
Android Apps
Security

Sheran A. Gunasekera

Create apps that are safe from hacking,

attacks, and security breaches

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer .. xv

Acknowledgments .. xvii

Chapter 1: Android Architecture ■ .. 1

Chapter 2: Information: The Foundation of an App ■ .. 13

Chapter 3: Android Security Architecture ■ ... 31

Chapter 4: Concepts in Action – Part 1 ■ .. 47

Chapter 5: Data Storage and Cryptography ■ ... 55

Chapter 6: Talking to Web Apps ■ ... 87

Chapter 7: Security in the Enterprise ■ .. 121

Chapter 8: Concepts in Action: Part 2 ■ .. 137

Chapter 9: Publishing and Selling Your Apps ■ .. 163

Chapter 10: Malware and Spyware ■ ... 203

Appendix A: Android Permission Constants ... 213

Index ... 223

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Android Architecture

Google entered the mobile phone market in a style that only multibillion-dollar companies can

afford: it bought a company. In 2005, Google, Inc. purchased Android, Inc. At the time, Android

was relatively unknown, despite having four very successful people as its creators. Founded

by Andy Rubin, Rich Miner, Chris White, and Nick Sears in 2003, Android flew under the radar,

developing an operating system for mobile phones. With a quest to develop a smarter mobile

phone that was more aware of its owner’s preferences, the team behind the Android operating

system toiled away in secrecy. Admitting only that they were developing software for mobile

phones, the team remained quiet about the true nature of the Android operating system until the

acquisition in 2005.

With the full might of Google’s resources behind it, Android development increased at a rapid

pace. By the second quarter of 2011, Android had already captured nearly a 50% market share

in mobile phone operating systems shipped to end users. The four founders stayed on after the

acquisition, with Rubin taking the lead as Senior Vice President of Mobile. The official launch of

version 1.0 of Android took place on September 23, 2008, and the first device to run it was the

HTC Dream (see Figure 1-1).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Architecture2

One of the unique features of the Android operating system that has allowed it to grow

rapidly has been that the binaries and source code are released as open source software.

You can download the entire source code of the Android operating system, and it takes up

approximately 2.6 GB of disk space. In theory, this allows anyone to design and build a phone

that runs Android. The idea of keeping the software open source was followed until version

3.0. Versions of Android including and higher than 3.0 are still closed source. In an interview

given to Bloomberg Businessweek, Rubin said that the version 3.x code base took many

shortcuts to ensure it was released to market quickly and worked with very specific hardware.

If other hardware vendors adopted this version of Android, then the chances for a negative user

experience would be a possibility, and Google wished to avoid this.1

Components of the Android Architecture
The Android architecture is divided into the following four main components (see Figure 1-2):

1. The kernel

2. The libraries and Dalvik virtual machine

3. The application framework

4. The applications

Figure 1-1. An HTC Dream (Courtesy Michael Oryl)

1 Bloomberg Businessweek, “Google Holds Honeycomb Tight,” Ashlee Vance and Brad Stone,

www.businessweek.com/technology/content/mar2011/tc20110324_269784.htm, March 24, 2011.

www.allitebooks.com

http://www.businessweek.com/technology/content/mar2011/tc20110324_269784.htm
http://www.allitebooks.org

CHAPTER 1: Android Architecture

3

The Kernel
Android runs on top of a Linux 2.6 kernel. The kernel is the first layer of software that interacts

with the device hardware. Similar to a desktop computer running Linux, the Android kernel will

take care of power and memory management, device drivers, process management, networking,

and security. The Android kernel is available at http://android.git.kernel.org/.

Modifying and building a new kernel is not something you will want to consider as an application

developer. Generally, only hardware or device manufacturers will want to modify the kernel to

ensure that the operating system works with their particular type of hardware.

Application

Layer

Frameworks

Layer

Runtime

Layer

Kernel

Layer

App0

Activity

Manager

Window

Manager

Package

Manager

Surface

Manager

Media

Framework
SQLite

Core

Libraries

Dalvik Virtual

Machine (DVM)

OpenGL/ES FreeType WebKit

SGL SSL libc

Display

Driver

Mouse

Driver

Ethernet

Driver

USB

Driver

Keyboard

Driver

C, C++, Native Code Java

= Linux Kernel

= Libraries

= Android Runtime

= Android Frameworks

= Applications

WiFi

Driver

Hardware

Binder (IPC)

Driver

Power

Management

Flash Memory

Driver

Audio

Drivers

Resource

Manager

XMPP

Service

Content

Providers

View

System

Notification

Manager

App1 App2 App3 App4

Figure 1-2. The Android architecture

www.allitebooks.com

http://android.git.kernel.org/
http://www.allitebooks.org

CHAPTER 1: Android Architecture4

The Libraries
The libraries component also shares its space with the runtime component. The libraries

component acts as a translation layer between the kernel and the application framework. The

libraries are written in C/C++ but are exposed to developers through a Java API. Developers can

use the Java application framework to access the underlying core C/C++ libraries. Some of the

core libraries include the following:

	LibWebCore: Allows access to the web browser.

	Media libraries: Allows access to popular audio- and video-recording and

playback functions.

	Graphics libraries: Allows access to 2D and 3D graphics drawing engines.

The runtime component consists of the Dalvik virtual machine that will interact with and run

applications. The virtual machine is an important part of the Android operating system and

executes system and third-party applications.

The Dalvik Virtual Machine
Dan Bornstein originally wrote the Dalvik virtual machine. He named it after a small fishing village

in Iceland where he believed one of his ancestors once originated. The Dalvik VM was written

primarily to allow application execution on devices with very limited resources. Typically, mobile

phones will fall into this category because they are limited by processing power, the amount of

memory available, and a short battery life.

WHAT IS A VIRTUAL MACHINE?

A virtual machine is an isolated, guest operating system running within another host operating system. A virtual

machine will execute applications as if they were running on a physical machine. One of the main advantages of a

virtual machine is portability. Regardless of the underlying hardware, the code that you write will work on the VM. To

you as a developer, this means that you write your code only once and can execute it on any hardware platform that

runs a compatible VM.

The Dalvik VM executes .dex files. A .dex file is made by taking the compiled Java .class or .jar

files and consolidating all the constants and data within each .class file into a shared constant

pool (see Figure 1-3). The dx tool, included in the Android SDK, performs this conversion. After

conversion, .dex files have a significantly smaller file size, as shown in Table 1-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Architecture

5

The Application Framework
The application framework is one of the building blocks for the final system or end-user

applications. The framework provides a suite of services or systems that a developer will find

useful when writing applications. Commonly referred to as the API (application programming

interface) component, this framework will provide a developer with access to user interface

components such as buttons and text boxes, common content providers so that apps may

share data between them, a notification manager so that device owners can be alerted of

events, and an activity manager for managing the lifecycle of applications.

As a developer, you will write code and use the APIs in the Java programming language. Listing 1-1,

taken from Google’s sample API demos (http://developer.android.com/resources/samples/
ApiDemos/index.html), demonstrates how to use the application framework to play a video file. The

import statements in bold allow access to the core C/C++ libraries through a Java API.

.jar file

.class file

.dex file

.class file

heterogeneous

constant pool

heterogeneous

constant pool

other data

string_ids

constant pool

type_ids

constant pool

proto_ids

constant pool

field_ids

constant pool

method_ids

constant pool
other data

.class file

heterogeneous

constant pool

other data

other data

Figure 1-3. Conversion of a .jar file to a .dex file

Table 1-1. A File Size Comparison (in Bytes) of .jar and .dex Files

Application Uncompressed .jar Compressed .jar Uncompressed .dex

Common system

libraries

21445320 = 100% 10662048 = 50% 10311972 = 48%

Web browser app 470312 = 100% 232065 = 49% 209248 = 44%

Alarm clock app 119200 = 100% 61658 = 52% 53020 = 44%

www.allitebooks.com

http://developer.android.com/resources/samples/ApiDemos/index.html
http://developer.android.com/resources/samples/ApiDemos/index.html
http://www.allitebooks.org

CHAPTER 1: Android Architecture6

Listing 1-1. A Video Player Demo (Courtesy Google, Inc.)

/*

 * Copyright (C) 2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.example.android.apis.media;

import com.example.android.apis.R;
import android.app.Activity;
import android.os.Bundle;
import android.widget.MediaController;
import android.widget.Toast;
import android.widget.VideoView;

public class VideoViewDemo extends Activity {

 /**
 * TODO: Set the path variable to a streaming video URL or a local media
 * file path.
 */
 private String path = "";
 private VideoView mVideoView;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.videoview);
 mVideoView = (VideoView) findViewById(R.id.surface_view);

 if (path == "") {
 // Tell the user to provide a media file URL/path.
 Toast.makeText(
 VideoViewDemo.this,
 "Please edit VideoViewDemo Activity, and set path"
 + " variable to your media file URL/path",
 Toast.LENGTH_LONG).show();

 } else {

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Architecture

7

 /*
 * Alternatively,for streaming media you can use
 * mVideoView.setVideoURI(Uri.parse(URLstring));
 */
 mVideoView.setVideoPath(path);
 mVideoView.setMediaController(new MediaController(this));
 mVideoView.requestFocus();

 }
 }
}

The Applications
The application component of the Android operating system is the closest to the end user. This

is where the Contacts, Phone, Messaging, and Angry Birds apps live. As a developer, your

finished product will execute in this space by using the API libraries and the Dalvik VM. In this

book, we will extensively look at this component of the Android operating system.

Even though every component of the Android operating system can be modified, you will only

have direct control over your own application’s security. This does not, however, give you free

rein to ignore what happens if the device is compromised with a kernel or VM exploit. Ensuring

your application does not fall victim to an attack because of an unrelated exploit is also your

responsibility.

What This Book Is About
Now that you’ve got an overall understanding of the Android architecture, let’s turn to what

you will not learn in this book. First, you are not going to learn how to develop Android

apps from scratch in this book. You will see many examples and source code listings;

and while I will explain each section of code, you might have additional questions that

you might not find answered in this book. You are required to have a certain degree of

experience and skill at writing Java applications for the Android platform. I also assume

that you have already setup your Android development environment using the Eclipse IDE.

In this book, I will focus on how you can develop more secure applications for the Android

operating system.

Android has had its fair share of security setbacks and a burgeoning list of malware that is worth

examining and learning from. Armed with where to look and how to tackle security aspects of

developing for Android will not necessarily make you a better coder, but it will start you on your

way to becoming more responsible with your end users’ privacy and security.

I’ve tried to write this book in a manner that will help you understand the concepts of security in

relation to the applications you develop. In most cases, the best way I find I can achieve this is

by teaching through example. Therefore, you will usually find me asking you to write and execute

source code listings first. I will then follow up with an explanation of the specific concept that we

are covering. With this in mind, let’s take a look at some of the security controls available on the

Android operating system.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Architecture8

Security
Security isn’t a dirty word, Blackadder!

—General Melchett, Blackadder IV

Security is a vast subject and is applicable to many areas depending on what context it is taken

in. I wrote this book to cover a small component of a small component of security. It is written to

give you a good understanding of Android application security. However, what does that really

mean? What are we trying to secure? Who will benefit from this? Why is it important? Let’s try to

answer those questions and possibly come up with a few new ones.

First, let’s identify who you really are. Are you a developer? Maybe you’re a security practitioner

conducting research. Alternatively, maybe you’re an end user interested in safeguarding yourself

from an attack. I’d like to think that I fit into each of these categories. No doubt, you will fit into

one or more of them. The vast majority, however, will fit into one category: an end user who

wants to use the features of a well-written application in a manner that does not compromise her

privacy and security. If you’re a developer, and I’m guessing you are if you’ve picked this book

up, this is your target audience: the end user. You write applications to distribute to your users.

You may choose to sell them or give them away for free. Either way, you are writing applications

that will end up installed on someone else’s device, possibly thousands of miles away.

Protect Your User
Your application should strive to provide the best functionality possible while taking care to

protect your users’ data. This means thinking about security before you begin development.

Your user might not always know about the security practices you employ “under the hood” of

your application, but one breach in your application is all it will take to ensure that all his Twitter

and Facebook followers find out. Planning and thinking about security prior to the development

phase of your application can save you the embarrassment of bad reviews and the loss of

paying customers. The end user is almost never quick to forgive or forget.

As we go along, you will learn principles and techniques to identify sensitive user data and

create a plan to protect this data. The goal is to eliminate or vastly reduce any unintentional harm

your application could cause. So, what are you really protecting the end user from?

Security Risks
Mobile device users face some unique risks when compared with desktop computer users.

Aside from the higher possibility of losing or having their device stolen, mobile device users risk

losing sensitive data or having their privacy compromised. Why would this be different from

desktop users? First, the quality of data stored on a user’s mobile device tends to be more

personal. Apart from e-mail, there are instant messages, SMS/MMS, contacts, photos, and

voicemail. “So what?” you say. “Some of these things exist on a desktop computer.” True, but

consider this: The data on your mobile device is most likely going to be of higher value than that

CHAPTER 1: Android Architecture 9

on your desktop because you carry it around with you all the time. It is a converged platform

of both your computer and mobile phone that contains a richer collection of personal data.

Because the level of user interaction is higher on the smartphone, the data is always newer than

on your desktop computer. Even if you have configured real-time sync to a remote location, that

still only protects you from a loss of data and not a loss of privacy.

Consider also that the format of data stored on mobile devices is fixed. Every phone will have

SMS/MMS, contacts, and voicemail. Phones that are more powerful will have photos, videos,

GPS locations, and e-mail, but all of it is common regardless of the operating system. Now

consider how important all of this information is to an end user. To a user who has no backups,

losing data of this nature can be unthinkable. Losing important phone numbers, precious

moments of her daughter’s first steps caught on video, or important SMS messages can be

catastrophic to the everyday phone user.

What about the user who combines both business and personal activities on his phone? What

would you do if someone copied an entire file of passwords for your office server farm from your

phone? Or if an e-mail containing trade secrets and confidential pricing for proposals leaked out

onto the Internet? What if you lost the address of your child’s school? Consider a stalker gaining

access to this information and more, such as your home address and phone number.

It is clear when you think about it that the data stored on the phone is, in most cases, far more

valuable than that of the device itself. The most dangerous type of attack is the one that takes

place silently and remotely; an attacker does not need physical access to your phone. These

types of attacks can happen at any time and can often happen because of weak security

elsewhere on the device. These lapses in security might not be because your application is

insecure. They could be due to a bug in the kernel or web browser. The question is this: can your

application protect its data from attackers even when they gain access to the device through

different routes?

Android Security Architecture
As we discussed previously, Android runs on top of the Linux 2.6 kernel. We also learned that

the Android Linux kernel handles security management for the operating system. Let’s take a

look at the Android Security Architecture.

Privilege Separation
The Android kernel implements a privilege separation model when it comes to executing

applications. This means that, like on a UNIX system, the Android operating system requires

every application to run with its own user identifier (uid) and group identifier (gid).

Parts of the system architecture themselves are separated in this fashion. This ensures that

applications or processes have no permissions to access other applications or processes.

CHAPTER 1: Android Architecture10

Privilege separation is an important security feature because it denies one of the more common types of attacks.

In many cases, the first attack that is performed is not the most effective one. It is usually the stepping-stone or

gateway to a bigger attack. Often, attackers will exploit one component of a system first; and once there, they will try

to attack a more important component in the system. If both these components are running with the same privileges,

then it is a very trivial task for the attacker to hop from one component to the next. By separating privileges,

the attacker’s task becomes more difficult. He has to be able to escalate or change his privileges to that of the

component he wishes to attack. In this manner, the attack is stopped, if not slowed.

