discussion of indexes

and histograms, the optimizer has mostly been ignored. It is time to change that: the

next chapter is all about the query optimizer.

Chapter 16 hIstograms

417
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_17

CHAPTER 17

The Query Optimizer
When you submit a query to MySQL for execution, it is not as simple as just reading the

data and returning it. True, for simple queries requesting all data from a single table,

there are not many options how to retrieve the data. However, most queries are more

complex – some much more complex – and executing the query exactly as it is written is

by no means given to be the most efficient way to get to the result. You already touched

on some of this complexity when reading about indexes. You can add to the choice of

index, the join order, the algorithm used to execute the joins, various join optimizations,

and more. That is where the optimizer comes into play.

The main job of the optimizer is to prepare the query for execution and determine

the optimal query plan. The first stage involves making transformations to the query

with the aim that the rewritten query can be executed at a lower cost than the original

query. The second stage consists of calculating the cost of the various ways the query can

be executed and determining the cheapest option.

Note It is important to realize that the work done by the optimizer is not exact
science because of the variations in data and its distribution. The transformations
the optimizer chooses and the costs calculated are both to some degree based
on estimates. Usually these estimates are good enough to get a good query plan,
but occasionally you will need to provide hints. How to configure the optimizer is
discussed in the “Configuring the Optimizer” section later in this chapter.

This chapter starts out discussing the transformations and the cost-based

optimization. The chapter then continues to discuss the basic join algorithms followed

by other optimization features such as batch key access. The final part of the chapter

covers how to configure the optimizer and how to use resource groups to prioritize

queries.

418

 Transformations
The way a human finds it natural to write a query may not be the same as the optimal

way to execute it inside MySQL. The optimizer knows of several transformations that can

be used to change the query while still returning the same result, so the query becomes

more optimal for MySQL.

It is of course paramount that the original and rewritten queries return the same

result. Fortunately, relational databases are based on the mathematical set theory, so

many of the transformations can use standard mathematical rules which ensure the two

versions of the query return the same result (bar implementation bugs).

One of the simplest types of transformations the optimizer does is constant

propagation. As an example, consider the following query:

SELECT *
 FROM world.country

 INNER JOIN world.city

 ON city.CountryCode = country.Code

 WHERE city.CountryCode = 'AUS';

This query has two conditions: the city.CountryCode column must be equal to

“AUS”, and the CountryCode column of the city table must be equal to the Code column

of the country table. From those two conditions, it can be derived that the country.Code

column also must equal “AUS”. The optimizer uses this knowledge to filter the country

table directly. Since the Code column is the primary key of the country table, it means

the optimizer knows that there will only be a single row matching the condition, and the

optimizer can treat the country table as a constant. Effectively, the query ends up being

executed with the column values from the country table as constants in the select list

and a scan over the entries in the city table with CountryCode = 'AUS':

SELECT 'AUS' AS `Code`,

 'Australia' AS `Name`,

 'Oceania' AS `Continent`,

 'Australia and New Zealand' AS `Region`,

 7741220.00 AS `SurfaceArea`,

 1901 AS `IndepYear`,

 18886000 AS `Population`,

 79.8 AS `LifeExpectancy`,

 351182.00 AS `GNP`,

CHapTer 17 THe QUery OpTImIzer

419

 392911.00 AS `GNPOld`,

 'Australia' AS `LocalName`,

 'Constitutional Monarchy, Federation' AS `GovernmentForm`,

 'Elisabeth II' AS `HeadOfState`,

 135 AS `Capital`,

 'AU' AS `Code2`,

 city.*
 FROM world.city

 WHERE CountryCode = 'AUS';

This is a safe transformation from a performance point of view. Other

transformations are more complicated and do not always improve the performance.

For that reason, it can be configured whether the optimization is enabled or not. The

configuration is done using the optimizer_switch option and optimizer hints which are

discussed when covering optimizations and how to configure the optimizer.

Once the optimizer has decided which transformations to do, it needs to determine

how to execute the rewritten query as will be discussed next.

 Cost-Based Optimization
MySQL uses cost-based optimization of the queries. That means that the optimizer

calculates a cost for the various operations required to execute the query, then combines

these partial costs to calculate the overall query cost for the possible query plans, and

chooses the cheapest plan. This section covers the principles of estimating the cost of the

query plans.

 The Basics: Single Table SELECT
The principles of calculating the cost are the same irrespective of the query, but

obviously the more complex the query, the more complex the cost estimation becomes.

As a simple example, consider a query that queries a single table with a WHERE clause on

an indexed column:

SELECT *
 FROM world.city

 WHERE CountryCode = 'IND';

CHapTer 17 THe QUery OpTImIzer

420

There world.city table has a secondary nonunique index on the CountryCode

column as can be seen from the table definition:

mysql> SHOW CREATE TABLE world.city\G

**************************** 1. row ****************************
 Table: city

Create Table: CREATE TABLE `city` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `Name` char(35) NOT NULL DEFAULT ",

 `CountryCode` char(3) NOT NULL DEFAULT ",

 `District` char(20) NOT NULL DEFAULT ",

 `Population` int(11) NOT NULL DEFAULT '0',

 PRIMARY KEY (`ID`),

 KEY `CountryCode` (`CountryCode`),
 CONSTRAINT `city_ibfk_1` FOREIGN KEY (`CountryCode`) REFERENCES `country`

(`Code`)

) ENGINE=InnoDB AUTO_INCREMENT=4080 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0008 sec)

There are two ways the optimizer can choose to fetch the matching rows. One way is

to use the index on CountryCode to find the matching rows in the index and then look up

the row values requested. The other way is to do a full table scan and check each row to

determine whether it meets the filter condition.

Which of these access methods has the lowest cost (is the fastest) is not as

straightforward to determine as it may seem. It depends on several factors:

• How selective is the index? Reading a row through the secondary

index involves first finding the row in the index and then possibly

(see the next item) doing a primary key lookup to get the row. This

means that it is more expensive to examine and retrieve a row using

the secondary index than reading the row directly, and for the index

access to become overall cheaper than a table scan, the index must

significantly reduce the number of rows to examine. The more

selective the index, the relatively cheaper it is to use it.

• Is the index a covering index? If the index includes all columns

required for the query, it is possible to skip reading in the actual row

making it more favorable to use the index.

CHapTer 17 THe QUery OpTImIzer

421

• How expensive is it to read records? This again depends on several

factors such as whether the index and row data are already in the

buffer pool and, if not, how fast the records can be read from disk.

Using the index will require more random I/O given the switching

between reading the index and reading the clustered index, so the

seek times involved to locate the records become very important.

One of the new features in MySQL 8 is that the optimizer can ask InnoDB whether

the records required for the query can be expected to be found in the buffer pool or if it is

necessary to read it from disk. This can greatly help improve the query plans.

The question of the cost involved to read the records is more complicated as MySQL

does not know the performance characteristics of the hardware. MySQL 8 by default

assumes that it is four times as expensive to read from disk than memory. This can be

configured as discussed in “Engine Costs” in the “Configuring the Optimizer” section.

As soon as you introduce a second table into the query, the optimizer also needs to

decide in which order to join the tables.

 Table Join Order
For more complicated queries than a single table SELECT statement, the optimizer

not only needs to take the cost of accessing each table into account but also needs to

consider the order each table is included and which index to use for each table.

For outer and straight joins, the join order is fixed, but for inner joins the optimizer

is free to choose the order, so the optimizer must calculate the cost of each combination.

The number of possible combinations is N! (factorial) which scales very poorly. If you

have five tables participating in inner joins, the optimizer has a choice of five tables as

the first table, then four tables for the second table, three tables for the third table, two

tables for the fourth table, and finally one table for the last table:

Combinations = 5 * 4 * 3 * 2 * 1 = 5! = 120

MySQL supports joining up to 61 tables in which case there are potentially 5.1E83

combinations to calculate the cost which is cost prohibitive and will likely take longer

than executing the query itself. For this reason, the optimizer by default prunes the

query plans based on partial evaluations of the cost, so only the most promising plans

are fully evaluated. It is also possible to tell the optimizer to stop evaluating the cost after

including a given number of tables. The pruning and search depth are configured with

CHapTer 17 THe QUery OpTImIzer

422

the optimizer_prune_level and optimizer_search_depth options, respectively, as it

will be discussed in the “Configuring the Optimizer” section.

The optimal join order is related to how large the tables are and how well the filters

work on reducing the number of rows included from each table.

 Default Filtering Effects
When you join two or more tables, the optimizer needs to know how many rows are

included from each table to be able to determine the optimal join order. It is by no

means always a trivial task.

When an index is used, the optimizer can estimate very accurately how many rows

will match for the index when the filter is not relating to other tables. If there is no index,

histogram statistics can be used to get a good filtering estimate. The difficulties arise

when there are no statistics for the filtered columns. In that case, the optimizer falls back

on built-in default estimates. Table 17-1 includes examples of default filtering effects that

are used when there are no index or histogram statistics that can be used.

Table 17-1. Default filtering effects for conditions without statistics

Type Filter % Notes/Example

all 100 This is used when filtering by index or there is no filtering

condition.

equality 10 Name = 'Sydney'

Not equal 90 Name <> 'Sydney'

Inequality 33.33 Population > 4000000

Between 11.11 Population BETWEEN 1000000 AND 4000000

IN min(#items *

10, 50)

Name IN ('Sydney', 'Melbourne')

CHapTer 17 THe QUery OpTImIzer

423

The filtering effects are based on the article “Access path selection in a relational

database management system” by Selinger et al.1 You will sometimes see different

filtering values. Some examples include

• Distinct values are known: This includes enum and bit data types.

Consider the Continent column in the world.country table. This is

an enum with seven values, so the optimizer will estimate the filtering

effect to be 1/7 for a WHERE clause like Continent = 'Europe'.

• Few rows: If there are fewer than ten rows in a table and you add an

equality condition, the filtering estimate will be 1/number_of_rows

and similar for the not equal filter estimate.

• Combination of filters: If you combine filters on several non-

indexed columns, the estimated filtering effect is the combined

effect. For example, for the world.city table, the filter Name =

'Sydney' AND Population > 3000000 is estimated to take 10% of the

rows due to the equality on Name and 33% because of the inequality

on Population, so the combined effect is P(Equality on Name) *

P(Inequality on Population) = 0.1 * 0.33 = 0.0333 = 3.33%.

This list is not exhaustive, but it should give you a good idea of how MySQL arrives

at the filtering estimates. The default filtering effects are obviously not very accurate,

particularly for large tables as the data does not follow such rigid rules. That is why

indexes and histograms are so important to get good query plans.

At the end of determining the query plan, there are cost estimates for both the

individual parts and the whole query. These can be informative to understand how the

optimizer arrived at the query execution plan.

 The Query Cost
If you want to examine the costs the optimizer has found, you will need to use the tree-

(including EXPLAIN ANALYZE) or JSON-formatted EXPLAIN output, a MySQL Workbench

Visual Explain diagram, or the optimizer trace. These are all described in detail in

Chapter 20.

1 https://dl.acm.org/citation.cfm?id=582099 (requires membership/subscription)

CHapTer 17 THe QUery OpTImIzer

https://dl.acm.org/citation.cfm?id=582099

424

As a simple example, consider a query joining the country and city tables of the

world sample database:

SELECT *
 FROM world.country

 INNER JOIN world.city

 ON CountryCode = Code;

Figure 17-1 shows the Visual Explain diagram for the query including extra details for

the city table.

Figure 17-1. Visual Explain with cost estimates

CHapTer 17 THe QUery OpTImIzer

425

The figure shows how the optimizer has decided to execute the query. How to read

the diagram will be discussed in Chapter 20. Here the important part are the figures

pointed to by the arrows. These are the cost estimates that the optimizer has arrived at

for the various parts of the query execution with the lower cost, the better. The example

shows that the cost estimates are calculated for very specific tasks such as reading the

data, evaluating the filter condition, and so on. At the top of the diagram, the total query

cost is estimated to be 1535.43.

Note Since the calculated cost depends on such things as the index statistics,
and the index statistics are not exact, the cost will not be the same over time.
This also means that you may see different cost estimates, if you execute the same
query compared to what is shown in the examples in this book.

After you have executed a query, you can also get the estimated cost from the

Last_query_cost status variable. Listing 17-1 shows an example of doing this for the

same query as in Figure 17-1.

Listing 17-1. Obtaining the estimated query cost after executing a query

mysql> SELECT *
 FROM world.country

 INNER JOIN world.city

 ON CountryCode = Code;

...

mysql> SHOW SESSION STATUS LIKE 'Last_query_cost';

+-----------------+-------------+

| Variable_name | Value |

+-----------------+-------------+

| Last_query_cost | 1535.425669 |

+-----------------+-------------+

1 row in set (0.0013 sec)

The result of the query has been removed from the output as it is not important

for this discussion. An important thing to note about Last_query_cost is that it is

the estimated cost which is why it shows the same value as the total cost in the Visual

CHapTer 17 THe QUery OpTImIzer

426

Explain diagram. If you want information about the actual cost of executing the query,

you need to use EXPLAIN ANALYZE.

The Visual Explain diagram mentions the query is executed using a nested loop.

That is just one of the join algorithms MySQL supports.

 Join Algorithms
A join is a very broad concept in MySQL – so much that you can argue that everything is

a join. Even querying a single table is considered a join. That said, the most interesting

joins are those between two or more tables. In this discussion a table can also be a

derived table.

When a query is executed, and two tables need to be joined, MySQL has support for

three different algorithms. The algorithms are

• Nested loop

• Block nested loop

• Hash join

Note The timings shown in this section are for illustrative purposes only.
The timings you see on your system will be different, and there may also be
differences in the timings relative to each other.

This section and the next will reference several names of optimizer switches and

optimizer hints. The optimizer switches refer to the optimizer_switch configuration

option, and the optimizer hints refer to the /*+ ... */ comments that can be added

to queries to tell the optimizer how you would like the query to be executed. Both

concepts and how to use them will be discussed further in the section “Configuring the

Optimizer” later in this chapter.

 Nested Loop
The nested loop algorithm is the simplest of the algorithms used in MySQL. Until MySQL

5.6 it was also the only algorithm available. As the name suggests, it works by nesting

loops with one loop for each table in the join. Not only is the nested join algorithm very

simple; it also works well for index lookups.

CHapTer 17 THe QUery OpTImIzer

427

Consider a query on the world.country table joining on the world.city table

querying for countries and cities in Asia. You can write the query in the following way:

SELECT CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country

 INNER JOIN world.city

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

It will be executed using a nested loop with a table scan on the country table where

the filter in the WHERE clause is applied followed by an index lookup on the city table.

In a tree notation, the query looks like

-> Nested loop inner join

 -> Filter: (country.Continent = 'Asia')

 -> Table scan on country

 -> Index lookup on city using CountryCode

 (CountryCode=country.`Code`)

You can also write this as pseudo code. Using a Python-like syntax, the nested loop

join can be written like the following code snippet:

result = []

for country_row in country:

 if country_row.Continent == 'Asia':

 for city_row in city.CountryCode['country_row.Code']:

 result.append(join_rows(country_row, city_row))

In the pseudo code, country and city represent the country and city tables,

respectively, city.CountryCode is the CountryCode index on the city table, and country_

row and city_row represent a single row. The join_rows() function is used to represent

the process of combining the columns needed from the two rows to a row in the result set.

Figure 17-2 shows the same nested loop join using a diagram. For simplicity and to

focus on the join, only the primary key values of the matching rows are included even

though all rows are read from the country table.

CHapTer 17 THe QUery OpTImIzer

428

The diagram shows that MySQL scans the country table until it finds a row matching

the WHERE clause. In the diagram, the first matching row is AFG (for Afghanistan). Then

all rows in the city table for CountryCode = AFG are found (ID equal to 1, 2, 3, and 4), and

each combination is used to form a row in the result. This continues with the country

code equaling ARE (for United Arab Emirates) and so forth until YEM (for Yemen).

The exact order the rows are scanned in the country table and within the

CountryCode index in the city table depends on the index definitions as well as internals

in the optimizer, executor, and storage engine. You should never rely on the ordering to

stay the same unless you have an explicit ORDER BY clause.

In general, a join may be more complex than in this example as there may be

additional filters. Yet the concept remains the same.

Figure 17-2. An example of a nested loop join

CHapTer 17 THe QUery OpTImIzer

429

While being simple is usually a good property, the nested loop join has some

limitations. It cannot be used to execute a full outer join as the nested loop join requires the

first table to return rows which is not always the case for a full outer join. The workaround is

to write a full outer join as a union of a left and a right outer join. Consider a query looking

for all countries and cities including those cases where there are no cities for a country and

there is no country for a city. That can be written as a full outer join (not valid in MySQL):

SELECT *
 FROM world.country

 FULL OUTER JOIN world.city

 ON city.CountryCode = country.Code;

In order to execute that in MySQL, you can use a union of country LEFT JOIN city

and country RIGHT JOIN city like

SELECT *
 FROM world.country

 LEFT OUTER JOIN world.city

 ON city.CountryCode = country.Code

 UNION

SELECT *
 FROM world.country

 RIGHT OUTER JOIN world.city

 ON city.CountryCode = country.Code;

Another limitation is that a nested loop join is not very effective for joins that cannot

use indexes. Since nested loop joins work on one row at a time from the first table in the

join, it is necessary with a full table scan of the second table for each row included from

the first table. That quickly becomes too expensive. Consider the query examined a little

earlier where all cities in Asia were found:

mysql> SELECT PS_CURRENT_THREAD_ID();

+------------------------+

| PS_CURRENT_THREAD_ID() |

+------------------------+

| 30 |

+------------------------+

1 row in set (0.0017 sec)

CHapTer 17 THe QUery OpTImIzer

430

SELECT CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country

 INNER JOIN world.city

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

With a table scan on the country table (239 rows) and an index lookup on the city

table, a total of 2005 rows will be examined (execute this query in a second connection):

mysql> SELECT rows_examined, rows_sent,

 last_statement_latency AS latency

 FROM sys.session

 WHERE thd_id = 30\G

*************************** 1. row ***************************
rows_examined: 2005

 rows_sent: 1766

 latency: 4.36 ms

1 row in set (0.0539 sec)

The filter on thd_id needs to match the Performance Schema thread id of the

connection that executed the query (this can be found with the PS_CURRENT_THREAD_

ID() function in MySQL 8.0.16 and later). The 2005 examined rows come from

examining the 239 rows in the country table doing a full table scan followed by reading

the 1766 rows in the city table for the Asian countries.

If MySQL cannot use an index for the join, then the query performance changes

drastically. You can execute the query using a nested loop join without using an index in

the following way (the NO_BNL(city) comment is an optimizer hint):

SELECT /*+ NO_BNL(city) */

 CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country IGNORE INDEX (Primary)

CHapTer 17 THe QUery OpTImIzer

431

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

The IGNORE INDEX () clause is an index hint that tells MySQL to ignore the index

given between the parentheses. The query statistics for this version of the query show

that now more than 200,000 rows are examined and the query takes around ten times

longer to execute than before (perform this test in the same way as the previous where

the query finding the Asian cities is executed in one connection and the following query

against sys.session is executed in another connection and thd_id = 30 is changed to

use the thread id of the first connection):

mysql> SELECT rows_examined, rows_sent,

 last_statement_latency AS latency

 FROM sys.session

 WHERE thd_id = 30\G

**************************** 1. row ****************************
rows_examined: 208268

 rows_sent: 1766

 latency: 44.83 ms

There are 51 countries with Continent = 'Asia' which means that there are 51 full

table scans of the city table. Since there are 4079 rows in the city table, that gives a total of

51 * 4079 + 239 = 208268 rows that must be examined. The extra 239 come from the table

scan on the country table with 239 rows.

Why was it necessary to add the comment with NO_BNL(country,city) in the

example? BNL stands for block nested loop which can help improve joins without

indexes, and the comment disables that optimization. Usually, you do want to keep it

enabled as will be explained next.

CHapTer 17 THe QUery OpTImIzer

432

 Block Nested Loop
The block nested loop algorithm is an extension of the nested loop algorithm. It is also

known as the BNL algorithm. Instead of submitting the rows from the first table in a join

one by one, the join buffer is used to collect as many rows as possible and compare them

all in one scan of the second table. This can greatly improve the performance for some

queries over the nested loop algorithm.

If you consider the same query that was used as the example for the nested loop

algorithm but disabling the use of indexes (to simulate two tables without indexes) and

not allowing a hash join (in 8.0.18 and later), you have a query that can take advantage of

the block nested loop algorithm. The query is

SELECT /*+ NO_HASH_JOIN(country,city) */

 CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

In MySQL 8.0.17 and earlier, remove the comment with the NO_HASH_JOIN()

optimizer hint.

Listing 17-2 shows an example of a pseudo code implementation of the block nested

loop algorithm using Python-like code.

Listing 17-2. Pseudo code representing a block nested loop join

result = []

join_buffer = []

for country_row in country:

 if country_row.Continent == 'Asia':

 join_buffer.append(country_row.Code)

 if is_full(join_buffer):

 for city_row in city:

 CountryCode = city_row.CountryCode

CHapTer 17 THe QUery OpTImIzer

433

 if CountryCode in join_buffer:

 country_row = get_row(CountryCode)

 result.append(

 join_rows(country_row, city_row))

 join_buffer = []

if len(join_buffer) > 0:

 for city_row in city:

 CountryCode = city_row.CountryCode

 if CountryCode in join_buffer:

 country_row = get_row(CountryCode)

 result.append(join_rows(country_row, city_row))

 join_buffer = []

The join_buffer list represents the join buffer storing the columns needed for

the join. In the pseudo code, the columns are extracted with the required_columns()

function. For the query used as the example, only the Code column from the country

table is needed. This is an important thing to note and will shortly be discussed further.

When the join buffer is full, a table scan is performed on the city table; and if there is a

match of the CountryCode column of the city table with one of the Code values stored in

the join buffer, the result row is constructed.

Figure 17-3 shows a diagram representing the join. For simplicity, only the primary

key values of the rows required for the join are included even though a full table scan is

performed for both tables.

CHapTer 17 THe QUery OpTImIzer

434

The figure shows how rows from the country table are read together and stored in

the join buffer. Each time the join buffer is full, a full table scan is performed for the city

table, and the result is built incrementally. In the figure, six rows fit into the join buffer at

a time. As the Code column only requires 3 bytes per row, in practice the join buffer will

be able to hold all the country codes except when using the smallest possible settings of

join_buffer_size.

How does the use of the join buffer to buffer several country codes affect the query

statistics? As for the previous examples, first, execute the query finding the Asian cities in

one connection:

SELECT /*+ NO_HASH_JOIN(country,city) */

 CountryCode, country.Name AS Country,

 city.Name AS City, city.District

Figure 17-3. An example of a block nested loop join

CHapTer 17 THe QUery OpTImIzer

435

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

Then in another connection, query sys.session to get the number of examined

rows and the query latency (change thd_id = 30 to use the thread id of the first

connection):

mysql> SELECT rows_examined, rows_sent,

 last_statement_latency AS latency

 FROM sys.session

 WHERE thd_id = 30\G

**************************** 1. row ****************************
rows_examined: 4318

 rows_sent: 1766

 latency: 16.87 ms

1 row in set (0.0490 sec)

The result assumes the default value for join_buffer_size. The statistics show that

block nested loop performs significantly better than the nested loop algorithm without

using an index. By comparison, executing the query with an index examined 2005 rows

and took around 4 ms, whereas using a nested loop join without index examined 208268

rows and took around 45 ms. This may seem like irrelevant differences in the query

execution time, but both the country and city tables are very small. For large tables,

the difference will grow nonlinearly and can mean the difference between a query

completing and seemingly running forever.

There are some points about the block nested loop that you should be aware of as it

helps you use it optimally. These points include

• Only the columns required for the join are stored in the join buffer.

This means that you will need less memory for the join buffer than

you may at first expect.

• The size of the join buffer is configured with the join_buffer_size

variable. The value of join_buffer_size is the minimum size of the

buffer! Even if less than 1 KiB of country code values will be stored in

the join buffer in the discussed example, if join_buffer_size is set

CHapTer 17 THe QUery OpTImIzer

436

to 1 GiB, then 1 GiB will be allocated. For this reason, keep the value

of join_buffer_size low and only increase it as needed. The section

“Configuring the Optimizer” includes information on how to change

the size of the join buffer just for the single query.

• One join buffer is allocated per join using the block nested loop

algorithm.

• Each join buffer is allocated for the entire duration of the query.

• The block nested loop algorithm can be used for full table scans, full

index scans, and range scans.

• The block nested loop algorithm will never be used for constant

tables as well as the first nonconstant table. This means that it

requires a join between two tables with more than one row after

filtering by unique indexes to use the block nested loop algorithm.

You can configure whether the optimizer is allowed to choose the block nested loop

algorithm by setting the block_nested_loop optimizer switch. The default is to have

it enabled. For a single query, you can use the BNL() and NO_BNL() optimizer hints to

enable or disable the block nested loop for specific joins.

While the block nested loop is a great improvement for non-indexed joins, it is in

most cases possible to do even better by using a hash join.

 Hash Join
The hash join algorithm is a very recent addition to MySQL and is supported in MySQL

8.0.18 and later. It marks a significant break with the tradition of nested loop joins

including the block nested loop variant. It is particularly useful for large joins without

indexes but can in some cases even outperform an index join.

MySQL implements a hybrid between a classic in-memory hash join and the on-disk

GRACE hash join algorithm.2 If it is possible to store all the hashes in memory, then the

pure in-memory implementation is used. The join buffer is used for the in-memory part,

so the amount of memory that can be used for the hashes is limited by join_buffer_

size. When the join does not fit in memory, the join spills over to disk, but the actual

join operations are still performed in memory.

2 https://dev.mysql.com/worklog/task/?id=2241

CHapTer 17 THe QUery OpTImIzer

https://dev.mysql.com/worklog/task/?id=2241

437

The in-memory hash join algorithm consists of two steps:

 1. One of the tables in the join is chosen as the build table. The hash

is calculated for the columns required for the join and loaded into

memory. This is known as the build phase.

 2. The other table in the join is the probe input. For this table, rows

are read one at a time, and the hash is calculated. Then a hash

key lookup is performed on the hashes calculated from the build

table, and the result of the join is generated from the matching

rows. This is known as the probe phase.

When the hashes of the build table do not fit into memory, MySQL automatically

switches to use the on-disk implementation (based on the GRACE hash join algorithm).

The switch from the in-memory to the on-disk algorithm happens if the join buffer

becomes full during the build phase. The on-disk algorithm consists of three steps:

 1. Calculate the hashes of all rows in both the build and probe tables

and store them on disk in several small files partitioned by the

hash. The number of partitions is chosen to make each partition

of the probe table fit into the join buffer but with a limit of at most

128 partitions.

 2. Load the first partition of the build table into memory and iterate

over the hashes from the probe table in the same way as for the

probe phase for the in-memory algorithm. Since the partitioning

in step 1 uses the same hash function for both the build and probe

tables, it is only necessary to iterate over the first partition of the

probe table.

 3. Clear the in-memory buffer and continue with the rest of the

partitions one by one.

Both the in-memory and on-disk algorithms use the xxHash64 hash function which

is known as being fast while still providing hashes of good quality (reducing the number

of hash collisions). For the optimal performance, the join buffer needs to be large

enough to fit all the hashes from the build table. That said, the same considerations for

join_buffer_size exist for hash joins as for block nested loop joins.

CHapTer 17 THe QUery OpTImIzer

438

MySQL will use the hash join whenever the block nested loop would otherwise be

chosen, and the hash join algorithm is supported for the query. At the time of writing,

the following requirements exist for the hash join algorithm to be used:

• The join must be an inner join.

• The join cannot be performed using an index, either because there is

no available index or because the indexes have been disabled for the

query.

• All joins in the query must have at least one equi-join condition

between the two tables in the join, and only columns from the two

tables as well as constants are referenced in the condition.

• As of 8.0.20, anti, semi, and outer joins are also supported.3 If you join

the two tables t1 and t2, then examples of join conditions that are

supported for hash join include

• t1.t1_val = t2.t2_val

• t1.t1_val = t2.t2_val + 2

• t1.t1_val1 = t2.t2_val AND t1.t1_val2 > 100

• MONTH(t1.t1_val) = MONTH(t2.t2_val)

If you consider the recurring example query for this section, you can execute it using

a hash join by ignoring the indexes on the tables that can be used for the join:

SELECT CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

The pseudo code for performing this join is similar to that of a block nested loop

except that the columns needed for the join are hashed and that there is support for

overflowing to disk. The pseudo code is shown in Listing 17-3.

3 https://twitter.com/lefred/status/1222916855150600192

CHapTer 17 THe QUery OpTImIzer

https://twitter.com/lefred/status/1222916855150600192

439

Listing 17-3. Pseudo code representing a hash join

result = []

join_buffer = []

partitions = 0

on_disk = False

for country_row in country:

 if country_row.Continent == 'Asia':

 hash = xxHash64(country_row.Code)

 if not on_disk:

 join_buffer.append(hash)

 if is_full(join_buffer):

 # Create partitions on disk

 on_disk = True

 partitions = write_buffer_to_disk(join_buffer)

 join_buffer = []

 else

 write_hash_to_disk(hash)

if not on_disk:

 for city_row in city:

 hash = xxHash64(city_row.CountryCode)

 if hash in join_buffer:

 country_row = get_row(hash)

 city_row = get_row(hash)

 result.append(join_rows(country_row, city_row))

else:

 for city_row in city:

 hash = xxHash64(city_row.CountryCode)

 write_hash_to_disk(hash)

 for partition in range(partitions):

 join_buffer = load_build_from_disk(partition)

 for hash in load_hash_from_disk(partition):

CHapTer 17 THe QUery OpTImIzer

440

 if hash in join_buffer:

 country_row = get_row(hash)

 city_row = get_row(hash)

 result.append(join_rows(country_row, city_row))

 join_buffer = []

The pseudo code starts out reading the rows from the country table and calculates

the hash for the Code column and stores it in the join buffer. If the buffer becomes full,

then the code switches to the on-disk algorithm and writes out the hashes from the

buffer. This is also where the number of partitions is determined. After this the rest of the

country table is hashed.

In the next part, for the in-memory algorithm, there is a simple loop over the rows in

the city table comparing the hashes to those in the buffer. For the on-disk algorithm, the

hashes of the city table are first calculated and stored on disk; then the partitions are

handled one by one.

Note The algorithm as described is a little simplified compared to the actual
algorithm used. The real algorithm will have to take hash collisions into account,
and for the on-disk algorithm, it is possible for some partitions to become too large
to fit into the join buffer, in which case they are handled in chunks to avoid using
more memory to be used than configured.

Figure 17-4 shows a diagram for the in-memory hash join algorithm. For simplicity,

only the primary key values of the rows required for the join are included even though a

full table scan is performed for both tables.

CHapTer 17 THe QUery OpTImIzer

441

The values of the Code column for the matching rows from the country table are

hashed and stored in the join buffer. Then a table scan is executed for the city table with

the hash calculated of CountryCode for each row, and the result is constructed from the

matching rows.

You can check the statistics for the query in the same way as for the previous

algorithms by first executing the query in one connection:

SELECT CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

Figure 17-4. An example of an in-memory hash join

CHapTer 17 THe QUery OpTImIzer

442

Then you can look at the Performance Schema statistics for the query by querying

the sys.session view in a second connection (change thd_id = 30 to use the thread id

of the first connection):

mysql> SELECT rows_examined, rows_sent,

 last_statement_latency AS latency

 FROM sys.session

 WHERE thd_id = 30\G

rows_examined: 4318

 rows_sent: 1766

 latency: 3.53 ms

1 row in set (0.0467 sec)

You can see the query performs very well with the hash join examining the same

number of rows as the block nested loop, but it is faster than an index join. This is not a

mistake: in some cases, a hash join can outperform even an index join. You can use the

following rules to estimate how the hash join algorithm will perform compared to index

and block nested loop joins:

• For a join without using an index, the hash join will usually be much

faster than a block nested join unless a LIMIT clause has been added.

Improvements of more than a factor of 1000 have been observed.4

• For a join without an index where there is a LIMIT clause, a block

nested loop can exit when enough rows have been found, whereas

a hash join will complete the entire join (but can skip fetching the

rows). If the number of rows included due to the LIMIT clause is small

compared to the total number of rows found by the join, a block

nested loop may be faster.

• For joins supporting an index, the hash join algorithm can be faster if

the index has a low selectivity.

The biggest benefit using the hash joins is by far for joins without an index and

without a LIMIT clause. In the end, only testing can prove which join strategy is the

optimal for your queries.

4 https://mysqlserverteam.com/hash-join-in-mysql-8/ and www.slideshare.net/
NorvaldRyeng/mysql-8018-latest-updates-hash-join-and-explain-analyze

CHapTer 17 THe QUery OpTImIzer

https://mysqlserverteam.com/hash-join-in-mysql-8/
http://www.slideshare.net/NorvaldRyeng/mysql-8018-latest-updates-hash-join-and-explain-analyze
http://www.slideshare.net/NorvaldRyeng/mysql-8018-latest-updates-hash-join-and-explain-analyze

443

You can enable and disable support for hash joins using the hash_join optimizer

switch. Additionally, the block_nested_loop optimizer switch must be enabled. Both are

enabled by default. If you want to configure the use of hash joins for specific joins, you

can use the HASH_JOIN() and NO_HASH_JOIN() optimizer hints.

That concludes the discussion about the three high-level join strategies supported in

MySQL. There are some lower-level optimizations as well that are worth considering.

 Join Optimizations
The join optimizations can be used by MySQL to improve the basic concepts of the join

algorithms discussed in the previous section or to decide how to execute parts of the

query. This section will cover the index merge, Multi-Range Read (MRR), and Batched Key

Access (BKA) optimization in detail. These three optimizations are the ones most likely to

need you to help the optimizer to get the query plan to be the most optimal. The remaining

configurable optimizations are covered at the end of the section but in less detail.

 Index Merge
Usually MySQL will only use a single index per table. However, that is not optimal if you

have conditions on multiple columns from the same table and you do not have a single

index covering all columns. For those cases, MySQL supports index merges.

Tip a multicolumn index covering the columns with filter conditions is more
efficient than using the index merge optimization. you should weigh that
performance difference up against possibly having an extra index.

There is support for three index merge algorithms. Table 17-2 summarizes the

algorithms, when the algorithms are used, and the information included in the

query plans.

CHapTer 17 THe QUery OpTImIzer

444

In addition to the EXPLAIN information listed in the table, the access type is set to

index_merge.

The use case specifies the operator joining the conditions. The difference between

the union and sort-union algorithms is that the union algorithm is for equality

 conditions and the sort-union algorithm is for range conditions. For the EXPLAIN outputs,

the names of the indexes used with the index merge are listed inside the parentheses.

When discussing the three algorithms, it can be useful to consider real queries that

use each algorithm. The payment table in the sakila database is useful for this purpose.

The table definition of sakila.payment is

CREATE TABLE `payment` (

 `payment_id` smallint unsigned NOT NULL,

 `customer_id` smallint unsigned NOT NULL,

 `staff_id` tinyint unsigned NOT NULL,

 `rental_id` int(DEFAULT NULL,

 `amount` decimal(5,2) NOT NULL,

 `payment_date` datetime NOT NULL,

 `last_update` timestamp NULL,

 PRIMARY KEY (`payment_id`),

 KEY `idx_fk_staff_id` (`staff_id`),

 KEY `idx_fk_customer_id` (`customer_id`),

 KEY `fk_payment_rental` (`rental_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

The default values, auto-increment information, and foreign key definitions have

been removed from the table to focus on the columns and the indexes. The table has four

indexes, all on a single column, which makes it a good candidate for the index merge

optimizations.

Table 17-2. The index merge algorithms

Algorithm Use Case EXPLAIN Extra Colum EXPLAIN JSON Key Field

Intersection AND Using intersect(...) intersect(...)

Union OR Using union(...) union(...)

Sort-Union OR with ranges sort_union(...) sort_union(...)

CHapTer 17 THe QUery OpTImIzer

445

The rest of the index merge discussion will go through each of the index merge

algorithms as well as performance considerations and how to configure the use of index

merges. The examples all include conditions on just two columns, but the algorithms do

support index merges involving more columns.

Note Whether the optimizer chooses an index merge or not depends on the index
statistics. This means that for the same query, different values in the WHERE clause
may cause different query plans, and changes to the index statistics can make the
query execute differently even with the exact same conditions between using index
merges and not using them – or vice versa.

 Intersection Algorithm

The intersection algorithm is used when you have conditions on several index columns

separated by AND. Two examples of queries using the intersection index merge

algorithm are

SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75;

SELECT *
 FROM sakila.payment

 WHERE payment_id > 10

 AND customer_id = 318;

The first query has an equality condition on two secondary indexes, and the second

query has a range condition on the primary key and an equality condition on the

secondary index. The index merge optimization with the second query exclusively works

with InnoDB tables. Listing 17-4 shows the EXPLAIN output using the first of the two

queries using two different formats.

CHapTer 17 THe QUery OpTImIzer

446

Listing 17-4. Example of an EXPLAIN output for an intersection merge

mysql> EXPLAIN

 SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

 type: index_merge

possible_keys: idx_fk_staff_id,idx_fk_customer_id

 key: idx_fk_customer_id,idx_fk_staff_id

 key_len: 2,1

 ref: NULL

 rows: 20

 filtered: 100

 Extra: Using intersect(idx_fk_customer_id,idx_fk_staff_id); Using

where 1 row in set, 1 warning (0.0007 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75\G

**************************** 1. row ****************************
EXPLAIN: -> Filter: ((sakila.payment.customer_id = 75) and (sakila.payment.

staff_id = 1)) (cost=14.48 rows=20)

 -> Index range scan on payment using intersect(idx_fk_customer_id,idx_

fk_staff_id) (cost=14.48 rows=20)

1 row in set (0.0004 sec)

CHapTer 17 THe QUery OpTImIzer

447

Notice the Using intersect(...) message in the Extra column and for the index

range scan in the tree-formatted output. This shows that the idx_fk_customer_id and

idx_fk_staff_id indexes are used for the index merge. The traditional output also

includes two indexes in the key column and provides two key lengths in the key_len

column.

 Union Algorithm

The union algorithm is used when there is a series of equality conditions for a table

separated with OR. Two examples of queries that can use the union algorithm are

SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 OR customer_id = 318;

SELECT *
 FROM sakila.payment

 WHERE payment_id > 15000

 OR customer_id = 318;

The first query has two equality conditions on secondary indexes, whereas the second

query has a range condition on the primary key and an equality condition on a secondary

index. The second query will only use an index merge for InnoDB tables. Listing 17-5

shows an example of the corresponding EXPLAIN output for the first of the queries.

Listing 17-5. The EXPLAIN output for a union merge

mysql> EXPLAIN

 SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 OR customer_id = 318\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

CHapTer 17 THe QUery OpTImIzer

448

 type: index_merge

possible_keys: idx_fk_staff_id,idx_fk_customer_id

 key: idx_fk_staff_id,idx_fk_customer_id

 key_len: 1,2

 ref: NULL

 rows: 8069

 filtered: 100

 Extra: Using union(idx_fk_staff_id,idx_fk_customer_id); Using where

1 row in set, 1 warning (0.0008 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT *
 FROM sakila.payment

 WHERE staff_id = 1

 OR customer_id = 318\G

**************************** 1. row ****************************
EXPLAIN: -> Filter: ((sakila.payment.staff_id = 1) or (sakila.payment.

customer_id = 318)) (cost=2236.18 rows=8069)

 -> Index range scan on payment using union(idx_fk_staff_id,idx_fk_

customer_id) (cost=2236.18 rows=8069)

1 row in set (0.0010 sec)

Notice the Using union(...) in the Extra column and for the index range scan in

the tree-formatted output. This shows that the idx_fk_staff_id and idx_fk_customer_

id indexes are used for the index merge.

 Sort-Union Algorithm

The sort-union algorithm is used for queries similar to those where the union algorithm

is used, but where the conditions are range conditions instead of equality conditions.

Two examples of queries that can use the sort-union algorithm are

SELECT *
 FROM sakila.payment

 WHERE customer_id < 30

 OR rental_id < 10;

CHapTer 17 THe QUery OpTImIzer

449

SELECT *
 FROM sakila.payment

 WHERE customer_id < 30

 OR rental_id > 16000;

Both queries have range conditions on two secondary indexes. Listing 17-6 shows

the corresponding EXPLAIN output using the traditional and tree format for the first of

the queries.

Listing 17-6. The EXPLAIN output using a sort-union merge

mysql> EXPLAIN

 SELECT *
 FROM sakila.payment

 WHERE customer_id < 30

 OR rental_id < 10\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

 type: index_merge

possible_keys: idx_fk_customer_id,fk_payment_rental

 key: idx_fk_customer_id,fk_payment_rental

 key_len: 2,5

 ref: NULL

 rows: 826

 filtered: 100

 Extra: Using sort_union(idx_fk_customer_id,fk_payment_rental);

Using where 1 row in set, 1 warning (0.0009 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT *
 FROM sakila.payment

 WHERE customer_id < 30

 OR rental_id < 10\G

CHapTer 17 THe QUery OpTImIzer

450

**************************** 1. row *****************************
EXPLAIN: -> Filter: ((sakila.payment.customer_id < 30) or (sakila.payment.

rental_id < 10)) (cost=1040.52 rows=826)

 -> Index range scan on payment using sort_union(idx_fk_customer_id,fk_

payment_rental) (cost=1040.52 rows=826)

1 row in set (0.0005 sec)

Notice the using sort_union(...) in the Extra column and for the index range scan

in the tree-formatted output. This shows that the idx_fk_customer_id and fk_payment_

rental indexes are used for the index merge.

 Performance Considerations

It is difficult for the optimizer to know when an index merge is more optimal than just

using a single index. It may seem at first that using indexes for more columns is always

a win, but there is a significant overhead of index merges, so they are only useful when

the right combination of index selectivity for the indexes exists. One of the more frequent

causes of severe performance regression happens when an index merge is chosen due to

out-of-date index statistics.

The first thing you should do if the optimizer chooses an index merge and the query

performs poorly – for example, compared to how it usually performs – is to execute

ANALYZE TABLE for the table where the index merge is used. This will usually improve

the query plan. Otherwise, it may be necessary to change the optimizer configuration to

decide whether index merges are used or not.

 Configuration

The index merge feature is controlled using four optimizer switches, of which one

controls the overall feature and the three others control each of the three algorithms.

The options are

• index_merge: Whether to enable or disable index merges altogether.

• index_merge_intersection: Whether to enable the intersection

algorithm.

• index_merge_union: Whether to enable the union algorithm.

• index_merge_sort_union: Whether to enable the sort-union

algorithm.

CHapTer 17 THe QUery OpTImIzer

451

All of the index merge optimizer switches are enabled by default.

Additionally, there are two optimizer hints: INDEX_MERGE() and NO_INDEX_MERGE().

Both hints take a table name as argument and optionally the indexes that should

be considered or ignored. If you, for example, want to execute the query looking for

payments with the staff_id set to 1 and the customer_id set to 75 without using index

merges, you can do that using one of the following queries:

SELECT /*+ NO_INDEX_MERGE(payment) */

 *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75;

SELECT /*+ NO_INDEX_MERGE(

 payment

 idx_fk_staff_id,idx_fk_customer_id) */

 *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75;

Since an index merge is considered a special case of a range optimization, the NO_

RANGE_OPTIMIZATION() optimizer hint also disables index merges. It can be confirmed

with the EXPLAIN output that an index merge is no longer used as shown for the first

query in Listing 17-7.

Listing 17-7. The EXPLAIN output when index merges are unselected

mysql> EXPLAIN

 SELECT /*+ NO_INDEX_MERGE(payment) */

 *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: payment

CHapTer 17 THe QUery OpTImIzer

452

 partitions: NULL

 type: ref

possible_keys: idx_fk_staff_id,idx_fk_customer_id

 key: idx_fk_customer_id

 key_len: 2

 ref: const

 rows: 41

 filtered: 50.0870361328125

 Extra: Using where

1 row in set, 1 warning (0.0010 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT /*+ NO_INDEX_MERGE(payment) */

 *
 FROM sakila.payment

 WHERE staff_id = 1

 AND customer_id = 75\G

**************************** 1. row ****************************
EXPLAIN: -> Filter: (sakila.payment.staff_id = 1) (cost=26.98 rows=21)

 -> Index lookup on payment using idx_fk_customer_id (customer_

id=75) (cost=26.98 rows=41)

1 row in set (0.0006 sec)

Another optimization is the Multi-Range Read optimization.

 Multi-Range Read (MRR)
The Multi-Range Read (MRR) optimization aims at reducing the amount of random

I/O caused by range scans on secondary indexes. The optimization reads the index

first, sorts the keys according to the row id (the clustered index for InnoDB), and then

retrieves the rows in the order the rows are stored. The Multi-Range Read optimization

can be used for range scans and equi-joins that use an index. It is not supported for

secondary indexes on virtual generated columns.

The primary use case for the Multi-Range Read optimization with InnoDB is for disk-

bound queries where there is no covering index. The effect of the optimization depends

on how many rows are needed and the seek times of the storage. MySQL will try to

CHapTer 17 THe QUery OpTImIzer

453

estimate when the optimization is useful; however, the cost estimation is erroring on the

side of being too pessimistic rather than too optimistic, so it may be necessary to provide

information to help the optimizer make the right decision.

The Multi-Range Read optimization is controlled by two optimizer switches:

• mrr: Whether the optimizer is allowed to use the Multi-Range Read

optimization. The default is ON.

• mrr_cost_based: Whether the decision to use the Multi-Range Read

optimization is cost based. You can disable this option to always use

the optimization when it is supported. The default is ON.

Alternatively, you can use the MRR() and NO_MRR() optimizer switches to enable and

disable the Multi-Range Read optimization on a per table or index basis.

You can see from the query plan whether the Multi-Range Read optimization is used.

When that is the case, the traditional EXPLAIN output specifies Using MRR in the Extra

column, and the JSON output sets the using_MRR field to true. Listing 17-8 shows an

example of the full EXPLAIN output in the traditional format when the Multi-Range Read

optimization is used.

Listing 17-8. The EXPLAIN output for a query using Multi-Range Read

mysql> EXPLAIN

 SELECT /*+ MRR(city) */

 *
 FROM world.city

 WHERE CountryCode BETWEEN 'AUS' AND 'CHN'\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: range

possible_keys: CountryCode

 key: CountryCode

 key_len: 3

 ref: NULL

CHapTer 17 THe QUery OpTImIzer

454

 rows: 812

 filtered: 100

 Extra: Using index condition; Using MRR

1 row in set, 1 warning (0.0006 sec)

It is necessary to explicitly request the use of the Multi-Range Read optimization

using the MRR() optimizer hint or by disabling the mrr_cost_based optimizer switch as

the estimated number of rows for the example query is too small to use the Multi-Range

Read optimization with the cost-based optimization to choose it.

When the optimization is used, MySQL uses the random read buffer for storing the

indexes. The size of the buffer is set with the read_rnd_buffer_size option.

A related optimization is the Batched Key Access optimization.

 Batched Key Access (BKA)
The Batched Key Access (BKA) optimization combines a block nested loop and the

Multi-Range Read optimization. This makes it possible to use the join buffer for

indexed joins in a similar way as for non-indexed joins and use the Multi-Range Read

optimization to reduce the amount of random I/O.

The most useful types of queries for the Batched Key Access are large disk-bound

queries, but there is no definitive guide to determining when the optimization helps and

when it causes worse performance. When the optimization works the best, it reduces the

query execution time by a factor of 2–10. However, when it performs the worst, the query

execution time can increase by a factor of 2–3.5

Because the Batched Key Access optimization primary benefits a relatively narrow

range of queries and the performance may degrade for other queries, the optimization

is disabled by default. The best way to enable the optimization is to use the BKA()

optimizer hint in the queries where you have found the optimization to provide a gain.

If you want to enable the optimization using the optimizer_switch variable, you

must enable the batched_key_access optimizer switch (disabled by default), disable the

mrr_cost_based optimizer switch (enabled by default), and ensure the mrr optimizer

switch is enabled (enabled by default). To enable Batched Key Access for the session, you

can do that using the following query:

5 http://oysteing.blogspot.com/2012/04/improved-dbt-3-results-with-mysql-565.html

CHapTer 17 THe QUery OpTImIzer

http://oysteing.blogspot.com/2012/04/improved-dbt-3-results-with-mysql-565.html

455

SET SESSION

 optimizer_switch

 = 'mrr=on,mrr_cost_based=off,batched_key_access=on';

When the optimization has been enabled this way, you can also use the BKA() and

NO_BKA() optimizer hints to influence whether the optimization should be used. When it

is used, the Extra column in the traditional EXPLAIN output includes Using join buffer

(Batched Key Access), and in the JSON output the using_join_buffer field is set to

Batched Key Access. Listing 17-9 shows an example of the full EXPLAIN output when

Batched Key Access is used.

Listing 17-9. The EXPLAIN output with Batched Key Access

mysql> EXPLAIN

 SELECT /*+ BKA(ci) */

 co.Code, co.Name AS Country,

 ci.Name AS City

 FROM world.country co

 INNER JOIN world.city ci

 ON ci.CountryCode = co.Code\G

**************************** 1. row *****************************
 id: 1

 select_type: SIMPLE

 table: co

 partitions: NULL

 type: ALL

possible_keys: PRIMARY

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 239

 filtered: 100

 Extra: NULL

**************************** 2. row *****************************
 id: 1

 select_type: SIMPLE

 table: ci

CHapTer 17 THe QUery OpTImIzer

456

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

 key_len: 3

 ref: world.co.Code

 rows: 18

 filtered: 100

 Extra: Using join buffer (Batched Key Access)

2 rows in set, 1 warning (0.0007 sec)

In this example, the Batched Key Access is enabled using an optimizer hint for the

join on the city (ci) table using the CountryCode index.

The size of the join buffer is configured with the join_buffer_size option. Because

the Batched Key Access optimization primarily is used with large joins, the join buffer

should usually be configured relatively large, typically 4 megabytes or larger. As a large

join buffer is a poor choice for most queries, it is recommended only to increase the size

for the queries that use the Batched Key Access optimization.

 Other Optimizations
MySQL includes support for several other optimizations. These are used automatically

by the optimizer when they benefit the query, and it is rarely necessary to disable the

optimizations manually. It is still useful to have an idea of what the optimizations are

though, so you can know what it means when you encounter them, for example, in

EXPLAIN outputs and you know how to change the behavior when the optimizer on a rare

occasion needs a push in the right direction.

This subsection will go through some of the remaining optimizations in alphabetical

order with focus on those that can be configured. For each optimization, the optimizer

switch, optimizer hints, and EXPLAIN output details for the traditional format (the Extra

column) and the JSON format are included.

CHapTer 17 THe QUery OpTImIzer

457

 Condition Filtering

The condition filtering optimization is used when a table has two or more conditions

associated with it and an index can be used for part of the condition. When condition

filtering is enabled, the filtering effects of the remaining conditions are taken into

consideration when estimating the overall filtering of the table.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: condition_fanout_filter – enabled by default

• Optimizer Hints: None

• EXPLAIN Output: None

 Derived Merge

The optimizer can merge a derived table, a view reference, and common table

expressions into the query block they are part of. The alternative to the optimization is to

materialize the table, view reference, or common table expression.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: derived_merge – enabled by default.

• Optimizer Hints: MERGE(), NO_MERGE().

• EXPLAIN Output: The query plan reflects that the derived table has

been merged.

 Engine Condition Pushdown

This optimization pushes a condition down to the storage engine. It is currently only

supported for the NDBCluster storage engine.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: engine_condition_pushdown – enabled by

default.

• Optimizer Hints: None.

• EXPLAIN Output: The warnings include information about the

conditions that have been pushed down.

CHapTer 17 THe QUery OpTImIzer

458

 Index Condition Pushdown

MySQL can push down conditions that can all be determined by using the columns

in a single index, but the index can only directly filter part of the conditions. This, for

example, happens when you have a condition like Name LIKE '%abc%' and Name is part

of a multicolumn index. The optimization is also used for range conditions on secondary

indexes. For InnoDB, index condition pushdown is only supported for secondary indexes.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: index_condition_pushdown – enabled by default.

• Optimizer Hints: NO_ICP().

• EXPLAIN Output: The traditional format has Using index condition

in the Extra column, and the JSON format sets the index_condition

field with the index condition that is pushed.

 Index Extensions

All secondary nonunique indexes in InnoDB have the primary key columns appended to

the index. When the index extension optimization is enabled, MySQL will consider the

primary key columns as part of the index.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: use_index_extensions – enabled by default

• Optimizer Hints: None

• EXPLAIN Output: None

 Index Visibility

When a table has an invisible index, by default the optimizer will not consider it when

creating the query plan. If the index visibility optimizer switch is enabled, invisible

indexes will be considered. This can, for example, be useful to test the effect of an index

that has been added but not yet made visible.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: use_invisible_indexes – disabled by default

• Optimizer Hints: None

• EXPLAIN Output: None

CHapTer 17 THe QUery OpTImIzer

459

 Loose Index Scan

In some cases, MySQL can use part of an index to improve the performance of a query

that aggregates data or includes the DISTINCT clause. This requires that the columns

used to group the data by form a left prefix of a multi-column index with additional

columns that are not used for the grouping. When there is a GROUP BY clause, only the

MIN() and MAX() aggregate functions are allowed.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: None.

• Optimizer Hints: NO_RANGE_OPTIMIZATION() disables the loose

index scan optimization as well as index merges and range scans.

• EXPLAIN Output: The traditional format has Using index for

group-by in the Extra column. The JSON format sets the using_

index_for_group_by field to true.

 Range Access Method

The range optimization is a little different from the other optimizations as it is

considered an access method. Instead of doing a full table or index scan, MySQL will

only scan one or more parts of the table or index. The range access method is often used

for filter conditions that involve the operators >, >=, <, =<, BETWEEN., IN(), IS NULL, LIKE,

and similar.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: None.

• Optimizer Hints: NO_RANGE_OPTIMIZATION() – this also disables the

loose index scan and index merge optimizations. It does however not

disable the skip scan optimization even though that also uses range

access.

• EXPLAIN Output: The access method is set to range.

You can use the range_optimizer_max_mem_size option to limit the amount of

memory used for the range access. The default is 8 MiB. If you set the value to 0, it means

that an unlimited amount of memory can be used.

CHapTer 17 THe QUery OpTImIzer

460

 Semijoin

The semijoin optimization is used for IN and EXIST conditions. There are four supported

strategies: materialization, duplicate weedout, first match, and loose scan (not to be

confused with the loose index scan optimization). When subquery materialization is

enabled, the semijoin optimization uses the materialization strategy when it is possible.

For EXISTS, the semijoin optimization is only supported in MySQL 8.0.16 and later, and

for NOT EXISTS (and similar – this is also called an antijoin), MySQL 8.0.17 or later is

required.

The semijoin optimization can be controlled using the semijoin optimizer switch

to enable or disable the optimization altogether. The SEMIJOIN() and NO_SEMIJOIN()

optimizer hints can be used for a single query using one or more of MATERIALIZATION,

DUPSWEEDOUT, FIRSTMATCH, and LOOSESCAN as arguments.

The materialization strategy is the same as the subquery materialization

optimization. See that for details.

The duplicate weedout strategy executes the semijoin as if it is a normal join and

removes the duplicates using a temporary table. The optimizer switch, hints, and

EXPLAIN details are as follows:

• Optimizer Switch: duplicateweedout – enabled by default.

• Optimizer Hints: SEMIJOIN(DUPSWEEDOUT), NO_

SEMIJOIN(DUPSWEEDOUT).

• EXPLAIN Output: The traditional format has Start temporary and

End temporary in the Extra column for the tables involved. The

JSON-formatted output uses a block named duplicates_removal.

The first match strategy returns the first match for each value rather than all values.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: firstmatch – enabled by default.

• Optimizer Hints: SEMIJOIN(FIRSTMATCH), NO_

SEMIJOIN(FIRSTMATCH).

• EXPLAIN Output: The traditional format has FirstMatch(...) in the

Extra column where the value between parentheses is the name of

the reference table. The JSON format sets the value of the first_

match field to the name of the reference table.

CHapTer 17 THe QUery OpTImIzer

461

The loose scan strategy uses an index to choose a single value from each of the

subquery’s value groups. The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: loosescan – enabled by default.

• Optimizer Hints: SEMIJOIN(LOOSESCAN), NO_SEMIJOIN(LOOSESCAN).

• EXPLAIN Output: The traditional format has LooseScan(m..n) in the

Extra column where m and n indicate which parts of the index are

used for the loose scan. The JSON format sets the loosescan field

equal to true.

 Skip Scan

The skip scan optimization is new in MySQL 8.0.13 and works similarly to the loose index

scan. It is used when there is a range condition on the second column of a multicolumn

index, but there is no condition on the first column. The skip scan optimization turns

a full index scan into a series of range scans (one range scan for each value of the first

column in the index).

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: skip_scan – enabled by default.

• Optimizer Hints: SKIP_SCAN(), NO_SKIP_SCAN().

• EXPLAIN Output: The traditional format has Using index for skip

scan in the Extra column, and the JSON format sets the using_

index_for_skip_scan field to true.

 Subquery Materialization

The subquery materialization strategy stores the result of a subquery in an internal

temporary table. When possible, the optimizer will add an auto-generated hash index on

the temporary table which makes joining it to the rest of the query fast.

The optimizer switch, hints, and EXPLAIN details are as follows:

• Optimizer Switch: materialization – enabled by default.

• Optimizer Hints: SUBQUERY(MATERIALIZATION).

• EXPLAIN Output: The traditional format has MATERIALIZED as the

select type. The JSON format creates a block named materialized_

from_subquery.

CHapTer 17 THe QUery OpTImIzer

462

When the subquery_materialization_cost_based optimizer switch is enabled

(the default), the optimizer will use cost estimated to decide between the subquery

materialization optimization and the IN-to-EXIST subquery transformation (rewriting

an IN condition as EXISTS). When the switch is off, the optimizer always chooses

subquery materialization.

As it has been evident in the last two sections, there are plenty of possibilities to

configure the optimizer. The next section will look closer into that.

 Configuring the Optimizer
There are several ways you can configure MySQL to influence the optimizer. You have

already encountered some configuration options, the optimizer switches, and optimizer

hints. This section will start out showing how you can configure the engine and server

costs associated with different operations and then go through the configuration options

with additional details about the optimizer switches. Finally, the optimizer hints will be

discussed.

 Engine Costs
The engine costs provide information about how expensive it is to read data. Since

data can be fetched either from memory or disk and different storage engines can have

different costs for reading data, it is not a case of one size fits all. For this reason, MySQL

allows you to configure the cost for reading from memory and disk per storage engine.

You can use the mysql.engine_cost table to change the costs of reading data. The

table has the following columns:

• engine_name: The storage engine the cost data is for. The value

default is used to represent all storage engines that do not have

specific data.

• device_type: Currently not in use and must have the value 0.

• cost_name: The name of the cost. Currently, there are two supported

values: io_block_read_cost for disk-based reads and memory_block_

read_cost for memory-based reads.

• cost_value: The cost of the read operations. A value of NULL (the

default) means the value stored in the default_value column is used.

CHapTer 17 THe QUery OpTImIzer

463

• last_update: When the row was last updated. The time is returned in

the time zone set by the time_zone session variable.

• comment: An optional comment that you can provide to give context

to why the cost was changed. The comment can be up to 1024

characters long.

• default_value: The default cost used for the operation. This is a

read-only column. The default value is 1 for io_block_read_cost is

and 0.25 for memory_block_read_cost.

The primary key consists of the engine_name, device_type, and cost_name columns.

The engine costs are particularly useful for InnoDB as in MySQL 8, InnoDB can provide

an estimate to the optimizer whether the data is in the buffer pool or it is necessary to

read it from disk.

You can update the existing cost estimates using an UPDATE statement. If you want

to insert estimates for a storage engine, you use the INSERT statement, and if you want

to remove custom cost values, you use the DELETE statement. In either case, you must

execute the FLUSH OPTIMIZER_COSTS statement for the changes to take effect for new

connections (existing connections continue to use the old values). For example, if you

want to add data specific for InnoDB assuming a host with slow disk I/O and very fast

memory, you can use statements like

mysql> INSERT INTO mysql.engine_cost

 (engine_name, device_type, cost_name,

 cost_value, comment)

 VALUES ('InnoDB', 0, 'io_block_read_cost',

 2, 'InnoDB on non-local cloud storage'),

 ('InnoDB', 0, 'memory_block_read_cost',

 0.15, 'InnoDB with very fast memory');

Query OK, 2 rows affected (0.0887 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> FLUSH OPTIMIZER_COSTS;

Query OK, 0 rows affected (0.0877 sec)

CHapTer 17 THe QUery OpTImIzer

464

If you want to change the cost values, the recommendation is to roughly double or

half the values and evaluate the effect. Since the engine costs are global, you should

ensure you have a good monitoring baseline before the change and compare the query

performance after the change to detect whether the change has the intended effect.

MySQL also has some more general server costs that can be used to affect various

operations related to queries.

 Server Costs
MySQL uses a cost-based approach to determine the optimal query plans. For this to

work as good as possible, it must know how expensive the various types of operations

are. The most important part for the calculation is that the relative costs are correct

which fortunately helps. Yet, there can be differences from system to system how the

relative costs are and how it affects the workload.

You can use the mysql.server_cost table to change the costs of several operations.

The table has the following columns:

• cost_name: The name of the operation.

• cost_value: The cost of performing the operation. If the cost is set to

NULL, then the default cost is used (the default_value column). The

cost is provided as a floating point number.

• last_update: When the cost was last updated. The time is returned

in the time zone set by the time_zone session variable.

• comment: An optional comment that you can provide to give context

to why the cost was changed. The comment can be up to 1024

characters long.

• default_value: The default cost used for the operation. This is a

read-only column.

There are currently six operations that can be configured in the server_cost table.

These are

• disk_temptable_create_cost: The cost of creating internal

temporary tables on disk. The lower the cost of disk_temptable_

create_cost and disk_temptable_row_cost, the more likely it is

that the optimizer will choose a query plan that requires on-disk

temporary tables. The default cost is 20.

CHapTer 17 THe QUery OpTImIzer

465

• disk_temptable_row_cost: The cost of row operations for internal

temporary tables created on disk. The default cost is 0.5.

• key_compare_cost: The cost of comparing record keys. If you have

problems with query plans sorting by index using a file sort where a

non-indexed based sort would be faster, you can increase the cost of

these operations. The default cost is 0.05.

• memory_temptable_create_cost: The cost of creating internal

temporary tables in memory. The lower the cost of memory_

temptable_create_cost and memory_temptable_row_cost, the more

likely it is that the optimizer chooses a query plan that requires in-

memory internal temporary tables. The default cost is 1.

• memory_temptable_row_cost: The cost of row operations for internal

temporary tables created in memory. The default cost is 0.1.

• row_evaluate_cost: The general cost of evaluating row conditions.

The lower the cost, the more MySQL is inclined to examine many

rows such as using a full table scan. The higher the cost, the more

MySQL will try to reduce the number of examined rows and use more

index lookups and range scans. The default cost is 0.1.

If you do want to change one of the server costs, then you need to use a regular

UPDATE statement followed by FLUSH OPTIMIZER_COSTS. The changes will then affect new

connections. For example, if you store on-disk internal temporary tables on a RAM disk

(shared memory disk) and want to reduce the costs to reflect that

mysql> UPDATE mysql.server_cost

 SET cost_value = 1,

 Comment = 'Stored on memory disk'

 WHERE cost_name = 'disk_temptable_create_cost';

Query OK, 1 row affected (0.1051 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE mysql.server_cost

 SET cost_value = 0.1,

 Comment = 'Stored on memory disk'

CHapTer 17 THe QUery OpTImIzer

466

 WHERE cost_name = 'disk_temptable_row_cost';

Query OK, 1 row affected (0.1496 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> FLUSH OPTIMIZER_COSTS;

Query OK, 0 rows affected (0.1057 sec)

Changing the costs may not always end up affecting the query plan, because the

optimizer may have little choice than to use a given query plan or the calculated costs

are so different that changing the server costs to affect the query plan will have too great

effect on other queries. Remember that the server costs are global for all connections, so

you should only change the costs if there are systemic problems. If the issue only affects

a few queries, it is better to use optimizer hints to affect the query plan.

Another option for affecting the query plans is the optimizer switches.

 Optimizer Switches
The optimizer switches have been mentioned throughout this chapter. They are

configured through the optimizer_switch option. The optimizer switches work

somewhat different than other configuration options, so it is worth diving deeper into

their use.

The optimizer_switch option is a composite option with all optimizer switches

using the same option, but with the possibility to change individual switches without

including the switches you do not want to change. You set the switch you want to change

to on or off to enable or disable it. The optimizer switches can be changed either at the

global scope which affects all new connections or at the session level. For example, if you

want to disable the derived_merge optimizer switch for the current connection, you can

use the following statement:

mysql> SET SESSION optimizer_switch = 'derived_merge=off';

Query OK, 0 rows affected (0.0003 sec)

If you want to change the value permanently, you can use SET PERSIST or SET

PERSIST_ONLY in the same way:

mysql> SET PERSIST optimizer_switch = 'derived_merge=off';

Query OK, 0 rows affected (0.0431 sec)

CHapTer 17 THe QUery OpTImIzer

467

The same principle applies if you prefer to store the value in the MySQL

configuration file, for example:

[mysqld]

optimizer_switch = "derived_merge=off"

Table 17-3 lists the optimizer switches available as of MySQL 8.0.18 together with

their default values and a brief summary of what the switch does. The optimizer switches

are ordered in the order they appear in the optimizer_switch option.

Table 17-3. The optimizer switches

Optimizer Switch Default Value Description

index_merge on The overall switch controlling index merges.

index_merge_union on The union index merge strategy.

index_merge_sort_union on The sort-union index merge strategy.

index_merge_

intersection

on The intersection index merge strategy.

engine_condition_

pushdown

on pushing down conditions to the NDBCluster

storage engine.

index_condition_

pushdown

on pushing down index conditions to the storage

engine.

mrr on The multi-range read optimization.

mrr_cost_based on Whether using the multi-range read

optimization should be based on cost estimates.

block_nested_loop on The block nested loop join algorithm. This

together with the hash_join switch also

controls whether hash joins can be used.

batched_key_access off The Batched Key access optimization. It is also

required that the mrr switch is enabled and

the mrr_cost_based switch is disabled for

Batched Key access to be used.

(continued)

CHapTer 17 THe QUery OpTImIzer

468

Table 17-3. (continued)

Optimizer Switch Default Value Description

materialization on Whether materialized subqueries can be used.

This also affects whether the materialization

semijoin optimization is available.

semijoin on The overall switch enabling or disabling the

semijoin optimization.

loosescan on The semijoin loose scan strategy.

firstmatch on The semijoin first match strategy.

duplicateweedout on The semijoin duplicate weedout strategy.

subquery_

materialization_cost_

based

on Whether using subquery materialization is based

on cost estimates.

use_index_extensions on Whether the primary key columns that InnoDB

adds to nonunique secondary indexes are used

as part of the index.

condition_fanout_

filter

on Whether conditions not handled by the access

method are included in the filtering estimate.

derived_merge on The derived merge optimization.

use_invisible_indexes off Whether the invisible indexes should be used.

skip_scan on The skip scan optimization.

hash_join on The hash join algorithm. For hash joins to be

enabled, the block_nested_loop switch must

also be enabled.

CHapTer 17 THe QUery OpTImIzer

469

The various optimizations, strategies, and algorithms are described in more detail

earlier in this chapter.

The optimizer_switch option is great if you want to change the setting globally

or for the duration of a session; however, in many cases, you only need to change an

optimizer switch or a setting for a single query. In that case, optimizer hints are a better

option.

 Optimizer Hints
The optimizer hints feature was introduced in MySQL 5.7 and extended in MySQL 8.

It allows you to provide information to the optimizer, so you can influence how the

query plan ends up. Unlike for the optimizer_switch option that either switches an

option on or off, the optimizer hint equivalents can be set per query block, table, or

index. Additionally, there is support for changing the value of configuration options for

the duration of the query. This is a powerful way to improve the performance of a query

when the optimizer cannot quite get the optimal query plan on its own or you need the

query to execute, for example, with a larger value than the global default for some option.

Optimizer hints are set using a special comment syntax right after the SELECT,

INSERT, REPLACE, UPDATE, or DELETE clause. The syntax uses the inline comments with a +

immediately after the start of the comment, for example:

SELECT /*+ MAX_EXECUTION_TIME(2000) */

 id, Name, District

 FROM world.city

 WHERE CountryCode = 'AUS';

This example sets the maximum execution time for the query to 2000 milliseconds.

Table 17-4 lists the optimizer hints available as of MySQL 8.0.18 including the scopes

supported for each hint and a brief description. For many of the hints, there are two

versions, one for enabling the feature and the other for disabling it; these are listed

together. The hints are listed alphabetically according to the hint that enables the feature

except for NO_ICP and NO_RANGE_OPTIMIZATION hints which have no corresponding hint

to enable the feature.

CHapTer 17 THe QUery OpTImIzer

470

Table 17-4. Optimizer hints

Hint Scope Description

BKA

NO_BKA

Query block

Table

The Batched Key access optimization.

BNL

NO_BNL

Query block

Table

The block nested loop join algorithm.

HASH_JOIN

NO_HASH_JOIN

Query block

Table

The hash join algorithm.

INDEX_MERGE

NO_INDEX_MERGE

Table

Index

The index merge optimization.

JOIN_FIXED_ORDER Query block Forces all joins in the query block to be executed in the

order they are listed in the query. This is the same as

using SELECT STRAIGHT_JOIN.

JOIN_ORDER Query block Forces two or more tables to be joined in a specific

order. The optimizer is free to change the join order of

the tables not listed.

JOIN_PREFIX Query block Forces the specified tables to be the first tables of the

join and join them in the order given.

JOIN_SUFFIX Query block Forces the specified tables to be the last tables of the

join and join them in the order given.

MAX_EXECUTION_

TIME

Global Limits the query execution time for SELECT

statements. The value is in milliseconds.

MERGE

NO_MERGE

Table The derived merge optimization.

MRR

NO_MRR

Table

Index

The multi-range read optimization.

NO_ICP Table

Index

The Index Condition pushdown optimization.

(continued)

CHapTer 17 THe QUery OpTImIzer

471

Several of these optimizer hints have been encountered earlier in the chapter when

join algorithms and optimizations were discussed. The scope specifies which part of the

query the hint applies to. The scopes include

• Global: The hint applies to the whole query.

• Query Block: The hint applies to a group of joins. For example, the

top level of the query is a query block; a subquery is another query

block. Hints that apply to a query block can in some cases also take

the table names for a join to limit the hint to a specific join.

• Table: The hint applies to a specific table.

• Index: The hint applies to the use of a specific index.

Table 17-4. (continued)

Hint Scope Description

NO_RANGE_

OPTIMIZATION

Table

Index

Do not use range access to tables and/or indexes. This

also disables index merges and loose index scans. It is

mostly useful if the query will cause many range scans

and it is causing performance or resource problems.

QB_NAME Query block Sets the name of a query block. The name can be used

to reference the query block in other optimizer hints.

RESOURCE_GROUP Global The resource group to use for the query. resource

groups are discussed in the next section.

SEMIJOIN

NO_SEMIJOIN

Query block The semijoin optimization.

SKIP_SCAN

NO_SKIP_SCAN

Table

Index

The skip scan optimization.

SET_VAR Global Sets the value of a configuration variable for the

duration of the query.

SUBQUERY Query block Whether subqueries can use the materialization

optimization or the IN-to-EXISTS transformation.

CHapTer 17 THe QUery OpTImIzer

472

When you specify a table, you need to use the name that the table is used as in the

query. If you have specified an alias for a table, you need to use the alias rather than the

table name which ensures that all tables in a query block can be uniquely identified.

Tip It is beyond the scope of this book to go into detail with all the details of
using optimizer hints. The list of hints also gets updated relatively frequently as
new features are added. you are encouraged to read https://dev.mysql.com/
doc/refman/en/optimizer-hints.html to see the current list of optimizer
hints and all details regarding usage and possible conflicts.

The optimizer hints are specified in the same way as a function call with the

arguments specified in parentheses. When an optimizer hint does not take any

arguments, an empty set of parentheses is used. You can specify several optimizer hints

for the same query in which case you use a space to separate them. If you specify several

arguments other than a leading query block name, you must separate the arguments

with a comma (but note that in some cases a space is used to combine two pieces of

information into one argument, e.g., when specifying an index, then the table and index

names are separated by a space).

For complex queries with multiple query blocks, it is useful to name the query

blocks, so that you can specify the query block an optimizer hint should apply to. You use

the QB_NAME() optimizer hint to set the name of a query block:

SELECT /*+ QB_NAME(payment) */

 rental_id

 FROM sakila.payment

 WHERE staff_id = 1 AND customer_id = 75;

You can then refer to the query block by adding an @ in front of the query block

name when specifying a hint:

SELECT /*+ NO_INDEX_MERGE(@payment payment) */

 rental_id, rental_date, return_date

 FROM sakila.rental

 WHERE rental_id IN (

 SELECT /*+ QB_NAME(payment) */

 rental_id

CHapTer 17 THe QUery OpTImIzer

https://dev.mysql.com/doc/refman/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/en/optimizer-hints.html

473

 FROM sakila.payment

 WHERE staff_id = 1 AND customer_id = 75

);

The example sets the name of the query block inside the IN condition to payment.

This block name is then referenced at the top level to disable the index merge feature for

the payment table in the payment query block. When you use the query block name in

this way, all tables listed in the hint must be from the same query block. An alternative

notation for specifying the query block is to add it after the table name, for example:

SELECT /*+ NO_INDEX_MERGE(payment@payment) */

 rental_id, rental_date, return_date

 FROM sakila.rental

 WHERE rental_id IN (

 SELECT /*+ QB_NAME(payment) */

 rental_id

 FROM sakila.payment

 WHERE staff_id = 1 AND customer_id = 75

);

This does the same as in the previous example, but it has the advantage that you can

use the one hint for tables in different query blocks.

A great use of optimizer hints is to change the value of a configuration variable for

the duration of the query. This is particularly useful for options such as join_buffer_

size and read_rnd_buffer_size that are best kept at a small global value, but where

a larger value for some queries can improve the performance. You use the SET_VAR()

optimizer hint with the argument being the variable assignment. In the reference

manual, the variables that can be used with the SET_VAR() optimizer hint have “SET_VAR

Hint Applies: Yes”. For example, to set join_buffer_size to 1 MiB and optimizer_

search_depth to 0 (this option will be explained shortly), you can use

SELECT /*+ SET_VAR(join_buffer_size = 1048576)

 SET_VAR(optimizer_search_depth = 0) */

 CountryCode, country.Name AS Country,

 city.Name AS City, city.District

CHapTer 17 THe QUery OpTImIzer

474

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code

 WHERE Continent = 'Asia';

There are a couple of things to note from the example. First, the SET_VAR() hint does

not support setting two options in the same hint, so you need to specify the hint once

for each option. Second, there is no support for expressions or units, so for the join_

buffer_size it is necessary to provide the value directly in bytes.

There is one thing the optimizer hints cannot help you with. If you are not happy

with the choice of index made by the optimizer, you will need to use index hints.

 Index Hints
Index hints have been around in MySQL for a long time. You can use them to specify

for each table which indexes the optimizer is allowed to use and which it should ignore.

You have already encountered the IGNORE INDEX hint when disabling the indexes for the

examples used for the block nested loop and hash join algorithms.

MySQL has support for three index hints:

• IGNORE INDEX: The optimizer is not allowed to use the named

indexes at all.

• USE INDEX: The optimizer should use one of the named indexes if an

index is used.

• FORCE INDEX: This is the same as USE INDEX except that a table

scan should always be avoided if it is at all possible to use one of the

named indexes.

When you use one of the index hints, you need to provide the names of the indexes

that should be affected by the hint in a comma-separated list inside parentheses. The

index hint is placed right after the table name. If you add an alias for the table, place

the index hint after the alias. For example, to query all cities in Asia without using the

primary key on the country table nor the CountryCode index of the city table, you can

use the following query:

CHapTer 17 THe QUery OpTImIzer

475

SELECT ci.CountryCode, co.Name AS Country,

 ci.Name AS City, ci.District

 FROM world.country co IGNORE INDEX (Primary)

 INNER JOIN world.city ci IGNORE INDEX (CountryCode)

 ON ci.CountryCode = co.Code

 WHERE co.Continent = 'Asia';

Notice how the primary key is called Primary. In the example, the index hints apply

to all operations that can use indexes for the table. It is possible to limit the scope to

either joins, sorting, or grouping by adding FOR JOIN, FOR ORDER BY, or FOR GROUP BY,

for example:

SELECT *
 FROM world.city USE INDEX FOR ORDER BY (Primary)

 WHERE CountryCode = 'AUS'

 ORDER BY ID;

While it is in most cases best to limit the use of index hints so the optimizer is free to

change the query plan as the indexes and data change, index hints are one of the most

powerful tools available, and you should not shy away from using them when needed.

The last way to influence the optimizer is to use configuration options.

 Configuration Options
There are a few configuration options that affect the optimizer beyond the optimizer_

switch option. These options control how exhaustive the optimizer searches for

the optimal query plan and whether its steps should be traced using the optimizer

trace feature. The optimizer trace feature will be deferred until Chapter 20 where it is

discussed together with the EXPLAIN statement.

The two options that will be discussed here are

• optimizer_prune_level

• optimizer_search_depth

The optimizer_prune_level option can have a value of 0 or 1. The default is 1.

It determines whether the optimizer will prune query plans to avoid doing an exhaustive

search. A value of 1 enables pruning. Should you encounter a query where pruning

CHapTer 17 THe QUery OpTImIzer

476

prevents the optimizer finding a good enough query plan, optimizer_prune_level can

be changed for the session. The global value should almost always be 1.

The optimizer_search_depth option determines how many tables (joins) should

be included in the search for the optimal query plan. Allowed values are 0–62 with 62

being the default. Since the greatest number of tables that are allowed for one query

block is 61, a value of 62 means an exhaustive search is made except for the search paths

removed by the pruning. The value 0 means that MySQL picks the maximum search

depth; currently that is the same as setting the value to 7.

If you have query blocks with many tables joined by inner joins, and it takes a long

time to determine the query plan compared to the query execution time, you may want

to set optimizer_search_depth to 0 or a value lower than 62. An alternative is to use the

JOIN_ORDER(), JOIN_PREFIX(), and JOIN_SUFFIX() optimizer hints to lock the join order

for part of the query.

The discussion thus far has been around the optimization process and the options

the optimizer has. There is one more level to consider: which resource group should be

used when the query is executing.

 Resource Groups
The concept of resource groups is new in MySQL 8 and allows you to set rules for the

resource usage a query or a group of queries can use. This can be a powerful way to

improve the performance on high-concurrency systems and to allow you to prioritize

some queries higher than others. This section covers how you can get information about

the existing resource groups, managing resource groups, and how to use them.

Note at the time of writing, resource groups are not supported for macOS or
when using the commercial thread pool plugin. additionally, thread priorities are
ignored on Solaris and FreeBSD as well as on Linux when the CAP_SYS_NICE
capability is not set. To see the latest restrictions and how to enable the CAP_SYS_
NICE capability, see https://dev.mysql.com/doc/refman/en/resource-
groups.html#resource-group-restrictions.

CHapTer 17 THe QUery OpTImIzer

https://dev.mysql.com/doc/refman/en/resource-groups.html#resource-group-restrictions
https://dev.mysql.com/doc/refman/en/resource-groups.html#resource-group-restrictions

477

 Retrieving Information About Resource Groups
Information about the existing resource groups can be found in the information_

schema.RESOURCE_GROUPS view which is a view on top of the data dictionary table where

the resource groups are stored. The view includes the following columns:

• RESOURCE_GROUP_NAME: The name of the resource group.

• RESOURCE_GROUP_TYPE: Whether the resource group is for SYSTEM or

USER level threads. SYSTEM is used by system threads, and USER is used

by user connections.

• RESOURCE_GROUP_ENABLED: Whether the resource group is enabled.

• VCPU_IDS: Which virtual CPUs the resource group is allowed to use.

A virtual CPU takes into account physical CPU cores, hyperthreading,

hardware threads, and so on.

• THREAD_PRIORITY: The thread priority for the threads using the

resource group. The lower the value, the higher the priority.

Listing 17-10 shows the resource group information for the default resource groups

that come with the MySQL installation. The values for the VCPU_IDS column depend on

the number of virtual CPUs on your system.

Listing 17-10. The information for the default resource groups

mysql> SELECT *
 FROM information_schema.RESOURCE_GROUPS\G

*************************** 1. row ***************************
 RESOURCE_GROUP_NAME: USR_default

 RESOURCE_GROUP_TYPE: USER

RESOURCE_GROUP_ENABLED: 1

 VCPU_IDS: 0-7

 THREAD_PRIORITY: 0

CHapTer 17 THe QUery OpTImIzer

478

*************************** 2. row ***************************
 RESOURCE_GROUP_NAME: SYS_default

 RESOURCE_GROUP_TYPE: SYSTEM

RESOURCE_GROUP_ENABLED: 1

 VCPU_IDS: 0-7

 THREAD_PRIORITY: 0

2 rows in set (0.0007 sec)

There are two resource groups by default: the USR_default group for user

connections and the SYS_default for system threads. The two groups are configured

the same and are allowed to use all CPUs. These two groups can neither be dropped nor

modified. However, you can create your own resource groups.

 Managing Resource Groups
You can create, alter, and drop resource groups as long as you do not try to modify or

drop one of the default groups. This allows you to create resource groups that you can

use to divide resources among your queries. It requires the RESOURCE_GROUP_ADMIN

privilege to create, change, or delete resource groups.

The following statements are available to manage resource groups:

• CREATE RESOURCE GROUP: Creates a new resource group

• ALTER RESOURCE GROUP: Modifies an existing resource group

• DROP RESOURCE GROUP: Deletes a resource group

For all three statements, the group name must always be specified, and it is

specified without any argument name (examples will follow shortly). Table 17-5 shows

the arguments for the three statements. Where the values specify N or M-N, M, and N

represents integers.

CHapTer 17 THe QUery OpTImIzer

479

For the priority, the valid range of values depends on the group type. The SYSTEM

group can have priorities between -20 and 0, and the USER type can have priorities

between -20 and 19. The meaning of the priorities follows the principle of the nice

feature in Linux meaning the lower the value for the priority, the higher the priority

the thread will get. Thus, -20 is the highest priority, whereas 19 has lowest priority. On

Microsoft Windows, there are five native priority levels available. Table 17-6 lists the

mapping from the resource group priorities to the Microsoft Windows priorities.

Table 17-5. The arguments used when managing resource groups

Option Syntax Values Operations

Name at most 64 characters CREATE

ALTER

DROP

Type TYPE = ... SYSTEM

USER

CREATE

CpUs VCPU = ... N or M-N in comma-separated list CREATE

ALTER

priority THREAD_PRIORITY N CREATE

ALTER

Status ENABLED

DISABLED

CREATE

ALTER

Force FORCE ALTER

DROP

Table 17-6. Mapping from resource group priorities for Microsoft Windows

Start Priority End Priority Microsoft Windows Priority Level

-20 -10 THREAD_PRIORITY_HIGHEST

-9 -1 THREAD_PRIORITY_ABOVE_NORMAL

0 0 THREAD_PRIORITY_NORMAL

1 10 THREAD_PRIORITY_BELOW_NORMAL

11 19 THREAD_PRIORITY_LOWEST

CHapTer 17 THe QUery OpTImIzer

480

When you create a new resource group, you must set the name and type of the group.

The rest of the arguments are optional. The default is to set VCPU to include all CPUs

available on the host, set the priority to 0, and enable the group. An example of creating

an enabled group named my_group for user connections that can use the CPUs with ids

2, 3, 6, and 7 is (this requires that the host has at least eight virtual CPUs) as follows:

CREATE RESOURCE GROUP my_group

 TYPE = USER

 VCPU = 2-3,6,7

THREAD_PRIORITY = 0

ENABLE;

The specification of the VCPU argument shows how you can either list CPUs one by

one or use a range. The resource group name is treated as an identifier, so you only need

to quote it with backticks under the same circumstances as for schema and table names.

The ALTER RESOURCE GROUP statement is similar to the CREATE RESOURCE GROUP

statement, but you cannot change the group name or group type. For example, to change

the CPUs and priority for the group named my_group

 ALTER RESOURCE GROUP my_group

 VCPU = 2-5

THREAD_PRIORITY = 10;

If you need to delete a resource group, you can use the DROP RESOURCE GROUP

statement which just requires the group name, for example:

DROP RESOURCE GROUP my_group;

For the ALTER RESOURCE GROUP and DROP RESOURCE GROUP statements, there is an

optional argument FORCE. This specifies how MySQL should handle cases when there are

threads using the resource group. Table 17-7 summarizes the behavior.

CHapTer 17 THe QUery OpTImIzer

481

Both when modifying and deleting a resource group, if you have the FORCE option,

existing threads assigned to the group will be reassigned to the default group. This

means the USR_default group for user connections and the SYS_default group for

system threads. For ALTER RESOURCE GROUP, the FORCE option can only be used if the

DISABLE option is also specified.

Now you are ready to assign resource groups to threads.

 Assigning Resource Groups
There are two ways to set a resource group for a thread. You can explicitly set the

resource group for a thread, or you can use an optimizer hint to set it for a single query.

It requires the RESOURCE_GROUP_ADMIN or RESOURCE_GROUP_USER privilege to assign

threads to resource groups irrespective of the method used.

First, recreate the my_group group (this time using just a single CPU to make it work

on all systems):

CREATE RESOURCE GROUP my_group

 TYPE = USER

 VCPU = 0

THREAD_PRIORITY = 0

ENABLE;

Table 17-7. The effect of using FORCE or leaving it out

Forcing ALTER DROP

Not

forcing

The change takes effect when all existing threads using

the group have terminated. Until then, no new threads

can use the resource group.

an error occurs if any threads

are assigned to the group.

Forcing existing threads are moved to the default group based

on the thread type.

existing threads are moved to

the default group based on the

thread type.

CHapTer 17 THe QUery OpTImIzer

482

Note Connections using the X protocol (the default for mySQL Shell) are currently
not allowed to create, modify, or set resource groups except by setting the
resource group for a single query using an optimizer hint.

You use the SET RESOURCE GROUP statement to assign a thread to a resource group.

This works for both system and user threads. To assign the connection itself to a resource

group, use the statement with the resource group name as the only argument, for

example:

SET RESOURCE GROUP my_group;

If you want to change the resource group for one or more other threads, you add the

FOR keyword at the end followed by a comma-separated list of the Performance Schema

thread ids you want to assign to the group. For example, to assign the threads 47, 49, and

50 to my_group (the thread ids will obviously be different in your case throughout this

example – replace with threads that exist on your system)

SET RESOURCE GROUP my_group FOR 47, 49, 50;

As an alternative, you can use the RESOURCE_GROUP() optimizer hint to assign as

resource group to a thread for the duration of the query, for example:

SELECT /*+ RESOURCE_GROUP(my_group) */

 *
 FROM world.city

 WHERE CountryCode = 'USA';

The optimizer hint is in general the best way to use resource groups as it allows you

to set it per query and it is supported when you use the X Protocol. It can also be used in

combination with the MySQL rewrite plugin or a proxy such as ProxySQL that supports

adding the optimizer hint comment to the query.

You can use the RESOURCE_GROUP column in the performance_schema.threads table

to see which resource group each thread is using. For example, to see the resource group

in use for the three threads that were changed earlier with the SET RESOURCE GROUP FOR

47, 49, 50 statement

CHapTer 17 THe QUery OpTImIzer

483

mysql> SELECT THREAD_ID, RESOURCE_GROUP

 FROM performance_schema.threads

 WHERE THREAD_ID IN (47, 49, 50);

+-----------+----------------+

| THREAD_ID | RESOURCE_GROUP |

+-----------+----------------+

| 47 | my_group |

| 49 | my_group |

| 50 | my_group |

+-----------+----------------+

3 rows in set (0.0008 sec)

That leaves the question of how you should use resource groups.

 Performance Considerations
The effect of using resource groups depends on several factors. The default is that all

threads can execute on any CPU and with the same midrange priority which is the

same behavior as in MySQL 5.7 and earlier. The main benefit from using different

configurations for the resource groups comes when MySQL is starting to encounter

resource contention.

It is impossible to give concrete advise on how to use resource groups the most

optimal as it very much depends on a combination of hardware and query workload.

The optimal use of resource groups can also change as new improvements are made to

the MySQL code. This means that as always, you need to use monitoring to determine

the effect of changing the resource groups and the use of them.

That said, there are some suggestions that can be made of how to use resource

groups to improve the performance or user experience. These include but are not

limited to

• Give different priorities to different connections. This can, for

example, be to ensure a batch job does not affect queries related

to the frontend application too much, or it can be to give different

applications different priorities.

• Assign threads for different applications to different CPU sets to

reduce the interference between them.

CHapTer 17 THe QUery OpTImIzer

484

• Assign write threads and read threads to different CPU sets to set the

maximum concurrence for the different tasks. This can, for example,

be useful to limit the concurrency of the write threads if they are

encountering resource contention.

• Give high priority to a thread that executes a transaction that takes

many locks, so the transaction can complete as quickly as possible

and release the locks again.

As a rule of thumb, the resource groups are useful, if there are not enough CPU

resources to execute everything in parallel or the write concurrency becomes too high

and limiting it by restricting which CPUs handle the write workload can be used to avoid

the contention. For low-concurrency workloads, it is usually best to use the default

resource groups.

 Summary
This chapter has gone through how the optimizer works, the join algorithms and

optimizations available to it, how to configure the optimizer, and resource groups.

MySQL uses a cost-based optimizer where the cost of each part of the query

execution is estimated and the overall query plan is chosen to minimize the cost. As part

of the optimization, the optimizer will rewrite the query using various transformations,

the optimal join order is found, and other decisions are made such as which indexes that

should be used.

MySQL has support for three join algorithms. The simplest – and the original –

algorithm is the nested loop join which simply iterates over the rows in the outermost

table, then has a nested loop for the next table, and so forth. The block nested loop is

an extension where non-indexed joins can use the join buffer to reduce the number of

table scans of the inner table. New in MySQL 8.0.18 is the hash join algorithm which is

also used for joins not using an index and is very effective for the joins it supports – so

effective that it for low-selectivity indexes can outperform indexed joins.

There is a range of other optimizations that can be used. Special focus was put

to the index merge, Multi-Range Read, and Batched Key Access optimizations. The

index merge optimization allows MySQL to use more than one index per table. The

Multi- Range Read optimization is used to reduce the amount of random I/O caused by

CHapTer 17 THe QUery OpTImIzer

485

secondary index reads. The Batched Key Access optimization combines the block nested

loop and the Multi-Range Read optimization.