Because the kernel implements privilege separation, it is one of the core design features of

Android. The philosophy behind this design is to ensure that no application can read or write

to code or data of other applications, the device user, or the operating system itself. Thus, an

application might not be able to arbitrarily use the device’s networking stack to connect to

remote servers. One application might not read directly from the device’s contact list or calendar.

This feature is also known as sandboxing. After two processes have run in their own sandboxes,

the only way they have to communicate with each other is to explicitly request permission to

access data.

Permissions
Let’s take a simple example. We have an application that records audio from the built-in

microphone of the device. For this application to work correctly, the developer has to make sure

to add a request for the RECORD_AUDIO permission in the application’s AndroidManifest.xml file.

This allows our application to request permission to use the system component that handles

audio recording. But who decides whether to grant or deny access? Android allows the end user

to perform this final approval process. When the user installs our application, he is prompted

with the screen shown in Figure 1-4. It is worthwhile to note that no prompt for permissions will

take place when the application is executing. Instead, the permission will need to be granted at

install time.

If we do not explicitly set our need for the RECORD_AUDIO permission, or if the device owner does

not grant us the permission after we request it, then an exception will be thrown by the VM and

the application will fail. It is up to the developer to know to request the permission and handle

the scenario where permission is not granted by catching the relevant exception. To request this

permission, the following tag must be included in the AndroidManifest.xml file of the project:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

The full list of permissions is given in this book’s appendix.

WHAT IS PRIVILEGE SEPARATION?

CHAPTER 1: Android Architecture

11

Application Code Signing
Any application that is to run on the Android operating system must be signed. Android uses

the certificate of individual developers in order to identify them and establish trust relationships

among the various applications running in the operating system. The operating system will

not allow an unsigned application to execute. The use of a certification authority to sign the

certificate is not required, and Android will happily run any application that has been signed with

a self-signed certificate.

Like permissions checks, the certificate check is done only during installation of the application.

Therefore, if your developer certificate expires after your application is installed on the device,

then the application will continue to execute. The only difference at this point would be that you

would need to generate a new certificate before you could sign any new applications. Android

requires two separate certificates for debug versions of your application and release versions

of your application. Generally, the Eclipse environment running the Android Development

Tools (ADT) is already setup to help you generate your keys and install your certificate, so

that your applications can be automatically packaged and signed. The Android emulator

behaves identically to the physical device. Like the physical device, it will only execute signed

applications. We will cover application code signing in detail, as well as publishing and selling

your applications online.

Figure 1-4. The Android permissions request screen

CHAPTER 1: Android Architecture12

Summary
As we’ve seen so far, Android received a tremendous boost in resources and attention thanks

to Google’s takeover of Android. This same care and attention has helped propel Android to

one of the most rapidly growing smartphone operating systems in the world today. Android’s

open source model has helped its numbers grow, mainly because many different hardware

manufacturers can use the operating system on their phones.

We’ve also seen that the core of Android is based on the Linux kernel. The kernel’s two main

tasks are (1) to serve as a bridge between hardware and operating system, and (2) to handle

security, memory management, process management, and networking. The kernel is usually

one of the main components that will be modified when different hardware manufacturers start

adopting Android to work with their hardware.

The next layer that goes around the Android kernel is the runtime layer that comprises the core

libraries and the Dalvik virtual machine. The Dalvik VM is a fundamental part of executing your

applications on the Android platform. As you will see in the following chapters, the Dalvik VM

has some unique features when it comes to executing applications securely and efficiently in a

resource-constrained environment.

The next upper layers to be added are the frameworks and applications, respectively. You can

think of the framework layer as yet another bridge between the Java API and the native code

and system processes running below. This is where all the Android Java APIs live. Any libraries

that you wish to import in your program are imported from here. The applications layer is

where your applications will finally live and work. You will share this space with other developer

applications and Android’s bundled applications such as the Phone, Calendar, E-mail, and

Messaging applications.

We then looked briefly at the security risks, how you have the responsibility to protect your end

user, and some of the ways in which Android facilitates this. The three areas we looked at were

privilege separation, permissions, and application code signing. In the next chapters, we will

explore what you can do to not only make use of these features, but also add in your own levels

of security and end-user protection.

13

Chapter 2
Information: The Foundation

of an App

The basis of all meaningful applications is information, and we design and build applications

to exchange, create, or store it. Mobile applications are no different. In today’s well-connected

mobile landscape, information exchange is the name of the game. To illustrate this point,

imagine an Android phone without mobile network or WiFi coverage. While there would still be

uses for such a phone, you would have lost access to some of the more important applications

on your device. For example, e-mail, instant messaging, web browsing, and any other

application that require the Internet would now be nonfunctional.

In later chapters, we will focus our efforts on examining information in transit and how to secure

it. In this chapter, we will focus mostly on what happens to information that is stored.

Securing Your Application from Attacks
When created or received, data needs to be stored somewhere. How this information is stored

will ultimately reflect on how secure your application really is. Releasing your application to the

public should be approached with the same caution and paranoia as launching a website on the

Internet. You should assume that your application will be either directly or indirectly attacked at

some time and that the only thing standing between your end user’s privacy and data protection

is your application.

Indirect Attacks
As dramatic as that last sentence sounds, it is not without basis. Before we go further, let’s take

a look at whether my fear mongering is justified. In the latter part of 2010 and early 2011, two

vulnerabilities were discovered in Android versions 2.2 and 2.3, respectively. The vulnerability is

essentially the same one, in which an attacker can copy any file that is stored on the device’s SD

CHAPTER 2: Information: The Foundation of an App14

Card without permission or even without a visible cue that this is happening. The vulnerability

works as shown in Figure 2-1.

The following are the most noteworthy points:

1. A user visits a malicious website hosting a file, such as evil.html.

2. Due to one part of the vulnerability, the evil.html file is downloaded and

saved to the device SD Card without prompting the user.

3. Due to another part of the vulnerability, the saved file can be made to

execute JavaScript code as soon as it is saved. Once again, there is no

prompt to the end user.

4. Due to the final part of this vulnerability, the executed JavaScript from

the preceding point, because it is running under the “local” context of the

device, will have full access to upload files stored on the SD Card to a

website of the attacker’s choosing.

For the sake of argument, assume that your application writes all saved information to the SD

Card for storage under its own directory. Because of the vulnerability just discussed, the data

used by your application is at risk of being stolen. Any Android device that runs your application

and the vulnerable firmware versions poses a risk of data theft to its end user. This is an example

of an indirect attack on your application.

How vulnerable your application is to an indirect attack depends largely on how much effort you

put into architecting and considering security aspects before you begin writing a single line of

code. You may ask the question, “I’m just a small app developer planning to sell my app for a

low price online, so do I really need to waste time doing so much planning beforehand?” And I

would answer you with a resounding, “Yes!” Whether you are part of a team of thirty developers

or an individual working from home, a well-architected application is something you should

always strive to create. I hope that this is what you will learn from this book.

Malicious

Page

evil.html

auto saved

to SDCard.

.js

javascript

executed.

Full access

to SDCard.

No

prompt

SD

Figure 2-1. Data theft vulnerabilities

CHAPTER 2: Information: The Foundation of an App

15

Direct Attacks
Direct attacks are significantly different and can take many different forms. A direct attack can

be classified as one that is targeted directly at your application. Thus, the attacker is looking to

leverage weaknesses in your application design to either collect sensitive information on your

application’s users or to attack the server that your application talks to. Take, for instance, a

mobile-banking application. An attacker may go after the mobile applications belonging to a

specific bank. If the application design is weak—for example, if that sensitive user data is stored

in clear text, or the communication between application and server is not secured by SSL—then

an attacker can craft special attacks that only target these weaknesses. This is a direct attack on

a specific application. I will cover direct attacks in more detail in Chapter 9 of this book.

Project 1:“Proxim” and Data Storage
Let’s get started with a simple example called Proxim. I’ve been contracted to write an

application that can send an SMS to specific, defined contacts when a user is within certain

proximity to a set of GPS coordinates. For instance, with this application, a user can add his

wife as a contact and have the application SMS her every time he is within three miles of his

workplace and house. This way, she knows when he is close to home and the office.

You can download and examine the entire source code for the Proxim application from the

Source Code/Download area of the Apress website (www.apress.com). For the sake of clarity, let’s

take a look at the most important areas.

The data-storage routine is shown in Listing 2-1.

Listing 2-1. The Save Routine, SaveController. java

package net.zenconsult.android.controller;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Location;
import android.content.Context;
import android.os.Environment;
import android.util.Log;

public class SaveController {
 private static final String TAG = "SaveController";

 public static void saveContact(Context context, Contact contact) {
 if (isReadWrite()) {
 try {
File outputFile = new File(context.getExternalFilesDir(null),contact.getFirstName());
FileOutputStream outputStream = new FileOutputStream(outputFile);
 outputStream.write(contact.getBytes());
 outputStream.close();

http://www.apress.com

CHAPTER 2: Information: The Foundation of an App16

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

 public static void saveLocation(Context context, Location location) {
 if (isReadWrite()) {
 try {
File outputFile = new File(context.getExternalFilesDir(null),location.getIdentifier());
FileOutputStream outputStream = new FileOutputStream(outputFile);
 outputStream.write(location.getBytes());
 outputStream.close();

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

 private static boolean isReadOnly() {
 Log.e(TAG,Environment
 .getExternalStorageState());
 return Environment.MEDIA_MOUNTED_READ_ONLY.equals(Environment
 .getExternalStorageState());
 }

 private static boolean isReadWrite() {
 Log.e(TAG,Environment
 .getExternalStorageState());

 return Environment.MEDIA_MOUNTED.equals(Environment
 .getExternalStorageState());
 }
}

Each time a user selects the Save Location button or the Save Contact button, it triggers the

preceding code. Let’s take a look at the Location (see Listing 2-2) and Contact (see Listing

2-3) classes in more detail. While we could implement one main save routine, I am keeping it

separate in case there is a need to act on different objects in a different manner.

CHAPTER 2: Information: The Foundation of an App

17

Listing 2-2. The Location Class, Location.java

package net.zenconsult.android.model;

publicclass Location {
 private String identifier;
 privatedouble latitude;
 privatedouble longitude;

 public Location() {

 }

 publicdouble getLatitude() {
 return latitude;
 }

 publicvoid setLatitude(double latitude) {
 this.latitude = latitude;
 }

 publicdouble getLongitude() {
 return longitude;
 }

 publicvoid setLongitude(double longitude) {
 this.longitude = longitude;
 }

 publicvoid setIdentifier(String identifier) {
 this.identifier = identifier;
 }

 public String getIdentifier() {
 return identifier;
 }

 public String toString() {
 StringBuilder ret = new StringBuilder();
 ret.append(getIdentifier());
 ret.append(String.valueOf(getLatitude()));
 ret.append(String.valueOf(getLongitude()));
 return ret.toString();
 }

 publicbyte[] getBytes() {
 return toString().getBytes();
 }

}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Information: The Foundation of an App18

Listing 2-3. The Contact Class, Contact.java

package net.zenconsult.android.model;

publicclass Contact {
 private String firstName;
 private String lastName;
 private String address1;
 private String address2;
 private String email;
 private String phone;

 public Contact() {

 }

 public String getFirstName() {
 return firstName;
 }

 publicvoid setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 publicvoid setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getAddress1() {
 return address1;
 }

 publicvoid setAddress1(String address1) {
 this.address1 = address1;
 }

 public String getAddress2() {
 return address2;
 }

 publicvoid setAddress2(String address2) {
 this.address2 = address2;
 }

 public String getEmail() {
 return email;
 }

CHAPTER 2: Information: The Foundation of an App 19

 publicvoid setEmail(String email) {
 this.email = email;
 }

 public String getPhone() {
 return phone;
 }

 publicvoid setPhone(String phone) {
 this.phone = phone;
 }

 public String toString() {
 StringBuilder ret = new StringBuilder();
 ret.append(getFirstName() + "|");
 ret.append(getLastName() + "|");
 ret.append(getAddress1() + "|");
 ret.append(getAddress2() + "|");
 ret.append(getEmail() + "|");
 ret.append(getPhone() + "|");
 return ret.toString();
 }

 publicbyte[] getBytes() {
 return toString().getBytes();
 }
}

The Location and Contact classes are standard classes designed to hold data specific to each

type. Each of them contains toString() and getBytes() methods that return the entire contents

of the class as either a String or an array of bytes.

If we were to manually add a Contact object, then we would most likely use code similar to what

is shown in Listing 2-4.

Listing 2-4. Code that Adds a New Contact Object

final Contact contact = new Contact();
contact.setFirstName("Sheran");
contact.setLastName("Gunasekera");
contact.setAddress1("");
contact.setAddress2("");
contact.setEmail("sheran@zenconsult.net");
contact.setPhone("12120031337");

Assume for the moment that the code in Listing 2-4 is called when a user fills in the screen to

add a new contact to the application. Rather than seeing hardcoded values, you will use the

getText() methods from each of the EditText objects that are displayed on your main View.

If you execute the code SaveController.saveContact(getApplicationContext(), contact))in

your Android simulator, the SaveController will take the newly created Contact and store it in the

external media source (refer back to Listing 2-1).

CHAPTER 2: Information: The Foundation of an App20

Let’s take it a line at a time, beginning with the constructor for the saveContact() method:

public static void saveContact(Context context, Contact contact) {
 if (isReadWrite()) {
 try {

The preceding snippet expects a Context object and a Contact object. Each application on

Android has its own Context. A Context object holds application-specific classes, methods,

and resources that can be shared among all the classes within an application. For example, a

Context object will contain information about the location of the SD Card directory. To access it,

you have to invoke the Context.getExternalFilesDir() method. After the method accepts the

parameters, it will check to see if the SD Card on the device is mounted and if it is writeable. The

isReadWrite() method will execute and return a true or false value to indicate this:

File outputFile = new File(context.getExternalFilesDir(null),contact.getFirstName());

This code creates a File object that points to the location of the SD Card directory. We use the

first name of the Contact object as the file name:

FileOutputStream outputStream = new FileOutputStream(outputFile);
outputStream.write(contact.getBytes());
outputStream.close();

Using this code, we create a FileOutputStream that points to the location of our File object.

Next, we write the contents of our Contact object to the output stream using the getBytes()

method to return an array of bytes. Finally, we close the FileOutputStream.

When execution completes, we should have a file with the name “Sheran” written to the SD Card

directory on the device. I’m using the Android simulator on Mac OS X Snow Leopard. Therefore,

when I navigate to the location of the simulator, I can see the screen shown in Figure 2-2.

Note It is always good practice to use the getExternalFilesDir() method to find the

location of the SD Card on an Android device. Because Android can run on a large number of

devices with different specifications, the location of the SD Card directory may not always be in

/sdcard. The getExternalFilesDir() method will query the operating system for the correct

location of the SD Card and return the location to you.

CHAPTER 2: Information: The Foundation of an App

21

When this image is mounted by navigating to Android/data/net.zenconsult.android/files, the

newly created contact file name is visible (see Figure 2-3).

If we open the file up in a text editor, we can see the plain text data that was saved from the

application (see Figure 2-4).

Figure 2-2. The SD Card image file on Max OS X

Figure 2-3. The Contact object that was written to a file

CHAPTER 2: Information: The Foundation of an App22

Classification of Information
One of the things I struggled with when starting out in mobile-application development was the

fact that I’d get into code writing from the get go. I’d make up the features in my head and code

them as I went along. All too often, I would later spend time revising my code and going back to

write a plan midstream. This had devastating effects on my deadlines and deliverables. It also

had a detrimental effect on the security of my applications.

I have since learned that writing up a brief outline of the project that I am about to embark on

will help me think of things ahead of time. While this seems like an obvious thing, there are many

developers that I have spoken with who fail to follow this simple step. One other thing that I have

also begun doing religiously is finding time to look at the information or data that my application

will be handling. For instance, I use a table like the one shown in Table 2-1 to classify the data

that my application handles. The table is very basic; however, by putting it down on paper, I am

able to visualize the types of data my application will handle—moreover, I’m able to formulate a

plan to secure that information.

If you look at the data classification table in Table 2-1 closely, you will realize that some of the

headings are very subjective. Different people will have different opinions on what constitutes

sensitive or personal information. Nevertheless, it is usually best to try and zero in on a common

frame of reference as to what constitutes sensitive and personal information. In this section,

you will try to do that by taking a look at the table header first, and then going over each of the

columns:

Data Type: You will be handling this data within your application. It is self-

explanatory.

Personal?: This column indicates whether the data type is classified as personal

information.

Figure 2-4. The contents of the Contact object

Table 2-1. Data Classification Table

Data Type Personal? Sensitive? Create Store Send Receive

Name Yes No X X x

E-mail Address Yes Yes X X x

Phone No. Yes Yes X X

Address Yes Yes X X

CHAPTER 2: Information: The Foundation of an App

23

Sensitive?: This column indicates whether the data type is classified as sensitive

information.

Create: Does your application allow this user to create this data type?

Store: Does your application store this data type either on the device or remotely

on a server?

Sent: Is this data type sent across the network to another party or server?

Receive: Is this data type received over the network from another party?

What Is Personal Information?
Personal information can be classified as data that is known to you and a limited number of

people within your social circle. Personal information is usually something that is private to

you, but that you would be willing to share with close friends and family members. Examples of

personal information can be your phone number, address, and e-mail address. The effects of

having this information compromised and leaked will usually not cause significant physical or

emotional harm to yourself or your family members. Instead, it may give rise to situations that

will greatly inconvenience you.

What Is Sensitive Information?
Sensitive information is worth much more than personal information. Sensitive information is

usually information that you will not share with anyone under most circumstances. Data of this

type includes your passwords, Internet banking credentials (such as PIN codes), mobile phone

number, Social Security number, or address. If sensitive information is compromised, then the

effects may cause you either physical or emotional harm. This information should be protected

all the time, regardless of whether it is in transit or in storage.

Caution How can the loss of sensitive information cause you physical or emotional harm?

Consider losing your online banking credentials. An attacker can cause you immense financial

(physical and emotional) harm by stealing all your money. A stalker that gets hold of your

phone number or address can pose a grave threat to you or your family’s physical well being.

Analysis of Code
If we go back to the indirect attack that we discussed earlier in this chapter, it is evident that

data kept in clear view on an SD Card is a significant risk and should be avoided at all costs.

Data theft or exposure has been one of the leading causes of financial and reputational loss for

corporations. But just because you’re writing an application for a single user of a smartphone

does not mean you should treat data theft lightly. In the case of Proxim, this weakness of clear

CHAPTER 2: Information: The Foundation of an App24

text data storage exists. Anyone who has access to the device’s SD Card will be able to copy

personal information, such as names, addresses, phone numbers, and e-mail addresses.

We can trace the flaw in the original code to the point where we save the data. The data itself

is not obscured or encrypted in any way. If we were to encrypt the data, then the personal

information would still be safe. Let’s take a look at how we can implement encryption in our

original Proxim code. Chapter 5 will cover public key infrastructure and encryption in depth; so

for the purposes of this exercise, we will cover a very basic example of Advanced Encryption

Standard (AES) encryption. Public Key encryption or Asymmetric encryption is a method of

encrypting or obfuscating data by using two different types of keys. Each user has two keys, a

public and a private one. His private key can only decrypt data that is encrypted by the public

key. The key is called public because it is freely given away to other users. It is this key that other

users will use to encrypt data.

Where to Implement Encryption
We will encrypt our data just before we save it to the SD Card. In this way, we never write the

data to the SD Card in a format that can be read by anyone. An attacker that collects your

encrypted data has to first use a password to decrypt the data before having access to it.

We will use AES to encrypt our data using a password or key. One key is required to both

encrypt and decrypt the data. This is also known s symmetric key encryption. Unlike public key

encryption, this key is the sole one used to both encrypt and decrypt data. This key will need

to be stored securely because, if it is lost or compromised, an attacker can use it to decrypt the

data. Listing 2-5 shows the encryption routine.

Listing 2-5. An Encryption Routine

privatestaticbyte[] encrypt(byte[] key, byte[] data){
 SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
 Cipher cipher;
 byte[] ciphertext = null;
 try {
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);
 ciphertext = cipher.doFinal(data);
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"NoSuchAlgorithmException");
 } catch (NoSuchPaddingException e) {
 Log.e(TAG,"NoSuchPaddingException");
 } catch (IllegalBlockSizeException e) {
 Log.e(TAG,"IllegalBlockSizeException");
 } catch (BadPaddingException e) {
 Log.e(TAG,"BadPaddingException");
 } catch (InvalidKeyException e) {
 Log.e(TAG,"InvalidKeyException");
 }
 return ciphertext;

 }

CHAPTER 2: Information: The Foundation of an App

25

Let’s go through the code, section by section. The first bit of code initializes the SecretKeySpec class

and creates a new instance of the Cipher class in preparation of generating an AES secret key:

SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
Cipher cipher;
byte[] ciphertext = null;

The preceding code also initializes a byte array to store the ciphertext. The next bit of code

prepares the Cipher class to use the AES algorithm:

cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);

The cipher.init() function initializes the Cipher object, so it can perform encryption using the

generated secret key. The next line of code encrypts the plain text data and stores the encrypted

contents in the ciphertext byte array:

ciphertext = cipher.doFinal(data);

In order for the preceding routine to work, it should always have an encryption key. It is

important that we use the same key for the decryption routine, as well. Otherwise, it will fail. It

is generally better to write your own key generator that will generate a random number–based

key. This will make it harder for an attacker to guess than a normal password. For this exercise, I

used the key-generation algorithm shown in Listing 2-6.

Listing 2-6. A Key-Generation Algorithm

publicstaticbyte[] generateKey(byte[] randomNumberSeed) {
 SecretKey sKey = null;
 try {
 KeyGenerator keyGen = KeyGenerator.getInstance("AES");
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
 random.setSeed(randomNumberSeed);
 keyGen.init(256,random);
 sKey = keyGen.generateKey();
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"No such algorithm exception");
 }
 return sKey.getEncoded();
 }

Now, let’s analyze the code. This pair of lines initializes the KeyGenerator class so it can generate

AES-specific keys, and then initializes the device’s random-number generator so it can generate

random numbers:

KeyGenerator keyGen = KeyGenerator.getInstance("AES");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

These random numbers are encoded using SHA1. SHA1, or Secure Hash Algorithm 1, is a

cryptographic hashing function. The algorithm will operate on a piece of data that has an

arbitrary length and will produce a short string that is of fixed size. If any piece of the data being

hashed is changed, then the resulting hash will vary. This is an indication that a piece of data has

been tampered with.

CHAPTER 2: Information: The Foundation of an App26

The next snippet of code uses the random-number seed provided to generate a 256-bit key

using this random number:

random.setSeed(randomNumberSeed);
keyGen.init(256,random);
sKey = keyGen.generateKey();

Simply run the key-generation algorithm once and save the resulting key to use with the

decryption routine.

Results of Encryption
When we examine the same Contact object in the SD Card, the contents appear garbled (see

Figure 2-5) and unreadable by any casual snoopers or deliberate attackers.

Reworked Project 1
Our changes to the Proxim project mostly affect the saveController() method (see Listing 2-7).

Listing 2-7. The Reworked SaveController.java method

package net.zenconsult.android.controller;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import net.zenconsult.android.crypto.Crypto;
import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Location;
import android.content.Context;
import android.os.Environment;
import android.util.Log;

Figure 2-5. The encrypted contents of the Contact object

CHAPTER 2: Information: The Foundation of an App

27

public class SaveController {
 private static final String TAG = "SaveController";

 public static void saveContact(Context context, Contact contact) {
 if (isReadWrite()) {
 try {
 File outputFile = new File(context.getExternalFilesDir
(null),contact.getFirstName());
 FileOutputStream outputStream = new FileOutputStream
(outputFile);
 byte[] key = Crypto.generateKey
("randomtext".getBytes());
 outputStream.write(encrypt(key,contact.getBytes()));
 outputStream.close();

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

 public static void saveLocation(Context context, Location location) {
 if (isReadWrite()) {
 try {
 File outputFile = new File(context.getExternalFilesDir
(null),location.getIdentifier());
 FileOutputStream outputStream = new FileOutputStream
(outputFile);
 byte[] key = Crypto.generateKey
("randomtext".getBytes());
 outputStream.write(encrypt(key,location.getBytes()));
 outputStream.close();

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Information: The Foundation of an App28

 private static boolean isReadOnly() {
 Log.e(TAG,Environment
 .getExternalStorageState());
 return Environment.MEDIA_MOUNTED_READ_ONLY.equals(Environment
 .getExternalStorageState());
 }

 private static boolean isReadWrite() {
 Log.e(TAG,Environment
 .getExternalStorageState());

 return Environment.MEDIA_MOUNTED.equals(Environment
 .getExternalStorageState());
 }

 private static byte[] encrypt(byte[] key, byte[] data){
 SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
 Cipher cipher;
 byte[] ciphertext = null;
 try {
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);
 ciphertext = cipher.doFinal(data);
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"NoSuchAlgorithmException");
 } catch (NoSuchPaddingException e) {
 Log.e(TAG,"NoSuchPaddingException");
 } catch (IllegalBlockSizeException e) {
 Log.e(TAG,"IllegalBlockSizeException");
 } catch (BadPaddingException e) {
 Log.e(TAG,"BadPaddingException");
 } catch (InvalidKeyException e) {
 Log.e(TAG,"InvalidKeyException");
 }
 return ciphertext;

 }
}

Exercise

ADD ENCRYPTION AT OBJECT CREATION TIME

There are many ways to encrypt the data in our Proxim application. What I have done is to encrypt it at storage time.

Your exercise is to rewrite the Proxim application so that the data is encrypted as soon as it is created.

Tip Do not modify the SaveController.java file. Look elsewhere.

CHAPTER 2: Information: The Foundation of an App 29

WRITE A DECRYPTION ROUTINE FOR THE PROXIM APPLICATION

Use the Android API reference and write a simple decryption routine based on the same principle as the encryption

routine. Create a new class called LoadController that will handle the loading of information from the SD Card.

Summary
Storing plain text or other easily read data on mobile devices is something you should avoid

doing at all costs. Even though your application itself might be written securely, an indirect

attack that originates from a completely different area on the device can still collect and read

sensitive or personal information written by your application. Follow the following basic steps

during application design:

1. First, determine what data types are stored, created, or exchanged by

your application. Next, classify them into personal or sensitive data,

so that you will be aware of how to treat the data during application

execution.

2. Have a collection of encryption routines that you can reuse in your

applications. It is best to keep this collection as a separate library that

you can include in your project.

3. Generate a different key for each application that you write. Write a good

key-generator algorithm that creates lengthy and unpredictable secret

keys.

4. Encrypt data either at creation or storage time.

31

Chapter 3
Android Security Architecture

In Chapter 2, we looked at a simple example of how we can protect information using

encryption. However, that example did not make use of Android’s built-in security and

permissions architecture. In this chapter, we will take a look at what Android is able to offer the

developer and end user with regard to security. We will also look at some direct attacks that can

take place on applications and how to take the necessary safeguards to minimize the loss of

private data.

The Android platform has several mechanisms that control the security of the system and

applications, and it attempts to ensure application isolation and compartmentalization at every

stage. Each process within Android runs with its own set of privileges, and no other application

is able to access this application or its data without explicit permissions provided by the end

user. Even though Android exposes a large number of APIs to the developer, we cannot use all

of these APIs without requiring the end user to grant access.

Revisiting the System Architecture
Let’s start by looking at the Android architecture once more. We covered the Android system

architecture in Chapter 1, where you will recall that each process runs in its own isolated

environment. There is no interaction possible between applications unless otherwise explicitly

permitted. One of the mechanisms where such interaction is possible is by using permissions.

Again in Chapter 1, we looked at a simple example of how we needed to have the RECORD_AUDIO

permission set, so that our application can make use of the device’s microphone. In this chapter,

we will look at the permissions architecture in a little bit more detail (see Figure 3-1).

CHAPTER 3: Android Security Architecture32

Figure 3-1 depicts a simpler version of the Android architecture than the one presented in

Chapter 2; specifically, this figure focuses more on the applications themselves.

As we saw previously, Android applications will execute on the Dalvik virtual machine (DVM).
The DVM is where the bytecode, or the most fundamental blocks of code, will execute. It is
analogous to the Java Virtual Machine (JVM) that exists on personal computers and servers
today. As depicted in Figure 3-1, each application—even a built-in system application—will
execute in its own instance of the Dalvik VM. In other words, it operates inside a walled garden
of sorts, with no outside interaction among other applications, unless explicitly permitted. Since
starting up individual virtual machines can be time consuming and could increase the latency
between application launch and startup, Android relies on a preloading mechanism to speed up
the process. The process, known as Zygote, serves two functions: it acts first as a launch pad
for new applications; and second, as a repository of live core libraries to which all applications
can refer during their life cycles.

The Zygote process takes care of starting up a virtual machine instance and preloading and
pre-initializing any core library classes that the virtual machine requires. Then, it waits to receive
a signal for an application startup. The Zygote process is started up at boot time and works
in a manner similar to a queue. Any Android device will always have one main Zygote process
running. When the Android Activity Manager receives a command to start an application, it calls
up the virtual machine instance that is part of the Zygote process. Once this instance is used to
launch the application, a new one is forked to take its place. The next application that is started
up will use this new Zygote process, and so on.

The repository part of the Zygote process will always make the set of core libraries available to
applications throughout their life cycles. Figure 3-2 shows how multiple applications make use of
the main Zygote process’s repository of core libraries.

Installed Applications System

Applications

Binder

Embedded Linux

Display

Bluetooth

GPS
Receiver

Cellular

Radio

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

D
V

M

D
V

M

D
V

M

D
V

M

D
V

M

D
V

M

D
V

M

Figure 3-1. The Android system architecture

CHAPTER 3: Android Security Architecture

33

Understanding the Permissions Architecture
As we discussed in Chapter 1, applications running on the Android operating system all run with
their own set of user and group identifiers (UID and GID, respectively). The constrained manner
in which applications execute make it impossible for one application to read or write data from
another. To facilitate information sharing and interprocess communication among applications,
Android uses a system of permissions.

By default, an application has no permissions to perform any types of activities that would cause
damage or drastically impact other applications on the device. It also has no ability to interact
with the Android operating system, nor can it call any of the protected APIs to use the camera,
GPS, or networking stacks. Finally, a default application does not have the ability to read or write
to any of the end user’s data. The Linux kernel handles this task.