There are several ways to change the configuration of MySQL to influence the

optimizer. The mysql.engine_cost table stores cost information for reading from

memory and disk. This can be set per storage engine. The mysql.server_cost contains

base cost estimates for various operations such as using internal temporary tables and

comparing records. The optimizer_switch configuration option is used to enable or

disable various optimizer features such as block nested loop, Batched Key Access,

and so on.

Two flexible options to influence the optimizer are to use optimizer hints and index

hints. The optimizer hints can be used to enable or disable features as well as setting

options for the query or even more fine-grained down to the index level. The index hints

can be used to enable or disable indexes for a table. Optionally, the index hints can be

limited to a specific operation such as sorting. Finally, the optimizer_prune_level and

optimizer_search_depth options can be used to limit how much work the optimizer

will do to find the optimal query plan.

The last feature that was covered is resource groups which has been added in MySQL 8.

Resource groups can be used to specify which CPUs a thread is allowed to use and which

priority the thread should execute with. This can be useful to prioritize some threads

higher than others or to prevent resource contention.

The next chapter will look into how locking works in MySQL.

CHapTer 17 THe QUery OpTImIzer

487
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_18

CHAPTER 18

Locking Theory
and Monitoring
Together with the optimizer that was discussed in the previous chapter, locks are

possibly the most complex topic of query optimization. When locks show their worst

side, they can cause gray hairs for even the best expert on locks. However, do not despair.

This chapter will introduce you to most of the knowledge of locks you will need – and

possibly some more. After you have read this chapter, you should be able to start

investigating locks and use that to gain further knowledge.

The chapter starts out discussing why locks are needed and the lock access levels.

The largest section of the chapter then goes through the most commonly encountered

locks in MySQL. The other half of the chapter discusses why lock requests may fail, how

to reduce the impact of locks, and how to monitor locks.

Note Most of the examples include the statements to reproduce the important
parts of the outputs (some data will by nature differ from case to case). Since the
interesting parts of locking often include more than one connection, the prompts
for the queries have been set to indicate which connection to use for which queries
when that is important. For example, Connection 1> means that the query
should be executed by the first of your connections.

488

 Why Are Locks Needed?
It can seem like a perfect world where locking in databases is not needed. The price will

however be so high that only few use cases can use that database, and it is impossible for

a general-purpose database such as MySQL. If you do not have locking, you cannot have

any concurrency. Imagine that only one connection is ever allowed to the database (you

can argue that itself is a lock and thus the system is not lock-free anyway) – that is not

very useful for most applications.

Note Often what is called a lock in MySQL is really a lock request which can be
in a granted or pending state.

When you have several connections executing queries concurrently, you need

some way to ensure that the connections do not step on each other’s toes. That is where

locks enter the picture. You can think of locks in the same way as traffic signals in road

traffic that regulate access to the resources to avoid accidents. In a road intersection,

it is necessary to ensure that two cars do not cross each other’s path and collide. In a

database, it is necessary to ensure two queries’ access to the data does not conflict.

As there are different levels of controlling the access to an intersection – yielding,

stop signs, and traffic lights – there are different lock types in a database.

 Lock Access Levels
The lock access level determines which kind of access a given lock allows. It is also

sometimes called the lock type, but since that can be confused with the lock granularity,

the term lock access level is used here.

There are essentially two access levels: shared or exclusive. The access levels do

what their names suggest. A shared lock allows other connections to also get a shared

lock. This is the most permissive lock access level. An exclusive lock only allows that one

connection to get the lock. A shared lock is also known as a read lock, and an exclusive

lock is also known as a write lock.

MySQL also has a concept called intention locks which specify the intention of a

transaction. An intention lock can be either shared or exclusive. Intention locks are

discussed in more detail when implicit table locks are covered in the next section that

goes through the main lock granularity levels in MySQL.

Chapter 18 LOCking theOry and MOnitOring

489

 Lock Granularity
MySQL uses a range of different lock granularities (also called lock types) to control

access to the data. By using different lock granularities, it makes it possible, to the

greatest intent possible, to allow for concurrent access to the data. This section will go

through the main granularity levels used by MySQL.

 User-Level Locks
User-level locks are an explicit lock type the application can use to protect, for example, a

workflow. They are not often used, but they can be useful for some complex tasks where

you want to serialize access. All user locks are exclusive locks and are obtained using a

name which can be up to 64 characters long.

You manipulate user-level locks with a set of functions:

• GET_LOCK(name, timeout): Obtains a lock by specifying the name

of the lock. The second argument is a timeout in seconds; if the lock

is not obtained within that time, the function returns 0. If the lock is

obtained, the return value is 1. If the timeout is negative, the function

will wait indefinitely for the lock to become available.

• IS_FREE_LOCK(name): Checks whether the named lock is available

or not. The function returns 1 if the lock is available and 0 if it is not

available.

• IS_USED_LOCK(name): This is the opposite of the IS_FREE_LOCK()

function. The function returns the connection id of the connection

holding the lock if the lock is in use (not available) and NULL if it is not

in use (available).

• RELEASE_ALL_LOCKS(): Releases all user-level locks held by the

connection. The return value is the number of locks released.

• RELEASE_LOCK(name): Releases the lock with the provided name. The

return value is 1 if the lock is released, 0 if the lock exists but is not

owned by the connection, or NULL if the lock does not exist.

Chapter 18 LOCking theOry and MOnitOring

490

It is possible to obtain multiple locks by invoking GET_LOCK() multiple times. If

you do that, be careful to ensure locks are obtained in the same order by all users as

 otherwise a deadlock can occur. If a deadlock occurs, an ER_USER_LOCK_DEADLOCK error

(error code 3058) is returned. An example of this is shown in Listing 18-1.

Listing 18-1. A deadlock for user-level locks

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_1', -1);

+---------------------------+

| GET_LOCK('my_lock_1', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0100 sec)

-- Connection 2

Connection 2> SELECT GET_LOCK('my_lock_2', -1);

+---------------------------+

| GET_LOCK('my_lock_2', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0006 sec)

Connection 2> SELECT GET_LOCK('my_lock_1', -1);

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_2', -1);

ERROR: 3058: Deadlock found when trying to get user-level lock; try rolling

back transaction/releasing locks and restarting lock acquisition.

When Connection 2 attempts to get the my_lock_1 lock, the statement will block

until Connection 1 attempts to get the my_lock_2 lock triggering the deadlock. If you

obtain multiple locks, you should be prepared to handle deadlocks. Note that for user-

level locks, a deadlock does not trigger a rollback of the transaction.

The granted and pending user-level locks can be found in the performance_schema.

metadata_locks table with the OBJECT_TYPE column set to USER LEVEL LOCK as shown

in Listing 18-2. The locks listed assume you left the system as it was at the time the

Chapter 18 LOCking theOry and MOnitOring

491

 deadlock in Listing 18-1 was triggered. Note that some values such as OBJECT_INSTANCE_

BEGIN will be different for you.

Listing 18-2. Listing user-level locks

mysql> SELECT *
 FROM performance_schema.metadata_locks

 WHERE OBJECT_TYPE = 'USER LEVEL LOCK'\G

*************************** 1. row ***************************
 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_1

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2600542870816

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: GRANTED

 SOURCE: item_func.cc:4840

 OWNER_THREAD_ID: 76

 OWNER_EVENT_ID: 33

*************************** 2. row ***************************
 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_2

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2600542868896

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: GRANTED

 SOURCE: item_func.cc:4840

 OWNER_THREAD_ID: 62

 OWNER_EVENT_ID: 25

*************************** 3. row ***************************
 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_1

 COLUMN_NAME: NULL

Chapter 18 LOCking theOry and MOnitOring

492

OBJECT_INSTANCE_BEGIN: 2600542870336

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: PENDING

 SOURCE: item_func.cc:4840

 OWNER_THREAD_ID: 62

 OWNER_EVENT_ID: 26

3 rows in set (0.0086 sec)

The OBJECT_TYPE for user-level locks is USER LEVEL LOCK, and the lock duration

is EXPLICIT as it is up to the user or application to release the lock again. In row 1, the

connection with Performance Schema thread id 76 has been granted the my_lock_1 lock,

and in row 3 thread id 62 is waiting (pending) for it to be granted. Thread id 62 also has a

granted lock which is included in row 2.

The next level of locks involves non-data table-level locks. The first of these that will

be discussed is the flush lock.

 Flush Locks
A flush lock will be familiar to most who have been involved in taking backups. It is taken

when you use the FLUSH TABLES statement and last for the duration of the statement

unless you add WITH READ LOCK in which case a shared (read) lock is held until the lock

is explicitly released. An implicit table flush is also triggered at the end of the ANALYZE

TABLE statement. The flush lock is a table-level lock. The read lock taken with FLUSH

TABLES WITH READ LOCK is discussed later under explicit locks.

A common cause of lock issues for the flush lock is long-running queries. A FLUSH

TABLES statement cannot flush a table as long as there is a query that has the table open.

This means that if you execute a FLUSH TABLES statement while there is a long-running

query using one or more of the tables being flushed, then the FLUSH TABLES statement

will block all other statements needing any of those tables until the lock situation has

been resolved.

Flush locks are subject to the lock_wait_timeout setting. If it takes more than

lock_wait_timeout seconds to obtain the lock, MySQL will abandon the lock. The same

applies if the FLUSH TABLES statement is killed. However, due to the internals of MySQL,

Chapter 18 LOCking theOry and MOnitOring

493

a lower-level lock called the table definition cache (TDC) version lock cannot always be

released until the long-running query completes.1 That means that the only way to be

sure the lock problem is resolved is to kill the long-running query, but be aware that if

the query has changed many rows, it may take a long time to roll back the query.

When there is lock contention around the flush lock, both the FLUSH TABLES

statement and the queries started subsequently will have the state set to “Waiting for

table flush.” Listing 18-3 shows an example of this involving three queries. To reproduce

the scenario yourself, start out executing the three queries with the prompt set to

Connection N> with N being 1, 2, or 3 representing three different connections.

The query against sys.session is done in a fourth connection. All queries must be

executed before the first completes (takes three minutes).

Listing 18-3. Example of waiting for a flush lock

-- Connection 1

Connection 1> SELECT *, SLEEP(180) FROM world.city WHERE ID = 130;

-- Connection 2

Connection 2> FLUSH TABLES world.city;

-- Connection 3

Connection 3> SELECT * FROM world.city WHERE ID = 201;

-- Connection 4

Connection 4> SELECT thd_id, conn_id, state,

 current_statement

 FROM sys.session

 WHERE current_statement IS NOT NULL

 AND thd_id <> PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************
 thd_id: 61

 conn_id: 21

 state: User sleep

current_statement: SELECT *, SLEEP(180) FROM world.city WHERE ID = 130

1 https://bugs.mysql.com/bug.php?id=44884

Chapter 18 LOCking theOry and MOnitOring

https://bugs.mysql.com/bug.php?id=44884

494

*************************** 2. row ***************************
 thd_id: 62

 conn_id: 22

 state: Waiting for table flush

current_statement: FLUSH TABLES world.city

*************************** 3. row ***************************
 thd_id: 64

 conn_id: 23

 state: Waiting for table flush

current_statement: SELECT * FROM world.city WHERE ID = 201

3 rows in set (0.0598 sec)

The example uses the sys.session view; similar results can be obtained using

performance_schema.threads and SHOW PROCESSLIST. In order to reduce the output

to only include the queries of relevance for the flush lock discussion, the current thread

and threads without ongoing queries are filtered out.

The connection with conn_id = 21 is executing a slow query that uses the world.

city table (a SLEEP(180) was used to ensure it took a long time). In the meantime, conn_

id = 22 executed a FLUSH TABLES statement for the world.city table. Because the first

query still has the table open (it is released once the query completes), the FLUSH TABLES

statement ends up waiting for the table flush lock. Finally, conn_id = 23 attempts to

query the table and thus must wait for the FLUSH TABLES statement.

Another non-data table lock is a metadata lock.

 Metadata Locks
Metadata locks are one of the newer lock types in MySQL. They were introduced in

MySQL 5.5, and their purpose is to protect the schema, so it does not get changed while

queries or transactions rely on the schema to be unchanged. Metadata locks work at the

table level, but they should be considered as an independent lock type to table locks as

they do not protect the data in the tables.

SELECT statements and DML queries take a shared metadata lock, whereas DDL

statements take an exclusive lock. A connection takes a metadata lock on a table when

the table is first used and keeps the lock until the end of the transaction. While the

metadata lock is held, no other connection is allowed to change the schema definition

of the table. However, other connections that execute SELECT statements and DML

Chapter 18 LOCking theOry and MOnitOring

495

statements are not restricted. Usually the biggest gotcha with respect to metadata locks is

idle transactions preventing DDL statements from starting their work.

If you encounter a conflict around a metadata lock, you will see the query state in the

process list set to “Waiting for table metadata lock.” An example of this including queries

to set up is shown in Listing 18-4.

Listing 18-4. Example of waiting for table metadata lock

-- Connection 1

Connection 1> SELECT CONNECTION_ID();

+-----------------+

| CONNECTION_ID() |

+-----------------+

| 21 |

+-----------------+

1 row in set (0.0003 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT * FROM world.city WHERE ID = 130\G

*************************** 1. row ***************************
 ID: 130

 Name: Sydney

CountryCode: AUS

 District: New South Wales

 Population: 3276207

1 row in set (0.0005 sec)

-- Connection 2

Connection 2> SELECT CONNECTION_ID();

+-----------------+

| CONNECTION_ID() |

+-----------------+

| 22 |

+-----------------+

1 row in set (0.0003 sec)

Connection 2> OPTIMIZE TABLE world.city;

Chapter 18 LOCking theOry and MOnitOring

496

-- Connection 3

Connection 3> SELECT thd_id, conn_id, state,

 current_statement,

 last_statement

 FROM sys.session

 WHERE conn_id IN (21, 22)\G

*************************** 1. row ***************************
 thd_id: 61

 conn_id: 21

 state: NULL

current_statement: SELECT * FROM world.city WHERE ID = 130

 last_statement: SELECT * FROM world.city WHERE ID = 130

*************************** 2. row ***************************
 thd_id: 62

 conn_id: 22

 state: Waiting for table metadata lock

current_statement: OPTIMIZE TABLE world.city

 last_statement: NULL

2 rows in set (0.0549 sec)

In this example, the connection with conn_id = 21 has an ongoing transaction

and in the previous statement queried the world.city table (the current statement in

this case is the same as it is not cleared until the next statement is executed). While the

transaction is still active, conn_id = 22 has executed an OPTIMIZE TABLE statement

which is now waiting for the metadata lock. (Yes, OPTIMIZE TABLE does not change the

schema definition, but it as a DDL statement is still affected by the metadata lock.)

It is convenient when it is the current or last statement that is the cause of the

metadata lock. In more general cases, you can use the performance_schema.metadata_

locks table with the OBJECT_TYPE column set to TABLE to find granted and pending

metadata locks. Listing 18-5 shows an example of granted and pending metadata locks

using the same setup as in the previous example. Chapter 22 goes into more detail about

investigating metadata locks.

Chapter 18 LOCking theOry and MOnitOring

497

Listing 18-5. Example of metadata locks

-- Connection 3

Connection 3> SELECT *
 FROM performance_schema.metadata_locks

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'\G

*************************** 1. row ***************************
 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2195760373456

 LOCK_TYPE: SHARED_READ

 LOCK_DURATION: TRANSACTION

 LOCK_STATUS: GRANTED

 SOURCE: sql_parse.cc:6014

 OWNER_THREAD_ID: 61

 OWNER_EVENT_ID: 53

*************************** 2. row ***************************
 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2194784109632

 LOCK_TYPE: SHARED_NO_READ_WRITE

 LOCK_DURATION: TRANSACTION

 LOCK_STATUS: PENDING

 SOURCE: sql_parse.cc:6014

 OWNER_THREAD_ID: 62

 OWNER_EVENT_ID: 26

2 rows in set (0.0007 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

Chapter 18 LOCking theOry and MOnitOring

498

In the example, thread id 61 (the same as conn_id = 22 from the sys.session

output) owns a shared read lock on the world.city table due to an ongoing transaction,

and thread id 62 is waiting for a lock as it is trying to execute a DDL statement on the table.

A special case of metadata locks are locks taken explicitly with the LOCK TABLES

statement.

 Explicit Table Locks
Explicit table locks are taken with the LOCK TABLES and the FLUSH TABLES WITH READ

LOCK statements. With the LOCK TABLES statement, it is possible to take shared or

exclusive locks; FLUSH TABLES WITH READ LOCK always takes a shared lock. The tables

are locked, until they are explicitly released with the UNLOCK TABLES statement. When

FLUSH TABLES WITH READ LOCK is executed without listing any tables, the global read

lock (i.e., affecting all tables) is taken. While these locks also protect the data, they are

considered as metadata locks in MySQL.

Explicit table locks, other than FLUSH TABLES WITH READ LOCK in connection

with backups, are not often used with InnoDB as InnoDB’s sophisticated lock features

are in most cases superior to handling locks yourself. However, if you really need to lock

the entire tables, explicit locks can be useful as they are very cheap for MySQL to check.

An example of a connection taking an explicit read lock on the world.country and

world.countrylanguage tables and a write lock on the world.city table is

mysql> LOCK TABLES world.country READ,

 world.countrylanguage READ,

 world.city WRITE;

Query OK, 0 rows affected (0.0500 sec)

When you take explicit locks, you are only allowed to use the tables you have locked

and in accordance with the requested locks. This means you will get an error if you take

a read lock and attempt to write to the table (ER_TABLE_NOT_LOCKED_FOR_WRITE) or if you

try to use a table you did not take a lock for (ER_TABLE_NOT_LOCKED), for example:

mysql> UPDATE world.country

 SET Population = Population + 1

 WHERE Code = 'AUS';

ERROR: 1099: Table 'country' was locked with a READ lock and can't be

updated

Chapter 18 LOCking theOry and MOnitOring

499

mysql> SELECT *
 FROM sakila.film

 WHERE film_id = 1;

ERROR: 1100: Table 'film' was not locked with LOCK TABLES

Since explicit locks are considered metadata locks, the symptoms and information

in the performance_schema.metadata_locks table are the same as for implicit metadata

locks.

Another table-level lock but handled implicitly is plainly called a table lock.

 Implicit Table Locks
MySQL takes implicit table locks when a table is queried. Table locks do not play a large

role for InnoDB tables except for flush, metadata, and explicit locks as InnoDB uses

record locks to allow concurrent access to a table as long as the transactions do not

modify the same rows (roughly speaking – as the next subsections show – there is more

to it than that).

InnoDB does however work with the concept of intention locks at the table level.

Since you are likely to encounter those when investigating lock issues, it is worth

familiarizing yourself with them. As mentioned in the discussion of lock access levels,

intention locks mark what the intention of the transaction is. If you use an explicit

LOCK TABLES statement, the table will be locked directly with the access level you have

requested.

For locks taken by transactions, first, an intention lock is taken, and then it may if

needed be upgraded. To get a shared lock, the transaction first takes an intention shared

lock and then the shared lock. Similarly, for an exclusive lock, an intention exclusive lock

is first taken. Some examples of intention locks are as follows:

• A SELECT ... FOR SHARE statement takes an intention shared lock

on the tables queried. The SELECT ... LOCK IN SHARE MODE syntax

is a synonym.

• A SELECT ... FOR UPDATE statement takes an intention exclusive

lock on the tables queried.

• A DML statement (not including SELECT) takes an intention exclusive

lock on the modified tables. If a foreign key column is modified, an

intention shared lock is taken on the parent table.

Chapter 18 LOCking theOry and MOnitOring

500

Two intention locks are always compatible with each other. This means that even

if a transaction has an intention exclusive lock, it will not prevent another transaction

to take an intention lock. It will however stop the other transaction from upgrading its

intention lock to a full lock. Table 18-1 shows the compatibility between the lock types.

Shared locks are denoted S and exclusive locks X. Intention locks are prefixed I, so IS is

an intention shared lock and IX is an intention exclusive lock.

Table 18-1. InnoDB lock compatibility

Exclusive (X) Intention Exclusive (IX) Shared (S) Intention Shared (IS)

Exclusive (X) ✘ ✘ ✘ ✘

Intention
Exclusive (IX)

✘ ✔ ✘ ✔

Shared (S) ✘ ✘ ✔ ✔

Intention
Shared (IS)

✘ ✔ ✔ ✔

In the table, a checkmark indicates that the two locks are compatible, whereas a

cross mark indicates the two locks are conflicting with each other. The only conflicts

of intention locks are the exclusive and shared locks. An exclusive lock conflicts with

all other locks including both intention lock types. A shared lock conflicts only with an

exclusive lock and an intention exclusive lock.

Why are the intention locks even necessary? They allow InnoDB to resolve the lock

requests in order without blocking compatible operations. The details are beyond the

scope of this discussion. The important thing is that you know that the intention locks

exist, so when you see them you know where they come from.

The table-level locks can be found in the performance_schema.data_locks table

with the LOCK_TYPE column set to TABLE. Listing 18-6 shows an example of an intention

shared lock.

Listing 18-6. Example of an InnoDB intention shared lock

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Chapter 18 LOCking theOry and MOnitOring

501

Connection 1> SELECT *
 FROM world.city

 WHERE ID = 130

 FOR SHARE;

Query OK, 1 row affected (0.0010 sec)

-- Connection 2

Connection 2> SELECT *
 FROM performance_schema.data_locks

 WHERE LOCK_TYPE = 'TABLE'\G

*************************** 1. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098223824:1720:2195068346872

ENGINE_TRANSACTION_ID: 283670074934480

 THREAD_ID: 61

 EVENT_ID: 81

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2195068346872

 LOCK_TYPE: TABLE

 LOCK_MODE: IS

 LOCK_STATUS: GRANTED

 LOCK_DATA: NULL

1 row in set (0.0354 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

This shows an intention shared lock on the world.city table. Notice that the ENGINE

is set to INNODB and that LOCK_DATA is NULL. The values of the ENGINE_LOCK_ID, ENGINE_

TRANSACTION_ID, and OBJECT_INSTANCE_BEGIN columns will be different if you execute

the same query.

As mentioned, InnoDB’s main access level protection is at the record level, so let’s

look at those.

Chapter 18 LOCking theOry and MOnitOring

502

 Record Locks
Record locks are often called row locks; however, it is more than just locks on rows as

it also includes index and gap locks. These are typically the locks that are meant when

talking about InnoDB locks. They are fine-grained locks that aim at just locking the least

amount of data while still ensuring the data integrity.

A record lock can be shared or exclusive and affect just the rows and indexes

accessed by the transaction. The duration of exclusive locks is usually the transaction

with an exception, for example, being delete-marked records used for uniqueness

checks in INSERT INTO ... ON DUPLICATE KEY and REPLACE statements. For shared

locks, the duration can depend on the transaction isolation level as discussed in

“Transaction Isolation Levels” in the section “Reduce Locking Issues.”

Record locks can be found using the performance_schema.data_locks table that

was also used to find intention locks at the table level. Listing 18-7 shows an example

of the locks from updating rows in the world.city table using the secondary index

CountryCode.

Listing 18-7. Example of InnoDB record locks

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE CountryCode = 'LUX';

Query OK, 1 row affected (0.0009 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT *
 FROM performance_schema.data_locks\G

*************************** 1. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098223824:1720:2195068346872

ENGINE_TRANSACTION_ID: 117114

Chapter 18 LOCking theOry and MOnitOring

503

 THREAD_ID: 61

 EVENT_ID: 121

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2195068346872

 LOCK_TYPE: TABLE

 LOCK_MODE: IX

 LOCK_STATUS: GRANTED

 LOCK_DATA: NULL

*************************** 2. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098223824:507:30:1112:2195068344088

ENGINE_TRANSACTION_ID: 117114

 THREAD_ID: 61

 EVENT_ID: 121

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: CountryCode

OBJECT_INSTANCE_BEGIN: 2195068344088

 LOCK_TYPE: RECORD

 LOCK_MODE: X

 LOCK_STATUS: GRANTED

 LOCK_DATA: 'LUX', 2452

*************************** 3. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098223824:507:20:113:2195068344432

ENGINE_TRANSACTION_ID: 117114

 THREAD_ID: 61

 EVENT_ID: 121

 OBJECT_SCHEMA: world

Chapter 18 LOCking theOry and MOnitOring

504

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: PRIMARY

OBJECT_INSTANCE_BEGIN: 2195068344432

 LOCK_TYPE: RECORD

 LOCK_MODE: X,REC_NOT_GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 2452

*************************** 4. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098223824:507:30:1113:2195068344776

ENGINE_TRANSACTION_ID: 117114

 THREAD_ID: 61

 EVENT_ID: 121

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: CountryCode

OBJECT_INSTANCE_BEGIN: 2195068344776

 LOCK_TYPE: RECORD

 LOCK_MODE: X,GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 'LVA', 2434

4 rows in set (0.0005 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0685 sec)

The first row is the intention exclusive table lock that has already been discussed.

The second row is a next-key lock (more shortly) on the CountryCode index for the value

(‘LUX’, 2452) where ‘LUX’ is the country code used in the WHERE clause and 2452 is the

primary key id added to the nonunique secondary index. The city with ID = 2452 is the

only city matching the WHERE clause, and the primary key record (the row itself) is shown

Chapter 18 LOCking theOry and MOnitOring

505

in the third row of the output. The lock mode is X,REC_NOT_GAP which means it is an

exclusive lock on the record but not on the gap.

What is a gap? An example is shown in the fourth row of the output. Gap locks are so

important that the discussion of the gap lock is split out into its own.

 Gap Locks, Next-Key Locks, and Predicate Locks
A gap lock protects the space between two records. This can be in the row through the

clustered index or in a secondary index. Before the first record in an index page and after

the last in the page, there are pseudo-records called the infimum record and supremum

record, respectively. Gap locks are often the lock type causing the most confusion.

Experience from studying lock issues is the best way to become familiar with them.

Consider the query from the previous example:

UPDATE world.city

 SET Population = Population + 1

 WHERE CountryCode = 'LUX';

This query changes the population of all cities with CountryCode = 'LUX'. What

happens if a new city is inserted between the update and the commit of the transaction?

If the UPDATE and INSERT statements commit in the same order they are executed, all is

as such fine. However, if you commit the changes in the opposite order, then the result is

inconsistent as it would be expected the inserted row would also have been updated.

This is where the gap lock comes into play. It guards the space where new records

(including records moved from a different position) would be inserted, so it is not

changed until the transaction holding the gap lock is completed. If you look at the last

columns of the fourth row in the output from the example in Listing 18-7, you can see an

example of a gap lock:

 INDEX_NAME: CountryCode

OBJECT_INSTANCE_BEGIN: 2195068344776

 LOCK_TYPE: RECORD

 LOCK_MODE: X,GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 'LVA', 2434

Chapter 18 LOCking theOry and MOnitOring

506

This is an exclusive gap lock on the CountryCode index for the value (‘LVA’, 2434).

Since the query requested to update all rows with the CountryCode set to “LUX”, the gap

lock ensures that no new rows are inserted for the “LUX” country code. The country code

“LVA” is the next value in the CountryCode index, so the gap between “LUX” and “LVA” is

protected with an exclusive lock. On the other hand, it is still possible to insert new cities

with CountryCode = 'LVA'. In some places this is referred to as a “gap before record”

which makes it easier to understand how the gap lock works.

Gap locks are taken to a much less degree when you use the READ COMMITTED

transaction isolation level rather than REPEATABLE READ or SERIALIZABLE. This is

discussed further in “Transaction Isolation Levels” in the section “Reduce Locking Issues.”

Related to gap locks are next-key locks and predicate locks. A next-key lock is the

combination of a record lock and a gap lock on the gap before the record. This is actually

the default lock type in InnoDB, and thus you will just see it as S and X in the lock

outputs. In the example that has been discussed in this and the previous subsection,

the lock on the CountryCode index for the value (‘LUX’, 2452) and the gap before it is

an example of a next-key lock. The relevant parts of the output in Listing 18-7 from the

performance_schema.data_locks table are

*************************** 2. row ***************************
 INDEX_NAME: CountryCode

 LOCK_TYPE: RECORD

 LOCK_MODE: X

 LOCK_STATUS: GRANTED

 LOCK_DATA: 'LUX', 2452

*************************** 3. row ***************************
 INDEX_NAME: PRIMARY

 LOCK_TYPE: RECORD

 LOCK_MODE: X,REC_NOT_GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 2452

*************************** 4. row ***************************
 INDEX_NAME: CountryCode

 LOCK_TYPE: RECORD

 LOCK_MODE: X,GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 'LVA', 2434

Chapter 18 LOCking theOry and MOnitOring

507

So to recapitulate, row 2 is the next-key lock, row 3 is the record lock on the primary

key (the row), and row 4 is a gap lock between “LUX” and “LVA” (or a before-LVA gap lock).

A predicate lock is similar to a gap lock but applies to spatial indexes where an

absolute ordering cannot be made and thus a gap lock does not make sense. Instead of

a gap lock, for spatial indexes in the REPEATABLE READ and SERIALIZABLE transaction

isolation levels, InnoDB creates a predicate lock on the minimum bounding rectangle

(MBR) used for the query. This will allow consistent reads by preventing changes to the

data within the minimum bounding rectangle.

One final lock type related to records that you should know is insert intention locks.

 Insert Intention Locks
Remember that for table locks, InnoDB has intention locks for whether the transaction

will use the table in a shared or exclusive manner. Similarly, InnoDB has insert intention

locks at the record level. InnoDB uses these locks – as the name suggests – with INSERT

statements to signal the intention to other transactions. As such, the lock is on a yet to

be created record (so it is a gap lock) rather than on an existing record. The use of insert

intention locks can help increase the concurrency that inserts can be performed at.

You are not very likely to see insert intention locks in lock outputs unless an

INSERT statement is waiting for a lock to be granted. You can force a situation where

this happens by creating a gap lock in another transaction that will prevent the

INSERT statement from completing. The example in Listing 18-8 creates a gap lock in

Connection 1 and then in Connection 2 attempts to insert a row which conflicts with the

gap lock. Finally, in a third connection, the lock information is retrieved.

Listing 18-8. Example of an insert intention lock

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> SELECT *
 FROM world.city

 WHERE ID > 4079

 FOR UPDATE;

Empty set (0.0009 sec)

Chapter 18 LOCking theOry and MOnitOring

508

-- Connection 2

Connection 2> SELECT PS_CURRENT_THREAD_ID();

+------------------------+

| PS_CURRENT_THREAD_ID() |

+------------------------+

| 62 |

+------------------------+

1 row in set (0.0003 sec)

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> INSERT INTO world.city

 VALUES (4080, 'Darwin', 'AUS',

 'Northern Territory', 146000);

-- Connection 3

Connection 3> SELECT *
 FROM performance_schema.data_locks

 WHERE THREAD_ID = 62\G

*************************** 1. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098220336:1720:2195068326968

ENGINE_TRANSACTION_ID: 117144

 THREAD_ID: 62

 EVENT_ID: 119

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2195068326968

 LOCK_TYPE: TABLE

 LOCK_MODE: IX

 LOCK_STATUS: GRANTED

 LOCK_DATA: NULL

Chapter 18 LOCking theOry and MOnitOring

509

*************************** 2. row ***************************
 ENGINE: INNODB

 ENGINE_LOCK_ID: 2195098220336:507:29:1:2195068320072

ENGINE_TRANSACTION_ID: 117144

 THREAD_ID: 62

 EVENT_ID: 119

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: PRIMARY

OBJECT_INSTANCE_BEGIN: 2195068320072

 LOCK_TYPE: RECORD

 LOCK_MODE: X,INSERT_INTENTION

 LOCK_STATUS: WAITING

 LOCK_DATA: supremum pseudo-record

2 rows in set (0.0005 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

Connection 2 has the Performance Schema thread id 62, so in Connection 3, it

is possible just to query for that thread and exclude the locks taken by Connection 1.

Notice that for the RECORD lock, the lock mode includes INSERT_INTENTION – the insert

intention lock. In this case, the data locked is the supremum pseudo-record, but that can

also be the value of the primary key depending on the situation. If you recall the next-key

lock discussion, then X means a next-key lock, but this is a special case as the lock is on

the supremum pseudo-record, and it is not possible to lock that, so effectively it is just a

gap lock on the gap before the supremum pseudo-record.

Another lock that you need to be aware of when inserting data is the auto-increment

lock.

Chapter 18 LOCking theOry and MOnitOring

510

 Auto-increment Locks
When you insert data into a table that has an auto-increment counter, it is necessary to

protect the counter so two transactions are guaranteed to get unique values. If you use

statement-based logging to the binary log, there are further restrictions as the auto-

increment value is recreated for all rows except the first when the statement is replayed.

InnoDB supports three lock modes, so you can adjust the amount of locking

according to your needs. You choose the lock mode with the innodb_autoinc_lock_mode

option which takes the values 0, 1, and 2 with 2 being the default in MySQL 8. It requires

a restart of MySQL to change the value. The meaning of the values is summarized in

Table 18-2.

Table 18-2. Supported values for the innodb_autoinc_lock_mode option

Value Mode Description

0 traditional the locking behavior of MySQL 5.0 and earlier. the lock is held until

the end of the statement, so values are assigned in repeatable and

consecutive order.

1 Consecutive For the INSERT statement where the number of rows is known at the start

of the query, the required number of auto-increment values is assigned

under a lightweight mutex, and the auto-increment lock is avoided. For

statements where the number of rows is not known, the auto-increment

lock is taken and held to the end of the statement. this was the default in

MySQL 5.7 and earlier.

2 interleaved the auto-increment lock is never taken, and the auto-increment values for

concurrent inserts may be interleaved. this mode is only safe when binary

logging is disabled or binlog_format is set to ROW. it is the default value

in MySQL 8.

The higher value of innodb_autoinc_lock_mode, the less locking. The price to pay

for that is increased number of gaps in the sequence of auto-increment values and for

innodb_autoinc_lock_mode = 2 the possibility of interleaved values. Unless you cannot

use row-based binary logging or have special needs for consecutive auto-increment

values, it is recommended to use the value of 2.

Chapter 18 LOCking theOry and MOnitOring

511

That concludes the discussion of user-level, metadata, and data-level locks. There

are a couple other locks related to backups that you should know of.

 Backup Locks
The backup lock is an instance-level lock; that is, it affects the system as a whole. It is a

new lock introduced in MySQL 8. The backup lock prevents statements that can make

a backup inconsistent while still allowing other statements to be executed concurrently

with the backup. The statements that are blocked include

• Statements that create, rename, or remove files. This includes

CREATE TABLE, CREATE TABLESPACE, RENAME TABLE, and DROP TABLE

statements.

• Account management statements such as CREATE USER, ALTER USER,

DROP USER, and GRANT.

• DDL statements that do not log their changes to the redo log. This, for

example, includes adding an index.

A backup lock is created with the LOCK INSTANCE FOR BACKUP statement, and the

lock is released with the UNLOCK INSTANCE statement. It requires the BACKUP_ADMIN

privileges to execute LOCK INSTANCE FOR BACKUP. An example of obtaining the backup

lock and releasing it again is

mysql> LOCK INSTANCE FOR BACKUP;

Query OK, 0 rows affected (0.00 sec)

mysql> UNLOCK INSTANCE;

Query OK, 0 rows affected (0.00 sec)

Note at the time of writing, taking a backup lock and releasing it is not allowed
when using the X protocol (connecting through the port specified with mysqlx_
port or the socket specified with mysqlx_socket). attempting to do so returns
an ER_PLUGGABLE_PROTOCOL_COMMAND_NOT_SUPPORTED error: ERROR:
3130: Command not supported by pluggable protocols.

Chapter 18 LOCking theOry and MOnitOring

512

Additionally, statements that conflict with the backup lock also take the backup lock.

Since DDL statements sometimes consist of several steps, for example, rebuilding a table

in a new file and renaming the file, the backup lock can be released between the steps to

avoid blocking LOCK INSTANCE FOR BACKUP for longer than necessary.

Backup locks can be found in the performance_schema.metadata_locks table with

the OBJECT_TYPE column set to BACKUP LOCK. Listing 18-9 shows an example of a query

waiting for a backup lock held by LOCK INSTANCE FOR BACKUP.

Listing 18-9. Example of a conflict for the backup lock

-- Connection 1

Connection 1> LOCK INSTANCE FOR BACKUP;

Query OK, 0 rows affected (0.00 sec)

-- Connection 2

Connection 2> OPTIMIZE TABLE world.city;

-- Connection 3

Connection 3> SELECT *
 FROM performance_schema.metadata_locks

 WHERE OBJECT_TYPE = 'BACKUP LOCK'\G

*************************** 1. row ***************************
 OBJECT_TYPE: BACKUP LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: NULL

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2520402231312

 LOCK_TYPE: SHARED

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: GRANTED

 SOURCE: sql_backup_lock.cc:101

 OWNER_THREAD_ID: 49

 OWNER_EVENT_ID: 8

*************************** 2. row ***************************
 OBJECT_TYPE: BACKUP LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: NULL

 COLUMN_NAME: NULL

Chapter 18 LOCking theOry and MOnitOring

513

OBJECT_INSTANCE_BEGIN: 2520403183328

 LOCK_TYPE: INTENTION_EXCLUSIVE

 LOCK_DURATION: TRANSACTION

 LOCK_STATUS: PENDING

 SOURCE: sql_base.cc:5400

 OWNER_THREAD_ID: 60

 OWNER_EVENT_ID: 19

2 rows in set (0.0007 sec)

-- Connection 1

Connection 1> UNLOCK INSTANCE;

Query OK, 0 rows affected (0.00 sec)

In the example, the connection with thread id 49 owns the backup lock, whereas the

connection with thread id 60 is waiting for it. Notice that LOCK INSTANCE FOR BACKUP

holds a shared lock, whereas the DDL statement requests an intention exclusive lock.

Related to the backup lock is the log lock which has also been introduced to reduce

locking during backups.

 Log Locks
When you create a backup, you typically want to include information about the log

positions the backup is consistent with. In MySQL 5.7 and earlier, you needed the global

read lock while obtaining this information. In MySQL 8, the log lock was introduced

to allow you to read information such as the executed global transaction identifiers

(GTIDs), the binary log position, and the log sequence number (LSN) for InnoDB

without taking a global read lock.

The log lock prevents operations that make changes to log-related information. In

practice this means commits, FLUSH LOGS, and similar. The log lock is taken implicitly

by querying the performance_schema.log_status table. It requires the BACKUP_ADMIN

privilege to access the table. Listing 18-10 shows an example output of the log_

status table.

Chapter 18 LOCking theOry and MOnitOring

514

Listing 18-10. Example output of the log_status table

mysql> SELECT *
 FROM performance_schema.log_status\G

*************************** 1. row ***************************
 SERVER_UUID: 59e3f95b-e0d6-11e8-94e8-ace2d35785be

 LOCAL: {"gtid_executed": "59e3f95b-e0d6-11e8-94e8-

ace2d35785be:1-5343", "binary_log_file": "mysql-

bin.000033", "binary_log_position": 3874615}

 REPLICATION: {"channels": []}

STORAGE_ENGINES: {"InnoDB": {"LSN": 7888992157, "LSN_checkpoint":

7888992157}}

1 row in set (0.0004 sec)

That concludes the review of the main lock types in MySQL. What happens when a

query requests a lock, but it cannot be granted? Let’s consider that.

 Failure to Obtain Locks
The whole idea of locks is to restrict access to objects or records to avoid conflicting

operations to execute concurrently. That means that sometimes a lock cannot

be granted. What happens in that case? It depends on the lock requested and the

circumstances. Metadata locks (including explicitly requested table locks) operate with a

timeout. InnoDB record locks both support a timeout and explicit deadlock detection.

Note Whether two locks are compatible with each other is very complex to
determine. it becomes particularly interesting as the relationship is not symmetric,
that is, a lock may be allowed in the presence of another lock, but not vice versa.
For example, an insert intention lock must wait for a gap lock, but a gap lock does
not have to wait for an insert intention lock. another example (of lack of transitivity)
is that a gap plus record lock must wait for a record-only lock, and an insert
intention lock must wait for a gap plus record lock, but an insert intention lock
does not need to wait for a record-only lock.

Chapter 18 LOCking theOry and MOnitOring

515

It is important to understand that failures to obtain locks are a fact of life when

working with databases. In principle you can use very coarse-grained locks and avoid

failed locks except for timeouts – this is what the MyISAM storage engine does with very

poor write concurrency as a result. However, in practice to allow for high concurrency of

write workloads, fine-grained locks are preferred which also introduces the possibility of

deadlocks.

The conclusion is that you should always make your application prepared to retry

getting a lock or fail gracefully. This applies whether it is an explicit or implicit lock.

Tip always be prepared to handle failures to obtain locks. Failing to get a lock is
not a catastrophic error and should not normally be considered a bug. that said, as
discussed in the section “reducing Locking issues,” there are techniques to reduce
lock contention that are worth having in mind when developing an application.

The rest of this chapter will discuss the specifics of table-level timeouts, record-level

timeouts, and InnoDB deadlocks.

 Metadata and Backup Lock Wait Timeouts
When you request a flush, metadata, or backup lock, the attempt to get the lock will time

out after lock_wait_timeout seconds. The default timeout is 31536000 seconds (365

days). You can set the lock_wait_timeout option dynamically and both at the global and

session scopes, which allows you to adjust the timeout to the specific needs for a given

process.

When a timeout occurs, the statement fails with the error ER_LOCK_WAIT_TIMEOUT

(error number 1205). For example:

mysql> LOCK TABLES world.city WRITE;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

The recommended setting for the lock_wait_timeout option depends on the

requirements of the application. It can be an advantage to use a small value to prevent

the lock request to block other queries for a long time. This will typically require you to

implement handling of a lock request failure, for example, by retrying the statement.

A large value can on the other hand be useful to avoid having to retry the statement.

Chapter 18 LOCking theOry and MOnitOring

516

For the FLUSH TABLES statement, also remember that it interacts with the lower-level

table definition cache (TDC) version lock which may mean that abandoning the

statement does not allow subsequent queries from progressing. In that case, it can

be better to have a high value for lock_wait_timeout to make it clearer what the lock

relationship is.

 InnoDB Lock Wait Timeouts
When a query requests a record-level lock in InnoDB, it is subject to a timeout similarly

to the timeout for flush, metadata, and backup locks. Since record-level lock contention

is more common than table-level lock contention, and record-level locks increase the

potential for deadlocks, the timeout defaults to 50 seconds. It can be set using the innodb_

lock_wait_timeout option which can be set both for the global and session scopes.

When a timeout occurs, the query fails with the ER_LOCK_WAIT_TIMEOUT error (error

number 1205) just like for a table-level lock timeout. Listing 18-11 shows an example

where an InnoDB lock wait timeout occurs.

Listing 18-11. Example of an InnoDB lock wait timeout

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SET SESSION innodb_lock_wait_timeout = 3;

Query OK, 0 rows affected (0.0004 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

Chapter 18 LOCking theOry and MOnitOring

517

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

In this example, the lock wait timeout for Connection 2 is set to 3 seconds, so it is not

necessary to wait the usual 50 seconds for the timeout to occur.

When the timeout occurs, the innodb_rollback_on_timeout option defines how

much of the work done by the transaction is rolled back. When innodb_rollback_on_

timeout is disabled (the default), only the statement that triggered the timeout is rolled

back. When the option is enabled, the whole transaction is rolled back. The innodb_

rollback_on_timeout option can only be configured at the global level, and it requires a

restart to change the value.

Caution it is very important that a lock wait timeout is handled as otherwise it
may leave the transaction with locks that are not released. if that happens, other
transactions may not be able to acquire the locks they require.

It is in general recommended to keep the timeout for InnoDB record-level locks

low. Often it is best to lower the value from the default 50 seconds. The longer a query is

allowed to wait for a lock, the larger the potential for other lock requests to be affected

which can lead to other queries stalling as well. It also makes deadlocks more likely to

occur. If you disable deadlock detection (discussed next), you should use a very small

value for innodb_lock_wait_timeout such as one or two seconds as you will be using

the timeout to detect deadlocks. Without deadlock detection, it is also recommended to

enable the innodb_rollback_on_timeout option.

 Deadlocks
Deadlocks sound like a very scary concept, but you should not let the name deter you.

Just like lock wait timeout, deadlocks are a fact of life in the world of high-concurrency

databases. What it really means is that there is a circular relationship between the lock

requests. The only way to resolve the gridlock is to force one of the requests to abandon.

In that sense, a deadlock is no different from a lock wait timeout. In fact, you can disable

deadlock detection in which case, one of the locks will end up with a lock wait timeout

instead.

Chapter 18 LOCking theOry and MOnitOring

518

So why are there deadlocks at all if they are not really needed? Since deadlocks

occur when there is a circular relationship between the lock requests, it is possible for

InnoDB to detect them as soon as the circle is completed. This allows InnoDB to tell

the user immediately that a deadlock has occurred without having to wait for the lock

wait timeout to happen. It is also useful to be told that a deadlock has occurred as it

often provides opportunities to improve the data access in the application. You should

thus consider deadlocks a friend rather than a foe. Figure 18-1 shows an example of two

transactions querying a table which causes a deadlock.

Figure 18-1. Example of two transactions causing a deadlock

In the example, transaction 1 first updates the row with ID = 130 and then the row

with ID = 3805. In between, transaction 2 updates first the row with ID = 3805 and then

the row with ID = 130. This means that by the time transaction 1 tries to update ID =

3805, transaction 2 already has a lock on the row. Transaction 2 can also not proceed as

it cannot get a lock on ID = 130 because transaction 1 already holds that. This is a classic

example of a simple deadlock. The circular lock relationship is also shown in Figure 18-2.

Chapter 18 LOCking theOry and MOnitOring

519

In this figure, it is clear which lock is held by transactions 1 and 2 and which locks are

requested and how the conflict can never be resolved without intervention. That makes

it qualify as a deadlock.

In the real world, deadlocks are often more complicated. In the example that has

been discussed here, only primary key record locks have been involved. In general, often

secondary keys, gap locks, and possible other lock types are also involved. There may

also be more than two transactions involved. The principle, however, remains the same.

Note a deadlock may even occur with as little as one query for each of two
transactions. if one query reads the records in ascending order and the other on
descending order, it is possible to get a deadlock.

When a deadlock occurs, InnoDB chooses the transaction that has “done the least

work” to become a victim. You can check the trx_weight column in the information_

schema.INNODB_TRX view to see the weight used by InnoDB (the more work done, the

higher weight). In practice this means that the transaction that holds the fewest locks will

be rolled back. When this occurs, the query in the transaction that is chosen as the victim

fails with the error ER_LOCK_DEADLOCK returned (error code 1213), and the transaction is

rolled back to release as many locks as possible. An example of a deadlock occurring is

shown in Listing 18-12.

Figure 18-2. The circular relationship of the locks causing the deadlock

Chapter 18 LOCking theOry and MOnitOring

520

Listing 18-12. Example of a deadlock

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0006 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

Query OK, 1 row affected (0.0006 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

-- Connection 1

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0438 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0438 sec)

Chapter 18 LOCking theOry and MOnitOring

521

In most cases, the automatic deadlock detection is great to avoid queries stalling for

longer than necessary. Deadlock detection is not for free though. For MySQL instances

with a very high query concurrency, the cost of looking for deadlocks can become

significant, and you are better off disabling the deadlock detection which is done by

setting the innodb_deadlock_detect option to OFF. That said, in MySQL 8.0.18 and

later, the deadlock detection has been moved to a dedicated background thread which

improves the performance.

If you do disable deadlock detection, it is recommended to set innodb_lock_wait_

timeout to a very low value such as one second to quickly detect lock contention.

Additionally, enable the innodb_rollback_on_timeout option to ensure the locks are

released.

Now that you have an understanding of how locks work and how lock requests can

fail, you need to consider how you can reduce the impact of locking.

 Reduce Locking Issues
It is important to have locks in mind when you write an application and design the

schema for its data and access. The strategies to reduce locking include adding indexes,

changing the transaction isolation level, and preemptive locking.

Tip do not be carried away in optimizing locks. if you only occasionally
encounter lock wait timeouts and deadlocks, it is usually better to retry the query
or transaction rather than spend time avoiding the issue. how frequent is too
frequent depends on your workload, but several retries every hour will not be an
issue for many applications.

 Transaction Size and Age
An important strategy to reduce lock issues is to keep your transactions small and to

avoid delays that keep the transactions open for longer than necessary. Among the most

common causes of lock issues are transactions that modify a large number of rows or

that are active for much longer than necessary.

Chapter 18 LOCking theOry and MOnitOring

522

The size of the transaction is the amount of work the transaction does, particularly

the number of locks it takes, but the time the transaction takes to execute is also

important. As some of the other topics in this discussion will address, you can partly

reduce the impact through indexes and the transaction isolation level. However, it is

also important to have the overall result in mind. If you need to modify many rows, ask

yourself if you can split the work into smaller batches or it is required that everything is

done in the same transaction. It may also be possible to split out some preparation work

and do it outside the main transaction.

The duration of the transaction is also important. One common problem is

connections using autocommit = 0. This starts a new transaction every time a query

(including SELECT) is executed without an active transaction, and the transaction is not

completed until an explicit COMMIT or ROLLBACK is executed (or the connection is closed).

Some connectors disable auto-commit by default, so you may be using this mode

without realizing it which can leave transactions open for hours by mistake.

Tip enable the autocommit option unless you have a specific reason to disable
it. When you have auto-committing enabled, innodB can also for many SELECT
queries detect it is a read-only transaction and reduce the overhead of the query.

Another pitfall is to start a transaction and perform slow operations in the

application while the transaction is active. This can be data that is sent back to the user,

 interactive prompts, or file I/O. Make sure that you do these kinds of slow operations

when you do not have an active transaction open in MySQL.

 Indexes
Indexes reduce the amount of work performed to access a given row. That way indexes

are a great tool to reduce locking as only records accessed while executing the query will

be locked.

Consider a simple example where you query cities with the name Sydney in the

world.city table:

Chapter 18 LOCking theOry and MOnitOring

523

START TRANSACTION;

SELECT *
 FROM world.city

 WHERE Name = 'Sydney'

 FOR SHARE;

The FOR SHARE option is used to force the query to take a shared lock on the records

read. By default, there is no index on the Name column, so the query will perform a full

table scan to find the rows needed in the result. Without an index, there are 4103 record

locks (some are duplicates):

mysql> SELECT INDEX_NAME, LOCK_TYPE,

 LOCK_MODE, COUNT(*)

 FROM performance_schema.data_locks

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 GROUP BY INDEX_NAME, LOCK_TYPE, LOCK_MODE;

+------------+-----------+-----------+----------+

| INDEX_NAME | LOCK_TYPE | LOCK_MODE | COUNT(*) |

+------------+-----------+-----------+----------+

| NULL | TABLE | IS | 1 |

| PRIMARY | RECORD | S | 4103 |

+------------+-----------+-----------+----------+

2 rows in set (0.0210 sec)

If you add an index on the Name column, the lock count decreases to a total of three

record locks:

mysql> SELECT INDEX_NAME, LOCK_TYPE,

 LOCK_MODE, COUNT(*)

 FROM performance_schema.data_locks

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 GROUP BY INDEX_NAME, LOCK_TYPE, LOCK_MODE;

Chapter 18 LOCking theOry and MOnitOring

524

+------------+-----------+---------------+----------+

| INDEX_NAME | LOCK_TYPE | LOCK_MODE | COUNT(*) |

+------------+-----------+---------------+----------+

| NULL | TABLE | IS | 1 |

| Name | RECORD | S | 1 |

| PRIMARY | RECORD | S,REC_NOT_GAP | 1 |

| Name | RECORD | S,GAP | 1 |

+------------+-----------+---------------+----------+

4 rows in set (0.0005 sec)

On the flip side, more indexes provide more ways to access the same rows which

potentially can increase the number of deadlocks.

 Record Access Order
Ensure that you to as large degree as possible access the records in the same order for

different transactions. In the deadlock example discussed earlier in this chapter, what led

to the deadlock was that the two transactions accessed the rows in opposite order. If they

had accessed the rows in the same order, there would have been no deadlock. This also

applies when you access records in different tables.

Ensuring the same access order is by no means a trivial task. Different access orders

may even happen when you perform joins and the optimizer decides on different join

orders for two queries. If different join orders lead to excessive lock issues, you can consider

using the optimizer hints described in Chapter 17 to tell the optimizer to change the join

order, but you should of course also have the query performance in mind in such cases.

 Transaction Isolation Levels
InnoDB supports several transaction isolation levels. Different isolation levels have

different lock requirements: particularly REPEATABLE READ and SERIALIZABLE require

more locks than READ COMMITTED.

The READ COMMITTED transaction isolation level can help on locking issues in two

ways. Far less gap locks are taken, and rows that are accessed during a DML statement

but not modified have their locks released again after the statement has completed.

For REPEATABLE READ and SERIALIZABLE, locks are only released at the end of the

transaction.

Chapter 18 LOCking theOry and MOnitOring

525

Note it is often said that the READ COMMITTED transaction isolation level does
not take gap locks. that is a myth and not correct. While far fewer gap locks are
taken, there are still some that are required. this, for example, includes when
innodB performs a page split as part of the update. (page splits are discussed in
Chapter 25.)

Consider an example where the population of the city named Sydney is changed

using the CountryCode column to limit the query to one country. This can be done with

the following query:

START TRANSACTION;

UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

There is no index on the Name column, but there is one on CountryCode. So the

update requires a scan of part of the CountryCode index. Listing 18-13 shows an example

of executing the query in the REPEATABLE READ transaction isolation level.

Listing 18-13. The locks held in the REPEATABLE READ transaction isolation level

-- Connection 1

Connection 1> SET transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.0003 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Chapter 18 LOCking theOry and MOnitOring

526

-- Connection 2

Connection 2> SELECT INDEX_NAME, LOCK_TYPE,

 LOCK_MODE, COUNT(*)

 FROM performance_schema.data_locks

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 GROUP BY INDEX_NAME, LOCK_TYPE, LOCK_MODE;

+-------------+-----------+---------------+----------+

| INDEX_NAME | LOCK_TYPE | LOCK_MODE | COUNT(*) |

+-------------+-----------+---------------+----------+

| NULL | TABLE | IX | 1 |

| CountryCode | RECORD | X | 14 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 14 |

| CountryCode | RECORD | X,GAP | 1 |

+-------------+-----------+---------------+----------+

4 rows in set (0.0007 sec)

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0725 sec)

Fourteen record locks are taken on each of the CountryCode index and the primary

key, and one gap lock is taken on the CountryCode index. Compare this to the locks held

after executing the query in the READ COMMITTED transaction isolation level as shown in

Listing 18-14.

Listing 18-14. The locks held in the READ-COMMITTED transaction isolation level

-- Connection 1

Connection 1> SET transaction_isolation = 'READ-COMMITTED';

Query OK, 0 rows affected (0.0003 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

Chapter 18 LOCking theOry and MOnitOring

527

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT INDEX_NAME, LOCK_TYPE,

 LOCK_MODE, COUNT(*)

 FROM performance_schema.data_locks

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 GROUP BY INDEX_NAME, LOCK_TYPE, LOCK_MODE;

+-------------+-----------+---------------+----------+

| INDEX_NAME | LOCK_TYPE | LOCK_MODE | COUNT(*) |

+-------------+-----------+---------------+----------+

| NULL | TABLE | IX | 1 |

| CountryCode | RECORD | X,REC_NOT_GAP | 1 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 1 |

+-------------+-----------+---------------+----------+

3 rows in set (0.0006 sec)

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0816 sec)

Here the record locks are reduced to one lock on each of the CountryCode index and

primary key. There are no gap locks.

It is not all workloads that can use the READ COMMITTED transaction isolation level. If

you must have SELECT statements return the same result when executed multiple times

in the same transaction or have different queries correspond to the same snapshot in

time, you must use REPEATABLE READ or SERIALIZABLE. However, in many cases, it is

an option to reduce the isolation level, and you can choose different isolation levels

for different transactions. If you are migrating an application from Oracle DB, you are

already using READ COMMITTED, and you can also use it in MySQL.

Chapter 18 LOCking theOry and MOnitOring

528

 Preemptive Locking
The last strategy that will be discussed is preemptive locking. If you have a complex

transaction executing several queries, it can in some cases be an advantage to execute

a SELECT ... FOR UPDATE or SELECT ... FOR SHARE query to take locks on the records

you know you will need later in the transaction. Another case where it can be useful is to

ensure you access the rows in the same order for different tasks.

Preemptive locking is particularly effective to reduce the frequency of deadlocks.

One drawback is that you will end up holding the locks for longer. Overall, preemptive

locking is a strategy that should be used sparingly, but when used for the right cases, it

can be powerful to prevent deadlocks.

The final topic of this chapter is to review how to monitor locks.

 Monitoring Locks
There have already been several examples of querying information about the locks held.

This section will review the sources already mentioned as well as introducing some

extra ones. Chapter 22 will go further into this by showing examples of investigating

lock issues. The monitoring options can be divided into four groups: the Performance

Schema, the sys schema, status metrics, and InnoDB lock monitoring.

 The Performance Schema
The Performance Schema contains the source of most of the lock information available

except for deadlocks. Not only can you use the lock information in the Performance

Schema directly; it is also used for two lock-related views in the sys schema.

The information is available through four tables:

• data_locks: This table contains details of table and lock records at

the InnoDB level. It shows all locks currently held or are pending.

• data_lock_waits: Like the data_locks table, it shows locks related

to InnoDB, but only those waiting to be granted with information on

which threads is blocking the request.

Chapter 18 LOCking theOry and MOnitOring

529

• metadata_locks: This table contains information about user-level

locks, metadata locks, and similar. To record information, the wait/

lock/metadata/sql/mdl Performance Schema instrument must

be enabled (it is enabled by default in MySQL 8). The OBJECT_TYPE

column shows which kind of lock is held.

• table_handles: This table holds information about which table

locks are currently in effect. The wait/lock/table/sql/handler

Performance Schema instrument must be enabled for data to be

recorded (this is the default). This table is less frequently used than

the other tables.

The metadata_locks table is the most generic of the tables, and there is support for a

wide range of locks ranging from the global read lock to low-level locks like for the access

control list (ACL). Table 18-3 summarizes the possible values of the OBJECT_TYPE column

in alphabetical order with a brief explanation of the locks each value represents.

Table 18-3. Object types in the performance_schema.metadata_locks table

Object Type Description

ACL_CACHE For the access control list (aCL) cache.

BACKUP_LOCK For the backup lock.

CHECK_CONSTRAINT For the names of CHECK constraints.

COLUMN_STATISTICS For histograms and other column statistics.

COMMIT For blocking commits. it is related to the global read lock.

EVENT For stored events.

FOREIGN_KEY For the foreign key names.

GLOBAL For the global read lock (triggered by FLUSH TABLES WITH READ

LOCK).

FUNCTION For stored functions.

LOCKING_SERVICE For locks acquired using the locking service interface.

PROCEDURE For stored procedures.

RESOURCE_GROUPS For the resource groups.

(continued)

Chapter 18 LOCking theOry and MOnitOring

530

The data in the Performance Schema tables is the raw lock data. Often when you

investigate lock issues or monitor for lock issues, it is more interesting to determine if

there are any lock waits. For that information, you need to use the sys schema.

 The sys Schema
The sys schema has two views that take the information in the Performance Schema

tables and return the lock pairs where one lock cannot be granted because of the other

lock. Thus, they show where there are problems with lock waits. The two views are

innodb_lock_waits and schema_table_lock_waits.

The innodb_lock_waits view uses the data_locks and data_lock_waits view in the

Performance Schema to return all cases of lock waits for InnoDB record locks. It shows

information such as what lock the connection is trying to obtain and which connections

and queries are involved. The view also exists as x$innodb_lock_waits, if you need the

information without formatting.

The schema_table_lock_waits view works in a similar way but uses the metadata_

locks table to return lock waits related to schema objects. The information is also

available unformatted in the x$schema_table_lock_waits view.

Chapter 22 includes examples of using both views to investigate lock issues.

Object Type Description

SCHEMA For schemas/databases. these are similar to the metadata locks for

tables except they are for a schema.

SRID For the spatial reference systems (Srids).

TABLE For tables and views. this includes the metadata locks discussed in this

chapter.

TABLESPACE For tablespaces.

TRIGGER For triggers (on tables).

USER_LEVEL_LOCK For user-level locks.

Table 18-3. (continued)

Chapter 18 LOCking theOry and MOnitOring

531

 Status Counters and InnoDB Metrics
There are several status counters and InnoDB metrics that provide information about

locking. These are mostly used at the global (instance) level and can be useful to detect

an overall increase in lock issues. A great way to monitor all of these metrics together is

to use the sys.metrics view. Listing 18-15 shows an example of retrieving the metrics.

Listing 18-15. Lock metrics

mysql> SELECT Variable_name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Variable_name LIKE 'innodb_row_lock%'

 OR Variable_name LIKE 'Table_locks%'

 OR Type = 'InnoDB Metrics - lock';

+-------------------------------+--------+---------+

| Variable_name | Value | Enabled |

+-------------------------------+--------+---------+

| innodb_row_lock_current_waits | 0 | YES |

| innodb_row_lock_time | 595876 | YES |

| innodb_row_lock_time_avg | 1683 | YES |

| innodb_row_lock_time_max | 51531 | YES |

| innodb_row_lock_waits | 354 | YES |

| table_locks_immediate | 4194 | YES |

| table_locks_waited | 0 | YES |

| lock_deadlocks | 1 | YES |

| lock_rec_lock_created | 0 | NO |

| lock_rec_lock_removed | 0 | NO |

| lock_rec_lock_requests | 0 | NO |

| lock_rec_lock_waits | 0 | NO |

| lock_rec_locks | 0 | NO |

| lock_row_lock_current_waits | 0 | YES |

| lock_table_lock_created | 0 | NO |

| lock_table_lock_removed | 0 | NO |

Chapter 18 LOCking theOry and MOnitOring

532

| lock_table_lock_waits | 0 | NO |

| lock_table_locks | 0 | NO |

| lock_timeouts | 1 | YES |

+-------------------------------+--------+---------+

19 rows in set (0.0076 sec)

As you can see, not all of the metrics are enabled by default. Those that are not

enabled can be enabled using the innodb_monitor_enable option as discussed in

Chapter 7. The innodb_row_lock_%, lock_deadlocks, and lock_timeouts metrics are

the most interesting. The row lock metrics show how many locks are currently waiting

and statistics for the amount of time in milliseconds spent on waiting to acquire InnoDB

record locks. The lock_deadlocks and lock_timeouts metrics show the number of

deadlocks and lock wait timeouts that have been encountered, respectively.

 InnoDB Lock Monitor and Deadlock Logging
InnoDB has for a long time had its own lock monitor with the lock information returned

in the InnoDB monitor output. By default, the InnoDB monitor includes information

about the latest deadlock as well as locks involved in lock waits. By enabling the innodb_

status_output_locks option (disabled by default), all locks will be listed; this is similar

to what you have in the Performance Schema data_locks table.

To demonstrate the deadlock and transaction information, you can create the

deadlock from Listing 18-12 and create a new ongoing transaction that has updated a

single row by primary key in the world.city table:

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

mysql> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Chapter 18 LOCking theOry and MOnitOring

533

You generate the InnoDB lock monitor output using the SHOW ENGINE INNODB

STATUS statement. Listing 18-16 shows an example of enabling all lock information and

generating the monitor output. The complete InnoDB monitor output is also available

from this book’s GitHub repository in the file listing_18_16.txt.

Listing 18-16. The InnoDB monitor output

mysql> SET GLOBAL innodb_status_output_locks = ON;

Query OK, 0 rows affected (0.0022 sec)

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************
 Type: InnoDB

 Name:

Status:

=====================================

2019-11-04 17:04:48 0x6e88 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 51 seconds

BACKGROUND THREAD

srv_master_thread loops: 170 srv_active, 0 srv_shutdown, 62448 srv_idle

srv_master_thread log flush and writes: 0

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 138

OS WAIT ARRAY INFO: signal count 133

RW-shared spins 1, rounds 1, OS waits 0

RW-excl spins 109, rounds 1182, OS waits 34

RW-sx spins 24, rounds 591, OS waits 18

Spin rounds per wait: 1.00 RW-shared, 10.84 RW-excl, 24.63 RW-sx

Chapter 18 LOCking theOry and MOnitOring

534

LATEST DETECTED DEADLOCK

2019-11-03 19:41:43 0x4b78

*** (1) TRANSACTION:

TRANSACTION 5585, ACTIVE 10 sec starting index read

mysql tables in use 1, locked 1

LOCK WAIT 3 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1

MySQL thread id 37, OS thread handle 28296, query id 21071 localhost ::1

root updating

UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130

*** (1) HOLDS THE LOCK(S):

RECORD LOCKS space id 159 page no 28 n bits 248 index PRIMARY of table

`world`.`city` trx id 5585 lock_mode X locks rec but not gap

Record lock, heap no 26 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000edd; asc ;;

 1: len 6; hex 0000000015d1; asc ;;

 2: len 7; hex 01000000f51aa6; asc ;;

 3: len 30; hex 53616e204672616e636973636f2020202020202020202020

202020202020; asc San Francisco ;

(total 35 bytes);

 4: len 3; hex 555341; asc USA;;

 5: len 20; hex 43616c69666f726e696120202020202020202020; asc

California ;;

 6: len 4; hex 800bda1e; asc ;;

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:

...

TRANSACTIONS

Trx id counter 5662

Purge done for trx's n:o < 5661 undo n:o < 0 state: running but idle

Chapter 18 LOCking theOry and MOnitOring

535

History list length 11

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 284075292758256, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 284075292756560, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 284075292755712, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 5661, ACTIVE 60 sec

2 lock struct(s), heap size 1136, 1 row lock(s), undo log entries 1

MySQL thread id 40, OS thread handle 2044, query id 26453 localhost ::1

root

TABLE LOCK table `world`.`city` trx id 5661 lock mode IX

RECORD LOCKS space id 160 page no 7 n bits 248 index PRIMARY of table

`world`.`city` trx id 5661 lock_mode X locks rec but not gap

Record lock, heap no 41 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000082; asc ;;

 1: len 6; hex 00000000161d; asc ;;

 2: len 7; hex 01000001790a72; asc y r;;

 3: len 30; hex 5379646e6579202

0; asc Sydney ; (total 35 bytes);

 4: len 3; hex 415553; asc AUS;;

 5: len 20; hex 4e657720536f7574682057616c65732020202020; asc New South

Wales ;;

 6: len 4; hex 8031fdb0; asc 1 ;;

...

Near the top is the section LATEST DETECTED DEADLOCK which includes details of the

transactions and locks involved in the latest deadlock and when it occurred. If no deadlocks

have occurred since the last restart of MySQL, this section is omitted. Chapter 22 will include

an example of investigating a deadlock.

Chapter 18 LOCking theOry and MOnitOring

536

Note the deadlock section in the innodB monitor output only includes
information for deadlocks involving innodB record locks. For deadlocks involving
user-level locks, there is no equivalent information.

A little further down the output, there is the section TRANSACTIONS which lists the

InnoDB transactions. Do note that transactions that are not holding any locks (e.g., pure

SELECT queries) are not included. In the example, there is an intention exclusive lock

held on the world.city table and an exclusive lock on the row with the primary key

equal to 130 (the 80000082 in the record lock information for the first field means the row

with the value 0x82, which is the same as 130 in decimal notation).

Tip nowadays the lock information in the innodB monitor output is better
obtained from the performance_schema.data_locks and performance_
schema.data_lock_waits tables. the deadlock information is however still
very useful.

You can request the monitor output to be dumped every 15 seconds to stderr. You

enable the dumps by enabling the innodb_status_output option. Do note that the

output is quite large, so be prepared for your error log to grow quickly if you enable it.

The InnoDB monitor output can also easily end up hiding messages about more serious

issues.

If you want to ensure you record all deadlocks, you can enable the innodb_print_

all_deadlocks option. This causes deadlock information like that in the InnoDB

monitor output to be printed to the error log every time a deadlock occurs. This can be

useful, if you need to investigate deadlocks, but it is recommended only to enable it on

demand to avoid the error log to become very large and potentially hide other problems.

Caution Be careful if you enable regular outputs of the innodB monitor or
information about all deadlocks. the information may easily hide important
messages logged to the error log.

Chapter 18 LOCking theOry and MOnitOring

537

 Summary
The topic of locks is large and complex. Hopefully this chapter has helped you get an

overview of why locks are needed and the various kinds of locks.

The chapter started out asking why locks are needed. Without locks, it is not safe to

have concurrent access to the schema and data. Metaphorically speaking, database locks

work in the same way as traffic lights and stop signs work in the traffic. It regulates the

access to the data, so transactions can be sure there will not be a collision with another

transaction causing inconsistent results.

There are two access levels to the data: shared access also known a read access

and exclusive access also known as write access. These access levels exist for various

lock granularities ranging from a global read lock to record and gap locks. Additionally,

InnoDB uses intention shared and intention exclusive locks at the table level.

It is important to work at reducing the number of locks the application needs and to

reduce the impact of the locks required. The strategies to reduce lock issues essentially

boil down to doing as little work as possible in a transaction by using indexes and

splitting large transactions into smaller ones, and holding the locks for as short time as

possible. It is also important to attempt to access the data in the same order for different

tasks in the application; otherwise, unnecessary deadlocks may occur.

The final part of the chapter went through the lock monitoring options in the

Performance Schema, the sys schema, status metrics, and the InnoDB monitor. Most of

the monitoring is best done using the Performance Schema tables and the sys schema

views. The exception is for deadlocks where the InnoDB monitor is still the best option.

This is the conclusion of Part IV. It is time to become more practical with query

analysis starting with finding the queries that are candidate for optimization.

Chapter 18 LOCking theOry and MOnitOring

PART V

Query Analysis

541
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_19

CHAPTER 19

Finding Candidate
Queries for Optimization
When you encounter a performance problem, the first step is to determine what is

causing it. There may be several causes for poor performance, so you should keep an

open mind when looking for causes. The focus of this chapter is to find queries that

may contribute to the poor performance or that may become a problem in the future

when the load and amount of data increase. Still, as discussed in Chapter 1, you need

to consider all aspects of your system, and often it may turn out to be a combination of

factors that causes the problem.

This chapter goes through the various sources of query performance–related

information. First, the Performance Schema will be discussed. The Performance Schema

is the basis for many of the other features discussed in this chapter. Second, the views

of the sys schema are covered as well as the statement performance analyzer feature.

Third, it is shown how you can use MySQL Workbench as a way to get a graphical

user interface for several of the reports discussed in the first two sections. Fourth, it is

discussed how monitoring is important to find candidates for optimization. While the

section uses MySQL Enterprise Monitor as the basis of the discussion, the principles

apply to monitoring in general, so you are encouraged to read the section even if you

use a different monitoring solution. Fifth and final is the slow query log which is the

traditional tool for finding slow queries.

Note This chapter includes several examples with outputs. In general, your
output for the same example will differ for values that include timings and other
data that is not deterministic.

542

Queries that perform poorly due to lock contention will not be covered; instead,

Chapter 22 goes into detail on how to investigate lock issues. Transactions are covered in

Chapter 21.

 The Performance Schema
The Performance Schema is a gold mine for information about the performance of your

queries. This makes it the obvious place to start when discussing how to find queries

that are candidates for optimization. You may likely end up using some of the methods

that build on top of the Performance Schema, but you are still encouraged to get a good

understanding of the underlying tables, so you know how to access the raw data and

make your own custom reports.

This section will start out discussing how to get information about the statements

and prepared statement, then table and file I/O are covered, and finally it is shown how

to find out what are causing errors and which errors.

 The Statement Event Tables
Using the Performance Schema tables based on statement events is the most

straightforward way to look for queries that are candidates for optimization. These tables

will allow you to get very detailed information about the queries that are executing

on the instance. One important thing to note is that queries executed as prepared

statements are not included in the statement tables.

There are several tables that include statement information. These are

• events_statements_current: The statements currently executing

or for idle connections the latest executed query. When executing

stored programs, there may be more than one row per connection.

• events_statements_history: The last statements for each

connection. The number of statements per connection is capped at

performance_schema_events_statements_history_size (defaults

to 10). The statements for a connection are removed when the

connection is closed.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

543

• events_statements_history_long: The latest queries for the

instance irrespective of which connection executed it. This table also

includes statements from connections that have been closed. The

consumer for this table is disabled by default. The number of rows is

capped at performance_schema_events_statements_history_long_

size (defaults to 10000).

• events_statements_summary_by_digest: The statement statistics

grouped by the default schema and digest. This table is discussed in

detail later.

• events_statements_summary_by_account_by_event_name:
The statement statistics grouped by the account and event name.

The event name shows what kind of statement is executed, for

example, statement/sql/select for a SELECT statement executed

directly (not executed through a stored program).

• events_statements_summary_by_host_by_event_name: The

statement statistics grouped by the hostname of the account and the

event name.

• events_statements_summary_by_program: The statement statistics

grouped by the stored program (event, function, procedure, table, or

trigger) that executed the statement. This is useful to find the stored

programs that perform the most work.

• events_statements_summary_by_thread_by_event_name: The

statement statistics grouped by thread and event name. Only threads

currently connected are included.

• events_statements_summary_by_user_by_event_name: The

statement statistics grouped by the username of the account and the

event name.

• events_statements_summary_global_by_event_name: The

statement statistics grouped by the event name.

• events_statements_histogram_by_digest: Histogram statistics

grouped by the default schema and digest.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

544

• events_statements_histogram_global: Histogram statistics where

all queries are aggregated in one histogram.

• threads: Information about all threads in the instance, both

background and foreground threads. You can use this table instead

of the SHOW PROCESSLIST command. In addition to the process

list information, there are columns showing whether the thread is

instrumented, the operating system thread id, and more.

Other than the two histogram tables and the threads table, all of the listed tables

have similar columns. The table most often used is events_statements_summary_

by_digest, so it will be used as the base of the discussion. The events_statements_

summary_by_digest table is essentially a report of all the queries that have been executed

on the instance since the table was last reset (typically when restarting MySQL). The

queries are grouped by their digest and the default schema used when executing them.

The columns in the table are summarized in Table 19-1.

Table 19-1. The columns in the events_statements_summary_by_digest table

Column Name Description

SCHEMA_NAME The schema that was the default schema when executing the query. If

no schema was the default, the value is NULL.

DIGEST The digest of the normalized query. In mysQL 8, that is a sha256 hash.

DIGEST_TEXT The normalized query.

COUNT_STAR The number of times the query has been executed.

SUM_TIMER_WAIT The total amount of time that has been spent executing the query. note

that the value flows over after a little more than 30 weeks of execution

time.

MIN_TIMER_WAIT The fastest the query has been executed.

AVG_TIMER_WAIT The average execution time. This is the same as SUM_TIMER_WAIT/

COUNT_STAR unless SUM_TIMER_WAIT has overflown.

MAX_TIMER_WAIT The slowest the query has been executed.

SUM_LOCK_TIME The total amount of time that has been spent waiting for table locks.

(continued)

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

545

Table 19-1. (continued)

Column Name Description

SUM_ERRORS The total number of errors that have been encountered executing the

query.

SUM_WARNINGS The total number of warnings that have been encountered executing the

query.

SUM_ROWS_AFFECTED The total number of rows that have been modified by the query.

SUM_ROWS_SENT The total number of rows that have been returned (sent) to the client.

SUM_ROWS_EXAMINED The total number of rows that have been examined by the query.

SUM_CREATED_TMP_

DISK_TABLES

The total number of on-disk internal temporary tables that have been

created by the query.

SUM_CREATED_TMP_

TABLES

The total number of internal temporary tables – whether created in

memory or on disk – that have been created by the query.

SUM_SELECT_FULL_

JOIN

The total number of joins that have performed full table scans as there

is no index for the join condition or there is no join condition. This is the

same that increments the Select_full_join status variable.

SUM_SELECT_FULL_

RANGE_JOIN

The total number of joins that use a full range search. This is the same

that increments the Select_full_range_join status variable.

SUM_SELECT_RANGE The total number of times the query has used a range search. This is

the same that increments the Select_range status variable.

SUM_SELECT_RANGE_

CHECK

The total number of joins by the query where the join does not have an

index that checks for the index usage after each row. This is the same

that increments the Select_range_check status variable.

SUM_SELECT_SCAN The total number of times the query has performed a full table scan on

the first table in the join. This is the same that increments the Select_

scan status variable.

SUM_SORT_MERGE_

PASSES

The total number of sort merge passes that have been done to sort the

result of the query. This is the same that increments the Sort_merge_

passes status variable.

(continued)

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

546

Table 19-1. (continued)

Column Name Description

SUM_SORT_RANGE The total number of times a sort was done using ranges. This is the

same that increments the Sort_range status variable.

SUM_SORT_ROWS The total number of rows sorted. This is the same that increments the

Sort_rows status variable.

SUM_SORT_SCAN The total number of times a sort was done by scanning the table. This is

the same that increments the Sort_scan status variable.

SUM_NO_INDEX_USED The total number of times no index was used to execute the query.

SUM_NO_GOOD_INDEX_

USED

The total number of times no good index was used. This means that

the Extra column in the EXPLAIN output includes “range checked for

each record.”

FIRST_SEEN When the query was first seen. When the table is truncated, the first

seen value is also reset.

LAST_SEEN When the query was seen the last time.

QUANTILE_95 The 95th percentile of the query latency. That is, 95% of the queries

complete in the time given or in less time.

QUANTILE_99 The 99th percentile of the query latency.

QUANTILE_999 The 99.9th percentile of the query latency.

QUERY_SAMPLE_TEXT an example of a query before it is normalized. You can use this to get

the query execution plan for the query.

QUERY_SAMPLE_SEEN When the example query was seen.

QUERY_SAMPLE_

TIMER_WAIT

how long the example query took to execute.

There is a unique index on (SCHEMA_NAME, DIGEST) which is used to group the data.

There can be up to performance_schema_digests_size (dynamically sized, but usually

defaults to 10000) rows in the table. When the last row is inserted, the schema and

digest are both set to NULL, and that row is used as a catch-all row. Each time the catch-

all row is used, the Performance_schema_digest_lost status variable is incremented.

The information that is aggregated in this table is also available for individual queries

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

547

using the events_statements_current, events_statements_history, and events_

statements_history_long tables.

Tip since the data is grouped by SCHEMA_NAME, DIGEST, you get most out of
the events_statements_summary_by_digest table, when the application is
consistent about setting the default schema (e.g., \use world or the --schema
command-line option in mysQL shell or equivalent in the client/connector you
use). either always set it or never set it. In the same way, if you sometimes include
the schema name when referencing tables and sometimes do not, then otherwise
identical queries will be counted as two different digests.

Two groups of columns need a little more explanation, the quantile columns and

the query sample columns. The values of the quantile columns are determined based

on histogram statistics for the digests. Basically, if you take the events_statements_

histogram_by_digest table for a given digest and default schema and go to the bucket

with 95% of the query executions, then that bucket is used to determine the 95th

percentile. The histogram tables will be discussed shortly.

For the sample query information, the sample query is replaced if at least one of

three conditions is fulfilled:

• It is the first time the digest is encountered for the given default

schema.

• A new occurrence of the digest and schema has a higher value for

TIMER_WAIT than the query currently used as the sample query (i.e., it

was slower).

• If the value of the performance_schema_max_digest_sample_age

option is greater than 0 and the current sample query is older than

performance_schema_max_digest_sample_age seconds.

The value of performance_schema_max_digest_sample_age defaults to 60 seconds,

which works well if you monitor the events_statements_summary_by_digest table

every minute. That way, the monitoring Agent will be able to pick up the slowest query

in each one-minute interval and get a complete history of the slowest queries. If your

monitoring interval is greater, consider increasing the value of performance_schema_

max_digest_sample_age.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

548

As you can see from the list of columns, there are ample opportunities to query for

statements meeting some requirements. The trick is to query for the things that are

important. What qualifies as important depends on the situation, so it is not possible to

give specific queries that will apply to all situations. For example, if you know from your

monitoring that there are problems with a large number of internal temporary tables

using memory or disk, then the SUM_CREATED_TMP_DISK_TABLES and SUM_CREATED_TMP_

TABLES columns are good candidates for filtering.

Some conditions are of general interest. Examples of some conditions that may

warrant further investigation include

• A large amount of examined rows compared to the number of rows

sent back to the client or that are modified. This may suggest poor

index usage.

• The sum of no index used or no good index used is high. This may

suggest that the query can benefit from new indexes or rewriting the

query.

• The number of full joins is high. This suggests that either an index is

needed or there is a join condition missing.

• The number of range checks is high. This may suggest that you need

to change the indexes on the tables in the query.

• If the quantile latencies are showing a severe degradation when going

toward higher quantiles, it may suggest you at times have problems

resolving the queries in a timely fashion. This may be due to the

instance in general being overloaded, lock issues, some conditions

triggering poor query plans, or other reasons.

• The number of internal temporary tables created in disk is high. This

may suggest that you need to consider which indexes are used for

sorting and grouping, the amount of memory allowed to internal

temporary tables, or other changes that can prevent writing the

internal temporary table to disk or create internal temporary tables in

the first place.

• The number of sort merges is high. This may suggest this query can

benefit from a larger sort buffer.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

549

• The number of executions is large. This does not suggest any

problems with the query, but the more often a query is executed, the

more impact improvements of the query have. In some cases, a high

execute count may also be caused by unnecessary executions of the

query.

• The number of errors or warnings is high. While this may not impact

the performance, it suggests something is wrong. Do note that some

queries always generate a warning, for example, EXPLAIN as it uses

warnings to return additional information.

Caution Be careful increasing the value of sort_buffer_size if you are still
using mysQL 5.7 as it can decrease performance even if it reduces the number of
sort merges. In mysQL 8, the sort buffer has been improved, and the performance
degradation of a larger buffer is much less. still, do not increase the size more than
you need.

You should be aware that just because a query meets one of these conditions does

not mean there is anything to change. As an example, consider a query that aggregates

data from a table. That query may examine large parts of the table but only returns a

few rows. It may even require a full table scan where there is no meaningful index that

can help. The query will perform badly from the point of view of the ratio between the

number of examined rows and the number of sent rows, and maybe the no index counter

is incrementing. Yet, the query may very well do the minimum amount of work required

to return the required result. If you determine the query is a performance problem, you

will need to find a different solution than adding indexes; for example, you may be able

to execute the query during non-peak periods and cache the result, or you may have a

separate instance where queries like this are executed.

Listing 19-1 shows an example of finding the combination of default schema and

statement digest that have been executed the most times since the events_statements_

summary_by_digest table was last reset.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

550

Listing 19-1. Using the events_statements_summary_by_digest table

mysql> SELECT ∗
 FROM performance_schema.events_statements_summary_by_digest

 ORDER BY COUNT_STAR DESC

 LIMIT 1\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 SCHEMA_NAME: world

 DIGEST: b49cb8f3db720a96fb29da86437bd7809ef304

63fac88e85ed4f851f96dcaa30

 DIGEST_TEXT: SELECT ∗ FROM `city` WHERE NAME = ?
 COUNT_STAR: 102349

 SUM_TIMER_WAIT: 138758688272512

 MIN_TIMER_WAIT: 1098756736

 AVG_TIMER_WAIT: 1355485824

 MAX_TIMER_WAIT: 19321416576

 SUM_LOCK_TIME: 5125624000000

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 132349

 SUM_ROWS_EXAMINED: 417481571

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 102349

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 102349

 SUM_NO_GOOD_INDEX_USED: 0

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

551

 FIRST_SEEN: 2019-06-22 10:25:18.260657

 LAST_SEEN: 2019-06-22 10:30:12.225425

 QUANTILE_95: 2089296130

 QUANTILE_99: 2884031503

 QUANTILE_999: 3630780547

 QUERY_SAMPLE_TEXT: SELECT ∗ FROM city WHERE Name = 'San José'
 QUERY_SAMPLE_SEEN: 2019-06-22 10:29:56.81501

 QUERY_SAMPLE_TIMER_WAIT: 19321416576

1 row in set (0.0019 sec)

The output shows that querying the city table in the world schema by name is the

most executed query. You should compare the value COUNT_STAR to other queries to

understand how often this query is executed compared to other queries. In this example,

you can see that the query on average returns 1.3 rows per execution but examines

4079 rows. That means the query examines more than 3000 rows for each row returned.

Since this is an often-executed query, that suggests that an index is needed on the Name

column that is used for filtering. The bottom of the output shows an actual example of

the query that you can use with EXPLAIN as described in the next chapter to analyze the

query execution plan.

As mentioned, MySQL also maintains histogram statistics for the statements.

There are two histogram tables available: events_statements_histogram_by_digest

and events_statements_histogram_global. The difference between the two is that

the former has the histogram information grouped by default schema and digest,

whereas the latter contains information for all queries grouped together. The histogram

information can be useful to determine the distribution of query latencies, similar to

what has been discussed for the quantile columns in the events_statements_summary_

by_digest table but more fine-grained. The tables are managed automatically.

As mentioned, prepared statements are not included in the statement event tables.

Instead, you need to use the prepared_statements_instances table.

 Prepared Statements Summary
Prepared statements can be useful to speed up execution of queries that are reused

within a connection. For example, if you have an application that keeps using the same

connection(s), then you can prepare the statements the application uses and then

execute the prepared statement when it is needed.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

552

Prepared statements use placeholders, so you only need to submit the template

of the query when you prepare it. That way you can submit different parameters for

each execution. When used in that way, prepared statements serve as a catalogue

of statements that the application can use with the parameters needed for a given

execution.

Listing 19-2 shows a simple example of using prepared statements through the SQL

interface. In applications, you will typically be using a connector that handles prepared

statements in a more transparent manner. For example, for MySQL Connector/Python,

you tell that you want to use prepared statements, and the connector will automatically

prepare the statement for you the first time you execute it. The underlying principle is

the same though.

Listing 19-2. Example of using prepared statements

mysql> SET @sql = 'SELECT ∗ FROM world.city WHERE ID = ?';
Query OK, 0 rows affected (0.0002 sec)

mysql> PREPARE stmt FROM @sql;

Query OK, 0 rows affected (0.0080 sec)

Statement prepared

mysql> SET @val = 130;

Query OK, 0 rows affected (0.0003 sec)

mysql> EXECUTE stmt USING @val\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 ID: 130

 Name: Sydney

CountryCode: AUS

 District: New South Wales

 Population: 3276207

1 row in set (0.0023 sec)

mysql> SET @val = 3805;

Query OK, 0 rows affected (0.0003 sec)

mysql> EXECUTE stmt USING @val\G

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

553

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 ID: 3805

 Name: San Francisco

CountryCode: USA

 District: California

 Population: 776733

1 row in set (0.0004 sec)

mysql> DEALLOCATE PREPARE stmt;

Query OK, 0 rows affected (0.0003 sec)

The SQL interface uses user variables to pass the statement and values to

MySQL. The first step is to prepare the statement; then it can be used as many times as

needed passing the parameters required for the query. Finally, the prepared statement is

deallocated.

When you want to investigate the performance of prepared statements, you can use

the prepared_statements_instances table. The information is similar to what is in the

events_statements_summary_by_digest table. Listing 19-3 shows an example output

for the prepared statement that was used in Listing 19-2.

Listing 19-3. Using the prepared_statements_instances table

mysql> SELECT ∗
 FROM performance_schema.prepared_statements_instances\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 OBJECT_INSTANCE_BEGIN: 1999818114352

 STATEMENT_ID: 1

 STATEMENT_NAME: stmt

 SQL_TEXT: SELECT ∗ FROM world.city WHERE ID = ?
 OWNER_THREAD_ID: 87543

 OWNER_EVENT_ID: 20012

 OWNER_OBJECT_TYPE: NULL

 OWNER_OBJECT_SCHEMA: NULL

 OWNER_OBJECT_NAME: NULL

 TIMER_PREPARE: 369412736

 COUNT_REPREPARE: 0

 COUNT_EXECUTE: 2

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

554

 SUM_TIMER_EXECUTE: 521116288

 MIN_TIMER_EXECUTE: 247612288

 AVG_TIMER_EXECUTE: 260375808

 MAX_TIMER_EXECUTE: 273504000

 SUM_LOCK_TIME: 163000000

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 2

 SUM_ROWS_EXAMINED: 2

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1 row in set (0.0008 sec)

The main differences from the events statements tables are that there are no quantile

statistics and query example and the primary key is the OBJECT_INSTANCE_BEGIN – that

is, the memory address of the prepared statement instead of a unique key on the default

schema and digest. In fact, the default schema and digest are not even mentioned in the

prepared_statements_instances table.

As it is hinted by the primary key being the memory address of the prepared

statement, the prepared statement statistics are only maintained while the prepared

statement exists. So, when the statement is deallocated either explicitly or implicitly

because the connection is closed, the statistics are cleared.

That ends the discussion of statement statistics. There are also higher-level statistics

such as the table I/O summaries.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

555

 Table I/O Summaries
The table I/O information in the Performance Schema is often misunderstood. The

I/O that is referred to for the table I/O summaries is a general concept of input-output

related to the table. Thus, it does not refer to disk I/O. Rather, it is a general measure of

how busy the table is. That said, the more disk I/O there is for a table, the more time will

also be spent on table I/O.

There are two Performance Schema tables that include latency statistics for the table

I/O:

• table_io_waits_summary_by_table: The aggregate information for

the table with details of read, write, fetch, insert, and update I/O.

• table_io_waits_summary_by_index_usage: The same information

as for the table_io_waits_summary_by_table table except the

statistics are per index or lack thereof.

These tables allow you to get a detailed view of how the tables are used and how

much time is used on various operations. There are seven groups of activities for which

there are both the sum, minimum, average, and maximum latencies and the number of

operations. Table 19-2 shows the groups based on their column names.

Table 19-2. The groups of latencies for table and index I/O statistics

Group Columns Descriptions

overall COUNT_STAR

SUM_TIMER_WAIT

MIN_TIMER_WAIT

AVG_TIMER_WAIT

MAX_TIMER_WAIT

The statistics for the whole table or index.

reads COUNT_READ

SUM_TIMER_READ

MIN_TIMER_READ

AVG_TIMER_READ

MAX_TIMER_READ

The aggregate statistics for all read operations. Currently

there is only one read operation, fetch, so the read

statistics will be the same as the fetch statistics.

(continued)

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

556

Table 19-2. (continued)

Group Columns Descriptions

Writes COUNT_WRITE

SUM_TIMER_WRITE

MIN_TIMER_WRITE

AVG_TIMER_WRITE

MAX_TIMER_WRITE

The aggregate statistics for all write operations. The write

operations are inserts, updates, and deletes.

Fetches COUNT_FETCH

SUM_TIMER_FETCH

MIN_TIMER_FETCH

AVG_TIMER_FETCH

MAX_TIMER_FETCH

The statistics for fetching records. The reason this is not

called “select” is that records may be fetched for other

purposes than for SELECT statements.