In order for an application to access high-privileged APIs or even gain access to user data,
it has to obtain permission from the end user. You, as the developer, have to understand
what permissions your application will require before you release it to the public. Once you
make a list of all your required permissions, you will need to add each one of them to your
AndroidManifest.xml file. Then, when installing an application for the first time, the end user is
prompted by the device to grant or deny specific permissions as required by the application.
Therefore, a good practice is to develop your application in a manner that will fail modularly if a
user does not provide a specific permission. For example, let’s say you’ve written an application
that uses GPS Location inquiries, accesses user data, and sends SMS messages. The end user
grants your application two of the three permissions, but leaves out SMS message sending. You
should be able to write your application such that the functionality requiring SMS sending will
disable itself (unless omitting this permission breaks your entire application). This way, the end
user can still use your application with reduced functionality.

Zygote Maps

Zygote heap

(shared dirty,
copy-on-write;
rarely written)

core library dex
files

(mmap()ed)

Maps live code
and heap

shared from
Zygote

Maps dex file

(mmap()ed)

(private dirty)

Browser

Browser live
code and heap

shared from
Zygote

Browser dex file

(mmap()ed)

(private dirty)

Home

Home live code
and heap

shared from
Zygote

Home dex file

(mmap()ed)

(private dirty)

“live” core
libraries

(shared dirty;
read-only)

Figure 3-2. How applications use Zygote’s repository of core libraries

CHAPTER 3: Android Security Architecture34

Before exploring permissions further, you need to familiarize yourself with a couple of topics that
are used in the context of Android software development and security: content providers and
intents. Although you most likely have heard these terms mentioned before, let’s go over them
here to make sure your understanding is complete.

Content Providers
Content providers are synonymous with data stores. They act as repositories of information
from which applications can read and write. Since the Android architecture does not allow for a
common storage area, content providers are the only way that applications can exchange data.
As a developer, you might be interested in creating your own content providers, so that other
applications can gain access to your data. This is as easy as subclassing the ContentProvider
object in the android.content package. We will cover the creation of a custom ContentProvider
objects in more detail in subsequent chapters of this book.

In addition to allowing the creation of your own content providers, Android provides several
content providers that allow you to access the most common types of data on the device,
including images, videos, audio files, and contact information. The Android provider package,
android.provider, contains many convenience classes that allow you to access these content
providers; Table 3-1 lists these.

Table 3-1. Content Provider Classes

Class Name Description

AlarmClock Contains an intent action and extras that can be

used to start an activity to set a new alarm in an

alarm clock application.

Browser

Browser.BookmarkColumns Column definitions for the mixed bookmark and

history items available at BOOKMARKS_URI.

Browser.SearchColumns Column definitions for the search history table,

available at SEARCHES_URI.

CallLog Contains information about placed and received

calls.

CallLog.Calls Contains the recent calls.

ContactsContract The contract between the contacts provider and

applications.

ContactsContract.AggregationExceptions Constants for the contact aggregation exceptions

table, which contains aggregation rules overriding

those used by automatic aggregation.

ContactsContract.CommonDataKinds Container for definitions of common data types

stored in the ContactsContract.Data table.

ContactsContract.CommonDataKinds.Email A data kind representing an e-mail address.

ContactsContract.CommonDataKinds.Event A data kind representing an event.

(continued)

CHAPTER 3: Android Security Architecture

35

Class Name Description

ContactsContract.CommonDataKinds.

GroupMembership

Group membership.

ContactsContract.CommonDataKinds.Im A data kind representing an IM address. You can use

all columns defined for ContactsContract.Data, as

well as the following aliases.

ContactsContract.CommonDataKinds.Nickname A data kind representing the contact’s nickname.

ContactsContract.CommonDataKinds.Note Notes about the contact.

ContactsContract.CommonDataKinds.Organization A data kind representing an organization.

ContactsContract.CommonDataKinds.Phone A data kind representing a telephone number.

ContactsContract.CommonDataKinds.Photo A data kind representing a photo for the contact.

ContactsContract.CommonDataKinds.Relation A data kind representing a relation.

ContactsContract.CommonDataKinds.SipAddress A data kind representing an SIP address for the

contact.

ContactsContract.CommonDataKinds.

StructuredName

A data kind representing the contact’s proper name.

ContactsContract.CommonDataKinds.

StructuredPostal

A data kind representing a postal address.

ContactsContract.CommonDataKinds.Website A data kind representing a web site related to the

contact.

ContactsContract.Contacts Constants for the Contacts table, which contains a

record per aggregate of raw contacts representing

the same person.

ContactsContract.Contacts.AggregationSuggestions A read-only subdirectory of a single contact

aggregate that contains all aggregation suggestions

(other contacts).

ContactsContract.Contacts.Data A subdirectory of a single contact that contains all of

the constituent raw contactContactsContract.Data

rows

ContactsContract.Contacts.Entity A subdirectory of a contact that contains all of

its ContactsContract.RawContacts, as well as

ContactsContract.Data rows.

ContactsContract.Contacts.Photo A read-only subdirectory of a single contact that

contains the contact’s primary photo.

ContactsContract.Data Constants for the data table that contains data

points tied to a raw contact.

ContactsContract.Directory Represents a group of contacts.

ContactsContract.Groups Constants for the Groups table.

(continued)

Table 3.1 (continued)

CHAPTER 3: Android Security Architecture36

Class Name Description

ContactsContract.Intents Contains helper classes used to create or manage

intents that involve contacts.

ContactsContract.Intents.Insert Convenience class that contains string constants

used to create contact intents.

ContactsContract.PhoneLookup Table that represents the result of looking up a

phone number (e.g., for caller ID).

ContactsContract.QuickContact Helper methods to display QuickContact dialogs that

allow users to pivot on a specific Contacts entry.

ContactsContract.RawContacts Constants for the raw contacts table, which contains

one row of contact information for each person in

each synced account.

ContactsContract.RawContacts.Data A subdirectory of a single raw contact that contains

all of its ContactsContract.Data rows.

ContactsContract.RawContacts.Entity A subdirectory of a single raw contact that contains

all of its ContactsContract.Data rows.

ContactsContract.RawContactsEntity Constants for the raw contacts entities table, which

can be thought of as an outer join of the raw_

contacts table with the data table.

ContactsContract.Settings Contact-specific settings for various Accounts.

ContactsContract.StatusUpdates A status update is linked to a ContactsContract.Data

row and captures the user’s latest status update via

the corresponding source.

ContactsContract.SyncState A table provided for sync adapters to use for storing

private sync state data.

LiveFolders A LiveFolder is a special folder whose content is

provided by a ContentProvider.

MediaStore The Media provider contains meta data for all

available media on both internal and external

storage devices.

MediaStore.Audio Container for all audio content.

MediaStore.Audio.Albums Contains artists for audio files.

MediaStore.Audio.Artists Contains artists for audio files.

MediaStore.Audio.Artists.Albums Subdirectory of each artist containing all albums on

which a song by the artist appears.

MediaStore.Audio.Genres Contains all genres for audio files.

MediaStore.Audio.Genres.Members Subdirectory of each genre containing all members.

MediaStore.Audio.Media

MediaStore.Audio.Playlists Contains playlists for audio files.

Table 3.1 (continued)

(continued)

CHAPTER 3: Android Security Architecture

37

Class Name Description

MediaStore.Audio.Playlists.Members Subdirectory of each playlist containing all members.

MediaStore.Files Media provider table containing an index of all files

in the media storage, including nonmedia files.

MediaStore.Images Contains metadata for all available images.

MediaStore.Images.Media

MediaStore.Images.Thumbnails Allows developers to query and get two kinds of

thumbnails: MINI_KIND (512 × 384 pixels) and

MICRO_KIND (96 × 96 pixels).

MediaStore.Video

MediaStore.Video.Media

MediaStore.Video.Thumbnails Allows developers to query and get two kinds of

thumbnails: MINI_KIND (512 × 384 pixels) and

MICRO_KIND (96 × 96 pixels).

SearchRecentSuggestions A utility class providing access to

SearchRecentSuggestionsProvider.

Settings Contains global system-level device preferences.

Settings.NameValueTable Common base for tables of name/value settings.

Settings.Secure Secure system settings containing system

preferences that applications can read, but are not

allowed to write.

Settings.System System settings containing miscellaneous system

preferences.

SyncStateContract The ContentProvider contract for associating data

with any data array account.

SyncStateContract.Constants

SyncStateContract.Helpers

UserDictionary A provider of user-defined words for input methods

to use for predictive text input.

UserDictionary.Words Contains the user-defined words.

Accessing a content provider requires prior knowledge of the following information:

The content provider object (Contacts, Photos, Videos, etc.)

The columns required from this content provider	
The query to fetch this information	

As stated previously, content providers act in a similar manner to a Relational Database, such as
Oracle, Microsoft SQL Server, or MySQL. This becomes evident when you first try to query one.
For example, you access the MediaStore.Images.Media content provider to query for images.

Table 3.1 (continued)

CHAPTER 3: Android Security Architecture38

Let’s assume that we want to access each of the image names stored on the device. We first
need to create a content provider URI to access the external store on the device:

Uri images = MediaStore.Images.Media.EXTERNAL_CONTENT_URI;

Next, we need to create a receiver object for the data we will be fetching. Simply declaring an
array does this:

String[] details = new String[] {MediaStore.MediaColumns.DISPLAY_NAME};

To traverse the resulting dataset, we need to create and use a managedQuery and then use the
resulting Cursor object to move through rows and columns:

Cursor cur = managedQuery(details,details, null, null null);

We can then iterate over the results using the Cursor object we created. We use the
cur.moveToFirst() method to move to the first row and then read off the image name, like so:

String name = cur.getString(cur.getColumnIndex(MediaStore.MediaColumns.DISPLAY_NAME));

After that, we advance the cursor to the next record by calling the cur.moveToNext() method.
To query multiple records, this process can be wrapped in either a for loop or do/while block.

Note that some content providers are controlled, and your application will need to request
specific permissions before attempting to access them.

Intents
Intents are types of messages that one application sends to another to control tasks or transport
data. Intents work with three specific types of application components: activity, service, and
broadcast receiver. Let’s take a simple example where your application requires the Android
device browser to start up and load the contents of a URL. Some of the main components of an
Intent object include the intent action and the intent data. For our example, we want our user to
view the browser, so we will use the Intent.ACTION_VIEW constant to work with some data that is
at the URL, http://www.apress.com. Our Intent object will be created like this:

Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(http://www.apress.com);

To invoke this intent, we call this code:

startActivity(intent);

To control which applications can receive intents, a permission can be added to the intent prior
to dispatching it.

Checking Permissions
We’ve very briefly covered content providers and intents, including how the Android operating
system controls access to these objects through the use of permissions. In Chapter 1, we
looked at how an application can request the end user for specific permissions to interact with
the system. Let’s look at how permission checks really take place and where.

A validation mechanism will handle permission checks within the Android operating system.
When your application makes any API call, the permission validation mechanism will check if

www.allitebooks.com

http://www.apress.com
http://www.allitebooks.org

CHAPTER 3: Android Security Architecture

39

your application has the required permissions to complete the call. If a user grants permission,
the API call is processed; otherwise, a SecurityException is thrown.

API calls are handled in three separate steps. First, the API library is invoked. Second, the library
will invoke a private proxy interface that is part of the API library itself. Finally, this private proxy
interface will use interprocess communication to query the service running in the system process
to perform the required API call operation. This process is depicted in Figure 3-3.

In some instances, an application may also use native code to conduct API calls. These native
API calls are also protected in a similar manner because they are not allowed to proceed unless
they are called through Java wrapper methods. In other words, before a native API call can
be invoked, it has to go through a wrapped Java API call that is then subject to the standard
permission-validation mechanism. All validation of permissions is handled by the system process.
Additionally, applications that require access to the BLUETOOTH, WRITE_EXTERNAL_STORAGE,
and INTERNET permissions will be assigned to a Linux group that has access to the network
sockets and files associated with those permissions. This small subset of permissions has its
validation performed at the Linux kernel.

Using Self-Defined Permissions
Android allows developers to create and enforce their own permissions. As with system
permissions, you need to declare specific tags and attributes within the AndroidManifest.xml
file. If you write an application that provides a specific type of functionality accessible by other
developers, you can choose to protect certain functions with your own custom permissions.

In your application’s AndroidManifest.xml file, you have to define your permissions as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.zenconsult.mobile.testapp" >
 <permission android:name="net.zenconsult.mobile.testapp.permission.PURGE_DATABASE"
 android:label="@string/label_purgeDatabase"
 android:description="@string/description_purgeDatabase"
 android:protectionLevel="dangerous" />
 . . .
</manifest>

Figure 3-3. The API call process

CHAPTER 3: Android Security Architecture40

You define the name of your permission in the android:name attribute. The android:label and
android:description attributes are required. They are pointers to strings that you define in your
AndroidManifest.xml file. The strings will identify what the permission is and describe what this
permission does to end users that browse the list of permissions present on the device. You will
want to set these strings with something descriptive, as in this example:

<string name=" label_purgeDatabase ">purge the application database </string>
<string name="permdesc_callPhone">Allows the application to purge the core database of
the information store. Malicious applications may be able to wipe your entire application
information store.</string>

The android:protectionLevel attribute is required. It categorizes the permission into one of the
four levels of protection discussed earlier.

Optionally, you can also add an android:permissionGroup attribute to have Android group
your permission along with either the system groups or with groups you have defined yourself.
Grouping your custom permission with an already existing permissions group is best because
this way, you can present a cleaner interface to the end user when browsing permissions. For
example, to add the purgeDatabase permission into the group that accesses the SD card, you
would add the following attribute to the AndroidManifest.xml file:

android:permissionGroup=" android.permission-group.STORAGE"

One thing to note is that your application will need to be installed on the device before any other
dependent application. This is usually the case; but during development, it bears remembering
because you may run into difficulties if the application is not installed first.

Protection Levels
When creating your own permissions, you have the option of categorizing the permission
according to the level of protection you want the operating system to offer. In our preceding
example, we defined the protectionLevel of our permission to purge the database as
"dangerous". The "dangerous" protection level indicates that, by granting this permission, the
end user will enable an application to modify private user data in a way that could adversely
affect him.

A permission marked with protectionLevel "dangerous" or higher will automatically trigger the
operating system to prompt or notify the end user. This behavior exists to let the end user know
that the application being executed has the potential to cause harm. It also offers the user a
chance to either signify trust or mistrust in the application by granting or denying permission to
the requested API call. Descriptions of the permission protection levels are provided in Table 3-2.

CHAPTER 3: Android Security Architecture

41

Table 3-2. Permission Protection Levels

Constant Value Description

normal 0 A somewhat low-risk permission that gives an application access to isolated

application-level features, with minimal risk to other applications, the

system, or the user. The system automatically grants this type of permission

to a requesting application at installation, without asking for the user’s

explicit approval (though the user always has the option to review these

permissions before installing).

dangerous 1 A higher risk permission that gives a requesting application access to

private user data or control over the device in a way that can negatively

impact the user. Because this type of permission introduces potential risk,

the system may not automatically grant it to the requesting application. Any

dangerous permissions requested by an application may be displayed to the

user and require confirmation before proceeding, or some other approach

may be taken so the user can avoid automatically allowing the use of such

facilities.

signature 2 The system will grant this permission only if the requesting application

is signed with the same certificate as the application that declared the

permission. If the certificates match, the system automatically grants

the permission without notifying the user or asking for the user’s explicit

approval.

signatureOrSystem 3 The system grants this permission only to packages in the Android system

image or that are signed with the same certificates. Please avoid using this

option because the signature protection level should be sufficient for most

needs, and it works regardless of exactly where applications are installed.

This permission is used for certain special situations where multiple vendors

have applications built into a system image, and these applications need to

share specific features explicitly because they are being built together.

Sample Code for Custom Permissions
The sample code in this section provides concrete examples of how to implement custom
permissions in an Android application. The project package and class structure is depicted in
Figure 3-4.

Figure 3-4. The structure and classes of the example

CHAPTER 3: Android Security Architecture42

The Mofest.java file contains a nested class called permissions that holds the permission string
constants that will be invoked by calling applications. The source code is in Listing 3-1.

Listing 3-1. The Mofest Class

package net.zenconsult.libs;

public class Mofest {
 public Mofest(){

 }

 public class permission {
 public permission(){
 final String PURGE_DATABASE =
 "net.zenconsult.libs.Mofest.permission.PURGE_DATABASE";
 }
 }
}

At this point, the DBOps.java file is of no consequence because it contains no code. The
ZenLibraryActivity.java file contains our application’s entry point. Its source code is given in
Listing 3-2.

Listing 3-2. The ZenLibraryActivity Class

package net.zenconsult.libs;

import android.app.Activity;
import android.os.Bundle;

public class ZenLibraryActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 }
}

Again, this class does nothing remarkable; it starts up the main activity of this application.
The real changes lie in the AndroidManifest.xml file of this project, which is shown in Listing 3-3.
This is where the permissions are defined and used.

CHAPTER 3: Android Security Architecture

43

Listing 3-3. The Project’s AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.zenconsult.libs"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="10" />
 <permission android:name="net.zenconsult.libs.Mofest.permission.PURGE_DATABASE"
 android:protectionLevel="dangerous"
 android:label="@string/label_purgeDatabase"
 android:description="@string/description_purgeDatabase"
 android:permissionGroup="android.permission-group.COST_MONEY"/>
 <uses-permission android:name="net.zenconsult.libs.Mofest.permission
.PURGE_DATABASE" />
 <uses-permission android:name="android.permission.SET_WALLPAPER" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ZenLibraryActivity"
 android:permission="net.zenconsult.libs.Mofest.permission
.PURGE_DATABASE"
 android:label="@string/app_name"

 >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

As you can see, we both declare and use the PURGE_DATABASE permission in this application. The
code that is in bold all pertains to our custom permission implementation for this application.

To ensure that the installer will prompt for a permission request screen, you have to build the
project as an .apk file and sign it. Next, upload the .apk file to a web server or copy it to the
device. Clicking this file will start the installation process; and at that time, the device will display
the request for permissions screen to the end user. Figure 3-5 shows what this screen looks like.

CHAPTER 3: Android Security Architecture44

Summary
In this chapter, we looked at Android permissions, both built-in and custom. We also examined
intents, content providers, and how to check permissions in more detail. The key points
discussed were as follows:

Android has a core set of mechanisms that handle application isolation and 	
security.

Each application will run in its own isolated space with unique user and 	
group identifiers.

Applications are not allowed to exchange data unless they explicitly request 	
permissions from the user.

Content providers store and allow access to data. They behave similar to 	
databases.

Intents are messages sent between applications or the system process to 	
invoke or shut down another service or application.

Figure 3-5. The permissions request screen

CHAPTER 3: Android Security Architecture

45

Access to specific APIs is controlled using permissions. Permissions are 	
divided into four categories, and category 1, 2, and 3 permissions will
always notify or prompt the end user. Since these permissions have the
ability to adversely affect user data and experience, they are handed over to
the user for final confirmation.

Custom permissions can be created to protect your individual applications. An
application that wishes to use your application will need to explicitly request your
ermission to do so by using the <uses-permission> tag in the AndroidManifest.xml file.

47

Chapter 4
Concepts in

Action – Part 1

In this chapter, we will merge together all the topics we discussed in the previous chapters. If
you recall, we discussed the Proxim application, through which we looked at data encryption.
We will analyze its source code in detail here. We will also work through some examples of
applications that require and use permissions.

The Proxim Application
The Proxim project should have a structure similar to that depicted in Figure 4-1

Let’s start with the Activity, which is where your programs usually will start (see Listing 4-1). In
the Activity, we are creating a new Contact object with some information inside.

Listing 4-1. The Main Activity

package net.zenconsult.android;

import net.zenconsult.android.controller.SaveController;
import net.zenconsult.android.model.Contact;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class ProximActivity extends Activity {
 /** Called when the activity is first created. */
 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

CHAPTER 4: Concepts in Action – Part 148

 final Contact contact = new Contact();

 contact.setFirstName("Sheran");

 contact.setLastName("Gunasekera");

 contact.setAddress1("");

 contact.setAddress2("");

 contact.setEmail("sheran@zenconsult.net");

 contact.setPhone("12120031337");

 final Button button = (Button) findViewById(R.id.button1);

 button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 SaveController.saveContact(getApplicationContext(), contact);

 }

 });

 }

}

Figure 4-1. The Proxim Application structure

CHAPTER 4: Concepts in Action – Part 1

49

It is this line that creates a Contact object:

Contact contact = new Contact();

Subsequent lines that have set in the start of the method name simply add the relevant pieces
of data into the Contact object. To understand what the Contact object looks like, take a look
at Listing 4-2. As you can see, the object itself is very simple. It has a collection of getters and
setters that will retrieve and insert data, respectively. Consider the firstName variable. To add a
person’s first name to this object, you call the setFirstName() method and pass in a value like
Sheran (as shown in the main Activity).

Listing 4-2. The Proxim Application’s Contact Object

package net.zenconsult.android.model;

public class Contact {
 private String firstName;
 private String lastName;
 private String address1;
 private String address2;
 private String email;

 private String phone;

 public Contact() {

 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getAddress1() {
 return address1;
 }

 public void setAddress1(String address1) {
 this.address1 = address1;
 }

 public String getAddress2() {
 return address2;
 }

 public void setAddress2(String address2) {
 this.address2 = address2;
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: Concepts in Action – Part 150

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

 public String toString() {
 StringBuilder ret = new StringBuilder();
 ret.append(getFirstName() + "|");
 ret.append(getLastName() + "|");
 ret.append(getAddress1() + "|");
 ret.append(getAddress2() + "|");
 ret.append(getEmail() + "|");
 ret.append(getPhone() + "|");
 return ret.toString();
 }

 public byte[] getBytes() {
 return toString().getBytes();
 }
}

Since we’re covering the data storage objects (or the Model in Model-View-Controller
programming concepts), let’s also look at our Location object in Listing 4-3. This is, once again,
your average, everyday, straightforward Location object with getters and setters.

Listing 4-3. The Location Object

package net.zenconsult.android.model;

public class Location {
 private String identifier;
 private double latitude;
 private double longitude;

 public Location() {

 }

 public double getLatitude() {
 return latitude;
 }

CHAPTER 4: Concepts in Action – Part 1 51

 public void setLatitude(double latitude) {
 this.latitude = latitude;
 }

 public double getLongitude() {
 return longitude;
 }

 public void setLongitude(double longitude) {
 this.longitude = longitude;
 }

 public void setIdentifier(String identifier) {
 this.identifier = identifier;
 }

 public String getIdentifier() {
 return identifier;
 }

 public String toString() {
 StringBuilder ret = new StringBuilder();
 ret.append(getIdentifier());
 ret.append(String.valueOf(getLatitude()));
 ret.append(String.valueOf(getLongitude()));
 return ret.toString();
 }

 public byte[] getBytes() {
 return toString().getBytes();
 }
}

Excellent! We’ve got that out of the way, so now let’s look more closely at our save controller and
our cryptography routines. We can see these in Listings 4-4 and 4-5, respectively.

Listing 4-4. The Save Controller

package net.zenconsult.android.controller;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import net.zenconsult.android.crypto.Crypto;
import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Location;

CHAPTER 4: Concepts in Action – Part 152

import android.content.Context;
import android.os.Environment;
import android.util.Log;

public class SaveController {
 private static final String TAG = "SaveController";

 public static void saveContact(Context context, Contact contact) {
 if (isReadWrite()) {
 try {
 File outputFile = new File(context.getExternalFilesDir(null),contact.
getFirstName());
 FileOutputStream outputStream = new FileOutputStream(outputFile);
 byte[] key = Crypto.generateKey("randomtext".getBytes());
 outputStream.write(encrypt(key,contact.getBytes()));
 outputStream.close();

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

 public static void saveLocation(Context context, Location location) {
 if (isReadWrite()) {
 try {
 File outputFile = new File(context.getExternalFilesDir(null),location.
getIdentifier());
 FileOutputStream outputStream = new FileOutputStream(outputFile);
 byte[] key = Crypto.generateKey("randomtext".getBytes());
 outputStream.write(encrypt(key,location.getBytes()));
 outputStream.close();

 } catch (FileNotFoundException e) {
 Log.e(TAG,"File not found");
 } catch (IOException e) {
 Log.e(TAG,"IO Exception");
 }

 } else {
 Log.e(TAG,"Error opening media card in read/write mode!");
 }
 }

 private static boolean isReadOnly() {
 Log.e(TAG,Environment
 .getExternalStorageState());
 return Environment.MEDIA_MOUNTED_READ_ONLY.equals(Environment
 .getExternalStorageState());
 }

CHAPTER 4: Concepts in Action – Part 1

53

 private static boolean isReadWrite() {
 Log.e(TAG,Environment
 .getExternalStorageState());

 return Environment.MEDIA_MOUNTED.equals(Environment
 .getExternalStorageState());
 }

 private static byte[] encrypt(byte[] key, byte[] data){
 SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
 Cipher cipher;
 byte[] ciphertext = null;
 try {
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);
 ciphertext = cipher.doFinal(data);
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"NoSuchAlgorithmException");
 } catch (NoSuchPaddingException e) {
 Log.e(TAG,"NoSuchPaddingException");
 } catch (IllegalBlockSizeException e) {
 Log.e(TAG,"IllegalBlockSizeException");
 } catch (BadPaddingException e) {
 Log.e(TAG,"BadPaddingException");
 } catch (InvalidKeyException e) {
 Log.e(TAG,"InvalidKeyException");
 }
 return ciphertext;

 }
}

Listing 4-5. The Cryptography routine

package net.zenconsult.android.crypto;

import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

import android.util.Log;

public class Crypto {
 private static final String TAG = "Crypto";

 public Crypto() {
 }

 public static byte[] generateKey(byte[] randomNumberSeed) {
 SecretKey sKey = null;
 try {
 KeyGenerator keyGen = KeyGenerator.getInstance("AES");
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
 random.setSeed(randomNumberSeed);
 keyGen.init(256,random);

CHAPTER 4: Concepts in Action – Part 154

 sKey = keyGen.generateKey();
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"No such algorithm exception");
 }
 return sKey.getEncoded();
 }
}

Summary
In this chapter, we’ve looked at two key concepts that we covered in prior chapters: encrypting
data before storing it and using permissions in your application. Specifically, we looked
at two applications that incorporate these concepts and studied the various outcomes of
running each application with different parameters. The concept of data encryption may be
fairly straightforward to grasp, but the topic of Android application permissions may not be
immediately apparent. In most cases, the permissions you require have to do with accessing
various features on the device itself. An example of this is in connectivity. If your app needs to
communicate with the Internet, then you need the Internet permission. Our example application
deals more with creating and using custom application permissions. Let’s now move on to
addressing encryption of data in transit and talking to web applications.

55

Chapter 5
Data Storage

and Cryptography

We touched on cryptography very briefly in Chapter 4. This chapter will focus more on the

importance of using cryptography to obfuscate and secure user data that you will either store or

transport. First, we will cover the basics of cryptography and how they apply to us in the context

of application development. Next, we will look at the various mechanisms of storing data on

the Android platform. Along the way, I will give examples of how to store and retrieve data from

different mechanisms and outline what function each store is ideally suited to perform.

One very important point to keep in mind is you should never attempt to write your own

cryptographic routines unless you are familiar with cryptographic topics. I have seen many

developers try to do this and end up with vulnerable applications both on mobile devices and in

web applications. Cryptography is a vast subject by itself; and, in my opinion, I think it is best left

to the folks who dedicate their lives to the subject. As an application developer, you will only be

interested in a specific subset of topics in cryptography.

I won’t cover the history of cryptography. You only need to keep one thing in mind: make

your sensitive user data unreadable to unauthorized users. If an attacker compromises your

application using either an indirect or direct attack, then your additional layer (see Figure 5-1)

of cryptography will not make it trivial for him to steal the sensitive user data. Instead, he has

an additional layer that he has to attack. This principle is similar to the Information Assurance

principle of Defense in Depth that the US National Security Agency developed.

CHAPTER 5: Data Storage and Cryptography56

Public Key Infrastructure
Since we’re on the subject of cryptography, it is worthwhile learning a bit about Public Key
Infrastructure (PKI). PKI is based on the principle of identity and trust verification based on a

trusted third party. Let’s examine a scenario that illustrates the principles involved. Bear in mind

that this example has nothing to do with application development for the moment. We will look

at that subject in depth soon enough.

Mr. Krabs owns Krusty Krab, one of the most popular fast food restaurants in the city. He credits

his famous Krabby Patty (a wonderfully moist, delicious burger) with the reason for its popularity.

No one except Mr. Krabs knows the Krabby Patty’s super-secret recipe. Given his popularity,

he recently started selling franchises to his restaurant. As most of the new branches under his

franchise will be geographically distant, Mr. Krabs decides to dispatch his secret recipe to the

owners via courier. The only problem with this approach is that Mr. Krabs’s rival, Sheldon James

Plankton, has attempted to steal his secret recipe before, and it is likely that he will try again.

I love food, especially burgers, so I decide to open a Krusty Krab franchise in my city. I contact

Mr. Krabs; and along with the relevant paperwork, he attaches a document on how I should

receive and safeguard his secret Krabby Patty recipe. I’ll spare you the countless pages of

details and legalese, and instead list only the most salient points. The instructions state that I am

to do the following:

1. Register myself at the nearest police department under the KK program

through the IV department.

2. Receive one padlock with one key that opens the padlock from the

police department’s IV department.

3. Give the padlock to my police department.

4. Guard the key with my life.

5. Receive and open the steel box that will be sent to me via courier.

USER

INTERACTION

OS

INTERACTION

ATTACKER

APPLICATION

LOGIC

ENCRYPTED

DATA

UNENCRYPTED

DATA

Figure 5-1. An example of the Defense in Depth principle

CHAPTER 5: Data Storage and Cryptography

57

Sure enough, after I complete these steps, a package arrives in the mail. Oddly, the outer
cardboard packaging seems tampered with, but not the padlock or the solid steel box inside.
The key opens the padlock easily and viola! I have the secret Krabby Patty recipe. Later, I hear
from Mr. Krabs that Plankton had attempted to hijack and open the steel box, but failed. This
explains the outer package tampering that I noticed.

To spare you from more of my idiocy, I’m going to correlate characters and objects in this story
to elements associated with PKI (see Table 5-1).

When you look at Table 5-1, it is immediately evident that the setup and running of a PKI is quite
complex. All of the elements are essential, however, and serve a very specific purpose to ensure the

exchange of messages and keys in a secure and trustworthy manner. Let’s analyze each element.

	Mr. Krabs and I: These are the sender and receiver, respectively. We need to

exchange sensitive data (the secret recipe) and follow PKI policies

and procedures to do so.

	Plankton: He is the attacker. He wants access to the sensitive data and

decides to attack it in transit.

	Secret recipe: This is the sensitive data. We want to exchange this recipe

and keep it private.