Inserts COUNT_INSERT

SUM_TIMER_INSERT

MIN_TIMER_INSERT

AVG_TIMER_INSERT

MAX_TIMER_INSERT

The statistics for inserting records.

updates COUNT_UPDATE

SUM_TIMER_UPDATE

MIN_TIMER_UPDATE

AVG_TIMER_UPDATE

MAX_TIMER_UPDATE

The statistics for updating records.

deletes COUNT_DELETE

SUM_TIMER_DELETE

MIN_TIMER_DELETE

AVG_TIMER_DELETE

MAX_TIMER_DELETE

The statistics for deleting records.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

557

An example of the information for these columns in the table_io_waits_summary_

by_table table can be seen in Listing 19-4 for the world.city table.

Listing 19-4. Example of using the table_io_waits_summary_by_table table

mysql> SELECT ∗
 FROM performance_schema.table_io_waits_summary_by_table

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 COUNT_STAR: 418058733

 SUM_TIMER_WAIT: 125987200409940

 MIN_TIMER_WAIT: 1082952

 AVG_TIMER_WAIT: 301176

 MAX_TIMER_WAIT: 43045491156

 COUNT_READ: 417770654

 SUM_TIMER_READ: 122703207563448

 MIN_TIMER_READ: 1082952

 AVG_TIMER_READ: 293700

 MAX_TIMER_READ: 19644079288

 COUNT_WRITE: 288079

 SUM_TIMER_WRITE: 3283992846492

 MIN_TIMER_WRITE: 1937352

 AVG_TIMER_WRITE: 11399476

 MAX_TIMER_WRITE: 43045491156

 COUNT_FETCH: 417770654

 SUM_TIMER_FETCH: 122703207563448

 MIN_TIMER_FETCH: 1082952

 AVG_TIMER_FETCH: 293700

 MAX_TIMER_FETCH: 19644079288

 COUNT_INSERT: 4079

SUM_TIMER_INSERT: 209027413892

MIN_TIMER_INSERT: 10467468

AVG_TIMER_INSERT: 51244420

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

558

MAX_TIMER_INSERT: 31759300408

 COUNT_UPDATE: 284000

SUM_TIMER_UPDATE: 3074965432600

MIN_TIMER_UPDATE: 1937352

AVG_TIMER_UPDATE: 10827028

MAX_TIMER_UPDATE: 43045491156

 COUNT_DELETE: 0

SUM_TIMER_DELETE: 0

MIN_TIMER_DELETE: 0

AVG_TIMER_DELETE: 0

MAX_TIMER_DELETE: 0

1 row in set (0.0015 sec)

In this output, there is a broad usage of the table except rows have not been deleted.

It can also be seen that most of the time is spent on reading data (122703207563448

picoseconds out of a total of 125987200409940 picoseconds – or 97%).

Listing 19-5 shows the output for the same table but using the table_io_waits_

summary_by_index_usage table. The usage columns are the same as for the table_io_

waits_summary_by_table table and have mostly been omitted in the example to focus

on the differences between the two tables. If you have any extra indexes from previous

examples, you will have more rows returned.

Listing 19-5. Example of using the table_io_waits_summary_by_index_usage

table

mysql> SELECT OBJECT_TYPE, OBJECT_SCHEMA,

 OBJECT_NAME, INDEX_NAME,

 COUNT_STAR

 FROM performance_schema.table_io_waits_summary_by_index_usage

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 OBJECT_TYPE: TABLE

OBJECT_SCHEMA: world

 OBJECT_NAME: city

 INDEX_NAME: PRIMARY

 COUNT_STAR: 20004

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

559

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 OBJECT_TYPE: TABLE

OBJECT_SCHEMA: world

 OBJECT_NAME: city

 INDEX_NAME: CountryCode

 COUNT_STAR: 549000

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 OBJECT_TYPE: TABLE

OBJECT_SCHEMA: world

 OBJECT_NAME: city

 INDEX_NAME: NULL

 COUNT_STAR: 417489729

3 rows in set (0.0017 sec)

Consider the three values of COUNT_STAR. If you sum those, 20004 + 549000 +

417489729 = 418058733, you get the same value as COUNT_STAR in the table_io_waits_

summary_by_table table. This example shows the same data but split out across the two

indexes on the city table as well as the NULL index, which means that no index was used.

This makes the table_io_waits_summary_by_index_usage table very useful to estimate

the usefulness of the indexes and whether table scans are executed for the table.

It is useful to take a minute to consider when the fetch, insert, update, and delete

counters increase and for which indexes. Consider the world.city table which has a primary

key in the ID column and a secondary index on the CountryCode column. This means you

can set up three types of filters depending on the index that is used or lack thereof:

• By Primary Key: Using the primary key to locate the rows, for

example, WHERE ID = 130

• By Secondary Index: Using the CountryCode index to locate the

rows, for example, WHERE CountryCode = 'AUS'

• By No Index: Using a full table scan to locate the rows, for example,

WHERE Name = 'Sydney'

Table 19-3 shows the matrix of using each of the three example WHERE clauses with

a SELECT, UPDATE, or DELETE statement as well as executing an INSERT statement. The

INSERT statement does not have a WHERE clause, so it is a little different. For each affected

index, the number of reads and writes is listed. The Rows column shows the number of

rows returned or affected for each statement.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

560

A key takeaway from the table is that for UPDATE and DELETE statements, there are

still reads even though they are write statements. The reason is that the rows still must

be located before they can be changed. Another observation is that when using the

secondary index or no index for updating or deleting rows, then one more record is read

than matches the condition. Finally, inserting a row counts as a non-index operation.

Table 19-3. The effect of various queries on the table I/O counters

Query/Index Rows Reads Writes

SELECT by primary key

PRIMARY

1

FETCH: 1

SELECT by secondary index

CountryCode

14

FETCH: 14

SELECT by no index

NULL

1

FETCH: 4079

UPDATE by primary key

PRIMARY

1

FETCH: 1 UPDATE: 1

UPDATE by secondary index

CountryCode

14

FETCH: 15 UPDATE: 14

UPDATE by no index

PRIMARY

NULL

1

FETCH: 4080

UPDATE: 1

DELETE by primary key

PRIMARY

1

FETCH: 1 DELETE: 1

DELETE by secondary index

CountryCode

14

FETCH: 15 DELETE: 14

DELETE by no index

PRIMARY

NULL

1

FETCH: 4080

DELETE: 1

INSERT

NULL

1

INSERT: 1

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

561

WHAT TO MAKE OF THE I/O LATENCIES?

When you see a monitoring graph showing a spike in I/o latencies – whether it is table or file

I/o – it can be tempting to make the conclusion that there is a problem. Before you do that,

take a step back and consider what the data means.

an increase in I/o latencies measured from the performance schema is neither a good nor a

bad thing. It is a fact. It means that something was doing I/o, and if there is a spike it means

there was more I/o during that period than usual, but otherwise you cannot make conclusions

from the event on its own.

a more useful way to use this data is in case a problem is reported. This can be that the

system administrator reports the disks are 100% utilized or that end users report the system

is slow. Then, you can go and look at what happened. If the disk I/o was unusually high at that

point in time, then that is likely related, and you can continue your investigation from there.

If the I/o is on the other hand normal, then the high utilization is likely caused by another

process than mysQL, or a disk in the disk array is being rebuilt, or similar.

Using the information in the table_io_waits_summary_by_table and table_io_

waits_summary_by_index_usage tables, you can determine which tables are the most

used for the various workloads. For example, if you have one table that is particularly

busy with writes, you may want to consider moving its tablespace to a faster disk. Before

taking such as a decision, you should also consider the actual file I/O.

 File I/O
Unlike the table I/O that has just been discussed, the file I/O statistics are for the actual

disk I/O involved with the various files that MySQL uses. This is a good supplement to

the table I/O information.

There are three Performance Schema tables you can use to get information about the

file I/O for the MySQL instance:

• events_waits_summary_global_by_event_name: This is a summary

table grouped by the event names. By querying event names starting

with wait/io/file/, you can get I/O statistics grouped by the type of

I/O. For example, I/O caused by reading and writing the binary log

files uses a single event (wait/io/file/sql/binlog). Note that events

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

562

set to wait/io/table/sql/handler correspond to the table I/O that

has just been discussed; including the table I/O allows you to easily

compare the time spent on file I/O with the time spent on table I/O.

• file_summary_by_event_name: This is similar to the events_waits_

summary_global_by_event_name table but just including file I/O and

with the events split into reads, writes, and miscellaneous.

• file_summary_by_instance: This is a summary table grouped by

the actual files and with the events divided into reads, writes, and

miscellaneous. For example, for the binary logs, there is one row per

binary log file.

All three tables are useful, and you need to choose between them depending on what

information you are looking for. For example, if you want aggregates for the types of files,

the events_waits_summary_global_by_event_name and file_summary_by_event_name

tables are the better choice, whereas investigating the I/O for individual files, the file_

summary_by_instance table is more useful.

The file_summary_by_event_name and file_summary_by_instance tables split

the events into reads, writes, and miscellaneous. Reads and writes are straightforward

to understand. The miscellaneous I/O is everything that is not reads or writes. That

includes but is not limited to creating, opening, closing, deleting, flushing, and getting

metadata for the files. None of the miscellaneous operations involves transferring data,

so there are no miscellaneous byte counters.

Listing 19-6 shows an example of the data available in the events_waits_summary_

global_by_event_name table. The query finds the event with the most overall time spent

on I/O.

Listing 19-6. The file I/O event spending the most time overall

mysql> SELECT ∗
 FROM performance_schema.events_waits_summary_global_by_event_name

 WHERE EVENT_NAME LIKE 'wait/io/file/%'

 ORDER BY SUM_TIMER_WAIT DESC

 LIMIT 1\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 EVENT_NAME: wait/io/file/innodb/innodb_log_file

 COUNT_STAR: 58175

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

563

SUM_TIMER_WAIT: 20199487047180

MIN_TIMER_WAIT: 5341780

AVG_TIMER_WAIT: 347219260

MAX_TIMER_WAIT: 18754862132

1 row in set (0.0031 sec)

This shows that for this instance, the most active event is for the InnoDB redo log

files. That is a quite typical result. Each of the events has a corresponding instrument. By

default, all of the file wait I/O events are enabled. One particularly interesting event is

wait/io/file/innodb/innodb_data_file which is for the I/O on InnoDB tablespace files.

One disadvantage of the events_waits_summary_global_by_event_name table is

all the time spent doing I/O is aggregated into a total counter instead of into reads and

writes. There are also only timings available. If you use the file_summary_by_event_

name table, you can get much more details.

Listing 19-7 shows an example of the file_summary_by_event_name table for the

InnoDB redo log I/O event that was found in the previous example.

Listing 19-7. The I/O statistics for the InnoDB redo log

mysql> SELECT ∗
 FROM performance_schema.file_summary_by_event_name

 WHERE EVENT_NAME =

 'wait/io/file/innodb/innodb_log_file'\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 EVENT_NAME: wait/io/file/innodb/innodb_log_file

 COUNT_STAR: 58175

 SUM_TIMER_WAIT: 20199487047180

 MIN_TIMER_WAIT: 5341780

 AVG_TIMER_WAIT: 347219260

 MAX_TIMER_WAIT: 18754862132

 COUNT_READ: 8

 SUM_TIMER_READ: 778174704

 MIN_TIMER_READ: 5341780

 AVG_TIMER_READ: 97271660

 MAX_TIMER_READ: 409998080

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

564

 SUM_NUMBER_OF_BYTES_READ: 70656

 COUNT_WRITE: 33672

 SUM_TIMER_WRITE: 870804229376

 MIN_TIMER_WRITE: 7867956

 AVG_TIMER_WRITE: 25861264

 MAX_TIMER_WRITE: 14021439496

SUM_NUMBER_OF_BYTES_WRITE: 61617664

 COUNT_MISC: 24495

 SUM_TIMER_MISC: 19327904643100

 MIN_TIMER_MISC: 12479224

 AVG_TIMER_MISC: 789054776

 MAX_TIMER_MISC: 18754862132

1 row in set (0.0005 sec)

Notice how the SUM_TIMER_WAIT and the other columns with the overall aggregates

have the same values as when querying the events_waits_summary_global_by_event_

name table. (Since I/O often happens in the background, this will not always be the case

even if you do not execute queries in between comparing the two tables.) With the I/O

split into reads, writes, and miscellaneous, you can get a better understanding of the I/O

workload on your instance.

If you want the statistics for an individual file, you need to use the file_summary_

by_instance table. Listing 19-8 shows an example for the tablespace file for the world.

city table on Microsoft Windows. Note that there are four backslashes to represent one

backslash in the path.

Listing 19-8. The file I/O for the world.city tablespace file

mysql> SELECT ∗
 FROM performance_schema.file_summary_by_instance

 WHERE FILE_NAME LIKE '%\\\\world\\\\city.ibd'\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 FILE_NAME: C:\ProgramData\MySQL\MySQL Server 8.0\Data\

world\city.ibd

 EVENT_NAME: wait/io/file/innodb/innodb_data_file

 OBJECT_INSTANCE_BEGIN: 1999746796608

 COUNT_STAR: 380

 SUM_TIMER_WAIT: 325377148780

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

565

 MIN_TIMER_WAIT: 12277372

 AVG_TIMER_WAIT: 856255472

 MAX_TIMER_WAIT: 10778110040

 COUNT_READ: 147

 SUM_TIMER_READ: 144057058960

 MIN_TIMER_READ: 85527220

 AVG_TIMER_READ: 979979712

 MAX_TIMER_READ: 7624205292

 SUM_NUMBER_OF_BYTES_READ: 2408448

 COUNT_WRITE: 125

 SUM_TIMER_WRITE: 21938183516

 MIN_TIMER_WRITE: 12277372

 AVG_TIMER_WRITE: 175505152

 MAX_TIMER_WRITE: 5113313440

SUM_NUMBER_OF_BYTES_WRITE: 2146304

 COUNT_MISC: 108

 SUM_TIMER_MISC: 159381906304

 MIN_TIMER_MISC: 160612960

 AVG_TIMER_MISC: 1475758128

 MAX_TIMER_MISC: 10778110040

1 row in set (0.0007 sec)

You can see that the event name is indicating it is an InnoDB tablespace file and

the I/O is split out as reads, writes, and miscellaneous. For reads and writes, the total

number of bytes is also included.

The last group of Performance Schema tables to consider are the error summary

tables.

 The Error Summary Tables
While errors are not directly related to query tuning, an error does suggest something is

going wrong. A query resulting in an error will still be using resources, but when the error

occurs, it will be all in vain. So indirectly errors affect the query performance by adding

unnecessary load to the system. There are also errors that are more directly related to the

performance such as errors caused by failure to obtain locks.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

566

There are five tables in the Performance Schema grouping the errors encountered by

different groupings. The tables are

• events_errors_summary_by_account_by_error

• events_errors_summary_by_host_by_error

• events_errors_summary_by_thread_by_error

• events_errors_summary_by_user_by_error

• events_errors_summary_global_by_error

The table names are self-explanatory. You can use the tables to determine who

are executing the queries triggering the errors and combine that with the statement

event tables, for example, events_statements_summary_by_digest, to get a picture of

both who triggers errors and which statements the errors are for. Listing 19-9 shows an

example of querying how many times a deadlock has occurred grouped by the account.

Listing 19-9. Using the events_errors_summary_by_account_by_error table

mysql> SELECT ∗
 FROM performance_schema.events_errors_summary_by_account_by_error

 WHERE ERROR_NAME = 'ER_LOCK_DEADLOCK'\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 USER: NULL

 HOST: NULL

 ERROR_NUMBER: 1213

 ERROR_NAME: ER_LOCK_DEADLOCK

 SQL_STATE: 40001

 SUM_ERROR_RAISED: 0

SUM_ERROR_HANDLED: 0

 FIRST_SEEN: NULL

 LAST_SEEN: NULL

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 USER: root

 HOST: localhost

 ERROR_NUMBER: 1213

 ERROR_NAME: ER_LOCK_DEADLOCK

 SQL_STATE: 40001

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

567

 SUM_ERROR_RAISED: 2

SUM_ERROR_HANDLED: 0

 FIRST_SEEN: 2019-06-16 10:58:05

 LAST_SEEN: 2019-06-16 11:07:29

2 rows in set (0.0105 sec)

This shows that there have been two deadlocks raised for the root@localhost

account, but neither was handled. The first row where the user and host are NULL

represents background threads.

Tip You can get the error numbers and names and sQL states from the mysQL
reference manual at https://dev.mysql.com/doc/refman/en/server-
error- reference.html.

That concludes the discussion of the Performance Schema. If you feel the

Performance Schema tables can be overwhelming, it is a good idea to try to use them

and, for example, execute some queries on an otherwise idle test system, so you know

what to expect. Another option is to use the sys schema which makes it easier to get

started with reports based on the Performance Schema.

 The sys Schema
One of the main objectives of the sys schema is to make it simpler to create reports

based on the Performance Schema. This includes reports that can be used to find

candidates for optimization. All of the reports discussed in this section can be generated

equally well querying the Performance Schema tables directly; however, the sys schema

provides reports that are ready to use optionally with formatting making it easier for

humans to read the data.

The reports discussed in this section are created as views using the Performance

Schema tables, of which most were covered earlier in this chapter. The views are

divided into categories based on whether they can be used to find statements or what

uses I/O. The final part of the section will show how you can use the statement_

performance_analyzer() procedure to find statements executed during a monitoring

window.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

https://dev.mysql.com/doc/refman/en/server-error-reference.html
https://dev.mysql.com/doc/refman/en/server-error-reference.html

568

 Statement Views
The statement views make it simple to query statements grouped by host or user and to

find statements matching some condition such as it uses a full table scan. Unless noted

otherwise, the views use the events_statements_summary_by_digest Performance

Schema table. The views available are listed in Table 19-4.

Table 19-4. The statement views

View Description

host_summary_by_

statement_latency

This view uses the events_statements_summary_by_host_by_

event_name table to return one row per hostname plus one for the

background threads. each row includes high-level statistics for the

statements such as total latency, rows sent, and so on. The rows are

ordered by the total latency in descending order.

host_summary_by_

statement_type

This view uses the same performance schema table as the host_

summary_by_statement_latency view, but in addition to the

hostname, it also includes the statement type. The rows are first

ordered by the hostname in ascending order and then the total latency

in descending order.

innodb_lock_waits This view shows ongoing InnodB row lock waits. It uses the data_

locks and data_lock_waits tables. The view is used in Chapter 22

to investigate lock issues.

schema_table_lock_

waits

This view shows ongoing metadata and user lock waits. It uses the

metadata_locks table. The view is used in Chapter 22 to investigate

lock issues.

session This view returns an advanced process list based on the threads

and events_statements_current tables with some additional

information from other performance schema tables. The view includes

the current statement for active connections and the last executed

statement for idle connections. The rows are returned in descending

order according to the process list time and the duration of the previous

statement. The session view is particularly useful to understand what

is happening right now.

(continued)

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

569

Table 19-4. (continued)

View Description

statement_analysis This view is a formatted version of the events_statements_

summary_by_digest table ordered by the total latency in descending

order.

statements_with_

errors_or_warnings

This view returns the statements that cause errors or warnings.

The rows are ordered in descending order by the number of errors and

then number of warnings.

statements_with_

full_table_scans

This view returns the statements that include a full table scan. The rows

are first ordered by the percentage of times no index is used and then

by the total latency, both in descending order.

statements_with_

runtimes_in_95th_

percentile

This view returns the statements that are in the 95th percentile of all

queries in the events_statements_summary_by_digest table.

The rows are ordered by the average latency in descending order.

statements_with_

sorting

This view returns the statements that sort the rows in its result. The

rows are ordered by the total latency in descending order.

statements_with_

temp_tables

This view returns the statements that use internal temporary tables.

The rows are ordered in descending order by the number of internal

temporary tables on disk and internal temporary tables in memory.

user_summary_by_

statement_latency

This view is like the host_summary_by_statement_latency view,

except it groups by the username instead. The view is based on the

events_statements_summary_by_user_by_event_name table.

user_summary_by_

statement_type

This view is the same as the user_summary_by_statement_

latency view except is also includes the statement type.

The main differences between querying the views and using the underlying

Performance Schema tables directly are that you do not need to add filters and the

data is formatted to make it easier for humans to read. This makes it easy to use the sys

schema views as ad hoc reports when investigating a performance issue.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

570

Tip remember that the views are also available with x$ prefixed, for example,
x$statement_analysis. The views with x$ prefixed do not add the formatting
making them better if you want to add additional filters on the formatted columns,
change the ordering, or similar.

An example of using the views can be seen in Listing 19-10 where the statement_

analysis view is used to find the statement that overall has used the most time since the

Performance Schema table was last reset.

Listing 19-10. Finding the query using the most time executing

mysql> SELECT ∗
 FROM sys.statement_analysis

 LIMIT 1\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 query: UPDATE `world` . `city` SET `Population` = ?

WHERE `ID` = ?

 db: world

 full_scan:

 exec_count: 3744

 err_count: 3

 warn_count: 0

 total_latency: 9.70 m

 max_latency: 51.53 s

 avg_latency: 155.46 ms

 lock_latency: 599.31 ms

 rows_sent: 0

 rows_sent_avg: 0

 rows_examined: 3741

rows_examined_avg: 1

 rows_affected: 3741

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

571

rows_affected_avg: 1

 tmp_tables: 0

 tmp_disk_tables: 0

 rows_sorted: 0

sort_merge_passes: 0

 digest: 8f3799ba6b1f47fc2d76f018eaafb6ef8a9d743a7dbe5e558

e37371408a1ad5e

 first_seen: 2019-06-15 17:30:13.674383

 last_seen: 2019-06-15 17:52:42.881701

1 row in set (0.0028 sec)

The view is already ordered by the total latency in descending order, so it is not

necessary to add any ordering to the query. If you recall the example using the events_

statements_summary_by_digest Performance Schema table earlier in this chapter,

the information returned is similar, but the latencies are easier to read as the values in

picoseconds have been converted to values between 0 and 1000 with a unit. The digest

is also included, so you can use that to find more information about the statement if

needed.

The other views also include useful information. It is left as an exercise for the reader

to query the views on your systems and explore the results.

 Table I/O Views
The sys schema views for table I/O can be used to find information about the usage of

tables and indexes. This includes finding indexes that are not used and tables where full

table scans are executed.

The views that base their information on the table I/O all have schema_ as the prefix

for the name. The views include those summarized in Table 19-5.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

572

Table 19-5. Table I/O views

View Description

schema_index_

statistics

This view includes all the rows of the table_io_waits_summary_by_

index_usage table where the index name is not NULL. The rows are

ordered by the total latency in descending order. The view shows you how

much each index is used for selecting, inserting, updating, and deleting

data.

schema_table_

statistics

This view combines data from the table_io_waits_summary_by_

table and file_summary_by_instance tables to return both the

table I/o and the file I/o related to the table. The file I/o statistics are only

included for tables in their own tablespace. The rows are ordered by the

total table I/o latency in descending order.

schema_table_

statistics_with_

buffer

This view is the same as the schema_table_statistics view except

that is also includes buffer pool usage information from the innodb_

buffer_page Information schema table. Be aware that querying the

innodb_buffer_page table can have a significant overhead and is best

used on test systems.

schema_tables_

with_full_table_

scans

This view queries the table_io_waits_summary_by_index_usage

table for rows where the index name is NULL – that is, where an index

was not used – and includes the rows where the read count is greater

than 0. These are the tables where there are rows that are read without

using an index – that is, through a full table scan. The rows are ordered by

the total number of rows read in descending order.

schema_unused_

indexes

This view also uses the table_io_waits_summary_by_index_usage

table but includes rows where no rows have been read for an index, and

that index is not a primary key or a unique index. Tables in the mysql

schema are excluded as you should not change the definition of any of

those. The tables are ordered alphabetically according to the schema and

table names.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

573

Usually these views are used in combination of other views and tables. For example,

you may detect that the CPU usage is very high. A typical cause of high CPU usage is

large table scans, so you may look at the schema_tables_with_full_table_scans

view and find that one or more tables are returning a large number of rows through

table scans. Then go on to query the statements_with_full_table_scans view to find

statements using that table without using indexes.

As mentioned, the schema_table_statistics view combines table I/O statistics and

file I/O statistics. There are also views that purely look at the file I/O.

 File I/O Views
The views to explore the file I/O usage follow the same pattern as the statement views

that were grouped by the hostname or username. The views are best used to determine

what is causing the I/O once you have determined that the disk I/O is a bottleneck. You

can then work backward to find the tables involved. From there you may determine you

can optimize queries using the tables or that you need to increase the I/O capacity.

The file I/O includes the views in Table 19-6.

Table 19-6. File I/O views

View Description

host_summary_by_

file_io

This view uses the events_waits_summary_by_host_by_

event_name table and groups the file I/o wait events by the account

hostname. The rows are ordered by the total latency in descending

order.

host_summary_by_

file_io_type

This view is the same as the host_summary_by_file_io view

except that it also includes the event name for the file I/o. The rows

are ordered by the hostname and then in descending order the total

latency.

io_by_thread_by_

latency

This view uses the events_waits_summary_by_thread_by_

event_name table to return the file I/o statistics grouped by the

thread with the rows ordered by the total latency in descending order.

The threads include the background threads which are the ones

causing a large part of the write I/o.

(continued)

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

574

View Description

io_global_by_file_

by_bytes

This view uses the file_summary_by_instance table to return the

number of read and write operations and the amount of I/o in bytes for

each file. The rows are ordered by the total amount of read plus write

I/o in bytes in descending order.

io_global_by_file_

by_latency

This view is the same as the io_global_by_file_by_bytes view

except it reports the I/o latencies.

io_global_by_wait_

by_bytes

This view is similar to the io_global_by_file_by_bytes view

except it groups by the I/o event names instead of filenames and it

uses the file_summary_by_event_name table.

io_global_by_wait_

by_latency

This view is the same as the io_global_by_wait_by_bytes view

except it reports the I/o latencies.

user_summary_by_

file_io

This view is the same as the host_summary_by_file_io view

except it uses the events_waits_summary_by_user_by_event_

name table and groups by the username instead of hostname.

user_summary_by_

file_io_type

This view is the same as the user_summary_by_file_io view

except that it also includes the event name for the file I/o. The rows

are ordered by the username and then in descending order the total

latency.

Table 19-6. (continued)

The views are straightforward to use, yet it is still worth taking a look at a couple of

examples to show some specifics relating to them. Listing 19-11 shows an example of the

io_by_thread_by_latency view for a background and a foreground thread. The thread

ids are chosen based on the threads available on the test system.

Listing 19-11. Example of using the io_by_thread_by_latency view

mysql> SELECT ∗
 FROM sys.io_by_thread_by_latency

 WHERE THREAD_ID IN (19, 87543)\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 user: log_flusher_thread

 total: 24489

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

575

 total_latency: 19.33 s

 min_latency: 56.39 us

 avg_latency: 789.23 us

 max_latency: 18.75 ms

 thread_id: 19

processlist_id: NULL

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 user: root@localhost

 total: 40683

 total_latency: 15.48 s

 min_latency: 5.27 us

 avg_latency: 353.57 us

 max_latency: 262.23 ms

 thread_id: 87543

processlist_id: 87542

2 rows in set (0.0066 sec)

The main thing to notice in the example is the username. In row 1, there is an

example of a background thread in which case the last part (using / as a delimiter) of the

thread name is used as the username. In row 2, it is a foreground thread, and the user

is the username and hostname for the account with an @ between them. The rows also

include information about the Performance Schema thread id and the process list id

(connection id), so you can use those to find more information about the threads.

The other example is shown in Listing 19-12 and is for the io_global_by_file_by_

bytes view.

Listing 19-12. Example of using the io_global_by_file_by_bytes view

mysql> SELECT ∗
 FROM sys.io_global_by_file_by_bytes

 LIMIT 1\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 file: @@datadir\undo_001

 count_read: 15889

 total_read: 248.31 MiB

 avg_read: 16.00 KiB

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

576

 count_write: 15149

total_written: 236.70 MiB

 avg_write: 16.00 KiB

 total: 485.02 MiB

 write_pct: 48.80

1 row in set (0.0028 sec)

Notice here how the path to the filename is using @@datadir. This is part of the

formatting the sys schema uses to make it easier to understand at a glance where the

files are located. The data amounts are also scaled.

The sys schema views that have been discussed thus far all report the statistics

recorded since the corresponding Performance Schema tables were last reset. Often

performance issues only show up intermittently in which case you want to determine

what is going on during that period. That is where you need the statement performance

analyzer.

 Statement Performance Analyzer
The statement performance analyzer allows you to take two snapshots of the events_

statements_summary_by_digest table and use the delta between the two snapshots with

a view that usually uses the events_statements_summary_by_digest table directly. This

is useful, for example, to determine which queries are executing during a period of peak

load.

The snapshots are created and the analysis performed using the statement_

performance_analyzer() procedure. It takes three arguments as shown in Table 19-7.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

577

The action specifies what you want the procedure to do. The different actions are

used at different stages of the workflow of generating a statement performance report.

The supported actions are listed in Table 19-8.

Table 19-7. The arguments for the statement_performance_analyzer()

procedure

Argument Valid Values Description

action Snapshot

Overall

Delta

create_tmp

create_table

save

cleanup

The action you want the procedure to perform.

The actions will be discussed in more detail

shortly.

table <schema>.<table> This parameter is used for actions requiring a

table name. The format must be schema.table

or the table name on its own. In either case, do

not use backticks. a dot is not allowed in the

schema or table name.

views with_runtimes_in_95th_

percentile

analysis

with_errors_or_warnings

with_full_table_scans

with_sorting

with_temp_tables

custom

The view names to generate the report with.

It is allowed to specify more than one view. all

views but the custom view are using one of

the statement views in the sys schema. For

a custom view, the view name of the custom

view is specified using the statement_

performance_analyzer.view sys schema

configuration option.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

578

The procedure is particularly useful to create two snapshots and calculate the delta

between them. The workflow to perform a delta analysis is as follows:

 1. Create a temporary table to store the initial snapshot. This is done

by using the create_tmp action.

 2. Create the initial snapshot using the snapshot action.

 3. Save the initial snapshot to the temporary table from step 1 by

using the save action.

 4. Wait for the duration that data should be collected.

Table 19-8. The actions for the statement_performance_analyzer() procedure

Action Description

snapshot This creates a snapshot of the events_statements_summary_by_digest

table unless the table argument is given in which case the content of the

provided table is used as the snapshot. The snapshot is stored in a temporary

table called tmp_digests in the sys schema.

overall This creates a report based on the content in the table provided with the

table argument. If you set the table argument to NOW(), the current content

of the summary by digest table is used to create a new snapshot. If you set

the table argument to NULL, the current snapshot will be used.

delta This creates a report based on the difference between two snapshots using

the table provided with the table argument and the existing snapshot. This

action creates the sys.tmp_digests_delta temporary table. an example of

this action will be shown later in this section.

create_table Creates a regular user table with the name given by the table argument. The

table can be used to store a snapshot using the save action.

create_tmp Creates a temporary table with the name given by the table argument. This

table can be used to store a snapshot using the save action.

save saves the existing snapshot to the table specified by the table argument.

cleanup removes the temporary tables that have been used for snapshots and delta

calculations. Tables created with the create_table and create_tmp

actions are not deleted.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

579

 5. Create a new snapshot using the snapshot action.

 6. Use the delta action with one or more views to generate the

report.

 7. Clean up using the cleanup action.

It can be useful to try the procedure in a controlled environment where you know

which queries have been executed. That way you know what to expect in the generated

output. The example will use a schema called monitor to store the initial snapshot:

mysql> CREATE SCHEMA monitor;

You will need to execute some queries while the monitoring is ongoing in a second

connection. You are encouraged to try some of your own queries. If you want to

reproduce the output in the example, you can use MySQL Shell and start out (before

starting the monitoring) changing the language mode to Python and set the default

schema to world:

\py

\use world

The Python code that will execute the nine queries for the example is shown in

Listing 19-13. You can execute the code in MySQL Shell. The code is also available from

the file listing_19_13.py in this book’s GitHub repository.

Listing 19-13. Python code for example queries for statement analysis

queries = [

 ("SELECT * FROM `city` WHERE `ID` = ?", [130, 3805]),

 ("SELECT * FROM `city` WHERE `CountryCode` = ?", ['AUS', 'CHN', 'IND']),

 ("SELECT * FROM `country` WHERE CODE = ?", ['DEU', 'GBR', 'BRA', 'USA']),

]

for query in queries:

 sql = query[0]

 parameters = query[1]

 for param in parameters:

 result = session.run_sql(sql, (param,))

The queries with placeholders are defined as a list of tuples with values to use for

that query as the second element in the tuple. That allows you to quickly add more

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

580

queries and values if you want to execute more queries. The queries are executed in a

double loop over the queries and parameters. When you paste the code into MySQL

Shell, finish it off with two new lines to tell MySQL Shell that the multiline code block is

complete.

Listing 19-14 shows the example of creating a report with approximately one minute

between the two snapshots. The example uses the analysis view which is based on sys.

statement_analysis for the report. Since the limitations of the pages in this book do not

allow the report to be shown very well, the full output of the steps and the report can be

found in this book’s GitHub repository in the file listing_19_14_statement_analysis.

txt. The order of the queries in the report may be different as it depends on how long it

takes to execute the queries, and the statistics will be different.

Listing 19-14. Using the statement_performance_analyzer() procedure

mysql> CALL sys.ps_setup_disable_thread(CONNECTION_ID());

+-------------------+

| summary |

+-------------------+

| Disabled 1 thread |

+-------------------+

1 row in set (0.0012 sec)

Query OK, 0 rows affected (0.0012 sec)

mysql> CALL sys.statement_performance_analyzer(

 'create_tmp', 'monitor._tmp_ini', NULL);

Query OK, 0 rows affected (0.0028 sec)

mysql> CALL sys.statement_performance_analyzer(

 'snapshot', NULL, NULL);

Query OK, 0 rows affected (0.0065 sec)

mysql> CALL sys.statement_performance_analyzer(

 'save', 'monitor._tmp_ini', NULL);

Query OK, 0 rows affected (0.0017 sec)

-- Execute your queries or the Python code in Listing 19-13

-- in a second connection while the SLEEP(60) is executing.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

581

mysql> DO SLEEP(60);

Query OK, 0 rows affected (1 min 0.0064 sec)

mysql> CALL sys.statement_performance_analyzer(

 'snapshot', NULL, NULL);

Query OK, 0 rows affected (0.0041 sec)

mysql> CALL sys.statement_performance_analyzer(

 'delta', 'monitor._tmp_ini',

 'analysis');

+--+

| Next Output |

+--+

| Top 100 Queries Ordered by Total Latency |

+--+

1 row in set (0.0049 sec)

+--+-------+...

| query | db |...

+--+-------+...

| SELECT * FROM `city` WHERE `CountryCode` = ? | world |...

| SELECT * FROM `country` WHERE CODE = ? | world |...

| SELECT * FROM `city` WHERE `ID` = ? | world |...

+--+-------+...

3 rows in set (0.0049 sec)

Query OK, 0 rows affected (0.0049 sec)

mysql> CALL sys.statement_performance_analyzer(

 'cleanup', NULL, NULL);

Query OK, 0 rows affected (0.0018 sec)

mysql> DROP TEMPORARY TABLE monitor._tmp_ini;

Query OK, 0 rows affected (0.0007 sec)

mysql> CALL sys.ps_setup_enable_thread(CONNECTION_ID());

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

582

+------------------+

| summary |

+------------------+

| Enabled 1 thread |

+------------------+

1 row in set (0.0015 sec)

Query OK, 0 rows affected (0.0015 sec)

The use of the ps_setup_disable_thread() and ps_setup_enable_thread()

procedures at the start and end of the example is there to disable Performance Schema

instrumentation of the thread doing the analysis and then enable instrumentation when

the analysis is done. By disabling instrumentation, the queries executed by the analysis

are not included in the report. This is not so important on a busy system, but it is very

useful when testing with just a few queries.

For the analysis itself, a temporary table is created so a snapshot can be created and

saved to it. After that, data is collected for a minute, then a new snapshot is created,

and the report is generated. The final steps clean up the temporary tables used for the

analysis. Notice that the temporary table monitor._tmp_ini was not cleaned up by the

cleanup action as that was explicitly created by the create_tmp action.

The report output shows that three statements were executed during the monitoring

period. In a real-world case, there would usually be more, and the report is by default

limited to the top 100 queries. You can configure how many queries that can be included

in the report as well as a couple of other settings. This is done using the sys schema

configuration mechanism with support for the following settings:

• debug: When the option is set to ON, debugging output is produced.

The default is OFF.

• statement_performance_analyzer.limit: The maximum number of

statements to include in the report. The default is 100.

• statement_performance_analyzer.view: The view to use with the

custom view.

Tip The sys schema options can either be set in the sys.sys_config table or
as user variables by prepending @sys. to the option name. For example, debug
becomes @sys.debug.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

583

Thus far, it has been assumed the sys schema views are used directly by executing

queries explicitly against them. That is not the only way you can use them though; the

views are also available through MySQL Workbench.

 MySQL Workbench
MySQL Workbench is great if you prefer to work using a graphical user interface rather

than a command-line interface. Not only does MySQL Workbench allow you to execute

your own queries; it also comes with several features to help you manage and monitor

your instance. For the purpose of this discussion, it is primarily the performance reports

and the client connections report that are of interest.

Both reports are accessed through the navigator to the left in the MySQL Workbench

window. The navigator is available once you are connected to MySQL. Figure 19-1

highlights the reports.

Figure 19-1. Accessing the client connections and performance reports

The rest of the section will discuss the two types of reports in more detail.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

584

 Performance Reports
The performance reports in MySQL Workbench are a great way to investigate what is

happening in the instance. As the performance reports are based on the sys schema

views, the information available will be the same as was discussed when going through

the sys schema views.

You get to the performance reports by connecting to the instance you want to

investigate and choosing Performance Reports from the PERFORMANCE section of the

navigator. You have access to most of the reports that can also be made directly using the

sys schema. Figure 19-2 shows how you can select the report you are interested in.

Figure 19-2. Choosing a performance report

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

585

An example of a report is shown in Figure 19-3 where the statement statistics

report has been executed. That is the same report as you get using the sys.statement_

analysis view. An example of the report with all columns present can be seen in the file

figure_19_3_performance_report.png in this book’s GitHub repository.

Figure 19-3. The statement statistics performance report

One advantage of the performance reports is that they use the unformatted view

definitions, so you can change the ordering using the GUI. You change the ordering

by clicking the column header for the column you want to order by. The order toggles

between ascending and descending order each time you click the column header.

At the bottom of the report, there are buttons to help you use the report. The

Export… button allows you to save the result of the report as a CSV file. The Copy

Selected button copies the header and the selected rows into memory in the CSV format.

The Copy Query button copies the query used for the report. This allows you to edit

the query and manually execute it. For the report in Figure 19-3, the query returned is

select ∗ from sys.`x$statement_analysis`. The final button is the Refresh button to

the right which executes the report again.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

586

There is no performance report based on the sys.session view. Instead you need to

use the client connections report.

 Client Connections Report
If you want to get a list of the connections currently connected to the instance, you need

to use the client connections report. It does not include quite as much information as

the sys.session view, but it does include the most essential data. The report is based

on the threads table in the Performance Schema, and additionally, the program name is

included if possible.

Figure 19-4 shows an example of the leftmost columns of the report. To see the full

list of columns, check the file figure_19_4_client_connections.png in the book’s

GitHub repository.

Figure 19-4. The client connections report

If you already have the client connections report or one of the performance reports

open, you can reuse the connection to fetch the client connections report. That can be

useful if all connections have been used up and you need to get a report of what the

connections are doing. The client connections report also allows you to kill queries or

connections by selecting the query and using one of the kill buttons to the lower right of

the report.

While MySQL Workbench is very useful for investigating performance issues, it

is primarily targeted at ad hoc investigations. For proper monitoring, you need a full

monitoring solution.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

587

 MySQL Enterprise Monitor
There is not really anything replacing a full-featured monitoring solution when you

need to investigate performance issues whether you are reacting to user complaints or

are proactive looking to make improvements. This section will base the discussion on

MySQL Enterprise Monitor (MEM). Other monitoring solutions may provide similar

features.

There are three features that will be discussed in this section. The first is the Query

Analyzer, then timeseries graphs, and finally ad hoc reports such as the processes

and lock waits reports. You should use the various metrics in combination when you

investigate an issue. For example, if you have a report of high disk I/O usage, then find

the timeseries graphs showing disk I/O and determine how and when the I/O has

developed. You can then use the Query Analyzer to investigate which queries were

executed during this period. If the issue is still ongoing, a report like the processes report

or one of the other ad hoc reports can be used to see what is going on.

 The Query Analyzer
The Query Analyzer in MySQL Enterprise Monitor is one of the most important places

to look when you need to investigate performance issues. MySQL Enterprise Monitor

uses the events_statements_summary_by_digest table in the Performance Schema to

regularly collect which queries have been executed. It then compares successive outputs

to determine the statistics since the previous data collection. This is similar to what

you saw in the example using the statement performance analyzer in the sys schema,

just that this is happening automatically and is integrated together with the rest of the

collected data.

You get to the Query Analyzer by choosing the Queries option in the left-hand menu

as shown in Figure 19-5.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

588

Once you open the Query Analyzer, it will default to open with the Query Response

Time index (QRTi) graph at the top and a list of queries below. The default time frame is

the past hour. You can choose to display another graph or change the number of graphs.

The default graph with the Query Response Time index is worth some consideration.

The Query Response Time index is a measure of how well a single query or a group

of queries perform. It is calculated using the Apdex (Application Performance Index)

formula.1 The shape next to the query information consisting of two concentric circles

(donut shaped) is colored according to how well the query performs with the colors

green, yellow, and red indicating the percentage of time the query performs according to

the optimum, acceptable, and unacceptable criteria:

1 https://en.wikipedia.org/wiki/Apdex

Figure 19-5. Accessing the Query Analyzer

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

https://en.wikipedia.org/wiki/Apdex

589

• Optimum: When the query executes in less time than the threshold

set to define optimal performance. The default threshold is 100 ms.

The threshold can be configured. Green is used for the optimal time

frame.

• Acceptable: When the query executes in more time than the

threshold for the optimal time frame but less than four times the

threshold. This frame uses yellow.

• Unacceptable: When the query is slower than four times the

threshold for the optimal threshold. This frame uses red.

The Query Response Time index is not a perfect measure of how well the instance

is performing, but for systems where the various queries are expected to have response

times around the same interval, it does provide a good indication of how well the system

or query performs at different times. If you have a mix of very fast OLTP queries and slow

OLAP queries, it is not so good a measure of the performance.

If you spot something interesting in the graph, you can select that period and use

that as the new time frame for filtering the queries. There is also the Configuration View

button to the upper right of the graph that can be used to set the time frames for the

graphs and queries, which graphs to show, filters for the queries, and so on.

The query list is what you need to use to look at actual queries. An example for a

query is shown in Figure 19-6.

Figure 19-6. Overview of a query in the Query Analyzer

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

590

The information is high level and is meant to help you narrow down which candidate

queries to look closer at for a given period. In the example, you can see that there have

been almost 160,000 executions of the query to find cities by name. The first question

you should ask is whether that is a reasonable amount of times to execute this query. It

may be expected, but a high execution count may also be a sign of a runway process that

keeps executing the same query over and over or that you need to implement caching for

the query. You can also see from the green donut that all executions are in the optimal

time frame with respect to the Query Response Time index.

The icon in the upper-right corner of the query area, just to the left of the three

vertical dots, shows that MySQL Enterprise Monitor has flagged this query. To get the

meaning of the icon, hover over the icon. The icon in this example means that the query

is doing full table scans. Thus, even though the Query Response Time index looks good

for the query, it is worth looking closer at the query. Whether it is acceptable that a full

table scan is done depends on several factors such as the number of rows in the table

and how often the query is executed. You can also see that the query latency graph

shows an increase in latency at the right end of the graph suggesting the performance is

degrading.

If you want to investigate a query in more detail, click the three vertical dots in the

upper-right corner of the query area which allows you to go to the details screen for

the query. Figure 19-7 shows an example of the query details. The full-sized screenshot

is available in the file figure_19_7_mem_query_details.png from the book’s GitHub

repository.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

591

Figure 19-7. Query details from the Query Analyzer

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

592

The details include the metrics that are available from the Performance Schema

digest summary. Here you can see that there are indeed much more rows examined than

returned, so it is worth investigating further whether an index is required. The graphs

give an idea of the development of the query execution over time.

At the bottom are examples of actual query execution latencies. In this case there are

two executions included. The first is the red circle in the left of the graph. The second

is the blue-greenish mark at the lower right. The color symbolized the Query Response

Time index for each execution. This graph is only available if the events_statements_

history_long consumer is enabled.

The Query Analyzer is great for investigating queries, but to get a higher-level

summary of the activity, you need to use the timeseries graphs.

 Timeseries Graphs
Timeseries graphs are what is often thought of when talking about a monitoring system.

They are important to understand the overall load on the system and to spot changes

over time. However, they are often not very good at finding the root cause of an issue.

For that you need to analyze the queries or generate ad hoc reports to see the issue

happening.

When you look at timeseries graphs, you need to consider a few things; otherwise,

you may end up drawing the wrong conclusions and declare an emergency when there

are no problems. First, you need to know what the metric in the graph means, like the

discussion earlier in the chapter of what the I/O latencies mean. Second, remember that

a change in the metric does not on its own mean there is a problem. It just means that

the activity changed. If you start to execute more queries, because you enter the peak

period of the day or year, it is only natural that the database activity increases and vice

versa when you go to a quiet period. Similarly, if you implement a new feature such as

adding an element to the start screen of the application, that is also expected to increase

the amount of work performed. Third, be careful not just to consider a single graph. If

you look at monitoring data without taking the other data into consideration, it is easy to

make the wrong conclusions.

If you look at Figure 19-8, there is an example of several timeseries graphs for a

period where the utilization of the database and system changes.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

593

If you look at the graphs, you can see the CPU utilization in the topmost graph

suddenly increases and peaks at more than 80%. Why did that happen and is it a bad

thing? The database queries graph shows that the number of statements per second

increases at the same time and so does the number of rows read in the InnoDB row

details graph. So the CPU usage is most likely caused by increased query activity. From

there, you can go to the Query Analyzer and investigate which queries are running.

A couple of other points can be taken away from the graphs. If you look at the x-axis,

the graph only covers six minutes of data. Be careful not to draw conclusions based on

a very short time frame as that may not represent the true state of the system. The other

Figure 19-8. Timeseries graphs

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

594

thing is to remember to look at the scale of the data. Yes, the CPU usage and InnoDB

transaction lock memory suddenly increase, but it happens from a base of 0. How many

CPUs do the system have? If you have 96 CPUs, then using 80% of one CPU is really

nothing, but if you are on a single CPU virtual machine, you have less headroom. For the

transaction lock memory, if you take the y-axis into account, you can see that the “spike”

is just 1 KiB of lock memory – so not something to worry about.

Sometimes you need to investigate an ongoing issue in which case the timeseries

graphs and the Query Analyzer may not be able to give you the information you need. In

that case you need ad hoc reports.

 Ad Hoc Reports
There are several ad hoc reports available in MySQL Enterprise Monitor. Other

monitoring solutions may have similar or other reports. The reports are similar to the

information available from the sys schema reports that were discussed earlier in the

chapter. One advantage of accessing ad hoc reports through the monitoring solution

is that you can reuse the connections in case the application has used all connections

available, and it provides a graphical user interface to manipulate the reports.

The reports include the ability to get a list of processes, lock information, schema

statistics, and more. Each view is equivalent to one of the sys schema views. At the time

of writing, the following reports exist:

• Table Statistics: This report shows how much each table is used

based on the total latency, rows fetched, rows updated, and so on. It

is equivalent to the schema_table_statistics view.

• User Statistics: This report shows the activity for each username. It is

equivalent to the user_summary view.

• Memory Usage: This report shows the memory usage per memory

type. It is equivalent to the memory_global_by_current_bytes view.

• Database File I/O: This report shows the disk I/O usage. There are

three options for the report: to group by file which is equivalent to the

io_global_by_file_by_latency view, to group by the wait (I/O) type

which is equivalent to the io_global_by_wait_by_latency view,

and to group by thread which is equivalent to the io_by_thread_

by_latency view. Grouping by the wait type adds the I/O-related

timeseries graphs.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

595

• InnoDB Buffer Pool: This report shows what data is stored in

the InnoDB buffer pool. It is based on the innodb_buffer_page

Information Schema table. Since there can be a significant overhead

querying the information for this report, it is recommended only to

use the report on test systems.

• Processes: This report shows the foreground and background

threads that are currently present in MySQL. It uses the sys.

processlist view which is the same as the session view except that

it also includes background threads.

• Lock Waits: This report has two options. You can either get a report

for the InnoDB lock waits (the innodb_lock_waits view) or metadata

locks (the schema_table_lock_waits view).

The principle of using the reports is the same, so only two examples will be shown.

The first is in Figure 19-9 where an InnoDB lock wait situation is shown in the lock waits

report.

Figure 19-9. The InnoDB row lock waits report

The report shows the rows in a paginated mode, and you can change the ordering

by clicking the column headers. Changing the ordering does not reload the data. If you

need to reload the data, use the Reload button at the top of the screenshot.

You can also manipulate the columns available in the report. In the upper-right

corner, there is a button to select which columns you want to be visible in the report. The

screenshot in Figure 19-10 shows an example of how you can choose which columns to

display.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

596

When you toggle whether the columns are included or not, the report updates

immediately without reloading the report. That means that for intermittent issues such

as lock waits, you can manipulate the report without losing the data you are looking at.

The same is the case if you change the ordering of the columns by dragging the column

headers around.

Several of the reports have the choice between a standard column-based output and

a treemap view. For the InnoDB buffer pool report, the treemap view is the only format

supported. The treemap output uses rectangles with the area based on the value, so if

a rectangle has twice the area of another rectangle, it means the value is twice as large.

This can help visualize the data.

Figure 19-11 shows an example of the treemap view for the total insert latency for the

tables in the database. In the example, only three tables have large enough fractions of

the total insert latency to have rectangles drawn.

Figure 19-10. Choosing which columns to include in the report

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

597

When you look at the treemap view, you can immediately see that the amount of

time spent on inserting data into the city table is much larger than for the other tables.

The ad hoc queries all deal with the state as it is at the time the report is executed.

The Query Analyzer and timeseries graphs on the other hand work with what happened

in the past. Another tool that shows what happened in the past is the slow query log.

 The Slow Query Log
The slow query log is a trusty old tool for finding poorly performing queries and

to investigate past problems in MySQL. It may seem unnecessary today where the

Performance Schema has so many options to query statements that are slow, do not use

indexes, or fulfill other criteria. However, the slow query log has one main advantage that

it is persisted, so you can go back and use it even after MySQL has been restarted.

Tip The slow query log is not enabled by default. You can enable and disable
it using the slow_query_log option. The log can also be enabled and disabled
dynamically without restarting mysQL.

Figure 19-11. The treemap view of the total insert latency

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

598

There are two basic types of modes in which to use the slow query log. If you know

when an issue occurred, you can check the log for slow queries at that time. One case is

where queries have been piling up because of a lock issue, and you know when the issue

ended. Then you can find that time in the log and look for the first query that completed

with a long enough execution time to be part of the pileup issue; that query was likely the

one causing the pileup possible in connection with some of the other queries finishing

around or after that point in time.

The other usage mode is to use the mysqldumpslow utility to create an aggregate of

the slow queries. This normalizes the queries similar to how the Performance Schema

does, so similar queries will have their statistics aggregated. This mode is great to look for

queries that may contribute to making the system busy.

You can choose what to sort the aggregated queries by with the -s option. You can

use the total count (the c sorting value) to find the queries that are being executed

the most. The more often a query is executed, the more benefit there is to optimize

the query. You can use the total execution time (t) in a similar manner. If users are

complaining about slow response times, the average execution time (at) is useful for

sorting. If you suspect some queries return too many rows because they are missing filter

conditions, you can sort the queries according to the number of rows they return (r for

total rows, ar for average rows). Often it can be useful to combine the sorting option with

the -r option to reverse the order and the -t to only include the first N queries. That way

it is easier to focus on the queries causing the biggest impact.

You also need to remember that by default the slow query log does not log all

queries, so you do not get the same insight into the workload as with the Performance

Schema. You need to adjust the threshold for considering a query slow by changing the

long_query_time configuration option. The option can be changed for a session, so if

you have significant variations in expected execution time, you can set the global value

to match the majority of queries and change per session for the connection executing

queries that deviate from the normal. If you need to investigate issues that involve DDL

statements, you need to make sure you enable the log_slow_admin_statements option.

Caution The slow query log has a larger overhead than the performance
schema. When just logging a few slow queries, the overhead is usually negligible,
but it can be significant if you log many queries. do not log all queries by setting
long_query_time to 0 except on a test system or for a short period of time.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

599

You analyze the mysqldumpslow reports in much the same way as the Performance

Schema and sys schema, so it will be left as an exercise for the reader to generate reports

from your systems and use them to find candidate queries for further optimization.

 Summary
This chapter has explored the sources available to find queries that are candidates to be

optimized. It was also discussed how to look for resource utilization that can be used to

know at what times there are workloads that push the system most toward its limit. It

is the queries running at that time that are the most important to focus on, though you

should keep your eyes open for queries in general that do more work than they should.

The discussion started out going through the Performance Schema and considered

which information is available and how to use it. Particularly the events_statements_

summary_by_digest table is a gold mine when looking for queries that may have

performance issues. You should however not restrict yourself to just looking at queries.

You should also take table and file I/O into consideration as well as whether queries

cause errors. These errors may include lock wait timeouts and deadlocks.

The sys schema provides a range of ready-made reports that you can use to find

information. These reports are based on the Performance Schema, but they include

filters, sorting, and formatting that make the reports easy to use, particularly as ad hoc

reports when investigating an issue. It was also shown how the statement performance

analyzer can be used to create a report of the queries running during a period of interest.

MySQL Workbench provides both performance reports based on the sys schema

views and a client connections report based on the threads table in the Performance

Schema. These features allow you to make ad hoc reports through a graphical user

interface which makes it easy to change the ordering of the data and to navigate the

reports.

Monitoring is one of the most important tools available to maintain a good health

of your system and investigate performance problems. MySQL Enterprise Monitor was

used as the base of the monitoring discussion. Particularly the Query Analyzer feature

is very useful to determine which queries impact the system the most, but it should be

used in conjunction with the timeseries graphs to understand the overall state of the

system. You can also create ad hoc queries that can be used, for example, to investigate

ongoing issues.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

600

Finally, you should not forget the slow query log that has the advantage over the

Performance Schema statement tables that it persists the recording of the slow queries.

This makes it possible to investigate issues that happened before a restart. The slow

query log also records the time when a query completed which is useful when a user

reports that at some time the system was slow.

What do you do when you have found a query that you want to investigate further?

The first step is to analyze it which will be discussed in the next chapter.

ChapTer 19 FIndIng CandIdaTe QuerIes For opTImIzaTIon

601
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_20

CHAPTER 20

Analyzing Queries
In the previous chapter, you learned how to find queries that are candidates for

optimization. It is now time to take the next step – analyzing the queries to determine

why they do not perform as expected. The main tool during the analysis is the EXPLAIN

statement which shows the query plan the optimizer will use. Related is the optimizer

trace that can be used to investigate why the optimizer ended up with the query plan.

Another possibility is to use the statement and stage information in the Performance

Schema to see where a stored procedure or a query spends the most time. These three

topics will be discussed in this chapter.

The discussion of the EXPLAIN statement is by far the largest part of this chapter and

has been split into four sections:

• EXPLAIN Usage: The basic usage of the EXPLAIN statement.

• EXPLAIN Formats: The details specific to each of the formats that

the query plan can be viewed in. This includes both formats explicitly

chosen with the EXPLAIN statement and Visual Explain used by

MySQL Workbench.

• EXPLAIN Output: A discussion of the information available in the

query plans.

• EXPLAIN Examples: Some examples of using the EXPLAIN statement

with a discussion of the data returned.

 EXPLAIN Usage
The EXPLAIN statement returns an overview of the query plan the MySQL optimizer will

use for a given query. It is at the same time very simple and one of the more complex

tools in query tuning. It is simple, because you just need to add the EXPLAIN command

before the query you want to investigate, and complex because understanding the

602

information requires some understanding of how MySQL and its optimizer work. You

can use EXPLAIN both with a query you explicitly specify and with a query currently

being executed by another connection. This section goes through the basic usage of the

EXPLAIN statement.

 Usage for Explicit Queries
You generate the query plan for a query by adding EXPLAIN in front of the query,

optionally adding the FORMAT option to specify whether you want the result returned in a

traditional table format, using the JSON format, or in a tree-style format. There is support

for SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. The query is not executed

(but see the next subsection about EXPLAIN ANALYZE for an exception), so it is safe to

obtain the query plan.

If you need to analyze composite queries such as stored procedures and stored

functions, you will need first to split the execution out into individual queries and then

use EXPLAIN for each of the queries that should be analyzed. One method to determine

the individual queries in a stored program is to use the Performance Schema. An

example of achieving this will be shown later in this chapter.

The simplest use of EXPLAIN is just to specify EXPLAIN with the query that you want to

analyze:

mysql> EXPLAIN <query>;

In the example, <query> is the query you want to analyze. Using the EXPLAIN

statement without the FORMAT option returns the result in the traditional

table format. If you want to specify the format, you can do so by adding

FORMAT=TRADITIONAL|JSON|TREE:

mysql> EXPLAIN FORMAT=TRADITIONAL <query>

mysql> EXPLAIN FORMAT=JSON <query>

mysql> EXPLAIN FORMAT=TREE <query>

Which format that is the preferred depends on your needs. The traditional format is

easier to use when you need an overview of the query plan, the indexes used, and other

basic information about the query plan. The JSON format provides more details and is

easier for an application to use. For example, Visual Explain in MySQL Workbench uses

the JSON-formatted output.

Chapter 20 analyzing Queries

603

The tree format is the newest format and supported in MySQL 8.0.16 and later.

It requires the query to be executed using the Volcano iterator executor which at the

time of writing is not supported for all queries. A special use of the tree format is for the

EXPLAIN ANALYZE statement.

 EXPLAIN ANALYZE
The EXPLAIN ANALYZE statement1 is new as of MySQL 8.0.18 and is an extension of the

standard EXPLAIN statement using the tree format. The key difference is that EXPLAIN

ANALYZE actually executes the query and, while executing it, statistics for the execution

are collected. While the statement is executed, the output from the query is suppressed

so only the query plan and statistics are returned. Like for the tree output format, it is

required that the Volcano iterator executor is used.

Note at the time of writing, the requirement on the Volcano iterator executor
limits the queries you can use EXPLAIN ANALYZE with to a subset of SELECT
statements. it is expected that the range of supported queries will increase over
time.

The usage of EXPLAIN ANALYZE is very similar to what you have already seen for the

EXPLAIN statement:

mysql> EXPLAIN ANALYZE <query>

The output of EXPLAIN ANALYZE will be discussed together with the tree format

output later in this chapter.

By nature, EXPLAIN ANALYZE only works with an explicit query as it is required to

monitor the query from start to finish. The plain EXPLAIN statement on the other hand

can also be used for ongoing queries.

1 https://dev.mysql.com/doc/refman/en/explain.html#explain-analyze

Chapter 20 analyzing Queries

https://dev.mysql.com/doc/refman/en/explain.html#explain-analyze

604

 Usage for Connections
Imagine you are investigating an issue with poor performance and you notice there is a

query that has been running for several hours. You know this is not supposed to happen,

so you want to analyze why the query is so slow. One option is to copy the query and

execute EXPLAIN for it. However, this may not provide the information you need as the

index statistics may have changed since the slow query started, and thus analyzing the

query now does not show the actual query plan causing the slow performance.

A better solution is to request the actual query plan used for the slow query. You can

get that using the EXPLAIN FOR CONNECTION variant of the EXPLAIN statement. If you want

to try it, you need a long-running query, for example:

SELECT * FROM world.city WHERE id = 130 + SLEEP(0.1);

This will take around 420 seconds (0.1 second per row in the world.city table).

You will need the connection id of the query you want to investigate and pass this as

an argument to EXPLAIN. You can get the connection id from the process list information.

For example, if you use the sys.session view, the connection id can be found in the

conn_id column:

mysql> SELECT conn_id, current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query'

 ORDER BY time

 DESC LIMIT 1\G

*************************** 1. row ***************************
 conn_id: 8

current_statement: SELECT * FROM world.city WHERE id = 130 + SLEEP(0.1)

statement_latency: 4.22 m

1 row in set (0.0551 sec)

In order to keep the output simple, it has been limited to the connection of interest

for this example. The connection id for the query is 8. You can use this to get the

execution plan for the query as follows:

Chapter 20 analyzing Queries

605

mysql> EXPLAIN FOR CONNECTION 8\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 4188

 filtered: 100

 Extra: Using where

1 row in set (0.0004 sec)

You can optionally add which format you want in the same way as when you

explicitly specify a query. The filtered column may show 100.00 if you are using a

different client than MySQL Shell. Before discussing what the output means, it is worth

familiarizing yourself with the output formats.

 EXPLAIN Formats
You can choose between several formats when you need to examine the query plans.

Which one you choose mostly depends on your preferences. That said, the JSON format

does include more information than the traditional and tree formats. If you prefer a

visual representation of the query plan, Visual Explain from MySQL Workbench is a great

option.

This section will discuss each format and show the output for the query plan of the

following query:

SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

Chapter 20 analyzing Queries

606

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5;

The query finds the five largest cities across the ten smallest countries by area

in Europe and orders them by the city population in descending order. The reason

for choosing this query is that it shows how the various output formats represent

subqueries, ordering, and limits. The information returned by the EXPLAIN statements

will not be discussed in this section; that is deferred to the “EXPLAIN Examples” section.

Note the output of EXPLAIN statements depends on the settings of the
optimizer switches, the index statistics, and the values in the mysql.engine_
cost and mysql.server_cost tables, so you may not see the same as in the
examples. the example outputs have been used with the default values and a
freshly loaded world sample database with ANALYZE TABLE executed for the
tables after the load has completed, and they have been created in MysQl shell
where warnings are fetched automatically by default (but the warnings are only
included in the output when they are discussed). if you are not using MysQl shell,
you will have to execute SHOW WARNINGS to retrieve the warnings.

The query plan outputs are quite verbose. To make it easier to compare the outputs,

the examples in this section have been combined with the result of the query into the

file explain_formats.txt in this book’s GitHub repository. For the tree output format

(including for EXPLAIN ANALYZE), an extra new line has been added between the column

name and the query plan to get the tree hierarchy displaying clearer:

*************************** 1. row ***************************
EXPLAIN:

-> Limit: 5 row(s)

 -> Sort: <temporary>.Population DESC, limit input to 5 row(s) per chunk

Chapter 20 analyzing Queries

607

Instead of:

*************************** 1. row ***************************
EXPLAIN: -> Limit: 5 row(s)

 -> Sort: <temporary>.Population DESC, limit input to 5 row(s) per chunk

This convention is used throughout the chapter.

 Traditional Format
When you execute the EXPLAIN command without the FORMAT argument or with the

format set to TRADITIONAL, the output is returned as a table as if you had queried a

normal table. This is useful when you want an overview of the query plan and it is a

human database administrator or developer who examines the output.

Tip the table output can be quite wide particularly if there are many partitions,
several possible indexes that can be used, or several pieces of extra information.
you can request to get the output in a vertical format by using the --vertical
option when you invoke the mysql command-line client, or you can use \G to
terminate the query.

There are 12 columns in the output. If a field does not have any value, NULL is used.

The meaning of each column will be discussed in the next section. Listing 20-1 shows

the traditional output for the example query.

Listing 20-1. Example of the traditional EXPLAIN output

mysql> EXPLAIN FORMAT=TRADITIONAL

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

Chapter 20 analyzing Queries

608

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

*************************** 1. row ***************************
 id: 1

 select_type: PRIMARY

 table: <derived2>

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 10

 filtered: 100

 Extra: Using temporary; Using filesort

*************************** 2. row ***************************
 id: 1

 select_type: PRIMARY

 table: ci

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

 key_len: 3

 ref: co.Code

 rows: 18

 filtered: 100

 Extra: NULL

*************************** 3. row ***************************
 id: 2

 select_type: DERIVED

 table: country

 partitions: NULL

 type: ALL

Chapter 20 analyzing Queries

609

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 239

 filtered: 14.285715103149414

 Extra: Using where; Using filesort

3 rows in set, 1 warning (0.0089 sec)

Note (code 1003): /* select#1 */ select `world`.`ci`.`ID` AS

`ID`,`world`.`ci`.`Name` AS `Name`,`world`.`ci`.`District` AS

`District`,`co`.`Name` AS `Country`,`world`.`ci`.`Population` AS

`Population` from `world`.`city` `ci` join (/* select#2 */ select

`world`.`country`.`Code` AS `Code`,`world`.`country`.`Name` AS

`Name` from `world`.`country` where (`world`.`country`.`Continent`

= 'Europe') order by `world`.`country`.`SurfaceArea` limit 10)

`co` where (`world`.`ci`.`CountryCode` = `co`.`Code`) order by

`world`.`ci`.`Population` desc limit 5

Notice how the first table is called <derived 2>. This is for the subquery on the

country table, and the number 2 refers to the value of the id column where the subquery

is executed. The Extra column contains information such as whether the query uses a

temporary table and a file sort. At the end of the output is the query after the optimizer

has rewritten it. In many cases there are not many changes, but in some cases the

optimizer may be able to make significant changes to the query. In the rewritten query,

notice how a comment, for example, /* select#1 */, is used to show which id value

is used for that part of the query. There may be other hints in the rewritten query to tell

how the query is executed. The rewritten query is returned as a note by SHOW WARNINGS

(by default, executed implicitly by MySQL Shell).

The output can seem overwhelming, and it can be hard to understand how the

information can be used to analyze queries. Once the other output formats, the detailed

information for the select types and join types, and the extra information have been

discussed, there will be some examples where the EXPLAIN information will be used.

What do you do if you want to analyze the query plan programmatically? You can

handle the EXPLAIN output like that of a normal SELECT query – or you can request the

information in the JSON format which includes some additional information.

Chapter 20 analyzing Queries

610

 JSON Format
Since MySQL 5.6, it has been possible to request the EXPLAIN output using the JSON

format. One advantage of the JSON format over the traditional table format is that the

added flexibility of the JSON format has been used to group the information in a more

logical way.

The basic concept in the JSON output is a query block. The query block defines a

part of the query and may in turn include query blocks of its own. This allows MySQL

to specify the details of the query execution to the query block they belong. This is also

visible from the output of the example query that is shown in Listing 20-2.

Listing 20-2. Example of the JSON EXPLAIN output

mysql> EXPLAIN FORMAT=JSON

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

*************************** 1. row ***************************
EXPLAIN: {

 "query_block": {

 "select_id": 1,

 "cost_info": {

 "query_cost": "247.32"

 },

 "ordering_operation": {

 "using_temporary_table": true,

 "using_filesort": true,

Chapter 20 analyzing Queries

611

 "cost_info": {

 "sort_cost": "180.52"

 },

 "nested_loop": [

 {

 "table": {

 "table_name": "co",

 "access_type": "ALL",

 "rows_examined_per_scan": 10,

 "rows_produced_per_join": 10,

 "filtered": "100.00",

 "cost_info": {

 "read_cost": "2.63",

 "eval_cost": "1.00",

 "prefix_cost": "3.63",

 "data_read_per_join": "640"

 },

 "used_columns": [

 "Code",

 "Name"

],

 "materialized_from_subquery": {

 "using_temporary_table": true,

 "dependent": false,

 "cacheable": true,

 "query_block": {

 "select_id": 2,

 "cost_info": {

 "query_cost": "25.40"

 },

 "ordering_operation": {

 "using_filesort": true,

 "table": {

 "table_name": "country",

 "access_type": "ALL",

Chapter 20 analyzing Queries

612

 "rows_examined_per_scan": 239,

 "rows_produced_per_join": 34,

 "filtered": "14.29",

 "cost_info": {

 "read_cost": "21.99",

 "eval_cost": "3.41",

 "prefix_cost": "25.40",

 "data_read_per_join": "8K"

 },

 "used_columns": [

 "Code",

 "Name",

 "Continent",

 "SurfaceArea"

],

 "attached_condition": "(`world`.`country`.`Continent` =

'Europe')"

 }

 }

 }

 }

 }

 },

 {

 "table": {

 "table_name": "ci",

 "access_type": "ref",

 "possible_keys": [

 "CountryCode"

],

 "key": "CountryCode",

 "used_key_parts": [

 "CountryCode"

],

Chapter 20 analyzing Queries

613

 "key_length": "3",

 "ref": [

 "co.Code"

],

 "rows_examined_per_scan": 18,

 "rows_produced_per_join": 180,

 "filtered": "100.00",

 "cost_info": {

 "read_cost": "45.13",

 "eval_cost": "18.05",

 "prefix_cost": "66.81",

 "data_read_per_join": "12K"

 },

 "used_columns": [

 "ID",

 "Name",

 "CountryCode",

 "District",

 "Population"

]

 }

 }

]

 }

 }

}

1 row in set, 1 warning (0.0061 sec)

As you can see, the output is quite verbose, but the structure makes it relatively easy

to see what information belongs together and how parts of the query relate to each other.

In this example, there is a nested loop that includes two tables (co and ci). The co table

itself includes a new query block that is a materialized subquery using the country table.

The JSON format also includes additional information such as the estimated cost of

each part in the cost_info elements. The cost information can be used to see where the

optimizer thinks the most expensive parts of the query are. If you, for example, see that

the cost of a part of a query is very high, but your knowledge of the data means that you

Chapter 20 analyzing Queries

614

know that it should be cheap, it can suggest that the index statistics are not up to date or

a histogram is needed.

The biggest issue of using the JSON-formatted output is that there is so much

information and so many lines of output. A very convenient way to get around that is to

use the Visual Explain feature in MySQL Workbench which is covered after discussing

the tree-formatted output.

 Tree Format
The tree format focuses on describing how the query is executed in terms of the

relationship between the parts of the query and the order the parts are executed.

In that sense, it may sound similar to the JSON output; however, the tree format is

simpler to read, and there are not as many details. The tree format was introduced as

an experimental feature in MySQL 8.0.16 and relies on the Volcano iterator executor.

Starting with MySQL 8.0.18, the tree format is also used for the EXPLAIN ANALYZER

feature.

Listing 20-3 shows the output using the tree format for the example query. This

output is the non-analyze version. An example of the output of EXPLAIN ANALYZE will be

shown shortly for the same query, so you can see the difference.

Listing 20-3. Example of the tree EXPLAIN output

mysql> EXPLAIN FORMAT=TREE

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

Chapter 20 analyzing Queries

615

*************************** 1. row ***************************
EXPLAIN:

-> Limit: 5 row(s)

 -> Sort: <temporary>.Population DESC, limit input to 5 row(s) per chunk

 -> Stream results

 -> Nested loop inner join

 -> Table scan on co

 -> Materialize

 -> Limit: 10 row(s)

 -> Sort: country.SurfaceArea, limit input to 10

row(s) per chunk (cost=25.40 rows=239)

 -> Filter: (country.Continent = 'Europe')

 -> Table scan on country

 -> Index lookup on ci using CountryCode

(CountryCode=co.`Code`) (cost=4.69 rows=18)

The output gives a good overview of how the query is executed. It can be easier to

understand the execution by reading the output to some extent from the inside and

out. For the nested loop, you have two tables, of which the first is a table scan on co (the

indentation has been reduced):

-> Table scan on co

 -> Materialize

 -> Limit: 10 row(s)

 -> Sort: country.SurfaceArea, limit input to 10 row(s) per

chunk (cost=25.40 rows=239)

 -> Filter: (country.Continent = 'Europe')

 -> Table scan on country

Here you can see how the co table is a materialized subquery created by first doing

a table scan on the country table, then applying a filter for the continent, then sorting

based on the surface area, and then limiting the result to ten rows.

The second part of the nested loop is simpler as it just consists of an index lookup on

the ci table (the city table) using the CountryCode index:

-> Index lookup on ci using CountryCode (CountryCode=co.`Code`) (cost=4.69

rows=18)

Chapter 20 analyzing Queries

616

When the nested loop has been resolved using an inner join, the result is streamed

(i.e., not materialized) to the sorting, and the first five rows are returned:

-> Limit: 5 row(s)

 -> Sort: <temporary>.Population DESC, limit input to 5 row(s) per chunk

 -> Stream results

 -> Nested loop inner join

While this does not give quite as detailed a picture as the JSON output, it still

includes a lot of information about the query plan. This includes the estimated cost and

estimated number of rows for each of the tables. For example, from the sorting step on

the countries’ surface area

(cost=25.40 rows=239)

A good question is how that relates to the actual cost of querying the table. You can

use the EXPLAIN ANALYZE statement for this. Listing 20-4 shows an example of the output

generated for the example query.

Listing 20-4. Example of the EXPLAIN ANALYZE output

mysql> EXPLAIN ANALYZE

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

*************************** 1. row ***************************
EXPLAIN: -> Limit: 5 row(s) (actual time=34.492..34.494 rows=5 loops=1)

 -> Sort: <temporary>.Population DESC, limit input to 5 row(s) per

chunk (actual time=34.491..34.492 rows=5 loops=1)

 -> Stream results (actual time=34.371..34.471 rows=15 loops=1)

Chapter 20 analyzing Queries

617

 -> Nested loop inner join (actual time=34.370..34.466 rows=15

loops=1)

 -> Table scan on co (actual time=0.001..0.003 rows=10

loops=1)

 -> Materialize (actual time=34.327..34.330 rows=10

loops=1)

 -> Limit: 10 row(s) (actual time=34.297..34.301

rows=10 loops=1)

 -> Sort: country.SurfaceArea, limit input to

10 row(s) per chunk (cost=25.40 rows=239)

(actual time=34.297..34.298 rows=10 loops=1)

 -> Filter: (world.country.Continent =

'Europe') (actual time=0.063..0.201

rows=46 loops=1)

 -> Table scan on country (actual

time=0.057..0.166 rows=239 loops=1)

 -> Index lookup on ci using CountryCode

(CountryCode=co.`Code`) (cost=4.69 rows=18) (actual

time=0.012..0.013 rows=2 loops=10)

1 row in set (0.0353 sec)

This is the same tree output as for FORMAT=TREE except that for each step, there is

information about the performance. If you look at the line for the ci table, you can see

there are two timings, the number of rows and the number of loops (reformatted to

improve the readability):

-> Index lookup on ci using CountryCode

 (CountryCode=co.`Code`)

 (cost=4.69 rows=18)

 (actual time=0.012..0.013 rows=2 loops=10)

Here the estimated cost was 4.69 for an expected 18 rows (per loop). The actual

statistics show that the first row was read after 0.012 millisecond and all rows were read

after 0.013 millisecond. There were ten loops (one for each of the ten countries), each

fetching an average of two rows for a total of 20 rows. So, in this case, the estimate was

not very accurate (because the query exclusively picks small countries).

Chapter 20 analyzing Queries

618

Note the row count for EXPLAIN ANALYZE is the average per loop rounded
to an integer. With rows=2 and loops=10, this means the total number of rows
read is between 15 and 24. in this specific example, using the table_io_waits_
summary_by_table table in the performance schema shows that 15 rows are
read.

If you have queries that use the hash joins in MySQL 8.0.18 and later, you will need

to use the tree-formatted output to confirm when the hash join algorithm is used. For

example, if the city table is joined with the country table using a hash join

mysql> EXPLAIN FORMAT=TREE

 SELECT CountryCode, country.Name AS Country,

 city.Name AS City, city.District

 FROM world.country IGNORE INDEX (Primary)

 INNER JOIN world.city IGNORE INDEX (CountryCode)

 ON city.CountryCode = country.Code\G

*************************** 1. row ***************************
EXPLAIN:

-> Inner hash join (world.city.CountryCode = world.

country.`Code`) (cost=100125.16 rows=4314)

 -> Table scan on city (cost=0.04 rows=4188)

 -> Hash

 -> Table scan on country (cost=25.40 rows=239)

1 row in set (0.0005 sec)

Notice how the join is an Inner hash join and that the table scan on the country

table is given as using a hash.

Thus far, all the examples have used text-based outputs. Particularly the JSON-

formatted output could be difficult to use to get an overview of the query plan. For that

Visual Explain is a better option.

Chapter 20 analyzing Queries

619

 Visual Explain
The Visual Explain feature is part of MySQL Workbench and works by converting the

JSON-formatted query plan into a graphical representation. You have already used

Visual Explain back in Chapter 16 when you investigated the effect of adding a histogram

to the sakila.film table.

You get the Visual Explain diagram by clicking the icon with the magnifying glass in

front of the lightning symbol as shown in Figure 20-1.

Figure 20-1. Obtaining the Visual Explain diagram for a query

This is a particularly useful way to generate the query plan, if the query takes a long

time to execute or the query modifies the data. If you already have executed the query,

you can alternatively click the Execution Plan icon to the right of the result grid as it is

shown in Figure 20-2.

Chapter 20 analyzing Queries

620

The Visual Explain diagram is created as a flowchart with one rectangle per query

block and table. The processing of the data is depicted using other shapes such as a

diamond for a join. Figure 20-3 shows an example for each of the basic shapes used in

Visual Explain.

Figure 20-2. Retrieving the execution plan from the result grid window

Chapter 20 analyzing Queries

621

In the figure, a query block is gray, while the two examples of a table (the single

row lookup and full table scan in the subquery) are blue and red, respectively. The gray

blocks are also used, for example, in case of unions. The text below a table box shows

the table name or alias in standard text and the index name in bold text. The rectangles

with rounded corners depict operations on the rows such as sorting, grouping, distinct

operations, and so on.

The number to the top left is the relative cost for that table, operation, or query

block. The number to the top right of tables and joins is the number of rows estimated

to be carried forward. The color of the operations is used to show how expensive it is to

apply the operation. Tables also use colors based on the table access type, primarily to

group similar access types and secondarily to indicate the cost of the access type. The

relationship between the color and cost using the cost estimated from Visual Explain can

be seen in Figure 20-4.

Figure 20-3. Examples of the shapes used in Visual Explain

Chapter 20 analyzing Queries

622

Blue (1) is the cheapest; green (2), yellow (3), and orange (4) represent low to

medium costs; and the most expensive access types and operations are red symbolizing

a high (5) to very high (6) cost.

There is a good deal of overlap between the color groups. Each cost estimate

is considering an “average” use case, so the cost estimates should not be taken as

an absolute truth. Query optimization is complex, and sometimes a method that is

usually cheaper than another method for one particular query turns out to give better

performance.

Note the author of this book once decided to improve a query that had a query
plan which looked terrible: internal temporary tables, file sorting, poor access
methods, and so on. after a long time rewriting the query and verifying whether
the tables had the correct indexes, the query plan looked beautiful – but it turned
out the query performed worse than the original. the lesson: always test the query
performance after optimization and do not rely on whether the cost of the access
methods and operations has improved on paper.

For the tables, the cost is associated with the access type, which is the value of the

type column in the traditional EXPLAIN output and access_type field in the JSON-

formatted output. Figure 20-5 shows how Visual Explain represents the 12 access types

that currently exist. The explanation of the access types is deferred until the next section.

Figure 20-4. Color codes for the relative cost of operations and table access

Chapter 20 analyzing Queries

623

Additionally, Visual Explain has an “unknown” access type colored black in case it

comes across an access type that is not known. The access types are ordered from left to

right and then top to bottom according to their color and approximate cost.

Figure 20-6 puts all of this together to display the query plan for the example query

that has been used throughout this section.

Figure 20-5. The access types as displayed in Visual Explain

Chapter 20 analyzing Queries

624

You read the diagram from the bottom left to the right and then up. So the diagram

shows that the subquery with a full table scan on the country table is performed first

and then another full table scan on the materialized co table with the rows joined on

the ci (city) table using a nonunique index lookup. Finally, the result is sorted using a

temporary table and a file sort.

If you want more details than the diagram shows initially, you can hover over the

part of the query plan you want to know more about. Figure 20-7 shows an example of

the details included for the ci table.

Figure 20-6. The Visual Explain diagram for the example query

Chapter 20 analyzing Queries

625

Not only does the pop-up frame show the remaining details that also are available

in the JSON output, there are also hints to help understand what the data means. All of

this means that Visual Explain is a great way to get started analyzing queries through

their query plans. As you gain experience, you may prefer using the text-based outputs,

particularly if you prefer to work from a shell, but do not dismiss Visual Explain because

you think it is better to use the text-based output format. Even for experts, Visual Explain

is a great tool for understanding how queries are executed.

Hopefully, discussing the output formats has given you an idea of what information

EXPLAIN can give you. Yet, to fully understand it and take advantage of it, it is necessary

to dive deeper into the meaning of the information.

 EXPLAIN Output
There is a lot of information available in the explain outputs, so it is worth delving into

what this information means. This section starts out with an overview of the fields

included in the traditional and JSON-formatted outputs; then the select types and access

types and the extra information will be covered in more detail.

Figure 20-7. Details for the ci table in Visual Explain

Chapter 20 analyzing Queries

626

Table 20-1. The EXPLAIN fields

Traditional JSON Description

id select_id a numeric identifier that shows which part of the query the table

or subquery is part of. the top-level tables have id = 1, the first

subquery has id = 2, and so forth. in case of a union, the id will

be NULL with the table value set to <unionM,N> (see also the

table column) for the row that represents the aggregation of the

union result.

select_

type

this shows how the table will be included in the overall statement.

the known select types will be discussed later in the “select

types” section. For the JsOn format, the select type is implied

by the structure of the JsOn document and from fields such as

dependent and cacheable.

dependent Whether it is a dependent subquery, that is, it depends on the

outer parts of the query.

cacheable Whether the result of the subquery can be cached or it must be

reevaluated for each row in the outer query.

(continued)

 EXPLAIN Fields
The first step to use the EXPLAIN statement constructively in your work to improve your

queries is to understand what information is available. The information ranges from an

id to make a reference to the query parts to details about the indexes that can be used for

the query compared to what is used and what optimizer features are applied.

Do not worry if you cannot recall all the details after reading the definitions the first

time. Most of the fields are quite self-explanatory, so you can make a qualified guess

at the data they represent. As you analyze some queries yourself, you will also quickly

become familiar with the information. Table 20-1 lists all the fields included in the

traditional format as well as some common fields from the JSON format.

Chapter 20 analyzing Queries

627

(continued)

Traditional JSON Description

table table_name the name of the table or subquery. if an alias has been specified,

it is the alias that is used. this ensures that each table name is

unique for a given value of the id column. special cases include

unions, derived tables, and materialized subqueries where the

table name is <unionM,N>, <derivedN>, and <subqueryN>,

respectively, where n and M refer to the ids of earlier parts of the

query plan.

partitions partitions the partitions that will be included for the query. you can use this

to determine whether partition pruning is applied as expected.

type access_type how the data is accessed. this shows how the optimizer has

decided to limit the number of rows that are examined in the table.

the types will be discussed in the “access types” section.

possible_

keys

possible_

keys

a list of the indexes that are candidates to be used for the table.

a key name using the schema <auto_key0> means an auto-

generated index is available.

key key the index(es) chosen for the table. a key name using the schema

<auto_key0> means an auto-generated index is used.

key_len key_length the number of bytes that are used of the index. For indexes that

consist of multiple columns, the optimizer may only be able to use

a subset of the columns. in that case, the key length can be used

to determine how much of the index is useful for this query. if the

column in the index supports NULL values, 1 byte is added to the

length compared to the case of a NOT NULL column.

used_key_

parts

the columns in the index that are used.

ref ref What the filtering is performed against. this can, for example, be a

constant for a condition like <table>.<column> = 'abc' or a

name of a column in another table in case of a join.

Table 20-1. (continued)

Chapter 20 analyzing Queries

628

Table 20-1. (continued)

Traditional JSON Description

rows rows_

examined_

per_scan

an estimate of the number of rows that is the result of including

the table. For a table that is joined to an earlier table, it is the

number of rows estimated to be found per join. a special case

is when the reference is the primary key or a unique key on the

table, in which case the row estimate is exactly 1.

rows_

produced_

per_join

the estimated number of rows resulting from the join. effectively

the number of loops expected multiplied with rows_examined_

per_scan and the percentage of rows filtered.

filtered filtered this is an estimate of how many of the examined rows will be

included. the value is in percent, so that for a value of 100.00 all

examined rows will be returned. a value of 100.00 is the optimal,

and the worst value is 0.

note: the rounding of the value in the traditional format depends

on the client you use. MysQl shell will, for example, return 100

where the mysql command-line client returns 100.00.

cost_info a JsOn object with the breakdown of the cost of the query part.

Extra additional information about the decisions of the optimizer.

this can include information about the sorting algorithm used,

whether a covering index is used, and so on. the most common

of the supported values will be discussed in the section “extra

information.”

message information that is in the Extra column for the traditional output

that does not have a dedicated field in the JsOn output. an

example is Impossible WHERE.

using_

filesort

Whether a file sort is used.

using_index Whether a covering index is used.

(continued)

Chapter 20 analyzing Queries

629

Some of the information appears at first to be missing in the JSON format as the

field only exists for the traditional format. That is not the case; instead the information

is available using other means, for example, several of the messages in Extra have their

own field in the JSON format. Other Extra messages use the message field. Some of the

fields that are not included in the table for the JSON output will be mentioned when

discussing the information in the Extra column later in this section.

In general, Boolean fields in the JSON-formatted output are omitted, if the value is

false; one exception is for cacheable as a non-cacheable subquery or union indicates a

higher cost compared to the cacheable cases.

For the JSON output, there are also fields used to group information for an operation.

The operations range from accessing a table to complex operations that group several

operations. Some of the common operations with examples of what triggers them are

• table: Access a table. This is the lowest level of the operations.

• query_block: The highest-level concept with one query block

corresponding to an id for the traditional format. All queries have at

least one query block.

• nested_loop: A join operation.

• grouping_operation: The operation, for example, resulting from a

GROUP BY clause.

• ordering_operation: The operation, for example, resulting for an

ORDER BY clause.

Traditional JSON Description

using_

temporary_

table

Whether an operation such as a subquery or sorting requires an

internal temporary table.

attached_

condition

the WHERE clause associated with the part of the query.

used_

columns

the columns required from the table. this is useful to see if you

are close to be able to use a covering index.

Table 20-1. (continued)

Chapter 20 analyzing Queries

630

• duplicates_removal: The operation, for example, resulting when

using the DISTINCT keyword.

• windowing: The operation resulting from using window functions.

• materialized_from_subquery: Execute a subquery and materialize

the result.

• attached_subqueries: A subquery that is attached to the rest of the

query. This, for example, happens with clauses such as IN (SELECT

...) for the subquery inside the IN clause.

• union_result: For queries using UNION to combine the result of two

or more queries. Inside the union_result block, there is a query_

specifications block with the definition of each query in the union.

The fields in Table 20-1 and the list of complex operations are not comprehensive

for the JSON format, but it should give you a good idea of the information available.

In general, the field names carry information in themselves, and combining with the

context where they occur is usually enough to understand the meaning of the field. The

values of some of the fields deserve some more attention though – starting with the

select types.

 Select Types
The select type shows what kind of query block each part of the query is. A part of a

query can in this context include several tables. For example, if you have a simple query

joining a list of tables but not using constructs such as subqueries, then all tables will

be in the same (and only) part of the query. Each part of the query gets each own id

(select_id in the JSON output).

There are several select types. For most of them, there is no direct field in the JSON

output; however, it is possible to derive the select type from the structure and some of

the other fields. Table 20-2 shows the currently existing select types with hints how to

derive the type from the JSON output. In the table, the value of the Select Type column is

the value used for the select_type column in the traditional output format.

Chapter 20 analyzing Queries

631

Table 20-2. EXPLAIN select types

Select Type JSON Description

SIMPLE For SELECT queries not using derived tables,

subqueries, unions, or similar.

PRIMARY For queries using subqueries or unions, the primary part

is the outermost part.

INSERT For INSERT statements.

DELETE For DELETE statements.

UPDATE For UPDATE statements.

REPLACE For REPLACE statements.

UNION For union statements, the second or later SELECT

statement.

DEPENDENT

UNION

dependent=true For union statements, the second or later SELECT

statement where it depends on an outer query.

UNION RESULT union_result the part of the query that aggregates the results from

the union SELECT statements.

SUBQUERY For SELECT statements in subqueries.

DEPENDENT

SUBQUERY

dependent=true For dependent subqueries, the first SELECT statement.

DERIVED a derived table – a table created through a query but

otherwise behaves like a normal table.

DEPENDENT

DERIVED

dependent=true a derived table dependent on another table.

MATERIALIZED materialized_

from_subquery

a materialized subquery.

UNCACHEABLE

SUBQUERY

cacheable=false a subquery where the result must be evaluated for each

row in the outer query.

UNCACHEABLE

UNION

cacheable=false For a union statement, a second or later SELECT

statement that is part of an uncacheable subquery.

Chapter 20 analyzing Queries

632

Some of the select types can be taken just as information to make it easier to

understand which part of the query you are looking at. This, for example, includes

PRIMARY and UNION. However, some of the select types indicate that it is an expensive

part of the query. This particularly applies to the uncacheable types. Dependent types

also mean that the optimizer has less flexibility when deciding where in the execution

plan to add the table. If you have slow queries and you see uncacheable or dependent

parts, it can be worth looking into whether you can rewrite those parts or split the query

into two.

Another important piece of information is how the tables are accessed.

 Access Types
The table access types were already encountered when Visual Explain was discussed.

They show whether a query accesses the table using an index, scan, and similar. Since

the cost associated with each access type varies greatly, it is also one of the important

values to look for in the EXPLAIN output to determine which parts of the query to work on

to improve the performance.

The rest of this subsection summarizes the access types in MySQL. The headings are

the values used in the type column in the traditional format. For each access type, there

is an example that uses that access type.

 system

The system access type is used with tables that have exactly one row. This means the

table can be treated as a constant. The Visual Explain cost, message, and color are as

follows:

• Cost: Very low

• Message: Single Row (system constant)

• Color: Blue

An example of a query using the system access type is

SELECT *
 FROM (SELECT 1) my_table

The system access type is a special case of the const access type.

Chapter 20 analyzing Queries

633

 const

At most one row is matched for the table, for example, when there is a filter on a single

value of the primary key or a unique index. The Visual Explain cost, message, and color

are as follows:

• Cost: Very low

• Message: Single Row (constant)

• Color: Blue

An example of a query using the const access type is

SELECT *
 FROM world.city

 WHERE ID = 130;

 eq_ref

The table is the right-hand table in a join where the condition on the table is on a

primary key or not null unique index. The Visual Explain cost, message, and color are as

follows:

• Cost: Low

• Message: Unique Key Lookup

• Color: Green

An example of a query using the eq_ref access type is

SELECT *
 FROM world.city

 STRAIGHT_JOIN world.country

 ON CountryCode = Code;

The eq_ref access type is a specialized case of the ref access type where only one

row can be returned per lookup.