	The steel box: This is the encrypted message. The sender will encrypt it

or lock it so that only the key holder can open it. The key holder (me) is

the receiver.

	My padlock: This is my public key. When you consider the story, you might

wonder how a padlock can also be a key, but look at it from a metaphorical

sense. My padlock is something anyone can use to lock or encrypt a

Table 5-1. The Relationship Between the Story and PKI

Story Element PKI Element

Mr. Krabs The message sender

Me The message receiver

Plankton The attacker

The secret recipe The message/sensitive data

The steel box The encrypted message

My padlock My public key

The key to my padlock My private key

The police department The Certificate Authority (CA)

The KK program The CA domain

The IV department The Registration Authority (RA)

CHAPTER 5: Data Storage and Cryptography58

message. I am not afraid to give anyone my padlock or public key because
only I can open the message. I can have an unlimited number of padlocks to
give out to anyone who wants to send me a message securely.

	The key to my padlock: This is my private key. It is private because no one
else has a copy. Only I am able to open my padlocks with this key. I have
to safeguard this key at all times because if an attacker gains access to this
key, then he can open all the steel boxes locked with my padlock, thereby
gaining access to the sensitive data.

	The police department: This is the Certificate Authority (CA). One of the

fundamental components of a PKI, the CA is the equivalent of a trusted third

party. Both Mr. Krabs and I trust our local police departments, and thus they

make good candidates for the CA. We rely on them to uphold the law and

act with integrity. Therefore, even if somebody who I don’t know or have

never met wants to send me a secure message, I don’t have to worry about

trusting the person. I only have to trust the authority that tells me the person

is who he says he is.

	The KK program: For our story, this is the CA domain. For instance, the

police department or CA may be able to act as the trusted third party for

many different scenarios. The CA domain will ensure that all transactions

occur within the same context. The KK program therefore exists only to deal

with Mr. Krabs’s franchise.

	The IV department: This is our Registration Authority (RA). If a person wants

to send or receive secure messages, he first has to register himself with the

RA. The RA will require that you prove your identity with an officially issued

document, such as a national identification card or a passport. The RA will

determine the authenticity of this document and may possibly use other

means to decide if the person is who he says he is. On satisfactorily meeting

the RA’s registration requirements, the person is registered and given a

public and private key.

One question that you might have is this: how do two police departments in two separate cities,

or even countries, trust each other? We will assume that all police departments establish trust

through an internal mechanism to a degree in which many departments can act as one entity.

So to summarize, both Mr. Krabs and I will use a trusted third party to make sure we avoid

sending or receiving messages to impostors. So what about attacking this system? There are

two key ways to attack this system: 1) The attacker can try to trick the registration process and

hijack the identity of a legitimate user, and 2) the attacker can try to conduct a physical attack of

the encrypted message while in transit.

The benefit of this infrastructure is that if Plankton tries to impersonate Mr. Krabs or me, he has

to do so by tricking the registration process of the CA. In many cases, this is very difficult to

accomplish because of the proof of identity stage. To mitigate physical attacks of the message

in transit, the system employs strong, unbreakable locks. These locks are the cryptographic

encryption algorithms that are used.

CHAPTER 5: Data Storage and Cryptography

59

Terms Used in Cryptography
I would like to acknowledge Bruce Schneier and his book Applied Cryptography (John Wiley & Sons,
1996) in this chapter. I have referred to it on many occasions, including when writing this book. It
provides an excellent grounding in the subject of cryptography and is very comprehensive. If you
want to gain a more in-depth understanding of cryptography, then I highly recommend this book.

It is essential to learn the correct terminology in cryptography. Without learning the correct
terminology, you can still master cryptography, but probably at a slower pace. Table 5-2 lists the
terms used in cryptography in the context of writing and securing your own applications.

Table 5-2. Terms Used in Cryptography

Term Description

Plaintext/cleartext This is your message. It is the text file you write, the user data you store,

or the raw message that you wish to protect from prying eyes. It is

generally readable by everyone.

Encryption This process is used to take plaintext and render it unreadable or

obfuscated.

Ciphertext This is the result of encrypting plaintext. This is the encrypted message.

Decryption This is the reverse of encryption. It is the process by which you turn

obfuscated ciphertext back into readable plaintext.

Cryptographic algorithm/

algorithm/cipher

This is the specific type of mathematical function that is used to encrypt

and decrypt plaintext.

Key This value will uniquely affect the encryption or decryption algorithm

in use. There can be separate keys for encryption or decryption. Most

commonly used algorithms depend on a key to work.

Shared key/Symmetric key This is one key that both encrypts and decrypts data. The sender and

receiver both have this key; hence, it is defined as a shared key.

Asymmetric key This is when there is one key for encryption and another for decryption.

You can use this type of key to encrypt data to a specific person. All you

need to do is encrypt the data using the person’s public key and he can

then decrypt it using his private key. Therefore, there is a one key for

encryption (public key) and another for decryption (private key).

Cryptanalysis This refers to the study of breaking ciphertext without having prior

knowledge of the key or algorithm.

Cryptography in Mobile Applications
Implementing PKI for general, every day applications seems like overkill, especially when you

consider the amount of work and complexity involved. When you consider mobile applications,

you’re faced with an even tougher task due to the limited resources available. It is possible to

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5: Data Storage and Cryptography60

do, however, and a paper detailing the theory of Lightweight PKI in mobile environments (LPKI)
was presented at the 11th IEEE Singapore International Conference held at Singapore in 2008
(http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber = 4737164).

But we will not be using PKI or LPKI in any of our applications. Instead, we will try to strike a
balance and use techniques from cryptography in a manner that suits the limited resources of
a mobile computing environment. So let’s examine how we want cryptography to fit in with our

application. As I’ve mentioned in previous chapters, protecting your user data is critical. If you

look back at the example in Chapter 2 with the Contact Object encryption, can you identify

what type of key we used? We used the Advanced Encryption Standard (AES) algorithm. This

is a symmetric key algorithm because there is only one key for both encryption and decryption.

If you look closely, you will begin to question my sanity for using a random 256-bit key. One

question you might ask is, how do we decrypt data if we just used a random key to encrypt

the data in the first place? I’m hoping you answered this question in the exercise at the end of

Chapter 2. If you haven’t, then let’s go ahead and tackle that now.

Symmetric Key Algorithms
AES is a symmetric key algorithm or block cipher. As we saw, this means that there is only one

key used in encryption and decryption. Algorithms work to encrypt or decrypt data. How this

data is processed gives rise to a further division of symmetric algorithms. For instance, we can

process a fixed number of data bits at a time, known as a block of data; or we can process data

one bit at a time, known as a stream. This distinction gives us block ciphers and stream ciphers.

Generally, AES is considered a block cipher that operates on groups of data 128 bits long. A

block of plaintext 128 bits long will have a resulting block of ciphertext of the same length. AES

allows for a key size from 0 to 256 bits. In our example, we used the maximum key size. For

this book, I will use of the AES block cipher. I’ve included some other notable block ciphers

in Table 5-3 that come packaged with Android. The principle for generating keys for the other

block ciphers remains the same as in Listing 5-1, shown in the next section. Simply substitute

the algorithm name in the KeyGenerator.getInstance() method from AES to one of the block

ciphers listed in the table.

Key Generation
A key is an integral part of cryptography. Most modern cryptographic algorithms require a key to

work correctly. In our example in Chapter 2, I used a pseudo-random number generator (PRNG)

Table 5-3. Block Ciphers that Can Be Used in Android 2.3.3

Block Cipher Block Size Key Size (in bits)

AES 128 bit 0–256

Camellia 128 bit 128, 192, 256

Blowfish 64 bit 0–448

Twofish 128 bit 128, 192, 256

http://ieeexplore.ieee.org/xpl

CHAPTER 5: Data Storage and Cryptography 61

Note A brute-force attack on a key or password occurs when an attacker keeps trying to guess

the correct password by sequentially creating and trying passwords based on combinations of

different character sets such as A–Z, a–z, 0–9, and special characters. Eventually, in the course of

trying all possible combinations, she is likely to guess the correct password.

I know a few developers who still believe that an encryption key is equivalent to a password. It
is not. Well, not strictly. In our key generation example, we use a random 256-bit key. Generally,
these encryption routines all take place behind the scenes; and although user passwords can be
turned into keys, I don’t advise doing this. One reason to avoid doing this is that user passwords
are almost always no greater than 10 to 12 bytes, and this does not even cover half the key
length (256 / 8 = 32 bytes). Given what we know about brute-force attacks, it is better to pick the
maximum allowable key length.

Listing 5-1. A Key Generation Algorithm

public static byte[] generateKey(byte[] randomNumberSeed) {
 SecretKey sKey = null;
 try {
 KeyGenerator keyGen = KeyGenerator.getInstance("AES");
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
 random.setSeed(randomNumberSeed);
 keyGen.init(256,random);
 sKey = keyGen.generateKey();
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"No such algorithm exception");
 }
 return sKey.getEncoded();
 }

to generate our encryption key (see Listing 5-1). A good rule of thumb that I use is to always
pick the maximum key size of an algorithm. If I find that my application is severely lagging when

I test it, then I reduce my key size to the next smaller one. In cryptography, you will always want

to use the largest possible key size for your algorithm. The reason for this is to make it harder to

perform brute-force attacks on your key.

To illustrate, let’s suppose you picked a key size of 16 bits. This means an attacker has to try

a combination of 1s and 0s a total of 216 or 65,536 times. If, however, you picked the full 256-

bit key size, then the attacker has to make 2256 or 11.677 (1.16e77) attempts to crack your key,

which will take him several years to achieve. Of course, this duration can be reduced with the

progression of computing power, but this is true in all areas of cryptanalysis. Thus, the large key

sizes and strong algorithms ensure that an attacker cannot easily compromise your ciphertext.

In most cases, encrypted data acts as a deterrent to attackers who are after the low-hanging

fruit. Rather than spending time breaking your cryptography, they will move onto the next easy-

to-attack application—assuming, of course, that the value of your data does not exceed the value

of time, effort, and resources your attacker is willing to invest in breaking your cryptography.

CHAPTER 5: Data Storage and Cryptography62

Note PKCS5/7 Padding is when you take the length of the remaining bits you need to pad and

use that as the pad bit. For example, if there are 10 bits left to pad the block to the correct size, then

the pad bit is 0A (which is 10 in hexadecimal). Similarly, if there were 28 bits to pad, then the padding

bit would be 1C.

Figure 5-2. Two blocks of data without proper alignment

Figure 5-3. Two blocks of data with Zero Padding. Padding is in bold.

Figure 5-4. Two blocks of data with PKCS5/7 Padding. Padding is in bold.

My example in Chapter 2 does not specify any padding. By default, Android will use PKCS5
Padding.

Modes of Operation for Block Ciphers
Block ciphers have various mechanisms of encryption and decryption. The simplest form of
encryption is when one block of plaintext is encrypted to provide one block of ciphertext. The
next block of plaintext is then encrypted to give the next block of ciphertext, and so on. This is
known as the Electronic Code Book (ECB) mode. Figure 5-5 shows a visual representation of
ECB encryption.

Data Padding
So far, I’ve talked about symmetric algorithms processing a fixed block size of data. However,

what about the situation that occurs when your data is less than the input block size required

by the algorithm? Consider the case in Figure 5-2. Here, we have two blocks of data, but only

one of them contains the full block size (we will use an 8-byte block size to simplify things); the

second one contains only 4 bits. If we ran this last block through our AES algorithm, it would fail.

To counter situations like this, there are several different padding options available.

Possibly one of your first thoughts when you encounter the situation in Figure 5-2 is to pad

the remaining 4 bits with zeros. This is possible and is known as Zero Padding. Other different

padding options exist. I won’t go into too much detail at this point, but you will need to keep in

mind that you can’t simply take plaintext and run it through a block cipher. Block ciphers always

work with a fixed input block size and will always have a fixed output block size. Figures 5-3 and

5-4 show examples of Zero Padding and PKCS5/7 Padding.

CHAPTER 5: Data Storage and Cryptography

63

Although simple, ECB mode offers no protection against a pattern recognition cryptanalysis.
This means that if the message text contains two identical plaintext blocks, then there will
also be two corresponding ciphertext blocks. When conducting a cryptanalysis, one of the
techniques used is to identify and locate patterns within ciphertext. After patterns are identified,

it can be significantly easier to deduce that ECB encryption is used and, thus, an attacker only

needs to focus on decrypting a specific block of the ciphertext. He need not decrypt the

entire message.

To prevent this, there are several other modes of operation for block ciphers: 1) cipher-block

chaining (CBC), 2) propagating cipher-block chaining (PCBC), 3) cipher feedback (CFB), and

4) output feedback (OFB). I cover only the encryption routines in this section (simply reverse

the steps in the encryption mode to get the decryption routines):

	CBC mode: Cipher-block chaining mode (see Figure 5-6) uses an additional

value known as an initialization vector (IV) that is used to perform a XOR

operation on the first block of plaintext. After this, each resulting ciphertext

block is XORd with the next plaintext block, and so on. This type of mode

ensures that each resulting ciphertext block is dependent on the previous

plaintext block.

Electronic Codebook (ECB) mode encryption

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Figure 5-5. ECB encryption (courtesy Wikipedia)

Cipher Block Chaining (CBC) mode encryption

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Plaintext

Block Cipher

Encryption

Ciphertext

Key

PlaintextInitialization

Vector (IV)

Block Cipher

Encryption

Ciphertext

Key

Figure 5-6. CBC encryption (courtesy Wikipedia)

CHAPTER 5: Data Storage and Cryptography64

Propagating Cipher Block Chainiong (PCBC) mode encryption

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Plaintext

Block Cipher

Encryption

Ciphertext

Key

Plaintext

Initialization

Vector (IV)

Block Cipher

Encryption

Ciphertext

Key

Figure 5-7. PCBC encryption (courtesy Wikipedia)

Cipher Feedback (CFB) mode encryption

Block Cipher

Encryption

Ciphertext

Key
Block Cipher

Encryption

Ciphertext

Key

Initialization

Vector (IV)

Block Cipher

Encryption

Ciphertext

Key

Plaintext Plaintext Plaintext

Figure 5-8. CFB encryption (courtesy Wikipedia)

	PCBC mode: Propagating cipher-block chaining mode (see Figure 5-7) is
very similar to CBC mode. The difference is that, instead of only XORing the
IV for the first block and the ciphertext for subsequent blocks, PCBC mode

XORs the IV and the ciphertext for the first block and then plaintext and

ciphertext for additional blocks. The design of this mode is such that a small

change in the ciphertext propagates throughout the encryption or decryption

process.

	CFB mode: Cipher feedback mode (see Figure 5-8) switches places

between the IV and plaintext in CBC mode. Therefore, instead of XORing the

plaintext and encrypting it, and subsequently XORing the ciphertext with the

plaintext; CFB mode will encrypt the IV first, then XOR it with the plaintext to

receive the ciphertext. Then, for subsequent blocks, the ciphertext is again

encrypted and XORd with the plaintext to give the next block of ciphertext.

CHAPTER 5: Data Storage and Cryptography

65

If you look at my original example, you will see that I am not using a specific encryption mode.

By default, Android will use the ECB mode to perform its encryption or decryption. It is up to you

as the developer to select a more complex encryption mode, such as CBC or CFB.

Now that you are more aware of the inner workings of the AES symmetric algorithm, I will show

how you can change the padding and mode of operation when encrypting. Going back to our

original example, change the code to read the same as Listing 5-2. Note the line of bold code.

We have only made a couple changes. First, we changed AES to AES/CBC/PKCS5Padding;

second, we have added the initialization vector (IV) to our init() method. As I mentioned

before, the default mode that Android will use when you specify just AES encoding is AES/ECB/

PKCS5Padding. You can verify this by running the program twice, once with AES and once with

AES/ECB/PKC5Padding. Both will give you the same ciphertext.

Note XOR (denoted by the symbol ^) is the standard abbreviation for the logical operation

exclusive or (also known as exclusive disjunction). Its truth table is as follows:

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Output Feedback (OFB) mode encryption

Block Cipher

Encryption

Ciphertext

Key
Block Cipher

Encryption

Ciphertext

Key

Initialization

Vector (IV)

Block Cipher

Encryption

Ciphertext

Key

Plaintext Plaintext Plaintext

Figure 5-9. OFB encryption (courtesy Wikipedia)

	OFB mode: Output feedback mode (see Figure 5-9) is very similar to CFB

mode. The difference is that, instead of using the XORd IV and ciphertext,

it is used before the XORing takes place. So, for the first block, the IV is

encrypted with the key and this is used as input for the next block. The

ciphertext from the first block is then XORd with the first block of plaintext.

Subsequent encryptions take place with the ciphertext from the previous

block before XORing.

CHAPTER 5: Data Storage and Cryptography66

Listing 5-2. Reworked Encryption Routine with CBC Encryption Mode

private static byte[] encrypt(byte[] key, byte[] data, byte[] iv){
 SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
 Cipher cipher;
 byte[] ciphertext = null;
 try {
 cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
 IvParameterSpec ivspec = new IvParameterSpec(iv);
 cipher.init(Cipher.ENCRYPT_MODE, sKeySpec, ivspec);
 ciphertext = cipher.doFinal(data);
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"NoSuchAlgorithmException");
 } catch (NoSuchPaddingException e) {
 Log.e(TAG,"NoSuchPaddingException");
 } catch (IllegalBlockSizeException e) {
 Log.e(TAG,"IllegalBlockSizeException");
 } catch (BadPaddingException e) {
 Log.e(TAG,"BadPaddingException");
 } catch (InvalidKeyException e) {
 Log.e(TAG,"InvalidKeyException");
 }
 return ciphertext;

 }

Assume you were to select the secret key of your choice. Instead of using the random number
generator to generate your secret key, you could write a routine similar to that shown in
Listing 5-3. In this listing, stringKey is the key you want to encrypt your data.

Listing 5-3. Reworked Key Generation Example with Fixed Key Value

public static byte [] generateKey(String stringKey) {
 try {
 SecretKeySpec sks = new
 SecretKeySpec(stringKey.getBytes(),"AES");

 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG,"No such algorithm exception");
 }
 return sks.getEncoded();
 }

Data Storage in Android
I wanted to cover the topic of cryptography and data storage in one chapter because I believe you
can link the two to provide a more secure application. Android runs applications in separate security
contexts. This means that each application will run with its own UID and GID; when one application
writes data, other applications will not be able to read that data. If you want to share data between
applications, then you will need to explicitly enable this sharing by using a content provider. I can see
your question forming now: “Why cover all the crypto topics if Android already protects data?” As I
alluded to at the start of this chapter, we can build another layer of security over the Android security
layer, just for those unforeseen times when a vulnerability, virus, or Trojan rears its ugly head.

CHAPTER 5: Data Storage and Cryptography

67

Table 5-4. Mechanisms of Data Storage on Android

Storage Method Description Data Privacy

Shared preferences Allows you to store primitive data types (e.g.,

int, Boolean, float, long, and String) that will

persist across the device session. Even if

your application is not running, your data will

persist until the device is restarted.

Can set four modes of privacy:

MODE_PRIVATE, MODE_WORLD_

READABLE, MODE_WORLD_WRITABLE,

and MODE_MULTI_PROCESS.

Default mode is MODE_PRIVATE

Internal storage Allows you to store your data in the device’s

internal memory. Generally, this data is not

accessible by other applications or even the

end user. This is a private data storage area.

Data stored here will persist even after a device

restarts. When the end user removes your

application, Android will also delete your data.

Can set three modes of privacy:

MODE_PRIVATE, MODE_WORLD_

READABLE, and MODE_WORLD_

WRITABLE.

Default mode is MODE_PRIVATE.

External storage Data stored here is world-readable. The

device user and other applications can

read, modify, and delete this data. The

external storage is associated with SD

Cards or device internal storage (which is

nonremovable).

Data is world readable by

default.

SQLite databases If you need to create a database for

your application to take advantage of

SQLite’s searching and data management

capabilities, use the SQLite database

storage mechanism.

Databases that you create

are accessible by any class

within your application. Outside

applications have no access to

this database.

Network connection You can store and retrieve data remotely

through web services. You can read more

about this in Chapter 6.

Based on your web service

settings.

Android allows you to store data using five different options (see Table 5-4). Obviously, you will

need to decide where to store your application-specific data based on your requirements.

Which mechanism you choose to store your data largely depends on your requirements. Looking

at our Proxim application in Chapter 2, we can also consider storing our data in a SQLite

database because this will save us from unnecessarily deciding to enforce a data structure. Let’s

look at a few examples of how to store and retrieve data using each of these mechanisms.

Shared Preferences
Shared preferences are mostly useful for storing application settings that will be valid until a

device reboot takes place. As the name states, the storage mechanism is best suited to holding

CHAPTER 5: Data Storage and Cryptography68

user preferences for an application. Let’s say we have to store information about an e-mail server
that our application needs to retrieve data from. We need to store the mail server hostname,
port, and whether the mail server uses SSL. I’ve given basic code to store (see Listing 5-4) and
retrieve (see Listing 5-5) data into the shared preferences. The StorageExample1 class puts it all
together (see Listing 5-6), and the accompanying output is shown in Figure 5-10.

Listing 5-4. Code that Stores Data to the SharedPreferences

package net.zenconsult.android;

import java.util.Hashtable;

import android.content.Context;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.preference.PreferenceManager;

public class StoreData {

 public static boolean storeData(Hashtable data, Context ctx) {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(ctx);
 String hostname = (String) data.get("hostname");
 int port = (Integer) data.get("port");
 boolean useSSL = (Boolean) data.get("ssl");
 Editor ed = prefs.edit();
 ed.putString("hostname", hostname);
 ed.putInt("port", port);
 ed.putBoolean("ssl", useSSL);
 return ed.commit();
 }
}

Listing 5-5. Code that Retrieves Data from the SharedPreferences

package net.zenconsult.android;

import java.util.Hashtable;

import android.content.Context;
import android.content.SharedPreferences;
import android.preference.PreferenceManager;

public class RetrieveData {
 public static Hashtable get(Context ctx) {
 String hostname = "hostname";
 String port = "port";
 String ssl = "ssl";

CHAPTER 5: Data Storage and Cryptography

69

 Hashtable data = new Hashtable();
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(ctx);
 data.put(hostname, prefs.getString(hostname, null));
 data.put(port, prefs.getInt(port, 0));
 data.put(ssl, prefs.getBoolean(ssl, true));
 return data;
 }
}

Listing 5-6. StorageExample1, the Main Class

package net.zenconsult.android;

import java.util.Hashtable;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.widget.EditText;

public class StorageExample1Activity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Context cntxt = getApplicationContext();

 Hashtable data = new Hashtable();
 data.put("hostname", "smtp.gmail.com");
 data.put("port", 587);
 data.put("ssl", true);

 if (StoreData.storeData(data, cntxt))
 Log.i("SE", "Successfully wrote data");
 else
 Log.e("SE", "Failed to write data to Shared Prefs");

 EditText ed = (EditText) findViewById(R.id.editText1);
 ed.setText(RetrieveData.get(cntxt).toString());
 }
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5: Data Storage and Cryptography70

Internal Storage
As we saw, SharedPreferences is ideally suited to key-value pair data types. This is somewhat
similar to a Hashtable or even the standard Java Properties object. The limitation with the
SharedPreferences mechanism is that you are limited to storing only primitive data types. You
wouldn’t be able to store more complex types such as Vectors or Hashtables. If you want to
store data other than primitive types, you can look to the internal storage. The internal storage
mechanism will allow you to write your data via an OutputStream. Thus, any object that can be
serialized into a string of bytes can be written to the internal storage. Let’s begin by creating our
StorageExample2 class (see Listing 5-7). As before, I’ve shown the storage and retrieval modules
in separate listings (see Listings 5-8 and 5-9, respectively). Figure 5-11 shows the output.

Listing 5-7. StorageExample2, the Main Class

package net.zenconsult.android;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.widget.EditText;

public class StorageExample2Activity extends Activity {
 /** Called when the activity is first created. */
 @Override

Figure 5-10. The output of the StorageExample1 application

CHAPTER 5: Data Storage and Cryptography 71

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Context ctx = getApplicationContext();

 // Store data
 Contact contact = new Contact();
 contact.setFirstName("Sheran");
 contact.setLastName("Gunasekera");
 contact.setEmail("sheran@zenconsult.net");
 contact.setPhone(" + 12120031337");

 StoreData.storeData(contact.getBytes(), ctx);

 // Retrieve data

 EditText ed = (EditText) findViewById(R.id.editText1);
 ed.setText(new String(RetrieveData.get(ctx)));

 }
}

Listing 5-8. Use StoreData.java to Store Data in the Internal Storage

package net.zenconsult.android;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import android.content.Context;
import android.util.Log;

public class StoreData {
 public static final String file = "contacts";

 public static void storeData(byte[] data, Context ctx) {

 try {
 FileOutputStream fos = ctx.openFileOutput(file, ctx.MODE_PRIVATE);
 fos.write(data);
 fos.close();
 } catch (FileNotFoundException e) {
 Log.e("SE2", "Exception: " + e.getMessage());
 } catch (IOException e) {
 Log.e("SE2", "Exception: " + e.getMessage());
 }
 }
}

Listing 5-9. Use RetrieveData.java to Retrieve Data from the Internal Storage

package net.zenconsult.android;

import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

CHAPTER 5: Data Storage and Cryptography72

import java.io.IOException;

import android.content.Context;
import android.util.Log;

public class RetrieveData {
 public static final String file = "contacts";

 public static byte[] get(Context ctx) {
 byte[] data = null;
 try {
 int bytesRead = 0;
 FileInputStream fis = ctx.openFileInput(file);
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 byte[] b = new byte[1024];
 while ((bytesRead = fis.read(b)) ! = -1) {
 bos.write(b, 0, bytesRead);
 }
 data = bos.toByteArray();

 } catch (FileNotFoundException e) {
 Log.e("SE2", "Exception: " + e.getMessage());
 } catch (IOException e) {
 Log.e("SE2", "Exception: " + e.getMessage());
 }
 return data;
 }
}

Figure 5-11. The output of the StorageExample2 application

Notice that Listing 5-7 uses the old Contact object from the Proxim example to store the data.

CHAPTER 5: Data Storage and Cryptography

73

SQLite Databases
I’m going to skip the external storage examples because you already know how to store data
externally (e.g., take a look at the source code for the Proxim application). It stores all its data on
the external store. Instead, let’s focus on how to create, store, and retrieve data using Android’s
SQLite database object. I will create a database table that we can use to store Contact objects
from our Proxim application. Table 5-5 shows the layout of the table. I have taken the easy way
out and designated all columns as TEXT. When you’re creating your own table, make sure to
specify columns that are numbers, dates, or times based on your data types.

Table 5-5. The Contacts Table Inside the ContactsDB SQLite Database

Column Name Column Data Type

FIRSTNAME TEXT

LASTNAME TEXT

EMAIL TEXT

PHONE TEXT

ADDRESS1 TEXT

ADDRESS2 TEXT

Figure 5-12. The StorageExample3 project structure

Create a new project called StorageExample3 in your development environment with the
structure shown in Figure 5-12. If you need the Contact object, copy it from the Proxim example.

The StorageExample3 class shows the main class for working with a SQLite database, creating
a Contact object with data in it (see Listing 5-10). Listing 5-11 shows a helper class that you
can use to manipulate a SQLite database, while Listing 5-12 shows how to use a class to write
data from the Contact object into the database. Finally, Figure 5-13 shows you how to fetch data
from a SQLite database and return a contact object. One you’ve had a chance to peruse these
listings, we’ll take a closer look at what each piece of this code does and how it does it.

CHAPTER 5: Data Storage and Cryptography74

Listing 5-10. The StorageExample3

package net.zenconsult.android;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.EditText;

public class StorageExample3Activity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Store data
 Contact contact = new Contact();
 contact.setFirstName("Sheran");
 contact.setLastName("Gunasekera");
 contact.setEmail("sheran@zenconsult.net");
 contact.setPhone(" + 12120031337");

 ContactsDb db = new
 ContactsDb(getApplicationContext(),"ContactsDb",null,1);
 Log.i("SE3",String.valueOf(StoreData.store(db, contact)));

 Contact c = RetrieveData.get(db);

 db.close();

 EditText ed = (EditText)findViewById(R.id.editText1);
 ed.setText(c.toString());

 }
}

Listing 5-11. The ContactsDB Helper Class Handles Our SQLite Database

package net.zenconsult.android;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase.CursorFactory;

public class ContactsDb extends SQLiteOpenHelper {
 public static final String tblName = "Contacts";

 public ContactsDb(Context context, String name, CursorFactory factory,
 int version) {
 super(context, name, factory, version);
 }

CHAPTER 5: Data Storage and Cryptography

75

 @Override
 public void onCreate(SQLiteDatabase db) {
 String createSQL = "CREATE TABLE " + tblName
 + " (FIRSTNAME TEXT, LASTNAME TEXT, EMAIL TEXT,"
 + " PHONE TEXT, ADDRESS1 TEXT, ADDRESS2 TEXT);";
 db.execSQL(createSQL);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // Use this to handle upgraded versions of your database
 }

}

Listing 5-12. The StoreData Class Writes Data from the Contact Object into the Database

package net.zenconsult.android;

import android.content.ContentValues;
import android.database.sqlite.SQLiteDatabase;

public class StoreData {
 public static long store(ContactsDb db, Contact contact) {
 // Prepare values
 ContentValues values = new ContentValues();
 values.put("FIRSTNAME", contact.getFirstName());
 values.put("LASTNAME", contact.getLastName());
 values.put("EMAIL", contact.getEmail());
 values.put("PHONE", contact.getPhone());
 values.put("ADDRESS1", contact.getAddress1());
 values.put("ADDRESS2", contact.getAddress2());

 SQLiteDatabase wdb = db.getWritableDatabase();
 return wdb.insert(db.tblName, null, values);
 }

}

Listing 5-13. The RetrieveData class Fetches Data from the SQLite Database and Returns a Contact Object

package net.zenconsult.android;

import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;

public class RetrieveData {
 public static Contact get(ContactsDb db) {
 SQLiteDatabase rdb = db.getReadableDatabase();
 String[] cols = { "FIRSTNAME", "LASTNAME", "EMAIL", "PHONE" };
 Cursor results = rdb.query(db.tblName, cols, "", null, "", "", "");

 Contact c = new Contact();
 results.moveToLast();
 c.setFirstName(results.getString(0));
 c.setLastName(results.getString(1));

CHAPTER 5: Data Storage and Cryptography76

 c.setEmail(results.getString(2));
 c.setPhone(results.getString(3));
 return c;
 }

}

In my experience, it is very rare that I’ve had to use a flat file to store my data. Unless I

work with pure binary data (e.g., photos, videos, or music), most of the data that I store is

done either as a key-value pair or stored inside a SQLite database. Therefore, I can use

Android’s SharedPreferences or SQLiteDatabase to do this. Both mechanisms offer very good

manageability and that is the biggest draw for me. If you haven’t worked with SQLite databases

before, then you might want to consider looking into it a bit more. Indeed, most modern mobile

operating systems, including Apple’s iOS and RIM’s BlackBerry Smartphone OS, offer native

support for SQLite databases. The good part is that SQLite databases are very portable, and

you can create, read, and modify a SQLite database on just about any major operating system,

including Mac OS X, Linux, and Windows.