Chapter 20 analyzing Queries

634

 ref

The table is filtered by a nonunique secondary index. The Visual Explain cost, message,

and color are as follows:

• Cost: Low to medium

• Message: Non-Unique Key Lookup

• Color: Green

An example of a query using the ref access type is

SELECT *
 FROM world.city

 WHERE CountryCode = 'AUS';

 ref_or_null

The same as ref but the filtered column may also be NULL. The Visual Explain cost,

message, and color are as follows:

• Cost: Low to medium

• Message: Key Lookup + Fetch NULL Values

• Color: Green

An example of a query using the ref_or_null access type is

SELECT *
 FROM sakila.payment

 WHERE rental_id = 1

 OR rental_id IS NULL;

 index_merge

The optimizer chooses a combination of two or more indexes to resolve a filter that

includes an OR or AND between columns in different indexes. The Visual Explain cost,

message, and color are as follows:

Chapter 20 analyzing Queries

635

• Cost: Medium

• Message: Index Merge

• Color: Green

An example of a query using the index_merge access type is

SELECT *
 FROM sakila.payment

 WHERE rental_id = 1

 OR customer_id = 5;

While the cost is listed as medium, one of the more common severe performance

issues is a query usually using a single index or doing a full table scan and the index

statistics becoming inaccurate, so the optimizer chooses an index merge. If you have

a poorly performing query using an index merge, try to tell the optimizer to ignore the

index merge optimization or the used indexes and see if that helps or analyze the table

to update the index statistics. Alternatively, the query can be rewritten to a union of two

queries, with each query using a part of the filter. An example of this will be shown in

Chapter 24.

 fulltext

The optimizer chooses a full text index to filter the table. The Visual Explain cost,

message, and color are as follows:

• Cost: Low

• Message: Fulltext Index Search

• Color: Yellow

An example of a query using the fulltext access type is:

SELECT *
 FROM sakila.film_text

 WHERE MATCH(title, description)

 AGAINST ('Circus' IN BOOLEAN MODE);

Chapter 20 analyzing Queries

636

 unique_subquery

For a subquery inside an IN operator where the subquery returns the value of a primary

key or unique index. In MySQL 8 these queries are usually rewritten by the optimizer,

so unique_subquery requires disabling the materialization and semijoin optimizer

switches. The Visual Explain cost, message, and color are as follows:

• Cost: Low

• Message: Unique Key Lookup into table of subquery

• Color: Orange

An example of a query using the unique_subquery access type is

SET optimizer_switch = 'materialization=off,semijoin=off';

SELECT *
 FROM world.city

 WHERE CountryCode IN (

 SELECT Code

 FROM world.country

 WHERE Continent = 'Oceania');

SET optimizer_switch = 'materialization=on,semijoin=on';

The unique_subquery access method is a special case of the index_subquery

method for the case where a primary or unique index is used.

 index_subquery

For a subquery inside an IN operator where the subquery returns the value of a

secondary nonunique index. In MySQL 8 these queries are usually rewritten by the

optimizer, so unique_subquery requires disabling the materialization and semijoin

optimizer switches. The Visual Explain cost, message, and color are as follows:

• Cost: Low

• Message: Nonunique Key Lookup into table of subquery

• Color: Orange

Chapter 20 analyzing Queries

637

An example of a query using the index_subquery access type is

SET optimizer_switch = 'materialization=off,semijoin=off';

SELECT *
 FROM world.country

 WHERE Code IN (

 SELECT CountryCode

 FROM world.city

 WHERE Name = 'Sydney');

SET optimizer_switch = 'materialization=on,semijoin=on';

 range

The range access type is used when an index is used to look up several values either in

sequence or in groups. It is used both for explicit ranges like ID BETWEEN 1 AND 10, for

IN clauses, or where several conditions on the same column are separated by OR. The

Visual Explain cost, message, and color are as follows:

• Cost: Medium

• Message: Index Range Scan

• Color: Orange

An example of a query using the range access type is

SELECT *
 FROM world.city

 WHERE ID IN (130, 3805);

The cost of using range access largely depends on how many rows are included in

the range. In one extreme, the range scan only matches a single row using the primary

key, so the cost is very low. In the other extreme, the range scan includes a large part of

the table using a secondary index in which case it can end up being cheaper to perform a

full table scan.

The range access type is related to the index access type with the difference being

whether partial or a full scan is required.

Chapter 20 analyzing Queries

638

 index

The optimizer has chosen to perform a full index scan. This may be chosen in

combination of using a covering index. The Visual Explain cost, message, and color are

as follows:

• Cost: High

• Message: Full Index Scan

• Color: Red

An example of a query using the index access type is

SELECT ID, CountryCode

 FROM world.city;

Since an index scan requires a second lookup using the primary key, it can become

very expensive unless the index is a covering index for the query, to the extent that it

ends up being cheaper to perform a full table scan.

 ALL

The most basic access type is to scan all rows for the table. It is also the most expensive

access type, and for this reason the type is written in all uppercase. The Visual Explain

cost, message, and color are as follows:

• Cost: Very high

• Message: Full Table Scan

• Color: Red

An example of a query using the ALL access type is

SELECT *
 FROM world.city;

If you see a table other than the first table using a full table scan, it is usually a red

flag that indicates that either there is a missing condition on the table or there are no

indexes that can be used. Whether ALL is a reasonable access type for the first table

depends on how much of the table you need for the query; the larger the part of the table

is required, the more reasonable a full table scan is.

Chapter 20 analyzing Queries

639

Note While a full table scan is considered the most expensive access type, it is
together with primary key lookups the cheapest per row. so, if you genuinely need
to access most or all of the table, a full table scan is the most effective way to read
the rows.

That concludes the discussion of the access types for now. The access types will

be referenced again when looking at EXPLAIN examples later in this chapter as well as

later in the book when looking at optimizing queries, for example, in Chapter 24. In the

meantime, let’s look at the information in the Extra column.

 Extra Information
The Extra column in the traditional output format is a catch-all bin for information

that does not have its own column. When the JSON format was introduced, there was

no reason to keep it as it was easy to introduce additional fields and it is not necessary

to include all fields for every output. For that reason, the JSON format does not have an

Extra field but instead has a range of fields. A few leftover messages have been left for a

generic message field.

Note the information available in the Extra column is in some cases storage
engine dependent or only used in rare cases. this discussion will only cover the
most commonly encountered messages. For a full list of messages, refer to the
MysQl reference manual at https://dev.mysql.com/doc/refman/en/
explain-output.html#explain-extra-information.

Some of the more commonly occurring messages include

• Using index: When a covering index is used. For the JSON format,

the using_index field is set to true.

• Using index condition: When an index is used to test whether it is

necessary to read the full row. This is, for example, used when there

is a range condition on an indexed column. For the JSON format, the

index_condition field is set with the filter condition.

Chapter 20 analyzing Queries

https://dev.mysql.com/doc/refman/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/en/explain-output.html#explain-extra-information

640

• Using where: When a WHERE clause is applied to the table without

using an index. This may be an indication that the indexes on the

table are not optimal. In the JSON format, the attached_condition

field is set with the filter condition.

• Using index for group-by: When a loose index scan is used to

resolve GROUP BY or DISTINCT. In the JSON format, the using_index_

for_group_by field is set to true.

• Using join buffer (Block Nested Loop): This means that a join is

made where no index can be used, so the join buffer is used instead.

Tables with this message are candidates to have an index added. For

the JSON format, the using_join_buffer field is set to Block Nested

Loop. One thing to be aware of is that when a hash join is used, then

the traditional and JSON-formatted outputs will still show that a

block nested loop is used. To see whether it is an actual block nested

loop join or a hash join, you need to use the tree-formatted output.

• Using join buffer (Batched Key Access): This means that a join

is using the Batched Key Access (BKA) optimization. To enable the

Batched Key Access optimization, you must enable the mrr (defaults

to on) and batch_key_access (defaults to off) and disable the mrr_

cost_based (defaults to on) optimizer switches. The optimization

requires an index for the join, so unlike using the join buffer for a

block nested loop, using the Batched Key Access algorithm is not a

sign of expensive access to the table. For the JSON format, the using_

join_buffer field is set to Batched Key Access.

• Using MRR: The Multi-Range Read (MRR) optimization is used. This

is sometimes used to reduce the amount of random I/O for range

conditions on secondary indexes where the full row is needed. The

optimization is controlled by the mrr and mrr_cost_based optimizer

switches (both are enabled by default). For the JSON format, the

using_MRR field is set to true.

• Using filesort: MySQL uses an extra pass to determine how to

retrieve the rows in the correct order. This, for example, happens with

sorting by a secondary index; and the index is not a covering index.

For the JSON format, the using_filesort field is set to true.

Chapter 20 analyzing Queries

641

• Using temporary: An internal temporary table is used to store the

result of a subquery, for sorting, or for grouping. For sorting and

grouping, the use of an internal temporary table can sometimes be

avoided by adding an index or rewriting the query. For the JSON

format, the using_temporary_table field is set to true.

• sort_union(...), Using union(...), Using intersect(...): These

three messages are used with index merges to say how the index merge

is performed. For either message, information about the indexes

involved in the index merge is included inside the parentheses. For the

JSON format, the key field specifies the method and indexes used.

• Recursive: The table is part of a recursive common table expression

(CTE). For the JSON format, the recursive field is set to true.

• Range checked for each record (index map: 0x1): This happens

when you have a join where there is a condition on an indexed

column of the second table that depends on the value of a column

from the first table, for example, with an index on t2.val2: SELECT

* FROM t1 INNER JOIN t2 WHERE t2.val2 < t1.val1; This is

what triggers the NO_GOOD_INDEX_USED counter in the Performance

Schema statement event tables to increment. The index map is a

bitmask that indicates which indexes are candidates for the range

check. The index numbers are 1-based as shown by SHOW INDEXES.

When you write out the bitmask, the index numbers with the bit set

are the candidates. For the JSON format, the range_checked_for_

each_record field is set to the index map.

• Impossible WHERE: When there is a filter that cannot possibly be true,

for example, WHERE 1 = 0. This also applies if the value in the filter is

outside the range supported by the data type, for example, WHERE ID

= 300 for a tinyint data type. For the JSON format, the message is

added to the message field.

• Impossible WHERE noticed after reading const tables: The same

as Impossible WHERE except it applies after resolving the tables using

the system or const access method. An example is SELECT * FROM

(SELECT 1 AS ID) a INNER JOIN city USING (ID) WHERE a.id =

130; For the JSON format, the message is added to the message field.

Chapter 20 analyzing Queries

642

• Impossible HAVING: The same as Impossible WHERE except it applies

to a HAVING clause. For the JSON format, the message is added to the

message field.

• Using index for skip scan: When the optimizer chooses to

use multiple range scans similar to a loose index scan. It can, for

example, be used for a covering index where the first column of the

index is not used for the filter condition. This method is available in

MySQL 8.0.13 and later. For the JSON format, the using_index_for_

skip_scan field is set to true.

• Select tables optimized away: This message means that MySQL

was able to remove the table from the query because only a single

row will result, and that row can be generated from a deterministic

set of rows. It usually occurs when only the minimum and/or

maximum values of an index are required from the table. For the

JSON format, the message is added to the message field.

• No tables used: For subqueries that do not involve any tables, for

example, SELECT 1 FROM dual; For the JSON format, the message is

added to the message field.

• no matching row in const table: For a table where the system

or const access type is possible but there are no rows matching the

condition. For the JSON format, the message is added to the message

field.

Tip at the time of writing, you need to use the tree-formatted output to see if a
join that does not use indexes is using the hash join algorithm.

That concludes the discussion about the meaning of the output of the EXPLAIN

statement. All there is left is to start using it to examine the query plans.

Chapter 20 analyzing Queries

643

 EXPLAIN Examples
To finish off the discussion of query plans, it is worth going through a few examples to

get a better feeling of how you can put all of it together. The examples here are meant as

an introduction. Further examples will occur in the remainder of the book, particularly

Chapter 24.

 Single Table, Table Scan
As the first example, consider a query on the city table in the world sample database

with a condition on the non-indexed column Name. Since there is no index that can

be used, it will require a full table scan to evaluate the query. An example of a query

matching these requirements is

SELECT *
 FROM world.city

 WHERE Name = 'London';

Listing 20-5 shows the traditional EXPLAIN output for the query.

Listing 20-5. The EXPLAIN output for a single table with a table scan

mysql> EXPLAIN

 SELECT *
 FROM world.city

 WHERE Name = 'London'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 4188

Chapter 20 analyzing Queries

644

 filtered: 10

 Extra: Using where

1 row in set, 1 warning (0.0007 sec)

The output has the access type set to ALL which is also what would be expected since

there are no conditions on columns with indexes. It is estimated that 4188 rows will

be examined (the actual number is 4079) and for each row a condition from the WHERE

clause will be applied. It is expected that 10% of the rows examined will match the WHERE

clause (note that depending on the client used, the output for the filtered column may

say 10 or 10.00). Recall from the optimizer discussion in Chapter 17 that the optimizer

uses default values to estimate the filtering effect of various conditions, so you cannot

use the filtering value directly to estimate whether an index is useful.

The corresponding Visual Explain diagram can be seen in Figure 20-8.

Figure 20-8. Visual Explain diagram for a single table with a table scan

The full table scan is shown by a red Full Table Scan box, and it can be seen that the

cost is estimated to be 425.05.

This query just returns two rows (the table has a London in England and one in

Ontario, Canada). What happens if all cities in a single country are requested instead?

 Single Table, Index Access
The second example is similar to the first except the filter condition is changed to use

the CountryCode column which has a secondary nonunique index. This should make it

cheaper to access matching rows. For this example, all German cities will be retrieved:

SELECT *
 FROM world.city

 WHERE CountryCode = 'DEU';

Chapter 20 analyzing Queries

645

Listing 20-6 shows the traditional EXPLAIN output for the query.

Listing 20-6. The EXPLAIN output for a single table with index lookups

mysql> EXPLAIN

 SELECT *
 FROM world.city

 WHERE CountryCode = 'DEU'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

 key_len: 3

 ref: const

 rows: 93

 filtered: 100

 Extra: NULL

1 row in set, 1 warning (0.0008 sec)

This time the possible_keys column shows that the CountryCode index can be used

for the query, and the key column shows that the index is used. The access type is ref

to reflect that a nonunique index is used for the table access. It is estimated that 93 rows

will be accessed, which is exact as the optimizer asks InnoDB how many rows will match.

The filtered column shows that the index does a perfect job of filtering the table. The

corresponding Visual Explain diagram is shown in Figure 20-9.

Chapter 20 analyzing Queries

646

Despite returning more than 45 times as many rows as the first example, the cost is

only estimated as 28.05 or less than one-tenth of the cost of a full table scan.

What happens if only the ID and CountryCode columns are used?

 Two Tables and a Covering Index
If there is an index that includes all columns required from the table, then it is called

a covering index. MySQL will use this to avoid retrieving the whole row. Since the

CountryCode index of the city table is a nonunique index, it also includes the ID column

as it is the primary key. To make the query a little more realistic, the query will also

include the country table and filter the countries included based on the continent. An

example of such a query is

SELECT ci.ID

 FROM world.country co

 INNER JOIN world.city ci

 ON ci.CountryCode = co.Code

 WHERE co.Continent = 'Asia';

Listing 20-7 shows the traditional EXPLAIN output for the query.

Listing 20-7. The EXPLAIN output for a simple join between two tables

mysql> EXPLAIN

 SELECT ci.ID

 FROM world.country co

 INNER JOIN world.city ci

Figure 20-9. Visual Explain diagram for a single table with index lookup

Chapter 20 analyzing Queries

647

 ON ci.CountryCode = co.Code

 WHERE co.Continent = 'Asia'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: co

 partitions: NULL

 type: ALL

possible_keys: PRIMARY

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 239

 filtered: 14.285715103149414

 Extra: Using where

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: ci

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

 key_len: 3

 ref: world.co.Code

 rows: 18

 filtered: 100

 Extra: Using index

The query plan shows that the optimizer has chosen to start with a full table scan

on the co (country) table and to use the CountryCode index for the join on the ci (city)

table. What is special here is that the Extra column includes Using index. So it is not

necessary to read the full row of the city table. Notice also that the key length is 3 (bytes)

which is the width of the CountryCode column. The corresponding Visual Explain

diagram can be seen in Figure 20-10.

Chapter 20 analyzing Queries

648

The key_len field does not include the primary key part of the index even though it is

used. It is however useful to see how much of a multicolumn index is used.

 Multicolumn Index
The countrylanguage table has a primary key that includes the CountryCode and

Language columns. Imagine you want to find all languages spoken in a single country; in

that case you need to filter on CountryCode but not on Language. The index can still be

used to perform the filtering, and you can use the key_len field of the EXPLAIN output to

see how much of the index is used. A query that can be used to find all languages spoken

in China is

SELECT *
 FROM world.countrylanguage

 WHERE CountryCode = 'CHN';

Listing 20-8 shows the traditional EXPLAIN output for the query.

Figure 20-10. Visual Explain diagram for a simple join between two tables

Chapter 20 analyzing Queries

649

Listing 20-8. The EXPLAIN output using part of a multicolumn index

mysql> EXPLAIN

 SELECT *
 FROM world.countrylanguage

 WHERE CountryCode = 'CHN'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: countrylanguage

 partitions: NULL

 type: ref

possible_keys: PRIMARY,CountryCode

 key: PRIMARY

 key_len: 3

 ref: const

 rows: 12

 filtered: 100

 Extra: NULL

The total width of the primary key is 3 bytes from the CountryLanguage column and

30 bytes from the Language column. Since the key_len column shows that only 3 bytes is

used, it can be concluded only the CountryLanguage part of the index is used for filtering

(the used part of the index is always the leftmost part). In Visual Explain you need to hover

over the table in question to get the extended information as shown in Figure 20- 11.

Chapter 20 analyzing Queries

650

In the figure, look for the Used Key Parts label under Key/Index: PRIMARY. This

directly shows that only the CountryCode column of the index is used.

As a final example, let’s return to the query that was used as an example when going

through the EXPLAIN formats.

 Two Tables with Subquery and Sorting
The example query that has been used extensively earlier in the chapter will be used to

round off the discussion about EXPLAIN. The query uses a mix of various features, so it

triggers several parts of the information that has been discussed. It is also an example of

a query with multiple query blocks. As a reminder, the query is repeated here.

The output of the traditional EXPLAIN format is repeated in Listing 20-9.

Figure 20-11. Visual Explain diagram for using part of a multicolumn index

Chapter 20 analyzing Queries

651

Listing 20-9. The EXPLAIN output when joining a subquery and a table

mysql> EXPLAIN

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

*************************** 1. row ***************************
 id: 1

 select_type: PRIMARY

 table: <derived2>

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 10

 filtered: 100

 Extra: Using temporary; Using filesort

*************************** 2. row ***************************
 id: 1

 select_type: PRIMARY

 table: ci

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

Chapter 20 analyzing Queries

652

 key_len: 3

 ref: co.Code

 rows: 18

 filtered: 100

 Extra: NULL

*************************** 3. row ***************************
 id: 2

 select_type: DERIVED

 table: country

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 239

 filtered: 14.285715103149414

 Extra: Using where; Using filesort

The Visual Explain diagram for the query is repeated in Figure 20-12. Before

proceeding to read the analysis of the output, you are encouraged to study it on your

own.

Chapter 20 analyzing Queries

653

The query plan starts out with the subquery that uses the country table to find the

ten smallest countries by area. The subquery is given the table label <derived2>, so you

will need to find the row (could be several rows for other queries) with id = 2 which is

row 3 in this case. Row 3 has the select type set to DERIVED, so it is a derived table; that is

a table created through a query but otherwise behaves like a normal table. The derived

table is generated using a full table scan (type = ALL) with a WHERE clause applied to

each row, followed by a file sort. The resulting derived table is materialized (visible from

Visual Explain) and called co.

Figure 20-12. Visual Explain diagram for joining a subquery and a table

Chapter 20 analyzing Queries

654

Once the derived table has been constructed, it is used as the first table for the join

with the ci (city) table. You can see that from the ordering of the rows with <derived2>

in row 1 and ci in row 2. For each row in the derived table, it is estimated that 18 rows

will be examined in the ci table using the CountryCode index. The CountryCode index is

a nonunique index which can be seen from the label for the table box in Visual Explain,

and the type column has the value ref. It is estimated that the join will return 180 rows

which comes from the ten rows in the derived table multiplied with the estimate of 18

rows per index lookup in the ci table.

Finally, the result is sorted using an internal temporary table and a file sort. The total

cost of the query is estimated to be 247.32.

Thus far, the discussion has been on what the query plan ended up being. If you

want to know how the optimizer got there, you will need to examine the optimizer trace.

 Optimizer Trace
The optimizer trace is not needed very often, but sometimes when you encounter an

unexpected query plan, it can be useful to see how the optimizer got there. That is what

the optimizer trace shows.

Tip Most often when a query plan is not what you expect, it is because of a
missing or wrong WHERE clause, a missing or wrong join condition, or some other
kind of error in the query or because the index statistics are not correct. Check
these things before diving into the gory details of the optimizer’s decision process.

The optimizer trace is enabled by setting the optimizer_trace option to 1. This

makes the optimizer record the trace information for the subsequent queries (until

optimizer_trace is disabled again), and the information is made available through the

information_schema.OPTIMIZER_TRACE table. The maximum number of traces that are

retained is configured with the optimizer_trace_limit option (defaults to 1).

You can choose between executing the query you need the optimizer trace for and

using EXPLAIN to get the query plan. The latter is very useful as it gives you both the

query plan and the optimizer trace. A typical workflow to get the optimizer trace for a

query is as follows:

Chapter 20 analyzing Queries

655

 1. Enable the optimizer_trace option for the session.

 2. Execute EXPLAIN for the query you want to investigate.

 3. Disable the optimizer_trace option again.

 4. Retrieve the optimizer trace from the information_schema.

OPTIMIZER_TRACE table.

The information_schema.OPTIMIZER_TRACE table includes four columns:

• QUERY: The original query.

• TRACE: A JSON document with the trace information. There will be

more about the trace shortly.

• MISSING_BYTES_BEYOND_MAX_MEM_SIZE: The size (in bytes) of the

recorded trace is limited to the value of the optimizer_trace_max_

mem_size option (defaults to 1 MiB in MySQL 8). This column shows

how much more memory is required to record the full trace. If the

value is greater than 0, increase the optimizer_trace_max_mem_size

option with that amount.

• INSUFFICIENT_PRIVILEGES: Whether you were missing privileges to

generate the optimizer trace.

The table is created as a temporary table, so the traces are unique to the session.

Listing 20-10 shows an example of obtaining the optimizer trace for a query (the

same as was used as the recurring example query in the previous sections). The

optimizer trace output has been truncated here as it is more than 15000 characters and

almost 500 lines long. Similarly, the output of the EXPLAIN statement has been omitted

as it is the same as previously shown and it is not important for this discussion. The full

output is included in the file listing_20_10.txt and the trace itself in listing_20_10.

json in this book’s GitHub repository.

Listing 20-10. Obtaining the optimizer trace for a query

mysql> SET SESSION optimizer_trace = 1;

Query OK, 0 rows affected (0.0003 sec)

mysql> EXPLAIN

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

Chapter 20 analyzing Queries

656

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5\G

...

mysql> SET SESSION optimizer_trace = 0;

Query OK, 0 rows affected (0.0002 sec)

mysql> SELECT * FROM information_schema.OPTIMIZER_TRACE\G

*************************** 1. row ***************************
 QUERY: EXPLAIN

SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM world.city ci

 INNER JOIN

 (SELECT Code, Name

 FROM world.country

 WHERE Continent = 'Europe'

 ORDER BY SurfaceArea

 LIMIT 10

) co ON co.Code = ci.CountryCode

 ORDER BY ci.Population DESC

 LIMIT 5

 TRACE: {

...

}

MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0

 INSUFFICIENT_PRIVILEGES: 0

1 row in set (0.0436 sec)

Chapter 20 analyzing Queries

657

The trace is the most interesting in the result. While there is a lot of information

available, fortunately it is largely self-explanatory, and if you have familiarized yourself

with the JSON-formatted EXPLAIN outputs, there are some similarities. Much of the

information is regarding the cost estimates for the various parts of executing the query.

Where there are multiple possible options, the optimizer calculates the cost for each

choice and chooses the cheapest option. One such example from this trace is for

accessing the ci (city) table. This can be done either through the CountryCode index

or a table scan. The part of the trace for this decision is shown in Listing 20-11 (the

indentation has been reduced).

Listing 20-11. The optimizer trace for choosing the access type for the ci table

"table": "`city` `ci`",

"best_access_path": {

 "considered_access_paths": [

 {

 "access_type": "ref",

 "index": "CountryCode",

 "rows": 18.052,

 "cost": 63.181,

 "chosen": true

 },

 {

 "rows_to_scan": 4188,

 "filtering_effect": [

],

 "final_filtering_effect": 1,

 "access_type": "scan",

 "using_join_cache": true,

 "buffers_needed": 1,

 "resulting_rows": 4188,

 "cost": 4194.3,

 "chosen": false

 }

]

},

Chapter 20 analyzing Queries

658

This shows that it is estimated that on average a little more than 18 rows will be

examined when using the CountryCode index ("access_type": "ref") with a cost of

63.181. For the full table scan ("access_type": "scan"), it is expected that it will be

necessary to examine 4188 rows with a total cost of 4194.3. The "chosen" element shows

that the ref access type has been chosen.

While it is rarely necessary to delve into the details of how the optimizer arrived at

the query plan, it can be useful to learn about how the optimizer works. Occasionally,

it can also be useful to see the estimated cost of other options for the query plan to

understand why they are not chosen.

Tip if you are interested in learning more about using the optimizer traces, you
can read more in the MysQl internals manual at https://dev.mysql.com/
doc/internals/en/optimizer-tracing.html.

Thus far, the whole discussion – except for EXPLAIN ANALYZE – has been about

analyzing the query at the stage before it is executed. If you want to examine the actual

performance, EXPLAIN ANALYZE is usually the best option. Another option is to use the

Performance Schema.

 Performance Schema Events Analysis
The Performance Schema allows you to analyze how much time is spent on each of the

events that are instrumented. You can use that to analyze where time is spent when a

query is executed. This section will examine how you can use the Performance Schema

to analyze a stored procedure to see which of the statements in the procedure take

the longest and how to use the stage events to analyze a single query. At the end of

the section, it will be shown how you can use the sys.ps_trace_thread() procedure

to create a diagram of work done by a thread and how you can use the ps_trace_

statement_digest() to collect statistics for statements with a given digest.

Chapter 20 analyzing Queries

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

659

 Examining a Stored Procedure
It can be challenging to examine the work done by a stored procedure as you cannot

use EXPLAIN directly on the procedure and it may not be obvious which queries will be

executed by the procedure. Instead you can use the Performance Schema. It records

each statement executed and maintains the history in the events_statements_history

table.

Unless you need to store more than the last ten queries per thread, you do not need

to do anything to start the analysis. If the procedure generates more than ten statement

events, you will need to either increase the value of the performance_schema_events_

statements_history_size option (requires a restart), use the events_statements_

history_long table, or use the sys.ps_trace_thread() procedure as explained later.

The remaining part of this discussion assumes you can use the events_statements_

history table.

As an example of examining the queries executed by a stored procedure, consider

the procedure in Listing 20-12. The procedure is also available in the file listing_20_12.

sql which can be sourced into any schema.

Listing 20-12. An example procedure

CREATE SCHEMA IF NOT EXISTS chapter_20;

DELIMITER $$

CREATE PROCEDURE chapter_20.testproc()

 SQL SECURITY INVOKER

 NOT DETERMINISTIC

 MODIFIES SQL DATA

BEGIN

 DECLARE v_iter, v_id int unsigned DEFAULT 0;

 DECLARE v_name char(35) CHARSET latin1;

 SET v_id = CEIL(RAND()*4079);

 SELECT Name

 INTO v_name

 FROM world.city

 WHERE ID = v_id;

Chapter 20 analyzing Queries

660

 SELECT *
 FROM world.city

 WHERE Name = v_name;

END$$

DELIMITER ;

The procedure executes three queries. The first query sets the v_id variable to an

integer between 1 and 4079 (the available ID values in the world.city table). The second

query fetches the name for the city with that id. The third query finds all cities with the

same name as was found in the second query.

If you invoke this procedure in a connection, you can then subsequently analyze the

queries triggered by the procedure and the performance of those queries. For example:

mysql> SELECT PS_CURRENT_THREAD_ID();

+------------------------+

| PS_CURRENT_THREAD_ID() |

+------------------------+

| 83 |

+------------------------+

1 row in set (0.00 sec)

mysql> CALL chapter_20.testproc();

+------+--------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+------+--------+-------------+----------+------------+

| 2853 | Jhelum | PAK | Punjab | 145800 |

+------+--------+-------------+----------+------------+

1 row in set (0.0019 sec)

Query OK, 0 rows affected (0.0019 sec)

The output of the procedure is random, so will differ for each execution. You can then

use the thread id found with the PS_CURRENT_THREAD_ID() function (use sys.ps_thread_

id(NULL) in MySQL 8.0.15 and earlier) to determine which queries were executed.

Listing 20-13 shows how this analysis can be done. You must do this analysis in a

different connection, change THREAD_ID = 83 to use the thread id you found, and change

NESTING_EVENT_ID = 64 in the second query to use the event id from the first query. Some

of the details have been removed from the output to focus on the values of most interest.

Chapter 20 analyzing Queries

661

Listing 20-13. Analyzing the queries executed by a stored procedure

mysql> SELECT *
 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = 83

 AND EVENT_NAME = 'statement/sql/call_procedure'

 ORDER BY EVENT_ID DESC

 LIMIT 1\G

*************************** 1. row ***************************
 THREAD_ID: 83

 EVENT_ID: 64

 END_EVENT_ID: 72

 EVENT_NAME: statement/sql/call_procedure

 SOURCE: init_net_server_extension.cc:95

 TIMER_START: 533823963611947008

 TIMER_END: 533823965937460352

 TIMER_WAIT: 2325513344

 LOCK_TIME: 129000000

 SQL_TEXT: CALL testproc()

 DIGEST: 72fd8466a0e05fe215308832173a3be50e7edad960

408c70078ef94f8ffb52b2

 DIGEST_TEXT: CALL `testproc` ()

...

1 row in set (0.0008 sec)

mysql> SELECT *
 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = 83

 AND NESTING_EVENT_ID = 64

 ORDER BY EVENT_ID\G

*************************** 1. row ***************************
 THREAD_ID: 83

 EVENT_ID: 65

 END_EVENT_ID: 65

 EVENT_NAME: statement/sp/set

...

Chapter 20 analyzing Queries

662

*************************** 2. row ***************************
 THREAD_ID: 83

 EVENT_ID: 66

 END_EVENT_ID: 66

 EVENT_NAME: statement/sp/set

...

*************************** 3. row ***************************
 THREAD_ID: 83

 EVENT_ID: 67

 END_EVENT_ID: 67

 EVENT_NAME: statement/sp/set

...

*************************** 4. row ***************************
 THREAD_ID: 83

 EVENT_ID: 68

 END_EVENT_ID: 68

 EVENT_NAME: statement/sp/set

...

*************************** 5. row ***************************
 THREAD_ID: 83

 EVENT_ID: 69

 END_EVENT_ID: 70

 EVENT_NAME: statement/sp/stmt

 SOURCE: sp_head.cc:2166

 TIMER_START: 533823963993029248

 TIMER_END: 533823964065598976

 TIMER_WAIT: 72569728

 LOCK_TIME: 0

 SQL_TEXT: SELECT Name

 INTO v_name

 FROM world.city

 WHERE ID = v_id

 DIGEST: NULL

 DIGEST_TEXT: NULL

 CURRENT_SCHEMA: db1

Chapter 20 analyzing Queries

663

 OBJECT_TYPE: PROCEDURE

 OBJECT_SCHEMA: db1

 OBJECT_NAME: testproc

 OBJECT_INSTANCE_BEGIN: NULL

 MYSQL_ERRNO: 0

 RETURNED_SQLSTATE: 00000

 MESSAGE_TEXT: NULL

 ERRORS: 0

 WARNINGS: 0

 ROWS_AFFECTED: 1

 ROWS_SENT: 0

 ROWS_EXAMINED: 1

CREATED_TMP_DISK_TABLES: 0

 CREATED_TMP_TABLES: 0

 SELECT_FULL_JOIN: 0

 SELECT_FULL_RANGE_JOIN: 0

 SELECT_RANGE: 0

 SELECT_RANGE_CHECK: 0

 SELECT_SCAN: 0

 SORT_MERGE_PASSES: 0

 SORT_RANGE: 0

 SORT_ROWS: 0

 SORT_SCAN: 0

 NO_INDEX_USED: 0

 NO_GOOD_INDEX_USED: 0

 NESTING_EVENT_ID: 64

 NESTING_EVENT_TYPE: STATEMENT

 NESTING_EVENT_LEVEL: 1

 STATEMENT_ID: 25241

*************************** 6. row ***************************
 THREAD_ID: 83

 EVENT_ID: 71

 END_EVENT_ID: 72

 EVENT_NAME: statement/sp/stmt

 SOURCE: sp_head.cc:2166

Chapter 20 analyzing Queries

664

 TIMER_START: 533823964067422336

 TIMER_END: 533823965880571520

 TIMER_WAIT: 1813149184

 LOCK_TIME: 0

 SQL_TEXT: SELECT *
 FROM world.city

 WHERE Name = v_name

 DIGEST: NULL

 DIGEST_TEXT: NULL

 CURRENT_SCHEMA: db1

 OBJECT_TYPE: PROCEDURE

 OBJECT_SCHEMA: db1

 OBJECT_NAME: testproc

 OBJECT_INSTANCE_BEGIN: NULL

 MYSQL_ERRNO: 0

 RETURNED_SQLSTATE: NULL

 MESSAGE_TEXT: NULL

 ERRORS: 0

 WARNINGS: 0

 ROWS_AFFECTED: 0

 ROWS_SENT: 1

 ROWS_EXAMINED: 4080

CREATED_TMP_DISK_TABLES: 0

 CREATED_TMP_TABLES: 0

 SELECT_FULL_JOIN: 0

 SELECT_FULL_RANGE_JOIN: 0

 SELECT_RANGE: 0

 SELECT_RANGE_CHECK: 0

 SELECT_SCAN: 1

 SORT_MERGE_PASSES: 0

 SORT_RANGE: 0

 SORT_ROWS: 0

 SORT_SCAN: 0

 NO_INDEX_USED: 1

 NO_GOOD_INDEX_USED: 0

Chapter 20 analyzing Queries

665

 NESTING_EVENT_ID: 64

 NESTING_EVENT_TYPE: STATEMENT

 NESTING_EVENT_LEVEL: 1

 STATEMENT_ID: 25242

6 rows in set (0.0008 sec)

The analysis consists of two queries. The first determines the overall information for

the procedure which is done by querying for the latest occurrence (sorting by EVENT_ID)

of the statement/sql/call_procedure event which is the event for calling a procedure.

The second query asks for the events for the same thread that has the event id of the

statement/sql/call_procedure event as the nesting event id. These are the statements

executed by the procedure. By ordering by EVENT_ID, the statements are returned in the

order they are executed.

The query result of the second query shows that the procedure starts out with four

SET statements. Some of these are expected, but there are also some that are triggered by

implicitly setting variables. The last two rows are the most interesting for this discussion

as they show that two queries were executed. First, the city table is queried by its ID

column (the primary key). As expected, it examines one row. Because the result is saved

in the v_name variable, the ROWS_AFFECTED counter is incremented instead of ROWS_SENT.

The second query does not perform as well. It also queries the city table but by

name where there is no index. This results in 4080 rows being examined to return a

single row. The NO_INDEX_USED column is set to 1 to reflect that a full table scan was

performed.

One disadvantage of using this approach to examine stored procedures is that – as

you can see – it can quickly use all ten rows in the history table. One alternative is to

enable the events_statements_history_long consumer and test the procedure on

an otherwise idle test system or disable history logging for the other connections. This

allows you to analyze procedures executing up to 10000 statement events. An alternative

is to use the sys.ps_trace_thread() procedure which also uses the long history but

supports polling while the procedure is executing, so it can collect the events even if the

table is not large enough to hold all events for the duration of the procedure.

This example has been using the statement events to analyze the performance.

Sometimes you need to know what happens at a finer-grained level in which case you

need to start looking at the stage events.

Chapter 20 analyzing Queries

666

 Analyzing Stage Events
If you need to get finer-grained details of where a query spends time, the first step is to

look at the stage events. Optionally, you can also include wait events. Since the step to

work with wait events is essentially the same as for stage events, it is left as an exercise for

the reader to analyze the wait events for a query.

Caution the finer-grained the events you examine, the more overhead they will
have. thus, be careful enabling stage and wait events on production systems.
some wait events, particularly related to mutexes, may also impact the query
enough that they affect the conclusions of the analysis. using wait events to
analyze a query is usually something only performance architects and developers
working with the MysQl source code need to do.

The number of stage events generated is much larger than the number of statement

events. This means that in order to avoid the stage events disappearing from the history

table, it is recommended to perform the analysis on an idle test system and to use the

events_stages_history_long table. This table is disabled by default; to enable it,

enable the corresponding consumer:

mysql> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME IN ('events_stages_current',

 'events_stages_history_long');

Query OK, 2 rows affected (0.0008 sec)

Rows matched: 2 Changed: 2 Warnings: 0

The events_stages_history_long consumer depends on the events_stages_

current consumer, so you will need to enable both. By default, only stage events related

to progress information are enabled. For a general analysis, you will want to enable all of

the stage events:

mysql> UPDATE performance_schema.setup_instruments

 SET ENABLED = 'YES',

 TIMED = 'YES'

Chapter 20 analyzing Queries

667

 WHERE NAME LIKE 'stage/%';

Query OK, 125 rows affected (0.0011 sec)

Rows matched: 125 Changed: 109 Warnings: 0

At this point, the analysis can proceed in much the same way as it was done when

analyzing the stored procedure. For example, consider the following query being

executed by the connection with the Performance Schema thread id equal to 83:

SELECT *
 FROM world.city

 WHERE Name = 'Sydney';

Assuming this is the last executed query, you can get the amount of time spent in

each stage as shown in Listing 20-14. You need to execute this is a separate connection

and change SET @thread_id = 83 to use the thread id for your connection. Other than

the timings obviously being different, then the list of stages your query goes through may

also differ.

Listing 20-14. Finding the stages for the last statement of a connection

mysql> SET @thread_id = 83;

Query OK, 0 rows affected (0.0004 sec)

mysql> SELECT EVENT_ID,

 SUBSTRING_INDEX(EVENT_NAME, '/', -1) AS Event,

 FORMAT_PICO_TIME(TIMER_WAIT) AS Latency

 FROM performance_schema.events_stages_history_long

 WHERE THREAD_ID = @thread_id

 AND NESTING_EVENT_ID = (

 SELECT EVENT_ID

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = @thread_id

 ORDER BY EVENT_ID DESC

 LIMIT 1);

Chapter 20 analyzing Queries

668

+----------+--------------------------------------+-----------+

| EVENT_ID | Event | Latency |

+----------+--------------------------------------+-----------+

| 7193 | Executing hook on transaction begin. | 200.00 ns |

| 7194 | cleaning up | 4.10 us |

| 7195 | checking permissions | 2.60 us |

| 7196 | Opening tables | 41.50 us |

| 7197 | init | 3.10 us |

| 7198 | System lock | 6.50 us |

| 7200 | optimizing | 5.30 us |

| 7201 | statistics | 15.00 us |

| 7202 | preparing | 12.10 us |

| 7203 | executing | 1.18 ms |

| 7204 | end | 800.00 ns |

| 7205 | query end | 500.00 ns |

| 7206 | waiting for handler commit | 6.70 us |

| 7207 | closing tables | 3.30 us |

| 7208 | freeing items | 70.30 us |

| 7209 | cleaning up | 300.00 ns |

+----------+--------------------------------------+-----------+

16 rows in set (0.0044 sec)

The event id, the stage name (removing the two first parts of the full event name for

brevity), and the latency formatted with the FORMAT_PICO_TIME() function (use the sys.

format_time() function in MySQL 8.0.15 and earlier) are selected from the events_

stages_history_long table. The WHERE clause filters on the thread id of the connection

that executed the query and by the nesting event id. The nesting event id is set to the

event id of the latest executed statement for the connection with thread id equal to 83.

The result shows that the slowest part of the query is Sending data which is the stage

where the storage engine finds and sends the rows.

The main issue analyzing queries this way is that you are either limited by the ten

events per thread saved by default or you risk the events being expunged from the long

history table before you are done examining it. The sys.ps_trace_thread() procedure

was created to help with that problem.

Chapter 20 analyzing Queries

669

 Analysis with the sys.ps_trace_thread() Procedure
When you need to analyze a complex query or a stored program executing more than

a few statements, you can benefit from using a tool that automatically collects the

information as the execution progresses. An option to do this from the sys schema is the

ps_trace_thread() procedure.

The procedure loops for a period of time polling the long history tables for new

transactions, statements, stages, and wait events. Optionally, the procedure can also set

up the Performance Schema to include all events and enable the consumers to record

the events. However, since it is usually too much to include all events, it is recommended

to set up the Performance Schema yourself to instrument and consume the events that

are of interest for your analysis.

Another optional feature is to reset the Performance Schema tables at the start of the

monitoring. This can be great if it is acceptable to remove the content of the long history

tables.

When you call the procedure, you must provide the following arguments:

• Thread ID: The Performance Schema thread id that you want to

monitor.

• Out File: A file to write the result to. The result is created using the

dot graph description language.2 This requires that the secure_file_

priv option has been set to allow writing files to the target directory

and the file does not exist and the user executing the procedure has

the FILE privilege.

• Max Runtime: The maximum time to monitor in seconds. There is

support for specifying the value with 1/100 of a second precision. If

the value is set to NULL, the runtime is set to 60 seconds.

• Poll Interval: The interval between polling the history tables. The

value can be set with the precision of 1/100 of a second. If the value is

set to NULL, then the polling interval will be set to one second.

• Refresh: A Boolean whether to reset the Performance Schema tables

used for the analysis.

2 https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29 and
www.graphviz.org/doc/info/lang.html

Chapter 20 analyzing Queries

https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
http://www.graphviz.org/doc/info/lang.html

670

• Auto Setup: A Boolean whether to enable all instruments and

consumers that can be used by the procedure. When enabled, the

current settings are restored when the procedure completes.

• Debug: A Boolean whether to include additional information such as

where in the source code the event is triggered. This is mostly useful

when including wait events.

An example of using the ps_trace_thread() procedure can be seen in Listing 20-15.

While the procedure is executing, the testproc() procedure from earlier is called from

the thread that is being monitored. The example assumes you start out with the default

Performance Schema settings.

Listing 20-15. Using the ps_trace_thread() procedure

Connection 1> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME = 'events_statements_history_long';

Query OK, 1 row affected (0.0074 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Find the Performance Schema thread id for the

-- thread that will be monitored.

Connection 2> SELECT PS_CURRENT_THREAD_ID();

+-----------------+

| PS_THREAD_ID(9) |

+-----------------+

| 32 |

+-----------------+

1 row in set (0.0016 sec)

-- Replace the first argument with the thread id

-- just found.

--

-- Once the procedure returns

-- "Data collection starting for THREAD_ID = 32"

-- (replace 32 with your thread id) invoke the

-- chapter_20.testproc() chapter from connection 2.

Chapter 20 analyzing Queries

671

-- The example is set to poll for 10 seconds. If you

-- need more time, change the third argument to the

-- number of seconds you need.

Connection 1> CALL sys.ps_trace_thread(

 32,

 '/mysql/files/thread_32.gv',

 10, 0.1, False, False, False);

+-------------------+

| summary |

+-------------------+

| Disabled 1 thread |

+-------------------+

1 row in set (0.0316 sec)

+---+

| summary |

+---+

| Data collection starting for THREAD_ID = 32 |

+---+

1 row in set (0.0316 sec)

-- Here, sys.ps_trace_id() blocks – execute the

-- query you want to trace. The output is random.

Connection 2> CALL chapter_20.testproc();

+------+--------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+------+--------+-------------+----------+------------+

| 3607 | Rjazan | RUS | Rjazan | 529900 |

+------+--------+-------------+----------+------------+

1 row in set (0.0023 sec)

Query OK, 0 rows affected (0.0023 sec)

-- Back in connection 1, wait for the sys.ps_trace_id()

-- procedure to complete.

Chapter 20 analyzing Queries

672

+--+

| summary |

+--+

| Stack trace written to /mysql/files/thread_32.gv |

+--+

1 row in set (0.0316 sec)

+--+

| summary |

+--+

| dot -Tpdf -o /tmp/stack_32.pdf /mysql/files/thread_32.gv |

+--+

1 row in set (0.0316 sec)

+--+

| summary |

+--+

| dot -Tpng -o /tmp/stack_32.png /mysql/files/thread_32.gv |

+--+

1 row in set (0.0316 sec)

+------------------+

| summary |

+------------------+

| Enabled 1 thread |

+------------------+

1 row in set (0.0316 sec)

Query OK, 0 rows affected (0.0316 sec)

In this example, only the events_statements_history_long consumer is enabled.

This will allow to record all the statement events that result for calling the testproc()

procedure as it was done manually earlier. The thread id that will be monitored is

obtained using the PS_CURRENT_THREAD_ID() function (in MySQL 8.0.15 and earlier, use

sys.ps_thread_id(NULL)).

The ps_trace_thread() procedure is invoked for thread id 32 with the output

written to /mysql/files/thread_32.gv. The procedure polls every 0.1 second for 10

seconds, and all the optional features are disabled.

You will need a program that understands the dot format to convert it into an image.

One option is the Graphviz toolset which is available from several Linux distributions

Chapter 20 analyzing Queries

673

through the package repository. It can also be downloaded from the project’s

homepage, www.graphviz.org/, for Linux, Microsoft Windows, and macOS, Solaris, and

FreeBSD. The output of the procedure shows examples of how to convert the file with the

dot graph definition to either a PDF or PNG file. Figure 20-13 shows the generated graph

for the CALL testproc() statement.

Figure 20-13. The statement graph for the CALL testproc() statement

Chapter 20 analyzing Queries

http://www.graphviz.org/

674

The statement graph includes the same information as when the procedure

was analyzed manually. For a procedure as simple as testproc(), the advantage of

generating the graph is limited, but for more complex procedures or for analyzing

queries with lower-level events enabled, it can be a good way to visualize the flow of the

execution.

Another sys schema procedure that can help you analyze queries is the ps_trace_

statement_digest() procedure.

 Analysis with the ps_trace_statement_digest() Procedure
As a final example of using the Performance Schema to analyze queries, the ps_trace_

statement_digest() procedure from the sys schema will be demonstrated. It takes a

digest and then monitors the events_statements_history_long and events_stages_

history_long tables for events related to statements with that digest. The result of the

analysis includes summary data as well as details such as the query plan for the longest-

running query.

The procedure takes five arguments which are all mandatory. The arguments are

• Digest: The digest to monitor. Statements will be monitored

irrespective of the default schema if their digest matches the one

provided.

• Runtime: How long to monitor for in seconds. No decimals are

allowed.

• Poll Interval: The interval between polling the history tables. The

value can be set with the precision of 1/100 of a second and must be

less than 1 second.

• Refresh: A Boolean whether to reset the Performance Schema tables

used for the analysis.

• Auto Setup: A Boolean whether to enable all instruments and

consumers that can be used by the procedure. When enabled, the

current settings are restored when the procedure completes.

As an example, you can start monitoring with the sys.ps_trace_statement_

digest() procedure and execute the following queries while the monitoring is ongoing

(the example of the monitoring follows):

Chapter 20 analyzing Queries

675

SELECT * FROM world.city WHERE CountryCode = 'AUS';

SELECT * FROM world.city WHERE CountryCode = 'USA';

SELECT * FROM world.city WHERE CountryCode = 'CHN';

SELECT * FROM world.city WHERE CountryCode = 'ZAF';

SELECT * FROM world.city WHERE CountryCode = 'BRA';

SELECT * FROM world.city WHERE CountryCode = 'GBR';

SELECT * FROM world.city WHERE CountryCode = 'FRA';

SELECT * FROM world.city WHERE CountryCode = 'IND';

SELECT * FROM world.city WHERE CountryCode = 'DEU';

SELECT * FROM world.city WHERE CountryCode = 'SWE';

SELECT * FROM world.city WHERE CountryCode = 'LUX';

SELECT * FROM world.city WHERE CountryCode = 'NZL';

SELECT * FROM world.city WHERE CountryCode = 'KOR';

It may vary from execution to execution which of these queries is the slowest.

Listing 20-16 shows an example of using the procedure to monitor for a query

selecting all cities in a given country. In the example, the digest is found using the

STATEMENT_DIGEST() function, but you may also have found it through monitoring based

on the events_statements_summary_by_digest table. It will be left to the procedure to

enable the instruments and consumers needed, and the monitored tables will be reset to

avoid including occurrences of the statement executed before the monitoring starts. The

polling frequency is set to poll every 0.5 second. To reduce the width of the output, the

stage event names have had the stage/sql/ prefix removed, and the dashed lines for the

EXPLAIN output have been made shorter. The unmodified output can be found in the file

listing_20_16.txt in this book’s GitHub repository.

Listing 20-16. Using the ps_trace_statement_digest() procedure

mysql> SET @digest = STATEMENT_DIGEST('SELECT * FROM world.city WHERE

CountryCode = ''AUS''');

Query OK, 0 rows affected (0.0004 sec)

-- Execute your queries once the procedure has started.

mysql> CALL sys.ps_trace_statement_digest(@digest, 60, 0.5, TRUE, TRUE);

Chapter 20 analyzing Queries

676

+-------------------+

| summary |

+-------------------+

| Disabled 1 thread |

+-------------------+

1 row in set (1 min 0.0861 sec)

+--------------------+

| SUMMARY STATISTICS |

+--------------------+

| SUMMARY STATISTICS |

+--------------------+

1 row in set (1 min 0.0861 sec)

+------------+-----------+-----------+-----------+---------------+---------

------+------------+------------+

| executions | exec_time | lock_time | rows_sent | rows_affected | rows_

examined | tmp_tables | full_scans |

+------------+-----------+-----------+-----------+---------------+---------

------+------------+------------+

| 13 | 7.29 ms | 1.19 ms | 1720 | 0 |

1720 | 0 | 0 |

+------------+-----------+-----------+-----------+---------------+---------

------+------------+------------+

1 row in set (1 min 0.0861 sec)

+--------------------------------------+-------+-----------+

| event_name | count | latency |

+--------------------------------------+-------+-----------+

| Sending data | 13 | 2.99 ms |

| freeing items | 13 | 2.02 ms |

| statistics | 13 | 675.37 us |

| Opening tables | 13 | 401.50 us |

| preparing | 13 | 100.28 us |

| optimizing | 13 | 66.37 us |

| waiting for handler commit | 13 | 64.18 us |

| closing tables | 13 | 54.70 us |

Chapter 20 analyzing Queries

677

| System lock | 13 | 54.34 us |

| cleaning up | 26 | 45.22 us |

| init | 13 | 29.54 us |

| checking permissions | 13 | 23.34 us |

| end | 13 | 10.21 us |

| query end | 13 | 8.02 us |

| executing | 13 | 4.01 us |

| Executing hook on transaction begin. | 13 | 3.65 us |

+--------------------------------------+-------+-----------+

16 rows in set (1 min 0.0861 sec)

+---------------------------+

| LONGEST RUNNING STATEMENT |

+---------------------------+

| LONGEST RUNNING STATEMENT |

+---------------------------+

1 row in set (1 min 0.0861 sec)

+-----------+-----------+-----------+-----------+---------------+----------

-----+------------+-----------+

| thread_id | exec_time | lock_time | rows_sent | rows_affected | rows_

examined | tmp_tables | full_scan |

+-----------+-----------+-----------+-----------+---------------+----------

-----+------------+-----------+

| 32 | 1.09 ms | 79.00 us | 274 | 0

| 274 | 0 | 0 |

+-----------+-----------+-----------+-----------+---------------+----------

-----+------------+-----------+

1 row in set (1 min 0.0861 sec)

+--+

| sql_text |

+--+

| SELECT * FROM world.city WHERE CountryCode = 'USA' |

+--+

1 row in set (59.91 sec)

Chapter 20 analyzing Queries

678

+--------------------------------------+-----------+

| event_name | latency |

+--------------------------------------+-----------+

| Executing hook on transaction begin. | 364.67 ns |

| cleaning up | 3.28 us |

| checking permissions | 1.46 us |

| Opening tables | 27.72 us |

| init | 2.19 us |

| System lock | 4.01 us |

| optimizing | 5.11 us |

| statistics | 46.68 us |

| preparing | 7.66 us |

| executing | 364.67 ns |

| Sending data | 528.41 us |

| end | 729.34 ns |

| query end | 729.34 ns |

| waiting for handler commit | 4.38 us |

| closing tables | 16.77 us |

| freeing items | 391.29 us |

| cleaning up | 364.67 ns |

+--------------------------------------+-----------+

17 rows in set (1 min 0.0861 sec)

+--+

| EXPLAIN |

+--+

| {

 "query_block": {

 "select_id": 1,

 "cost_info": {

 "query_cost": "46.15"

 },

 "table": {

 "table_name": "city",

 "access_type": "ref",

 "possible_keys": [

Chapter 20 analyzing Queries

679

 "CountryCode"

],

 "key": "CountryCode",

 "used_key_parts": [

 "CountryCode"

],

 "key_length": "3",

 "ref": [

 "const"

],

 "rows_examined_per_scan": 274,

 "rows_produced_per_join": 274,

 "filtered": "100.00",

 "cost_info": {

 "read_cost": "18.75",

 "eval_cost": "27.40",

 "prefix_cost": "46.15",

 "data_read_per_join": "19K"

 },

 "used_columns": [

 "ID",

 "Name",

 "CountryCode",

 "District",

 "Population"

]

 }

 }

} |

+--+

1 row in set (1 min 0.0861 sec)

Chapter 20 analyzing Queries

680

+------------------+

| summary |

+------------------+

| Enabled 1 thread |

+------------------+

1 row in set (1 min 0.0861 sec)

Query OK, 0 rows affected (1 min 0.0861 sec)

The output starts out with the summary for all the queries found during the analysis.

A total of 13 executions were detected using a total of 7.29 milliseconds. The overall

summary also includes the aggregates for the time spent for various stages. The next part

of the output are the details for the slowest of the 13 executions. The output concludes

with the JSON-formatted query plan for the slowest of the queries.

There is a limitation you should be aware of for generating the query plan. The

EXPLAIN statement will be executed with the default schema set to the same as where the

procedure executed. That means that if the query is executed in a different schema and

it does not use a fully qualified table name (i.e., including the schema name), then the

EXPLAIN statement will fail, and the procedure does not output the query plan.

 Summary
This chapter has covered how you can analyze queries that you believe may need

optimization. The bulk of the chapter focused on the EXPLAIN statement that is the main

tool for analyzing queries. The remainder of the chapter went through optimizer traces

and how to use the Performance Schema to analyze queries.

The EXPLAIN statement supports several different formats that help you get the query

plan in the format that works best for you. The traditional format uses a standard table

output, the JSON format returns a detailed JSON document, and the tree format shows a

relatively simple tree of the execution. The tree format is only supported in MySQL 8.0.16

and later and requires that the Volcano iterator executor is used to execute the query.

The JSON format is what the Visual Explain feature in MySQL Workbench uses to create

diagrams of the query plan.

There is a vast amount of information available about the query plan in the EXPLAIN

outputs. The fields of the traditional format as well as the most commonly encountered

fields of JSON were discussed. This included discussing the select types and access types

Chapter 20 analyzing Queries

681

and the extra information in detail. Finally, a series of examples were used to show how

this information can be used.

The optimizer traces can be used to get information on how the optimizer ended

up with the query plan that the EXPLAIN statement returned. It is usually not necessary

to use the optimizer traces for end users, but they can be useful to learn more about the

optimizer and the decision process that leads to the query plans.

The final part of the chapter showed how you can use the Performance Schema

events to determine what is taking the time for a statement. It was first shown how you

can break a stored procedure into individual statements and then how a statement can

be broken into stages. Finally the ps_trace_thread() procedure was used to automate

the analysis and create a graph of the events, and the ps_trace_statement_digest()

procedure was used to collect statistics for a given statement digest.

This chapter analyzed queries. It is sometimes necessary to take the whole

transaction into account. The next chapter will show how you can analyze transactions.

Chapter 20 analyzing Queries

683
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_21

CHAPTER 21

Transactions
Transactions are the big brother of statements. They group multiple changes together

whether in a single statement or several statements, so they are applied or abandoned

as a single unit. Mostly transactions are not much more than an afterthought and just

considered when it is necessary to apply several statements together. That is a bad way to

consider transactions. They are very important to ensure data integrity, and when used

wrong, they can cause severe performance issues.

This chapter starts out discussing why you need to take transactions seriously from

a performance point of view by reviewing the impacts of transactions on locks and

performance. The rest of the chapter focuses on analyzing transactions, first by using

the INNODB_TRX table in the Information Schema, then the InnoDB monitor, the InnoDB

metrics, and finally the Performance Schema.

 Impact of Transactions
Transactions may seem as an innocent concept if you think of them as containers used

to group queries. However, it is important to understand that since transactions provide

atomicity for groups of queries, the longer a transaction is active, the longer resources

associated with the queries are held, and the more work done in a transaction, the more

resources are required. What resources are used by queries that remain in use until the

transaction has been committed? The main two are locks and undo logs.

Tip InnoDB supports read-only transactions which have a lower overhead than
read-write transactions. For auto-committing single-statement transactions,
InnoDB will try to determine if the statement is read-only automatically. For multi-
statement transactions, you can specify explicitly that it is a read-only transaction,
when you start it: START TRANSACTION READ ONLY;

684

 Locks
When the query executes, it takes locks, and when you use the default transaction

isolation level – REPEATABLE READ – all locks are kept until the transaction is committed.

When you use the READ COMMITTED transaction isolation level, some locks may be

released, but at least those involving the changed records are kept. Locks themselves are

a resource, but it also requires memory to store the information about the locks. You may

not think much of this for a normal workload, but huge transactions can end up using so

much memory that the transaction fails with the ER_LOCK_TABLE_FULL error:

ERROR: 1206: The total number of locks exceeds the lock table size

As it can be seen from the warning message logged to the error log (more shortly),

the memory required for the locks is taken from the buffer pool. Thus, the more locks

you hold and the longer they are held, the less memory is available for caching data

and indexes.

Caution Having a transaction aborted because it has used all the lock memory is
a quadruple whammy. First, it would have taken a while to update enough rows to
use enough lock memory to trigger the error. That work has been wasted. Second,
because of the number of changes required, it is likely going to take a very long
time to roll back the transaction. Third, while the lock memory is used, InnoDB is
effectively in read-only mode (some small transactions may be possible), and the
lock memory is not released until the rollback has completed. Fourth, there is very
little space left in the buffer pool to cache data and indexes.

The error is preceded by a warning in the error log saying that more than 67% of the

buffer pool is used for locks or the adaptive hash index:

2019-07-06T03:23:04.345256Z 10 [Warning] [MY-011958] [InnoDB] Over 67

percent of the buffer pool is occupied by lock heaps or the adaptive hash

index! Check that your transactions do not set too many row locks. Your

buffer pool size is 7 MB. Maybe you should make the buffer pool bigger?.

Starting the InnoDB Monitor to print diagnostics, including lock heap and

hash index sizes.

CHapTer 21 TranSaCTIonS

685

The warning is followed by regular repeating outputs of the InnoDB monitor, so

you can determine which transactions are the culprits. The InnoDB monitor output for

transactions will be discussed in the “InnoDB Monitor” section.

One lock type that is often neglected when it comes to transactions is the metadata

lock. When a statement queries a table, a shared metadata lock is taken, and that metadata

lock is held until the end of the transaction. While there is a metadata lock on a table, no

connections can execute any DDL statements – including OPTIMIZE TABLE – against the

table. If a DDL statement is blocked by a long-running transaction, it will in turn block all

new queries from using that table. Chapter 22 will show an example of investigating such

an issue including using some of the methods from this chapter.

The locks are held while the transaction is active. The transaction can however still

have an impact even after it has completed through the undo logs.

 Undo Logs
The changes that have been made during the transaction must also be stored as they

are required, if you choose to roll back the transaction. This is easy to understand. More

surprising is that even a transaction that has made no changes also can make undo

information from other transactions stay around. This happens when the transaction

requires a read view (a consistent snapshot), which is the case for the duration of the

transaction when using the REPEATABLE READ transaction isolation level. The read view

means that the transaction will return the row data that corresponds to the time when the

transaction was started no matter whether other transactions change the data. In order to

be able to deliver that, it is necessary to keep the old values of the rows that change during

the lifetime of the transaction. Long-running transactions with a read view are the most

common reason for ending up with huge undo logs, which in MySQL 5.7 and earlier could

mean the ibdata1 file ended up being large. (In MySQL 8, the undo logs are always stored

in separate undo tablespaces that can be truncated.)

Tip The READ COMMITTED transaction isolation level is much less prone to large
undo logs as the read views are only maintained for the duration of a query.

CHapTer 21 TranSaCTIonS

686

The size of the active part of the undo log is measured in the history list length. The

history list length is the number of transactions committed where the undo log has not

yet been purged. This means that you cannot use the history list length to get a measure

of the total amount of row changes. What it does tell you is how many units of old

rows (one unit per transaction) there is in the linked list of changes that must be taken

into consideration when you execute a query. The longer this linked list is, the more

expensive it becomes to find the correct version of each row. In the end, if you have a

large history list, it can severely impact the performance of all queries.

Note The issue with the history list length is one of the biggest issues creating
backups of large databases using logical backup tools such as mysqlpump and
mysqldump using a single transaction to get a consistent backup. The backup can
cause the history list length to become very large if there are many transactions
committed during the backup.

What constitutes a large history list length? There are no firm rules about that – just

that the smaller, the better. Typically, performance issues start to show up when the list is

some thousand to a million transactions long, but the point where it becomes a bottleneck

depends on the transactions committed in the undo logs and the workload while the

history list length is large.

InnoDB automatically purges the history list in the background when the oldest

parts are no longer needed. There are two options to control the purge as well as two to

influence what happens, when the purge cannot be done. The options are

• innodb_purge_batch_size: The number of undo log pages that are

purged per batch. The batch is divided among the purge threads. This

option is not intended to be changed on production systems. The

default is 300 with valid values between 1 and 5000.

• innodb_purge_threads: The number of purge threads to use in parallel.

A higher parallelism can be useful if the data changes span many tables.

On the other hand, if all changes are concentrated on few tables, a low

value is preferred. Changing the number of purge threads requires a

restart of MySQL. The default is 4 with valid values between 1 and 32.

CHapTer 21 TranSaCTIonS

687

• innodb_max_purge_lag: When the history list length is longer than

the value of innodb_max_purge_lag, a delay is added to operations

changing data to reduce the rate the history list is growing at

the expense of higher statement latencies. The default value is 0

which means that a delay will never be added. Valid values are

0–4294967295.

• innodb_max_purge_lag_delay: The maximum delay that can be

added to DML queries when the history list length is larger than

innodb_max_purge_lag.

It is usually not necessary to change any of these settings; however, in special

circumstances, it can be useful. If the purge threads cannot keep up, you can try to

change the number of purge threads based on the number of tables that get modified;

the more tables that are modified, the more purge threads are useful. When you change

the number of purge threads, it is important to monitor the effect starting with a baseline

before the change, so you can see whether the change makes an improvement.

The maximum purge lag options can be used to slow down DML statements modifying

data. It is mostly useful when writes are limited to specific connections and delays do not

cause additional write threads to be created in order to maintain the same throughput.

How do you monitor how old the transactions are, how much memory is used for

locks, and how long the history list is? You can use the Information Schema, the InnoDB

monitor, and the Performance Schema to get this information.

 INNODB_TRX
The INNODB_TRX table in the Information Schema is the most dedicated source of

information about InnoDB transactions. It includes information such as when the

transaction started, how many rows have been modified, and how many locks are held.

The INNODB_TRX table is also used by the sys.innodb_lock_waits view to provide some

information about the transactions involved in lock wait issues. Table 21-1 summarizes

the columns in the table.

CHapTer 21 TranSaCTIonS

688

Table 21-1. The columns in the information_schema.INNODB_TRX table

Column/Data Type Description

trx_id

varchar(18)

The transaction id. This can be useful when referring to the transaction

or comparing with the output of the InnoDB monitor. otherwise, the id

should be treated purely internal and not be given any significance. The id

is only assigned to transactions that have modified data or locked rows; a

transaction that only has executed read-only SELECT statements will have a

dummy id like 421124985258256 which will change if the transaction starts

to modify or lock records.

trx_state

varchar(13)

The state of the transaction. This can be one of RUNNING, LOCK WAIT,

ROLLING BACK, and COMMITTING.

trx_started

datetime

When the transaction was started using the system time zone.

trx_requested_

lock_id

varchar(105)

When the trx_state is LOCK WAIT, this column shows the id of the lock

that the transaction is waiting for.

trx_wait_started

datetime

When the trx_state is LOCK WAIT, this column shows when the lock

wait started using the system time zone.

trx_weight

bigint unsigned

a measure of how much work has been done by the transaction in terms of

rows modified and locks held. This is the weight that is used to determine

which transaction is rolled back in case of a deadlock. The higher the

weight, the more work has been done.

trx_mysql_

thread_id

bigint unsigned

The connection id (the same as the PROCESSLIST_ID column in the

performance Schema threads table) of the connection executing the

transaction.

trx_query

varchar(1024)

The query currently executed by the transaction. If the transaction is idle,

the query is NULL.

(continued)

CHapTer 21 TranSaCTIonS

689

Table 21-1. (continued)

Column/Data Type Description

trx_operation_

state

varchar(64)

The current operation performed by the transaction. This may be NULL even

when a query is executing.

trx_tables_

in_use bigint

unsigned

The number of tables the transaction has used.

trx_tables_

locked bigint

unsigned

The number of tables the transaction holds row locks in.

trx_lock_structs

bigint unsigned

The number of lock structures created by the transaction.

trx_lock_memory_

bytes

bigint unsigned

The amount of memory in bytes used by the locks held by the transaction.

trx_rows_locked

bigint unsigned

The number of record locks held by the transaction. While called row locks,

it also includes index locks.

trx_rows_

modified bigint

unsigned

The number of rows modified by the transaction.

trx_concurrency_

tickets bigint

unsigned

When innodb_thread_concurrency is not 0, a transaction is assigned

innodb_concurrency_tickets tickets that it can use before it must

allow another transaction to perform work. one ticket corresponds to

accessing one row. This column shows how many tickets are left.

trx_isolation_

level

varchar(16)

The transaction isolation level used for the transaction.

(continued)

CHapTer 21 TranSaCTIonS

690

Column/Data Type Description

trx_unique_

checks int

Whether the unique_checks variable is enabled for the connection.

trx_foreign_key_

checks int

Whether the foreign_key_checks variable is enabled for the connection.

trx_last_

foreign_

key_error

varchar(256)

The error message of the last (if any) foreign key error encountered by

the transaction.

trx_adaptive_

hash_latched int

Whether the transaction has locked a part of the adaptive hash index. There

is a total of innodb_adaptive_hash_index_parts parts. This column is

effectively a Boolean value.

trx_adaptive_

hash_timeout

bigint unsigned

Whether to keep the lock on the adaptive hash index across multiple

queries. If there is only one part for the adaptive hash index and there is no

contention, then the timeout counts down, and the lock is released when the

timeout reaches 0. When there is contention or there are multiple parts, the

lock is always released after each query, and the timeout value is 0.

trx_is_read_only

int

Whether the transaction is a read-only transaction. a transaction can be

read- only either by declaring it explicitly or for single-statement transactions

with autocommit enabled where InnoDB can detect that the query will only

read data.

trx_autocommit_

non_locking int

When the transaction is a single-statement non-locking SELECT and

the autocommit option is enabled, this column is set to 1. When both

this column and trx_is_read_only are 1, InnoDB can optimize the

transaction to reduce the overhead.

Table 21-1. (continued)

CHapTer 21 TranSaCTIonS

691

The information available from the INNODB_TRX table makes it possible to determine

which transactions have the greatest impact. Listing 21-1 shows an example of the

information returned for two transactions.

Listing 21-1. Example output of the INNODB_TRX table

mysql> SELECT *
 FROM information_schema.INNODB_TRX\G

*************************** 1. row ***************************
 trx_id: 5897

 trx_state: RUNNING

 trx_started: 2019-07-06 11:11:12

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 4552416

 trx_mysql_thread_id: 10

 trx_query: UPDATE db1.t1 SET val1 = 4

 trx_operation_state: updating or deleting

 trx_tables_in_use: 1

 trx_tables_locked: 1

 trx_lock_structs: 7919

 trx_lock_memory_bytes: 1417424

 trx_rows_locked: 4552415

 trx_rows_modified: 4544497

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

CHapTer 21 TranSaCTIonS

692

*************************** 2. row ***************************
 trx_id: 421624759431440

 trx_state: RUNNING

 trx_started: 2019-07-06 11:46:55

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 0

 trx_mysql_thread_id: 8

 trx_query: SELECT COUNT(*) FROM db1.t1

 trx_operation_state: counting records

 trx_tables_in_use: 1

 trx_tables_locked: 0

 trx_lock_structs: 0

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 0

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 1

trx_autocommit_non_locking: 1

2 rows in set (0.0023 sec)

The first row shows an example of a transaction that modifies data. At the time the

information is retrieved, 4,544,497 rows have been modified, and there are a little more

record locks. You can also see that the transaction is still actively executing a query (an

UPDATE statement).

The second row is an example of a SELECT statement executed with autocommit

enabled. Since auto-committing is enabled, there can only be one statement in the

transaction (an explicit START TRANSACTION disables auto-committing). The trx_query

column shows it is a SELECT COUNT(*) query without any lock clauses, so it is a read-only

 statement. This means that InnoDB can skip some things such as preparing to hold lock

CHapTer 21 TranSaCTIonS

693

and undo information for the transaction which reduces the overhead of the transaction.

The trx_autocommit_non_locking column is set to 1 to reflect that.

Which transactions you should be worried about depends on the expected workload

on your system. If you have an OLAP workload, it is expected that there will be relatively

long-running SELECT queries. For a pure OLTP workload, any transaction running for

more than a few seconds and modifying more than a handful of rows may be a sign of

problems. For example, to find transactions that are older than one minute, you can use

the following query:

SELECT *
 FROM information_schema.INNODB_TRX

 WHERE trx_started < NOW() - INTERVAL 1 MINUTE;

Related to the INNODB_TRX table is the transaction list in the InnoDB monitor.

 InnoDB Monitor
The InnoDB monitor is a kind of Swiss army knife of InnoDB information and also

includes information about transactions. The TRANSACTIONS section in the output from

the InnoDB monitor is dedicated to transactional information. This information does

not only include a list of transactions but also the history list length. Listing 21-2 shows

an excerpt of the InnoDB monitor with example of the transaction section taken just

after the previous output from the INNODB_TRX table.

Listing 21-2. Transaction information from the InnoDB monitor

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************
 Type: InnoDB

 Name:

Status:

=====================================

2019-07-06 11:46:58 0x7f7728f69700 INNODB MONITOR OUTPUT

=====================================

CHapTer 21 TranSaCTIonS

694

Per second averages calculated from the last 6 seconds

...

TRANSACTIONS

Trx id counter 5898

Purge done for trx's n:o < 5894 undo n:o < 0 state: running but idle

History list length 3

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 421624759429712, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 421624759428848, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 5897, ACTIVE 2146 sec updating or deleting

mysql tables in use 1, locked 1

7923 lock struct(s), heap size 1417424, 4554508 row lock(s), undo log

entries 4546586

MySQL thread id 10, OS thread handle 140149617817344, query id 25 localhost

127.0.0.1 root updating

UPDATE db1.t1 SET val1 = 4

The top of the TRANSACTIONS section shows the current value of the transaction id

counter followed by information of what has been purged from the undo logs. It shows

that the undo logs for transaction ids less than 5894 have been purged. The further

this purge is behind, the larger the history list length (in the third line of the section) is.

Reading the history list length from the InnoDB monitor output is the traditional way to

get the length of the history list. In the next section, it will be shown how to get the value

in a better way when used for monitoring purposes.

The rest of the section is a list of transactions. Notice that while the output is

generated with the same two active transactions as were found in INNODB_TRX, the

transaction list only includes one active transaction (the one for the UPDATE statement).

In MySQL 5.7 and later, read-only non-locking transactions are not included in the

InnoDB monitor transaction list. For this reason, it is better to use the INNODB_TRX table,

if you need to include all active transactions.

As mentioned, there is an alternative way to get the history list length. You need to

use the InnoDB metrics for this.

CHapTer 21 TranSaCTIonS

695

 INNODB_METRICS and sys.metrics
The InnoDB monitor report is useful for a database administrator to get an overview of

what is going on in InnoDB, but for monitoring it is not as useful as it requires parsing

to get out the data in a way monitoring can use it. You saw earlier in the chapter how

the information about the transactions can be obtained from the information_schema.

INNODB_TRX table, but how about metrics such as the history list length?

The InnoDB metric system includes several metrics that show information about the

transactions in the information_schema.INNODB_METRICS view. These metrics are all located

in the transaction subsystem. Listing 21-3 shows a list of the transaction metrics, whether

they are enabled by default, and a brief comment explaining what the metric measures.

Listing 21-3. InnoDB metrics related to transactions

mysql> SELECT NAME, COUNT, STATUS, COMMENT

 FROM information_schema.INNODB_METRICS

 WHERE SUBSYSTEM = 'transaction'\G

*************************** 1. row ***************************
 NAME: trx_rw_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of read-write transactions committed

*************************** 2. row ***************************
 NAME: trx_ro_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of read-only transactions committed

*************************** 3. row ***************************
 NAME: trx_nl_ro_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of non-locking auto-commit read-only transactions committed

*************************** 4. row ***************************
 NAME: trx_commits_insert_update

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions committed with inserts and updates

CHapTer 21 TranSaCTIonS

696

*************************** 5. row ***************************
 NAME: trx_rollbacks

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions rolled back

*************************** 6. row ***************************
 NAME: trx_rollbacks_savepoint

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions rolled back to savepoint

*************************** 7. row ***************************
 NAME: trx_rollback_active

 COUNT: 0

 STATUS: disabled

COMMENT: Number of resurrected active transactions rolled back

*************************** 8. row ***************************
 NAME: trx_active_transactions

 COUNT: 0

 STATUS: disabled

COMMENT: Number of active transactions

*************************** 9. row ***************************
 NAME: trx_on_log_no_waits

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

*************************** 10. row ***************************
 NAME: trx_on_log_waits

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

*************************** 11. row ***************************
 NAME: trx_on_log_wait_loops

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

CHapTer 21 TranSaCTIonS

697

*************************** 12. row ***************************
 NAME: trx_rseg_history_len

 COUNT: 45

 STATUS: enabled

COMMENT: Length of the TRX_RSEG_HISTORY list

*************************** 13. row ***************************
 NAME: trx_undo_slots_used

 COUNT: 0

 STATUS: disabled

COMMENT: Number of undo slots used

*************************** 14. row ***************************
 NAME: trx_undo_slots_cached

 COUNT: 0

 STATUS: disabled

COMMENT: Number of undo slots cached

*************************** 15. row ***************************
 NAME: trx_rseg_current_size

 COUNT: 0

 STATUS: disabled

COMMENT: Current rollback segment size in pages

15 rows in set (0.0403 sec)

The most important of these metrics is trx_rseg_history_len which is the history

list length. This is also the only metric that is enabled by default. The metrics related

to commits and rollbacks can be used to determine how many read-write, read-only,

and non-locking read-only transactions you have and how often they are committed

and rolled back. Many rollbacks suggest there is a problem. If you suspect the redo log

is a bottleneck, the trx_on_log_% metrics can be used to get a measure of how much

transactions are waiting for the redo log during transaction commits.

Tip You enable InnoDB metrics with the innodb_monitor_enable option and
disable them with innodb_monitor_disable. This can be done dynamically.

CHapTer 21 TranSaCTIonS

698

An alternative and convenient way to query the InnoDB metrics is to use the sys.

metrics view which also includes the global status variables. Listing 21-4 shows an

example of using the sys.metrics view to obtain the current values and whether the

metric is enabled.

Listing 21-4. Using the sys.metrics view to get the transaction metrics

mysql> SELECT Variable_name AS Name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Type = 'InnoDB Metrics - transaction';

+---------------------------+-------+---------+

| Name | Value | Enabled |

+---------------------------+-------+---------+

| trx_active_transactions | 0 | NO |

| trx_commits_insert_update | 0 | NO |

| trx_nl_ro_commits | 0 | NO |

| trx_on_log_no_waits | 0 | NO |

| trx_on_log_wait_loops | 0 | NO |

| trx_on_log_waits | 0 | NO |

| trx_ro_commits | 0 | NO |

| trx_rollback_active | 0 | NO |

| trx_rollbacks | 0 | NO |

| trx_rollbacks_savepoint | 0 | NO |

| trx_rseg_current_size | 0 | NO |

| trx_rseg_history_len | 45 | YES |

| trx_rw_commits | 0 | NO |

| trx_undo_slots_cached | 0 | NO |

| trx_undo_slots_used | 0 | NO |

+---------------------------+-------+---------+

15 rows in set (0.0152 sec)

This shows that the history list length is 45 which is a good low value, so there is next

to none overhead from the undo logs. The rest of the metrics are disabled.

CHapTer 21 TranSaCTIonS

699

Thus far, the discussion of transaction information has been about aggregate

statistics either for all transactions or individual transactions. If you want to go deeper

into what work a transaction has done, you need to use the Performance Schema.

 Performance Schema Transactions
The Performance Schema supports transaction monitoring in MySQL 5.7 and later, and

it is enabled by default in MySQL 8. There are not many transaction details other than

related to XA transactions and savepoints available in the Performance Schema that

cannot be obtained from the INNODB_TRX table in the Information Schema. However, the

Performance Schema transaction events have the advantage that you can combine them

with other event types such as statements to get information about the work done by a

transaction. This is the main focus of this section. Additionally, the Performance Schema

offers summary tables with aggregate statistics.

 Transaction Events and Their Statements
The main tables for investigating transactions in the Performance Schema are the

transaction event tables. There are three tables for recording current or recent transactions:

events_transactions_current, events_transactions_history, and events_

transactions_history_long. They have the columns as summarized in Table 21-2.

Table 21-2. The columns of the non-summary transaction event tables

Column/Data Type Description

THREAD_ID

bigint unsigned

The performance Schema thread id of the connection

executing the transaction.

EVENT_ID

bigint unsigned

The event id for the event. You can use the event id

to order the events for a thread or as a foreign key

together with the thread id between event tables.

END_EVENT_ID

bigint unsigned

The event id when the transaction completed. If the

event id is NULL, the transaction is still ongoing.

(continued)

CHapTer 21 TranSaCTIonS

700

Table 21-2 (continued)

Column/Data Type Description

EVENT_NAME

varchar(128)

The transaction event name. Currently this column

always has the value transaction.

STATE

enum

The state of the transaction. possible values are

ACTIVE, COMMITTED, and ROLLED BACK.

TRX_ID

bigint unsigned

This is currently unused and will always be NULL.

GTID

varchar(64)

The GTID for the transaction. When the GTID is

automatically determined (the usual), AUTOMATIC is

returned. This is the same as the gtid_next variable

for the connection executing the transaction.

XID_FORMAT_ID

int

For Xa transactions, the format id.

XID_GTRID

varchar(130)

For Xa transactions, the gtrid value.

XID_BQUAL

varchar(130)

For Xa transactions, the bqual value.

XA_STATE

varchar(64)

For a Xa transaction, the state of the transaction. This

can be ACTIVE, IDLE, PREPARED, ROLLED BACK, or

COMMITTED.

SOURCE

varchar(64)

The source code file and line number where the event

was recorded.

TIMER_START

bigint unsigned

The time in picoseconds when the event started.

TIMER_END

bigint unsigned

The time in picoseconds when the event completed.

If the transaction has not completed yet, the value

corresponds to the current time.

(continued)

CHapTer 21 TranSaCTIonS

701

Table 21-2 (continued)

Column/Data Type Description

TIMER_WAIT

bigint unsigned

The total time in picoseconds it took to execute the event.

If the event has not completed yet, the value corresponds

to how long the transaction has been active.

ACCESS_MODE

enum

Whether the transaction is in read-only (READ ONLY)

or in read-write (READ WRITE) mode.

ISOLATION_LEVEL

varchar(64)

The transaction isolation level for the transaction.

AUTOCOMMIT

enum

Whether the transaction is auto-committing based

on the autocommit option and whether an explicit

transaction has been started. possible values are NO

and YES.

NUMBER_OF_SAVEPOINTS

bigint unsigned

The number of savepoints created in the transaction.

NUMBER_OF_ROLLBACK_TO_SAVEPOINT

bigint unsigned

The number of times the transaction has rolled back to

a savepoint.

NUMBER_OF_RELEASE_SAVEPOINT

bigint unsigned

The number of times the transaction has released a

savepoint.

OBJECT_INSTANCE_BEGIN

bigint unsigned

This field is currently unused and always set to NULL.

NESTING_EVENT_ID

bigint unsigned

The event id of the event that triggered the transaction.

NESTING_EVENT_TYPE

enum

The event type of the event that triggered the

transaction.

If you are working with XA transactions, the transaction event tables are great when

you need to recover a transaction as the format id, gtrid, and bqual values are directly

available from the tables, unlike for the XA RECOVER statement where you have to parse

the output. In the same way, if you work with savepoints, you can get statistics on the

savepoint usage. Otherwise, the information is very similar to what is available in the

INNODB_TRX table.

CHapTer 21 TranSaCTIonS

702

For an example of using the events_transactions_current table, you can start two

transactions. The first transaction is a normal transaction that updates the population of

several cities:

START TRANSACTION;

UPDATE world.city SET Population = 5200000 WHERE ID = 130;

UPDATE world.city SET Population = 4900000 WHERE ID = 131;

UPDATE world.city SET Population = 2400000 WHERE ID = 132;

UPDATE world.city SET Population = 2000000 WHERE ID = 133;

The second transaction is an XA transaction:

XA START 'abc', 'def', 1;

UPDATE world.city SET Population = 900000 WHERE ID = 3805;

Listing 21-5 shows an example output of the events_transactions_current table

listing the currently active transactions.

Listing 21-5. Using the events_transactions_current table

mysql> SELECT *
 FROM performance_schema.events_transactions_current

 WHERE STATE = 'ACTIVE'\G

*************************** 1. row ***************************
 THREAD_ID: 54

 EVENT_ID: 39

 END_EVENT_ID: NULL

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: NULL

 XID_GTRID: NULL

 XID_BQUAL: NULL

 XA_STATE: NULL

 SOURCE: transaction.cc:219

 TIMER_START: 488967975158077184

 TIMER_END: 489085567376530432

 TIMER_WAIT: 117592218453248

CHapTer 21 TranSaCTIonS

703

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 38

 NESTING_EVENT_TYPE: STATEMENT

*************************** 2. row ***************************
 THREAD_ID: 57

 EVENT_ID: 10

 END_EVENT_ID: NULL

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: 1

 XID_GTRID: abc

 XID_BQUAL: def

 XA_STATE: ACTIVE

 SOURCE: transaction.cc:219

 TIMER_START: 488977176010232448

 TIMER_END: 489085567391481984

 TIMER_WAIT: 108391381249536

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 9

 NESTING_EVENT_TYPE: STATEMENT

2 rows in set (0.0007 sec)

CHapTer 21 TranSaCTIonS

704

The transaction in row 1 is a regular transaction, whereas the transaction in row 2 is

an XA transaction. Both transactions were started by a statement which can be seen from

the nesting event type. If you want to find the statement that triggered the transaction,

you can use that to query the events_statements_history table like

mysql> SELECT SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = 54

 AND EVENT_ID = 38\G

*************************** 1. row ***************************
SQL_TEXT: START TRANSACTION

1 row in set (0.0009 sec)

This shows that the transaction executed by THREAD_ID = 54 was started using

a START TRANSACTION statement. Since the events_statements_history table only

includes the last ten statements for the connection, it is not guaranteed that the

statement that started the transaction is still in the history table. If you are looking at

a single- statement transaction or the first statement (while it is still executing) when

autocommit is disabled, you will need to query the events_statements_current table

instead.

The relationship between transactions and statements also goes the other way.

Given a transaction event id and the thread id, you can query the last ten statements

executed for that transaction using the statement event history and current tables.

Listing 21-6 shows an example for THREAD_ID = 54 and transaction EVENT_ID = 39

(from row 1 of Listing 21-5) where both the statement starting the transaction and

subsequent statements are included.

Listing 21-6. Finding the last ten statements executed in a transaction

mysql> SET @thread_id = 54,

 @event_id = 39,

 @nesting_event_id = 38;

mysql> SELECT EVENT_ID, SQL_TEXT,

 FORMAT_PICO_TIME(TIMER_WAIT) AS Latency,

 IF(END_EVENT_ID IS NULL, 'YES', 'NO') AS IsCurrent

CHapTer 21 TranSaCTIonS

705

 FROM ((SELECT EVENT_ID, END_EVENT_ID,

 TIMER_WAIT,

 SQL_TEXT, NESTING_EVENT_ID,

 NESTING_EVENT_TYPE

 FROM performance_schema.events_statements_current

 WHERE THREAD_ID = @thread_id

) UNION (

 SELECT EVENT_ID, END_EVENT_ID,

 TIMER_WAIT,

 SQL_TEXT, NESTING_EVENT_ID,

 NESTING_EVENT_TYPE

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = @thread_id

)

) events

 WHERE (NESTING_EVENT_TYPE = 'TRANSACTION'

 AND NESTING_EVENT_ID = @event_id)

 OR EVENT_ID = @nesting_event_id

 ORDER BY EVENT_ID DESC\G

*************************** 1. row ***************************
 EVENT_ID: 43

 SQL_TEXT: UPDATE city SET Population = 2000000 WHERE ID = 133

 Latency: 291.01 us

IsCurrent: NO

*************************** 2. row ***************************
 EVENT_ID: 42

 SQL_TEXT: UPDATE city SET Population = 2400000 WHERE ID = 132

 Latency: 367.59 us

IsCurrent: NO

*************************** 3. row ***************************
 EVENT_ID: 41

 SQL_TEXT: UPDATE city SET Population = 4900000 WHERE ID = 131

 Latency: 361.03 us

IsCurrent: NO

CHapTer 21 TranSaCTIonS

706

*************************** 4. row ***************************
 EVENT_ID: 40

 SQL_TEXT: UPDATE city SET Population = 5200000 WHERE ID = 130

 Latency: 399.32 us

IsCurrent: NO

*************************** 5. row ***************************
 EVENT_ID: 38

 SQL_TEXT: START TRANSACTION

 Latency: 97.37 us

IsCurrent: NO

9 rows in set (0.0012 sec)

The subquery (a derived table) finds all statement events for the thread from the

events_statements_current and events_statements_history tables. It is necessary

to include the current events as there may be an ongoing statement for the transaction.

The statements are filtered by either being a child of the transaction or the nesting event

for the transaction (EVENT_ID = 38). This will include all statements beginning with the

one starting the transactions. There will be up to 11 statements if there is an ongoing

statement and otherwise up to ten.

The END_EVENT_ID is used to determine whether the statement is currently

executing, and the statements are ordered in reverse using the EVENT_ID, so the most

recent statement is in row 1 and the oldest (the START TRANSACTION statement) in row 5.

This type of query is not only useful to investigate transactions still executing

queries. It can also be very useful when you encounter an idle transaction and you want

to know what the transaction did before it was left abandoned. Another related way

to look for active transactions is to use the sys.session view which uses the events_

transactions_current table to include information about the transactional state for

each connection. Listing 21-7 shows an example of querying for active transactions

excluding the row for the connection executing the query.

Listing 21-7. Finding active transactions with sys.session

mysql> SELECT *
 FROM sys.session

 WHERE trx_state = 'ACTIVE'

 AND conn_id <> CONNECTION_ID()\G

CHapTer 21 TranSaCTIonS

707

*************************** 1. row ***************************
 thd_id: 54

 conn_id: 16

 user: mysqlx/worker

 db: world

 command: Sleep

 state: NULL

 time: 690

 current_statement: UPDATE world.city SET Population = 2000000 WHERE ID = 133

 statement_latency: NULL

 progress: NULL

 lock_latency: 281.76 ms

 rows_examined: 341

 rows_sent: 341

 rows_affected: 0

 tmp_tables: 0

 tmp_disk_tables: 0

 full_scan: NO

 last_statement: UPDATE world.city SET Population = 2000000 WHERE ID = 133

last_statement_latency: 391.80 ms

 current_memory: 2.35 MiB

 last_wait: NULL

 last_wait_latency: NULL

 source: NULL

 trx_latency: 11.49 m

 trx_state: ACTIVE

 trx_autocommit: NO

 pid: 23376

 program_name: mysqlsh

*************************** 2. row ***************************
 thd_id: 57

 conn_id: 18

 user: mysqlx/worker

 db: world

 command: Sleep

 state: NULL

CHapTer 21 TranSaCTIonS

708

 time: 598

 current_statement: UPDATE world.city SET Population = 900000 WHERE ID = 3805

 statement_latency: NULL

 progress: NULL

 lock_latency: 104.00 us

 rows_examined: 1

 rows_sent: 0

 rows_affected: 1

 tmp_tables: 0

 tmp_disk_tables: 0

 full_scan: NO

 last_statement: UPDATE world.city SET Population = 900000 WHERE ID = 3805

last_statement_latency: 40.21 ms

 current_memory: 344.76 KiB

 last_wait: NULL

 last_wait_latency: NULL

 source: NULL

 trx_latency: 11.32 m

 trx_state: ACTIVE

 trx_autocommit: NO

 pid: 25836

 program_name: mysqlsh

2 rows in set (0.0781 sec)

This shows that the transaction in the first row has been active for more than 11

minutes and it is 690 seconds (11.5 minutes) since the last query was executed (your

values will differ). The last_statement can be used to determine the last query

executed by the connection. This is an example of an abandoned transaction which

prevents InnoDB from purging its undo logs. The most common causes of abandoned

transactions are a database administrator starting a transaction interactively and getting

distracted or that autocommit is disabled and it is not realized a transaction was started.

Caution If you disable autocommit, be careful always to commit or roll back
at the end of the work. Some connectors disable autocommit by default, so be
aware that your application may not be using the server default.

CHapTer 21 TranSaCTIonS

709

You can roll the transactions back to avoid changing any data. For the first (normal)

transaction:

mysql> ROLLBACK;

Query OK, 0 rows affected (0.0841 sec)

And for the XA transaction:

mysql> XA END 'abc', 'def', 1;

Query OK, 0 rows affected (0.0003 sec)

mysql> XA ROLLBACK 'abc', 'def', 1;

Query OK, 0 rows affected (0.0759 sec)

Another way the Performance Schema tables are useful for analyzing transactions is

to use the summary tables to obtain aggregate data.

 Transaction Summary Tables
In the same way as there are statement summary tables that can be used to get reports of

the statements that are executed, there are transaction summary tables that can be used

to analyze the use of transactions. While they are not quite as useful as their statement

counterparts, they do offer insight into which connections and accounts that use

transactions in different ways.

There are five transaction summary tables grouping the data globally or by account,

host, thread, or user. All of the summaries also group by the event name, but as there

currently only is one transaction event (transaction), it is a nil operation. The tables are

• events_transactions_summary_global_by_event_name: All

transactions aggregated. There is only a single row in this table.

• events_transactions_summary_by_account_by_event_name: The

transactions grouped by username and hostname.

• events_transactions_summary_by_host_by_event_name: The

transactions grouped by hostname of the account.

CHapTer 21 TranSaCTIonS

710

• events_transactions_summary_by_thread_by_event_name: The

transactions grouped by thread. Only currently existing threads are

included.

• events_transactions_summary_by_user_by_event_name: The

events grouped by the username part of the account.

Each table includes the columns that the transaction statistics are grouped by

and three groups of columns: total, for read-write transactions, and for read-only

transactions. For each of these three groups of columns, there is the total number of

transactions as well as the total, minimum, average, and maximum latencies. Listing 21-8

shows an example of the data from the events_transactions_summary_global_by_

event_name table.

Listing 21-8. The events_transactions_summary_global_by_event_name table

mysql> SELECT *
 FROM performance_schema.events_transactions_summary_global_by_

event_name\G

*************************** 1. row ***************************
 EVENT_NAME: transaction

 COUNT_STAR: 1274

 SUM_TIMER_WAIT: 13091950115512576

 MIN_TIMER_WAIT: 7293440

 AVG_TIMER_WAIT: 10276255661056

 MAX_TIMER_WAIT: 11777025727144832

 COUNT_READ_WRITE: 1273

SUM_TIMER_READ_WRITE: 13078918924805888

MIN_TIMER_READ_WRITE: 7293440

AVG_TIMER_READ_WRITE: 10274091697408

MAX_TIMER_READ_WRITE: 11777025727144832

 COUNT_READ_ONLY: 1

 SUM_TIMER_READ_ONLY: 13031190706688

 MIN_TIMER_READ_ONLY: 13031190706688

 AVG_TIMER_READ_ONLY: 13031190706688

 MAX_TIMER_READ_ONLY: 13031190706688

1 row in set (0.0005 sec)

CHapTer 21 TranSaCTIonS

711

It may surprise you when you study the output how many transactions there are,

particularly read-write transactions. Remember that when querying an InnoDB table,

everything is a transaction even if you have not explicitly specified one. So even a

simple SELECT statement querying a single row counts as a transaction. Regarding the

distribution between read-write and read-only transactions, then the Performance

Schema only considers a transaction read-only if you explicitly started it as such:

START TRANSACTION READ ONLY;

When InnoDB determines that an auto-committing single-statement transaction can

be treated as a read-only transaction, that is still counting toward the read-write statistics

in the Performance Schema.

 Summary
Transactions are an important concept in databases. They help ensure that you can

apply changes to several rows as a unit and that you can choose whether to apply the

changes or roll them back.

This chapter started out discussing why it is important to be aware of how

transactions are being used. While they as such can be considered a container for

changes, locks are held until the transaction is committed or rolled back, and they can

block the undo logs from being purged. Both locks and large undo logs can affect the

performance of queries even if they are not executed in one of the transactions causing

the high number of locks or large number of undo logs. Locks use memory, which

is taken from the buffer pool, so there is less memory available for caching data and

indexes. A large amount of undo logs as measured by the history list length means that

more row versions must be considered when InnoDB executes statements.

The rest of the chapter went into how you can analyze ongoing and past transactions.

The INNODB_TRX table in the Information Schema is the best source of information for

ongoing transactions. The InnoDB monitor and the InnoDB metrics supplement this. For

XA transactions and transactions using savepoints or when you need to investigate which

statements are executed as part of the transaction, you need to use the Performance Schema

transaction event tables. The Performance Schema also includes summary tables that you can

use to get more information on who spends time on read-write and read-only transactions.

Locks have played a significant role in the discussion of transactions. The next

chapter will show how you can analyze a series of lock issues.

CHapTer 21 TranSaCTIonS

713
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_22

CHAPTER 22

Diagnosing Lock
Contention
In Chapter 18, you were introduced to the world of locks in MySQL. If you have not

read Chapter 18 yet, you are strongly encouraged to do so now as this chapter is closely

related. You may even want to refresh your memory if it is a while since you read it. Lock

issues is one of the common causes of performance issues, and the impact can be severe.

In the worst cases, queries can fail, and connections pile up so no new connections can

be made. Therefore, it is important to know how to investigate lock issues and remediate

the problems.

This chapter will discuss four categories of lock issues:

• Flush locks

• Metadata and schema locks

• Record-level locks including gap locks

• Deadlocks

Each category of locks uses different techniques to determine what is the cause of

the lock contention. When you read the examples, you should have in mind that similar

techniques can be used to investigate lock issues that do not 100% match the example.

For each lock category, the discussion has been split into six parts:

• The Symptoms: This describes how you identify that you are

encountering this kind of lock issue.

• The Cause: The underlying reason you encounter this kind of lock issues.

This is related to the general discussion of the locks in Chapter 18.

714

• The Setup: This includes the steps to set up the lock issue, if you want

to try it yourself. As lock contention requires multiple connections,

the prompt, for example, Connection 1>, is used to tell which

connection should be used for which statements. If you want to

follow the investigation with no more information than you would

have in a real-world case, you can skip this section and go back and

review it after getting through the investigation.

• The Investigation: The details of the investigation. This draws on the

“Monitoring Locks” section of Chapter 18.

• The Solution: How you resolve the immediate lock problem, so you

minimize the outage caused by it.

• The Prevention: A discussion of how to reduce the chance of

encountering the issue. This is closely related to the section “Reduce

Locking Issues” in Chapter 18.

Enough talk, the first lock category that will be discussed is flush locks.

 Flush Locks
One of the common lock issues encountered in MySQL is the flush lock. When this issue

happens, users will typically complain that queries are not returning, and monitoring

may show that queries are piling up and eventually MySQL will run out of connections.

Issues around the flush lock can also sometimes be one of the most difficult lock issues

to investigate.

 The Symptoms
The main symptom of a flush lock issue is that the database comes to a grinding halt

where all new queries using some or all tables end up waiting for the flush lock. The

telltale signs to look for include the following:

• The query state of new queries is “Waiting for table flush.” This may

occur for all new queries or only for queries accessing specific tables.

• More and more connections are created.

Chapter 22 Diagnosing LoCk Contention

715

• Eventually, new connections fail as MySQL is out of connection. The

error received for new connections is ER_CON_COUNT_ERROR: “ERROR

1040 (HY000): Too many connections” when using the classic MySQL

protocol (by default port 3306) or “MySQL Error 5011: Could not

open session” when using the X Protocol (by default port 33060).

• There is at least one query that has been running later than the oldest

request for a flush lock.

• There may be a FLUSH TABLES statement in the process list, but this is

not always the case.

• When the FLUSH TABLES statement has waited for lock_wait_

timeout, an ER_LOCK_WAIT_TIMEOUT error occurs: ERROR: 1205:

Lock wait timeout exceeded; try restarting transaction.

Since the default value for lock_wait_timeout is 365 days, this is only

likely to occur if the timeout has been reduced.

• If you connect with the mysql command-line client with a default

schema set, the connection may seem to hang before you get to the

prompt. The same can happen if you change the default schema with

a connection open.

Tip the issue that the mysql command-line client is blocking does not occur
if you start the client with the -A option which disables collecting the auto-
completion information. a better solution is to use MysQL shell that fetches the
auto-completion information in a way that does not block due to the flush lock.

If you see these symptoms, it is time to understand what is causing the lock issue.

 The Cause
When a connection requests a table to be flushed, it requires all references to the table to

be closed which means no active queries can be using the table. So, when a flush request

arrives, it must wait for all queries using the tables that are to be flushed to finish. Note

that unless you explicitly specify which tables to flush, it is just the query and not the entire

transaction that must finish. Obviously, the case where all tables are flushed, for example,

due to FLUSH TABLES WITH READ LOCK, is the most severe as it means all active queries

must finish before the flush statement can proceed.

Chapter 22 Diagnosing LoCk Contention

716

When the wait for the flush lock becomes a problem, it means that there are one

or more queries preventing the FLUSH TABLES statement from obtaining the flush lock.

Since the FLUSH TABLES statement requires an exclusive lock, it in turn stops subsequent

queries from acquiring the shared lock they need.

This issue is often seen in connection with backups where the backup process needs

to flush all tables and get a read lock in order to create a consistent backup.

A special case can occur when the FLUSH TABLES statement has timed out or has

been killed, but the subsequent queries are not proceeding. When that happens, it is

because the low-level table definition cache (TDC) version lock is not released. This is

a case that can cause confusion as it is not obvious why the subsequent queries are still

waiting for the table flush.

 The Setup
The lock situation that will be investigated involves three connections (not including

the connection used for the investigation). The first connection executes a slow query,

the second flushes all tables with a read lock, and the last connection executes a quick

query. The statements are

Connection 1> SELECT city.*, SLEEP(180) FROM world.city WHERE ID = 130;

Connection 2> FLUSH TABLES WITH READ LOCK;

Connection 3> SELECT * FROM world.city WHERE ID = 3805;

The use of SLEEP(180) in the first query means you have three minutes (180

seconds) to execute the two other queries and perform the investigation. If you want

longer time, you can increase the duration of the sleep. You are now ready to start the

 investigation.

 The Investigation
The investigation of flush locks requires you to look at the list of queries running on the

instance. Unlike other lock contentions, there are no Performance Schema tables or

InnoDB monitor report that can be used to query for the blocking query directly.

Listing 22-1 shows an example of the output using the sys.session view. Similar

results will be produced using the alternative ways to get a list of queries. The thread and

connection ids as well as the statement latencies will vary.

Chapter 22 Diagnosing LoCk Contention

717

Listing 22-1. Investigating flush lock contention using sys.session

mysql> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query'\G

*************************** 1. row ***************************

 thd_id: 30

 conn_id: 9

 state: User sleep

current_statement: SELECT city.*, SLEEP(180) FROM city WHERE ID = 130

statement_latency: 49.97 s

*************************** 2. row ***************************

 thd_id: 53

 conn_id: 14

 state: Waiting for table flush

current_statement: FLUSH TABLES WITH READ LOCK

statement_latency: 44.48 s

*************************** 3. row ***************************

 thd_id: 51

 conn_id: 13

 state: Waiting for table flush

current_statement: SELECT * FROM world.city WHERE ID = 3805

statement_latency: 41.93 s

*************************** 4. row ***************************

 thd_id: 29

 conn_id: 8

 state: NULL

current_statement: SELECT thd_id, conn_id, state, ... ession WHERE command

= 'Query'

statement_latency: 56.13 ms

4 rows in set (0.0644 sec)

Chapter 22 Diagnosing LoCk Contention

718

There are four queries in the output. The sys.session and sys.processlist views

by default sort the queries according to the execution time in descending order. This

makes it easy to investigate issues like contention around the flush lock where the query

time is the primary thing to consider when looking for the cause.

You start out looking for the FLUSH TABLES statement (the case where there is no

FLUSH TABLES statement will be discussed shortly). In this case, that is thd_id = 53 (the

second row). Notice that the state of the FLUSH statement is “Waiting for table flush.” You

then look for queries that have been running for a longer time. In this case, there is only

one query: the one with thd_id = 30. This is the query that blocks the FLUSH TABLES

WITH READ LOCK from completing. In general, there may be more than one query.

The two remaining queries are a query being blocked by the FLUSH TABLES WITH

READ LOCK and the query to obtain the output. Together, the three first queries form a

typical example of a long-running query blocking a FLUSH TABLES statement which in

turn blocks other queries.

You can also get the process list from MySQL Workbench and in some cases also

from your monitoring solution. Figure 22-1 shows how to get the process list from

MySQL Workbench.

Figure 22-1. Showing the client connections in MySQL Workbench

To get the process list report in MySQL Workbench, choose the Client Connections

item under Management in the navigator pane to the left of the screen. You cannot

choose which columns to include, and to make the text readable, only part of the report

is included in the screenshot. The Id column corresponds to conn_id in the sys.session

output, and Thread (the rightmost column) corresponds to thd_id. The full screenshot is

included in this book’s GitHub repository as figure_22_1_workbench_flush_lock.png.

Chapter 22 Diagnosing LoCk Contention

719

Figure 22-2 shows an example of the Processes report from MySQL Enterprise

Monitor (MEM) for the same lock situation.

Figure 22-2. The Processes report in MEM for a flush lock investigation

The Processes report is found under the Metrics menu item for individual instances.

You can choose which column you want to include in the output. An example of the

report with more details can be found in the book’s GitHub repository as figure_22_2_

mem_flush_lock.png.

An advantage of reports like the ones in MySQL Workbench and MySQL Enterprise

Monitor is that they use existing connections to create the report. In cases where the lock

issue causes all connections to be used, then it can be invaluable to be able to get the list

of queries using a monitoring solution.

As mentioned, the FLUSH TABLES statement may not always be present in the list

of queries. The reason there still are queries waiting for flush tables is the low-level

TDC version lock. The principles of the investigation remain the same, but it can seem

confusing. Listing 22-2 shows such an example using the same setup but killing the

connection executing the flush statement before the investigation (Ctrl+C can be used in

MySQL Shell in the connection executing FLUSH TABLES WITH READ LOCK).

Chapter 22 Diagnosing LoCk Contention

720

Listing 22-2. Flush lock contention without a FLUSH TABLES statement

mysql> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query'\G

*************************** 1. row ***************************

 thd_id: 30

 conn_id: 9

 state: User sleep

current_statement: SELECT *, SLEEP(180) FROM city WHERE ID = 130

statement_latency: 24.16 s

*************************** 2. row ***************************

 thd_id: 51

 conn_id: 13

 state: Waiting for table flush

current_statement: SELECT * FROM world.city WHERE ID = 3805

statement_latency: 20.20 s

*************************** 3. row ***************************

 thd_id: 29

 conn_id: 8

 state: NULL

current_statement: SELECT thd_id, conn_id, state, ... ession WHERE command

= 'Query'

statement_latency: 47.02 ms

3 rows in set (0.0548 sec)

This situation is identical to the previous except the FLUSH TABLES statement is gone. In

this case, find the query that has been waiting the longest with the state “Waiting for table

flush.” Queries that have been running longer than this query has been waiting are the ones

preventing the TDC version lock being released. In this case, that means thd_id = 30 is the

blocking query.

Once you have identified the issue and the principal queries involved, you need to

decide what to do about the issue.

Chapter 22 Diagnosing LoCk Contention

721

 The Solution
There are two levels of solving the issue. First of all, you need to resolve the immediate

problem of queries not executing. Second, you need to work at avoiding the issue in the

future. This subsection will discuss the immediate solution, and the next will consider

how to reduce the chance of the issue occurring.

To resolve the immediate issue, you have the option of waiting for the queries to

complete or starting to kill queries. If you can redirect the application to use another

instance while the flush lock contention is ongoing, you may be able to let the situation

resolve itself by letting the long-running queries complete. If there are data changing

queries among those running or waiting, you do in that case need to consider whether it

will leave the system in a consistent state after all queries have completed. One option may

be to continue in read-only mode with the read queries executed on a different instance.

If you decide to kill queries, you can try to kill the FLUSH TABLES statement. If that

works, it is the simplest solution. However, as discussed that will not always help, and in

that case the only solution is to kill the queries that were preventing the FLUSH TABLES

statement from completing. If the long-running queries look like runaway queries and

the application/client that executed them anyway is not waiting for them any longer, you

may want to kill them without trying to kill the FLUSH TABLES statement first.

One important consideration when looking to kill a query is how much data has

been changed. For a pure SELECT query (not involving stored routines), that is always

nothing, and from the perspective of work done, it is safe to kill it. For INSERT, UPDATE,

DELETE, and similar queries, however, the changed data must be rolled back if the query

is killed. It will usually take longer to roll back changes than making them in the first

place, so be prepared to wait a long time for the rollback if there are many changes. You

can use the information_schema.INNODB_TRX table to estimate the amount of work

done by looking at the trx_rows_modified column. If there is a lot of work to roll back, it

is usually better to let the query complete.

Caution When a DML statement is killed, the work it has done must be rolled
back. the rollback will usually take longer than creating the change, sometimes
much longer. You need to factor that in, if you consider killing a long-running DML
statement.

Of course, optimally you prevent the issue from happening at all.

Chapter 22 Diagnosing LoCk Contention

722

 The Prevention
The flush lock contention happens because of the combination of a long-running query

and a FLUSH TABLES statement. So, to prevent the issue, you need to look at what you can

do to avoid these two conditions to be present at the same time.

Finding, analyzing, and handling long-running queries are discussed in other

chapters throughout the book. One option of particular interest is to set a timeout for the

query. This is supported for SELECT statements using the max_execution_time system

variable and the MAX_EXECUTION_TIME(N) optimizer hint and is a great way to protect

against runaway queries. Some connectors also have support for timing out queries.

Tip to avoid long-running SELECT queries, you can configure the max_
execution_time option or set the MAX_EXECUTION_TIME(N) optimizer hint.
this will make the SELECT statement time out after the specified period and help
prevent issues like flush lock waits.

Some long-running queries cannot be prevented. It may be a reporting job, building

a cache table, or another task that must access a lot of data. In that case, the best you

can do is to try to avoid them running while it is also necessary to flush the tables. One

option is to schedule the long-running queries to run at different times than when it is

necessary to flush tables. Another option is to have the long-running queries run on a

different instance than the jobs that require flushing tables.

A common task that requires flushing the tables is taking a backup. In MySQL 8, you

can avoid that issue by using the backup and log locks. For example, MySQL Enterprise

Backup (MEB) does this in version 8.0.16 and later, so InnoDB tables are never flushed.

Alternatively, you can perform the backup at a period with low usage, so the potential for

conflicts is lower, or you can even do the backup while the system is in read-only mode

and avoid the FLUSH TABLES WITH READ LOCK altogether.

Another lock type that often causes confusion is the metadata lock.

Chapter 22 Diagnosing LoCk Contention

723

 Metadata and Schema Locks
In MySQL 5.7 and earlier, metadata locks were often a source of confusion. The problem

is that it is not obvious who holds the metadata lock. In MySQL 5.7, instrumentation

of the metadata locks was added to the Performance Schema, and in MySQL 8.0 it is

enabled by default. With the instrumentation enabled, it becomes easy to determine

who is blocking the connection trying to obtain the lock.

 The Symptoms
The symptoms of metadata lock contention are similar to those of flush lock contention.

In a typical situation, there will be a long-running query or transaction, a DDL statement

waiting for the metadata lock, and possible queries pilling up. The symptoms to look out

for are as follows:

• A DDL statement and possible other queries are stuck in the state

“Waiting for table metadata lock.”

• Queries may be pilling up. The queries that are waiting all use

the same table. (There may potentially be more than one group

of queries waiting if there are DDL statements for multiple tables

waiting for the metadata lock.)

• When the DDL statement has waited for lock_wait_timeout, an

ER_LOCK_WAIT_TIMEOUT error occurs: ERROR: 1205: Lock wait

timeout exceeded; try restarting transaction. Since the

default value for lock_wait_timeout is 365 days, this is only likely to

occur if the timeout has been reduced.

• There is a long-running query or a long-running transaction. In the

latter case, the transaction may be idle or executing a query that does

not use the table that the DDL statement acts on.

What makes the situation potentially confusing is the last point: there may not be

any long-running queries that are the clear candidates for causing the lock issue. So what

is the cause of the metadata lock contention?

Chapter 22 Diagnosing LoCk Contention

724

 The Cause
Remember that the metadata locks exist to protect the schema definition (as well

as being used with explicit locks). The schema protection will exist for as long as a

transaction is active, so when a transaction queries a table, the metadata lock will last

until the end of the transaction. Therefore, you may not see any long-running queries. In

fact, the transaction holding the metadata lock may not be doing anything at all.

In short, the metadata lock exists as one or more connections may rely on the

schema for a given table not changing, or they have explicitly locked the table either

using the LOCK TABLES or FLUSH TABLES WITH READ LOCK statement.

 The Setup
The example investigation of metadata locks uses three connections like in the previous

example. The first connection is in the middle of a transaction, the second connection

tries to add an index to the table used by the transaction, and the third connection

attempts to execute a query against the same table. The queries are

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT * FROM world.city WHERE ID = 3805\G

*************************** 1. row ***************************

 ID: 3805

 Name: San Francisco

CountryCode: USA

 District: California

 Population: 776733

1 row in set (0.0006 sec)

Connection 1> SELECT Code, Name FROM world.country WHERE Code = 'USA'\G

*************************** 1. row ***************************

Code: USA

Name: United States

1 row in set (0.0020 sec)

Connection 2> ALTER TABLE world.city ADD INDEX (Name);

Connection 3> SELECT * FROM world.city WHERE ID = 130;

Chapter 22 Diagnosing LoCk Contention

725

At this point, you can start the investigation. The situation will not resolve itself

(unless you have a low value for lock_wait_timeout or you are prepared to wait a year),

so you have all the time you want. When you want to resolve the block, you can start

 terminating the ALTER TABLE statement in Connection 2 to avoid modifying the world.

city table. Then commit or roll back the transaction in Connection 1.

 The Investigation
If you have the wait/lock/metadata/sql/mdl Performance Schema instrument enabled

(the default in MySQL 8), it is straightforward to investigate metadata lock issues. You

can use the metadata_locks table in the Performance Schema to list the granted and

pending locks. However, a simpler way to get a summary of the lock situation is to use

the schema_table_lock_waits view in the sys schema.

As an example, consider the metadata lock wait issue that can be seen in Listing 22-3

where three connections are involved. The WHERE clause has been chosen to just include

the rows of interest for this investigation.

Listing 22-3. A metadata lock wait issue

mysql> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query' OR trx_state = 'ACTIVE'\G

*************************** 1. row ***************************

 thd_id: 30

 conn_id: 9

 state: NULL

current_statement: SELECT Code, Name FROM world.country WHERE Code = 'USA'

statement_latency: NULL

*************************** 2. row ***************************

 thd_id: 7130

 conn_id: 7090

 state: Waiting for table metadata lock

current_statement: ALTER TABLE world.city ADD INDEX (Name)

statement_latency: 19.92 m

Chapter 22 Diagnosing LoCk Contention

726

*************************** 3. row ***************************

 thd_id: 51

 conn_id: 13

 state: Waiting for table metadata lock

current_statement: SELECT * FROM world.city WHERE ID = 130

statement_latency: 19.78 m

*************************** 4. row ***************************

 thd_id: 107

 conn_id: 46

 state: NULL

current_statement: SELECT thd_id, conn_id, state, ... Query' OR trx_state =

'ACTIVE'

statement_latency: 56.77 ms

3 rows in set (0.0629 sec)

Two connections are waiting for a metadata lock (on the world.city table). There

is a third connection included (conn_id = 9) which is idle which can be seen from the

NULL for the statement latency (in some versions earlier than 8.0.18, you may also see

that the current statement is NULL). In this case, the list of queries is limited to those with

an active query or an active transaction, but usually you will start out with a full process

list. However, to make it easy to focus on the important parts, the output is filtered.

Once you know there is a metadata lock issue, you can use the sys.schema_table_

lock_waits view to get information about the lock contention. Listing 22-4 shows an

example of the output corresponding to the just discussed process list.

Listing 22-4. Finding metadata lock contention

mysql> SELECT *

 FROM sys.schema_table_lock_waits\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 7130

 waiting_pid: 7090

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

 waiting_lock_duration: TRANSACTION

Chapter 22 Diagnosing LoCk Contention

727

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 1219

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 7130

 blocking_pid: 7090

 blocking_account: root@localhost

 blocking_lock_type: SHARED_UPGRADABLE

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 7090

sql_kill_blocking_connection: KILL 7090

*************************** 2. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 51

 waiting_pid: 13

 waiting_account: root@localhost

 waiting_lock_type: SHARED_READ

 waiting_lock_duration: TRANSACTION

 waiting_query: SELECT * FROM world.city WHERE ID = 130

 waiting_query_secs: 1210

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 7130

 blocking_pid: 7090

 blocking_account: root@localhost

 blocking_lock_type: SHARED_UPGRADABLE

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 7090

sql_kill_blocking_connection: KILL 7090

*************************** 3. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 7130

 waiting_pid: 7090

Chapter 22 Diagnosing LoCk Contention

728

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

 waiting_lock_duration: TRANSACTION

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 1219

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 30

 blocking_pid: 9

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 9

sql_kill_blocking_connection: KILL 9

*************************** 4. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 51

 waiting_pid: 13

 waiting_account: root@localhost

 waiting_lock_type: SHARED_READ

 waiting_lock_duration: TRANSACTION

 waiting_query: SELECT * FROM world.city WHERE ID = 130

 waiting_query_secs: 1210

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 30

 blocking_pid: 9

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 9

sql_kill_blocking_connection: KILL 9

4 rows in set (0.0024 sec)

Chapter 22 Diagnosing LoCk Contention

729

The output shows that there are four cases of queries waiting and blocking. This

may be surprising, but it happens because there are several locks involved and there

is a chain of waits. Each row is a pair of a waiting and blocking connection. The output

uses “pid” for the process list id which is the same as the connection id used in earlier

outputs. The information includes what the lock is on, details about the waiting

connection, details about the blocking connection, and two queries that can be used to

kill the blocking query or connection.

The first row shows process list id 7090 waiting on itself. That sounds like a deadlock,

but it is not. The reason is that the ALTER TABLE first took a shared lock that can be

upgraded and then tried to get the exclusive lock which is waiting. Because there is

no explicit information on which existing lock is actually blocking the new lock, this

information ends up being included.

The second row shows that the SELECT statement is waiting for process list id 7090

which is the ALTER TABLE. This is the reason that connections can start to pile up as the

DDL statement requires an exclusive lock, so it will block requests for shared locks.

The third and fourth rows are where the underlying issue for the lock contention

is revealed. Process list id 9 is blocking for both of the other connections which shows

that this is the main culprit that is blocking the DDL statement. So, when you are

investigating an issue like this, look for a connection waiting for an exclusive metadata

lock that is blocked by another connection. If there is a large number of rows in the

output, you can also look for the connection causing the most blocks and use that as a

starting point. Listing 22-5 shows an example of how you can do this.

Listing 22-5. Looking for the connection causing the metadata lock block

mysql> SELECT *

 FROM sys.schema_table_lock_waits

 WHERE waiting_lock_type = 'EXCLUSIVE'

 AND waiting_pid <> blocking_pid\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 7130

 waiting_pid: 7090

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

Chapter 22 Diagnosing LoCk Contention

730

 waiting_lock_duration: TRANSACTION

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 4906

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 30

 blocking_pid: 9

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 9

sql_kill_blocking_connection: KILL 9

1 row in set (0.0056 sec)

mysql> SELECT blocking_pid, COUNT(*)

 FROM sys.schema_table_lock_waits

 WHERE waiting_pid <> blocking_pid

 GROUP BY blocking_pid

 ORDER BY COUNT(*) DESC;

+--------------+----------+

| blocking_pid | COUNT(*) |

+--------------+----------+

| 9 | 2 |

| 7090 | 1 |

+--------------+----------+

2 rows in set (0.0028 sec)

The first query looks for a wait for an exclusive metadata lock where the blocking

process list id is not itself. In this case, that immediately gives the main block contention.

The second query determines the number of blocking queries triggered by each process

list id. It may not be as simple as shown in this example, but using queries as shown here

will help narrow down where the lock contention is.

Once you have determined where the lock contention originates, you need to

determine what the transaction is doing. In this case, the root of the lock contention

is Connection 9. Going back to the process list output, you can see that it is not doing

anything in this case:

Chapter 22 Diagnosing LoCk Contention

731

*************************** 1. row ***************************

 thd_id: 30

 conn_id: 9

 state: NULL

current_statement: SELECT Code, Name FROM world.country WHERE Code = 'USA'

statement_latency: NULL

What did this connection do to take the metadata lock? The fact that there is no

current statement that involves the world.city table suggests the connection has an

active transaction open. In this case, the transaction is idle (as seen by statement_

latency = NULL), but it could also be that there was a query executing that is unrelated

to the metadata lock on the world.city table. In either case, you need to determine

what the transaction was doing prior to the current state. You can use the Performance

Schema and Information Schema for this. Listing 22-6 shows an example of investigating

the status and recent history of a transaction.

Listing 22-6. Investigating a transaction

mysql> SELECT *

 FROM information_schema.INNODB_TRX

 WHERE trx_mysql_thread_id = 9\G

*************************** 1. row ***************************

 trx_id: 283529000061592

 trx_state: RUNNING

 trx_started: 2019-06-15 13:22:29

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 0

 trx_mysql_thread_id: 9

 trx_query: NULL

 trx_operation_state: NULL

 trx_tables_in_use: 0

 trx_tables_locked: 0

 trx_lock_structs: 0

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 0

 trx_rows_modified: 0

Chapter 22 Diagnosing LoCk Contention

732

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

1 row in set (0.0006 sec)

mysql> SELECT *

 FROM performance_schema.events_transactions_current

 WHERE THREAD_ID = 30\G

*************************** 1. row ***************************

 THREAD_ID: 30

 EVENT_ID: 113

 END_EVENT_ID: NULL

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: NULL

 XID_GTRID: NULL

 XID_BQUAL: NULL

 XA_STATE: NULL

 SOURCE: transaction.cc:219

 TIMER_START: 12849615560172160

 TIMER_END: 18599491723543808

 TIMER_WAIT: 5749876163371648

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

Chapter 22 Diagnosing LoCk Contention

733

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 112

 NESTING_EVENT_TYPE: STATEMENT

1 row in set (0.0008 sec)

mysql> SELECT EVENT_ID, CURRENT_SCHEMA,

 SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = 30

 AND NESTING_EVENT_ID = 113

 AND NESTING_EVENT_TYPE = 'TRANSACTION'\G

*************************** 1. row ***************************

 EVENT_ID: 114

CURRENT_SCHEMA: world

 SQL_TEXT: SELECT * FROM world.city WHERE ID = 3805

*************************** 2. row ***************************

 EVENT_ID: 115

CURRENT_SCHEMA: world

 SQL_TEXT: SELECT * FROM world.country WHERE Code = 'USA'

2 rows in set (0.0036 sec)

mysql> SELECT ATTR_NAME, ATTR_VALUE

 FROM performance_schema.session_connect_attrs

 WHERE PROCESSLIST_ID = 9;

+-----------------+------------+

| ATTR_NAME | ATTR_VALUE |

+-----------------+------------+

| _pid | 23256 |

| program_name | mysqlsh |

| _client_name | libmysql |

| _thread | 20164 |

| _client_version | 8.0.18 |

| _os | Win64 |

| _platform | x86_64 |

+-----------------+------------+

7 rows in set (0.0006 sec)

Chapter 22 Diagnosing LoCk Contention

734

The first query uses the INNODB_TRX table in the Information Schema. It, for example,

shows when the transaction was started, so you can determine how long it has been

active. The trx_rows_modified column is also useful to know how much data has been

changed by the transaction in case it is decided to roll back the transaction. Note that

what InnoDB calls the MySQL thread id (the trx_mysql_thread_id column) is actually

the connection id.

The second query uses the events_transactions_current table from the

Performance Schema to get more transaction information. You can use the TIMER_WAIT

column to determine the age of the transaction. The value is in picoseconds, so it can be

easier to understand what the value is by using the FORMAT_PICO_TIME() function:

mysql> SELECT FORMAT_PICO_TIME(5749876163371648) AS Age;

+--------+

| Age |

+--------+

| 1.60 h |

+--------+

1 row in set (0.0003 sec)

If you are using MySQL 8.0.15 or earlier, use the sys.format_time() function instead.

The third query uses the events_statements_history table to find the previous

queries executed in the transaction. The NESTING_EVENT_ID column is set to the value

of the EVENT_ID from the output of the events_transactions_current table, and the

NESTING_EVENT_TYPE column is set to match a transaction. This ensures that only events

that are children of the ongoing transaction are returned. The result is ordered by the

EVENT_ID (of the statement) to get the statements in the order they were executed. By

default, the events_statements_history table will include at most the ten latest queries

for the connection.

In this example, the investigation shows that the transaction has executed two

queries: one selecting from the world.city table and one selecting from the world.

country table. It is the first of these queries causing the metadata lock contention.

The fourth query uses the session_connect_attrs table to find the attributes

submitted by the connection. Not all clients and connectors submit attributes, or they

may be disabled, so this information is not always available. When the attributes are

available, they can be useful to find out where the offending transaction is executed

from. In this example, you can see the connection is from MySQL Shell (mysqlsh). This

can be useful if you want to commit an idle transaction.

Chapter 22 Diagnosing LoCk Contention

735

 The Solution
For a metadata lock contention, you essentially have two options to resolve the issue:

make the blocking transaction complete or kill the DDL statement. To complete

the blocking transaction, you will need to either commit it or roll it back. If you kill

the connection, it triggers a rollback of the transaction, so you need to take into

consideration how much work will need to be rolled back. In order to commit the

transaction, you must find where the connection is executed and commit it that way. You

cannot commit a transaction owned by a different connection.

Killing the DDL statement will allow the other queries to proceed, but it does not

solve the issue in the long term if the lock is held by an abandoned but still active

transaction. For cases where there is an abandoned transaction holding the metadata

lock, it can however be an option to kill both the DDL statement and the connection

with the abandoned transaction. That way you avoid the DDL statement to continue

blocking subsequent queries while the transaction rolls back. Then when the rollback

has completed, you can retry the DDL statement.

 The Prevention
The key to avoiding metadata lock contention is to avoid a long-running transaction

at the same time as you need to execute DDL statements for the tables used by the

transaction. You can, for example, execute DDL statements at times when you know

there are no long-running transactions. You can also set the lock_wait_timeout option

to a low value which makes the DDL statement abandon after lock_wait_timeout

seconds. While that does not avoid the lock problem, it mitigates the issue by avoiding

the DDL statement stopping other queries from executing. You can then find the root

cause without the stress of having a large part of the application not working.

You can also aim at reducing how long transactions are active. One option is to split a

large transaction into several smaller transactions, if it is not required that all operations

are performed as an atomic unit. You should also make sure that the transaction is not

kept open for unnecessarily long time by making sure you are not doing interactive work,

file I/O, transferring data to the end user, and so on while the transaction is active.

One common cause of a long-running transaction is that the application or client

does not commit or roll back the transaction at all. This is particularly likely to happen

with the autocommit option disabled. When autocommit is disabled, any query – even

a plain read-only SELECT statement – will start a new transaction when there is not

Chapter 22 Diagnosing LoCk Contention

736

already an active transaction. This means that an innocent-looking query may start

a transaction, and if the developer is not aware that autocommit is disabled, then the

developer may not think about explicitly ending the transaction. The autocommit setting

is enabled by default in MySQL Server, but some connectors disable it by default.

That concludes the discussion about investigating metadata locks. The next level of

locks to look at are the record locks.

 Record-Level Locks
Record lock contention is the most frequently encountered, but usually also the least

intrusive as the default lock wait timeout is just 50 seconds, so there is not the same

potential for queries pilling up. That said, there are cases – as will be shown – where

record locks can cause MySQL to come to a grinding halt. This section will look into

investigating InnoDB record lock issues in general and in more detail lock wait timeout

issues. Investigating the specifics of deadlocks is deferred until the next section.

 The Symptoms
The symptoms of InnoDB record lock contention are often very subtle and not easily

recognizable. In severe cases, you will get a lock wait timeout or a deadlock error, but in

many cases, there may be no direct symptoms. Rather the symptom is that queries are

slower than normal. This may range from being a fraction of a second slower to being

many seconds slower.

For cases where there is a lock wait timeout, you will see an ER_LOCK_WAIT_TIMEOUT

error like the one in the following example:

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

When the queries are slower than they would be without lock contention, the most

likely way to detect the issue is through monitoring, either using something similar to

the Query Analyzer in MySQL Enterprise Monitor or detecting lock contention using the

sys.innodb_lock_waits view. Figure 22-3 shows an example of a query in the Query

Analyzer. The sys schema view will be used when discussing the investigation of record

lock contention. The figure is also available in full size in this book’s GitHub repository as

figure_22_3_quan.png.

Chapter 22 Diagnosing LoCk Contention

737

In the figure, notice how the latency graph for the query increases toward the end

of the period and then suddenly drops again. There is also a red icon to the right of the

normalized query – that icon means the query has returned errors. In this case the error

is a lock wait timeout, but that cannot be seen from the figure. The donut-shaped chart

to the left of the normalized query also shows a red area indicating the Query Response

Time index for the query at times is considered poor. The large graph at the top shows

a small dip showing there were enough issues in the instance to cause a general

degradation of the performance of the instance.

There are also several instance-level metrics that show how much locking is occurring

for the instance. These can be very useful to monitor the general lock contention over

time. Listing 22-7 shows the available metrics using the sys.metrics view.

Listing 22-7. InnoDB lock metrics

mysql> SELECT Variable_name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Variable_name LIKE 'innodb_row_lock%'

 OR Type = 'InnoDB Metrics - lock';

Figure 22-3. Example of a lock contention detected in the Query Analyzer

Chapter 22 Diagnosing LoCk Contention

738

+-------------------------------+--------+---------+

| Variable_name | Value | Enabled |

+-------------------------------+--------+---------+

| innodb_row_lock_current_waits | 0 | YES |

| innodb_row_lock_time | 595876 | YES |

| innodb_row_lock_time_avg | 1683 | YES |

| innodb_row_lock_time_max | 51531 | YES |

| innodb_row_lock_waits | 354 | YES |

| lock_deadlocks | 0 | YES |

| lock_rec_lock_created | 0 | NO |

| lock_rec_lock_removed | 0 | NO |

| lock_rec_lock_requests | 0 | NO |

| lock_rec_lock_waits | 0 | NO |

| lock_rec_locks | 0 | NO |

| lock_row_lock_current_waits | 0 | YES |

| lock_table_lock_created | 0 | NO |

| lock_table_lock_removed | 0 | NO |

| lock_table_lock_waits | 0 | NO |

| lock_table_locks | 0 | NO |

| lock_timeouts | 1 | YES |

+-------------------------------+--------+---------+

17 rows in set (0.0203 sec)

For this discussion, the innodb_row_lock_% and lock_timeouts metrics are the most

interesting. The three time variables are in milliseconds. It can be seen there has been

a single lock wait timeout which on its own is not necessarily a cause for concern. You

can also see there have been 354 cases when a lock could not be granted immediately

(innodb_row_lock_waits) and there have been waits up to more than 51 seconds

(innodb_row_lock_time_max). When the general level of lock contention increases, you

will see these metrics increase as well.

Even better than monitoring the metrics manually, ensure your monitoring solution

record the metrics and can plot them over time in timeseries graphs. Figure 22-4 shows

an example of the metrics plotted for the same incident that was found in Figure 22-3.

Chapter 22 Diagnosing LoCk Contention

739

Figure 22-4. Timeseries graphs for InnoDB row lock metrics

Chapter 22 Diagnosing LoCk Contention

740

The graphs show a general increase in locking. The number of lock waits has two

periods with increased lock waits and then drops off again. The row lock time graph

shows a similar pattern. This is a typical sign of intermittent lock issues.

 The Cause
InnoDB works with shared and exclusive locks on the row data, index records, gaps, and

insert intention locks. When there are two transactions that attempt to access the data in

conflicting ways, one query will have to wait until the required lock becomes available.

In short, two requests for a shared lock can be granted at the same time, but once there is

an exclusive lock, no connections can acquire a lock on the same record.

As it is exclusive locks that are the most likely to cause lock contention, it is usually

DML queries that change data that are the cause of InnoDB record lock contention.

Another source is SELECT statements doing preemptive locking by adding the FOR SHARE

(or LOCK IN SHARE MODE) or FOR UPDATE clause.

 The Setup
This example requires just two connections to set up the scenario that is being

investigated with the first connection having an ongoing transaction and the second

trying to update a row that the first connection holds a lock for. Since the default timeout

waiting for InnoDB locks is 50 seconds, you can optionally choose to increase this

timeout for the second connection that will block to give you more time to perform the

investigation. The setup is

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE ID = 130;

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 2> SET SESSION innodb_lock_wait_timeout = 300;

Query OK, 0 rows affected (0.0003 sec)

Chapter 22 Diagnosing LoCk Contention

741

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> UPDATE world.city SET Population = Population * 1.10 WHERE

CountryCode = 'AUS';

In this example the lock wait timeout for Connection 2 is set to 300 seconds.

The START TRANSACTION for Connection 2 is not required but allows you to roll both

transactions back when you are done to avoid making changes to the data.

 The Investigation
The investigation of record locks is very similar to investigating metadata locks. You

can query the data_locks and data_lock_waits tables in the Performance Schema

which will show the raw lock data and pending locks, respectively. There is also the sys.

innodb_lock_waits view which queries the two tables to find pairs of locks with one

being blocked by the other.

Note the data_locks and data_lock_waits tables are new in MysQL 8.
in MysQL 5.7 and earlier, there were two similar tables in the information schema
named INNODB_LOCKS and INNODB_LOCK_WAITS. an advantage of using
the innodb_lock_waits view is that it works the same (but with some extra
information in MysQL 8) across the MysQL versions.

In most cases, it is easiest to start the investigation using the innodb_lock_waits

view and only dive into the Performance Schema tables as needed. Listing 22-8 shows an

example of the output from innodb_lock_waits for a lock wait situation.

Listing 22-8. Retrieving lock information from the innodb_lock_waits view

mysql> SELECT * FROM sys.innodb_lock_waits\G

*************************** 1. row ***************************

 wait_started: 2019-06-15 18:37:42

 wait_age: 00:00:02

 wait_age_secs: 2

 locked_table: `world`.`city`

Chapter 22 Diagnosing LoCk Contention

742

 locked_table_schema: world

 locked_table_name: city

 locked_table_partition: NULL

 locked_table_subpartition: NULL

 locked_index: PRIMARY

 locked_type: RECORD

 waiting_trx_id: 3317978

 waiting_trx_started: 2019-06-15 18:37:42

 waiting_trx_age: 00:00:02

 waiting_trx_rows_locked: 2

 waiting_trx_rows_modified: 0

 waiting_pid: 4172

 waiting_query: UPDATE city SET Population = P ... 1.10 WHERE

CountryCode = 'AUS'

 waiting_lock_id: 1999758099664:525:6:131:1999728339632

 waiting_lock_mode: X,REC_NOT_GAP

 blocking_trx_id: 3317977

 blocking_pid: 9

 blocking_query: NULL

 blocking_lock_id: 1999758097920:525:6:131:1999728329336

 blocking_lock_mode: X,REC_NOT_GAP

 blocking_trx_started: 2019-06-15 18:37:40

 blocking_trx_age: 00:00:04

 blocking_trx_rows_locked: 1

 blocking_trx_rows_modified: 1

 sql_kill_blocking_query: KILL QUERY 9

sql_kill_blocking_connection: KILL 9

1 row in set (0.0145 sec)

The columns in the output can be divided into five sections based on the prefix of the

column name. The groups are

• wait_: These columns show some general information around the

age of the lock wait.

• locked_: These columns show what is locked ranging from the

schema to the index as well as the lock type.

Chapter 22 Diagnosing LoCk Contention

743

• waiting_: These columns show details of the transaction that is

waiting for the lock to be granted including the query and the lock

mode requested.

• blocking_: These columns show details of the transaction that is

blocking the lock request. Note that in the example, the blocking

query is NULL. This means the transaction is idle at the time the

output was generated. Even when there is a blocking query listed,

the query may not have anything to do with the lock that there

is contention for – other than the query is executed by the same

transaction that holds the lock.

• sql_kill_: These two columns provide the KILL queries that can be

used to kill the blocking query or connection.

Note the column blocking_query is the query currently executed (if any)
for the blocking transaction. it does not mean that the query itself is necessarily
causing the lock request to block.

The case where the blocking_query column is NULL is a common situation. It means

that the blocking transaction is currently not executing a query. This may be because it

is between two queries. If this period is an extended period, it suggests the application

is doing work that ideally should be done outside the transaction. More commonly,

the transaction is not executing a query because it has been forgotten about, either

in an interactive session where the human has forgotten to end the transaction or an

application flow that does not ensure transactions are committed or rolled back.

 The Solution
The solution depends on the extent of the lock waits. If it is a few queries having short

lock waits, it may very well be acceptable to just let the affected queries wait for the

lock to become available. Remember locks are there to ensure the integrity of the data,

so locks are not inherently a problem. Locks are only a problem when they cause a

significant impact on the performance or cause queries to fail to an extent where it is not

feasible to retry them.

Chapter 22 Diagnosing LoCk Contention

744

If the lock situation lasts for an extended period – particularly if the blocking

transaction has been abandoned – you can consider killing the blocking transaction. As

always you need to consider that the rollback may take a significant amount of time if the

blocking transaction has performed a large amount of work.

For queries that fail because of a lock wait timeout error, the application should retry

them. Remember that by default a lock wait timeout only rolls back the query that was

executing when the timeout occurred. The rest of the transaction is left as it were before

the query. A failure to handle the timeout may thus leave an unfinished transaction with

its own locks that can cause further lock issues. Whether just the query or the whole

transaction will be rolled back is controlled by the innodb_rollback_on_timeout option.

Caution it is very important that a lock wait timeout is handled as otherwise it
may leave the transaction with locks that are not released. if that happens, other
transactions may not be able to acquire the locks they require.

 The Prevention
Preventing significant record-level lock contention largely follows the guidelines that

were discussed in the section “Reduce Locking Issues” in Chapter 18. To recapitulate

the discussion, the way to reduce lock wait contention is largely about reducing the size

and duration of transactions, using indexes to reduce the number of records accessed,

and possibly switching the transaction isolation level to READ COMMITTED to release locks

earlier and reduce the number of gap locks.

 Deadlocks
One of the lock issues causing the most concerns for database administrators are

deadlocks. This is partly because of the name and partly because they unlike the

other lock issues discussed always cause an error. However, there is as such nothing

specially worrying about deadlocks compared to other locking issues. On the

contrary, that they cause an error means that you know about them sooner and the

lock issue resolves itself.

Chapter 22 Diagnosing LoCk Contention

745

 The Symptoms
The symptoms are straightforward. The victim of a deadlock receives an error, and

the lock_deadlocks InnoDB metric increments. The error that will be returned to the

transaction that InnoDB chooses as the victim is ER_LOCK_DEADLOCK:

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

The lock_deadlocks metric is very useful to keep an eye on how often deadlocks

occur. A convenient way to track the value of lock_deadlocks is to use the sys.metrics

view:

mysql> SELECT *

 FROM sys.metrics

 WHERE Variable_name = 'lock_deadlocks'\G

*************************** 1. row ***************************

 Variable_name: lock_deadlocks

Variable_value: 42

 Type: InnoDB Metrics - lock

 Enabled: YES

1 row in set (0.0087 sec)

You can also check the LATEST DETECTED DEADLOCK section in the output of the

InnoDB monitor, for example, by executing SHOW ENGINE INNODB STATUS. This will

show when the last deadlock last occurred, and thus you can use that to judge how

frequently deadlocks occur. If you have the innodb_print_all_deadlocks option

enabled, the error lock will have many outputs of deadlock information. The details of

the InnoDB monitor output for deadlocks will be covered in “The Investigation” after the

cause of deadlocks and the setup have been discussed.

 The Cause
Deadlocks are caused by locks being obtained in different orders for two or more

transactions. Each transaction ends up holding a lock that the other transaction

needs. This lock may be a record lock, gap lock, predicate lock, or insert intention lock.

Figure 22-5 shows an example of a circular dependency that triggers a deadlock.

Chapter 22 Diagnosing LoCk Contention

746

The deadlock shown in the figure is due to two record locks on the primary keys of a

table. That is one of the simplest deadlocks that can occur. As shown when investigating

a deadlock, the circle can be more complex than this.

 The Setup
This example uses two connections as the previous example, but this time both make

changes before Connection 1 ends up blocking until Connection 2 rolls back its changes

with an error. Connection 1 updates the population of Australia and its cities with 10%,

whereas Connection 2 updates the Australian population with that of the city of Darwin

and adds the city. The statements are

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0001 sec)

Connection 1> UPDATE world.city SET Population = Population * 1.10 WHERE

CountryCode = 'AUS';

Query OK, 14 rows affected (0.0010 sec)

Rows matched: 14 Changed: 14 Warnings: 0

Figure 22-5. A circular lock dependency triggering a deadlock

Chapter 22 Diagnosing LoCk Contention

747

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> UPDATE world.country SET Population = Population + 146000

WHERE Code = 'AUS';

Query OK, 1 row affected (0.0317 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Blocks

Connection 1> UPDATE world.country SET Population = Population * 1.1 WHERE

Code = 'AUS';

Connection 2> INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS',

'Northern Territory', 146000);

ERROR: 1213: Deadlock found when trying to get lock; try restarting transaction

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.3301 sec)

The key is that the two transactions both update the city and country tables but

in opposite order. The setup completes by explicitly rolling back both transactions to

ensure the tables are left without changes.

 The Investigation
The main tool to analyze deadlocks is the section with information about the latest

detected deadlock in the InnoDB monitor output. If you have the innodb_print_all_

deadlocks option enabled (OFF by default), you may also have the deadlock information

from the error log; however, the information is the same, so it does not change the

analysis.

The deadlock information contains four parts describing the deadlock and the result.

The parts are

• When the deadlock occurred.

• Information for the first of the transactions involved in the deadlock.

Chapter 22 Diagnosing LoCk Contention

748

• Information for the second of the transactions involved in the

deadlock.

• Which of the transactions that was rolled back. This information is

not included in the error log when innodb_print_all_deadlocks is

enabled.

The numbering of the two transactions is arbitrary, and the main purpose is to be

able to refer to one transaction or the other. The two parts with transaction information

are the most important ones. They include how long the transaction was active, some

statistics about the size of the transactions in terms of locks taken and undo log entries

and similar, the query that was blocking waiting for a lock, and information about the

locks involved in the deadlock.

The lock information is not as easy to interpret as when you use the data_locks and

data_lock_waits tables and the sys.innodb_lock_waits view. However, it is not too

difficult once you have tried to perform the analysis a few times.

Tip Create some deadlocks on purpose in a test system and study the resulting
deadlock information. then work your way through the information to determine
why the deadlock occurred. since you know the queries, it is easier to interpret the
lock data.

For this deadlock investigation, consider the deadlock section from the InnoDB

monitor that is shown in Listing 22-9. The listing is rather long and the lines wide, so

the information is also available in this book’s GitHub repository as listing_22_9_

deadlock.txt, so you can open the output in a text editor of your choice.

Listing 22-9. Example of a detected deadlock

mysql> SHOW ENGINE INNODB STATUS\G

...

LATEST DETECTED DEADLOCK

2019-11-06 18:29:07 0x4b78

*** (1) TRANSACTION:

TRANSACTION 6260, ACTIVE 62 sec starting index read

Chapter 22 Diagnosing LoCk Contention

749

mysql tables in use 1, locked 1

LOCK WAIT 6 lock struct(s), heap size 1136, 30 row lock(s), undo log

entries 14

MySQL thread id 61, OS thread handle 22592, query id 39059 localhost ::1

root updating

UPDATE world.country SET Population = Population * 1.1 WHERE Code = 'AUS'

*** (1) HOLDS THE LOCK(S):

RECORD LOCKS space id 160 page no 14 n bits 1368 index CountryCode of table

`world`.`city` trx id 6260 lock_mode X locks gap before rec

Record lock, heap no 652 PHYSICAL RECORD: n_fields 2; compact format; info

bits 0

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 161 page no 5 n bits 128 index PRIMARY of table

`world`.`country` trx id 6260 lock_mode X locks rec but not gap waiting

Record lock, heap no 16 PHYSICAL RECORD: n_fields 17; compact format; info

bits 0

 0: len 3; hex 415553; asc AUS;;

 1: len 6; hex 000000001875; asc u;;

 2: len 7; hex 0200000122066e; asc " n;;

 3: len 30; hex 4175737472616c696120;

asc Australia ; (total 52 bytes);

 4: len 1; hex 05; asc ;;

 5: len 26; hex 4175737472616c696120616e64204e6577205a65616c616e6420; asc

Australia and New Zealand ;;

 6: len 4; hex 483eec4a; asc H> J;;

 7: len 2; hex 876d; asc m;;

 8: len 4; hex 812267c0; asc "g ;;

 9: len 4; hex 9a999f42; asc B;;

 10: len 4; hex c079ab48; asc y H;;

 11: len 4; hex e0d9bf48; asc H;;

 12: len 30; hex 4175737472616c696120;

asc Australia ; (total 45 bytes);

Chapter 22 Diagnosing LoCk Contention

750

 13: len 30; hex 436f6e737469747574696f6e616c204d6f6e61726368792c204665646572;

asc Constitutional Monarchy, Feder; (total 45 bytes);

 14: len 30; hex 456c69736162657468204949202020202020202020202020202020202020;

asc Elisabeth II ; (total 60 bytes);

 15: len 4; hex 80000087; asc ;;

 16: len 2; hex 4155; asc AU;;

*** (2) TRANSACTION:

TRANSACTION 6261, ACTIVE 37 sec inserting

mysql tables in use 1, locked 1

LOCK WAIT 4 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 2

MySQL thread id 62, OS thread handle 2044, query id 39060 localhost ::1

root update

INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS', 'Northern Territory', 146000)

*** (2) HOLDS THE LOCK(S):

RECORD LOCKS space id 161 page no 5 n bits 128 index PRIMARY of table

`world`.`country` trx id 6261 lock_mode X locks rec but not gap

Record lock, heap no 16 PHYSICAL RECORD: n_fields 17; compact format; info bits 0

 0: len 3; hex 415553; asc AUS;;

 1: len 6; hex 000000001875; asc u;;

 2: len 7; hex 0200000122066e; asc " n;;

 3: len 30; hex 4175737472616c696120;

asc Australia ; (total 52 bytes);

 4: len 1; hex 05; asc ;;

 5: len 26; hex 4175737472616c696120616e64204e6577205a65616c616e6420; asc

Australia and New Zealand ;;

 6: len 4; hex 483eec4a; asc H> J;;

 7: len 2; hex 876d; asc m;;

 8: len 4; hex 812267c0; asc "g ;;

 9: len 4; hex 9a999f42; asc B;;

 10: len 4; hex c079ab48; asc y H;;

 11: len 4; hex e0d9bf48; asc H;;

 12: len 30; hex 4175737472616c696120;

asc Australia ; (total 45 bytes);

 13: len 30; hex 436f6e737469747574696f6e616c204d6f6e61726368792c204665646572;

asc Constitutional Monarchy, Feder; (total 45 bytes);

Chapter 22 Diagnosing LoCk Contention

751

 14: len 30; hex 456c69736162657468204949202020202020202020202020202020202020;

asc Elisabeth II ; (total 60 bytes);

 15: len 4; hex 80000087; asc ;;

 16: len 2; hex 4155; asc AU;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 160 page no 14 n bits 1368 index CountryCode of table

`world`.`city` trx id 6261 lock_mode X locks gap before rec insert intention waiting

Record lock, heap no 652 PHYSICAL RECORD: n_fields 2; compact format; info bits 0

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

*** WE ROLL BACK TRANSACTION (2)

The deadlock occurred on November 6, 2019, at 18:29:07 in the server time zone.

You can use this information to see if the information is for the same deadlock as the

deadlock reported by a user.

The interesting part is the information for the two transactions. You can see that

transaction 1 was updating the population of the country with Code = 'AUS':

UPDATE world.country SET Population = Population * 1.1 WHERE Code = 'AUS'

Transaction 2 was attempting to insert a new city:

INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS', 'Northern Territory', 146000)

This is a case where the deadlock involved multiple tables. While the two queries

work on different tables, it cannot on its own prove that there are more queries involved

as a foreign key can trigger one query to take locks on two tables. In this case though, the

Code column is the primary key of the country table, and the only foreign key involved is

from the CountryCode column on the city table to the Code column of the country table

(showing this is left as an exercise for the reader using the world sample database). So it

is not likely that two queries deadlock on their own.

Note the deadlock output is from MysQL 8.0.18 which added additional
information to the output. this discussion only uses the information that is also
available in previous releases as well. however, if you are still using an earlier
release, upgrading will make it easier to investigate deadlocks.

Chapter 22 Diagnosing LoCk Contention

752

The next thing to observe is what locks are being waited on. Transaction 1 waits for

an exclusive lock on the primary key of the country table:

RECORD LOCKS space id 161 page no 5 n bits 128 index PRIMARY of table

`world`.`country` trx id 6260 lock_mode X locks rec but not gap waiting

The value of the primary key can be found in the information that follows this

information. It can seem a little overwhelming as InnoDB includes all the information

related to the record. Since it is a primary key record, the whole row is included. This

is useful to understand what data is in the row, particularly if the primary key does

not carry that information on its own, but it can be confusing when you see it the first

time. The primary key of the country table is the first column of the table, so it is the

first line of the record information that contains the value of the primary key the lock is

requesting:

 0: len 3; hex 415553; asc AUS;;

InnoDB includes the value in hexadecimal notation, but also tries to decode it as a

string, so here it is clear that the value is “AUS”, which is not surprising since that is also in

the WHERE clause of the query. It is not always that obvious, so you should always confirm

the value from the lock output. You can also see from the information that the column is

sorted in ascending order in the index.

Transaction 2 waits for an insert intention lock on the CountryCode index of the city

table:

RECORD LOCKS space id 160 page no 14 n bits 1368 index CountryCode of

table `world`.`city` trx id 6261 lock_mode X locks gap before rec insert

intention waiting

You can see the lock request involves a gap before record. The lock information

is simpler in this case as there are only two columns in the CountryCode index – the

CountryCode column and the primary key (ID column) since the CountryCode index is a

nonunique secondary index. The index is effectively (CountryCode, ID), and the values

for the gap before record are as follows:

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

Chapter 22 Diagnosing LoCk Contention

753

This shows that the value of the CountryCode is “AUT” which is not all that surprising

given it is the next value after “AUS” when sorting in alphabetical ascending order. The

value for the ID column is the hex value 0x5f3 which in decimal is 1523. If you query for

cities with CountryCode = AUT and sort them in order of the CountryCode index, you can

see that ID = 1523 is the first city found:

mysql> SELECT *

 FROM world.city

 WHERE CountryCode = 'AUT'

 ORDER BY CountryCode, ID

 LIMIT 1;

+------+------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+------+------+-------------+----------+------------+

| 1523 | Wien | AUT | Wien | 1608144 |

+------+------+-------------+----------+------------+

1 row in set (0.0006 sec)

So far so good. Since the transactions are waiting for these locks, it can of course be

inferred that the other transaction holds the lock. In version 8.0.18 and later, InnoDB

includes the full list of locks held by both transactions; in earlier versions, InnoDB only

includes this explicitly for one of the transactions, so you need to determine what other

queries the transactions have executed.

From the information available, you can make some educated guesses. For example,

the INSERT statement is blocked by a gap lock on the CountryCode index. An example

of a query that would take that gap lock is a query using the condition CountryCode =

'AUS'. The deadlock information also includes information about the two connections

owning the transactions which may help you:

MySQL thread id 61, OS thread handle 22592, query id 39059 localhost ::1

root updating

MySQL thread id 62, OS thread handle 2044, query id 39060 localhost ::1

root update

Chapter 22 Diagnosing LoCk Contention

754

You can see both connections were made using the root@localhost account. If you

ensure to have different users for each application and role, the account may help you to

narrow down who executed the transactions.

If the connections still exist, you can also use the events_statements_history table

in the Performance Schema to find the latest queries executed by the connection. This

may not be those involved in the deadlock, depending on whether the connection has

been used for more queries, but may nevertheless provide a clue to what the connection

is used for. If the connections no longer exist, you may in principle be able to find the

queries in the events_statements_history_long table, but you will need to map the

“MySQL thread id” (the connection ID) to the Performance Schema thread ID which

there is no trivial way to do. Also, the events_statements_history_long consumer is

not enabled by default.

In this particular case, both connections are still present, and they have not done

anything other than rolling back the transactions. Listing 22-10 shows how you can find

the queries involved in the transactions. Be aware that the queries may return more rows

than shown here depending on which client you are using and which other queries have

been executed in the connection.

Listing 22-10. Finding the queries involved in the deadlock

mysql> SELECT SQL_TEXT, NESTING_EVENT_ID,

 NESTING_EVENT_TYPE

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = PS_THREAD_ID(61)

 ORDER BY EVENT_ID\G

*************************** 1. row ***************************

 SQL_TEXT: START TRANSACTION

 NESTING_EVENT_ID: NULL

NESTING_EVENT_TYPE: NULL

*************************** 2. row ***************************

 SQL_TEXT: UPDATE world.city SET Population = Population * 1.10

WHERE CountryCode = 'AUS'

 NESTING_EVENT_ID: 37

NESTING_EVENT_TYPE: TRANSACTION

Chapter 22 Diagnosing LoCk Contention

755

*************************** 3. row ***************************

 SQL_TEXT: UPDATE world.country SET Population = Population * 1.1

WHERE Code = 'AUS'

 NESTING_EVENT_ID: 37

NESTING_EVENT_TYPE: TRANSACTION

*************************** 4. row ***************************

 SQL_TEXT: ROLLBACK

 NESTING_EVENT_ID: 37

NESTING_EVENT_TYPE: TRANSACTION

4 rows in set (0.0007 sec)

mysql> SELECT SQL_TEXT, MYSQL_ERRNO,

 NESTING_EVENT_ID,

 NESTING_EVENT_TYPE

 FROM performance_schema.events_statements_history

 WHERE THREAD_ID = PS_THREAD_ID(62)

 ORDER BY EVENT_ID\G

*************************** 1. row ***************************

 SQL_TEXT: START TRANSACTION

 MYSQL_ERRNO: 0

 NESTING_EVENT_ID: NULL

NESTING_EVENT_TYPE: NULL

*************************** 2. row ***************************

 SQL_TEXT: UPDATE world.country SET Population = Population +

146000 WHERE Code = 'AUS'

 MYSQL_ERRNO: 0

 NESTING_EVENT_ID: 810

NESTING_EVENT_TYPE: TRANSACTION

*************************** 3. row ***************************

 SQL_TEXT: INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS',

'Northern Territory', 146000)

 MYSQL_ERRNO: 1213

 NESTING_EVENT_ID: 810

NESTING_EVENT_TYPE: TRANSACTION

Chapter 22 Diagnosing LoCk Contention

756

*************************** 4. row ***************************

 SQL_TEXT: SHOW WARNINGS

 MYSQL_ERRNO: 0

 NESTING_EVENT_ID: NULL

NESTING_EVENT_TYPE: NULL

*************************** 5. row ***************************

 SQL_TEXT: ROLLBACK

 MYSQL_ERRNO: 0

 NESTING_EVENT_ID: NULL

NESTING_EVENT_TYPE: NULL

10 rows in set (0.0009 sec)

Notice that for connection id 62 (the second of the transactions), the MySQL error

number is included, and the third row has it set to 1213 – a deadlock. MySQL Shell

automatically executes a SHOW WARNINGS statement when an error is encountered which

is the statement in row 4. Notice also that the nesting event is NULL for the ROLLBACK for

transaction 2, but not for the ROLLBACK of transaction 1. That is because the deadlock

triggered the whole transaction to be rolled back (so the ROLLBACK for transaction 2 did

not do anything).

The deadlock was triggered by transaction 1 first updating the population of the

city table and then of the country table. Transaction 2 first updated the population of

the country table and then tried to insert a new city into the city table. This is a typical

example of two workflows updating records in different orders and thus being prone to

deadlocks.

Summarizing the investigation, it consists of two steps:

 1. Analyze the deadlock information from InnoDB to determine the

locks involved in the deadlock and get as much information as

possible about the connections.

 2. Use other sources such as the Performance Schema to find more

information about the queries in the transactions. Often it is

necessary to analyze the application to get the list of queries.

Now that you know what triggered the deadlock, what is required to solve the issue?

Chapter 22 Diagnosing LoCk Contention

757

 The Solution
Deadlocks are the easiest lock situation to resolve as InnoDB automatically chooses

one of the transactions as the victim and rolls it back. In the deadlock examined in the

previous discussion, transaction 2 was chosen as the victim which can be seen from the

deadlock output:

*** WE ROLL BACK TRANSACTION (2)

This means that for transaction 1, there is nothing to do. After transaction 2 has been

rolled back, transaction 1 can continue and complete its work.

For transaction 2, InnoDB has rolled back the whole transaction, so all you need to

do is to retry the transaction. Remember to execute all queries again instead of relying on

values returned during the first attempt; otherwise, you may be using outdated values.

Tip always be prepared to handle deadlocks and lock wait timeouts. For
deadlocks or when the transaction has been rolled back after a lock wait timeout,
retry the entire transaction. For lock wait timeouts where only the query has been
rolled back, retry the query possibly adding a delay.

If deadlocks occur relatively rarely, you do not really need to do anything more.

Deadlocks are a fact of life, so do not be alarmed by encountering a few of them. If

deadlocks cause a significant impact, you need to look at making changes to prevent

some of the deadlocks.

 The Prevention
Reducing deadlocks is very similar to reducing record lock contention in general with

the addition that acquiring the locks in the same order throughout the application is very

important. It is recommended to read the section “Reduce Locking Issues” in Chapter 18

again. The main points to reduce deadlocks are to reduce the number of locks and how

long they are held and to take them in the same order:

• Reduce the work done by each transaction by splitting large

transactions into several smaller ones and adding indexes to reduce

the number of locks taken.

Chapter 22 Diagnosing LoCk Contention

758

• Consider the READ COMMITTED transaction isolation level if it is

suitable for your application to reduce the number of locks and how

long they are held.

• Make sure transactions are only held open for as short time as

possible.

• Access records in the same order, if necessary by executing SELECT

... FOR UPDATE or SELECT ... FOR SHARE queries to take the locks

preemptively.

That concludes the discussion of how to investigate locks. You may encounter

lock cases that do not entirely match the cases discussed in this chapter; however, the

techniques to investigate the issues will be similar.

 Summary
This chapter has shown you how you can use the resources available in MySQL to

investigate lock-related issues. The chapter included examples of investigating four

different types of lock issues: flush locks, metadata locks, record locks, and deadlocks.

Each issue type used different features of MySQL including the process list, the lock

tables in the Performance Schema, and the InnoDB monitor output.

There are many other lock types that can cause lock wait issues. The methods

discussed in this chapter go a long way to investigate issues caused by other lock types as

well. In the end, the only way to become an expert on investigating locks is experience,

but the techniques from this chapter provide a good starting point.

That concludes Part V about query analysis. Part VI is about improving the queries

starting out with a discussion of improving performance through the configuration.

Chapter 22 Diagnosing LoCk Contention

PART VI

Improving the Queries

761
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_23

CHAPTER 23

Configuration
Throughout Part IV of this book, there have been several examples of configuration

options that influence the behavior of MySQL. These options include the choice of

character sets and collations, how to create index statistics, how the optimizer should

work, and more. There are also other options that directly or indirectly influence the

performance of your queries. This chapter will consider the most commonly used

options not covered elsewhere as well as some general considerations when it comes to

configuring MySQL.

The chapter starts out with some “best practices” around changing the configuration.

Then the following sections are for InnoDB, query buffers, and internal temporary tables.

 Best Practices
When you set out to make configuration changes, it is worth having a few principles in

mind which can make you more successful at making configuration changes. The best

practices that will be discussed include the following:

• Be wary of best practices.

• Use monitoring to verify the effect.

• Change one option at a time.

• Make relatively small incremental changes.

• Less is often better.

• Make sure you understand what the option does.

• Consider the side effects.

762

It may sound contractionary that the first item of a best practices list is to be wary

of best practices. What is meant is that when you see some advice, then you should not

jump straight ahead and apply that.

No two systems are identical, so while an advice may in general be good, you still

need to consider whether it also applies to your system. Another gotcha is to look at

advice that applies to an older version of MySQL or to a time when 8 GiB of memory was

a lot. If you Google some setting, it is possible that you can see recommendations that

were written many years ago. Similarly, a recommendation that worked well for your

system some time ago, may no longer work due to changes in the application workload.

Finally, even if a recommendation will improve the performance for your system, there

may be side effects such as the risk of loss of committed changes that are unacceptable

for you.

Tip The recommendation to be wary of best practices also applies to the
suggestions in this book. Always consider how they apply to your system.

How should you then approach configuration changes? Apply the principles

described in Chapter 2. Figure 23-1 recapitulates the steps.

ChApTer 23 ConfigurATion

763

You start out defining what the issue is and then collect the baseline either through

your monitoring system or by timing the query or similar. The baseline may also be a

combination of observables. Then you can define the goal of the optimization. It is very

important that you define what is good enough, or you will never be done. The next steps

are to determine the cause and use that to find a solution. Finally, you implement the

solution and verify the effect by comparing to the baseline. If the problem is not solved

or you have identified multiple problems, you can start over.

Monitoring is very important in this process as it is used both to define the problem,

to collect the baseline, and to verify the effect. If you skip these steps, you have little idea

whether your solution worked and whether it affected other queries as well.

Figure 23-1. The performance tuning lifecycle

ChApTer 23 ConfigurATion

764

When you decide on a solution, make as small a change as possible. This applies

both to the number of configuration options that you turn the knobs on and how far you

turn the knobs. If you change more than one option at a time, you cannot measure the

effect of each change. For example, two changes may cancel each other out, so you think

the solution did not work when one of the changes really worked great and the other

made the situation worse.

Configuration options also often have a sweet spot. If the setting is too small, the

feature the option represents cannot be used enough to make a significant impact. If

the setting is too large, the overhead of the feature becomes worse than the benefit.

In between, you have the optimal combination of the benefits of the feature while the

overhead is limited. This is illustrated in Figure 23-2.

Figure 23-2. A typical relationship between the option value and performance

By making small incremental changes, you maximize the chance of finding this

sweet spot.

This relates to the next point: small is often better. Just because you, for example,

have enough memory to increase a per query or per join buffer does not mean it makes

the queries faster to increase the buffer size. It of course depends on the option to what

extent this principle applies. For the size of the InnoDB buffer pool, it is better to have

a relatively large buffer as it helps reduce disk I/O and serve data from memory. A key

thing to remember about the buffer pool is also that memory allocations only happen

when MySQL starts and when you dynamically increase the size of the buffer pool.

ChApTer 23 ConfigurATion

765

However, for buffers such as the join buffer that may be allocated several times for a

single query, the sheer overhead of allocating the buffer can become a problem. This

is discussed further in the section “Query Buffers.” In all cases, for options that relate to

resources, you need to remember that the resources you allocate to one feature are not

available for other features.

The concept of “less is often better” applies both to the optimal value of a

configuration option and to the number of options that you tune. The more options you

set in the configuration file, the more cluttered your configuration file becomes, and the

harder it becomes to keep the overview of what has been changed and why. (It also helps

to group the settings by feature, e.g., to have all InnoDB settings together.) If you are in

the habit of including options set to their default values, it is still better to leave them out

as including the options means that you will miss out of changes to the default values

that are implemented as part of optimizing the default configuration to reflect changes to

the MySQL internals or to changes in what is considered standard hardware.

Note in MySQL 5.6 and later, a significant effort has gone into improving the
default values for the MySQL configuration options. The changes mainly occur
between major versions based on testing by the development team and feedback
from the MySQL Support team, customers, and community members.

The recommendation is to start out setting as few options as possible. You will most

likely want to set the size of the InnoDB buffer pool, the redo log, and possibly the table

caches. You may also want to set some paths and ports, and you may have requirements

that some features such as global transaction identifiers (GTIDs) or Group Replication

are enabled. Beyond that, only make changes based on observations.

Tip Start out with a minimal configuration that just sets the size of the innoDB
buffer pool and redo logs, paths, and ports and enable required features.
otherwise, only make configuration changes based on observations.

The last two points in the list are related: make sure that you understand what the

option does and consider the side effects. Understanding what the option does helps

you identify whether the option is useful for your case and what other effects the option

may have. As an example, consider the sync_binlog option. This tells how often updates

ChApTer 23 ConfigurATion

766

to the binary log should be synced to disk. In MySQL 8, the default is to sync with every

commit which for disks that have poor sync performance can significantly impact the

query performance. It may thus be tempting to set sync_binlog to 0 which disables

forced synchronizations; however, are the side effects acceptable? If you do not sync the

changes, then they only live in memory until something else – such as the memory being

required for other uses – forces the sync to happen. This means that if MySQL crashes,

then the changes are lost, and if you have a replica, you will have to rebuild it. Is that

acceptable?

Even if you can accept potentially losing binary log events, there is a more subtle side

effect of using sync_binlog = 0. Just because the sync does not happen at transaction

commit does not mean it never happens. The maximum size of a binary log is 1 GiB (the

max_binlog_size option) plus the size of the last transaction, and rotating the binary log

means the old binary log is flushed to disk. Nowadays that usually means that MySQL

will end up writing 1 GiB and then flush it all at once. Even on fast disks, it does take a

measurable amount of time to write out a gigabyte of data. In the meantime, MySQL

cannot perform any commits, so any connection issuing a commit (whether implicit

or explicit) will stall until the sync has completed. This can come as a surprise, and the

stall may end up being long enough to upset the end user – who may be a customer. The

author of this book has seen commit stalls arising from binary log rotations in the range

of a couple of seconds up to half a minute. In short, sync_binlog = 0 gives the overall

highest throughput and average commit latency, but sync_binlog = 1 provides the best

data safety and the most predictable commit latency.

The rest of this chapter provides some recommendations for the options related to

query tuning that most often need to be changed.

 InnoDB Overview
Given that all queries involving tables interact with the InnoDB storage engine, it is

important to take some time to look at the configuration of the InnoDB parameters.

These include the size of the InnoDB buffer pool and the redo log size – two

configurations that need to be adjusted for most production systems.

Before discussing the configuration options, it is worth reviewing how the data flows

between the tablespaces and the buffer pool and back to the tablespace through the redo

log system. Figure 23-3 shows a simple overview of this flow.

ChApTer 23 ConfigurATion

767

When a query requests data, it is always read from the buffer pool. If the data is not

already in the buffer pool, it is fetched from the tablespace. InnoDB divides the buffer

pool into two parts: the old blocks sublist and the new blocks sublist. Data is always read

into the head (top) of the old blocks sublist in whole pages. If data from the same page

is required again, the data is moved to the new blocks sublist. Both sublists use the least

recently used (LRU) principle to determine which pages to expel when it is necessary to

create room for a new page. Pages are evicted from the buffer pool from the old blocks

sublist. Since new pages spend time in the old blocks sublist before being promoted to

the new blocks sublist, it means that if a page is used once, but then left unused, then it

will quickly be expelled from the buffer pool again. This prevents large rare scans such as

backups from polluting the buffer pool.

When a query updates changes, the changes are written to the in-memory log buffer

and from there written and later flushed to the redo log which consists of at least two

files. The redo log files are used in a circular fashion, so writes start at the beginning of

Figure 23-3. The InnoDB data flow

ChApTer 23 ConfigurATion

768

one file and then fill up the file, and when it is full, InnoDB continues with the next file.

The files are fixed in size and with a fixed number of files. When the log reaches the end

of the last file, InnoDB moves back to the beginning of the first file.

The changes are also written back to the buffer pool and marked as dirty until they

can be flushed to the tablespace files. InnoDB uses the doublewrite buffer to ensure

it is possible to detect whether a write was successful or not in case of a crash. The

doublewrite buffer is necessary, because most file systems do not guarantee atomic

writes as an InnoDB page is larger than the file system block size. At the time of writing,

the only file system where it is safe to disable the doublewrite buffer is ZFS.

Caution even if the file system is supposed to handle atomic writes of innoDB
pages, it may not work in practice. An example of this is the eXT4 file system with
journaling enabled which in theory should be safe without the doublewrite buffer
but in practice can cause corrupted data.

The configuration options that will be discussed in the next sections revolve around

this lifecycle of the data.

 The InnoDB Buffer Pool
The InnoDB buffer pool is where InnoDB caches data and indexes. Since all requests for

data go through the buffer pool, it naturally becomes a very important part of MySQL

from a performance perspective. There are a few important parameters for the buffer

pool that will be discussed here.

Table 23-1 summarizes the buffer pool–related configuration options that you most

likely need to change to optimize the query performance.

ChApTer 23 ConfigurATion

769

These options will be discussed in more detail in the remainder of this section

starting with options related to the size of the buffer pool.

Note The option key_buffer_size has nothing to do with caching innoDB
indexes. The option got its name in the early days of MySQL when the MyiSAM
storage engine was the main storage engine, so it was not needed to prefix the
option with mysiam. unless you use MyiSAM tables, there is no reason to configure
key_buffer_size.

Table 23-1. Important configuration options for the buffer pool

Option Name Default Value Comments

innodb_buffer_

pool_size

128 MiB The total size of the innoDB buffer pool.

innodb_

buffer_pool_

instances

Auto-sized how many parts the buffer pool is split into. The default is 1 if the

total size is less than 1 giB and otherwise 8. for 32-bit Windows,

the default is 1 below 1.3 giB; otherwise, each instance is made

to be 128 MiB. The maximum number of instances is 64.

innodb_

buffer_pool_

dump_pct

25 The percentage of the most recently used pages in the buffer

pool that are included when dumping the pool content

(backing it up).

innodb_old_

blocks_time

1000 how long in milliseconds a page must have resided in the old

blocks sublist before a new read of the page promotes it to the

new blocks sublist.

innodb_old_

blocks_pct

37 how large the old blocks sublist should be in percentage of the

whole buffer pool.

innodb_io_

capacity

200 how many i/o operations per second innoDB is allowed to use

during nonurgent conditions.

innodb_io_

capacity_max

2000 how many i/o operations per second innoDB is allowed to use

during urgent conditions.

innodb_flush_

method

unbuffered

or

fsync

The method innoDB uses to write the changes to disk. The default

is unbuffered on Microsoft Windows and fsync on Linux/unix.

ChApTer 23 ConfigurATion

770

 The Buffer Pool Size
The most important of these options is the size of the buffer pool. The default size of 128

MiB is nice for setting up a test instance on your laptop without draining it of memory

(and why the default value is so small), but for a production system, you most likely want

to allocate more memory. You can benefit from increasing the size until your working

data set fits into the buffer pool. The working data set is the data that is needed by the

queries executing. Typically, this is a subset of the total data set as some data is inactive,

for example, because it concerns events in the past.

Tip if you have a large buffer pool and have core dumps enabled, then disable
the innodb_buffer_pool_in_core_file option to avoid dumping the entire
buffer pool if a core dump occurs. The option is available in MySQL 8.0.14 and later.

You can get the buffer pool hit rate – that is, how frequently a page request can be fulfilled

directly from the buffer pool without reading from disk – using the following formula:

Hit Rate
Innodb pages read

Innodb buffer pool read reque
= -100

_ _

_ _ _ _ ssts

æ

è
ç

ö

ø
÷ . The two variables

Innodb_pages_read and Innodb_buffer_pool_read_requests are status variables.

Listing 23-1 shows an example of how to calculate the buffer pool hit rate.

Listing 23-1. Calculating the buffer pool hit rate

mysql> SELECT Variable_name, Variable_value

 FROM sys.metrics

 WHERE Variable_name IN

 ('Innodb_pages_read',

 'Innodb_buffer_pool_read_requests')\G

*************************** 1. row ***************************
 Variable_name: innodb_buffer_pool_read_requests

Variable_value: 141319

*************************** 2. row ***************************
 Variable_name: innodb_pages_read

Variable_value: 1028

2 rows in set (0.0089 sec)

ChApTer 23 ConfigurATion

771

mysql> SELECT 100 - (100 * 1028/141319) AS HitRate;

+---------+

| HitRate |

+---------+

| 99.2726 |

+---------+

1 row in set (0.0003 sec)

In the example, 99.3% of the page requests are fulfilled from the buffer pool. This

number is across all buffer pool instances. If you want to determine the hit rate for a given

period, you need to collect the values of the status variables at the start and end of the

period and use the difference between them in the calculation. You can also get the rate

from the INNODB_BUFFER_POOL_STATS view in the Information Schema or the InnoDB

monitor. In both cases, the rate is returned as per thousand requests. Listing 23-2 shows

examples of this. You will need to ensure you have executed some queries to generate

some buffer pool activity to get a meaningful result.

Listing 23-2. Getting the buffer pool hit rate directly from InnoDB

mysql> SELECT POOL_ID, NUMBER_PAGES_READ,

 NUMBER_PAGES_GET, HIT_RATE FROM information_schema.INNODB_

BUFFER_POOL_STATS\G

*************************** 1. row ***************************
 POOL_ID: 0

NUMBER_PAGES_READ: 1028

 NUMBER_PAGES_GET: 141319

 HIT_RATE: 1000

1 row in set (0.0004 sec)

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************
 Type: InnoDB

 Name:

Status:

===

2019-07-20 19:33:12 0x7550 INNODB MONITOR OUTPUT

===

...

ChApTer 23 ConfigurATion

772

BUFFER POOL AND MEMORY

Total large memory allocated 137363456

Dictionary memory allocated 536469

Buffer pool size 8192

Free buffers 6984

Database pages 1190

Old database pages 428

Modified db pages 0

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 38, not young 0

0.00 youngs/s, 0.00 non-youngs/s

Pages read 1028, created 237, written 1065

0.00 reads/s, 0.00 creates/s, 0.00 writes/s

Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead

0.00/s

LRU len: 1190, unzip_LRU len: 0

I/O sum[6]:cur[0], unzip sum[0]:cur[0]

...

What is important to realize is that the hit rates returned directly by InnoDB are for

the period since the buffer pool statistics were last retrieved, and they are per buffer pool

instance. If you want full control of what period a hit rate is for, you need to calculate

it yourself either by using the status variables or the NUMBER_PAGES_READ and NUMBER_

PAGES_GET from the INNODB_BUFFER_POOL_STATS view.

You should aim at having the buffer pool hit rate as close to 100% or 1000/1000 as

possible. That said, in some cases it is simply not possible as the amount of data cannot

possibly fit into memory. In that case, the buffer pool hit rate is still useful as it allows

you to monitor the effectiveness of the buffer pool over time and compare to the general

query statistics. If the buffer pool hit rate starts to drop with a degradation in query

performance, you should look at making provisions so the buffer pool can be increased

in size.

ChApTer 23 ConfigurATion

773

 Buffer Pool Instances
MySQL has supported multiple buffer pool instances since version 5.5. The reason for

introducing it was that typical database workloads had more and more queries running

in parallel with the prevalence of more and more CPUs per host. This led to mutex

contention when accessing data in the buffer pool.

One of the solutions to reduce the contention is to allow the buffer pool to be

split into multiple instances with different mutexes for each instance. The number

of instances is controlled with the innodb_buffer_pool_instances option. The total

amount of buffer pool specified with innodb_buffer_pool_size is divided evenly among

the instances. Except on 32-bit Windows, the default is to have one instance for a buffer

pool size of less than 1 gigabyte. For larger buffer pools, the default is eight instances. The

maximum number of instances is 64.

For a single-threaded workload, the optimal is to have all of the memory in a single

buffer pool. The more parallel your workload is, the more additional instances help

reduce contention. The exact effect of increasing the number of buffer pools depends on

the extent the parallel queries request data stored in different pages. If all requests are

for different pages, you can benefit from increasing the number of instances toward the

number of concurrent queries. If all queries request data in the same page, there is no

benefit of more instances. In general, be careful not to make each buffer pool instance

too small. If you do not have monitoring data proving otherwise, allow each instance to

be 1 gigabyte or larger for buffer pools that are at least 8 gigabytes large.

 Dumping the Buffer Pool
One of the common problems with restarts of a database is that the caching does not

work well for a while until the cache has been warmed up. This can lead to very poor

query performance and poor end user satisfaction. The solution to this is to store a list of

the most frequently used pages in the buffer pool at shutdown and read these pages into

the buffer pool immediately after a restart even if no queries have requested them yet.

This feature is enabled by default, and the main thing to consider is how much of the

buffer pool you want to include in the dump. This is controlled with the innodb_buffer_

pool_dump_pct option which takes the percentage of pages to include. The default is

25%. The pages are read from the head of the new blocks sublist, so it is the most recently

used pages that are included.

ChApTer 23 ConfigurATion

774

The dump just includes a reference to the page that should be read, so the size of the

dump is roughly 8 bytes per page. If you have a 128 GiB buffer pool, and you are using 16

KiB pages, there are 8,388,608 pages in the buffer pool. If you use the default of 25% for

the buffer pool dump, that gives a dump that is around 16 MiB. The dump is stored in the

file ib_buffer_pool in the data directory.

Tip When you create backups by copying the tablespace files (a physical or raw
backup), back up the ib_buffer_pool file as well. You can use the innodb_
buffer_pool_dump_now option to create a new copy of the most recently used
pages. This is, for example, done automatically by MySQL enterprise Backup.
however, for logical backups (where the data is exported as an SQL or CSV file),
the ib_buffer_pool file is not useful.

If you encounter problems with slow queries after restarting, consider increasing

innodb_buffer_pool_dump_pct to include a larger part of the buffer pool in the dump.

The main drawbacks of increasing the option are that the shutdown takes longer as

more page references are exported, the ib_buffer_pool file becomes larger, and it takes

longer to load the pages after the restart. Loading the pages back into the buffer pool

happens in the background, but by including more pages it may take longer before all of

the most important pages are restored in the buffer pool.

 The Old Blocks Sublist
If you have a data set that is larger than the buffer pool, a potential problem is that a large

scan can pull in data that is just used for that scan and then not used again for a long

time. When that happens, you risk that more frequently used data is expelled from the

buffer pool and the queries needing that data will suffer until the scan has completed

and the balance has been restored. Logical backups such as those made by mysqlpump

and mysqldump are good examples of jobs that can trigger the issue. The backup process

needs to scan all data, but the data is not needed again until the time of the next backup.

ChApTer 23 ConfigurATion

775

To avoid this issue, the buffer pool is split into two sublists: the new and old blocks

sublists. When pages are read from the tablespaces, they are first “quarantined” in the

old blocks sublist, and only if the page has been in the buffer pool for more than innodb_

old_blocks_time milliseconds and is used again will it be moved to the new blocks

sublist. This helps make the buffer pool scan resistant as a single table scan will only

read rows from a page in rapid succession and then not use the page again. This leaves

InnoDB free to expel the page once the scan has completed.

The default value for innodb_old_blocks_time is 1000 milliseconds which for most

workloads is enough to avoid scans polluting the buffer pool. If you have jobs doing

scans where the job returns to the same rows again after a short while (but longer than

one second), then you can consider increasing innodb_old_blocks_time, if you do not

want the subsequent accesses to promote the page to the new blocks sublist.

The size of the old blocks sublist is set by the innodb_old_blocks_pct option

which specifies the percentage of the buffer pool that should be used for the old blocks

sublist. The default is to use 37%. If you have a large buffer pool, you may want to

reduce innodb_old_blocks_pct to avoid newly loaded pages taking up too much of the

buffer pool. The optimal size of the old blocks sublist also depends on the rate you load

transient pages into the buffer pool.

You can monitor the use of the old and new blocks sublists similar to how the hit rate

is found. Listing 23-3 shows a sample output using the INNODB_BUFFER_POOL_STATS view

and the InnoDB monitor.

Listing 23-3. Obtaining information about the new and old blocks sublists

mysql> SELECT PAGES_MADE_YOUNG,

 PAGES_NOT_MADE_YOUNG,

 PAGES_MADE_YOUNG_RATE,

 PAGES_MADE_NOT_YOUNG_RATE,

 YOUNG_MAKE_PER_THOUSAND_GETS,

 NOT_YOUNG_MAKE_PER_THOUSAND_GETS

 FROM information_schema.INNODB_BUFFER_POOL_STATS\G

*************************** 1. row ***************************
 PAGES_MADE_YOUNG: 98

 PAGES_NOT_MADE_YOUNG: 354

 PAGES_MADE_YOUNG_RATE: 0.00000000383894451752074

 PAGES_MADE_NOT_YOUNG_RATE: 0

ChApTer 23 ConfigurATion

776

 YOUNG_MAKE_PER_THOUSAND_GETS: 2

NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 10

1 row in set (0.0005 sec)

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************
 Type: InnoDB

 Name:

Status:

===

2019-07-21 12:06:49 0x964 INNODB MONITOR OUTPUT

===

...

BUFFER POOL AND MEMORY

Total large memory allocated 137363456

Dictionary memory allocated 463009

Buffer pool size 8192

Free buffers 6974

Database pages 1210

Old database pages 426

Modified db pages 0

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 98, not young 354

0.00 youngs/s, 0.00 non-youngs/s

Pages read 996, created 223, written 430

0.00 reads/s, 0.00 creates/s, 0.00 writes/s

Buffer pool hit rate 1000 / 1000, young-making rate 2 / 1000 not 10 / 1000

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead

0.00/s

LRU len: 1210, unzip_LRU len: 0

I/O sum[217]:cur[0], unzip sum[0]:cur[0]

...

ChApTer 23 ConfigurATion

777

Pages made young means that a page located in the old blocks sublist is moved to

the new blocks sublist. That a page is not made young means it stays in the old blocks

sublist. The two rate columns are per second since the last time the data was fetched.

The pages per thousand gets are the number of pages made young or kept in the old

blocks sublist per thousand pages requested; this is also since the last report.

One possible sign that you may need to configure the old blocks sublist is a decrease

in buffer pool hit rate while scans are ongoing. If the rate of making pages young is high

and you have large scans at the same time, you should consider increasing innodb_

old_blocks_time to prevent subsequent reads to make the page young. Alternatively,

consider decreasing innodb_old_blocks_pct to evict the pages from the scan after a

shorter time in the old blocks sublist.

Vice versa, if you have few scans and the pages stay in the old blocks sublist (the non-

young making stats are high), then you should consider decreasing innodb_old_blocks_

time to promote the pages faster or increase innodb_old_blocks_pct to allow the pages

to remain in the old blocks sublist for longer before they are evicted.

 Flushing Pages
InnoDB needs to balance how hard it works at merging changes into the tablespace

files. If it is too lazy, the redo log ends up being full and a forced flush is required, but if

it works too hard it can impact the performance of other parts of the system. Needless

to say, it is complex to get the equation right. Except during a crash recovery or after

restoring a physical backup such as the ones created with MySQL Enterprise Backup, the

merging is done by flushing dirty pages from the buffer pool to the tablespace files.

In recent MySQL versions, you do not in general need to do much as the adaptive

flush algorithm that InnoDB uses is good at striking a good balance as long as there is

enough redo log to work with. There are primarily three options to consider: two for

setting the I/O capacity of the system and one for setting the flush method.

The two options for the I/O capacity are innodb_io_capacity and innodb_io_

capacity_max. The innodb_io_capacity option is used during normal flushing of

changes and should be set to the number of I/O operations InnoDB is allowed to use

per second. In practice, it is not very easy to know what value to use. The default is 200

which roughly corresponds to a low-end SSD. Usually high-end storage can benefit from

setting the capacity to a few thousand. It is better to start out with a relatively low value

and increase it if your monitoring shows that flushing is falling behind and there is spare

I/O capacity.

ChApTer 23 ConfigurATion

778

Note The innodb_io_capacity and innodb_io_capacity_max options
are not only used to determine how quickly innoDB flushes dirty pages to the
tablespace files. other i/o activities such as merging data from the change buffer
are also included.

The innodb_io_capacity_max option tells how hard InnoDB is allowed to push if

the flushing is falling behind. The default is the minimum of 2000 and twice the value

of innodb_io_capacity. In most cases the default value works well though if you have a

low-end disk, you should consider reducing the setting to below 1000. If you experience

an asynchronous flush (this will be discussed with the redo logs) and your monitoring

shows that InnoDB does not use enough I/O capacity, increase the value of innodb_io_

capacity_max.

Caution Setting the i/o capacity too high can severely impact the performance
of the system.

The flushing of the dirty pages can be performed in several ways, for example, using

the operating system I/O cache or avoiding it. This is controlled using the innodb_flush_

method option. On Microsoft Windows, you can choose between the values unbuffered

(the default and recommended) and normal. The choice is harder on Linux and Unix

where the following values are supported:

• fsync: This is the default value. InnoDB uses the fsync() system call.

The data will also be cached in the operating system I/O cache.

• O_DSYNC: InnoDB uses the O_SYNC option when opening the redo

log files (synchronous writing) and uses fsync for the data files. The

reason O_SYNC is used instead of O_DSYNC is that O_DSYNC has been

proven to be too unsafe, so O_SYNC is used instead.

• O_DIRECT: This is similar to fsync, but the operating system I/O cache

is bypassed. It only applies to the tablespace files.

• O_DIRECT_NO_FSYNC: This is the same as O_DIRECT except that the

fsync() system call is skipped. Due to bugs in the EXT4 and XFS

file systems, this is not safe to use until MySQL 8.0.14 where a

ChApTer 23 ConfigurATion

779

workaround for those bugs was implemented. If the redo log files are

located on a different file system than the tablespace files, you should

use O_DIRECT instead of O_DIRECT_NO_FSYNC. On most production

systems, this is the best option.

Additionally, there are a couple of experimental flush methods that should only be

used for performance testing.1 These experimental methods are not covered here.

It is very complex which flush method will give the best performance. Since InnoDB

caches its data itself and does so better than the operating system possibly can (as

InnoDB knows how the data is used), it is natural to believe one of the O_DIRECT options

will work the best. This is also usually the case; however, life is more complicated and,

in some cases, fsync is faster. So you will need to test on your system to know for sure

which flush method works the best. Another thing is that when restarting MySQL

without restarting the operating system, if you use the fsync flush method, then InnoDB

can benefit from the I/O cache when reading the data for the first time.

At the other end of the data flow there are the redo logs.

 The Redo Log
The redo log is used to persist committed changes while providing sequential I/O to

make the performance as good as possible. To improve the performance, changes are

first written to the in-memory log buffer before they are written to the log files.

A background process then merges the changes from the buffer pool through the

doublewrite buffer into the tablespaces. The pages that have not yet been merged to

the tablespace file cannot be evicted from the buffer pool as they are considered dirty.

That a page is dirty means that it has a different content than the same page from the

tablespace, so InnoDB is not allowed to read the page from the tablespace until the

changes have been merged.

Table 23-2 summarizes the redo log–related configuration options that you most

likely need to change to optimize the query performance.

1 https://dev.mysql.com/doc/refman/en/innodb-parameters.html#sysvar_innodb_flush_method

ChApTer 23 ConfigurATion

https://dev.mysql.com/doc/refman/en/innodb-parameters.html#sysvar_innodb_flush_method

780

The remainder of this section covers these options.

 Log Buffer
The log buffer is an in-memory buffer that InnoDB uses to buffer the redo log events

before writing them to disk. This allows the transactions to keep the changes in memory

until the buffer is full or the changes are committed. The default size of the log buffer is

16 MiB.

If you have large transactions or a high number of smaller concurrent transactions,

it is recommended to increase the size of the log buffer. You set the size of the log buffer

using the innodb_log_buffer_size option. In MySQL 8 (unlike older versions), you

can change the size dynamically. Optimally, the buffer should be large enough that

InnoDB only has to write out the changes when they are committed; however, this

should of course be weighed against what the memory can otherwise be used for. If a

single transaction has a large amount of changes in the buffer, it can also slow down

the commit as all the data must be written to the redo log at that time, so that is another

thing to consider for very large log buffer sizes.

Once the log buffer is full or the transaction is committed, the redo log events are

written to the redo log files.

Table 23-2. Important configuration options for the redo log

Option Name Default Value Comments

innodb_log_

buffer_size

16 MiB The size of the log buffer where redo log events

are stored in memory before being written to the

on-disk redo log files.

innodb_log_file_

size

48 MiB The size of each file in the redo log.

innodb_log_files_

in_group

2 The number of files in the redo log. There must be

at least two files.

ChApTer 23 ConfigurATion

781

 Log Files
The redo log is fixed in size and consists of a number of files – at least two – each of the

same size. The main consideration when configuring the redo logs is to ensure that they

are large enough to not become “full.” In practice, full means 75% of the capacity as at

that time an asynchronous flush is triggered. The asynchronous flush blocks the thread

that triggered the flush while in principle the other threads can continue doing their

work. In practice, the asynchronous flush is so ferocious that it usually causes the system

to come to a grinding halt. There is also a synchronous flush, which triggers at 90%

capacity and blocks all threads.

You control the size with the two options innodb_log_file_size and innodb_

log_files_in_group. The total redo log size is the product of the two values. The

recommendation is to set the file size up to 1–2 GiB and adjust the number of files to get

the desired total size with a minimum of two files. The reason not to let each redo log file

become very large is that they are buffered in the operating system I/O cache (even with

innodb_flush_method = O_DIRECT), and the larger the files, the more potential for the

redo log to use a large amount of memory in the I/O cache. The total size of the redo log

is not allowed to exceed 512 GiB, and there can be at most 100 files.

Note The larger the redo log, the more changes can be stored that are not yet
flushed from the buffer pool to the tablespaces. This can increase the recovery
time in case of a crash and the time it takes to perform a normal shutdown.

The best way to determine how large to make the redo log is to monitor how full it is

over time through a monitoring solution. Figure 23-4 shows examples of graphs showing

I/O rate for the redo log files and the usage of the redo log as measured by the checkpoint

lag. If you want to create something similarly, you need to perform an intense write

worklog; the employees database can be useful for that. Exactly what is required depends

on the hardware, the configuration, which other processes use the resources, and more.

ChApTer 23 ConfigurATion

782

Make sure the part of the redo log that is not checkpointed stays clear of the 75%

mark. In this example, the highest peak is at around 73 MiB out of 96 MiB (at 14:37) of

redo log which means that almost 76% of the redo log was used for dirty pages. That

means there was an asynchronous flush around that time which would have impacted

the queries running at the time. You can use the I/O rate for the redo log file to get an

idea of how stressed the file system is doing I/O for the redo log.

The best way to inspect the current redo log usage manually is to enable the log_lsn_

current and log_lsn_last_checkpoint InnoDB metrics which allow you to query the

current log sequence number and the log sequence number when the last checkpoint

was made. The checkpoint lag in percentage of the total redo log is then calculated as

 Lag Pct
lsn last checkpoint lsn current

file
= *

-
100

log_ _ _ log_ _

#log ss file size* log
.

You can get the current values from the INNODB_METRICS table from the

information_schema or the sys.metrics view. Alternatively, the log sequence numbers

are also available from the LOG section of the InnoDB monitor irrespective of whether

the metrics have been enabled. Listing 23-4 shows an example of determining the

checkpoint lag using these resources.

Figure 23-4. Timeseries graphs for the redo log

ChApTer 23 ConfigurATion

783

Listing 23-4. Querying the redo log usage

mysql> SET GLOBAL innodb_monitor_enable = 'log_lsn_current',

 GLOBAL innodb_monitor_enable = 'log_lsn_last_checkpoint';

Query OK, 0 rows affected (0.0004 sec)

mysql> SELECT *
 FROM sys.metrics

 WHERE Variable_name IN ('log_lsn_current',

 'log_lsn_last_checkpoint')\G

*************************** 1. row ***************************
 Variable_name: log_lsn_current

Variable_value: 1678918975

 Type: InnoDB Metrics - log

 Enabled: YES

*************************** 2. row ***************************
 Variable_name: log_lsn_last_checkpoint

Variable_value: 1641343518

 Type: InnoDB Metrics - log

 Enabled: YES

2 rows in set (0.0078 sec)

mysql> SELECT ROUND(

 100 * (

 (SELECT COUNT

 FROM information_schema.INNODB_METRICS

 WHERE NAME = 'log_lsn_current')

 - (SELECT COUNT

 FROM information_schema.INNODB_METRICS

 WHERE NAME = 'log_lsn_last_checkpoint')

) / (@@global.innodb_log_file_size

 * @@global.innodb_log_files_in_group

), 2) AS LogUsagePct;

+-------------+

| LogUsagePct |

+-------------+

| 39.25 |

+-------------+

ChApTer 23 ConfigurATion

784

1 row in set (0.0202 sec)

mysql> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************
 Type: InnoDB

 Name:

Status:

===

2019-07-21 17:04:09 0x964 INNODB MONITOR OUTPUT

===

...

LOG

Log sequence number 1704842995

Log buffer assigned up to 1704842995

Log buffer completed up to 1704842235

Log written up to 1704842235

Log flushed up to 1696214896

Added dirty pages up to 1704827409

Pages flushed up to 1668546370

Last checkpoint at 1665659636

5360916 log i/o's done, 23651.73 log i/o's/second

...

The required InnoDB metrics are first enabled. The overhead of having these

enabled is very small, so it is fine to leave them enabled. The values of the metrics are

then queried from the sys.metrics view followed by using the INNODB_METRICS table

to calculate the lag directly. Finally, the log sequence numbers are also found in the

InnoDB monitor output. The log sequence numbers change very rapidly, so even if you

query them in rapid succession, they will have changed if there is any work going on. The

values reflect the amount of work in bytes that has been done in InnoDB, so they will be

different on any two systems.

ChApTer 23 ConfigurATion

785

 Parallel Query Execution
Since MySQL 8.0.14, InnoDB has limited support for executing a query in parallel. This

happens by performing a scan of the clustered index or partitions using multiple read threads.

The implementation was greatly improved in 8.0.17 which is what is considered here.

The parallel scans happen automatically based on the number of index subtrees

that will be scanned. You can configure the maximum number of threads that InnoDB

can create for parallel execution across all connections by setting the innodb_parallel_

read_threads option. These threads are created as background threads and are only

present when needed. If all parallel threads are in use, InnoDB will revert to single-

threaded execution for any additional queries until threads are available again.

As of MySQL 8.0.18, the parallel scans are used for SELECT COUNT(*) (multiple tables

are allowed) without any filter conditions and for the second of the two scans performed

by CHECK TABLE.

You can see the current usage of parallel threads from the performance_schema.

threads table by looking for threads with the name thread/innodb/parallel_read_

thread. If you want to try the feature, you can, for example, use the Python mode in

MySQL Shell to keep counting the rows in the employees.salaries table:

Py> for i in range(100): session.run_sql('SELECT COUNT(*) FROM employees.

salaries')

An example of the output of performance_schema.threads with innodb_parallel_

read_threads = 4 (the default) is

mysql> SELECT THREAD_ID, TYPE, THREAD_OS_ID

 FROM performance_schema.threads

 WHERE NAME = 'thread/innodb/parallel_read_thread';

+-----------+------------+--------------+

| THREAD_ID | TYPE | THREAD_OS_ID |

+-----------+------------+--------------+

| 91 | BACKGROUND | 12488 |

| 92 | BACKGROUND | 5232 |

| 93 | BACKGROUND | 13836 |

| 94 | BACKGROUND | 24376 |

+-----------+------------+--------------+

4 rows in set (0.0005 sec)

ChApTer 23 ConfigurATion

786

You can try with smaller tables such as the ones in the world database and see the

difference in number of background threads.

If you see that all of the configured read threads are in use most of the time, and

you have spare CPUs, you can consider increasing the value of innodb_parallel_

read_threads. The maximum supported value is 256. Remember to leave enough CPU

resources for the single-threaded queries.

If you see semaphore waits and monitoring of the CPUs suggests there is contention

for the CPU resources while there are many parallel read threads present, you can consider

decreasing innodb_parallel_read_threads to reduce the parallelism of the queries.

 Query Buffers
MySQL uses several buffers during query execution. These include storing column

values used in joins, a buffer for sorting, and more. It is tempting to think that more is

better for these buffers, but it is not in general the case. On the contrary, often less is

better. This section discusses why this is so.

When MySQL needs to use a buffer for a query or part of a query, there are several

factors that determine the impact on the query. The factors include the following:

• Is the buffer large enough for the job required?

• Is there enough memory?

• How much does it cost to allocate the buffer?

If the buffer is not large enough, the algorithm cannot perform at its most optimal as

more iterations are needed, or it is necessary to overflow to disk. However, in some cases

the configured value of a buffer serves as a minimum size rather than the maximum size.

This is, for example, the case with the join buffer with the size set by join_buffer_size.

The minimum size is always allocated, and if it is not large enough to hold the columns

needed from a single row when using it for a join, then it will be expanded as required.

The question about memory is also very relevant. Probably the most common

reason that MySQL crashes is that the operating system is out of memory and the

operating system kills MySQL. The amount of memory required for the various buffers

may not seem to add up to much for a single query, but if you then multiply all of the

concurrently executing queries and add the memory required for the idle connections

and the global allocations, you may suddenly be closer to being out of memory than you

like. This may also lead to swapping which is a major performance killer.

ChApTer 23 ConfigurATion

787

The last point is more surprising to most. Allocating memory has a cost, and often

the more memory you need, the more expensive it is per byte. For example, on Linux

there are various thresholds where the allocation method changes. These thresholds

depend on the Linux distribution, but may, for example, be at 256 KiB and 2 MiB. If you

cross one of the thresholds, the allocation method becomes more expensive. This is part

of the reason the default value for the options join_buffer_size, sort_buffer_size,

and read_rnd_buffer_size is 256 KiB. This means that sometimes it is better to have

a buffer that is a little too small, because the benefit of an optimally sized buffer does

not improve performance enough to compensate for the overhead of allocating more

memory.

Tip Allocation of buffers is one of the areas where improvements are made, so
upgrading can in some cases allow you to use larger buffers without the traditional
drawbacks. for example, in MySQL 8.0.12 and later, a new algorithm for the sort
buffer is used. This means that on Linux/unix and for nonconcurrent sorts on
Windows, memory is allocated incrementally which makes it safer performance
wise to have a large value for sort_buffer_size. You still need to consider how
much memory a single query is allowed to use though.

The conclusion is that it is better to be conservative with the buffers that are

allocated for the duration of a query. Keep the global settings small – the default values

are a good starting point – and increase only for the queries where you can demonstrate

that there is a significant improvement when increasing the setting.

 Internal Temporary Tables
When a query needs to store the result of a subquery, combine the results of UNION

statements, and similar, it uses an internal temporary table. MySQL 8 features the new

TempTable storage engine which is vastly superior to the MEMORY engine used in previous

versions when keeping the table in memory as it supports variable width columns (blob

and text columns are supported from version 8.0.13). Additionally, the TempTable engine

supports spilling over to disk using mmap, so storage engine conversion can be avoided

if the table does not fit in memory.

ChApTer 23 ConfigurATion

788

There are primarily two settings to consider for internal temporary tables in MySQL

8: how much memory is the TempTable engine allowed to use and what should happen if

it is necessary to overflow to disk.

You configure the maximum amount of memory used by internal temporary tables

using the temptable_max_ram option. This is a global setting which defaults to 1 GiB. This

memory is shared among all queries needing internal temporary tables, so it is easy to cap

the total memory usage. The temptable_max_ram option can be set dynamically.

If you run out of memory, it is necessary to start storing the temporary tables on disk.

How that is done is controlled by the temptable_use_mmap option which was introduced

in version 8.0.16. The default value is ON which means that the TempTable engine

allocates space for the on-disk data as memory-mapped temporary files. This is also the

method used prior to 8.0.16. If the value is set to OFF, InnoDB on-disk internal temporary

tables are used instead. Unless you experience problems with the memory-mapped files,

it is recommended to use the default setting.

You can monitor the TempTable memory usage using the memory/temptable/

physical_ram and memory/temptable/physical_disk Performance Schema events. The

physical RAM event shows the memory usage for the in-memory part of the TempTable

engine, whereas the physical disk event shows the memory-mapped part when

temptable_use_mmap = ON. Listing 23-5 shows three examples of querying the memory

usage of the two memory events.

Listing 23-5. Querying the TempTable memory usage

mysql> SELECT *
 FROM sys.memory_global_by_current_bytes

 WHERE event_name

 IN ('memory/temptable/physical_ram',

 'memory/temptable/physical_disk')\G

*************************** 1. row ***************************
 event_name: memory/temptable/physical_ram

 current_count: 14

 current_alloc: 71.00 MiB

current_avg_alloc: 5.07 MiB

 high_count: 15

 high_alloc: 135.00 MiB

 high_avg_alloc: 9.00 MiB

ChApTer 23 ConfigurATion

789

*************************** 2. row ***************************
 event_name: memory/temptable/physical_disk

 current_count: 1

 current_alloc: 64.00 MiB

current_avg_alloc: 64.00 MiB

 high_count: 1

 high_alloc: 64.00 MiB

 high_avg_alloc: 64.00 MiB

2 rows in set (0.0012 sec)

mysql> SELECT *
 FROM performance_schema.memory_summary_global_by_event_name

 WHERE EVENT_NAME

 IN ('memory/temptable/physical_ram',

 'memory/temptable/physical_disk')\G

*************************** 1. row ***************************
 EVENT_NAME: memory/temptable/physical_disk

 COUNT_ALLOC: 2

 COUNT_FREE: 1

 SUM_NUMBER_OF_BYTES_ALLOC: 134217728

 SUM_NUMBER_OF_BYTES_FREE: 67108864

 LOW_COUNT_USED: 0

 CURRENT_COUNT_USED: 1

 HIGH_COUNT_USED: 1

 LOW_NUMBER_OF_BYTES_USED: 0

CURRENT_NUMBER_OF_BYTES_USED: 67108864

 HIGH_NUMBER_OF_BYTES_USED: 67108864

*************************** 2. row ***************************
 EVENT_NAME: memory/temptable/physical_ram

 COUNT_ALLOC: 27

 COUNT_FREE: 13

 SUM_NUMBER_OF_BYTES_ALLOC: 273678336

 SUM_NUMBER_OF_BYTES_FREE: 199229440

 LOW_COUNT_USED: 0

 CURRENT_COUNT_USED: 14

 HIGH_COUNT_USED: 15

ChApTer 23 ConfigurATion

790

 LOW_NUMBER_OF_BYTES_USED: 0

CURRENT_NUMBER_OF_BYTES_USED: 74448896

 HIGH_NUMBER_OF_BYTES_USED: 141557760

2 rows in set (0.0004 sec)

mysql> SELECT *
 FROM performance_schema.memory_summary_by_thread_by_event_name

 WHERE EVENT_NAME

 IN ('memory/temptable/physical_ram',

 'memory/temptable/physical_disk')

 AND COUNT_ALLOC > 0\G

*************************** 1. row ***************************
 THREAD_ID: 29

 EVENT_NAME: memory/temptable/physical_disk

 COUNT_ALLOC: 2

 COUNT_FREE: 1

 SUM_NUMBER_OF_BYTES_ALLOC: 134217728

 SUM_NUMBER_OF_BYTES_FREE: 67108864

 LOW_COUNT_USED: 0

 CURRENT_COUNT_USED: 1

 HIGH_COUNT_USED: 1

 LOW_NUMBER_OF_BYTES_USED: 0

CURRENT_NUMBER_OF_BYTES_USED: 67108864

 HIGH_NUMBER_OF_BYTES_USED: 67108864

1 row in set (0.0098 sec)

The two first queries request the global usage, whereas the third query asks for per

thread usage. The first query uses the sys.memory_global_by_current_bytes view

which returns the events that at the time have a current_alloc greater than 0. This

shows that the TempTable engine is in use and a part of the data has spilled over to disk

using the memory-mapped files. The second query uses the Performance Schema and

will always return data for both events even if there currently is no memory allocated to

it. The third query shows which threads have allocated TempTable memory. Due to the

way the TempTable overflow is implemented, it is not possible to see which threads have

files on disk using the Performance Schema.

ChApTer 23 ConfigurATion

791

 Summary
This chapter went through the general considerations of configuring a MySQL instance

and the options that most commonly need adjustments. When you consider making

changes to the configuration, the most important thing is that you think about why

you want to make the change, what it should solve, and why it will solve it and that you

confirm whether it did work. You can best confirm this by making small incremental

changes to a single option at a time.

The three options that are the most likely to benefit from non-default values are the

innodb_buffer_pool_size for setting the size of the InnoDB buffer pool and innodb_

log_file_size and innodb_log_files_in_group options for setting the size of the

redo log. Other InnoDB options that were discussed control the number of buffer pool

instances, how much of the buffer pool is included when dumping it, the old blocks

sublist, how to flush pages, and the size of the redo log buffer.

In MySQL8.0.14 and later, there is support for executing some queries in parallel.

You can limit the parallelism using the innodb_parallel_read_threads option which

starting from 8.0.17 specifies the total maximum of parallel threads InnoDB will create

across all connections. The parallel execution threads are considered background

threads and only exist while queries are being executed in parallel.

Your queries may also benefit from larger per query buffers, but you must be careful

as larger values do not necessarily work better than smaller values. The recommendation

is to use the default value for these buffers and only increase them for queries where

testing proves there is a significant benefit.

Finally, the internal temporary tables were discussed. In MySQL 8 these use the

TempTable engine which supports spilling over to disk when the global maximum

memory usage is reached. It is also possible to convert the internal temporary table to

InnoDB when storing it on-disk.

The next chapter will look into how you can change queries to perform better.

ChApTer 23 ConfigurATion

793
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_24

CHAPTER 24

Change the Query Plan
There are several possible reasons why a poorly performing query does not work as

expected. This ranges from the query plainly being wrong over a poor schema to lower- level

causes such as a nonoptimal query plan or resource contention. This chapter will discuss

some common cases and solutions.

The chapter starts out introducing the test data used for most of the examples in the

chapter and discussing the symptoms of excessive full table scans. Then it is covered how

errors in the query can cause severe performance problems and why indexes cannot

always be used even when they exist. The middle part of the chapter goes through various

ways to improve queries either by improving the index use or rewriting complex queries.

The last part discusses how the SKIP LOCKED clause can be used to implement a queue

system and how to handle queries with many OR conditions or an IN () clause with

many values.

 Test Data
This chapter mostly uses test data specifically created for the examples in the chapter.

The file chapter_24.sql in this book’s GitHub repository includes the necessary table

definitions and data, if you want to try the examples yourself. The script will delete the

chapter_24 schema and create it with the tables.

You can execute the script using the \source command in MySQL Shell or the

SOURCE command in the mysql command-line client. For example:

mysql shell> \source chapter_24.sql

...

mysql shell> SHOW TABLES FROM chapter_24;

794

+----------------------+

| Tables_in_chapter_24 |

+----------------------+

| address |

| city |

| country |

| jobqueue |

| language |

| mytable |

| payment |

| person |

+----------------------+

8 rows in set (0.0033 sec)

The script requires the world sample database to be installed before sourcing the

chapter_24.sql script.

Note Since index statistics are determined using random dives into the index,
their values will not be the same after each analysis. For that reason, you should
not expect to get identical outputs when trying the examples in this chapter.

 Symptoms of Excessive Full Table Scans
One of the causes for the most severe performance issues is full table scans particularly

when there are joins involved and the full table scan is not on the first table in the query

block. It can cause so much work for MySQL that it also affects other connections. A full

table scan happens when MySQL cannot use an index for the query either because

there is no filter condition or there is no index for the conditions present. A side effect

of full table scans is that a lot of data gets pulled into the buffer pool, possibly without

ever being returned to the application. This can make the amount of disk I/O increase

drastically causing further performance issues.

Chapter 24 Change the Query plan

795

The symptoms you need to look out for to spot when queries perform excessive

table scans are increased CPU usage, increased number of rows accessed, low rate of

using indexes, and possible increased disk I/O combined with reduced efficiency of the

InnoDB buffer pool.

The best way to detect excessive full table scans is to turn to your monitoring. The

direct way is to look for queries that have been flagged as using full table scans in the

Performance Schema and to compare the ratio of examined rows with the number of

returned or affected rows as discussed in Chapter 19. You can also look at the timeseries

graphs to spot a pattern of too many rows being accessed or too much CPU usage.

Figure 24-1 shows examples of monitoring graphs during a period with full table scans

on a MySQL instance. (The employees database is useful if you want to simulate a case

like that as it has large enough tables to allow some relatively large scans.)

Figure 24-1. Monitoring graphs while there are queries with full table scans

Chapter 24 Change the Query plan

796

Notice how at the left side of the graphs, the rows accessed, row access rate for rows

read via full scans, and the CPU usage increase. The number of rows returned, on the

other hand, changes very little (in percent) compared to the number of rows accessed.

Particularly the second graph showing the rate rows are read via index compared to full

scans as well as the ratio between rows read and rows returned suggests a problem.

Tip Full table scans in connection with joins are not as big an issue in MySQl
8.0.18 and later where hash joins can be used for equi-joins. that said, a hash join
still pulls more data into the buffer pool than is needed.

The big question is when there is too much CPU usage and too many rows are

accessed, and unfortunately the answer is “it depends.” If you consider CPU usage,

then all it is really telling is that work is being done, and for the number of rows being

accessed and at which rate, those metrics just tell that the application is requesting data.

The problem is when too much work is being done and too many rows are accessed for

the questions the application needs the answer to. In some cases, optimizing a query

may increase some of these metrics rather than reducing them – simply because MySQL

with an optimized query is able to do more work.

This is an example why a baseline is so important. You usually get more out of

considering changes to the metrics than looking at a snapshot of them. Similarly, you get

more out of looking at the metrics in combination – such as comparing rows returned to

rows accessed – than looking at them individually.

The next two sections discuss examples of queries accessing an excessive number of

rows and how to improve them.

 Wrong Query
One of the common reasons for the most poorly performing queries is when the query

is written wrongly. This may seem as an unlikely cause, but in practice it can happen

more easily than you expect. Typically, the problem is that a join or filter condition is

missing or references the wrong table. If you use a framework, for example, using object-

relational mapping (ORM), a bug in the framework can also be the culprit.

In the extreme cases, a query with missing filter conditions can make the application

time out the query (but not kill it) and retry it, so MySQL keeps executing more and more of

the same very badly performing query. This can in turn make MySQL run out of connections.

Chapter 24 Change the Query plan

797

Another possibility is that the first of the submitted queries start to pull in data to

the buffer pool from disk. Then each of the subsequent queries will be faster and faster

as they can read some of the rows from the buffer pool and then will slow down when

they get to the rows not yet read from disk. In the end, all copies of the query will finish

within a short period of time and start to return a large amount of data to the application

which can saturate the network. A saturated network can cause connection attempts to

fail because of handshake error (the COUNT_HANDSHAKE_ERRORS column in performance_

schema.host_cache), and the host the connections are made from can eventually

become blocked.

This may seem extreme, and in most cases, it does not become that bad. However,

the author of this book has indeed experienced exactly this scenario happen due to

a bug in the framework generating the query. Given that MySQL instances nowadays

often live in virtual machines in the cloud possibly with a limited amount of resources

available such as for CPU and network, it is also more likely that a poor query may end

up exhausting the resources.

As an example of a query and query plan where the join condition is missing,

consider Listing 24-1 which joins the city and country tables.

Listing 24-1. Query that is missing a join condition

mysql> EXPLAIN

 SELECT ci.CountryCode, ci.ID, ci.Name,

 ci.District, co.Name AS Country,

 ci.Population

 FROM world.city ci

 INNER JOIN world.country co\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: co

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

Chapter 24 Change the Query plan

798

 key_len: NULL

 ref: NULL

 rows: 239

 filtered: 100

 Extra: NULL

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: ci

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 4188

 filtered: 100

 Extra: Using join buffer (Block Nested Loop)

2 rows in set, 1 warning (0.0008 sec)

mysql> EXPLAIN ANALYZE

 SELECT ci.CountryCode, ci.ID, ci.Name,

 ci.District, co.Name AS Country,

 ci.Population

 FROM world.city ci

 INNER JOIN world.country co\G ************ 1. row *********
EXPLAIN:

-> Inner hash join (cost=100125.15 rows=1000932) (actual time=0.194..80.427

rows=974881 loops=1)

 -> Table scan on ci (cost=1.78 rows=4188) (actual time=0.025..2.621

rows=4079 loops=1)

 -> Hash

 -> Table scan on co (cost=25.40 rows=239) (actual time=0.041..0.089

rows=239 loops=1)

1 row in set (0.4094 sec)

Chapter 24 Change the Query plan

799

Notice how both tables have the access type set to ALL and that the join is using the

join buffer in a block nested loop. A cause that often has similar symptoms is a correct

query, but where the query cannot use indexes. The EXPLAIN ANALYZE output shows that

a hash join is used in version 8.0.18. It also shows that a total of almost 1 million rows are

returned! The Visual Explain diagram for the query is shown in Figure 24-2.

Figure 24-2. Visual Explain for a query that is missing a join condition

Notice here how the two (red) full table scans stand out and how the query cost is

estimated to be more than 100,000.

The combinations of multiple full table scans, a very high estimated number of

returned rows, and a very high cost estimate are the telltale signs you need to look for.

A cause of poor query performance that gives similar symptoms is when MySQL is

not able to use an index for the filter and join conditions.

 No Index Used
When a query needs to find rows in a table, it can essentially do it in two ways: accessing

the rows directly in a full table scan or going through an index. In cases where there is a

filter that is highly selective, it is usually much faster to access the rows through an index

than through a table scan.

Chapter 24 Change the Query plan

800

Obviously, if there is no index on the column the filter applies to, MySQL has no

choice but to use a table scan. What you may find is that even if there is an index, then it

cannot be used. Three common reasons for this are that the columns are not the first in

a multicolumn index, the data type does not match for the comparison, and a function is

used on the column with the index. This section will discuss each of these causes.

Tip It can also happen that the optimizer thinks that an index is not selective
enough to make it worth using it compared to a full table scan. that case is
handled in the section “Improving the Index use” together with the example of
MySQl using the wrong index.

 Not a Left Prefix of Index
For an index to be used, a left prefix of the index must be used. For example, if an index

includes three columns as (a, b, c), then a condition on column b can only use the

filter if there is also an equality condition on column a.

Examples of conditions that can use the index are

WHERE a = 10 AND b = 20 AND c = 30

WHERE a = 10 AND b = 20 AND c > 10

WHERE a = 10 AND b = 20

WHERE a = 10 AND b > 20

WHERE a = 10

An example where the index cannot be used as effectively is WHERE b = 20. In MySQL

8.0.13 and later, if a is a NOT NULL column, MySQL can use the index using the skip scan

range optimization. If a allows NULL values, then the index cannot be used. The condition

WHERE c = 20 cannot use the index under any circumstances.

Similarly, for the condition WHERE a > 10 AND b = 20, the index will only be used

for filtering on the a column. When a query only uses a subset of the columns in the

index, it is important that the order of the columns in the index corresponds to which

filters are applied. If you have a range condition on one of the columns, make sure that

column is the last one being used in the index. For example, consider the table and

query in Listing 24-2.

Chapter 24 Change the Query plan

801

Listing 24-2. Query that cannot use the index effectively due to column order

mysql> SHOW CREATE TABLE chapter_24.mytable\G

*************************** 1. row ***************************
 Table: mytable

Create Table: CREATE TABLE `mytable` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `a` int(11) NOT NULL,

 `b` int(11) DEFAULT NULL,

 `c` int(11) DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `abc` (`a`,`b`,`c`)

) ENGINE=InnoDB AUTO_INCREMENT=16385 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0004 sec)

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.mytable

 WHERE a > 10 AND b = 20\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: mytable

 partitions: NULL

 type: range

possible_keys: abc

 key: abc

 key_len: 4

 ref: NULL

 rows: 8326

 filtered: 10

 Extra: Using where; Using index

1 row in set, 1 warning (0.0007 sec)

Chapter 24 Change the Query plan

802

Notice in the EXPLAIN output that the key_len is only 4 bytes, whereas it should

be 9 if the index was used for both the a and b columns. The output also shows that it

is estimated that only 10% of the rows that are examined will be included. Figure 24-3

shows the same example in Visual Explain.

Figure 24-3. Visual Explain with nonoptimal column order in the index

Notice that the Used Key Parts (near the bottom of the box with additional details)

just lists column a. However, if you change the order of the columns in the index, so that

column b is indexed before column a, then the index can be used for the conditions on

both columns. Listing 24-3 shows how the query plan changes after adding a new index

(b, a, c).

Chapter 24 Change the Query plan

803

Listing 24-3. Query plan with the index in optimal order

mysql> ALTER TABLE chapter_24.mytable

 ADD INDEX bac (b, a, c);

Query OK, 0 rows affected (1.4098 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.mytable

 WHERE a > 10 AND b = 20\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: mytable

 partitions: NULL

 type: range

possible_keys: abc,bac

 key: bac

 key_len: 9

 ref: NULL

 rows: 160

 filtered: 100

 Extra: Using where; Using index

1 row in set, 1 warning (0.0006 sec)

Notice how the key_len column now returns 9 bytes and that the filtered column

shows that 100% of the examined rows will be included from the table. The same is

reflected in Visual Explain as shown in Figure 24-4.

Chapter 24 Change the Query plan

804

In the figure, you can see that the number of rows that will be examined is reduced

from more than 8000 rows to 160 rows and that Used Key Parts now includes both the b

and a columns. The estimated query cost has also reduced from 1683.84 to 33.31.

 Data Types Not Matching
Another thing that you need to look out for is that both sides of a condition use the same

data type and for strings that the same collation is used. If that is not the case, MySQL

may not be able to use an index.

When a query is not working optimally because of the data types or collations not

matching, it can be hard to realize at first what the problem is. The query is correct, but

MySQL refuses to use the index that you expect. Other than the query plan not being

what you expect, the query result may also be wrong. This can happen due to the casting,

for example:

Figure 24-4. Visual Explain when there is an optimally ordered index

Chapter 24 Change the Query plan

805

mysql> SELECT ('a130' = 0), ('130a131' = 130);

+--------------+-------------------+

| ('a130' = 0) | ('130a131' = 130) |

+--------------+-------------------+

| 1 | 1 |

+--------------+-------------------+

1 row in set, 2 warnings (0.0004 sec)

Notice how the string “a130” is considered equal to the integer 0. That happens

because the string starts with a non-numeric character and thus is casted to the value 0.

In the same way, the string “130a131” is considered equal to the integer 130 as the leading

numeric part of the string is casted to the integer 130. The same kind of unintended

matches can occur when casting is used for a WHERE clause or a join condition. This is also a

case where inspecting the warnings of a query sometimes can help catch the problem.

If you consider the country and world tables in the test schema for this chapter (the

table definitions will be shown during the discussion of the example), you can see an

example of a join that does not use an index, when the two tables are joined using the

CountryId columns. Listing 24-4 shows an example of a query and its query plan.

Listing 24-4. Query not using an index due to mismatching data types

mysql> EXPLAIN

 SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM chapter_24.city ci

 INNER JOIN chapter_24.country co

 USING (CountryId)

 WHERE co.CountryCode = 'AUS'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: co

 partitions: NULL

 type: const

possible_keys: PRIMARY,CountryCode

 key: CountryCode

 key_len: 12

Chapter 24 Change the Query plan

806

 ref: const

 rows: 1

 filtered: 100

 Extra: NULL

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: ci

 partitions: NULL

 type: ALL

possible_keys: CountryId

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 4079

 filtered: 10

 Extra: Using where

2 rows in set, 3 warnings (0.0009 sec)

Warning (code 1739): Cannot use ref access on index 'CountryId' due to type

or collation conversion on field 'CountryId'

Warning (code 1739): Cannot use range access on index 'CountryId' due to

type or collation conversion on field 'CountryId'

Note (code 1003): /* select#1 */ select `chapter_24`.`ci`.`ID` AS

`ID`,`chapter_24`.`ci`.`Name` AS `Name`,`chapter_24`.`ci`.`District` AS

`District`,'Australia' AS `Country`,`chapter_24`.`ci`.`Population` AS

`Population` from `chapter_24`.`city` `ci` join `chapter_24`.`country` `co`

where ((`chapter_24`.`ci`.`CountryId` = '15'))

Notice that the access type for the ci (city) table is ALL. This query will neither use

a block nested loop nor a hash join as the co (country) table is a constant. The warnings

(if you do not use MySQL Shell with warnings enabled, you will need to execute SHOW

WARNINGS to fetch the warnings) have been included here as they provide a valuable

hint to why it is not possible to use an index, for example: Cannot use ref access on index

‘CountryId’ due to type or collation conversion on field ‘CountryId’. So there is an index

that is a candidate, but it cannot be used because the data type or collation is changed.

Figure 24- 5 shows the same query plan using Visual Explain.

Chapter 24 Change the Query plan

807

This is one of the cases where you need the text-based output to get all details as

Visual Explain does not include the warnings. When you see a warning like this, go back

and check the table definitions. These are shown in Listing 24-5.

Listing 24-5. The table definitions for the city and country tables

CREATE TABLE `chapter_24`.`city` (

 `ID` int unsigned NOT NULL AUTO_INCREMENT,

 `Name` varchar(35) NOT NULL DEFAULT ",

 `CountryCode` char(3) NOT NULL DEFAULT ",

 `CountryId` char(3) NOT NULL,

 `District` varchar(20) NOT NULL DEFAULT ",

 `Population` int unsigned NOT NULL DEFAULT '0',

 PRIMARY KEY (`ID`),

 KEY `CountryCode` (`CountryCode`),

 KEY `CountryId` (`CountryId`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

Figure 24-5. Visual Explain where the data types do not match

Chapter 24 Change the Query plan

808

CREATE TABLE `chapter_24`.`country` (

 `CountryId` int unsigned NOT NULL AUTO_INCREMENT,

 `CountryCode` char(3) NOT NULL,

 `Name` varchar(52) NOT NULL,

 ` Continent` enum('Asia','Europe','North America','Africa','Oceania',

'Antarctica','South America') NOT NULL DEFAULT 'Asia',

 `Region` varchar(26) DEFAULT NULL,

 PRIMARY KEY (`CountryId`),

 UNIQUE INDEX `CountryCode` (`CountryCode`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

Here it is evident that the CountryId column of the city table is a char(3) column

but the CountryId of the country table is an integer. That is why the index on the city.

CountryId column cannot be used when the city table is the second table in the join.

Note If the join goes the other way with the city table being the first table and
the country table the second table, then city.CountryId is still casted to an
integer, while country.CountryId is not changed, so the index on country.
CountryId can be used.

Notice also that the collation is different for the two tables. The city table uses the

utf8mb4_general_ci collation (the default utf8mb4 collation in MySQL 5.7 and earlier),

whereas the country table uses the utf8mb4_0900_ai_ci (the default utf8mb4 collation

in MySQL 8). Different character sets or collations can even prevent the query from

executing altogether:

SELECT ci.ID, ci.Name, ci.District,

 co.Name AS Country, ci.Population

 FROM chapter_24.city ci

 INNER JOIN chapter_24.country co

 USING (CountryCode)

 WHERE co.CountryCode = 'AUS';

ERROR: 1267: Illegal mix of collations (utf8mb4_general_ci,IMPLICIT) and

(utf8mb4_0900_ai_ci,IMPLICIT) for operation '='

Chapter 24 Change the Query plan

809

This is something to be aware of if you create a table in MySQL 8 and use it in queries

together with tables created in earlier MySQL versions. In that case, you need to ensure

that all tables use the same collation.

The problem with data type mismatch is a special case of using functions in the

filters as MySQL does an implicit cast. In general, using functions in filters is something

that can prevent the use of an index.

 Functional Dependencies
The last common reason for an index not to be used is that a function is applied to the

column, for example: WHERE MONTH(birth_date) = 7. In that case, you need to rewrite

the condition to avoid the function, or you need to add a functional index.

When possible, the best way to handle a case where the use of a function prevents

using an index is to rewrite the query to avoid the function. While a functional index can

also be used, unless it helps create a covering index, the index adds overhead which is

avoided with a rewrite. Consider a query that wants to find the details of persons born in

1970 as in the example in Listing 24-6 using the chapter_24.person table.

Listing 24-6. The person table and finding persons born in 1970

mysql> SHOW CREATE TABLE chapter_24.person\G

*************************** 1. row ***************************
 Table: person

Create Table: CREATE TABLE `person` (

 `PersonId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `FirstName` varchar(50) DEFAULT NULL,

 `Surname` varchar(50) DEFAULT NULL,

 `BirthDate` date NOT NULL,

 `AddressId` int(10) unsigned DEFAULT NULL,

 `LanguageId` int(10) unsigned DEFAULT NULL,

 PRIMARY KEY (`PersonId`),

 KEY `BirthDate` (`BirthDate`),

 KEY `AddressId` (`AddressId`),

 KEY `LanguageId` (`LanguageId`)

) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0012 sec)

Chapter 24 Change the Query plan

810

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.person

 WHERE YEAR(BirthDate) = 1970\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 1000

 filtered: 100

 Extra: Using where

1 row in set, 1 warning (0.0006 sec)

This query uses the YEAR() function to determine the year the person is born in. An

alternative is to look for everyone born between January 1, 1970, and December 31, 1971

(both days included), which amount to the same thing. Listing 24-7 shows that in this

case the index on the birthdate column is used.

Listing 24-7. Rewriting the YEAR() function to a date range condition

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.person

 WHERE BirthDate BETWEEN '1970-01-01'

 AND '1970-12-31'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: range

Chapter 24 Change the Query plan

811

possible_keys: BirthDate

 key: BirthDate

 key_len: 3

 ref: NULL

 rows: 6

 filtered: 100

 Extra: Using index condition

1 row in set, 1 warning (0.0009 sec)

This rewrite reduces the query from using a table scan examining 1000 rows to an

index range scan just examining six rows. A rewrite similar to this is often possible where

functions are used on dates which effectively extract a range of values.

Note It can be tempting to rewrite a date or datetime range condition using the
LIKE operator, for example: WHERE birthdate LIKE '1970-%'. this will not
allow MySQl to use a query and is discouraged. use a proper range instead.

It is not always possible to rewrite a condition that uses a function in the way just

demonstrated. It may be the condition does not map into a single range or that the query

is generated by a framework or a third-party application, so you cannot change it. In that

case, you can add a functional index.

Note Functional indexes are supported in MySQl 8.0.13 and later. If you use an
earlier release, you are recommended to upgrade. If that is not possible or you also
need the value returned by the function, you can emulate functional indexes by
adding a virtual column with the functional expression and creating an index on the
virtual column.

As an example, consider a query that finds all persons with a birthday in a given

month – for example, because you want to send them a birthday greeting. In principle

that can be done using ranges, but it will require one range per year which is neither

practical nor very efficient. Instead, you can use the MONTH() function to extract a

numeric value of the month (January is 1 and December 12). Listing 24-8 shows how you

can add a functional index that can be used together with a query that finds all persons

in the chapter_24.person table who have a birthday in the current month.

Chapter 24 Change the Query plan

812

Listing 24-8. Using a functional index

mysql> ALTER TABLE chapter_24.person

 ADD INDEX ((MONTH(BirthDate)));

Query OK, 0 rows affected (0.4845 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.person

 WHERE MONTH(BirthDate) = MONTH(NOW())\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: ref

possible_keys: functional_index

 key: functional_index

 key_len: 5

 ref: const

 rows: 88

 filtered: 100

 Extra: NULL

1 row in set, 1 warning (0.0006 sec)

After the functional index on MONTH(BirthDate) has been added, the query plan

shows that the index used is functional_index.

That concludes the discussion of how to add index support for queries that are

currently not using an index. There are several other rewrites that relate to using indexes.

These will be covered in the next section.

Chapter 24 Change the Query plan

813

 Improving the Index Use
The previous section considered queries where no index was used for a join or WHERE

clause. In some cases, an index is used, but you can improve the index, or another

index gives better performance, or indexes cannot be used efficiently because of the

complexity of the filters. This section will look at some examples of improving queries

already using an index.

 Add a Covering Index
In some cases when you query a table, the filtering is performed by an index, but then

you have requested a couple of other columns, so MySQL needs to retrieve the whole

row. In that case, it would be more efficient to add those extra columns to the index, so

the index contains all columns required for the query.

Consider the city table in the chapter_24 sample database:

CREATE TABLE `city` (

 `ID` int unsigned NOT NULL AUTO_INCREMENT,

 `Name` varchar(35) NOT NULL DEFAULT ",

 `CountryCode` char(3) NOT NULL DEFAULT ",

 `CountryId` char(3) NOT NULL,

 `District` varchar(20) NOT NULL DEFAULT ",

 `Population` int unsigned NOT NULL DEFAULT '0',

 PRIMARY KEY (`ID`),

 KEY `CountryCode` (`CountryCode`),

 KEY `CountryId` (`CountryId`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

If you want to find the name and district of all cities with CountryCode = 'USA', then you

can use the CountryCode index to find the rows. This is efficient as shown in Listing 24-9.

Listing 24-9. Querying cities by a non-covering index

mysql> EXPLAIN

 SELECT Name, District

 FROM chapter_24.city

 WHERE CountryCode = 'USA'\G

Chapter 24 Change the Query plan

814

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: ref

possible_keys: CountryCode

 key: CountryCode

 key_len: 12

 ref: const

 rows: 274

 filtered: 100

 Extra: NULL

1 row in set, 1 warning (0.0376 sec)

Notice that 12 bytes are used for the index (three characters each up to 4 bytes wide),

and the Extra column does not include Using index. If you create a new index with

CountryCode as the first column and District and Name as the remaining columns, you

have all columns you need for the query in the index. Choose the order of District and

Name as it is most likely you will use them together with the CountryCode in filters and

ORDER BY and GROUP BY clauses. If it is equally likely that the columns are used in filters,

choose Name before District in the index as the city name is more selective than the

district. Listing 24-10 shows an example of this together with the new query plan.

Listing 24-10. Querying cities by a covering index

mysql> ALTER TABLE chapter_24.city

 ALTER INDEX CountryCode INVISIBLE,

 ADD INDEX Country_District_Name

 (CountryCode, District, Name);

Query OK, 0 rows affected (1.6630 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN

 SELECT Name, District

 FROM chapter_24.city

 WHERE CountryCode = 'USA'\G

Chapter 24 Change the Query plan

815

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: city

 partitions: NULL

 type: ref

possible_keys: Country_District_Name

 key: Country_District_Name

 key_len: 12

 ref: const

 rows: 274

 filtered: 100

 Extra: Using index

1 row in set, 1 warning (0.0006 sec)

When adding the new index, the old index that just covers the CountryCode column

is made invisible. That is done because the new index also can be used for all uses where

the old index was used, so there is usually no reason to keep both indexes. (Given the

index just on the CountryCode column is smaller than the new index, it is possible that

some queries benefit from the old index. By making it invisible, you can verify it is not

needed before dropping it.)

The key length is still returned to be 12 bytes as that is what is used for the filtering.

However, the Extra column now includes Using index to show that a covering index is

being used.

 Wrong Index
When MySQL can choose between several indexes, the optimizer will have to decide

which to use based on the estimated cost of the two query plans. Since the index

statistics and cost estimates are not exact, it can happen that MySQL chooses the wrong

index. Special cases are where the optimizer chooses not to use an index even if it is

possible to use it or the optimizer chooses to use an index where it is faster to do a table

scan. Either way, you need to use index hints.

Chapter 24 Change the Query plan

816

Tip Index hints can also be used just to affect whether an index is used for
sorting or grouping as discussed in Chapter 17. an example where it can be
necessary to use an index hint is when the query chooses to use an index for
sorting instead of filtering and that causes poor performance – or vice versa.
a case where the reverse can happen is when you have a LIMIT clause and using
an index for sorting can allow the query to stop the query early.

When you suspect that the wrong index is used, you need to look at the possible_keys

column of the EXPLAIN output to determine which indexes are candidates. Listing 24-11

shows an example of finding information about the people in Japan who turn 20 years old

in 2020 and speak English. (Imagine you want to send them a birthday card.) Part of the

tree-formatted EXPLAIN output has been replaced by ellipsis to improve the readability by

keeping most of the lines within the width of the book page.

Listing 24-11. Finding information about the countries where English is spoken

mysql> SHOW CREATE TABLE chapter_24.person\G

*************************** 1. row ***************************
 Table: person

Create Table: CREATE TABLE `person` (

 `PersonId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `FirstName` varchar(50) DEFAULT NULL,

 `Surname` varchar(50) DEFAULT NULL,

 `BirthDate` date NOT NULL,

 `AddressId` int(10) unsigned DEFAULT NULL,

 `LanguageId` int(10) unsigned DEFAULT NULL,

 PRIMARY KEY (`PersonId`),

 KEY `BirthDate` (`BirthDate`),

 KEY `AddressId` (`AddressId`),

 KEY `LanguageId` (`LanguageId`),

 KEY `functional_index` ((month(`BirthDate`)))

) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0007 sec)

mysql> SHOW CREATE TABLE chapter_24.address\G

Chapter 24 Change the Query plan

817

*************************** 1. row ***************************
 Table: address

Create Table: CREATE TABLE `address` (

 `AddressId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `City` varchar(35) NOT NULL,

 `District` varchar(20) NOT NULL,

 `CountryCode` char(3) NOT NULL,

 PRIMARY KEY (`AddressId`),

 KEY `CountryCode` (`CountryCode`,`District`,`City`)

) ENGINE=InnoDB AUTO_INCREMENT=4096 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0007 sec)

mysql> SHOW CREATE TABLE chapter_24.language\G

*************************** 1. row ***************************
 Table: language

Create Table: CREATE TABLE `language` (

 `LanguageId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `Language` varchar(35) NOT NULL,

 PRIMARY KEY (`LanguageId`),

 KEY `Language` (`Language`)

) ENGINE=InnoDB AUTO_INCREMENT=512 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0005 sec)

mysql> UPDATE mysql.innodb_index_stats

 SET stat_value = 1000

 WHERE database_name = 'chapter_24'

 AND table_name = 'person'

 AND index_name = 'LanguageId'

 AND stat_name = 'n_diff_pfx01';

Query OK, 1 row affected (0.0920 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> FLUSH TABLE chapter_24.person;

Query OK, 0 rows affected (0.0686 sec)

Chapter 24 Change the Query plan

818

mysql> EXPLAIN

 SELECT PersonId, FirstName,

 Surname, BirthDate

 FROM chapter_24.person

 INNER JOIN chapter_24.address

 USING (AddressId)

 INNER JOIN chapter_24.language

 USING (LanguageId)

 WHERE BirthDate BETWEEN '2000-01-01'

 AND '2000-12-31'

 AND CountryCode = 'JPN'

 AND Language = 'English'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: language

 partitions: NULL

 type: ref

possible_keys: PRIMARY,Language

 key: Language

 key_len: 142

 ref: const

 rows: 1

 filtered: 100

 Extra: Using index

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: ref

possible_keys: BirthDate,AddressId,LanguageId

 key: LanguageId

 key_len: 5

 ref: chapter_24.language.LanguageId

Chapter 24 Change the Query plan

819

 rows: 1

 filtered: 5

 Extra: Using where

*************************** 3. row ***************************
 id: 1

 select_type: SIMPLE

 table: address

 partitions: NULL

 type: eq_ref

possible_keys: PRIMARY,CountryCode

 key: PRIMARY

 key_len: 4

 ref: chapter_24.person.AddressId

 rows: 1

 filtered: 6.079921722412109

 Extra: Using where

3 rows in set, 1 warning (0.0008 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT PersonId, FirstName,

 Surname, BirthDate

 FROM chapter_24.person

 INNER JOIN chapter_24.address

 USING (AddressId)

 INNER JOIN chapter_24.language

 USING (LanguageId)

 WHERE BirthDate BETWEEN '2000-01-01'

 AND '2000-12-31'

 AND CountryCode = 'JPN'

 AND Language = 'English'\G

*************************** 1. row ***************************
EXPLAIN:

-> Nested loop inner join (cost=0.72 rows=0)

 -> Nested loop inner join (cost=0.70 rows=0)

 -> Index lookup on language using Language...

Chapter 24 Change the Query plan

820

 -> Filter: ((person.BirthDate between '2000-01-01' and '2000-12- 31')

and (person.AddressId is not null))...

 -> Index lookup on person using LanguageId...

 -> Filter: (address.CountryCode = 'JPN') (cost=0.37 rows=0)

 -> Single-row index lookup on address using PRIMARY...

1 row in set (0.0006 sec)

The key table for this example is the person table which is joined both to the

language and address tables. The UPDATE and FLUSH statements are used to emulate that

the index statistics are out of date by updating the mysql.innodb_index_stats table and

flushing the table to make the new index statistics take effect.

The query can use either the BirthDate, AddressId, or LanguageId index. The

effectiveness of the three WHERE clauses (one on each table) is determined very accurately

as the optimizer asks the storage engine for a count of rows for each condition. The

difficulty for the optimizer is to determine the best join order based on the effectiveness

of the join conditions and which index to use for each join. According to the EXPLAIN

output, the optimizer has chosen to start with the language table and join on the person

table using the LanguageId index for the join and finally join on the address table.

If you suspect the wrong indexes are used for the query (in this case, using

LanguageId for the join on the person table is not optimal and is only chosen because

the index statistics are “wrong”), the first thing to do is to update the index statistics. The

result of this is shown in Listing 24-12.

Listing 24-12. Updating the index statistics to change the query plan

mysql> ANALYZE TABLE

 chapter_24.person,

 chapter_24.address,

 chapter_24.language;

+---------------------+---------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------------------+---------+----------+----------+

| chapter_24.person | analyze | status | OK |

| chapter_24.address | analyze | status | OK |

| chapter_24.language | analyze | status | OK |

+---------------------+---------+----------+----------+

3 rows in set (0.2634 sec)

Chapter 24 Change the Query plan

821

mysql> EXPLAIN

 SELECT PersonId, FirstName,

 Surname, BirthDate

 FROM chapter_24.person

 INNER JOIN chapter_24.address

 USING (AddressId)

 INNER JOIN chapter_24.language

 USING (LanguageId)

 WHERE BirthDate BETWEEN '2000-01-01'

 AND '2000-12-31'

 AND CountryCode = 'JPN'

 AND Language = 'English'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: language

 partitions: NULL

 type: ref

possible_keys: PRIMARY,Language

 key: Language

 key_len: 142

 ref: const

 rows: 1

 filtered: 100

 Extra: Using index

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: range

possible_keys: BirthDate,AddressId,LanguageId

 key: BirthDate

 key_len: 3

 ref: NULL

Chapter 24 Change the Query plan

822

 rows: 8

 filtered: 10

 Extra: Using index condition; Using where; Using join buffer (Block

Nested Loop)

*************************** 3. row ***************************
 id: 1

 select_type: SIMPLE

 table: address

 partitions: NULL

 type: eq_ref

possible_keys: PRIMARY,CountryCode

 key: PRIMARY

 key_len: 4

 ref: chapter_24.person.AddressId

 rows: 1

 filtered: 6.079921722412109

 Extra: Using where

3 rows in set, 1 warning (0.0031 sec)

mysql> EXPLAIN FORMAT=TREE

 SELECT PersonId, FirstName,

 Surname, BirthDate

 FROM chapter_24.person

 INNER JOIN chapter_24.address

 USING (AddressId)

 INNER JOIN chapter_24.language

 USING (LanguageId)

 WHERE BirthDate BETWEEN '2000-01-01'

 AND '2000-12-31'

 AND CountryCode = 'JPN'

 AND Language = 'English'\G

*************************** 1. row ***************************
EXPLAIN:

-> Nested loop inner join (cost=7.01 rows=0)

 -> Inner hash join...

 -> Filter: (person.AddressId is not null)...

Chapter 24 Change the Query plan

823

 -> Index range scan on person using BirthDate...

 -> Hash

 -> Index lookup on language using Language...

 -> Filter: (address.CountryCode = 'JPN')...

 -> Single-row index lookup on address using PRIMARY...

1 row in set (0.0009 sec)

This significantly changed the query plan (only part of the tree-formatted query plan

is included for readability) which is easiest seen by comparing the tree-formatted query

plan. The tables are still joined in the same order, but now a hash join is used to join the

language and person tables. This is effective because only one row is expected from the

language table, so doing a table scan on the person table and filtering on the birthdate is

a good choice. In most cases where the wrong index is used, updating the index statistics

will solve the problem, possibly after changing the number of index dives that InnoDB

makes for the tables.

Caution ANALYZE TABLE triggers an implicit FLUSH TABLES for the tables that
are analyzed. If you have long-running queries using the analyzed tables, no other
queries requiring access to those tables can start until the long-running queries
have completed.

In some cases, it is not possible to solve the performance problem by updating index

statistics. In that case, you can then use an index hint (IGNORE INDEX, USE INDEX, and

FORCE INDEX) to influence which index MySQL will use. Listing 24-13 shows an example

of doing this for the same query as before after changing the index statistics back to

become outdated.

Listing 24-13. Improving the query plan using an index hint

mysql> UPDATE mysql.innodb_index_stats

 SET stat_value = 1000

 WHERE database_name = 'chapter_24'

 AND table_name = 'person'

 AND index_name = 'LanguageId'

 AND stat_name = 'n_diff_pfx01';

Query OK, 1 row affected (0.0920 sec)

Chapter 24 Change the Query plan

824

Rows matched: 1 Changed: 1 Warnings: 0

mysql> FLUSH TABLE chapter_24.person;

Query OK, 0 rows affected (0.0498 sec)

mysql> EXPLAIN

 SELECT PersonId, FirstName,

 Surname, BirthDate

 FROM chapter_24.person USE INDEX (BirthDate)

 INNER JOIN chapter_24.address

 USING (AddressId)

 INNER JOIN chapter_24.language

 USING (LanguageId)

 WHERE BirthDate BETWEEN '2000-01-01'

 AND '2000-12-31'

 AND CountryCode = 'JPN'

 AND Language = 'English'\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: language

 partitions: NULL

 type: ref

possible_keys: PRIMARY,Language

 key: Language

 key_len: 142

 ref: const

 rows: 1

 filtered: 100

 Extra: Using index

*************************** 2. row ***************************
 id: 1

 select_type: SIMPLE

 table: person

 partitions: NULL

 type: range

Chapter 24 Change the Query plan

825

possible_keys: BirthDate

 key: BirthDate

 key_len: 3

 ref: NULL

 rows: 8

 filtered: 0.625

 Extra: Using index condition; Using where; Using join buffer (Block

Nested Loop)

*************************** 3. row ***************************
 id: 1

 select_type: SIMPLE

 table: address

 partitions: NULL

 type: eq_ref

possible_keys: PRIMARY,CountryCode

 key: PRIMARY

 key_len: 4

 ref: chapter_24.person.AddressId

 rows: 1

 filtered: 6.079921722412109

 Extra: Using where

3 rows in set, 1 warning (0.0016 sec)

This time the USE INDEX (BirthDate) index hint is added for the person table

which gives the same query plan as when the index statistics were updated. Notice that

the possible keys for the person table only include BirthDate. The disadvantage of this

 approach is that the optimizer does not have the flexibility to change the query plan

should the data change, so the BirthDate index is no longer the most optimal.

This example had three different conditions on the person table (the date range

for the birthdate and two join conditions). In some cases, when you have multiple

conditions on a table, it is beneficial to do some more extensive rewrites of the query.

Chapter 24 Change the Query plan

826

 Rewriting Complex Index Conditions
In some cases, a query becomes so complex that it is not possible for the optimizer to

come up with a good query plan, and it is necessary to rewrite the query. An example

of a case where a rewrite can help includes multiple filters on the same table where the

index merge algorithm cannot be used effectively.

Consider the following query:

mysql> EXPLAIN FORMAT=TREE

 SELECT *
 FROM chapter_24.person

 WHERE BirthDate < '1930-01-01'

 OR AddressId = 3417\G

*************************** 1. row ***************************
EXPLAIN:

-> Filter: ((chapter_24.person.BirthDate < DATE'1930-01-01') or

(chapter_24.person.AddressId = 3417)) (cost=88.28 rows=111)

 -> Index range scan on person using sort_union(BirthDate,AddressId)

(cost=88.28 rows=111)

1 row in set (0.0006 sec)

There are indexes for both the BirthDate and AddressId columns, but no index that

spans both columns. A possibility is to use an index merge, which the optimizer will

choose by default, if it believes the benefit is large enough. Usually this is the preferred

way to execute the query, but for some queries (particularly more complex than in this

example) it can help to split the two conditions out into two queries and use a union to

combine the result:

mysql> EXPLAIN FORMAT=TREE

 (SELECT *
 FROM chapter_24.person

 WHERE BirthDate < '1930-01-01'

) UNION DISTINCT (

 SELECT *
 FROM chapter_24.person

 WHERE AddressId = 3417

)\G

Chapter 24 Change the Query plan

827

*************************** 1. row ***************************
EXPLAIN:

-> Table scan on <union temporary> (cost=2.50 rows=0)

 -> Union materialize with deduplication

 -> Index range scan on person using BirthDate, with index

condition: (chapter_24.person.BirthDate < DATE'1930-01-01')

(cost=48.41 rows=107)

 -> Index lookup on person using AddressId

(AddressId=3417) (cost=1.40 rows=4)

1 row in set (0.0006 sec)

A UNION DISTINCT (which is also the default union) is used to ensure that rows that

fulfill both criteria are not included twice. Figure 24-6 shows the two query plans side

by side.

Figure 24-6. Query plans for the original query and rewritten query

Chapter 24 Change the Query plan

828

On the left is the original query using an index merge (the sort_union algorithm),

and on the right is the manually written union.

 Rewriting Complex Queries
The optimizer has by MySQL 8 had several transformation rules added, so it can

rewrite a query to a form where it performs better. This means that the need for

rewriting complex queries keeps reducing as the optimizer knows more and more

transformations. For example, as late as the 8.0.l7 release, support was added to rewrite

NOT IN (subquery), NOT EXISTS (subquery), IN (subquery) IS NOT TRUE, and EXISTS

(subquery) IS NOT TRUE into an antijoin which means the subquery is removed.

That said, it is still good to consider how queries potentially can be rewritten, so you

can help the optimizer on its way for the cases where it does not arrive at the optimal

solution or it does not know how to do the rewrite on its own. There are also cases where

you can take advantage of the support for common table expressions (CTEs – also known

as the with syntax) and window functions to make queries more effective and easier

to read. This section will start out considering common table expressions and window

functions and then finish off rewriting a query using IN (subquery) to a join and to use

two queries.

COMMON TABLE EXPRESSIONS AND WINDOW FUNCTIONS

It is beyond the scope of this book to go into the details of using common table expressions

and window functions. this chapter will include a few examples to give an idea of how you

can use the features. a good starting point for a general overview is MariaDB and MySQL
Common Table Expressions and Window Functions Revealed by Daniel Bartholomew and

published by apress (www.apress.com/gp/book/9781484231197).

guilhem Bichot (the MySQl developer who implemented common table expressions in MySQl)

also wrote a blog series in four parts about common table expression when the feature was

first developed: https://mysqlserverteam.com/?s=common+table+expressions.

there are also two blogs by other MySQl developers about window functions: https://

mysqlserverteam.com/?s=window+functions.

Chapter 24 Change the Query plan

http://www.apress.com/gp/book/9781484231197
https://mysqlserverteam.com/?s=common+table+expressions
https://mysqlserverteam.com/?s=window+functions
https://mysqlserverteam.com/?s=window+functions

829

For the latest information, the best source is the MySQl reference manual. Common table

expressions are described in https://dev.mysql.com/doc/refman/en/with.html.

Window functions are covered in two parts based on whether the function is a regular or

aggregate function: https://dev.mysql.com/doc/refman/en/window-functions.

html which also includes a general discussion of window functions and https://dev.

mysql.com/doc/refman/en/group-by-functions.html for aggregate window

functions.

 Common Table Expressions
The common table expressions feature allows you to define a subquery at the start of

the query and use it as a normal table in the main part of the query. There are several

advantages of using common table expressions instead of inlining the subqueries

including better performance and readability. Part of the better performance comes

from support of referencing the common table expression multiple times in a query,

whereas an inlined subquery can only be referenced once.

As an example, consider a query against the sakila database that calculates the sales

per month per the staff member who handled the rental:

SELECT DATE_FORMAT(r.rental_date,

 '%Y-%m-01'

) AS FirstOfMonth,

 r.staff_id,

 SUM(p.amount) as SalesAmount

 FROM sakila.payment p

 INNER JOIN sakila.rental r

 USING (rental_id)

 GROUP BY FirstOfMonth, r.staff_id;

If you want to know how much the sales changes from month to month, then you

will need to compare the sales for one month with that of the previous month. To do that

without using common table expressions, you either need to store the result of the query

in a temporary table or duplicate it as two subqueries. Listing 24-14 shows an example of

the latter.

Chapter 24 Change the Query plan

https://dev.mysql.com/doc/refman/en/with.html
https://dev.mysql.com/doc/refman/en/window-functions.html
https://dev.mysql.com/doc/refman/en/window-functions.html
https://dev.mysql.com/doc/refman/en/group-by-functions.html
https://dev.mysql.com/doc/refman/en/group-by-functions.html

830

Listing 24-14. The monthly sales and change in sales without CTEs

SELECT current.staff_id,

 YEAR(current.FirstOfMonth) AS Year,

 MONTH(current.FirstOfMonth) AS Month,

 current.SalesAmount,

 (current.SalesAmount

 - IFNULL(prev.SalesAmount, 0)

) AS DeltaAmount

 FROM (

 SELECT DATE_FORMAT(r.rental_date,

 '%Y-%m-01'

) AS FirstOfMonth,

 r.staff_id,

 SUM(p.amount) as SalesAmount

 FROM sakila.payment p

 INNER JOIN sakila.rental r

 USING (rental_id)

 GROUP BY FirstOfMonth, r.staff_id

) current

 LEFT OUTER JOIN (

 SELECT DATE_FORMAT(r.rental_date,

 '%Y-%m-01'

) AS FirstOfMonth,

 r.staff_id,

 SUM(p.amount) as SalesAmount

 FROM sakila.payment p

 INNER JOIN sakila.rental r

 USING (rental_id)

 GROUP BY FirstOfMonth, r.staff_id

) prev ON prev.FirstOfMonth

 = current.FirstOfMonth

 - INTERVAL 1 MONTH

 AND prev.staff_id = current.staff_id

 ORDER BY current.staff_id,

 current.FirstOfMonth;

Chapter 24 Change the Query plan

831

This hardly qualifies for the query that is easiest to read and understand. The two

subqueries are identical and the same as that used to find the sales per staff per month.

The two derived tables are joined by comparing the current and previous months for

the same staff member. Finally, the result is ordered by the staff member and the current

month. The result is shown in Listing 24-15.

Listing 24-15. The result of the monthly sales query

+----------+------+-------+-------------+-------------+

| staff_id | Year | Month | SalesAmount | DeltaAmount |

+----------+------+-------+-------------+-------------+

| 1 | 2005 | 5 | 2340.42 | 2340.42 |

| 1 | 2005 | 6 | 4832.37 | 2491.95 |

| 1 | 2005 | 7 | 14061.58 | 9229.21 |

| 1 | 2005 | 8 | 12072.08 | -1989.50 |

| 1 | 2006 | 2 | 218.17 | 218.17 |

| 2 | 2005 | 5 | 2483.02 | 2483.02 |

| 2 | 2005 | 6 | 4797.52 | 2314.50 |

| 2 | 2005 | 7 | 14307.33 | 9509.81 |

| 2 | 2005 | 8 | 11998.06 | -2309.27 |

| 2 | 2006 | 2 | 296.01 | 296.01 |

+----------+------+-------+-------------+-------------+

10 rows in set (0.1406 sec)

One thing to notice from the result is that there are no sales data in the months

September 2005–January 2006. The query assumes the sales amounts are 0 in that

period. When rewriting this query to use a window function, it is shown how to add the

missing months.

Figure 24-7 shows the query plan for this version of the query.

Chapter 24 Change the Query plan

832

The query plan shows that the subquery is evaluated twice; then the join is

performed using a full table scan on the subquery named current and joined using an

index (and auto-generated index) in a nested loop to form the result that is ordered by a

file sort.

If you use common table expressions, you can just define the subquery once and

refer to it twice. This simplifies the query and makes it perform better. The version of the

query using common table expressions is shown in Listing 24-16.

Figure 24-7. Visual Explain for the non-CTE query

Chapter 24 Change the Query plan

833

Listing 24-16. The monthly sales and change in sales using CTE

WITH monthly_sales AS (

 SELECT DATE_FORMAT(r.rental_date,

 '%Y-%m-01'

) AS FirstOfMonth,

 r.staff_id,

 SUM(p.amount) as SalesAmount

 FROM sakila.payment p

 INNER JOIN sakila.rental r

 USING (rental_id)

 GROUP BY FirstOfMonth, r.staff_id

)

SELECT current.staff_id,

 YEAR(current.FirstOfMonth) AS Year,

 MONTH(current.FirstOfMonth) AS Month,

 current.SalesAmount,

 (current.SalesAmount

 - IFNULL(prev.SalesAmount, 0)

) AS DeltaAmount

 FROM monthly_sales current

 LEFT OUTER JOIN monthly_sales prev

 ON prev.FirstOfMonth

 = current.FirstOfMonth

 - INTERVAL 1 MONTH

 AND prev.staff_id = current.staff_id

 ORDER BY current.staff_id,

 current.FirstOfMonth;

The common table expression is defined first with the WITH keyword and given the

name monthly_sales. The table list in the main part of the query can then just refer to

monthly_sales. The query executes in around half the time as the original query. An

added benefit is that if the business logic changes, you only need to update it in one

place which reduces the potential for ending up with a bug in the query. Figure 24-8

shows the query plan for the version of the query using the common table expression.

Chapter 24 Change the Query plan

834

Figure 24-8. Visual Explain when using a common table expression

The query plan shows that the subquery is only executed once and then reused as a

regular table. Otherwise, the query plan remains the same.

You could also have solved this problem using a window function.

Chapter 24 Change the Query plan

835

 Window Functions
Window functions allow you to define a frame where the window functions return values

that depend on other rows in the frame. You can use this to generate row numbers and

percentage of a total, compare a row to the previous or next row, and more. Here the

previous example of finding the monthly sales numbers and comparing them to the

previous month will be explored.

You can use the LAG() window function to get the value of a column in the previous

row. Listing 24-17 shows how you can use that to rewrite the monthly sales query to use

the LAG() window function as well as add the months without sales.

Listing 24-17. Combing CTEs and the LAG() window function

WITH RECURSIVE

 month AS

 (SELECT MIN(DATE_FORMAT(rental_date,

 '%Y-%m-01'

)) AS FirstOfMonth,

 MAX(DATE_FORMAT(rental_date,

 '%Y-%m-01'

)) AS LastMonth

 FROM sakila.rental

 UNION

 SELECT FirstOfMonth + INTERVAL 1 MONTH,

 LastMonth

 FROM month

 WHERE FirstOfMonth < LastMonth

),

 staff_member AS (

 SELECT staff_id

 FROM sakila.staff

),

 monthly_sales AS (

 SELECT month.FirstOfMonth,

 s.staff_id,

 IFNULL(SUM(p.amount), 0) as SalesAmount

Chapter 24 Change the Query plan

836

 FROM month

 CROSS JOIN staff_member s

 LEFT OUTER JOIN sakila.rental r

 ON r.rental_date >=

 month.FirstOfMonth

 AND r.rental_date < month.FirstOfMonth

 + INTERVAL 1 MONTH

 AND r.staff_id = s.staff_id

 LEFT OUTER JOIN sakila.payment p

 USING (rental_id)

 GROUP BY FirstOfMonth, s.staff_id

)

SELECT staff_id,

 YEAR(FirstOfMonth) AS Year,

 MONTH(FirstOfMonth) AS Month,

 SalesAmount,

 (SalesAmount

 - LAG(SalesAmount, 1, 0) OVER w_month

) AS DeltaAmount

 FROM monthly_sales

WINDOW w_month AS (ORDER BY staff_id, FirstOfMonth)

 ORDER BY staff_id, FirstOfMonth;

This query at first seems quite complex; however, the reason for this is that the first

two common table expressions are used to add sales data for each month between the

first and last months with rental data. The cross product (notice how an explicit CROSS

JOIN is used to make it clear that the cross join is intended) between the month and

staff_member tables is used as a base for the monthly_sales table with an outer join

made on the rental and payment tables.

The main query now becomes simple as all the information required can be found

in the monthly_sales table. A window is defined by ordering the sales data by staff_

id and FirstOfMonth, and the LAG() window function is used over this window.

Listing 24- 18 shows the result.

Chapter 24 Change the Query plan

837

Listing 24-18. The result of the sales query using the LAG() function

+----------+------+-------+-------------+-------------+

| staff_id | Year | Month | SalesAmount | DeltaAmount |

+----------+------+-------+-------------+-------------+

| 1 | 2005 | 5 | 2340.42 | 2340.42 |

| 1 | 2005 | 6 | 4832.37 | 2491.95 |

| 1 | 2005 | 7 | 14061.58 | 9229.21 |

| 1 | 2005 | 8 | 12072.08 | -1989.50 |

| 1 | 2005 | 9 | 0.00 | -12072.08 |

| 1 | 2005 | 10 | 0.00 | 0.00 |

| 1 | 2005 | 11 | 0.00 | 0.00 |

| 1 | 2005 | 12 | 0.00 | 0.00 |

| 1 | 2006 | 1 | 0.00 | 0.00 |

| 1 | 2006 | 2 | 218.17 | 218.17 |

| 2 | 2005 | 5 | 2483.02 | 2264.85 |

| 2 | 2005 | 6 | 4797.52 | 2314.50 |

| 2 | 2005 | 7 | 14307.33 | 9509.81 |

| 2 | 2005 | 8 | 11998.06 | -2309.27 |

| 2 | 2005 | 9 | 0.00 | -11998.06 |

| 2 | 2005 | 10 | 0.00 | 0.00 |

| 2 | 2005 | 11 | 0.00 | 0.00 |

| 2 | 2005 | 12 | 0.00 | 0.00 |

| 2 | 2006 | 1 | 0.00 | 0.00 |

| 2 | 2006 | 2 | 296.01 | 296.01 |

+----------+------+-------+-------------+-------------+

Notice how the months without sales data have been added with a sales amount of 0.

Note the window does not require the values over which it orders the data to
be in sequence. If you omit the month and staff_member expressions, the lag
for February 2006 becomes august 2005. this may very well be what you want –
but it is a different result compared to the solution found by the original query in
listing 24-14. It is left as an exercise for the reader to change the query and see
the difference.

Chapter 24 Change the Query plan

838

 Rewrite Subquery As Join
When you have a subquery, an option is to change a subquery to a join. The optimizer

will often perform this kind of rewrite on its own when possible, but occasionally, it is

useful to help the optimizer on the way.

As an example, consider the following query:

SELECT *
 FROM chapter_24.person

 WHERE AddressId IN (

 SELECT AddressId

 FROM chapter_24.address

 WHERE CountryCode = 'AUS'

 AND District = 'Queensland');

This query finds all persons who live in Queensland, Australia. It can also be written

as a join between the person and address tables:

SELECT person.*
 FROM chapter_24.person

 INNER JOIN chapter_24.address

 USING (AddressId)

 WHERE CountryCode = 'AUS'

 AND District = 'Queensland';

As a matter of fact, MySQL makes this exact rewrite (except the optimizer chooses

the address table to be the first since that is where the filters are). This is an example of

a semijoin optimization. If you come across a query where the optimizer cannot rewrite

the query, you can have rewrites like this in mind. Usually the closer you get to a query

just consisting of joins, the better the query performs. However, the life of query tuning is

more complicated than that, and sometimes going the opposite way improves the query

performance. The lesson is always to test.

Another option you can use is to split a query into parts and execute them in steps.

Chapter 24 Change the Query plan

839

 Splitting a Query Into Parts
A last option is to split a query into two or more parts. With the support for common

table expressions and window functions in MySQL 8, this type of rewrite is not needed

nearly as often as in older versions of MySQL. Yet, it can be useful to keep in mind.

Tip Do not underestimate the power of splitting a complex query into two or
more simpler queries and gradually generating the query result.

As an example, consider the same query as in the previous discussion where you

find all persons who live in Queensland, Australia. You can execute the subquery as a

query of its own and then put the result back into the IN() operator. This kind of rewrite

works best in applications where the application programmatically can generate the

next query. For simplicity, this discussion will just show the SQL required. Listing 24-19

shows the two queries.

Listing 24-19. Splitting a query into two steps

mysql> SET SESSION transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.0002 sec)

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.0400 sec)

mysql> SELECT AddressId

 FROM chapter_24.address

 WHERE CountryCode = 'AUS'

 AND District = 'Queensland';

+-----------+

| AddressId |

+-----------+

| 132 |

| 143 |

| 136 |

| 142 |

+-----------+

Chapter 24 Change the Query plan

840

4 rows in set (0.0008 sec)

mysql> SELECT *
 FROM chapter_24.person

 WHERE AddressId IN (132, 136, 142, 143)\G

*************************** 1. row ***************************
 PersonId: 79

 FirstName: Dimitra

 Surname: Turner

 BirthDate: 1937-11-16

 AddressId: 132

LanguageId: 110

*************************** 2. row ***************************
 PersonId: 356

 FirstName: Julian

 Surname: Serrano

 BirthDate: 2017-07-30

 AddressId: 132

LanguageId: 110

2 rows in set (0.0005 sec)

mysql> COMMIT;

Query OK, 0 rows affected (0.0003 sec)

The queries are executed using a transaction with the REPEATABLE-READ

transaction isolation level, which means that the two SELECT queries will use the same

read view and thus correspond to the same point in time in the same way as if you

executed the question as one query. For a query as simple as this, there is no gain from

using multiple queries; however, in the case of really complex queries, it can be an

advantage to split out part of the query (possibly including some joins). One additional

benefit of splitting queries into parts is also that in some cases you can make caching

more efficient. For this example, if you have other queries using the same subquery

to find the addresses in Queensland, caching can allow you to reuse the result for

multiple uses.

Chapter 24 Change the Query plan

841

 Queue System: SKIP LOCKED
A common task in connection with databases is to handle some list of tasks that are

stored in a queue. An example is to handle orders in a shop. It is important that all

tasks are handled and that they are handled only once, but it is not important which

application thread handles each task. The SKIP LOCKED clause is perfect for such a

scenario.

Consider the table jobqueue that is defined as shown in Listing 24-20.

Listing 24-20. The jobqueue table and data

mysql> SHOW CREATE TABLE chapter_24.jobqueue\G

*************************** 1. row ***************************
 Table: jobqueue

Create Table: CREATE TABLE `jobqueue` (

 `JobId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `SubmitDate` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,

 `HandledDate` datetime DEFAULT NULL,

 PRIMARY KEY (`JobId`),

 KEY `HandledDate` (`HandledDate`,`SubmitDate`)

) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0004 sec)

mysql> SELECT *
 FROM chapter_24.jobqueue;

+-------+---------------------+-------------+

| JobId | SubmitDate | HandledDate |

+-------+---------------------+-------------+

| 1 | 2019-07-01 19:32:30 | NULL |

| 2 | 2019-07-01 19:32:33 | NULL |

| 3 | 2019-07-01 19:33:40 | NULL |

| 4 | 2019-07-01 19:35:12 | NULL |

| 5 | 2019-07-01 19:40:24 | NULL |

| 6 | 2019-07-01 19:40:28 | NULL |

+-------+---------------------+-------------+

6 rows in set (0.0005 sec)

Chapter 24 Change the Query plan

842

When HandledDate is NULL, then the task has not yet been handled and is up for

grabs. If your application is set up to fetch the oldest unhandled task and you want to

rely on InnoDB row locks to prevent two threads taking the same task, then you can use

SELECT ... FOR UPDATE, for example (in the real world the statement would be part of a

larger transaction):

SELECT JobId

 FROM chapter_24.jobqueue

 WHERE HandledDate IS NULL

 ORDER BY SubmitDate

 LIMIT 1

 FOR UPDATE;

This works well for the first request, but the next will block until a lock wait timeout

occurs or the first task has been handled, so the task processing is serialized. The trick

is to ensure there is an index on the columns you filter and sort by, and you then use the

SKIP LOCKED clause. Then the second connection will simply skip the locked rows and

find the first non-locked row fulfilling the search criteria. Listing 24-21 shows an example

of two connections each fetching a job from the queue.

Listing 24-21. Fetching tasks with SKIP LOCKED

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> SELECT JobId

 FROM chapter_24.jobqueue

 WHERE HandledDate IS NULL

 ORDER BY SubmitDate

 LIMIT 1

 FOR UPDATE

 SKIP LOCKED;

+-------+

| JobId |

+-------+

| 1 |

+-------+

Chapter 24 Change the Query plan

843

1 row in set (0.0004 sec)

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> SELECT JobId

 FROM chapter_24.jobqueue

 WHERE HandledDate IS NULL

 ORDER BY SubmitDate

 LIMIT 1

 FOR UPDATE

 SKIP LOCKED;

+-------+

| JobId |

+-------+

| 2 |

+-------+

1 row in set (0.0094 sec)

Now both connections can fetch tasks and work on them at the same time. Once

the task has been completed, the HandledDate can be set and the task marked as

complete. The advantage of this approach compared with having a lock column that the

connection sets is that if the connection for some reason fails, the lock is automatically

released.

You can use the data_locks table in the Performance Schema to see which

connection has each lock (the order of the locks depends on the thread ids which will be

different for you):

mysql> SELECT THREAD_ID, INDEX_NAME, LOCK_DATA

 FROM performance_schema.data_locks

 WHERE OBJECT_SCHEMA = 'chapter_24'

 AND OBJECT_NAME = 'jobqueue'

 AND LOCK_TYPE = 'RECORD'

 ORDER BY THREAD_ID, EVENT_ID;

Chapter 24 Change the Query plan

844

+-----------+------------+-----------------------+

| THREAD_ID | INDEX_NAME | LOCK_DATA |

+-----------+------------+-----------------------+

| 21705 | PRIMARY | 1 |

| 21705 | SubmitDate | NULL, 0x99A383381E, 1 |

| 25101 | PRIMARY | 2 |

| 25101 | SubmitDate | NULL, 0x99A3833821, 2 |

+-----------+------------+-----------------------+

4 rows in set (0.0008 sec)

The hex values are the encoded datetime values for the SubmitDate column. From

the output, it can be seen that each connection holds one record lock in the secondary

index and one in the primary key just as expected from the JobId values returned by the

SELECT queries.

 Many OR or IN Conditions
A query type that can cause confusion when it comes to performance is queries with

many range conditions. This typically can be an issue when there are many OR conditions

or the IN () operator has many values. In some cases, a small change to the condition

may totally change the query plan.

When the optimizer encounters a range condition on an indexed column, it has two

options: it can assume all values in the index occur equally frequent, or it can ask the

storage engine to do index dives to determine the frequency of each range. The former is

the cheapest, but the latter is by far more accurate. To decide which method to use, there

is the eq_range_index_dive_limit option (default value is 200). If there are eq_range_

index_dive_limit or more ranges, the optimizer will just look at the cardinality of the

index and assume all values occur at the same frequency. If there are fewer ranges, the

storage engine will be asked for each range.

The performance issues can occur when the assumption that each value occurs

equally frequent does not hold. In that case, when passing the threshold set by eq_

range_index_dive_limit, the estimated number of rows that match the condition may

suddenly change significantly causing a completely different query plan. (When you

have many values in the IN () operator, what is really the important thing is that the

Chapter 24 Change the Query plan

845

average number of rows matching the values included is close to the estimate obtained

from the index statistics. So the more values you have in the list, the more likely you

include a representative sample.)

Listing 24-22 shows an example of the payment table that has a column ContactId

with an index. Most of the rows have ContactId set to NULL, and the cardinality for the

index comes out as 21.

Listing 24-22. Query with many range conditions

mysql> SHOW CREATE TABLE chapter_24.payment\G

*************************** 1. row ***************************
 Table: payment

Create Table: CREATE TABLE `payment` (

 `PaymentId` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `Amount` decimal(5,2) NOT NULL,

 `ContactId` int(10) unsigned DEFAULT NULL,

 PRIMARY KEY (`PaymentId`),

 KEY `ContactId` (`ContactId`)

) ENGINE=InnoDB AUTO_INCREMENT=32798 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.0004 sec)

mysql> SELECT COUNT(ContactId), COUNT(*)

 FROM chapter_24.payment;

+------------------+----------+

| COUNT(ContactId) | COUNT(*) |

+------------------+----------+

| 20 | 20000 |

+------------------+----------+

1 row in set (0.0060 sec)

mysql> SELECT CARDINALITY

 FROM information_schema.STATISTICS

 WHERE TABLE_SCHEMA = 'chapter_24'

 AND TABLE_NAME = 'payment'

 AND INDEX_NAME = 'ContactId';

Chapter 24 Change the Query plan

846

+-------------+

| CARDINALITY |

+-------------+

| 21 |

+-------------+

1 row in set (0.0009 sec)

mysql> SET SESSION eq_range_index_dive_limit=5;

Query OK, 0 rows affected (0.0003 sec)

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.payment

 WHERE ContactId IN (1, 2, 3, 4)\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

 type: range

possible_keys: ContactId

 key: ContactId

 key_len: 5

 ref: NULL

 rows: 4

 filtered: 100

 Extra: Using index condition

1 row in set, 1 warning (0.0006 sec)

In the example eq_range_index_dive_limit is set to 5 to avoid the need to specify

a long list of values. With four values, the optimizer has requested statistics for each of

the four values, and the estimated row count is 4. However, if you make the list of values

longer, things start to change:

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.payment

 WHERE ContactId IN (1, 2, 3, 4, 5)\G

Chapter 24 Change the Query plan

847

*************************** 1. row ***************************
...

 key: ContactId

 key_len: 5

 ref: NULL

 rows: 4785

...

Suddenly, it is estimated that there are 4785 rows matched instead of the five

rows that are really matched. The index is still used, but if the payment table with this

condition is involved in joins, then the optimizer may very well choose a nonoptimal

join order. If you make the list of values longer, the optimizer will stop using the index

altogether and do a full table scan as it believes the index works terribly:

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.payment

 WHERE ContactId IN (1, 2, 3, 4, 5, 6, 7)\G

*************************** 1. row ***************************
...

 type: ALL

possible_keys: ContactId

 key: NULL

...

 rows: 20107

...

This query only returns seven rows, so the index is highly selective. So what can

be done to improve the optimizer’s understanding? Depending on the exact nature of

the reason for the poor estimate, there are various possible actions. For this particular

problem, you have the following options:

• Increase eq_range_index_dive_limit.

• Change the innodb_stats_method option.

• Force MySQL to use the index.

Chapter 24 Change the Query plan

848

The easiest solution is to increase eq_range_index_dive_limit. The default value

is 200, which is a good starting point. If you have a candidate query, you can test with

different values of eq_range_index_dive_limit and determine whether the added cost

of doing the index dives is worth the savings from getting a better row estimate. A good

way to test a new value of eq_range_index_dive_limit for a query is to set the value in

the SET_VAR() optimizer hint:

SELECT /*+ SET_VAR(eq_range_index_dive_limit=8) */

 *
 FROM chapter_24.payment

 WHERE ContactId IN (1, 2, 3, 4, 5, 6, 7);

The reason relying on the cardinality causes such a bad row estimate in this case

is that almost all rows have the ContactId set to NULL. By default, InnoDB considers all

rows with a NULL value for an index to have the same value. That is why the cardinality

comes out at just 21 in this example. If you switch innodb_stats_method to nulls_

ignored, the cardinality will be calculated only based on the non-NULL values as shown

in Listing 24-23.

Listing 24-23. Using innodb_stats_method = nulls_ignored

mysql> SET GLOBAL innodb_stats_method = nulls_ignored;

Query OK, 0 rows affected (0.0003 sec)

mysql> ANALYZE TABLE chapter_24.payment;

+--------------------+---------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------------+---------+----------+----------+

| chapter_24.payment | analyze | status | OK |

+--------------------+---------+----------+----------+

1 row in set (0.1411 sec)

mysql> SELECT CARDINALITY

 FROM information_schema.STATISTICS

 WHERE TABLE_SCHEMA = 'chapter_24'

 AND TABLE_NAME = 'payment'

 AND INDEX_NAME = 'ContactId';

Chapter 24 Change the Query plan

849

+-------------+

| CARDINALITY |

+-------------+

| 20107 |

+-------------+

1 row in set (0.0009 sec)

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.payment

 WHERE ContactId IN (1, 2, 3, 4, 5, 6, 7)\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

 type: range

possible_keys: ContactId

 key: ContactId

 key_len: 5

 ref: NULL

 rows: 7

 filtered: 100

 Extra: Using index condition

1 row in set, 1 warning (0.0011 sec)

The biggest issue with this approach is that innodb_stats_method can only be set

globally, so it will affect all tables, and it may have a negative effect for other queries. For

this example, set innodb_stats_method back to the default value and recalculate the

index statistics again:

mysql> SET GLOBAL innodb_stats_method = DEFAULT;

Query OK, 0 rows affected (0.0004 sec)

mysql> SELECT @@global.innodb_stats_method\G

Chapter 24 Change the Query plan

850

*************************** 1. row ***************************
@@global.innodb_stats_method: nulls_equal

1 row in set (0.0003 sec)

mysql> ANALYZE TABLE chapter_24.payment;

+--------------------+---------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------------+---------+----------+----------+

| chapter_24.payment | analyze | status | OK |

+--------------------+---------+----------+----------+

1 row in set (0.6683 sec)

The last option is to use an index hint to force MySQL to use the index. You will need

the FORCE INDEX variant as shown in Listing 24-24.

Listing 24-24. Using FORCE INDEX to force MySQL to use the index

mysql> EXPLAIN

 SELECT *
 FROM chapter_24.payment FORCE INDEX (ContactId)

 WHERE ContactId IN (1, 2, 3, 4, 5, 6, 7)\G

*************************** 1. row ***************************
 id: 1

 select_type: SIMPLE

 table: payment

 partitions: NULL

 type: range

possible_keys: ContactId

 key: ContactId

 key_len: 5

 ref: NULL

 rows: 6699

 filtered: 100

 Extra: Using index condition

1 row in set, 1 warning (0.0007 sec)

Chapter 24 Change the Query plan

851

This will make the query perform as fast as if it had more accurate statistics.

However, if the payment table is part of a join with the same WHERE clause, then the row

estimate is still off (6699 rows estimated versus seven actual rows), so the query plan may

still come out wrong in which case, you need to tell the optimizer what the optimal join

order is.

 Summary
This chapter has shown several examples of techniques to improve the performance of

queries. The first topic was to look at symptoms of excessive full table scans and then

look at two primary causes of full table scans: that the query is wrong and that an index

cannot be used. Typical reasons an index cannot be used are that the columns used do

not form a left prefix of the index, the data types do not match, or a function is used on

the column.

It can also happen that an index is used, but the usage can be improved. This can be

to convert an index to cover all columns required for the query, that the wrong index is

used, or that rewriting a query with complex conditions can improve the query plan.

It can also be useful to rewrite complex queries. MySQL 8 supports common

table expressions and window functions that can be used to both simplify the queries

and possibly make them perform better. In other cases, it can help to do some of the

rewriting that the optimizer usually would do or to split the query into multiple parts.

Finally, two common cases were discussed. The first was to work with a queue where

the SKIP LOCKED clause can be used to efficiently access the first non-locked rows. The

second is the case of having a long list of OR conditions or an IN () operator with many

values which can lead to surprising changes in the query plans when the number of

ranges reaches the number set by the eq_range_index_dive_limit option.

The next chapter looks at improving the performance of DDL and bulk data loads.

Chapter 24 Change the Query plan

853
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_25

CHAPTER 25

DDL and Bulk Data Load
From time to time, it is necessary to perform schema changes or to import large amount

of data into a table. This may be to accommodate a new feature, restore a backup, import

data generated by a third-party process, or similar. While the raw disk write performance

is naturally very important, there are also several things you can do on the MySQL side to

improve the performance of these operations.

Tip If you have problems that restoring your backups takes too long, consider
switching to a backup method that copies the data files directly (a physical backup)
such as using MySQL Enterprise Backup. A major benefit of physical backups is
that they are much faster to restore than a logical backup (containing the data as
INSERT statement or in a CSV file).

This chapter starts out discussing schema changes and then moves on to some

general considerations around loading data. These considerations also apply when you

insert single rows at a time. The rest of the chapter covers how to improve the data load

performance from inserting in primary key order, how the buffer pool and secondary

indexes impact performance, configuration, and tweaking the statements themselves.

Finally, the parallel import feature of MySQL Shell is demonstrated.

 Schema Changes
When you need to perform changes to your schema, it can require a large amount of

work for the storage engine, possibly involving making a completely new copy of the

table. This section will go into what you can do to speed up this process starting with the

algorithms supported for schema changes and followed by other considerations such as

the configuration.

854

Note While OPTIMIZE TABLE does not make any changes to the schema of the
table, InnoDB implements it as an ALTER TABLE followed by ANALYZE TABLE. So
the discussion in this section also applies to OPTIMIZE TABLE.

 Algorithm
MySQL supports several algorithms for ALTER TABLE with the algorithm deciding how

the schema change is performed. Some schema changes can be made “instantly” by

changing the table definitions, while at the other end of the spectrum some changes

require copying the entire table into a new table.

In the order of the amount of work required, the algorithms are

• INSTANT: Changes are only made to the table definition. While the

change is not quite instant, it is very fast. The INSTANT algorithm is

available in MySQL 8.0.12 and later.

• INPLACE: Changes are in general made within the existing tablespace

file (the tablespace id does not change), but with some exceptions

such as ALTER TABLE <table name> FORCE (used by OPTIMIZE

TABLE) which is more like the COPY algorithm but allowing concurrent

data changes. This may be a relatively cheap operation but may also

involve copying all the data.

• COPY: The existing data is copied to a new tablespace file. This is the

algorithm with the most impact as it typically requires more locks,

causes more I/O, and takes longer.

Typically, INSTANT and INPLACE algorithms allow concurrent data changes which

reduces the impact on other connections, whereas COPY requires at least a read lock.

MySQL will choose the algorithm with the least impact based on the requested changes,

but you can also explicitly request a specific algorithm. This can, for example, be useful

if you want to ensure that MySQL does not go ahead with the change, if your algorithm

of choice is not supported. You specify the algorithm with the ALGORITHM keyword, for

example:

ChAptEr 25 DDL AnD BuLk DAtA LoAD

855

mysql> ALTER TABLE world.city

 ADD COLUMN Council varchar(50),

 ALGORITHM=INSTANT;

If the change cannot be performed using the requested algorithm, the statement fails

with an ER_ALTER_OPERATION_NOT_SUPPORTED error (error number 1845), for example:

mysql> ALTER TABLE world.city

 DROP COLUMN Council,

 ALGORITHM=INSTANT;

ERROR: 1845: ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=COPY/INPLACE.

You will obviously get the best ALTER TABLE performance if you can use the INSTANT

algorithm. At the time of writing, the following operations are allowed using the INSTANT

algorithm:

• Adding a new column as the last column in the table.

• Adding a generated virtual column.

• Dropping a generated virtual column.

• Setting a default value for an existing column.

• Dropping the default value for an existing column.

• Changing the list of values allowed for a column with the enum or set

data type. A requirement is that the storage size does not change for

the column.

• Changing whether the index type (e.g., BTREE) is set explicitly for an

existing index.

There are also a few limitations that are good to be aware of:

• The row format cannot be COMPRESSED.

• The table cannot have a full text index.

• Temporary tables are not supported.

• Tables in the data dictionary cannot use the INSTANT algorithm.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

856

Tip If you, for example, need to add a column to an existing table, make sure to
add it as the last column, so it can be added “instantly.”

Performance wise, an in-place change is usually – but not always – faster than a

copying change. Furthermore, when a schema change is made online (LOCK=NONE),

InnoDB must keep track of the changes made during the execution of the schema

change. This adds to the overhead, and it takes time to apply the changes that were made

during the schema change at the end of the operation. If you are able to take a shared

(LOCK=SHARED) or exclusive lock (LOCK=EXCLUSIVE) on the table, you can in general get

better performance compared to allowing concurrent changes.

 Other Considerations
Since the work done by an in-place or copying ALTER TABLE is very disk intensive, the

single biggest effect on performance is how fast the disks are and how much other

write activity there is during the schema change. This means that from a performance

perspective, it is best to choose to perform schema changes that require copying or

moving a large amount of data when there is little to no other write activity on the

instance and host. This includes backups which on their own can be very I/O intensive.

Tip You can monitor the progress of ALTER TABLE and OPTIMIZE TABLE for
InnoDB tables using the performance Schema. the simplest way is to use the
sys.session view and look at the progress column which has the approximate
progress in percentage of the total work. the feature is enabled by default.

If your ALTER TABLE includes creating or rebuilding secondary indexes (this

includes OPTIMIZE TABLE and other statements rebuilding the table), you can use the

innodb_sort_buffer_size option to specify how much memory each sort buffer can

use. Be aware that a single ALTER TABLE will create multiple buffers, so be careful not

to set the value too large. The default value is 1 MiB, and the maximum allowed value

is 64 MiB. A larger buffer may in some cases improve the performance.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

857

When you create full text indexes, then you can use the innodb_ft_sort_pll_degree

option to specify how many threads InnoDB will use to build the search index. The default

is 2 with supported values between 1 and 32. If you are creating full text indexes on large

tables, it may be an advantage to increase the value of innodb_ft_sort_pll_degree.

One special DDL operation that needs consideration is to drop or truncate a table.

 Dropping or Truncating Tables
It may seem unnecessary to have to consider performance optimizations of dropping

tables. It would seem that all that is required is to delete the tablespace file and remove

references to the table. In practice, it is not quite so simple.

The main issue when dropping or truncating a table is all the references to the table’s

data in the buffer pool. Particularly, the adaptive hash index can cause problems. For that

reason, you can greatly improve the performance when dropping or truncating large tables

by disabling the adaptive hash index for the duration of the operation, for example:

mysql> SET GLOBAL innodb_adaptive_hash_index = OFF;

Query OK, 0 rows affected (0.1008 sec)

mysql> DROP TABLE <name of large table>;

mysql> SET GLOBAL innodb_adaptive_hash_index = ON;

Query OK, 0 rows affected (0.0098 sec)

Disabling the adaptive hash index will make queries benefitting from the hash

index run slower, but for tables with a size of a couple of hundred gigabytes or larger, a

relatively small slowdown from disabling the adaptive hash index is usually preferred

over potential stalls occurring because of the overhead of removing references to the

table that is being dropped or truncated.

That concludes the discussion of performing schema changes. The rest of the

chapter discusses loading data.

 General Data Load Considerations
Before discussing how to improve the performance of bulk inserts, it is worth performing

a small test and discussing the result. In the test, 200,000 rows are inserted into two tables.

One of the tables has an auto-increment counter as the primary key, and the other uses a

random integer for the primary key. The row size is identical for the two tables.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

858

Tip the discussion in this and the next section applies equally well to non-bulk
inserts.

After the data load has completed, the script in Listing 25-1 can be used to determine

the age of each page in the tablespace file measured in terms of the log sequence number

(LSN). The higher the log sequence number, the more recent the page was modified.

This script is inspired by innodb_ruby by Jeremy Cole1 and produces a map similar to the

innodb_ruby space-lsn-age-illustrate-svg command. However, innodb_ruby does

not yet support MySQL 8, so a separate Python program was developed. The program

has been tested with Python 2.7 (Linux) and 3.6 (Linux and Microsoft Windows). It is also

available in the file listing_25_1.py in this book’s GitHub repository.

Listing 25-1. Python program to map the LSN age of InnoDB pages

'''Read a MySQL 8 file-per-table tablespace file and generate an

SVG formatted map of the LSN age of each page.

Invoke with the --help argument to see a list of arguments and

Usage instructions.'''

import sys

import argparse

import math

from struct import unpack

Some constants from InnoDB

FIL_PAGE_OFFSET = 4 # Offset for the page number

FIL_PAGE_LSN = 16 # Offset for the LSN

FIL_PAGE_TYPE = 24 # Offset for the page type

FIL_PAGE_TYPE_ALLOCATED = 0 # Freshly allocated page

def mach_read_from_2(page, offset):

 '''Read 2 bytes in big endian. Based on the function of the same

 name in the InnoDB source code.'''

 return unpack('>H', page[offset:offset + 2])[0]

1 https://github.com/jeremycole/innodb_ruby

ChAptEr 25 DDL AnD BuLk DAtA LoAD

https://github.com/jeremycole/innodb_ruby

859

def mach_read_from_4(page, offset):

 '''Read 4 bytes in big endian. Based on the function of the same

 name in the InnoDB source code.'''

 return unpack('>L', page[offset:offset + 4])[0]

def mach_read_from_8(page, offset):

 '''Read 8 bytes in big endian. Based on the function of the same

 name in the InnoDB source code.'''

 return unpack('>Q', page[offset:offset + 8])[0]

def get_color(lsn, delta_lsn, greyscale):

 '''Get the RGB color of a relative lsn.'''

 color_fmt = '#{0:02x}{1:02x}{2:02x}'

 if greyscale:

 value = int(255 * lsn / delta_lsn)

 color = color_fmt.format(value, value, value)

 else:

 # 0000FF -> 00FF00 -> FF0000 -> FFFF00

 # 256 + 256 + 256 values

 value = int((3 * 256 - 1) * lsn / delta_lsn)

 if value < 256:

 color = color_fmt.format(0, value, 255 - value)

 elif value < 512:

 value = value % 256

 color = color_fmt.format(value, 255 - value, 0)

 else:

 value = value % 256

 color = color_fmt.format(255, value, 0)

 return color

def gen_svg(min_lsn, max_lsn, lsn_age, args):

 '''Generate an SVG output and print to stdout.'''

 pages_per_row = args.width

 page_width = args.size

ChAptEr 25 DDL AnD BuLk DAtA LoAD

860

 num_pages = len(lsn_age)

 num_rows = int(math.ceil(1.0 * num_pages / pages_per_row))

 x1_label = 5 * page_width + 1

 x2_label = (pages_per_row + 7) * page_width

 delta_lsn = max_lsn - min_lsn

 print('<?xml version="1.0"?>')

 print('<svg xmlns="http://www.w3.org/2000/svg" version="1.1">')

 print('<text x="{0}" y="{1}" font-family="monospace" font-size="{2}" '

 .format(x1_label, int(1.5 * page_width) + 1, page_width) +

 'font-weight="bold" text-anchor="end">Page</text>')

 page_number = 0

 page_fmt = ' <rect x="{0}" y="{1}" width="{2}" height="{2}" fill="{3}" />'

 label_fmt = ' <text x="{0}" y="{1}" font-family="monospace" '

 label_fmt += 'font-size="{2}" text-anchor="{3}">{4}</text>'

 for i in range(num_rows):

 y = (i + 2) * page_width

 for j in range(pages_per_row):

 x = 6 * page_width + j * page_width

 if page_number >= len(lsn_age) or lsn_age[page_number] is None:

 color = 'black'

 else:

 relative_lsn = lsn_age[page_number] - min_lsn

 color = get_color(relative_lsn, delta_lsn, args.greyscale)

 print(page_fmt.format(x, y, page_width, color))

 page_number += 1

 y_label = y + page_width

 label1 = i * pages_per_row

 label2 = (i + 1) * pages_per_row

 print(label_fmt.format(x1_label, y_label, page_width, 'end', label1))

 print(label_fmt.format(x2_label, y_label, page_width, 'start', label2))

 # Create a frame around the pages

 frame_fmt = ' <path stroke="black" stroke-width="1" fill="none" d="'

ChAptEr 25 DDL AnD BuLk DAtA LoAD

861

 frame_fmt += 'M{0},{1} L{2},{1} S{3},{1} {3},{4} L{3},{5} S{3},{6} {2},{6}'

 frame_fmt += ' L{0},{6} S{7},{6} {7},{5} L{7},{4} S{7},{1} {0},{1} Z" />'

 x1 = int(page_width * 6.5)

 y1 = int(page_width * 1.5)

 x2 = int(page_width * 5.5) + page_width * pages_per_row

 x2b = x2 + page_width

 y1b = y1 + page_width

 y2 = int(page_width * (1.5 + num_rows))

 y2b = y2 + page_width

 x1c = x1 - page_width

 print(frame_fmt.format(x1, y1, x2, x2b, y1b, y2, y2b, x1c))

 # Create legend

 x_left = 6 * page_width

 x_right = x_left + pages_per_row * page_width

 x_mid = x_left + int((x_right - x_left) * 0.5)

 y = y2b + 2 * page_width

 print('<text x="{0}" y="{1}" font-family="monospace" '.format(x_left, y) +

 'font-size="{0}" text-anchor="start">{1}</text>'.format(page_width,

 min_lsn))

 print('<text x="{0}" y="{1}" font-family="monospace" '.format(x_right, y) +

 'font-size="{0}" text-anchor="end">{1}</text>'.format(page_width,

 max_lsn))

 print('<text x="{0}" y="{1}" font-family="monospace" '.format(x_mid, y) +

 'font-size="{0}" font-weight="bold" text-anchor="middle">{1}</text>'

 .format(page_width, 'LSN Age'))

 color_width = 1

 color_steps = page_width * pages_per_row

 y = y + int(page_width * 0.5)

 for i in range(color_steps):

 x = 6 * page_width + i * color_width

 color = get_color(i, color_steps, args.greyscale)

 print('<rect x="{0}" y="{1}" width="{2}" height="{3}" fill="{4}" />'

 .format(x, y, color_width, page_width, color))

 print('</svg>')

ChAptEr 25 DDL AnD BuLk DAtA LoAD

862

def analyze_lsn_age(args):

 '''Read the tablespace file and find the LSN for each page.'''

 page_size_bytes = int(args.page_size[0:-1]) * 1024

 min_lsn = None

 max_lsn = None

 lsn_age = []

 with open(args.tablespace, 'rb') as fs:

 # Read at most 1000 pages at a time to avoid storing too much

 # in memory at a time.

 chunk = fs.read(1000 * page_size_bytes)

 while len(chunk) > 0:

 num_pages = int(math.floor(len(chunk) / page_size_bytes))

 for i in range(num_pages):

 # offset is the start of the page inside the

 # chunk of data

 offset = i * page_size_bytes

 # The page number, lsn for the page, and page

 # type can be found at the FIL_PAGE_OFFSET,

 # FIL_PAGE_LSN, and FIL_PAGE_TYPE offsets

 # relative to the start of the page.

 page_number = mach_read_from_4(chunk, offset + FIL_PAGE_OFFSET)

 page_lsn = mach_read_from_8(chunk, offset + FIL_PAGE_LSN)

 page_type = mach_read_from_2(chunk, offset + FIL_PAGE_TYPE)

 if page_type == FIL_PAGE_TYPE_ALLOCATED:

 # The page has not been used yet

 continue

 if min_lsn is None:

 min_lsn = page_lsn

 max_lsn = page_lsn

 else:

 min_lsn = min(min_lsn, page_lsn)

 max_lsn = max(max_lsn, page_lsn)

 if page_number == len(lsn_age):

 lsn_age.append(page_lsn)

ChAptEr 25 DDL AnD BuLk DAtA LoAD

863

 elif page_number > len(lsn_age):

 # The page number is out of order - expand the list first

 lsn_age += [None] * (page_number - len(lsn_age))

 lsn_age.append(page_lsn)

 else:

 lsn_age[page_number] = page_lsn

 chunk = fs.read(1000 * page_size_bytes)

 sys.stderr.write("Total # Pages ...: {0}\n".format(len(lsn_age)))

 gen_svg(min_lsn, max_lsn, lsn_age, args)

def main():

 '''Parse the arguments and call the analyze_lsn_age()

 function to perform the analysis.'''

 parser = argparse.ArgumentParser(

 prog='listing_25_1.py',

 description='Generate an SVG map with the LSN age for each page in an' +

 ' InnoDB tablespace file. The SVG is printed to stdout.')

 parser.add_argument(

 '-g', '--grey', '--greyscale', default=False,

 dest='greyscale', action='store_true',

 help='Print the LSN age map in greyscale.')

 parser.add_argument(

 '-p', '--page_size', '--page-size', default='16k',

 dest='page_size',

 choices=['4k', '8k', '16k', '32k', '64k'],

 help='The InnoDB page size. Defaults to 16k.')

 parser.add_argument(

 '-s', '--size', default=16, dest='size',

 choices=[4, 8, 12, 16, 20, 24], type=int,

 help='The size of the square representing a page in the output. ' +

 'Defaults to 16.')

ChAptEr 25 DDL AnD BuLk DAtA LoAD

864

 parser.add_argument(

 '-w', '--width', default=64, dest='width',

 type=int,

 help='The number of pages to include per row in the output. ' +

 'The default is 64.')

 parser.add_argument(

 dest='tablespace',

 help='The tablespace file to analyze.')

 args = parser.parse_args()

 analyze_lsn_age(args)

if __name__ == '__main__':

 main()

The page number, log sequence number, and page type are extracted at the positions

(in bytes) defined by the FIL_PAGE_OFFSET, FIL_PAGE_LSN, and FIL_PAGE_TYPE constants

for each page. If the page type has the value of the FIL_PAGE_TYPE_ALLOCATED constant,

it means it is not used yet, so it can be skipped – these pages are colored black in the log

sequence number map.

Tip If you want to explore the information available in the page headers, the
file storage/innobase/include/fil0types.h (https://github.
com/mysql/mysql-server/blob/8.0/storage/innobase/include/
fil0types.h) in the source code and the descriptions of the fil headers in the
MySQL internals manual (https://dev.mysql.com/doc/internals/en/
innodb-fil-header.html) are good starting points.

You can get help to use the program by invoking it with the --help argument. The

only required argument is the path to the tablespace file you want to analyze. Unless,

you have set the innodb_page_size option to something else than 16384 bytes, then the

default values for the optional arguments are all you need unless you want to change the

dimensions and size of the generated map.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

https://github.com/mysql/mysql-server/blob/8.0/storage/innobase/include/fil0types.h
https://github.com/mysql/mysql-server/blob/8.0/storage/innobase/include/fil0types.h
https://github.com/mysql/mysql-server/blob/8.0/storage/innobase/include/fil0types.h
https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/innodb-fil-header.html

865

Caution Do not use the program on a production system! there is minimal error
checking in the program to keep it as simple as possible, and it is experimental in nature.

You can now generate the test tables. Listing 25-2 shows how the table_autoinc

table is created. This is the table with the auto-incrementing primary key.

Listing 25-2. Populating a table with an auto-incrementing primary key

mysql-sql> CREATE SCHEMA chapter_25;

Query OK, 1 row affected (0.0020 sec)

mysql-sql> CREATE TABLE chapter_25.table_autoinc (

 id bigint unsigned NOT NULL auto_increment,

 val varchar(36),

 PRIMARY KEY (id)

);

Query OK, 0 rows affected (0.3382 sec)

mysql-sql> \py

Switching to Python mode...

mysql-py> for i in range(40):

 session.start_transaction()

 for j in range(5000):

 session.run_sql("INSERT INTO chapter_25.table_autoinc

(val) VALUES (UUID())")

 session.commit()

Query OK, 0 rows affected (0.1551 sec)

The table has a bigint primary key and a varchar(36) that is populated with UUIDs

to create some random data. MySQL Shell’s Python language mode is used to insert the

data. The session.run_sql() method is available in version 8.0.17 and later. Finally,

you can execute the listing_25_1.py script to generate the tablespace age diagram in

scalable vector graphics (SVG) format:

shell> python listing_25_1.py <path to datadir>\chapter_25\table_autoinc.

ibd > table_autoinc.svg

Total # Pages ...: 880

ChAptEr 25 DDL AnD BuLk DAtA LoAD

866

The output of the program shows there are 880 pages in the tablespace plus possibly

some unused pages at the end of the file.

Figure 25-1 shows the log sequence number age map for the table_autoinc table.

Figure 25-1. The LSN age for each page when inserting in primary key order

In the figure, the top left represents the first pages of the tablespace. As you go

through the figure from left to right and top to bottom, the pages are further and further

into the tablespace file, and the lower right represents the last pages. The figure shows

that other than the first pages, the pattern of the age of the pages follows the same

pattern as in the LSN Age scale at the bottom of the figure. This means that the age of the

pages becomes younger as you progress through the tablespace. The first few pages are

the exception as they, for example, include the tablespace header.

This pattern shows that the data is sequentially inserted into the tablespace making

it as compact as possible. It also makes it as likely as possible that if a query reads data

from several pages that are logical in sequence, then they are also physical in sequence

in the tablespace file.

How then does it look if you insert in random order? A common example of random

order inserts is a UUID as a primary key, but to ensure the row size is the same for the

two tables, a random integer is used instead. Listing 25-3 shows how the table_random

table is populated.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

867

Listing 25-3. Populating a table with a random primary key

mysql-py> \sql

Switching to SQL mode... Commands end with ;

mysql-sql> CREATE TABLE chapter_25.table_random (

 id bigint unsigned NOT NULL,

 val varchar(36),

 PRIMARY KEY (id)

);

Query OK, 0 rows affected (0.0903 sec)

mysql-sql> \py

Switching to Python mode...

mysql-py> import random

mysql-py> import math

mysql-py> maxint = math.pow(2, 64) - 1

mysql-py> random.seed(42)

mysql-py> for i in range(40):

 session.start_transaction()

 for j in range(5000):

 session.run_sql("INSERT INTO chapter_25.table_random

VALUE ({0}, UUID())".format(random.randint(0, maxint)))

 session.commit()

Query OK, 0 rows affected (0.0185 sec)

The Python random module is used to generate 64-bit random unsigned integers. The

seed is set explicitly as it is known (by experiment) that a seed of 42 generates 200,000

different numbers in a row so no duplicate key errors occur. When the table is populated,

execute the listing_25_1.py script:

shell> python listing_25_1.py <path to datadir>\chapter_25\table_random.ibd

> table_random.svg

Total # Pages ...: 1345

The output of the listing_25_1.py script shows that there are 1345 pages in this

tablespace. The resulting age map is shown in Figure 25-2.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

868

This time the log sequence number age pattern is completely different. The age

colors for all pages except the unused pages correspond to the colors for the most recent

log sequence numbers. That means all of the pages with data were last updated around

the same time, or in other words they are all written to until the end of the bulk load. The

number of pages with data is 1345 compared to the 880 pages used in the table with the

auto-increment primary key. That is more than 50% more pages.

The reason inserting data in random order causes so many more pages for the same

amount of data is that InnoDB fills up pages as data is inserted. When data is inserted

in sequential primary key order, this means the next row will always be in succession of

the previous, so this works well when the rows are ordered in primary key order. This is

illustrated in Figure 25-3.

Figure 25-2. The LSN age for each page when inserting in random order

ChAptEr 25 DDL AnD BuLk DAtA LoAD

869

The figure shows two new rows being inserted. The row with id = 1005 can just fit

into page N, so when the row with id = 1006 is inserted, it is inserted into the next page.

Everything is nice and compact in this scenario.

When rows arrive in random order, it will sometimes be necessary to insert the

row in a page that is already so full that there is no room for the new row. In that case,

InnoDB splits the existing page in two with half the data of the original page in each

of the two pages resulting from the page split, so there is room for the new row. This is

shown in Figure 25-4.

Figure 25-3. Example of adding a new row when inserting in sequential order

ChAptEr 25 DDL AnD BuLk DAtA LoAD

870

In this case the row with id = 3500 is inserted, but there is no more room in page N

where it logically belongs. So page N is split into pages N and N+1 with roughly half the

data going into each page.

There are two immediate consequences of the page split. First, the data that

previously occupied one page now uses two pages which is why the insert in random

order ends up occupying 50% more pages which also means the same data requires

more space in the buffer pool. A significant side effect of the additional pages is that the

B-tree index ends up with more leaf pages and potentially more levels in the tree, and

given that each level in the tree means an extra seek when accessing the page, this causes

additional I/O.

Second, rows that previously were read into memory together are now in two pages

located in different places on the disk. When InnoDB increases the size of a tablespace

file, it does so by allocating a new extent that is 1 MiB when the page size is 16 KiB or

less. This helps making disk I/O more sequential (to the degree that the new extent gets

Figure 25-4. Example of a page split as result of inserting in random order

ChAptEr 25 DDL AnD BuLk DAtA LoAD

871

consecutive sectors on the disk). The more page splits that occur, the more the pages are

spread not only within an extent but also across multiple extents causing more random

disk I/O. When the new page is created due to a page split, it may very well be located in

a completely different part of the disk, so when reading the pages, the amount of random

I/O increases. This is illustrated in Figure 25-5.

Figure 25-5. Example of the location of pages on the disk

In the figure three extents are depicted. For simplicity, just five pages are shown in

each extent (with the default page size of 16 KiB, there are 64 pages per extent). Pages

that have been part of page splits are highlighted. Page 11 was split at a time when the

only later page was page 13, so pages 11 and 12 are still located relatively close. Page 15,

however, was split when several extra pages had been created meaning page 16 ended

up in the next extent.

The combination of deeper B-trees, more pages that take up space in the buffer pool,

and more random I/O means that the performance of a table where rows are inserted

in random primary key order will not be as good as for an equivalent table with data

inserted in primary key order. The performance difference not only applies to inserting

the data; it also applies to subsequent uses of the data. For this reason, it is important for

optimal performance to insert the data in primary key order. How you can achieve that is

discussed next.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

872

 Insert in Primary Key Order
As the previous discussion showed, there are great advantages of inserting the data in

primary key order. The easiest way to achieve that is to auto-generate the primary key

values by using an unsigned integer and declaring the column for auto-incrementing.

Alternatively, you will need to ensure yourself that the data is inserted in the primary key

order. This section will investigate both cases.

 Auto-increment Primary Key
The simplest way to ensure data is inserted in the primary key order is to allow MySQL

to assign the values itself by using an auto-increment primary key. You do that by

specifying the auto_increment attribute for the primary key column when creating

the table. It is also possible to use an auto-increment column in connection with a

multicolumn primary key; in that case, the auto-increment column must be the first

column in the index.

Listing 25-4 shows an example of creating two tables that use an auto-increment

column to insert data in primary key order.

Listing 25-4. Creating tables with an auto-increment primary key

mysql> \sql

Switching to SQL mode... Commands end with ;

mysql> DROP SCHEMA IF EXISTS chapter_25;

Query OK, 0 rows affected, 1 warning (0.0456 sec)

mysql> CREATE SCHEMA chapter_25;

Query OK, 1 row affected (0.1122 sec)

mysql> CREATE TABLE chapter_25.t1 (

 id int unsigned NOT NULL auto_increment,

 val varchar(10),

 PRIMARY KEY (id)

);

Query OK, 0 rows affected (0.4018 sec)

ChAptEr 25 DDL AnD BuLk DAtA LoAD

873

mysql> CREATE TABLE chapter_25.t2 (

 id int unsigned NOT NULL auto_increment,

 CreatedDate datetime NOT NULL

 DEFAULT CURRENT_TIMESTAMP(),

 val varchar(10),

 PRIMARY KEY (id, CreatedDate)

);

Query OK, 0 rows affected (0.3422 sec)

The t1 table just has a single column for the primary key, and the value is auto-

incrementing. The reason for using an unsigned integer instead of a signed integer is that

auto-increment values are always greater than 0, so using an unsigned integer allows

twice as many values before exhausting the available values. The examples use a 4 byte

integer which allows for a little less than 4.3 billion rows if all values are used. If that is

not enough, you can declare the column as bigint unsigned which uses 8 bytes and

allows for 1.8E19 rows.

The t2 table adds a datetime column to the primary key which, for example, can be

useful if you want to partition by the time the row is created. The auto-incrementing id

column still ensures the rows are created with a unique primary key, and because the id

column is the first in the primary keys, rows are still inserted in primary key order even if

subsequent columns in the primary key are random in nature.

When you use auto-incrementing primary keys, you can use the schema_auto_

increment_columns view in the sys schema to examine the use of auto-increment values

and monitor whether any tables are getting close to exhausting their values. Listing 25-5

shows the output for the sakila.payment table.

Listing 25-5. Using the sys.schema_auto_increment_columns view

mysql> SELECT *
 FROM sys.schema_auto_increment_columns

 WHERE table_schema = 'sakila'

 AND table_name = 'payment'\G

*************************** 1. row ***************************
 table_schema: sakila

 table_name: payment

 column_name: payment_id

 data_type: smallint

ChAptEr 25 DDL AnD BuLk DAtA LoAD

874

 column_type: smallint(5) unsigned

 is_signed: 0

 is_unsigned: 1

 max_value: 65535

 auto_increment: 16049

auto_increment_ratio: 0.2449

1 row in set (0.0024 sec)

You can see from the output that the table uses a smallint unsigned column for the

auto-increment values which has a maximum value of 65535, and the column is named

payment_id. The next auto-increment value is 16049, so 24.49% of the available values

are used.

In case you insert data from an external source, you may already have values

assigned for the primary key column (even when using an auto-increment primary key).

Let’s look at what you can do in that case.

 Inserting Existing Data
Whether you need to insert data generated by some process, restore a backup, or convert

a table using a different storage engine, it is best to ensure that it is in primary key order

before inserting it. If you generate the data or it already exists, then you can consider

sorting the data before inserting it. Alternatively, use the OPTIMIZE TABLE statement to

rebuild the table after the import has completed.

An example of rebuilding the chapter_25.t1 table is

mysql> OPTIMIZE TABLE chapter_25.t1\G

*************************** 1. row ***************************
 Table: chapter_25.t1

 Op: optimize

Msg_type: note

Msg_text: Table does not support optimize, doing recreate + analyze instead

*************************** 2. row ***************************
 Table: chapter_25.t1

 Op: optimize

Msg_type: status

Msg_text: OK

2 rows in set (0.6265 sec)

ChAptEr 25 DDL AnD BuLk DAtA LoAD

875

The rebuild may take a substantial amount of time for large tables, but the process is

online except for short durations at the start and end where locks are needed to ensure

consistency.

If you create a backup using the mysqldump program, you can add the --order-

by- primary option which makes mysqldump add an ORDER BY clause that includes the

columns in the primary key (mysqlpump does not have an equivalent option). This is

particularly useful if the backup is created of tables using a storage engine that uses

so-called heap organized data such as MyISAM with the purpose of restoring it to an

InnoDB table (using an index organization of the data).

Tip While you should not in general rely on the order rows are returned when
using a query without an ORDER BY clause, InnoDB’s index-organized rows mean
that a full table scan will usually (but no guarantees) return the rows in primary key
order even if you omit the ORDER BY clause. A noticeable exception is when the
table includes a secondary index covering all columns and the optimizer chooses
to use that index for the query.

You can use the same principle if you copy data from one table to another. Listing 25- 6

shows an example of copying the rows of the world.city table to the world.city_new

table.

Listing 25-6. Ordering data by the primary key when copying it

mysql> CREATE TABLE world.city_new

 LIKE world.city;

Query OK, 0 rows affected (0.8607 sec)

mysql> INSERT INTO world.city_new

 SELECT *
 FROM world.city

 ORDER BY ID;

Query OK, 4079 rows affected (2.0879 sec)

Records: 4079 Duplicates: 0 Warnings: 0

As a final case, consider when you have a UUID as the primary key.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

876

 UUID Primary Keys
If you are limited to a UUID for your primary key, for example, because you cannot

change the application to support an auto-increment primary key, then you can improve

the performance by swapping the UUID components around and storing the UUIDs in a

binary column.

A UUID (MySQL uses UUID version 1) consists of a timestamp as well as a sequence

number (to guarantee uniqueness if the timestamp moves backward, e.g., during

daylight savings changes) and the MAC address.

Caution In some cases, it may be considered a security issue to reveal the MAC
address as it can be used to identify the computer and potentially the user.

The timestamp is a 60-bit value with the number of 100-nanosecond intervals

since midnight of October 15, 1582 (when the Gregorian calendar was taken into use),

using UTC.2 It is split into three parts with the least significant part first and the most

significant part last. (The high field of the timestamp also includes four bits for the UUID

version. The components of a UUID are also shown in Figure 25-6.)

Figure 25-6. The five parts of a UUID version 1

The low part of the timestamp represents up to 4,294,967,295 (0xffffffff) intervals of

100 nanoseconds or just under 430 seconds. That means that every seven minutes and a

little less than 10 seconds, the low part of the timestamp rolls over making the UUID start

over from an ordering point of view. This is why plain UUIDs do not work well for the

index-organized data as it means the inserts will largely be into a random place in the

primary key tree.

2 www.ietf.org/rfc/rfc4122.txt

ChAptEr 25 DDL AnD BuLk DAtA LoAD

http://www.ietf.org/rfc/rfc4122.txt

877

MySQL 8 includes two new functions to manipulate UUIDs to make them more

suitable as a primary key in InnoDB: UUID_TO_BIN() and BIN_TO_UUID(). These

functions convert a UUID from the hexadecimal representation to a binary and back,

respectively. They accept the same two arguments: the UUID value to convert and

whether to swap the low and high parts of the timestamp. Listing 25-7 shows an example

of inserting data and retrieving it using the functions.

Listing 25-7. Using the UUID_TO_BIN() and BIN_TO_UUID() functions

mysql> CREATE TABLE chapter_25.t3 (

 id binary(16) NOT NULL,

 val varchar(10),

 PRIMARY KEY (id)

);

Query OK, 0 rows affected (0.4413 sec)

mysql> INSERT INTO chapter_25.t3

 VALUES (UUID_TO_BIN(

 '14614d6e-b5a8-11e9-ae6e-080027b7c106',

 TRUE

), 'abc');

Query OK, 1 row affected (0.2166 sec)

mysql> SELECT BIN_TO_UUID(id, TRUE) AS id, val

 FROM chapter_25.t3\G

*************************** 1. row ***************************
 id: 14614d6e-b5a8-11e9-ae6e-080027b7c106

val: abc

1 row in set (0.0004 sec)

The advantage of this approach is twofold. Because the UUID has the low and high time

components swapped, it becomes monotonically increasing making it much more suitable

for the index-organized rows. The binary storage means that the UUID only requires 16

bytes of storage instead of 36 bytes in the hex version with dashes to separate the parts of the

UUID. Remember that because the data is organized by the primary key, the primary key

is added to secondary indexes so it is possible to go from the index to the row, so the fewer

bytes required to store the primary key, the smaller the secondary indexes.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

878

 InnoDB Buffer Pool and Secondary Indexes
The single most important factor for the performance of bulk data loads is the size of the

InnoDB buffer pool. This section discusses why the buffer pool is important for bulk data

loads.

When you insert data into a table, InnoDB needs to be able to store the data in

the buffer pool until the data has been written to the tablespace files. The more data

you can store in the buffer pool, the more efficiently InnoDB can perform the flushing

of dirty pages to the tablespace files. However, there is also a second reason which is

maintaining the secondary indexes.

The secondary indexes need to be maintained as the data is inserted, but the

secondary indexes do not sort in the same order as the primary key, so they will

constantly be rearranged while the data is inserted. As long as the indexes can be

maintained in memory, the insert rate can stay high, but when the indexes no longer fit

into the buffer pool, the maintenance of them suddenly becomes much more expensive

and the insert rate decreases significantly. Figure 25-7 illustrates how the performance

depends on the availability of the buffer pool to handle the secondary indexes.

Figure 25-7. Insert performance compared to the index size in the buffer pool

ChAptEr 25 DDL AnD BuLk DAtA LoAD

879

The figure shows how the insert rate is roughly constant for a while and during that

period more and more of the buffer pool is used for secondary indexes. When no more

of the index can be stored in the buffer pool, the insert rate suddenly drops off. In the

extreme case of loading data into a table with a single secondary index that includes the

whole row with nothing else going on, the drop comes when the secondary index uses

close to half the buffer pool (and the remaining for the primary key).

You can use the information_schema.INNODB_BUFFER_PAGE table to determine how

much space an index uses in the buffer pool. For example, to find the amount of memory

used in the buffer pool by the CountryCode index on the world.city table

mysql> SELECT COUNT(*) AS NumPages,

 IFNULL(SUM(DATA_SIZE), 0) AS DataSize,

 IFNULL(SUM(IF(COMPRESSED_SIZE = 0,

 @@global.innodb_page_size,

 COMPRESSED_SIZE

)

),

 0

) AS CompressedSize

 FROM information_schema.INNODB_BUFFER_PAGE

 WHERE TABLE_NAME = '`world`.`city`'

 AND INDEX_NAME = 'CountryCode';

+----------+----------+----------------+

| NumPages | DataSize | CompressedSize |

+----------+----------+----------------+

| 3 | 27148 | 49152 |

+----------+----------+----------------+

1 row in set (0.1027 sec)

The result will depend on how much you have used the index, so in general

your result will be different. The query is best used on a test system as there can be a

significant overhead querying the INNODB_BUFFER_PAGE table.

Caution Be careful querying the INNODB_BUFFER_PAGE table on your
production system as the overhead can be significant, particularly if you have a
large buffer pool with many tables and indexes in it.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

880

Three strategies to avoid a performance hit when the secondary indexes cannot fit

into the buffer pool are as follows:

• Increase the size of the buffer pool.

• Remove the secondary indexes while inserting data.

• Partition the table.

Increasing the buffer pool size while the bulk load is ongoing is the most obvious

strategy, but also the one that is the least likely to be useful. It is primarily useful when

inserting data into tables that already have a large amount of data and you know that

during the data load, you can take some memory that is otherwise needed by other

processes and use it for the buffer pool. The support for dynamically resizing the buffer

pool is useful in this case. For example, to set the buffer pool size to 256 MiB

mysql> SET GLOBAL innodb_buffer_pool_size = 256 * 1024 * 1024;

Query OK, 0 rows affected (0.0003 sec)

Once the data load has completed, you can set the buffer pool size back to the usual

value (134217728 if you use the default).

If you are inserting into an empty table, a very useful strategy is to remove all the

secondary indexes (possibly leaving unique indexes for the data validation) before

loading the data and then add the indexes back. This is in most cases more efficient than

trying to maintain the indexes while loading the data, and it is also what the mysqlpump

utility does if you use that to create backups.

The last of the strategies is to partition the table. This helps as the indexes are local to

the partition (this is the reason the partition key must be part of all unique indexes), so if

you insert the data in the partition order, InnoDB will only have to maintain the indexes

for the data in the current partition. That makes each index smaller, so they easier fit into

the buffer pool.

 Configuration
You can influence the load performance through the configuration of the session that

performs the load. This includes considering switching off constraint checks, how auto-

increment ids are generated, and more.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

881

Table 25-1 summarizes the most important configuration options related to bulk

data performance other than the buffer pool size. The scope is whether the option can be

changed at the session level or it is only available globally.

Table 25-1. Configuration options influencing the data load performance

Option Name Scope Description

foreign_key_

checks

Session Specifies whether to check if the new rows violate the foreign

keys. Disabling this option can improve performance for tables

with foreign keys.

unique_checks Session Specifies whether to check if the new rows violate unique

constraints. Disabling this option can improve performance for

tables with unique indexes.

innodb_autoinc_

lock_mode

Global Specifies how InnoDB determines the next auto-increment

values. Setting this option to 2 (the default in MySQL 8 –

requires binlog_format = ROW) gives the best performance

at the expense of potentially nonconsecutive auto-increment

values. requires restarting MySQL.

innodb_flush_

log_at_trx_

commit

Global Determines how frequently InnoDB flushes changes made to

the data files. If you import data using many small transactions,

setting this option to 0 or 2 can improve the performance.

sql_log_bin Session Disables the binary log when set to 0 or OFF. this will greatly

reduce the amount of data written.

transaction_

isolation

Session Sets the transaction isolation level. If you are not reading

existing data in MySQL, consider setting the isolation level to

READ UNCOMMITTED.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

882

All of the options have side effects, so consider carefully whether changing the setting

is appropriate for you. For example, if you are importing data from an existing instance

to a new instance, and you know there are no problems with foreign key and unique key

constraints, then you can disable the foreign_key_checks and unique_checks options

for the session importing the data. If you are on the other hand importing from a source,

where you are not sure of the data integrity, it may be better to keep the constraint checks

enabled to ensure the quality of the data even if it means a slower load performance.

For the innodb_flush_log_at_trx_commit option, you need to consider whether a

risk of losing the last second or so of committed transactions is acceptable. If your data

load process is the only transactions on the instance, and it is easy to redo the import,

you can set innodb_flush_log_at_trx_commit to 0 or 2 to reduce the number of flushes.

The change is mostly useful with small transactions. If the import commits less than

once a second, there is very little gained by the change. If you change innodb_flush_

log_at_trx_commit, then remember to set the value back to 1 after the import.

For the binary log, it is useful to disable writing the imported data as it greatly

reduces the amount of data changes that must be written to disk. This is particularly

useful if the binary log is on the same disk as the redo log and data files. If you cannot

modify the import process to disable sql_log_bin, you can consider restarting MySQL

with the skip-log-bin option to disable the binary log altogether, but note that will also

affect all other transactions on the system. If you do disable binary logging during the

import, it can be useful to create a full backup immediately after the import, so you can

use the binary logs for point-in-time recoveries again.

Tip If you use replication, consider doing the data import separately on each
instance in the topology with sql_log_bin disabled. please note though that it
will only work when MySQL does not generate auto-increment primary keys and is
only worth the added complexity if you need to import a large amount of data. For
the initial load in MySQL 8.0.17, you can just populate the source of the replication
and use the clone plugin3 to create the replica.

You can also improve the load performance by the statements you choose to import

the data and how you use transactions.

3 https://dev.mysql.com/doc/refman/en/clone-plugin.html

ChAptEr 25 DDL AnD BuLk DAtA LoAD

https://dev.mysql.com/doc/refman/en/clone-plugin.html

883

 Transactions and Load Method
A transaction denotes a group of changes, and InnoDB will not fully apply the changes

until the transaction is committed. Each commit involves writing the data to the redo

logs and includes other overheads. If you have very small transactions – like inserting a

single row at a time – this overhead can significantly affect the load performance.

There is no golden rule for the optimal transaction size. For small row sizes, usually

a few thousand rows are good, and for larger row sizes choose fewer rows. Ultimately,

you will need to test on your system and with your data to determine the optimal

transaction size.

For the load method, there are two main choices: INSERT statements or the LOAD

DATA [LOCAL] INFILE statement. In general LOAD DATA performs better than INSERT

statements as there is less parsing. For INSERT statements, it is an advantage of using the

extended insert syntax where multiple rows are inserted using a single statement rather

than multiple single-row statements.

Tip When you use mysqlpump for your backups, you can set the --extended-
insert option to the number of rows to include per INSERT statement with the
default being 250. For mysqldump, the --extended-insert option works as a
switch. When it is enabled (the default), mysqldump will decide on the number of
rows per statement automatically.

An advantage of using LOAD DATA to load the data is also that MySQL Shell can

automate doing the load in parallel.

 MySQL Shell Parallel Load Data
One problem you can encounter when you load data into MySQL is that a single thread

cannot push InnoDB to the limit of what it can sustain. If you split the data into batches

and load the data using multiple threads, you can increase the overall load rate. One

option to do this automatically is to use the parallel data load feature of MySQL Shell

8.0.17 and later.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

884

The parallel load feature is available through the util.import_table() utility in

Python mode and the util.importTable() method in JavaScript mode. This discussion

will assume you are using Python mode. The first argument is the filename, and the

second (optional) argument is a dictionary with the optional arguments. You can get the

help text for the import_table() utility using the util.help() method, like

mysql-py> util.help('import_table')

The help text includes a detailed description of all the settings that can be given

through the dictionary specified in the second argument.

MySQL Shell disables duplicate key and foreign key checks and sets the transaction

isolation level to READ UNCOMMITTED for the connection doing the import to reduce the

overhead during the import as much as possible.

The default is to insert the data into a table in the current schema with the same

name as the file without the extension. For example, if the file is named t_load.csv, the

default table name is t_load. A simple example of loading the file D:\MySQL\Files\t_

load.csv into the table chapter_25.t_load is shown in Listing 25-8. The t_load.csv file

is available from this book’s GitHub repository as t_load.csv.zip.

Listing 25-8. Using the util.import_table() utility with default settings

mysql> \sql

Switching to SQL mode... Commands end with ;

mysql-sql> CREATE SCHEMA IF NOT EXISTS chapter_25;

Query OK, 1 row affected, 1 warning (0.0490 sec)

mysql-sql> DROP TABLE IF EXISTS chapter_25.t_load;

Query OK, 0 rows affected (0.3075 sec)

mysql-sql> CREATE TABLE chapter_25.t_load (

 id int unsigned NOT NULL auto_increment,

 val varchar(40) NOT NULL,

 PRIMARY KEY (id),

 INDEX (val)

);

Query OK, 0 rows affected (0.3576 sec)

ChAptEr 25 DDL AnD BuLk DAtA LoAD

885

mysql> SET GLOBAL local_infile = ON;

Query OK, 0 rows affected (0.0002 sec)

mysql> \py

Switching to Python mode...

mysql-py> \use chapter_25

Default schema set to `chapter_25`.

mysql-py> util.import_table('D:/MySQL/Files/t_load.csv')

Importing from file 'D:/MySQL/Files/t_load.csv' to table `chapter_25`.`t_load`

in MySQL Server at localhost:3306 using 2 threads

[Worker000] chapter_25.t_load: Records: 721916 Deleted: 0 Skipped: 0 Warnings: 0

[Worker001] chapter_25.t_load: Records: 1043084 Deleted: 0 Skipped: 0 Warnings: 0

100% (85.37 MB / 85.37 MB), 446.55 KB/s

File 'D:/MySQL/Files/t_load.csv' (85.37 MB) was imported in 1 min 52.1678 sec

at 761.13 KB/s

Total rows affected in chapter_25.t_load: Records: 1765000 Deleted: 0

Skipped: 0 Warnings: 0

The warning when creating the chapter_25 schema depends on whether you have

created the schema earlier. Notice that you must enable the local_infile option for the

utility to work.

The most interesting part of the example is the execution of the import. When you

do not specify anything, MySQL Shell splits the file into 50 MB chunks and uses up to

eight threads. In this case the file is 85.37 MB (MySQL Shell uses the metric file sizes –

85.37 MB is the same as 81.42 MiB), so it gives two chunks, of which the first is 50 MB and

the second 35.37 MB. That is not a terrible good distribution.

Tip You must enable local_infile on the server side before invoking the
util.import_table() utility.

What you can choose to do is to tell MySQL Shell what size to split at. The optimal is

that each thread ends up processing the same amount of data. For example, if you want

to divide the 85.37 MB data, set the chunk size to a little more than half the size, such as

43 MB. If a decimal value is specified for the size, it is rounded down. There are also several

other options you can set, and Listing 25-9 shows an example of setting some of them.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

886

Listing 25-9. Using util.import_table() with several custom settings

mysql-py> \sql TRUNCATE TABLE chapter_25.t_load

Query OK, 0 rows affected (1.1294 sec)

mysql-py> settings = {

 'schema': 'chapter_25',

 'table': 't_load',

 'columns': ['id', 'val'],

 'threads': 4,

 'bytesPerChunk': '21500k',

 'fieldsTerminatedBy': '\t',

 'fieldsOptionallyEnclosed': False,

 'linesTerminatedBy': '\n'

 }

mysql-py> util.import_table('D:/MySQL/Files/t_load.csv', settings)

Importing from file 'D:/MySQL/Files/t_load.csv' to table `chapter_25`.

`t_load` in MySQL Server at localhost:3306 using 4 threads

[Worker001] chapter_25.t_load: Records: 425996 Deleted: 0 Skipped: 0 Warnings: 0

[Worker002] chapter_25.t_load: Records: 440855 Deleted: 0 Skipped: 0 Warnings: 0

[Worker000] chapter_25.t_load: Records: 447917 Deleted: 0 Skipped: 0 Warnings: 0

[Worker003] chapter_25.t_load: Records: 450232 Deleted: 0 Skipped: 0 Warnings: 0

100% (85.37 MB / 85.37 MB), 279.87 KB/s

File 'D:/MySQL/Files/t_load.csv' (85.37 MB) was imported in 2 min 2.6656

sec at 695.99 KB/s

Total rows affected in chapter_25.t_load: Records: 1765000 Deleted:

0 Skipped: 0 Warnings: 0

In this case the target schema, table, and columns are specified explicitly, and the

file is split into four roughly equal chunks and the number of threads is set to four. The

format of the CSV file is also included in the setting (the specified values are the default).

The optimal number of threads varies greatly depending on the hardware, the data,

and the other queries running. You will need to experiment to find the optimal settings

for your system.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

887

 Summary
This chapter has discussed what determines the performance of DDL statements

and bulk data loads. The first topic was schema changes in terms of ALTER TABLE and

OPTIMIZE TABLE. There is support for three different algorithms when you make schema

changes. The best-performing algorithm is the INSTANT algorithm which can be used

to add columns at the end of the row and several metadata changes. The second-

best algorithm is INPLACE which in most cases modifies the data within the existing

tablespace file. The final, and in general most expensive, algorithm is COPY.

In cases where the INSTANT algorithm cannot be used, there will be a substantial

amount of I/O, so the disk performance is important, and the less other work going on

requiring disk I/O, the better. It may also help to lock the table, so MySQL does not need

to keep track of data changes and apply them at the end of the schema change.

For inserting data, it was discussed that it is important to insert in primary key order. If

the insert order is random, it leads to larger tables, a deeper B-tree index for the clustered

index, more disk seeks, and more random I/O. The simplest way to insert data in primary

key order is to use an auto-increment primary key and let MySQL determine the next

value. For UUIDs, MySQL 8 adds the UUID_TO_BIN() and BIN_TO_UUID() functions that

allow you to reduce the storage required for a UUID to 16 bytes and to swap the low and

high order parts of the timestamp to make the UUIDs monotonically increasing.

When you insert data, a typical cause of the insert rate suddenly slowing down is when

the secondary indexes no longer fit into the buffer pool. If you insert into an empty table,

it is an advantage to remove the indexes during the import. Partitioning may also help as it

splits the index into one part per partition, so only part of the index is required at a time.

In some circumstances, you can disable constraint checks, reduce flushing of

the redo log, disable binary logging, and reduce the transaction isolation to READ

UNCOMMITTED. These configuration changes will all help reduce the overhead; however,

all also have side effects, so you must consider carefully whether the changes are

acceptable for your system. You can also affect the performance by adjusting the

transaction size to balance the reduction of commit overhead and overhead of working

with large transactions.

For bulk inserts you have two options of loading the data. You can use regular INSERT

statements, or you can use the LOAD DATA statement. The latter is in general the preferred

method. It also allows you to use the parallel table import feature of MySQL Shell 8.0.17

and later.

In the next chapter, you will learn about improving the performance of replication.

ChAptEr 25 DDL AnD BuLk DAtA LoAD

889
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_26

CHAPTER 26

Replication
One of the features that has helped make MySQL so popular over the years is the support

for replication which allows you to have a MySQL instance that automatically receives

the updates from its source and applies them. With quick transactions and a low latency

network, the replication can be in near-real time, but note that as there is no such

thing as synchronous replication in MySQL except for NDB Cluster, there is still a delay

which potentially can be large. A recurring task for database administrators is to work

on improving the performance of the replication. Over the years, there have been many

improvements to MySQL replication including some that can help you improve the

replication performance.

Note This chapter focuses on traditional asynchronous replication. MySQL 8 also
supports Group Replication and its derivative InnoDB Cluster. It is beyond the scope
of this book to go into the details of Group Replication; however, the discussion still
applies in general. For details of Group Replication, the book Introducing InnoDB
Cluster by Charles Bell (Apress) (www.apress.com/gp/book/9781484238844) is
recommended together with the MySQL reference manual (https://dev.mysql.
com/doc/refman/en/group-replication.html) for the latest updates.

This chapter will start out providing a high-level overview of replication with the

purpose of introducing terminology and a test setup that will be used for the section on

replication monitoring. The other half of the chapter discusses how the performance of

the connection and applier threads can be improved and how replication can be used to

offload work to a replica.

http://www.apress.com/gp/book/9781484238844
https://dev.mysql.com/doc/refman/en/group-replication.html
https://dev.mysql.com/doc/refman/en/group-replication.html

890

 Replication Overview
Before you dive into improving the performance of replication, it is important to discuss

how replication works. This will help agreeing on a terminology and to have a reference

point for the discussion in the rest of this chapter.

Note Traditionally the terms master and slave have been used to describe the
source and target of MySQL replication. In recent times, the terminology has
moved toward using the words source and replica. Likewise, on the replica, the
two thread types for handling the replication events have traditionally been called
I/O thread and SQL thread, whereas the current terms are connection thread and
applier thread. This book will to the largest extent possible use the new terms;
however, the old terms are still present in some contexts.

Replication works by recording the changes made on the source of the replication

after which they are sent to the replica where the connection thread stores the data and

one or more applier threads apply them. Figure 26-1 shows a simplified overview of the

replication omitting everything related to storage engines and implementation details.

Figure 26-1. Replication overview

ChApTeR 26 RepLICATIon

891

When a transaction commits its changes, the changes are written both to the InnoDB

specific files (redo log and data files) and to the binary log. The binary log consists of a

series of files as well as an index file with the index file listing the binary log files. Once

the events have been written to the binary log file, they are sent to the replica. There may

be more than one replica in which case the events are sent to all the replicas.

On the replica, the connection thread receives the events and writes them to the relay

log. The relay log works the same way as the binary log, just that it is used as a temporary

storage until an applier thread can apply the events. There may be one or more applier

threads. It may also be that the replica replicates from multiple sources (called multi-

source replication) in which case there is a set of one connection thread and one or more

applier threads for each replication channel. (That said, the most common is a single

source per replica.) Optionally, the replica writes the changes to its own binary log which

enables it to become a source for a replica further downstream the replication chain. In

that case it is common to call it a relay instance. Figure 26-2 shows an example of a setup

with a replica receiving updates from two sources, of which one is a relay instance.

Figure 26-2. Replication topology with two replication streams

Here Source 1 replicates to the Relay instance which in turn replicates to the Replica

instance. Source 2 also replicates to the Replica instance. Each channel has a name to

make it possible to distinguish between them, and in multi-source replication, each

channel must have a unique name. The default channel name is an empty string. When

monitoring is discussed, it will use a replication setup like the one in the figure.

ChApTeR 26 RepLICATIon

892

 Monitoring
When you encounter replication performance problems, the first step is to determine

where the delay is introduced in the chain of steps described in the previous section. If

you have been using replication in earlier versions of MySQL, you may jump to the SHOW

SLAVE STATUS command to check the health of the replication; however, in MySQL 8 that

is the last source of monitoring information to check.

In MySQL 8, the primary source of monitoring information for replication is the

Performance Schema which contains several tables describing the configuration and

status of the replication at each replication step on the replica. Some of the advantages of

the Performance Schema tables are as follows:

• The status tables include much more detailed information about

the replication delays in the form of timestamps with microsecond

resolution for each step in the replication process and with

timestamps from both the original and immediate sources.

• You can query the tables using SELECT statements. This allows you

to query the information you are most interested in, and you can

manipulate the data. This is particularly an advantage when you have

multiple replication channels in which case the output of SHOW SLAVE

STATUS quickly becomes hard to use when inspecting it in the console

as the output scrolls off the screen.

• The data is split into logical groups with one table per group. There

are separate tables for the configuration and applier processes and

separate tables for the configuration and status.

Note The Seconds_Behind_Master column in SHOW SLAVE STATUS has
traditionally been used to measure the replication delay. It essentially shows how
long time has passed since the transaction started on the original source. That
means, it only really works when all transactions are very quick and there are
no relay instances. even then it does not provide any information of where the
cause of a delay is. If you are still using Seconds_Behind_Master to monitor
the replication delay, you are encouraged to start switching to the performance
Schema tables.

ChApTeR 26 RepLICATIon

893

When you first start out working with the Performance Schema replication tables,

it can feel difficult to picture what the relationship is between the tables and how they

relate to the replication flow. Figure 26-3 shows the replication flow for a single replication

channel and adds the replication tables corresponding to what information they include.

The tables in Figure 26-3 can also be used in a Group Replication setup in which case the

group_replication_applier channel is used for the transactions while the node is online

and the group_replication_recovery channel is used during recovery.

Figure 26-3. The replication processes and their monitoring tables

ChApTeR 26 RepLICATIon

894

The events arrive at the top of the figure from the immediate source and are

processed by the connection thread which has the two tables replication_connection_

configuration and replication_connection_status. The connection thread writes the

events to the relay log, and the applier reads the events from the relay log while applying

the replication filters. The replication filters can be found in the replication_applier_

filters and replication_applier_global_filters tables. The overall applier

configuration and status can be found in the replication_applier_configuration and

replication_applier_status tables.

In case of parallel replication (also known as a multithreaded slave), the

coordinator then handles the transactions and makes them available for the workers.

The coordinator can be monitored through the replication_applier_status_by_

coordinator table. If the replica uses single-threaded replication, the coordinator step

is skipped.

The final step is the applier worker. In case of parallel replication, there are slave_

parallel_workers threads per replication channel, and each thread has a row with its

status in the replication_applier_status_by_worker table.

The rest of this section covers the Performance Schema replication tables for the

connection and applier as well as the log status and Group Replication tables.

 Connection Tables
The first step when replication events arrive at a replica is to write them to the relay log.

It is the connection thread that handles this.

There are two Performance Schema tables providing information related to the

connections:

• replication_connection_configuration: The configuration of each

of the replication channels.

• replication_connection_status: The status of the replication

channels. This includes timestamps showing when the last and

current queuing transaction was originally committed, when it was

committed on the immediate source instance, and when it was

written to the relay log. There is one row per channel.

ChApTeR 26 RepLICATIon

895

The replication connection tables include the information related to the connection

to the immediate upstream source as well as timestamps when the latest received event

was committed on the original source. In simple replication setups, the immediate and

original sources are the same, but in chained replication the two are different. Listing 26- 1

shows an example of the contents of the two connection tables for the relay channel in

the replication setup discussed in the previous section. The output has been reformatted

to improve the readability in this book. The original formatted output including the row

for the source2 replication channel is included in the file listing_26_1.txt.

Listing 26-1. The replication connection tables

mysql> SELECT *
 FROM performance_schema.replication_connection_configuration

 WHERE CHANNEL_NAME = 'relay'\G

*************************** 1. row ***************************
 CHANNEL_NAME: relay

 HOST: 127.0.0.1

 PORT: 3308

 USER: root

 NETWORK_INTERFACE:

 AUTO_POSITION: 1

 SSL_ALLOWED: YES

 SSL_CA_FILE:

 SSL_CA_PATH:

 SSL_CERTIFICATE:

 SSL_CIPHER:

 SSL_KEY:

SSL_VERIFY_SERVER_CERTIFICATE: NO

 SSL_CRL_FILE:

 SSL_CRL_PATH:

 CONNECTION_RETRY_INTERVAL: 60

 CONNECTION_RETRY_COUNT: 86400

 HEARTBEAT_INTERVAL: 30

 TLS_VERSION:

 PUBLIC_KEY_PATH:

 GET_PUBLIC_KEY: NO

ChApTeR 26 RepLICATIon

896

 NETWORK_NAMESPACE:

 COMPRESSION_ALGORITHM: uncompressed

 ZSTD_COMPRESSION_LEVEL: 3

1 row in set (0.0006 sec)

mysql> SELECT *
 FROM performance_schema.replication_connection_status

 WHERE CHANNEL_NAME = 'relay'\G

*************************** 1. row ***************************
 CHANNEL_NAME: relay

 GROUP_NAME:

 SOURCE_UUID: cfa645e7-b691-11e9- a051-

ace2d35785be

 THREAD_ID: 44

 SERVICE_STATE: ON

 COUNT_RECEIVED_HEARTBEATS: 26

 LAST_HEARTBEAT_TIMESTAMP: 2019-08-11

10:26:16.076997

 RECEIVED_TRANSACTION_SET: 4d22b3e5-a54f-11e9- 8bdb-

ace2d35785be:23-44

 LAST_ERROR_NUMBER: 0

 LAST_ERROR_MESSAGE:

 LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00

 LAST_QUEUED_TRANSACTION: 4d22b3e5-a54f-11e9- 8bdb-

ace2d35785be:44

 LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 2019-08-11 10:27:09.483703

LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 2019-08-11 10:27:10.158297

 LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP: 2019-08-11 10:27:10.296164

 LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP: 2019-08-11 10:27:10.299833

 QUEUEING_TRANSACTION:

 QUEUEING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 QUEUEING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 QUEUEING_TRANSACTION_START_QUEUE_TIMESTAMP: 0000-00-00 00:00:00

1 row in set (0.0006 sec)

ChApTeR 26 RepLICATIon

897

The configuration table largely corresponds to the options that you can give when

setting up replication with the CHANGE MASTER TO statement, and the data is static unless

you explicitly change the configuration. The status table mostly contains volatile data

that changes rapidly as events are processed.

The timestamps in the status table are of particular interest. There are two groups

with the first showing the timestamps for the last queued event and the second for the

event currently being queued. That an event is being queued means it is being written to

the relay log. As an example, consider the timestamps for the last queued event:

• LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: The time

when the event was committed on the original source (Source 1).

• LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: The time

when the event was committed on the immediate source (Relay).

• LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP: The time when

this instance started to queue the event – that is, when the event was

received and the connection thread started to write the event to the

relay log.

• LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP: The time when

the connection thread completed writing the event to the relay log.

The timestamps are in microsecond resolution, so it allows you to get a detailed

picture of how long the event has been on its way from the original source to the

relay log. A zero timestamp ('0000-00-00 00:00:00') means that there is no data to

return; this can, for example, happen for the currently queueing timestamps when the

connection thread is fully up to date. The applier tables provide further details about the

event’s journey through the replica.

 Applier Tables
The applier threads are more complex as they both handle filtering of events and

applying events, and there is support for parallel appliers.

At the time of writing, the following Performance Schema tables with information

about the applier threads exist:

ChApTeR 26 RepLICATIon

898

• replication_applier_configuration: This table shows the

configuration of the applier threads for each replication channel.

Currently the only setting is the configured replication delay. There is

one row per channel.

• replication_applier_filters: The replication filters per

replication channel. The information includes where the filter was

configured and when it became active.

• replication_applier_global_filters: The replication filters that

apply to all replication channels. The information includes where the

filter was configured and when it became active.

• replication_applier_status: The overall status for the appliers

including the service state, remaining delay (when a desired delay

is configured), and the number of retries there have been for

transactions. There is one row per channel.

• replication_applier_status_by_coordinator: The applier status

as seen by the coordinator thread when using parallel replication.

There are timestamps for the last processed transaction and the

currently processing transaction. There is one row per channel. For

single-threaded replication, this table is empty.

• replication_applier_status_by_worker: The applier status for

each worker. There are timestamps for the last applied transaction

and the transaction currently being applied. When parallel

replication is configured, there is one row per worker (the number of

workers is configured with slave_parallel_workers) per channel.

For single-threaded replication, there is one row per channel.

At the high level, the applier tables follow the same pattern as for the connection

tables with the addition of the filter configuration tables and the support for parallel

appliers. Listing 26-2 shows an example of the content of the replication_applier_

status_by_worker table for the relay replication channel. The output has been

reformatted for improved readability. The output can also be found in the file

listing_26_2.txt in this book’s GitHub repository.

ChApTeR 26 RepLICATIon

899

Listing 26-2. The replication_applier_status_by_worker table

mysql> SELECT *
 FROM performance_schema.replication_applier_status_by_worker

 WHERE CHANNEL_NAME = 'relay'\G

*************************** 1. row ***************************
 CHANNEL_NAME: relay

 WORKER_ID: 1

 THREAD_ID: 54

 SERVICE_STATE: ON

 LAST_ERROR_NUMBER: 0

 LAST_ERROR_MESSAGE:

 LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION:

 LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP: 0000-00-00 00:00:00

 APPLYING_TRANSACTION:

 APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 0000-00-00 00:00:00

 APPLYING_TRANSACTION_START_APPLY_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION_RETRIES_COUNT: 0

 LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER: 0

 LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE:

 LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP: 0000-00-00 00:00:00

 APPLYING_TRANSACTION_RETRIES_COUNT: 0

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER: 0

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE:

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP: 0000-00-00 00:00:00

*************************** 2. row ***************************
 CHANNEL_NAME: relay

 WORKER_ID: 2

 THREAD_ID: 55

 SERVICE_STATE: ON

 LAST_ERROR_NUMBER: 0

ChApTeR 26 RepLICATIon

900

 LAST_ERROR_MESSAGE:

 LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00

 LAST_APPLIED_TRANSACTION: 4d22b3e5-a54f-

11e9-8bdb-

ace2d35785be:213

 LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 2019-08-11 11:29:36.1076

 LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 2019-08-11 11:29:44.822024

 LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP: 2019-08-11 11:29:51.910259

 LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP: 2019-08-11 11:29:52.403051

 APPLYING_TRANSACTION: 4d22b3e5-a54f- 11e9-8bdb-

ace2d35785be:214

 APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 2019-08-11 11:29:43.092063

 APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP: 2019-08-11 11:29:52.685928

 APPLYING_TRANSACTION_START_APPLY_TIMESTAMP: 2019-08-11 11:29:53.141687

 LAST_APPLIED_TRANSACTION_RETRIES_COUNT: 0

 LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER: 0

 LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE:

LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP: 0000-00-00 00:00:00

 APPLYING_TRANSACTION_RETRIES_COUNT: 0

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER: 0

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE:

 APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP: 0000-00-00 00:00:00

The timestamps follow the same pattern as you have seen earlier with information

for both the last processed and current transactions. Notice that for the first row, all

timestamps are zero which shows that the applier cannot take advantage of the parallel

replication.

For the last applied transaction with the global transaction identifier 4d22b3e5-a54f-

11e9-8bdb-ace2d35785be:213 in the second row, it can be seen that the transaction was

committed on the original source at 11:29:36.1076, committed on the immediate source

at 11:29:44.822024, started to execute on this instance at 11:29:51.910259, and finished

executing at 11:29:52.403051. That shows that each instance adds a delay of around eight

seconds, but the transaction itself only took half a second to execute. You can conclude

the replication delay is not caused by applying a single large transaction, but it is rather a

cumulative effect of the relay and replica instances not being able to process transactions

ChApTeR 26 RepLICATIon

901

as fast as the original source, that the delay was introduced by an earlier long-running

event and the replication has not yet caught up, or that the delay is introduced in other

parts of the replication chain.

 Log Status
A table that is related to replication is the log_status table which provides information

about the binary log, relay log, and InnoDB redo log using a log lock to return the data

corresponding to the same point in time. The table was introduced with backups in

mind, so the BACKUP_ADMIN privilege is required to query the table. Listing 26-3 shows

an example output using the JSON_PRETTY() function to make it easier to read the

information returned as JSON documents.

Listing 26-3. The log_status table

mysql> SELECT SERVER_UUID,

 JSON_PRETTY(LOCAL) AS LOCAL,

 JSON_PRETTY(REPLICATION) AS REPLICATION,

 JSON_PRETTY(STORAGE_ENGINES) AS STORAGE_ENGINES

 FROM performance_schema.log_status\G

*************************** 1. row ***************************
 SERVER_UUID: 4d46199b-bbc9-11e9-8780-ace2d35785be

 LOCAL: {

 "gtid_executed": " 4d22b3e5-a54f-11e9-8bdb-ace2d35785be:1-380,\ncbffdc28-

bbc8- 11e9-9aac-ace2d35785be:1-190",

 "binary_log_file": "binlog.000003",

 "binary_log_position": 199154947

}

 REPLICATION: {

 "channels": [

 {

 "channel_name": "relay",

 "relay_log_file": "relay-bin-relay.000006",

 "relay_log_position": 66383736

 },

 {

ChApTeR 26 RepLICATIon

902

 "channel_name": "source2",

 "relay_log_file": "relay-bin-source2.000009",

 "relay_log_position": 447

 }

]

}

STORAGE_ENGINES: {

 "InnoDB": {

 "LSN": 15688833970,

 "LSN_checkpoint": 15688833970

 }

}

1 row in set (0.0005 sec)

The LOCAL column includes information about the executed global transaction

identifiers and the binary log file and position on this instance. The REPLICATION column

shows the relay log data related to the replication process with one object per channel.

The STORAGE_ENGINES column contains the information about the InnoDB log sequence

numbers.

 Group Replication Tables
If you use Group Replication, then there are two additional tables that you can use to

monitor the replication. One table includes high-level information about the members

of the group, and the other has various statistics for the members.

The two tables are

• replication_group_members: The high-level overview of the

members. There is one row for each member, and the data includes

the current status and whether it is a primary or secondary member.

• replication_group_member_stats: Lower-level statistics such as

the number of transactions in the queue, which transactions are

committed on all members, how many transactions originated locally

or remotely, and so on.

ChApTeR 26 RepLICATIon

903

The replication_group_members table is most useful to verify the status of the

members. The replication_group_member_stats table can be used to see how each

node views what work has been done and whether there is a high rate of conflicts and

rollbacks. Both tables include information from all nodes in the cluster.

Now that you know how to monitor replication, you can start working on optimizing

the connection and applier threads.

 The Connection
The connection thread handles the outbound connection to the immediate source of

the replication, reception of the replication events, and saving the events to the relay

log. This means that optimizing the connection process revolves around the replication

events, the network, maintaining the information about which events have been

received, and writing the relay log.

 Replication Events
When row-based replication is used (the default and recommended), the events include

information about the row that was changed and the new values (before and after

images). By default, the complete before image is included for update and delete events.

This makes it possible for the replica to apply the events even if the source and replica

have the columns in different order or have different primary key definitions. It does

however make the binary log – and thus also the relay logs – larger which means more

network traffic, memory usage, and disk I/O.

If you do not require the full before image to be present, you can configure the

binlog_row_image option to minimal or noblob. The value minimal means that only

the columns required to identify the row are included in the before image, and the after

image only includes the columns changed by the event. With noblob, all columns except

blob and text columns are included in the before image, and blob and text columns

are only included in the after image if their values have changed. Using minimal is the

optimal for performance, but make sure you test thoroughly before making the change

on your production system.

ChApTeR 26 RepLICATIon

904

Caution Make sure you have verified that your application works with binlog_
row_image = minimal before making the configuration change on production.
If the application does not work with the setting, it will cause replication to fail
on the replicas.

The binlog_row_image option can also be set at the session scope, so a possibility is

to change the option as needed.

 The Network
The main tuning options inside MySQL for the network used in replication are the

interface used and whether compression is enabled. If the network is overloaded, it

can quickly make replication fall behind. An option to avoid that is to use a dedicated

network interface and route for the replication traffic. Another option is to enable

compression which can reduce the amount of data transferred at the cost of higher CPU

load. Both solutions are implemented using the CHANGE MASTER TO command.

When you define how to connect to the source of the replication, you can use the

MASTER_BIND option to specify which interface to use for the connection. For example, if

you want to replicate from a source at 192.0.2.101 using the interface that on the replica

has the IP address 192.0.2.102, then you can use MASTER_BIND='192.0.2.102':

CHANGE MASTER TO MASTER_BIND='192.0.2.102',

 MASTER_HOST='192.0.2.101',

 MASTER_PORT=3306,

 MASTER_AUTO_POSITION=1,

 MASTER_SSL=1;

Replace the addresses and other information as needed.

Caution It may be tempting to not enable SSL to improve the network
performance. If you do that, the communication including authentication information
and your data will be transferred unencrypted, and anyone who gets access to the
network can read the data. Thus, it is important for any setup handling production
data that all communication is secure – for replication that means enabling SSL.

ChApTeR 26 RepLICATIon

905

Compression is enabled in MySQL 8.0.18 and later using the MASTER_COMPRESSION_

ALGORITHMS option which takes a set of allowed algorithms. The supported algorithms are

• uncompressed: Disable compression. This is the default.

• zlib: Use the zlib compression algorithm.

• zstd: Use the ztd version 1.3 compression algorithm.

If you include the zstd algorithm, then you can use the MASTER_ZSTD_COMPRESSION_

LEVEL option to specify the compression level. Supported levels are 1–22 (both included)

with 3 being the default. An example of configuring the replication connection to use

either the zlib or zstd algorithm with a compression level of 5 is

CHANGE MASTER TO MASTER_COMPRESSION_ALGORITHMS='zlib,zstd',

 MASTER_ZSTD_COMPRESSION_LEVEL=5;

Before MySQL 8.0.18, you specify whether to use compression with the slave_

compressed_protocol option. Setting the option to 1 or ON makes the replication

connection use zlib compression if both the source and replica support the algorithm.

Tip If you have the slave_compressed_protocol option enabled in
MySQL 8.0.18 or later, it takes precedence over the MASTER_COMPRESSION_
ALGORITHMS. It is recommended to disable slave_compressed_protocol
and use the CHANGE MASTER TO command to configure the compression as it
allows you to use the zstd algorithm and it makes the compression configuration
available in the replication_connection_configuration performance
Schema table.

 Maintaining Source Info
The replica needs to keep track of information it has received from the source. This

is done through the mysql.slave_master_info table. It is also possible to store the

information in a file, but this has been deprecated as of 8.0.18 and is discouraged. Using

a file also makes the replica less resilient to recover from crashes.

ChApTeR 26 RepLICATIon

906

With respect to the performance of maintaining this information, then the important

option is sync_master_info. This specifies how frequently the information is updated

with the default being every 10000 events. You may think that similar to sync_binlog

on the source side of the replication, it is important to sync the data after every event;

however, that is not the case.

Caution It is not necessary to set sync_master_info = 1 and doing so is a
common source of replication lags.

The reason it is not necessary to update the information very frequently is that it is

possible to recover from a loss of information by discarding the relay log and fetching

everything starting from the point the applier has reached. The default value of 10000 is

thus good, and there is rarely any reason to change it.

Tip The exact rules when the replication can recover from a crash are complex
and change from time to time as new improvements are added. You can see
the up-to-date information in https://dev.mysql.com/doc/refman/en/
replication-solutions-unexpected-slave-halt.html.

 Writing the Relay Log
The relay logs are the intermediate storage of the replication events between the

connection receiving the replication events and the applier has processed them. There

are mainly two things that affect how quickly the relay log can be written: the disk

performance and how often the relay log is synced to disk.

You need to ensure that the disk you write the relay log to has enough I/O capacity

to sustain the write and read activity. One option is to store the relay logs on a separate

storage so other activities do not interfere with the writing and reading of the relay log.

How often the relay log is synchronized to disk is controlled using the sync_

relay_log option which is the relay log equivalent of sync_binlog. The default is to

synchronize every 10000 events. Unless you use position-based replication (GTID

disabled or MASTER_AUTO_POSITION=0) with parallel applier threads, there is no reason to

ChApTeR 26 RepLICATIon

https://dev.mysql.com/doc/refman/en/replication-solutions-unexpected-slave-halt.html
https://dev.mysql.com/doc/refman/en/replication-solutions-unexpected-slave-halt.html

907

change the value of sync_relay_log as recovery of the relay log is possible. For position-

based parallel replication, you will need sync_relay_log = 1 unless it is acceptable to

rebuild the replica in case of a crash of the operating system.

This means that from a performance perspective, the recommendation is to enable

global transaction identifiers and set MASTER_AUTO_POSITION=1 when executing CHANGE

MASTER TO. Otherwise, leave the other settings related to the master info and relay log at

their defaults.

 The Applier
The applier is the most common cause of replication lags. The main problem is that

the changes made on the source are often the result of a highly parallel workload. In

contrast, by default the applier is single threaded, so a single thread will have to keep up

with potential tens or hundreds of concurrent queries on the source. This means that

the main tool for combating replication lags caused by the applier is to enable parallel

replication. Additionally, the importance of primary keys, the possibility of relaxing data

safety settings, and the use of replication filters will be discussed.

Note There is no effect of changing the sync_relay_log_info setting
when you use a table for the relay log repository and use InnoDB for the mysql.
slave_relay_log_info table (both are the default and recommended). In this
case, the setting is effectively ignored, and the information is updated after every
transaction.

 Parallel Applier
Configuring the applier to use several threads to apply the events in parallel is the most

powerful way to improve the replication performance. It is however not as simple as

setting the slave_parallel_workers option to a value greater than 1. There are other

options – both on the source and replica – to consider.

Table 26-1 summarizes the configuration options that affect parallel replication

including whether the option should be set on the source or the replica.

ChApTeR 26 RepLICATIon

908

Table 26-1. Configuration options related to parallel replication

Option Name and Where to
Configure

Description

binlog_transaction_

dependency_tracking

Set on the source

Which information to include in the binary log about the

dependencies between transactions.

binlog_transaction_

dependency_history_size

Set on the source

how long information is kept for when a row was last updated.

transaction_write_set_

extraction

Set on the source

how to extract write set information.

binlog_group_commit_

sync_delay

Set on the source

The delay to wait for more transactions to group together in the

group commit feature.

slave_parallel_workers

Set on the replica

how many applier threads to create for each channel

slave_parallel_type

Set on the replica

Whether to parallelize over databases or the logical clock.

slave_pending_jobs_

size_max

Set on the replica

how much memory can be used to hold events not yet applied.

slave_preserve_commit_

order

Set on the replica

Whether to ensure the replica writes the transactions to its binary

log in the same order as on the source. enabling this requires

setting slave_parallel_workers to LOGICAL_CLOCK.

slave_checkpoint_group

Set on the replica

The maximum number of transactions to process between

checkpoint operations.

slave_checkpoint_period

Set on the replica

The maximum time in milliseconds between checkpoint

operations.

ChApTeR 26 RepLICATIon

909

The most commonly used of the options are binlog_transaction_dependency_

tracking and transaction_write_set_extraction on the source and slave_parallel_

workers and slave_parallel_type on the replica.

The binary log transaction dependency tracking and write set extraction options

on the source are related. The transaction_write_set_extraction option specifies

how to extract write set information (information about which rows are affected by the

transaction). The write sets are also what Group Replication uses for conflict detection.

Set this to XXHASH64 which is also the value required by Group Replication.

The binlog_transaction_dependency_tracking option specifies what transaction

dependency information is available in the binary log. This is important for the parallel

replication to be able to know which transactions are safe to apply in parallel. The

default is to use the commit order and rely on the commit timestamps. For improved

parallel replication performance when parallelizing according to the logical clock, set

binlog_transaction_dependency_tracking to WRITESET.

The binlog_transaction_dependency_history_size option specifies the number

of row hashes that are kept providing information on which transaction last modified a

given row. The default value of 25000 is usually large enough; however, if you have a very

high rate of modifications to different rows, it can be worth increasing the dependency

history size.

On the replica, you enable parallel replication with the slave_parallel_workers

option. This is the number of applier worker threads that will be created for each

replication channel. Set this high enough for the replication to keep up but not so high

that you end up having idle workers or that you see contention from a too parallel

workload.

The other option that is often necessary to update on the replica is the slave_

parallel_type option. This specifies how the events should be split among the applier

workers. The default is DATABASE which as the name suggests splits updates according

the schema they belong to. The alternative is LOGICAL_CLOCK which uses the group

commit information or the write set information in the binary log to determine which

transactions are safe to apply together. Unless you have several layers of replicas

without including write set information in the binary log, LOGICAL_CLOCK is usually the

best choice.

ChApTeR 26 RepLICATIon

910

If you use the LOGICAL_CLOCK parallelization type without write sets enabled, you can

increase binlog_group_commit_sync_delay on the source to group more transactions

together in the group commit feature at the expense of a longer commit latency. This will

give the parallel replication more transactions to distribute among the workers and thus

improve the effectiveness.

The other major contributor to replication lags is the absence of primary keys.

 Primary Keys
When you use row-based replication, the applier worker processing the event will have

to locate the rows that must be changed. If there is a primary key, this is very simple and

efficient – just a primary key lookup. However, if there is no primary key, it is necessary to

examine all rows until a row has been found with the same values for all columns as the

values in the before image of the replication event.

Such a search is expensive if the table is large. If the transaction modifies many rows

in a relatively large table, it can in the worst case make replication seem like it has come

to a grinding halt. MySQL 8 uses an optimization where it uses hashes to match a group

of rows against the table; however, the effectiveness depends on the number of rows

modified in one event, and it will never be as efficient as primary key lookups.

It is strongly recommended that you add an explicit primary key (or a not-NULL

unique key) to all tables. There is no savings in disk space or memory by not having

one as InnoDB adds a hidden primary key (which cannot be used for replication) if you

do not add one yourself. The hidden primary key is a 6 byte integer and uses a global

counter, so if you have many tables with hidden primary keys, the counter can become a

bottleneck. Furthermore, if you want to use Group Replication, it is a strict requirement

that all tables have an explicit primary key or a not-NULL unique index.

Tip enable the sql_require_primary_key option to require all tables to have
a primary key. The option is available in MySQL 8.0.13 and later.

If you cannot add a primary key to some tables, then the hash search algorithm

works better the more rows are included in each replication event. You can increase the

number of rows grouped together for transactions modifying a large number of rows

in the same table by increasing the size of binlog_row_event_max_size on the source

instance of the replication.

ChApTeR 26 RepLICATIon

911

 Relaxing Data Safety
When a transaction is committed, it must be persisted on disk. In InnoDB the

persistence is guaranteed through the redo log and for replication through the binary

log. In some cases, it may be acceptable on a replica to relax the guarantees that the

changes have been persisted. This optimization comes at the expense that you will need

to rebuild the replica if the operating system crashes.

InnoDB uses the option innodb_flush_log_at_trx_commit to determine whether

the redo log is flushed every time a transaction commits. The default (and safest setting)

is to flush after every commit (innodb_flush_log_at_trx_commit = 1). Flushing is an

expensive operation, and even some SSD drives can have problems keeping up with

the flushing required from a busy system. If you can afford losing up to a second of

committed transactions, you can set innodb_flush_log_at_trx_commit to 0 or 2. If you

are willing to postpone flushes even further, you can increase innodb_flush_log_at_

timeout which sets the maximum amount of time in seconds between flushing the redo

log. The default and minimum value is 1 second. That means if a catastrophic failure

happens, you will likely need to rebuild the replica, but the bonus is that the applier

threads can commit changes cheaper than the source and thus easier keep up.

The binary log similarly uses the sync_binlog option which also defaults to 1 which

means to flush the binary log after each commit. If you do not need the binary log on the

replica (note that for Group Replication the binary log must be enabled on all notes), you

can consider either disabling it altogether or to reduce the frequency the log is synced.

Typically, in that case, it is better to set sync_binlog to a value such as 100 or 1000 rather

than 0 as 0 often ends up causing the entire binary log to be flushed at once when it is

rotating. Flushing a gigabyte can take several seconds; and, in the meantime, there is a

mutex that prevents committing transactions.

Note If you relax the data safety settings on a replica, make sure you set them
back to the stricter values if you promote the replica to become the replication
source, for example, if you need to perform maintenance.

ChApTeR 26 RepLICATIon

912

 Replication Filters
If you do not need all the data on the replica, you can use replication filters to reduce the

work required by the applier threads and reduce the disk and memory requirements.

This can also help the replica to keep up to date with its source. There are six options

to set the replication filters. The options can be divided into three sets with a do and an

ignore option as shown in Table 26-2.

Table 26-2. Replication filter options

Option Name Description

replicate-do- db

replicate- ignore- db

Whether to include the changes for the schema (database)

given as a value.

replicate-do- table

replicate- ignore- table

Whether to include the changes for the table given as a value.

replicate- wild- do-table

replicate- wild- ignore-

table

Like the replicate-do-table and replicate-ignore-

table options but with support for the _ and % wildcards in the

same way as when writing LIKE clauses.

When you specify one of the options, you can optionally prefix the schema/table

with the channel name the rule should apply to and a colon. For example, to ignore

updates to the world schema for the source2 channel

[mysqld]

replicate-do-db = source2:world

The options can only be set in the MySQL configuration file and require a restart of

MySQL to take effect. You can specify each option multiple times to add more than one

rule. If you need to change the configuration dynamically, you can configure the filters

with the CHANGE REPLICATION FILTER statement, for example:

mysql> CHANGE REPLICATION FILTER

 REPLICATE_IGNORE_DB = (world)

 FOR CHANNEL 'source2';

Query OK, 0 rows affected (0.0003 sec)

ChApTeR 26 RepLICATIon

913

The parentheses around world are required as you can specify a list if you need to

include more than one database. If you specify the same rule more than once, the latter

applies, and the former is ignored.

Tip To see the full rules for CHANGE REPLICATION FILTER, see https://
dev.mysql.com/doc/refman/en/change-replication-filter.html.

Replication filters work best with row-based replication as it is clear which table

is affected by an event. When you have a statement, the statement may affect multiple

tables, so for statement-based replication it is not always clear whether a filter should

allow the statement or not. Particular care should be taken with replicate-do-db and

replicate- ignore- db as with statement-based replication they use the default schema

to decide whether to allow a statement or not. Even worse is to use replication filters with

a mix of row and statement events (binlog_format = MIXED) as the effect of a filter can

depend on the format the changes replicate with.

Tip It is best to use binlog_format = row (the default) when you use
replication filters. For the complete rules for evaluation replication filters, see
https://dev.mysql.com/doc/refman/en/replication-rules.html.

That concludes the discussion of how to improve the replication performance. There

is one topic left which is kind of the opposite of what has been discussed thus far – how

to improve the performance of the source by using the replica.

 Offloading Work to a Replica
If you have problems with an instance being overloaded by read queries, a common

strategy to improve the performance is to offload some of the work to one or more

replicas. Some common scenarios are to use replicas for read scale-out and to use a

replica for reporting or backups. This section will look at this.

ChApTeR 26 RepLICATIon

https://dev.mysql.com/doc/refman/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/en/replication-rules.html

914

Note Using replication (e.g., using Group Replication’s multi-primary mode) does
not work as a way to scale out writes as all changes must still be applied on all
nodes. For write scale-out, you need to shard the data, for example, as it is done in
MySQL nDB Cluster. Sharding solutions are beyond the scope of this book.

 Read Scale-Out
One of the most common uses of replication is to allow read queries to use a replica

and, in that way, reduce the load on the replication source. This is possible because the

replicas have the same data as their source. The main thing to be aware of is that there

will even at the best of time be a small delay from a transaction is committed on the

source until a replica has the change.

If your application is sensitive to reading stale data, then an option is to choose Group

Replication or InnoDB Cluster which in versions 8.0.14 and later supports consistency

levels, so you can ensure the application uses the required level of consistency.

Tip For a good explanation of how to use the Group Replication consistency
levels, the blog by Lefred at https://lefred.be/content/mysql-innodb-
cluster-consistency-levels/ is highly recommended together with the
links at the top of the blog to blogs by the Group Replication developers.

Using replicas for reads can also help you bring the application and MySQL closer to

the end user which reduces the roundtrip latency, so the user gets a better experience.

 Separation of Tasks
The other common use of replicas is to perform some high-impact tasks on a replica to

reduce the load on the replication source. Two typical tasks are reporting and backups.

When you use a replica for reporting queries, you may benefit from configuring the

replica differently than the source to optimize it for the specific workload it is used for. It

may also be possible to use replication filters to avoid including all the data and updates

from the source. Less data means the replica has to apply fewer transactions and write

less data, and you can read a larger percentage of the data into the buffer pool.

ChApTeR 26 RepLICATIon

https://lefred.be/content/mysql-innodb-cluster-consistency-levels/
https://lefred.be/content/mysql-innodb-cluster-consistency-levels/

915

It is also common to use a replica for backups. If the replica is dedicated to backups,

then you do not need to worry about locks and performance degradation due to disk I/O

or buffer pool pollution as long as the replica can catch up before the next backup. You can

even consider shutting the replica down during the backup and perform a cold backup.

 Summary
This chapter has looked at how replication works, how to monitor and improve the

performance of the replication process, and how to use replication to distribute the work

across several instances.

The start of the chapter provided an overview of replication including introducing

the terminology and showed where you can find monitoring information for the

replication. In MySQL 8, the best way to monitor replication is to use a series of

Performance Schema tables that split the information out depending on the thread type

and whether it is the configuration or status. There are also tables dedicated to the log

status and Group Replication.

The connection thread can be optimized by reducing the size of the replication

event by only including minimal information about the before values for the updated

rows in the replication events. This will not work for all applications though. You can

also make changes to the network and to writing the relay log. It is recommended to use

GTID-based replication with auto-positioning enabled which allows you to relax the

synchronization of the relay log.

The two most important things for the performance of the applier are to enable

parallel replication and to ensure all tables have a primary key. Parallel replication can

be either over the schema the updates affect or by the logical clock. The latter is often

what performs the best, but there are exceptions, so you will need to verify with your

workload.

Finally, it was discussed how you can use replicas to offload work that would

otherwise have to be performed on the replication source. You can use replication for

read scale-out as you can use the replicas for reading data and dedicate the source for

tasks that require writing data. You can also use replicas for highly intensive work such as

reporting and backups.

The final chapter will go into reducing the amount of work being done by use of

caching.

ChApTeR 26 RepLICATIon

917
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1_27

CHAPTER 27

Caching
The cheapest queries are those you do not execute at all. This chapter investigates

how you can use caching to avoid executing queries or to reduce the complexity of

queries. First, it will be discussed how caching exists everywhere and how there are

different types of caching. Then it is covered how you can use caching inside MySQL

using cache tables and approximate values. The two next sections consider the

two popular products that offer caching: Memcached and ProxySQL. Finally, some

caching tips are discussed.

 Caching Is Everywhere
Even if you do not think you have implemented caching, you are already using

caching in several places. These caches are transparent and maintained at the

hardware, operating system, or MySQL levels. The most obvious of these caches is the

InnoDB buffer pool.

Figure 27-1 shows examples of how caching exists throughout the system and

examples of how custom caching can be added. The picture – including the interactions –

is by no means complete, but it serves to illustrate how common caching is and in how

many places it can occur.

918

In the lower-left corner, there is the CPU which has several levels of caches that cache

the instructions and data used for CPU instructions. The operating system implements

an I/O cache, and InnoDB has its buffer pool. All of these caches are examples of caches

that return the up-to-date data.

There are also caches that may serve slightly stale data. This includes implementing

cache tables in MySQL, caching query results in ProxySQL, or caching data directly in

the application. In those cases, you typically define a period to consider the data fresh

enough, and when it has reached a given age – time to live (TTL) – the cache entry is

invalidated. The Memcached solution is special as there are two versions of it. The

regular Memcached daemon uses time to live or some application-depending logic to

evict the data when it is too old; however, there is also a special MySQL version which

works as a plugin and can fetch the data from the InnoDB buffer pool and write data

back to the buffer pool, so the data is never stale.

Figure 27-1. Examples of where caching can occur

Chapter 27 CaChing

919

It may seem wrong to use potentially out-of-date data in your application. In

many cases, however, that is perfectly fine as exact data is not required. If you have an

application that shows a dashboard of sales figures, how big a difference does it make

if the data is current as of the time the queries executed or if they are a few minutes

old? By the time the user is done reading the figures, they are likely slightly out of date

anyway. The important thing is that the sales figures are consistent and get updated

regularly.

Tip Consider carefully what the requirements for your application are and
remember it is easier to start out with relaxed requirements to how up to date
data must be and make it more strict if needed than convincing a user that they
no longer can have up-to-the-second result. if you use cached data that is not
automatically updated to the latest values, you can consider storing the time when
the data was current and show that to the user, so the user knows when the data
was last refreshed.

The next three sections will go through more specific examples of caching starting

with implementing your own caching inside MySQL.

 Caching Inside MySQL
A logical place to implement caching is inside MySQL. This is particularly useful if the

cached data is used together with other tables. The downside is that it still requires

a roundtrip from the application to the database to query the data, and it requires

executing a query. This section covers two ways to cache data in MySQL: cache tables

and histogram statistics.

 Cache Tables
A cache table can be used to pre-calculate data, for example, for a report or a dashboard.

It is mostly useful for complex aggregations that are needed frequently.

Chapter 27 CaChing

920

There are several approaches to use cache tables. You can choose to create a table

storing the result for the feature that it is used with. This makes it cheap to use, but also

relatively inflexible as it can only be used with that one feature. Alternatively, you can

create building blocks that need to be joined together, so they can be used for several

features. This makes the queries a little more expensive, but you can reuse the cached

data and avoid duplicating the data. It depends on your application which approach is

the best, and you may end up choosing a hybrid where some tables are used on their

own and others are joined together.

There are two main tactics to populate the cache tables. You can either periodically

completely rebuild the tables, or you can use triggers to keep the data up to date

continuously. Completely rebuilding the tables works best by creating a new copy of

cache tables and at the end of the rebuild using RENAME TABLE to swap the tables around

as it avoids deleting a potentially large number of rows in the transaction and it avoids

fragmentation building up over time. Alternatively, you can use triggers to update

the cached data as the data it depends on changes. Rebuilding the cache tables is the

preferred in most cases if it is acceptable to use not completely up-to-date data as it is

less error prone and the refresh is done in the background.

Tip if you rebuild cache tables in place by deleting the existing data inside
the transaction, then either disable auto-recalculation of index statistics and
use ANALYZE TABLE at the end of the rebuild or enable the innodb_stats_
include_delete_marked option.

A special case is a cached column that is included in a table that otherwise does not

cache data. An example where a cached column is useful is to store the time, status, or

id of the latest event that belongs to some group. Imagine that your application supports

sending text messages and for each message you store the history such as when it was

created in the application, when it was sent, and when the recipient acknowledged

the message. In most cases only the latest status and when the status was reached are

needed, so you may want to store that with the message record itself rather than have to

query it explicitly. In that case you can use two tables to store the statuses:

Chapter 27 CaChing

921

CREATE TABLE message (

 message_id bigint unsigned NOT NULL auto_increment,

 message_text varchar(1024) NOT NULL,

 cached_status_time datetime(3) NOT NULL,

 cached_status_id tinyint unsigned NOT NULL,

 PRIMARY KEY (message_id)

);

CREATE TABLE message_status_history (

 message_status_id bigint unsigned NOT NULL auto_increment,

 message_id bigint unsigned NOT NULL,

 status_time datetime(3) NOT NULL,

 status_id tinyint unsigned NOT NULL,

 PRIMARY KEY (message_status_id)

);

In the real world, there may be more columns and foreign keys, but for the example

this information will suffice. When the status changes for a message, a row is inserted

into the message_status_history table. You can look for the latest row for a message to

find the latest status, but here a business rule has been created to update the cached_

status_time and cached_status_id in the message table with the latest status and time

it was changed. That way, to return to the application details of the message (except

when requiring the history), you only need to query the message table. You can update

the cached columns through the application or a trigger, or if you do not need the cached

status to be completely up to date, you can use a background job.

Tip Use a naming scheme that makes it clear what data is cached and what is
not. You can, for example, prefix cache tables and columns with cached_.

Another case that you can consider a case of caching are the histogram statistics.

Chapter 27 CaChing

922

 Histogram Statistics
Recall from Chapter 16 how histogram statistics are statistics of the frequency each

value is encountered for a column. You can take advantage of this and use the histogram

statistics as a cache. It is primarily useful if there are at most 1024 unique values for the

column as that is the maximum number of buckets supported, so 1024 is the maximum

number of values that can be used with singleton histograms.

Listing 27-1 shows an example of using a histogram to return the number of cities in

India (CountryCode = IND) in the world database.

Listing 27-1. Using histograms as a cache

-- Create the histogram on the CountryCode

-- column of the world.city table.

mysql> ANALYZE TABLE world.city

 UPDATE HISTOGRAM on CountryCode

 WITH 1024 BUCKETS\G

*************************** 1. row ***************************

 Table: world.city

 Op: histogram

Msg_type: status

Msg_text: Histogram statistics created for column 'CountryCode'.

1 row in set (0.5909 sec)

mysql> SELECT Bucket_Value, Frequency

 FROM (

 SELECT (Row_ID - 1) AS Bucket_Number,

 SUBSTRING_INDEX(Bucket_Value, ':', -1)

 AS Bucket_Value,

 (Cumulative_Frequency

 - LAG(Cumulative_Frequency, 1, 0)

 OVER (ORDER BY Row_ID))

 AS Frequency

 FROM information_schema.COLUMN_STATISTICS

 INNER JOIN JSON_TABLE(

 histogram->'$.buckets',

Chapter 27 CaChing

923

 '$[*]' COLUMNS(

 Row_ID FOR ORDINALITY,

 Bucket_Value varchar(42) PATH '$[0]',

 Cumulative_Frequency double PATH '$[1]'

)

) buckets

 WHERE SCHEMA_NAME = 'world'

 AND TABLE_NAME = 'city'

 AND COLUMN_NAME = 'CountryCode'

) stats

 WHERE Bucket_Value = 'IND';

+--------------+---------------------+

| Bucket_Value | Frequency |

+--------------+---------------------+

| IND | 0.08359892130424124 |

+--------------+---------------------+

1 row in set (0.0102 sec)

mysql> SELECT TABLE_ROWS

 FROM information_schema.TABLES

 WHERE TABLE_SCHEMA = 'world'

 AND TABLE_NAME = 'city';

+------------+

| TABLE_ROWS |

+------------+

| 4188 |

+------------+

1 row in set (0.0075 sec)

mysql> SELECT 0.08359892130424124*4188;

+--------------------------+

| 0.08359892130424124*4188 |

+--------------------------+

| 350.11228242216231312 |

+--------------------------+

Chapter 27 CaChing

924

1 row in set (0.0023 sec)

mysql> SELECT COUNT(*)

 FROM world.city

 WHERE CountryCode = 'IND';

+----------+

| COUNT(*) |

+----------+

| 341 |

+----------+

1 row in set (0.0360 sec)

If you think the query against COLUMN_STATITICS looks familiar, then it is derived

from the one used in Chapter 16 when listing bucket information for a singleton

histogram. It is necessary to collect the histogram information in a subquery as

otherwise the frequency is not calculated.

You will also need the total number of rows. You can either use the approximate

value from the information_schema.TABLES view or cache the result of SELECT

COUNT(*) for the table. In the example, the estimate is that the city table has 4188 rows

(your estimate may be different) which together with the frequency for India suggests

there are around 350 Indian cities in the table. An exact count shows that there are 341.

The deviation comes from the total row count estimate (there are 4079 rows in the city

table).

Using histograms as a cache is mostly useful for large tables for a column with at

most 1024 unique values, particularly if there is no index on the column. This means that

it does not match all that many use cases. It does however show an example of thinking

outside the box – something that is very useful when you try to find caching solutions.

For more advanced caching solutions, you need to look at third-party solutions or

implement your own in the application.

 Memcached
Memcached is a simple but highly scalable in-memory key-value store that is popular

as a caching tool. It has traditionally been mostly used with web servers but can be used

by any kind of application. An advantage of Memcached is it can be distributed across

multiple hosts which allows you to create a large cache.

Chapter 27 CaChing

925

Note Memcached is only officially supported on Linux and Unix.

There are two ways to use Memcached with MySQL. You can use the regular

standalone Memcached or you can use the MySQL InnoDB Memcached plugin.

This section will show a simple example of using both. For the full Memcached

documentation, see the official homepage at https://memcached.org/ and the official

wiki at https://github.com/memcached/memcached/wiki.

 Standalone Memcached
The standalone Memcached is the official daemon from https://memcached.org/. It

allows you to use it as a distributed cache or to have the cache very close – possibly on

the same host – to the application reducing the cost of querying the cache.

There are a few options to install Memcached including using the package manager

of the operating system and compiling from source. The simplest is to use your package

manager, for example, on Oracle Linux, Red Hat Enterprise Linux, and CentOS 7:

shell$ sudo yum install memcached libevent

The libevent package is included as memcached requires it. On Ubuntu Linux the

package is called libevent-dev. You may already have libevent and/or memcached

installed in which case the package manager will let you know there is nothing to do.

You start the daemon by using the memcached command. For example, to start it

using all the default options

shell$ memcached

If you use it in production, you should configure systemd or whatever service

manager you are using to start and stop the daemon when the operating system boots

and shuts down. For testing, it is fine to just start it from the command line.

Caution there is no security support in Memcached. Limit the cached data
to nonsensitive data, and make sure that your Memcached instances are only
available in the internal network and use a firewall to restrict access. One option
is to deploy Memcached on the same host as your application and prevent remote
connections.

Chapter 27 CaChing

https://memcached.org/
https://github.com/memcached/memcached/wiki
https://memcached.org/

926

You can now use Memcached by storing the data you retrieve from MySQL in the

cache. There is support for Memcached in several programming languages. For this

discussion, Python will be used with the pymemcache module1 and MySQL Connector/

Python. Listing 27-2 shows how to install the modules using pip. The output may look a

little different depending on the exact version of Python you are using and what you have

installed already, and the name of the Python command depends on your system. At

the time of writing, pymemcache supports Python 2.7, 3.5, 3.6, and 3.7. The example uses

Python 3.6 installed as an extra package on Oracle Linux 7.

Listing 27-2. Installing the Python pymemcache module

shell$ python3 -m pip install --user pymemcache

Collecting pymemcache

 Downloading https://files.pythonhosted.org/packages/20/08/3dfe193f9a1dc6

0186fc40d41b7dc59f6bf2990722c3cbaf19cee36bbd93/pymemcache-2.2.2-py2.py3-

none- any.whl (44kB)

 | █████████████████████
███████████| 51kB 3.3MB/s

Requirement already satisfied: six in /usr/local/lib/python3.6/site-

packages (from pymemcache) (1.11.0)

Installing collected packages: pymemcache

Successfully installed pymemcache-2.2.2

shell$ python36 -m pip install --user mysql-connector-python

Collecting mysql-connector-python

 Downloading https://files.pythonhosted.org/packages/58/ac/

a3e86e5df84b818f69ebb8c89f282efe6a15d3ad63a769314cdd00bccbbb/mysql_

connector_python- 8.0.17-cp36-cp36m-manylinux1_x86_64.whl (13.1MB)

 | █████████████████████
███████████| 13.1MB 5.6MB/s

Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib64/

python3.6/site-packages (from mysql-connector-python) (3.6.1)

Requirement already satisfied: setuptools in /usr/local/lib/python3.6/site-

packages (from protobuf>=3.0.0->mysql-connector-python) (39.0.1)

1 https://pypi.org/project/pymemcache/

Chapter 27 CaChing

https://pypi.org/project/pymemcache/

927

Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.6/site-

packages (from protobuf>=3.0.0->mysql-connector-python) (1.11.0)

Installing collected packages: mysql-connector-python

Successfully installed mysql-connector-python-8.0.17

In your application you can query Memcached by a key. If the key is found, Memcached

returns the value that was stored with the key, and if it is not found you need to query

MySQL and store the result in the cache. Listing 27-3 shows a simple example of

doing this querying the world.city table. The program can also be found in the file

listing_27_3.py that is included in this book’s GitHub repository. If you want to

execute the program, you need to update the connection arguments in connect_args to

reflect the settings used to connect to your MySQL instance.

Listing 27-3. Simple Python program using memcached and MySQL

from pymemcache.client.base import Client

import mysql.connector

connect_args = {

 "user": "root",

 "password": "password",

 "host": "localhost",

 "port": 3306,

}

db = mysql.connector.connect(**connect_args)

cursor = db.cursor()

memcache = Client(("localhost", 11211))

sql = "SELECT CountryCode, Name FROM world.city WHERE ID = %s"

city_id = 130

city = memcache.get(str(city_id))

if city is not None:

 country_code, name = city.decode("utf-8").split("|")

 print("memcached: country: {0} - city: {1}".format(country_code, name))

else:

 cursor.execute(sql, (city_id,))

 country_code, name = cursor.fetchone()

 memcache.set(str(city_id), "|".join([country_code, name]), expire=60)

 print("MySQL: country: {0} - city: {1}".format(country_code, name))

Chapter 27 CaChing

928

memcache.close()

cursor.close()

db.close()

The program starts out creating a connection both to MySQL and the memcached daemon.

In this case the connection parameters and the id to query are hardcoded. In a real

program, you should read the connection parameters from a configuration file or similar.

Caution never store connection details in the application. particularly never
hardcode the password. Storing the connection details in the application is both
inflexible and insecure.

The program then tries to fetch the data from Memcached; notice how the integer

is converted to a string as Memcached uses strings for keys. If the key is found, the

country code and name are extracted from the cached value by splitting the string at the

| character. If the key is not found in the cache, the city data are fetched from MySQL and

stored in the cache with the time to keep the value in the cache set to 60 seconds. Print

statements are added for each case to show where the data was fetched from.

The first time you execute the program after each restart of memcached, it will end up

querying MySQL:

shell$ python3 listing_27_3.py

MySQL: country: AUS - city: Sydney

On subsequent executions for up to a minute, the data will be found in the cache:

shell$ python3 listing_27_3.py

memcached: country: AUS - city: Sydney

When you are done testing Memcached, you can stop it using Ctrl+C in the session

where memcached is running or by sending it a SIGTEM (15) signal, for example:

shell$ kill -s SIGTERM $(pidof memcached)

Using the Memcached directly as in this example has the advantage that you can

have a pool of daemons and you can run the daemon close to the application, possibly

even on the same host as the application. The disadvantage is that you must maintain

the cache yourself. An alternative is to use the memcached plugin that comes from MySQL

which will manage the cache for you and even automatically persist writes to the cache.

Chapter 27 CaChing

929

 MySQL InnoDB Memcached Plugin
The InnoDB Memcached plugin was introduced in MySQL 5.6 as a way to access InnoDB

data without the overhead of parsing the SQL statements. The primary use of the plugin

is to let InnoDB handle the caching through its buffer pool and just use Memcached as a

mechanism to query the data. Some of the nice features of using the plugin this way are

that writes to the plugin are written to the underlying InnoDB table, the data is always up

to date, and you can use both SQL and Memcached to access the data concurrently.

Note Make sure you have stopped the standalone Memcached process before
installing the MySQL innoDB Memcached plugin as they by default use the same
port. if you do not, you will keep connecting to the standalone process.

Before you install the MySQL memcached daemon, you must ensure that the libevent

package is installed like for the standalone Memcached installation. Once you have

installed libevent, you need to install the innodb_memcache schema which includes the

tables that are used for the configuration. You perform the installation by sourcing the

share/innodb_memcached_config.sql file that is included in the MySQL distribution.

The file is relative to the MySQL base directory which you can find through the basedir

system variable, for example:

mysql> SELECT @@global.basedir AS basedir;

+---------+

| basedir |

+---------+

| /usr/ |

+---------+

1 row in set (0.00 sec)

If you have installed MySQL using the RPM from https://dev.mysql.com/downloads/,

the command is

mysql> SOURCE /usr/share/mysql-8.0/innodb_memcached_config.sql

Chapter 27 CaChing

https://dev.mysql.com/downloads/

930

Note Be aware that this command does not work in MySQL Shell as the script
includes the USE command without a semicolon which MySQL Shell does not
support in scripts.

The script also creates the test.demo_test table which will be used in the rest of this

discussion.

The innodb_memcache schema consists of three tables:

• cache_policies: The configuration of the cache policies which

defines how the caching should work. The default is to leave it to

InnoDB. This is usually the recommended and ensures that you will

never read stale data.

• config_options: The configuration options for the plugin. This

includes which separator to use when returning multiple columns for

the value and the table map delimiter.

• containers: The definition of the mapping to the InnoDB tables.

You must add a mapping for all the tables you want to use with the

InnoDB memcached plugin.

The containers table is the table you will use the most. By default, the table includes

a mapping for the test.demo_test table:

mysql> SELECT * FROM innodb_memcache.containers\G

*************************** 1. row ***************************

 name: aaa

 db_schema: test

 db_table: demo_test

 key_columns: c1

 value_columns: c2

 flags: c3

 cas_column: c4

 expire_time_column: c5

unique_idx_name_on_key: PRIMARY

1 row in set (0.0007 sec)

Chapter 27 CaChing

931

You can use the name to reference the table defined by db_schema and db_table

when querying the table. The key_columns column defines the columns in the InnoDB

table that is used for the key lookup. You specify the columns you want to include in the

query results in the value_columns column. If you include multiple columns, you use

the separator configured in the config_options table in the row with name = separator

(the default is |) to separate the column names.

The cas_column and expire_time_column columns are rarely needed and will not

be discussed further here. The final column, unique_idx_name_on_key, is the name of a

unique index in the table, preferably the primary key.

Tip the detailed description of the tables and their use can be found in
https://dev.mysql.com/doc/refman/en/innodb-memcached-
internals.html.

You are now ready to install the plugin itself. You can do that using the INSTALL

PLUGIN command (remember this does not work on Windows):

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Query OK, 0 rows affected (0.09 sec)

This statement must be executed using the legacy MySQL protocol (by default port

3306) as the X Protocol (by default port 33060) does not allow you to install plugins. That

is it – the InnoDB memcached plugin is now ready for testing. The simplest way to test it

is to use the telnet client. Listing 27-4 shows a simple example specifying the container

explicitly and using the default container.

Listing 27-4. Testing InnoDB memcached with telnet

shell$ telnet localhost 11211

Trying ::1...

Connected to localhost.

Escape character is '^]'.

get @@aaa.AA

VALUE @@aaa.AA 8 12

HELLO, HELLO

END

Chapter 27 CaChing

https://dev.mysql.com/doc/refman/en/innodb-memcached-internals.html
https://dev.mysql.com/doc/refman/en/innodb-memcached-internals.html

932

get AA

VALUE AA 8 12

HELLO, HELLO

END

To make it easier to see the two commands, an empty line has been inserted before

each. The first command uses @@ to specify the container name before the key value. The

second command relies on Memcached using the default container (the first entry when

sorting alphabetically in ascending order by the container name). You exit telnet by

pressing Ctrl+] followed by the quit command:

^]

telnet> quit

Connection closed.

The daemon uses port 11211 by default as for the standalone Memcached instance.

If you want to change the port or any of the other Memcached options, you can use the

daemon_memcached_option option which takes a string with the memcached options. For

example, to set the port to 22222

[mysqld]

daemon_memcached_option = "-p22222"

The option can only be set in the MySQL configuration file or on the command line,

so it requires a restart of MySQL to make the change take effect.

If you add new entries to the containers table or change existing entries, you will

need to restart the memcached plugin to make it read the definitions again. You can do

that by restarting MySQL or by uninstalling and installing the plugin:

mysql> UNINSTALL PLUGIN daemon_memcached;

Query OK, 0 rows affected (4.05 sec)

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Query OK, 0 rows affected (0.02 sec)

In practice you will mostly be using the plugin from your application. The usage is

straightforward if you are used to use Memcached. As an example, consider Listing 27-5

which shows a few Python commands using the pymemcache module. Note that the

example assumes you have set the port back to 11211.

Chapter 27 CaChing

933

Listing 27-5. Using the InnoDB memcached plugin with Python

shell$ python3

Python 3.6.8 (default, May 16 2019, 05:58:38)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-36.0.1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from pymemcache.client.base import Client

>>> client = Client(('localhost', 11211))

>>> client.get('@@aaa.AA')

b'HELLO, HELLO'

>>> client.set('@@aaa.BB', 'Hello World')

True

>>> client.get('@@aaa.BB')

b'Hello World'

The interactive Python environment is used to query the test.demo_test table

through the memcached plugin. After creating the connection, the existing row is queried

using the get() method, and a new row is inserted using the set() method. There is

no need to set a timeout in this case as the set() method ends up writing directly to

InnoDB. Finally, the new row is retrieved again. Notice how simple this example is

compared to the regular Memcached where you need to maintain the cache yourself.

You can verify that the new row was really inserted into the table by querying it in

MySQL:

mysql> SELECT * FROM test.demo_test;

+----+--------------+----+----+----+

| c1 | c2 | c3 | c4 | c5 |

+----+--------------+----+----+----+

| AA | HELLO, HELLO | 8 | 0 | 0 |

| BB | Hello World | 0 | 1 | 0 |

+----+--------------+----+----+----+

2 rows in set (0.0032 sec)

There is more to using the MySQL InnoDB Memcached plugin. If you plan to use it,

you are encouraged to read the “InnoDB memcached Plugin” section in the reference

manual at https://dev.mysql.com/doc/refman/en/innodb-memcached.html.

Another popular utility that supports caching is ProxySQL.

Chapter 27 CaChing

https://dev.mysql.com/doc/refman/en/innodb-memcached.html

934

 ProxySQL
The ProxySQL project2 is founded by René Cannaò and is an advanced proxy that

supports load balancing, routing based on query rules, caching, and more. The caching

feature caches based on query rules, for example, you can set that you want to cache

queries with a given digest. The cache is automatically expired based on the time to live

value you set for the query rule.

You download ProxySQL from https://github.com/sysown/proxysql/releases/.

At the time of writing, the latest release is version 2.0.8 which is the release used in the

examples.

Note proxySQL is only officially supported for Linux. For the full documentation
including installation instructions for the supported distributions, see https://
github.com/sysown/proxysql/wiki.

Listing 27-6 shows an example of installing ProxySQL 2.0.8 on Oracle Linux using the

RPM from the ProxySQL GitHub repository. The installation process is similar on other

Linux distributions using the package command for the distribution (but of course the

output will be different depending on the package command used). After the installation

has completed, ProxySQL is started.

Listing 27-6. Installing and starting ProxySQL

shell$ wget https://github.com/sysown/proxysql/releases/download/v2.0.8/

proxysql-2.0.8-1-centos7.x86_64.rpm

...

Length: 9340744 (8.9M) [application/octet-stream]

Saving to: 'proxysql-2.0.8-1-centos7.x86_64.rpm'

100%[===========================>] 9,340,744 2.22MB/s in 4.0s

2019-11-24 18:41:34 (2.22 MB/s) - 'proxysql-2.0.8-1-centos7.x86_64.rpm'

saved [9340744/9340744]

2 https://proxysql.com/

Chapter 27 CaChing

https://github.com/sysown/proxysql/releases/
https://github.com/sysown/proxysql/wiki
https://github.com/sysown/proxysql/wiki
https://proxysql.com/

935

shell$ sudo yum install proxysql-2.0.8-1-centos7.x86_64.rpm

Loaded plugins: langpacks, ulninfo

Examining proxysql-2.0.8-1-centos7.x86_64.rpm: proxysql-2.0.8-1.x86_64

Marking proxysql-2.0.8-1-centos7.x86_64.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package proxysql.x86_64 0:2.0.8-1 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

 Package Arch Version Repository Size

==

Installing:

 proxysql x86_64 2.0.8-1 /proxysql-2.0.8-1-centos7.x86_64 35 M

Transaction Summary

==

Install 1 Package

Total size: 35 M

Installed size: 35 M

Is this ok [y/d/N]: y

Downloading packages:

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : proxysql-2.0.8-1.x86_64 1/1

warning: group proxysql does not exist - using root

warning: group proxysql does not exist - using root

Created symlink from /etc/systemd/system/multi-user.target.wants/proxysql.

service to /etc/systemd/system/proxysql.service.

 Verifying : proxysql-2.0.8-1.x86_64 1/1

Installed:

 proxysql.x86_64 0:2.0.8-1

Chapter 27 CaChing

936

Complete!

shell$ sudo systemctl start proxysql

You can configure ProxySQL only through its admin interface. This uses the mysql

command-line client and has a familiar feel for MySQL administrators. By default,

ProxySQL uses port 6032 for the administration interface, and the administrator

username is admin with the password set to admin. Listing 27-7 shows an example of

connecting to the administration interface and listing the schema and tables available.

Listing 27-7. The administration interface

shell$ mysql --host=127.0.0.1 --port=6032 \

 --user=admin --password \

 --default-character-set=utf8mb4 \

 --prompt='ProxySQL> '

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.5.30 (ProxySQL Admin Module)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

ProxySQL> SHOW SCHEMAS;

+-----+---------------+-------------------------------------+

| seq | name | file |

+-----+---------------+-------------------------------------+

| 0 | main | |

| 2 | disk | /var/lib/proxysql/proxysql.db |

| 3 | stats | |

| 4 | monitor | |

| 5 | stats_history | /var/lib/proxysql/proxysql_stats.db |

+-----+---------------+-------------------------------------+

Chapter 27 CaChing

937

5 rows in set (0.00 sec)

ProxySQL> SHOW TABLES;

+--+

| tables |

+--+

| global_variables |

| mysql_aws_aurora_hostgroups |

| mysql_collations |

| mysql_galera_hostgroups |

| mysql_group_replication_hostgroups |

| mysql_query_rules |

| mysql_query_rules_fast_routing |

| mysql_replication_hostgroups |

| mysql_servers |

| mysql_users |

| proxysql_servers |

| runtime_checksums_values |

| runtime_global_variables |

| runtime_mysql_aws_aurora_hostgroups |

| runtime_mysql_galera_hostgroups |

| runtime_mysql_group_replication_hostgroups |

| runtime_mysql_query_rules |

| runtime_mysql_query_rules_fast_routing |

| runtime_mysql_replication_hostgroups |

| runtime_mysql_servers |

| runtime_mysql_users |

| runtime_proxysql_servers |

| runtime_scheduler |

| scheduler |

+--+

24 rows in set (0.00 sec)

While the tables are grouped in schemas, you can access tables directly without

referencing the schema. The output of SHOW TABLES shows the tables in the main schema

which are the ones associated with the configuration of ProxySQL.

Chapter 27 CaChing

938

The configuration is a two-stage process where you first prepare the new

configuration and then apply it. Applying the changes means saving them to disk if you

want to persist them and to load them into the runtime threads.

The tables with the runtime_ prefix in the name are for configuration pushed to the

runtime threads. One way of configuring ProxySQL is to use a SET statement similar to

setting system variables in MySQL, but you can also use UPDATE statements. The first step

should be to change the admin password (and optionally the administrator username)

which you can do by setting the admin-admin_credentials variable as shown in Listing 27-8.

Listing 27-8. Setting the password for the administrator account

ProxySQL> SET admin-admin_credentials = 'admin:password';

Query OK, 1 row affected (0.01 sec)

ProxySQL> SAVE ADMIN VARIABLES TO DISK;

Query OK, 32 rows affected (0.02 sec)

ProxySQL> LOAD ADMIN VARIABLES TO RUNTIME;

Query OK, 0 rows affected (0.00 sec)

ProxySQL> SELECT @@admin-admin_credentials;

+---------------------------+

| @@admin-admin_credentials |

+---------------------------+

| admin:password |

+---------------------------+

1 row in set (0.00 sec)

The value for the admin-admin_credentials option is the username and password

separated by a colon. The SAVE ADMIN VARIABLES TO DISK statement persists the change,

and the LOAD ADMIN VARIABLES TO RUNTIME command applies the changes to the runtime

threads. It is necessary to load the variable into the runtime threads as ProxySQL keeps a

copy of the variables in each thread for performance reasons. You can query the current

values (whether applied or pending) as you can query system variables in MySQL.

You configure the MySQL backend instances that ProxySQL can use to direct the

queries in the mysql_servers table. For this discussion, a single instance on the same

host as ProxySQL will be used. Listing 27-9 shows how to add it to the list of servers that

ProxySQL can route to.

Chapter 27 CaChing

939

Listing 27-9. Adding a MySQL instance to the list of servers

ProxySQL> SHOW CREATE TABLE mysql_servers\G

*************************** 1. row ***************************

 table: mysql_servers

Create Table: CREATE TABLE mysql_servers (

 hostgroup_id INT CHECK (hostgroup_id>=0) NOT NULL DEFAULT 0,

 hostname VARCHAR NOT NULL,

 port INT CHECK (port >= 0 AND port <= 65535) NOT NULL DEFAULT 3306,

 gtid_port INT CHECK (gtid_port <> port AND gtid_port >= 0 AND gtid_port

<= 65535) NOT NULL DEFAULT 0,

 status VARCHAR CHECK (UPPER(status) IN ('ONLINE','SHUNNED','OFFLINE_SOFT',

'OFFLINE_HARD')) NOT NULL DEFAULT 'ONLINE',

 weight INT CHECK (weight >= 0 AND weight <=10000000) NOT NULL DEFAULT 1,

 compression INT CHECK (compression IN(0,1)) NOT NULL DEFAULT 0,

 max_connections INT CHECK (max_connections >=0) NOT NULL DEFAULT 1000,

 max_replication_lag INT CHECK (max_replication_lag >= 0 AND

max_replication_lag <= 126144000) NOT NULL DEFAULT 0,

 use_ssl INT CHECK (use_ssl IN(0,1)) NOT NULL DEFAULT 0,

 max_latency_ms INT UNSIGNED CHECK (max_latency_ms>=0) NOT NULL DEFAULT 0,

 comment VARCHAR NOT NULL DEFAULT ",

 PRIMARY KEY (hostgroup_id, hostname, port))

1 row in set (0.01 sec)

ProxySQL> INSERT INTO mysql_servers

 (hostname, port, use_ssl)

 VALUES ('127.0.0.1', 3306, 1);

Query OK, 1 row affected (0.01 sec)

ProxySQL> SAVE MYSQL SERVERS TO DISK;

Query OK, 0 rows affected (0.36 sec)

ProxySQL> LOAD MYSQL SERVERS TO RUNTIME;

Query OK, 0 rows affected (0.01 sec)

Chapter 27 CaChing

940

The example shows how you can use SHOW CREATE TABLE to get information about

the mysql_servers table. The table definition includes information about the settings

you can include and allowed values. Other than the hostname, all settings have a

default value. The remaining part of the listing inserts a row for the MySQL instance on

localhost port 3306 with the requirement that SSL is used. The change is then persisted

to disk and loaded into the runtime threads.

Note SSL can only be used from proxySQL to the MySQL instance, not between
the client and proxySQL.

You will also need to specify which users can use the connection. First, create a user

in MySQL:

mysql> CREATE USER myuser@'127.0.0.1'

 IDENTIFIED WITH mysql_native_password

 BY 'password';

Query OK, 0 rows affected (0.0550 sec)

mysql> GRANT ALL ON world.* TO myuser@'127.0.0.1';

Query OK, 0 rows affected (0.0422 sec)

ProxySQL does not presently support the caching_sha2_password authentication

plugin, which is the default in MySQL 8, when you connect using MySQL Shell (but there

is support using the mysql command-line client), so you need to create the user with the

mysql_native_password plugin. Then add the user in ProxySQL:

ProxySQL> INSERT INTO mysql_users

 (username,password)

 VALUES ('myuser', 'password');

Query OK, 1 row affected (0.00 sec)

ProxySQL> SAVE MYSQL USERS TO DISK;

Query OK, 0 rows affected (0.06 sec)

ProxySQL> LOAD MYSQL USERS TO RUNTIME;

Query OK, 0 rows affected (0.00 sec)

Chapter 27 CaChing

941

You can now connect to MySQL through ProxySQL. The SQL interface by default

uses port 6033. You connect through ProxySQL in the same way as usual except for the

port number and possibly the hostname:

shell$ mysqlsh --user=myuser --password \

 --host=127.0.0.1 --port=6033 \

 --sql --table \

 -e "SELECT * FROM world.city WHERE ID = 130;"

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

ProxySQL collects statistics in a similar way to the Performance Schema. You can

query the statistics in the stats_mysql_query_digest and stats_mysql_query_digest_

reset tables. The difference between the two tables is that the latter only includes the

digests since you queried the table the last time. For example, to get the queries ordered

by their total execution time

ProxySQL> SELECT count_star, sum_time,

 digest, digest_text

 FROM stats_mysql_query_digest_reset

 ORDER BY sum_time DESC\G

*************************** 1. row ***************************

 count_star: 1

 sum_time: 577149

 digest: 0x170E9EDDB525D570

digest_text: select @@sql_mode;

*************************** 2. row ***************************

 count_star: 1

 sum_time: 5795

 digest: 0x94656E0AA2C6D499

digest_text: SELECT * FROM world.city WHERE ID = ?

2 rows in set (0.01 sec)

Chapter 27 CaChing

942

If you see a query that you would like to cache the result of, you can add a query

rule based on the digest of the query. Assuming you want to cache the result of querying

the world.city table by ID (digest 0x94656E0AA2C6D499), you can add a rule like the

following:

ProxySQL> INSERT INTO mysql_query_rules

 (active, digest, cache_ttl, apply)

 VALUES (1, '0x94656E0AA2C6D499', 60000, 1);

Query OK, 1 row affected (0.01 sec)

ProxySQL> SAVE MYSQL QUERY RULES TO DISK;

Query OK, 0 rows affected (0.09 sec)

ProxySQL> LOAD MYSQL QUERY RULES TO RUNTIME;

Query OK, 0 rows affected (0.01 sec)

The active column specifies whether ProxySQL should take the rule into account

when evaluating rules that can be used. The digest is the digest of the query you want to

cache, and the cache_ttl specifies how long in milliseconds the result should be used

before it is considered expired, and the result is refreshed. The time to live has been set

to 60000 milliseconds (1 minute) to allow you time to execute the queries a few times

before the cache gets invalidated. Setting apply to 1 means that no later rules will be

evaluated when the query matches this rule.

If you execute the query a few times within a minute, you can query the cache

statistics in the table stats_mysql_global to see how the cache is used. An example of

the output is

ProxySQL> SELECT *

 FROM stats_mysql_global

 WHERE Variable_Name LIKE 'Query_Cache%';

+--------------------------+----------------+

| Variable_Name | Variable_Value |

+--------------------------+----------------+

| Query_Cache_Memory_bytes | 3659 |

| Query_Cache_count_GET | 6 |

| Query_Cache_count_GET_OK | 5 |

| Query_Cache_count_SET | 1 |

Chapter 27 CaChing

943

| Query_Cache_bytes_IN | 331 |

| Query_Cache_bytes_OUT | 1655 |

| Query_Cache_Purged | 0 |

| Query_Cache_Entries | 1 |

+--------------------------+----------------+

8 rows in set (0.01 sec)

Your data will most likely be different. It shows that the cache uses 3659 bytes and

there have been six queries against the cache and, in five of those cases, the result was

returned from the cache. The last of the six queries required executing the query against

the MySQL backend.

There are two options you can set to configure the cache. These are

• mysql-query_cache_size_MB: The maximum size of the cache in

megabytes. This is a soft limit that is used by the purging thread to

decide how many queries to purge from the cache. So the memory

usage may temporarily be larger than the configured size. The default

is 256.

• mysql-query_cache_stores_empty_result: Whether result sets with

no rows are cached. The default is true. This can also be configured

per query in the query rules table.

You change the configuration similar to how you changed the administrator

password earlier. For example, to limit the query cache to 128 megabytes

ProxySQL> SET mysql-query_cache_size_MB = 128;

Query OK, 1 row affected (0.00 sec)

ProxySQL> SAVE MYSQL VARIABLES TO DISK;

Query OK, 121 rows affected (0.04 sec)

ProxySQL> LOAD MYSQL VARIABLES TO RUNTIME;

Query OK, 0 rows affected (0.00 sec)

This first prepares the configuration change, then saves it to disk, and finally loads

the MySQL variables into the runtime threads.

If you want to use ProxySQL, you are encouraged to consult the wiki on the ProxySQL

GitHub project at https://github.com/sysown/proxysql/wiki.

Chapter 27 CaChing

https://github.com/sysown/proxysql/wiki

944

 Caching Tips
If you decide to implement caching for your MySQL instances, there are a few things to

take into consideration. This section investigates some general caching tips.

The most important consideration is what to cache. The example earlier in this

chapter of caching the result of a single-row primary key lookup is not a good example of

the type of queries that benefit the most from caching. In general, the more complex and

expensive the query is and the more often the query is executed, the better a candidate

the query is. One thing that can make the caching more effective is to split complex

queries into smaller parts. That way you can cache the result of each part of the complex

query separately which makes it more likely to be reused.

You should also take into consideration how much data the query returns. If the

query returns a large result set, you may end up using all the memory you have made

available for caching for a single query.

Another consideration is where to have the cache. The closer you can place the

cache to the application, the more efficient it is as it reduces the time spent on network

communication. The downside is that if you have multiple application instances, you

will have to choose between duplicating the cache and having a remote shared cache.

The exception is if you need to use the cached data with other MySQL tables. In that

case, it may be better to keep the cache inside MySQL in the form of a cache table or

similar.

 Summary
This chapter has provided an overview of caching with MySQL. It started out describing

how caching is found everywhere from inside the CPUs to dedicated caching processes.

It was then discussed how you can use cache tables and histograms for caching inside

MySQL.

The two main sections discussed using Memcached and ProxySQL for caching.

Memcached is an in-memory key-value store that you can use from your application, or

you can use the special version included with MySQL that allows you to interact directly

with InnoDB. ProxySQL combines a router and caching mechanism which stores the

result sets transparently according to the query rules you have defined.

Chapter 27 CaChing

945

Finally, a few considerations regarding caching were covered. The more often you

execute a query, and the more expensive it is to execute, the more you benefit from

caching. The second consideration is that the closer you can place the cache to the

application, the better.

That concludes the last chapter of the journey through MySQL 8 query performance

tuning. Hopefully it has been a rewarding journey, and you feel ready to use the tools

and techniques in your work. Remember that the more you practice query tuning, the

better you become at it. Happy query tuning.

Chapter 27 CaChing

947
© Jesper Wisborg Krogh 2020
J. W. Krogh, MySQL 8 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-5584-1

Index

A
Access method

range, 459, 637
ALTER TABLE algorithm, 854–856
antijoin, 460
auto-increment, 857, 865, 868, 872–874,

876, 880, 881

B
Benchmark

tools
Database Factory, 24
DBT2, 23
DBT3, 23
DVD Store, 24
HammerDB, 24
iiBench, 24
Sysbench, 23–32

TPC benchmarks
TPC-C, 22–24
TPC-DI, 22
TPC-DS, 22
TPC-E, 22, 24
TPC-H, 22–24
TPC-VMS, 22

Best practice, 19–21, 128, 148, 336, 761–766
Blocked nested loop, 432–436
Build phase, 437
Build table, 437

C
Cache column, 920, 921
Cache table, 919–921
Cardinality, see Index cardinality
Character set

utf8mb3, 286
utf8mb4, 286, 289

Clustered index, 301–302, 336
Collation

UCA 9.0.0, 286, 287, 295
Common table expressions, 829–834
Configuration options

autocommit, 522, 692, 701, 704, 708,
735, 736

binlog_format, 913
binlog_group_commit_sync_delay,

908, 910
binlog_row_event_max_size, 910
binlog_row_image, 903
binlog_row_value_options, 289
binlog_transaction_dependency_

history_size, 908, 909
binlog_transaction_dependency_

tracking, 908–909
cte_max_recursion_depth, 376
eq_range_index_dive_limit, 387, 845,

848
foreign_key_checks, 690, 881, 882
histogram_generation_max_mem_

size, 399, 400

https://doi.org/10.1007/978-1-4842-5584-1

948

information_schema_stats_expiry,
129–131, 363, 372, 378, 379

innodb_adaptive_hash_index, 324, 857
innodb_adaptive_hash_index_parts, 690
innodb_autoinc_lock_mode, 510, 881
innodb_buffer_pool_dump_now, 774
innodb_buffer_pool_dump_pct,

769, 773, 774
innodb_buffer_pool_in_core_file, 770
innodb_buffer_pool_instances, 769, 773
innodb_buffer_pool_size, 773
innodb_concurrency_tickets, 689
innodb_deadlock_detect, 521
innodb_flush_log_at_timeout, 911
innodb_flush_log_at_trx_commit,

881, 882, 911
innodb_flush_method, 769, 778, 781
innodb_ft_aux_table, 115, 116, 120
innodb_ft_sort_pll_degree, 857
innodb_io_capacity, 769, 777, 778
innodb_io_capacity_max, 769, 777, 778
innodb_lock_wait_timeout, 516, 517, 740
innodb_log_buffer_size, 780
innodb_log_files_in_group, 780, 781
innodb_log_file_size, 780, 781
innodb_max_purge_lag, 686
innodb_max_purge_lag_delay, 686
innodb_monitor_disable, 123
innodb_monitor_enable, 123, 125
innodb_monitor_enable_locks, 532–533
innodb_monitor_reset, 123, 125
innodb_monitor_reset_all, 123, 125
innodb_old_blocks_pct, 769, 775, 777
innodb_old_blocks_time, 769, 775, 777
innodb_parallel_read_threads, 785, 786
innodb_print_all_deadlocks,

536, 745, 747, 748

innodb_purge_batch_size, 686
innodb_purge_threads, 686
innodb_rollback_on_timeout,

517, 521, 722
innodb_sort_buffer_size, 856
innodb_stats_auto_recalc,

353, 354, 378
innodb_stats_include_delete_marked,

353–355, 920
innodb_stats_method, 349, 849
innodb_stats_on_metadata, 362
innodb_stats_persistent, 352, 355
innodb_stats_persistent_sample_

pages, 350, 353, 354
innodb_stats_transient_sample_pages,

350, 362
innodb_status_output, 137, 532, 536
innodb_status_output_locks, 137, 138
innodb_thread_concurrency, 689
join_buffer_size, 434–437, 473, 474,

786, 787
key_buffer_size, 769
local_infile, 885
lock_wait_timeout, 515, 715
log_output, 154, 156
log_queries_not_using_indexes, 154
log_short_format, 154
log_slow_admin_statements, 154, 598
log_slow_extra, 155
log_slow_slave_statements, 155
log_throttle_queries_not_using_

indexes, 155
log_timestamps, 155
long_query_time, 155, 598
max_allowed_packet, 286
max_binlog_size, 766
max_digest_length, 95
max_execution_time, 722

Configuration options (cont.)

Index

949

metadata_locks, 725
min_examined_row_limit, 154
optimizer_prune_level, 422, 475, 476
optimizer_search_depth, 422, 473,

475, 476
optimizer_switch

batched_key_access, 454, 467
block_nested_loop on, 467
condition_fanout_filter, 457, 468
derived_merge, 457, 466, 468
duplicateweedout, 460, 468
engine_condition_pushdown,

457, 467
firstmatch, 460, 468
hash_join, 443, 467, 468
index_condition_pushdown,

458, 467
index_merge, 450, 467
index_merge_intersection, 450
index_merge_sort_union, 450, 467
index_merge_union, 450, 467
loosescan, 461, 468
materialization, 468, 636
mrr, 453, 467
mrr_cost_based, 453, 454, 467
semijoin, 468, 636
skip_scan, 461, 468
subquery_materialization_cost_

based, 462, 468
use_index_extensions, 458, 468
use_invisible_indexes, 332, 458, 468

optimizer_trace, 654, 655
optimizer_trace_limit, 654
performance-schema-consumer-

events-statements-history-long, 87
performance_schema_digests_size, 546
performance_schema_events_

statements_history_long_size, 543

performance_schema_events_
statements_history_size, 542, 659

performance-schema-instrument, 85
performance_schema_max_digest_

length, 95
performance_schema_max_digest_

sample_age, 547
print_identified_with_as_hex, 147
range_optimizer_max_mem_size, 459
read_rnd_buffer_size, 454, 473, 787
replicate-do-db, 912–913
replicate-do-table, 912
replicate-ignore-db, 912–913
replicate-ignore-table, 912
replicate-wild-do-table, 912
replicate-wild-ignore-table, 912
report_host, 145
report_port, 145
server_id, 145
server_uuid, 145
slave_checkpoint_group, 908
slave_checkpoint_period, 908
slave_compressed_protocol, 905
slave_parallel_type, 908–909
slave_parallel_workers, 898, 907, 908
slave_pending_jobs_size_max, 908
slave_preserve_commit_order, 908
slow_query_log, 155, 597
slow_query_log_file, 155
sort_buffer_size, 549, 787
sql_log_bin, 881, 882
sql_mode, 148
sql_require_primary_key, 301, 910
sync_binlog, 765, 766, 906, 911
sync_master_info, 906
sync_relay_log, 906–907
sync_relay_log_info, 907
temptable_max_ram, 788

Index

950

temptable_use_mmap, 788
time_zone, 284
transaction_isolation, 881
transaction_write_set_extraction,

908–909
unique_checks, 690, 881, 882

Covering index, 302, 309, 342–344, 809,
814–815

CPU usage, 338, 573, 593, 594, 795–796
CTE, see Common table expressions

D
Data types

hybrid
enum, 290, 291, 387
set, 290, 291

JSON
json, 287, 294

numeric
bigint, 279, 282, 294
bit, 282, 283, 291
bool (see Data types, numeric,

tinyint)
decimal, 282, 283
double, 282, 295
float, 282, 295
int, 282, 294
mediumint, 282
numeric (see Data types, numeric,

decimal)
smallint, 282
tinyint, 278, 282, 294

spatial
geometry, 290
geometrycollection, 290

linestring, 290
multilinestring, 290
multipoint, 290
multipolygon, 290
point, 290
polygon, 290

strings and binary Data
binary, 285
blob, 285
char, 285
longblob, 285
longtext, 285
mediumblob, 285
mediumtext, 285
text, 285
tinyblob, 285
tinytext, 285
varbinary, 285
varchar, 285

temporal
date, 283
datetime, 283
time, 283
timestamp, 283
year, 283

direct I/O, 5, 12
disk I/O, see file I/O

E
EER diagram, see MySQL Workbench,

EER Diagram
Error number

1040, 715
1099, 498
1100, 499
1205, 515, 516, 715

Configuration options (cont.)

Index

951

1206, 684
1213, 519, 566, 745
1227, 112
1267, 808
1739, 806
1845, 855
3058, 490
3130, 511
5011, 715
11958, 684
ER_ALTER_OPERATION_NOT_

SUPPORTED (see Error number,
1845)

ER_CANT_
AGGREGATE_2COLLATIONS
(see Error number, 1267)

ER_CON_COUNT_ERROR (see Error
number, 1040)

ER_LOCK_DEADLOCK (see Error
number, 1213)

ER_LOCK_TABLE_FULL (see Error
number, 1206)

ER_LOCK_WAIT_TIMEOUT
(see Error number, 1205)

ER_PLUGGABLE_PROTOCOL_
COMMAND_NOT_SUPPORTED
(see Error number, 3130)

ER_SPECIFIC_ACCESS_DENIED_
ERROR (see Error number, 1227)

ER_TABLE_NOT_LOCKED (see Error
number, 1100)

ER_TABLE_NOT_LOCKED_FOR_
WRITE (see Error number, 1099)

ER_USER_LOCK_DEADLOCK (see
Error number, 3058)

ER_WARN_INDEX_NOT_APPLICABLE
(see Error number, 1739)

EXPLAIN output
access type

ALL, 638–639, 799
const, 633
eq_ref, 633
fulltext, 635
index, 638
index_merge, 634–635
index_subquery, 636–637
range, 459, 637
ref, 634
ref_or_null, 634
system, 632
unique_subquery, 636

auto_key0, 335, 627
Extra column

End temporary, 460
FirstMatch, 460
Impossible HAVING, 642
Impossible WHERE, 641
Impossible WHERE noticed after

reading const tables, 641
LooseScan, 461
materialized_from_subquery, 461
no matching row in const table, 642
No tables used, 642
Range checked for each record

(index map: 0x1), 641
Recursive, 641
Select tables optimized away, 642
sort_union, 444, 450, 641
Start temporary, 460
Using filesort, 640
Using index, 302, 639
Using index condition, 458, 639
Using index for group-by, 459, 640
Using index for skip scan, 461, 642

Index

952

Using intersect, 444, 447, 641
Using join buffer (Batched Key

Access), 455, 640
Using join buffer (Block Nested

Loop), 640, 798
Using MRR, 453, 640
Using temporary, 641
Using union, 444, 448, 641
Using where, 640

filtered, 628, 820, 822–823, 826
functional_index, 812
JSON format

access_type, 627
attached_condition, 629
attached_subqueries, 630
cacheable, 626
cost_info, 628
dependent, 626
duplicates_removal, 460, 630
first_match, 460
grouping_operation, 629
index_condition, 458, 639
intersect, 444
key, 641
loosescan, 461, 468
materialized_from_subquery, 630
message, 628
nested_loop, 629
ordering_operation, 629
partitions, 627
query_block, 629
query_specifications, 630
range_checked_for_each_

record, 641
recursive, 641
rows_examined_per_scan, 628
rows_produced_per_join, 628

select_id, 626
sort_union, 444
table, 629
table_name, 627
union, 444
union_result, 630
used_columns, 629
used_key_parts, 627
using_filesort, 628, 640
using_index, 628, 639
using_index_for_group_by,

459, 640
using_index_for_skip_scan,

461, 642
using_join_buffer, 455, 640
Using MRR, 453
Using_MRR, 640
using_temporary_table, 628, 641
windowing, 630

select type
DELETE, 631
DEPENDENT DERIVED, 631
DEPENDENT SUBQUERY, 631
DEPENDENT UNION, 631
DERIVED, 631
INSERT, 631
MATERIALIZED, 461, 631
PRIMARY, 631
REPLACE, 631
SIMPLE, 631
SUBQUERY, 631
UNCACHEABLE

SUBQUERY, 631
UNCACHEABLE UNION, 631
UNION, 631
UNION RESULT, 631
UPDATE, 631

Extent, 870, 871, 890

EXPLAIN output (cont.)

Index

953

F
file I/O, 522, 561–565, 735
Filtering effect, 422–423, 457
Fsync, 778
FTS_DOC_ID, 316
Full table scan, 794–796
Functional index, 328–329, 809, 811, 816

G
GRACE hash join, see hash join
Group Replication, 893, 894, 902–903,

909, 911

H
hash join, 436–443
Histogram, 922–924

bucket, 389–390
cumulative frequency, 390–394
equi-height, 394–396, 404, 409–411
frequency, 393, 399, 409
singleton, 394–396, 398, 406–409

I
Index cardinality, 384
Index hint

FORCE INDEX, 474, 823
IGNORE INDEX, 431, 474, 823
USE INDEX, 474, 823

Index-organized table, 301, 336–338, 340
Index types

B+-tree (see Index types, B-tree)
B-tree, 298, 301, 303, 305, 312–314, 332
full text, 315–316
hash, 323–327
multi-valued, 318–323

R-tree (see Index types, spatial)
spatial, 316–318

Infimum record, 505
Information Schema

views
CHARACTER_SETS, 113, 134
CHECK_CONSTRAINTS, 115
COLLATION_CHARACTER_SET_

APPLICABILITY, 113
COLLATIONS, 113, 134, 287
COLUMN_PRIVILEGES, 126, 134
COLUMNS, 112, 114, 115, 134
COLUMN_STATISTICS, 115, 121,

399, 401, 403, 409, 922
ENGINES, 113, 134
EVENTS, 115, 134
FILES, 115
INNODB_BUFFER_PAGE, 122, 879
INNODB_BUFFER_PAGE_LRU, 122
INNODB_BUFFER_POOL_STATS,

122, 771, 772, 775
INNODB_CACHED_INDEXES, 122
INNODB_CMP, 122
INNODB_CMPMEM, 122
INNODB_CMPMEM_RESET, 122
INNODB_CMP_PER_INDEX, 122
INNODB_CMP_PER_INDEX_

RESET, 122
INNODB_CMP_RESET, 122
INNODB_COLUMNS, 115
INNODB_DATAFILES, 115, 116
INNODB_FIELDS, 115
INNODB_FOREIGN, 115
INNODB_FOREIGN_COLS, 115
INNODB_FT_BEING_DELETED, 115
INNODB_FT_CONFIG, 115, 121
INNODB_FT_DEFAULT_

STOPWORD, 113

Index

954

INNODB_FT_DELETED, 115
INNODB_FT_INDEX_CACHE, 116
INNODB_FT_INDEX_TABLE, 116
INNODB_INDEXES, 116
INNODB_METRICS, 112, 122–125,

324, 695–699, 782, 784
INNODB_SESSION_TEMP_

TABLESPACES, 122
INNODB_TABLES, 116
INNODB_TABLESPACES, 116
INNODB_TABLESPACES_BRIEF, 116
INNODB_TABLESTATS, 116, 370–372
INNODB_TEMP_TABLE_INFO, 116
INNODB_TRX, 123, 519, 699, 701,

721, 734
INNODB_VIRTUAL, 116
KEY_COLUMN_USAGE,

116, 118, 119
KEYWORDS, 113, 114
OPTIMIZER_TRACE, 123, 654, 655
PARAMETERS, 116
PARTITIONS, 116
PLUGINS, 114, 134
PROCESSLIST, 81, 83, 123, 134
PROFILING, 123, 134
REFERENTIAL_CONSTRAINTS, 116
RESOURCE_GROUPS, 114, 477
ROUTINES, 110, 117, 134
SCHEMA_PRIVILEGES, 126, 134
SCHEMATA, 117, 134
STATISTICS, 117, 121, 128, 130, 134,

308, 340, 363–366, 845, 848
ST_GEOMETRY_COLUMNS, 117
ST_SPATIAL_REFERENCE_

SYSTEMS, 114, 289
TABLE_CONSTRAINTS, 117
TABLE_PRIVILEGES, 126, 134

TABLES, 112, 117, 130, 134, 135,
349, 362, 372–377, 924

TABLESPACES, 117, 122
TRIGGERS, 117, 134, 135
USER_PRIVILEGES, 126, 134
VIEW_ROUTINE_USAGE, 117
VIEWS, 117, 134
VIEW_TABLE_USAGE, 117

InnoDB
adaptive hash indexes, 323, 324
buffer pool, 768–769
buffer pool hit rate, 770–772, 777
doublewrite buffer, 768, 779
history list length, 686, 694, 695, 697,

698
ib_buffer_pool file, 774
metrics

adaptive_hash_pages_added, 325
adaptive_hash_pages_removed, 325
adaptive_hash_rows_added, 325
adaptive_hash_rows_deleted_no_

hash_entry, 325
adaptive_hash_rows_removed, 325
adaptive_hash_rows_updated, 325
adaptive_hash_searches, 326
adaptive_hash_searches_btree, 326
cpu_n, 125
cpu_stime_abs, 124
cpu_stime_pct, 125
cpu_utime_abs, 124
cpu_utime_pct, 125
lock_deadlocks, 531, 532, 738, 745
lock_timeouts, 532, 738
log_lsn_current, 782
log_lsn_last_checkpoint, 782
module_cpu, 124
sampled_pages_read, 399
sampled_pages_skipped, 399

Information Schema (cont.)

Index

955

trx_active_transactions, 696, 698
trx_commits_insert_update, 695, 698
trx_nl_ro_commits, 695, 698
trx_on_log_no_waits, 696, 698
trx_on_log_wait_loops, 696, 698
trx_on_log_waits, 696, 698
trx_ro_commits, 695, 698
trx_rollback_active, 696, 698
trx_rollbacks, 695, 698
trx_rollbacks_savepoint, 696, 698
trx_rseg_current_size, 697, 698
trx_rseg_history_len, 697, 698
trx_rw_commits, 695, 698
trx_undo_slots_cached, 697, 698
trx_undo_slots_used, 697, 698

monitor, 133, 137, 324, 326, 532,
536, 693–694, 716, 748, 771, 775,
782, 784

BACKGROUND THREAD,
138, 326, 533

BUFFER POOL AND MEMORY,
122, 139, 772, 776

FILE I/O, 138
INDIVIDUAL BUFFER

POOL INFO, 139
INSERT BUFFER AND ADAPTIVE

HASH INDEX, 138, 327
LATEST DETECTED DEADLOCK,

138, 534, 535, 745, 747
LATEST FOREIGN KEY ERROR, 138
LOG, 138, 782
ROW OPERATIONS, 139
SEMAPHORES, 138, 326, 533
TRANSACTIONS, 138, 534, 536, 685

new blocks sublist, 767, 769, 773,
775, 777

old blocks sublist, 767, 769, 774–777
pages made young, 777

redo log, 765, 767, 777, 779–780
undo log, 685–687, 708
young-making rate, 776

innodb_memcache, 929, 930
InnoDB Memcached Plugin, 929–933
innodb_ruby, 858
I/O cache, 4, 12, 778, 779, 781, 918
I/O capacity, 573, 777, 778, 906
I/O latency, 572

J
join order, 311, 349, 386, 387, 415, 421,

422, 524

K
kmalloc, 4

L
Lifecycle, 3, 6–8, 10
Lock contention, 493, 515, 516, 521,

713–758
Locks

auto-increment lock, 510
backup Locks, 511–513
deadlock, 490, 517–521, 744–758
exclusive, 488, 498–500, 502, 505
flush lock, 492–494, 714–722
gap before record, 506, 752
gap lock, 505–507, 744, 753
insert intention lock, 507–509, 740, 752
intention exclusive, 499, 500, 504, 536
intention shared, 499–501
IS (see Locks, intention shared)
IX (see Locks, intention exclusive)
log lock, 513–514

Index

956

metadata lock, 494–498, 723–736
predicate lock, 505–507
record lock, 502–505, 736–744
S (see Locks, shared)
shared, 488, 498–500, 502, 523
table definition cache version lock,

493, 516, 716, 719, 720
table lock, 498–501
TDC version lock (see Locks, table

definition cache lock)
user-level lock, 489–492
X (see Locks, exclusive)

Lua language, 33

M
MEM, see also MySQL Enterprise Monitor

CPU usage, 168
file I/O, 190
memory usage, 168, 190

Memcached, 918, 924–933
MEMORY storage engine, 787
Memory usage, 83, 95, 137, 324, 338, 594,

788, 903
MySQL Enterprise Backup, 200
MySQL Enterprise Monitor

advisor, 189–193
Agent, 168, 169, 173, 174, 182, 186–190
configuration, 168, 176, 178, 181,

187, 191
database file I/O, 594
event, 190
InnoDB buffer pool, 595, 596
installation, 169–182
lock waits, 595
memory usage, 594
metrics, 190

processes, 595, 719
Query Analyzer, 190, 195–197,

587–592, 597
Service Manager, 167–169, 178–182,

186, 189
table statistics, 594
timeseries graphs, 193–195, 592–594
topology, 190
uninstall, 182
user statistics, 594

MySQL Installer, 200–206
MySQL programs

mysqlbinlog, 142–144
mysqlcheck, 378, 380–384
mysqldump, 220, 221, 686, 774, 875, 883
mysqldumpslow, 153, 160, 161, 163,

598, 599
mysqldumpslow.pl (see MySQL

programs, mysqldumpslow)
mysqlpump, 686, 774, 875, 880, 883
mysqlslap, 24

mysql schema
tables

engine_cost, 462, 485, 606
general_log, 384
gtid_executed, 81
innodb_index_stats, 356–358, 360,

361, 363, 372, 820
innodb_table_stats, 360–363
server_cost, 464, 485, 606
slave_master_info, 905
slave_relay_log_info, 907
slow_log, 384
user, 146

MySQL Shell
command-line arguments

--help, 233, 249
--js, 232

Locks (cont.)

Index

957

--py, 232
--sql, 232

commands
?, 233
connect, 231
js, 232
py, 232
reconnect, 231
show, 249–252
sql, 232
use, 230
watch, 250–252

connection, 229–232
environment variables

MYSQLSH_HOME, 237
MYSQLSH_PROMPT_THEME, 238
MYSQLSH_USER_CONFIG_

HOME, 247
PRODUCTION_SERVERS, 238, 241

files
init.js, 262
init.py, 262, 263, 265, 266
mysqlshrc.js, 246
mysqlshrc.py, 246–248

installation, 228
invoking, 228–229
methods

db.get_table(), 255
mysql.getClassicSession(), 231
mysql.get_classic_session(), 231
mysqlx.getSession(), 231
mysqlx.get_session(), 231
session.get_schema(), 253, 263, 266
shell.add_extension_object_

member(), 266
shell.create_extension_object(),

265, 266
shell.dump_rows(), 266, 270

shell.getSession(), 231
shell.get_session(), 231
shell.help(), 234
shell.register_global(), 265
shell.register_report(), 256
shell.reports.help(), 234
shell.setSession(), 231
shell.set_session(), 231
util.importTable(), 246, 884
util.import_table(), 246, 884–886

objects
db, 235
dba, 235
mysql, 235
mysqlx, 235
session, 235
shell, 235
util, 235

MySQL Workbench
client connections, 586, 718
connection, 216–217
EER Diagram, 223–226
execution plan (see MySQL

Workbench, Visual Explain)
installation, 199–216
performance reports, 583–586
Visual Explain, 218, 219, 412, 602, 605,

614, 618–625

N
Nested loop, 426–431

O
O_DIRECT

set direct I/O, 778
O_DIRECT_NO_FSYNC

set direct I/O, 778

Index

958

O_DSYNC, 778
Optimal join order, see join order
Optimization

Batched Key Access, 454–456, 467
BKA (see Optimization, Batched Key

Access)
condition filtering, 457
derived merge, 457
engine condition pushdown, 457
index condition pushdown, 457
index extensions, 458
index merge

Intersection, 444
Sort-Union, 444
Union, 444

index visibility, 458
loose index scan, 459
MRR (see Optimization, Multi- Range

Read)
Multi-Range Read, 452–454, 467, 470
range access method, 459, 637
semijoin

duplicate weedout, 460, 468
first match, 460, 468
loose scan, 460, 461, 468
materialization, 460, 468

skip scan, 461, 800
subquery materialization, 461–462

optimizer hints
BKA, 443, 454–456
BNL, 432, 470
HASH_JOIN, 432, 470
INDEX_MERGE, 451, 470
JOIN_FIXED_ORDER, 470
JOIN_ORDER, 470
JOIN_PREFIX, 470
JOIN_SUFFIX, 470
MAX_EXECUTION_TIME, 470, 722

MERGE, 470
MRR, 453, 470
NO_BKA, 455, 470
NO_BNL, 470
NO_HASH_JOIN, 470
NO_ICP, 458, 470
NO_INDEX_MERGE, 451, 470
NO_MERGE, 470
NO_MRR, 453, 470
NO_RANGE_OPTIMIZATION,

451, 459, 471
NO_SEMIJOIN, 471
NO_SKIP_SCAN, 461, 471
QB_NAME, 471
RESOURCE_GROUP, 471, 482
SEMIJOIN, 471
SET_VAR, 471, 473, 848
SUBQUERY, 471

O_SYNC, 778

P
Page split, 525, 869–871
Performance Schema

actor, 78, 94
consumer, 78, 85–87
digest, 78, 94–95
event, 78, 87–93
functions

FORMAT_BYTES(), 105–107
FORMAT_PICO_TIME(), 93
PS_CURRENT_

THREAD_ID(), 82
PS_THREAD_ID(), 82

instruments, 78, 83–85
error, 84
idle, 83, 84
memory/%, 84

Index

959

memory/temptable/physical_disk,
788, 790

memory/temptable/physical_ram,
769

stage/%, 84
stage/sql/altering

table, 85
stage/sql/statistics, 91
statement/%, 84
statement/sp/set, 661, 662
statement/sp/stmt, 84, 662, 663
statement/sql/call_procedure, 665
statement/sql/select, 84, 543
transaction, 84, 702–704, 710–711,

731–733
wait/%, 84
wait/io/file/%, 562
wait/io/file/innodb/innodb_data_

file, 563, 564
wait/io/file/innodb/innodb_log_

file, 562, 563
wait/io/file/sql/binlog, 561
wait/io/table/sql/handler, 562
wait/lock/metadata/sql/

mdl, 529, 725
wait/lock/table/sql/handler, 529
wait/synch/%, 85

NESTING_EVENT_ID,
660, 701, 734

NO_GOOD_INDEX_USED, 641
object, 78, 94
setup table, 78, 98
summary table, 78, 96
SUM_NO_GOOD_INDEX_USED, 546
tables

accounts, 94
clone_progress, 97
clone_status, 97

data_locks, 97, 490, 496, 499, 500,
502, 506, 512, 528, 532, 536, 568,
741, 748, 843

data_lock_waits, 97, 528, 568,
741, 748

events_errors_summary_by_
account_by_error, 566

events_errors_summary_by_host_
by_error, 566

events_errors_summary_by_
thread_by_error, 566

events_errors_summary_by_user_
by_error, 566

events_errors_summary_global_
by_error, 566

events_stages_current, 90
events_stages_history, 90
events_stages_history_long,

90, 666, 668, 674
events_statements_current,

90, 96, 542, 547, 568
events_statements_histogram_by_

digest, 95, 96, 543, 547
events_statements_histogram_

global, 96, 544, 551
events_statements_history, 90, 542,

659, 734, 754
events_statements_history_long,

87, 90, 99, 543, 547, 592, 665, 754
events_statements_summary_by_

account_by_event_name, 543
events_statements_summary_by_

digest, 87, 95, 96, 160, 339, 544,
547, 550, 553, 566, 568, 571, 576,
578, 587

events_statements_summary_
by_host_by_event_name,
543, 568

Index

960

events_statements_summary_by_
program, 543

events_statements_summary_by_
thread_by_event_name,
136, 137, 543

events_statements_summary_by_
user_by_event_name, 543, 569

events_statements_summary_
global_by_event_name,
136, 137, 543

events_transactions_current,
90, 699, 702, 706, 734

events_transactions_history, 90, 699
events_transactions_summary_by_

account_by_event_name, 709
events_transactions_summary_by_

host_by_event_name, 709
events_transactions_summary_by_

thread_by_event_name, 710
events_transactions_summary_by_

user_by_event_name, 710
events_transactions_summary_

global_by_event_name, 709, 710
events_waits_current, 90
events_waits_history, 90
events_waits_history_long, 90
events_waits_summary_global_by_

event_name, 561–564
file_summary_by_event_name, 562,

563, 574
file_summary_by_instance, 96, 562,

564, 572, 574
global_status, 136
global_variables, 136
host_cache, 96, 797
hosts, 96
keyring_keys, 97

log_status, 97, 136, 513, 901–902
memory_summary_by_thread_by_

event_name, 790
memory_summary_global_by_

event_name, 789
metadata_locks, 97, 490, 496, 499,

512, 529, 530, 568
performance_timers, 97
prepared_statements_instances,

96, 551, 553, 554
replication_applier_configuration,

136, 894, 898
replication_applier_filters,

136, 894, 898
replication_applier_global_filters,

136, 894, 898
replication_applier_status, 136, 894,

898–899
replication_applier_status_by_

coordinator, 136, 894, 898
replication_applier_status_by_

worker, 136, 894, 898–899
replication_connection_

configuration, 136, 894, 895, 905
replication_connection_status, 136,

894, 896
replication_group_members,

902–903
replication_group_member_stats,

902–903
session_account_connect_attrs, 96
session_connect_attrs, 96, 734
session_status, 136
session_variables, 136
setup_actors, 94, 98
setup_consumers, 85, 86, 98, 666
setup_instruments, 85, 96, 98, 666
setup_objects, 94, 98, 99

Performance Schema (cont.)

Index

961

setup_threads, 98
table_handles, 96, 529
table_io_waits_summary_by_

index_usage, 339, 555, 558, 559,
561, 572

table_io_waits_summary_by_table,
555, 557–559, 561, 572

threads, 96, 482, 544, 766
users, 96

thread, 78–82
thread names

NESTING_EVENT_ID, 91
NESTING_EVENT_TYPE, 91
thread/innodb/parallel_read_

thread, 766
thread/mysqlx/worker, 80
thread/sql/compress_gtid_table, 80

Primary key, 299–301, 857, 865–868,
871–877, 903, 907, 910

Probe input, 437
Probe phase, 437
ProxySQL, 918, 934–943
Pymemcache, 926, 927, 932

Q
Query cost, 423–426
Query state

Waiting for table flush, 493, 714,
718, 720

Waiting for table metadata lock,
495, 723

Queue, 841–844

R
random I/O, see file I/O
read-write transaction, 683, 710

Replication
applier thread, 890–891, 897–901
binary log, 891, 901, 902, 909
channel, 891–895, 898, 909
connection thread, 890–891, 894–897
I/O thread (see Replication, connection

thread)
multi-threaded (see Replication,

parallel)
Parallel, 894, 898, 900, 907–910
relay log, 891, 894, 897, 901–903,

906–907
Seconds_Behind_Master, 892
SQL thread (see Replication, applier

thread)
Resource group, 476–483
Row format, 303, 329

S
Secondary index, 301, 305, 310, 336, 853,

856, 875, 877–880
sequential I/O, see file I/O
SKIP LOCKED, 841–844
Spatial Reference System Identifier, 289
SQL conditions

IN, 460, 462, 473, 773
EXISTS, 460, 462, 828
OR, 773

SQL functions
BIN_TO_UUID(), 877
CONNECTION_ID(), 82
FORMAT_BYTES() (see Performance

Schema,
functions, FORMAT_BYTES())

FORMAT_PICO_TIME() (see
Performance Schema, functions,
FORMAT_PICO_TIME())

Index

962

GET_LOCK(), 489, 490
IS_FREE_LOCK(), 489
IS_USED_LOCK(), 489
JSON_CONTAINS(), 322, 323
JSON_OVERLAPS(), 322, 323
JSON_REMOVE(), 288
JSON_REPLACE(), 288
JSON_SET(), 288
JSON_TABLE(), 406, 409
LAG(), 409
MAX(), 342
MBRContains(), 317, 318
MIN(), 342
PS_CURRENT_THREAD_ID() (see

Performance Schema, functions,
PS_CURRENT_THREAD_ID())

PS_THREAD_ID() (see Performance
Schema,
functions, PS_THREAD_ID())

RELEASE_ALL_LOCKS(), 489
RELEASE_LOCK(), 489
STATEMENT_DIGEST(), 94, 95
STATEMENT_DIGEST_TEXT(), 94
UUID_TO_BIN(), 877

SQL mode
STRICT_ALL_TABLES, 276
STRICT_TRANS_TABLES,

276, 277
SQL operator

<=> (see SQL operator, NULL-safe
equal operator)

MEMBER OF, 322, 323
NULL-safe equal operator, 300

SQL statements
ALTER RESOURCE GROUP,

478, 480, 481
ALTER TABLE, 854

ANALYZE TABLE, 131, 371, 378–380,
396, 397, 400, 492, 823, 854

CHANGE MASTER TO, 897, 904,
905, 907

CHANGE REPLICATION FILTER,
912, 913

CHECK TABLE, 785
CREATE RESOURCE GROUP, 478, 480
DROP RESOURCE GROUP, 478, 480
DROP TABLE, 857, 884
EXPLAIN ANALYZE, 603–605, 799
EXPLAIN FOR CONNECTION, 604
FLUSH LOGS, 513
FLUSH OPTIMIZER_COSTS, 463, 465
FLUSH TABLES, 380, 492, 493, 498,

516, 529, 715, 716, 718
INSERT, 853, 865, 867, 875, 883
LOAD DATA, 883–886
LOCK INSTANCE FOR BACKUP,

511–513
LOCK TABLES, 498, 499, 724
OPTIMIZE TABLE, 496, 685, 854
SELECT … FOR SHARE, 499, 528
SELECT … FOR UPDATE, 499, 528, 842
SELECT … LOCK IN SHARE MODE

(see SQL statements, SELECT …
FOR SHARE)

SHOW BINARY LOGS, 139, 140, 151
SHOW BINLOG EVENTS, 140–142
SHOW CREATE USER, 146, 147, 151
SHOW ENGINE INNODB STATUS,

122, 133, 137, 533, 745, 771,
776, 784

SHOW ENGINE PERFORMANCE_
SCHEMA STATUS, 137

SHOW GRANTS, 126, 146, 147, 151
SHOW INDEX, 362, 366–370
SHOW MASTER STATUS, 136, 139

SQL functions (cont.)

Index

963

SHOW PROCESSLIST, 81, 83, 89,
123, 544

SHOW RELAYLOG EVENTS, 140, 142
SHOW SLAVE HOSTS, 145
SHOW SLAVE STATUS, 136, 139, 892
SHOW STATUS, 136
SHOW TABLE STATUS, 372, 377
SHOW VARIABLES, 136
SHOW WARNINGS, 146, 148, 151
UNLOCK INSTANCE, 511
UNLOCK TABLES, 498
WITH (see Common table expressions)
XA RECOVER, 701

SRID, see Spatial Reference System
Identifier

Stack, 3, 4
Status variables

Innodb_buffer_pool_read_requests, 770
Innodb_pages_read, 770
Innodb_row_lock_current_waits,

531, 738
Innodb_row_lock_time, 531, 738
Innodb_row_lock_time_avg, 531, 738
Innodb_row_lock_time_max, 531, 738
Innodb_row_lock_waits, 531, 738
Last_query_cost, 425
Performance_schema_digest_lost, 546

supremum record, 505
sys schema

functions
extract_schema_from_file_

name(), 109
extract_table_from_file_name(), 109
format_bytes(), 105–107
format_path(), 105, 107
format_statement(), 103–105, 107
format_time(), 93, 105–108
list_add(), 109

list_drop(), 109
ps_is_consumer_enabled(), 87
ps_setup_disable_thread(), 582
ps_setup_enable_thread(), 582
ps_thread_id(), 82
quote_identifier(), 109
sys_get_config(), 104
version_major(), 109
version_minor(), 109
version_patch(), 109

procedures
execute_prepared_stmt, 109
ps_trace_statement_digest(),

658, 674, 675
ps_trace_thread(), 92, 658, 659, 665,

668–670, 672, 681
statement_performance_analyzer(),

567, 576–578, 580
table_exists, 109

settings
debug, 582
diagnostics.allow_i_s_tables, 102
diagnostics.include_raw, 102
ignore_sys_config_triggers, 103
ps_thread_trx_info.max_length, 102
statement_performance_analyzer.

limit, 102, 582
statement_performance_analyzer.

view, 102, 582
statement_truncate_len, 103, 105

tables
sys_config, 102–104

views
host_summary_by_file_io,

573, 574
host_summary_by_file_io_type, 573
host_summary_by_statement_

latency, 568, 569

Index

964

host_summary_by_statement_
type, 568

innodb_lock_waits, 530, 568, 687,
736, 741, 748

io_by_thread_by_latency,
573, 574, 594

io_global_by_file_by_bytes, 574, 575
io_global_by_file_by_latency,

574, 594
io_global_by_wait_by_bytes, 574
io_global_by_wait_by_latency,

574, 594
memory_global_by_current_

bytes, 790
metrics, 531, 695–699, 719, 782, 796
processlist, 81, 595
schema_auto_increment_

columns, 873
schema_index_statistics, 339, 572
schema_redundant_indexes, 340
schema_table_lock_waits,

530, 595, 725
schema_table_statistics,

572, 573, 594
schema_table_statistics_with_

buffer, 572
schema_tables_with_full_table_

scans, 108, 338, 572
schema_unused_indexes, 339, 572
session, 81, 442, 568, 716, 718, 856,

865, 867
statement_analysis, 569, 570, 580
statements_with_errors_or_

warnings, 569
statements_with_full_table_scans,

339, 569, 573

statements_with_runtimes_
in_95th_percentile, 569

statements_with_sorting, 569
statements_with_temp_tables, 569
user_summary_by_file_io, 574
user_summary_by_file_io_

type, 574
user_summary_by_statement_

latency, 569
user_summary_by_statement_

type, 569
System variables, see Configuration

options

T
table I/O, 555–561
Table options

STATS_AUTO_RECALC, 355, 374, 378
STATS_PERSISTENT, 352, 355
STATS_SAMPLE_PAGES,

350, 355, 374
TempTable storage engine, 787
Test data

employees, 56, 67–72
GeoJSON, 72
sakila, 55, 56, 60–67
United States Geological Survey

(USGS), 72
Wikipedia, 72
world, 55–58
world_x, 55, 58–60

Time to live, 918, 934, 942
Transaction isolation level, 351–352, 354,

502, 506, 507, 521, 522, 524, 525,
684, 685, 689, 701

TTL, see Time to live

sys schema (cont.)

Index

965

U
Unbuffered, 769, 778
unique index, 299–300, 323, 335, 336, 338
UUID, 865–867, 875–877

V
Visual Explain, see MySQL Workbench,

Visual Explain

W, X, Y, Z
Window functions,

409, 835–837
wrong index,

129, 349, 815–825
wrong join order,

see join order

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: MySQL Performance Tuning
	Consider the Whole Stack
	Monitoring
	The Lifecycle of a Query
	Summary

	Chapter 2: Query Tuning Methodology
	Overview
	Verify the Problem
	Determine the Cause
	Determine the Solution
	Implement the Solution
	Work Proactively
	Summary

	Chapter 3: Benchmarking with Sysbench
	Best Practices
	Standard TPC Benchmarks
	Common Benchmarks Tools
	Sysbench Installation
	Executing Benchmarks
	Creating Custom Benchmarks
	Overview of the Custom Script
	Defining the Options
	The run Command
	The prepare Command
	The cleanup Command
	Registering Commands

	Summary

	Chapter 4: Test Data
	Downloading the Example Databases
	The world Database
	Schema
	Installation

	The world_x Database
	Schema
	Installation

	The sakila Database
	Schema
	Installation

	The employees Database
	Schema
	Installation

	Other Databases
	Summary

	Part II: Sources of Information
	Chapter 5: The Performance Schema
	Terminology
	Threads
	Instruments
	Consumers
	Events
	Event Types
	Event Scopes
	Event Nesting
	Event Properties

	Actors and Objects
	Digests
	Table Types
	Dynamic Configuration
	Summary

	Chapter 6: The sys Schema
	sys Schema Configuration
	Formatting Functions
	The Views
	Helper Functions and Procedures
	Summary

	Chapter 7: The Information Schema
	What Is the Information Schema?
	Privileges
	Views
	System Information
	Schema Information
	Performance Information
	Privilege Information

	Caching of Index Statistics Data
	Summary

	Chapter 8: SHOW Statements
	Relationship to the Information Schema
	Relationship to the Performance Schema
	Engine Status
	Replication and Binary Logs
	Listing Binary Logs
	Viewing Log Events
	Show Connected Replicas

	Miscellaneous Statements
	Summary

	Chapter 9: The Slow Query Log
	Configuration
	Log Events
	Aggregation
	Summary

	Part III: Tools
	Chapter 10: MySQL Enterprise Monitor
	Overview
	Installation
	Download
	Installation Process

	Starting and Stopping the Service Manager
	Microsoft Windows
	Linux

	Adding MySQL Instances
	The Graphical User Interface
	General Navigation
	Advisors
	Timeseries Graphs
	The Query Analyzer

	Summary

	Chapter 11: MySQL Workbench
	Installation
	Microsoft Windows
	Enterprise Linux 7
	Debian and Ubuntu

	Creating Connections
	Using MySQL Workbench
	Overview
	Configuration
	Safe Settings
	Reformatting Queries

	EER Diagrams
	Summary

	Chapter 12: MySQL Shell
	Overview
	Installing MySQL Shell
	Invoking MySQL Shell
	Creating Connections
	Language Modes
	Built-in Help
	Built-in Global Objects

	The Prompt
	Built-in Prompts
	Custom Prompt Definition
	Powerline and Awesome Fonts

	Using External Modules
	Reporting Infrastructure
	Report Information and Help
	Executing Reports
	Adding Your Own Reports

	Plugins
	Summary

	Part IV: Schema Considerations and the Query Optimizer
	Chapter 13: Data Types
	Why Data Types?
	Data Validation
	Documentation
	Optimized Storage
	Performance
	Correct Sorting

	MySQL Data Types
	Numeric Data Types
	Temporal Data Types
	String and Binary Data Types
	JSON Data Type
	Spatial Data Types
	Hybrid Data Types

	Performance
	Which Data Type Should You Choose?
	Summary

	Chapter 14: Indexes
	What Is an Index?
	Index Concepts
	Key Versus Index
	Unique Index
	Primary Key
	Secondary Indexes
	Clustered Index
	Covering Index

	Index Limitations
	SQL Syntax
	Creating Tables with Indexes
	Adding Indexes
	Removing Indexes

	What Are the Drawbacks of Indexes?
	Storage
	Updating the Index
	The Optimizer

	Index Types
	B-Tree Indexes
	Full Text Indexes
	Spatial Indexes (R-Tree)
	Multi-valued Indexes
	Hash Indexes

	Index Features
	Functional Indexes
	Prefix Indexes
	Invisible Indexes
	Descending Indexes
	Partitioning and Indexes
	Auto-generated Indexes

	InnoDB and Indexes
	The Clustered Index
	Secondary Indexes
	Recommendations
	Optimal Use Cases

	Index Strategies
	When Should You Add or Remove Indexes?
	Choice of the Primary Key
	Adding Secondary Indexes
	Multicolumn Index
	Covering Indexes

	Summary

	Chapter 15: Index Statistics
	What Are Index Statistics?
	InnoDB and Index Statistics
	How Statistics Are Collected
	Sample Pages
	Transaction Isolation Level
	Configuring Statistics Type

	Persistent Index Statistics
	Configuration
	Index Statistics Tables

	Transient Index Statistics
	Monitoring
	Information Schema STATISTICS View
	The SHOW INDEX Statement
	The Information Schema INNODB_TABLESTATS View
	The Information Schema TABLES View and SHOW TABLE STATUS

	Updating the Statistics
	Automatic Updates
	The ANALYZE TABLE Statement
	The mysqlcheck Program

	Summary

	Chapter 16: Histograms
	What Are Histograms?
	When Should You Add Histograms?
	Histogram Internals
	Buckets
	Cumulative Frequencies
	Histogram Types

	Adding and Maintaining Histograms
	Create and Update Histograms
	Sampling
	Dropping a Histogram

	Inspecting Histogram Data
	Histogram Reporting Examples
	List All Histograms
	List All Information for a Single Histogram
	List Bucket Information for a Singleton Histogram
	List Bucket Information for an Equi-height Histogram

	Query Example
	Summary

	Chapter 17: The Query Optimizer
	Transformations
	Cost-Based Optimization
	The Basics: Single Table SELECT
	Table Join Order
	Default Filtering Effects
	The Query Cost

	Join Algorithms
	Nested Loop
	Block Nested Loop
	Hash Join

	Join Optimizations
	Index Merge
	Intersection Algorithm
	Union Algorithm
	Sort-Union Algorithm
	Performance Considerations
	Configuration

	Multi-Range Read (MRR)
	Batched Key Access (BKA)
	Other Optimizations
	Condition Filtering
	Derived Merge
	Engine Condition Pushdown
	Index Condition Pushdown
	Index Extensions
	Index Visibility
	Loose Index Scan
	Range Access Method
	Semijoin
	Skip Scan
	Subquery Materialization

	Configuring the Optimizer
	Engine Costs
	Server Costs
	Optimizer Switches
	Optimizer Hints
	Index Hints
	Configuration Options

	Resource Groups
	Retrieving Information About Resource Groups
	Managing Resource Groups
	Assigning Resource Groups
	Performance Considerations

	Summary

	Chapter 18: Locking Theory and Monitoring
	Why Are Locks Needed?
	Lock Access Levels
	Lock Granularity
	User-Level Locks
	Flush Locks
	Metadata Locks
	Explicit Table Locks
	Implicit Table Locks
	Record Locks
	Gap Locks, Next-Key Locks, and Predicate Locks
	Insert Intention Locks
	Auto-increment Locks
	Backup Locks
	Log Locks

	Failure to Obtain Locks
	Metadata and Backup Lock Wait Timeouts
	InnoDB Lock Wait Timeouts
	Deadlocks

	Reduce Locking Issues
	Transaction Size and Age
	Indexes
	Record Access Order
	Transaction Isolation Levels
	Preemptive Locking

	Monitoring Locks
	The Performance Schema
	The sys Schema
	Status Counters and InnoDB Metrics
	InnoDB Lock Monitor and Deadlock Logging

	Summary

	Part V: Query Analysis
	Chapter 19: Finding Candidate Queries for Optimization
	The Performance Schema
	The Statement Event Tables
	Prepared Statements Summary
	Table I/O Summaries
	File I/O
	The Error Summary Tables

	The sys Schema
	Statement Views
	Table I/O Views
	File I/O Views
	Statement Performance Analyzer

	MySQL Workbench
	Performance Reports
	Client Connections Report

	MySQL Enterprise Monitor
	The Query Analyzer
	Timeseries Graphs
	Ad Hoc Reports

	The Slow Query Log
	Summary

	Chapter 20: Analyzing Queries
	EXPLAIN Usage
	Usage for Explicit Queries
	EXPLAIN ANALYZE
	Usage for Connections

	EXPLAIN Formats
	Traditional Format
	JSON Format
	Tree Format
	Visual Explain

	EXPLAIN Output
	EXPLAIN Fields
	Select Types
	Access Types
	system
	const
	eq_ref
	ref
	ref_or_null
	index_merge
	fulltext
	unique_subquery
	index_subquery
	range
	index
	ALL

	Extra Information

	EXPLAIN Examples
	Single Table, Table Scan
	Single Table, Index Access
	Two Tables and a Covering Index
	Multicolumn Index
	Two Tables with Subquery and Sorting

	Optimizer Trace
	Performance Schema Events Analysis
	Examining a Stored Procedure
	Analyzing Stage Events
	Analysis with the sys.ps_trace_thread() Procedure
	Analysis with the ps_trace_statement_digest() Procedure

	Summary

	Chapter 21: Transactions
	Impact of Transactions
	Locks
	Undo Logs

	INNODB_TRX
	InnoDB Monitor
	INNODB_METRICS and sys.metrics
	Performance Schema Transactions
	Transaction Events and Their Statements
	Transaction Summary Tables

	Summary

	Chapter 22: Diagnosing Lock Contention
	Flush Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention

	Metadata and Schema Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention

	Record-Level Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention

	Deadlocks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention

	Summary

	Part VI: Improving the Queries
	Chapter 23: Configuration
	Best Practices
	InnoDB Overview
	The InnoDB Buffer Pool
	The Buffer Pool Size
	Buffer Pool Instances
	Dumping the Buffer Pool
	The Old Blocks Sublist
	Flushing Pages

	The Redo Log
	Log Buffer
	Log Files

	Parallel Query Execution
	Query Buffers
	Internal Temporary Tables
	Summary

	Chapter 24: Change the Query Plan
	Test Data
	Symptoms of Excessive Full Table Scans
	Wrong Query
	No Index Used
	Not a Left Prefix of Index
	Data Types Not Matching
	Functional Dependencies

	Improving the Index Use
	Add a Covering Index
	Wrong Index
	Rewriting Complex Index Conditions

	Rewriting Complex Queries
	Common Table Expressions
	Window Functions
	Rewrite Subquery As Join
	Splitting a Query Into Parts

	Queue System: SKIP LOCKED
	Many OR or IN Conditions
	Summary

	Chapter 25: DDL and Bulk Data Load
	Schema Changes
	Algorithm
	Other Considerations
	Dropping or Truncating Tables

	General Data Load Considerations
	Insert in Primary Key Order
	Auto-increment Primary Key
	Inserting Existing Data
	UUID Primary Keys

	InnoDB Buffer Pool and Secondary Indexes
	Configuration
	Transactions and Load Method
	MySQL Shell Parallel Load Data
	Summary

	Chapter 26: Replication
	Replication Overview
	Monitoring
	Connection Tables
	Applier Tables
	Log Status
	Group Replication Tables

	The Connection
	Replication Events
	The Network
	Maintaining Source Info
	Writing the Relay Log

	The Applier
	Parallel Applier
	Primary Keys
	Relaxing Data Safety
	Replication Filters

	Offloading Work to a Replica
	Read Scale-Out
	Separation of Tasks

	Summary

	Chapter 27: Caching
	Caching Is Everywhere
	Caching Inside MySQL
	Cache Tables
	Histogram Statistics

	Memcached
	Standalone Memcached
	MySQL InnoDB Memcached Plugin

	ProxySQL
	Caching Tips
	Summary

	Index