Let’s analyze the source from our StorageExample3 project. Listing 5-10 is the main class, and it

creates a Contact object with data in it:

Contact contact = new Contact();
contact.setFirstName("Sheran");
contact.setLastName("Gunasekera");
contact.setEmail("sheran@zenconsult.net");

contact.setPhone(" + 12120031337");

Next, it uses the ContactsDb class (Listing 5-11) that subclasses the SQLiteOpenHelper class:

ContactsDb db = new ContactsDb(getApplicationContext(),"ContactsDb",null,1);

If you want to create your own database, then subclassing SQLiteOpenHelper is the way to go.

The code then uses the StoreData class’s (Listing 5-12) store() method to save the just created

Contact object. We call the store() method and pass our newly created SQLite database and

our Contact object. StoreData will then break down the Contact object into a ContentValues

object:

ContentValues values = new ContentValues();
values.put("FIRSTNAME", contact.getFirstName());
values.put("LASTNAME", contact.getLastName());
values.put("EMAIL", contact.getEmail());
values.put("PHONE", contact.getPhone());
values.put("ADDRESS1", contact.getAddress1());

values.put("ADDRESS2", contact.getAddress2());

Tip If you are creating your own data objects and you know you are going to use the SQLite

database mechanism to store your data, you might want to consider extending ContentValues

for your data object. This makes it a lot easier to pass to when storing and retrieving data.

CHAPTER 5: Data Storage and Cryptography

77

Next, we write the values to our database table. The SQLiteOpenHelper object can retrieve a
WritableDatabase or a ReadableDatabase. We use the most appropriate one when inserting or
querying data from our table:

SQLiteDatabase wdb = db.getWritableDatabase();

return wdb.insert(db.tblName, null, values);

The RetrieveData class handles data retrieval from the database. Here, we are only interested in
the last row of values inserted. In a production application, we would iterate over our Cursor to
fetch each row:

SQLiteDatabase rdb = db.getReadableDatabase();
String[] cols = { "FIRSTNAME", "LASTNAME", "EMAIL", "PHONE" };

Cursor results = rdb.query(db.tblName, cols, "", null, "", "", "");

After fetching the data from the table, we re-create a Contact object that we return:

Contact c = new Contact();
results.moveToLast();
c.setFirstName(results.getString(0));
c.setLastName(results.getString(1));
c.setEmail(results.getString(2));
c.setPhone(results.getString(3));

return c;

The output (see Figure 5-13) looks predictably the same from the previous example.

Figure 5-13. The output of the StorageExample3 application

CHAPTER 5: Data Storage and Cryptography78

Combining Data Storage with Encryption
We covered two very important points in this chapter, but we did so separately. If you
attempted the exercises in Chapter 2, then you already have a fair idea of what we need to do
next. We can clearly see that whatever data we store is placed in the clear inside whichever
storage mechanism we select. We can rely on Android to ensure that our data is not read by
unauthorized applications, but what if a brand new virus is released into the wild next week?
This virus affects only Android phones and is able to bypass the SQLite database permissions to
read all databases present on the device. Now your only hope of keeping your data private has
been compromised and all your data is vulnerable to being copied off your device.

We discussed such attacks in previous chapters and classified them as indirect attacks. They

are indirect because the virus does not go after your application directly. Instead, it goes after

the Android OS. The aim is to copy all SQLite databases in the hopes that the virus author

can copy any sensitive information stored there. If you had added another layer of protection,

however, then all the virus author would see is garbled data. Let’s build a more permanent

cryptographic library that we can reuse in all our applications. Let’s start by creating a brief set

of specifications:

	Uses symmetric algorithms: Our library will use a symmetric algorithm,

or block cipher, to encrypt and decrypt our data. We will settle on AES,

although we should be able to modify this at a later date.

	Uses a fixed key: We need to be able to include a key that we can store on

the device that will be used to encrypt and decrypt data.

	Key stored on device: The key will reside on the device. While this is a risk

to our application from the perspective of direct attacks, it should suffice in

protecting us against indirect attacks.

Let’s start with our key management module (see Listing 5-14). Because we plan to use a fixed

key, we won’t need to generate a random one as we did in the past examples. The KeyManager

will therefore perform the following tasks:

1. Accept a key as a parameter (the setId(byte[] data) method)

2. Accept an initialization vector as a parameter (the setIv(byte[] data)

method)

3. Store the key inside a file in the internal store

4. Retrieve the key from a file in the internal store (the getId(byte[] data)

method)

5. Retrieve the IV from a file in the internal store (the getIv(byte[] data)

method)

Listing 5-14. The KeyManager Module

package net.zenconsult.android.crypto;

import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;

CHAPTER 5: Data Storage and Cryptography

79

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import android.content.Context;
import android.util.Log;

public class KeyManager {
 private static final String TAG = "KeyManager";
 private static final String file1 = "id_value";
 private static final String file2 = "iv_value";

 private static Context ctx;

 public KeyManager(Context cntx) {
 ctx = cntx;
 }

 public void setId(byte[] data) {
 writer(data, file1);
 }

 public void setIv(byte[] data) {
 writer(data, file2);
 }

 public byte[] getId() {
 return reader(file1);
 }

 public byte[] getIv() {
 return reader(file2);
 }

 public byte[] reader(String file) {
 byte[] data = null;
 try {
 int bytesRead = 0;
 FileInputStream fis = ctx.openFileInput(file);
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 byte[] b = new byte[1024];
 while ((bytesRead = fis.read(b)) ! = -1) {
 bos.write(b, 0, bytesRead);
 }
 data = bos.toByteArray();
 } catch (FileNotFoundException e) {
 Log.e(TAG, "File not found in getId()");
 } catch (IOException e) {
 Log.e(TAG, "IOException in setId(): " + e.getMessage());
 }
 return data;
 }

 public void writer(byte[] data, String file) {
 try {
 FileOutputStream fos = ctx.openFileOutput(file,
 Context.MODE_PRIVATE);
 fos.write(data);

CHAPTER 5: Data Storage and Cryptography80

 fos.flush();
 fos.close();
 } catch (FileNotFoundException e) {
 Log.e(TAG, "File not found in setId()");
 } catch (IOException e) {
 Log.e(TAG, "IOException in setId(): " + e.getMessage());
 }
 }

 }

Next, we do the Crypto module (see Listing 5-15). This module takes care of the encryption and
decryption. I have added an armorEncrypt() and armorDecrypt() method to the module to make
it easier to convert the byte array data into printable Base64 data and vice versa.

Listing 5-15. The Cryptographic Module

package net.zenconsult.android.crypto;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

import android.content.Context;
import android.util.Base64;

public class Crypto {
 private static final String engine = "AES";
 private static final String crypto = "AES/CBC/PKCS5Padding";
 private static Context ctx;

 public Crypto(Context cntx) {
 ctx = cntx;
 }

 public byte[] cipher(byte[] data, int mode)
 throws NoSuchAlgorithmException, NoSuchPaddingException,
 InvalidKeyException, IllegalBlockSizeException,
 BadPaddingException, InvalidAlgorithmParameterException {
 KeyManager km = new KeyManager(ctx);
 SecretKeySpec sks = new SecretKeySpec(km.getId(), engine);
 IvParameterSpec iv = new IvParameterSpec(km.getIv());
 Cipher c = Cipher.getInstance(crypto);
 c.init(mode, sks, iv);
 return c.doFinal(data);
 }

CHAPTER 5: Data Storage and Cryptography 81

 public byte[] encrypt(byte[] data) throws InvalidKeyException,
 NoSuchAlgorithmException, NoSuchPaddingException,
 IllegalBlockSizeException, BadPaddingException,
 InvalidAlgorithmParameterException {
 return cipher(data, Cipher.ENCRYPT_MODE);
 }

 public byte[] decrypt(byte[] data) throws InvalidKeyException,
 NoSuchAlgorithmException, NoSuchPaddingException,
 IllegalBlockSizeException, BadPaddingException,
 InvalidAlgorithmParameterException {
 return cipher(data, Cipher.DECRYPT_MODE);
 }

 public String armorEncrypt(byte[] data) throws InvalidKeyException,
 NoSuchAlgorithmException, NoSuchPaddingException,
 IllegalBlockSizeException, BadPaddingException,
 InvalidAlgorithmParameterException {
 return Base64.encodeToString(encrypt(data), Base64.DEFAULT);
 }

 public String armorDecrypt(String data) throws InvalidKeyException,
 NoSuchAlgorithmException, NoSuchPaddingException,
 IllegalBlockSizeException, BadPaddingException,
 InvalidAlgorithmParameterException {
 return new String(decrypt(Base64.decode(data, Base64.DEFAULT)));
 }

}

You can include these two files in any of your applications that require data storage to be

encrypted. First, make sure that you have a value for your key and initialization vector, then call

any one of the encrypt or decrypt methods on your data before you store it. Listing 5-16 shows

the changes required to the StorageExample3 class. Additionally, Listings 5-17 and 5-18 show

the changes required to the StoreData and RetrieveData files, respectively.

Listing 5-16. The New StorageExample3 with Encryption

package net.zenconsult.android;

import net.zenconsult.android.crypto.Crypto;
import net.zenconsult.android.crypto.KeyManager;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.EditText;

public class StorageExample3Activity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 String key = "12345678909876543212345678909876";
 String iv = "1234567890987654";

CHAPTER 5: Data Storage and Cryptography82

 KeyManager km = new KeyManager(getApplicationContext());
 km.setIv(iv.getBytes());
 km.setId(key.getBytes());

 // Store data
 Contact contact = new Contact();
 contact.setFirstName("Sheran");
 contact.setLastName("Gunasekera");
 contact.setEmail("sheran@zenconsult.net");
 contact.setPhone(" + 12120031337");

 ContactsDb db = new ContactsDb(getApplicationContext(), "ContactsDb",
 null, 1);
 Log.i("SE3", String.valueOf(StoreData.store(new Crypto(

 getApplicationContext()), db, contact)));

 Contact c = RetrieveData.get(new Crypto(getApplicationContext()), db);

 db.close();

 EditText ed = (EditText) findViewById(R.id.editText1);
 ed.setText(c.toString());

 }

}

Listing 5-17. The Modified StoreData Class

package net.zenconsult.android;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;

import net.zenconsult.android.crypto.Crypto;
import android.content.ContentValues;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;

public class StoreData {
 public static long store(Crypto crypto, ContactsDb db, Contact contact) {
 // Prepare values
 ContentValues values = new ContentValues();
 try {
 values.put("FIRSTNAME", crypto.armorEncrypt(contact.getFirstName()
 .getBytes()));
 values.put("LASTNAME", crypto.armorEncrypt(contact.getLastName()
 .getBytes()));
 values.put("EMAIL", crypto.armorEncrypt(contact.getEmail()
 .getBytes()));
 values.put("PHONE", crypto.armorEncrypt(contact.getPhone()
 .getBytes()));

CHAPTER 5: Data Storage and Cryptography

83

 values.put("ADDRESS1", contact.getAddress1());
 values.put("ADDRESS2", contact.getAddress2());
 } catch (InvalidKeyException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 } catch (NoSuchAlgorithmException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 } catch (NoSuchPaddingException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 } catch (IllegalBlockSizeException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 } catch (BadPaddingException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 } catch (InvalidAlgorithmParameterException e) {
 Log.e("SE3", "Exception in StoreData: " + e.getMessage());
 }
 SQLiteDatabase wdb = db.getWritableDatabase();
 return wdb.insert(ContactsDb.tblName, null, values);
 }

}

Listing 5-18. The Modified RetrieveData Class

package net.zenconsult.android;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;

import net.zenconsult.android.crypto.Crypto;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;

public class RetrieveData {
 public static Contact get(Crypto crypto, ContactsDb db) {
 SQLiteDatabase rdb = db.getReadableDatabase();
 String[] cols = { "FIRSTNAME", "LASTNAME", "EMAIL", "PHONE" };
 Cursor results = rdb.query(ContactsDb.tblName, cols, "", null, "", "",
 "");

 Contact c = new Contact();
 results.moveToLast();

 try {
 c.setFirstName(crypto.armorDecrypt(results.getString(0)));
 c.setLastName(crypto.armorDecrypt(results.getString(1)));
 c.setEmail(crypto.armorDecrypt(results.getString(2)));
 c.setPhone(crypto.armorDecrypt(results.getString(3)));
 } catch (InvalidKeyException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());

CHAPTER 5: Data Storage and Cryptography84

 } catch (NoSuchAlgorithmException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());
 } catch (NoSuchPaddingException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());
 } catch (IllegalBlockSizeException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());
 } catch (BadPaddingException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());
 } catch (InvalidAlgorithmParameterException e) {
 Log.e("SE3", "Exception in RetrieveData: " + e.getMessage());
 }

 return c;
 }

}

Figure 5-14 shows what it would look like for anyone accessing the SQLite database without
decrypting the information. To replicate this, I didn’t have the RetrieveData class decrypt any of
the data.

Figure 5-14. What the data would look like without decryption

CHAPTER 5: Data Storage and Cryptography

85

Summary
In this chapter, we covered the basics of cryptography. We examined how PKI and trusted third
parties work, as well as how, for our purposes, PKI or even LPKI would be overkill. We then
looked at simple mechanisms of encrypting data and learned the terminology. We saw that
encryption was not as straightforward as picking a symmetric algorithm, and that you must
consider the different aspects such as padding and modes of operation.

We then looked at the various mechanisms of storing data on Android. We covered examples
of each of these and settled on SQLite databases and SharedPreferences to enable us to store
application data. We then looked at how we could obfuscate our data using encryption, and we
built a general-purpose library to perform encryption and decryption. This library can be included
in any of our future programs where we need to store data in a secure manner.

87

Chapter 6
Talking to Web Apps

At some point, you will have to interface with a web application. Whether you’re talking to a
RESTful API from a third party or exchanging data with your own back-end web application,
your mobile app needs to be open to the idea of interaction with other applications. Naturally, as
a responsible developer, it is your job to ensure that the data exchange is done so that attackers
cannot access or alter private data belonging to the end user. We spent time exploring “data at
rest” in previous chapters, when we looked at data storage and encryption. In this chapter, we
will cover “data in transit.”

Originally, I was not planning to spend a lot of time discussing the merits of encrypting your
data in transit. Usually, SSL or TLS will handle the secure components of the data in transit.
Lately, however, the intrusion into the Certificate Authority called DigiNotar in the Netherlands
has led me to reconsider this option (see http://en.wikipedia.org/wiki/DigiNotar for more
information). In the end, I’ll leave it up to you as the developer to decide how to secure your
transport data; but clearly, this recent attack has made me think that even trusting SSL is not
always the best option. Thus, I will cover some topics related to web application security and
how your mobile application should interact with such web applications. I will briefly cover the
Open Web Application Security Project (OWASP), as well; it is a very good resource with which
to secure your web applications.

Consider how secure the source code in Listing 6-1 is. Now ask yourself what would you do to
make it more secure? (Check at the end of the chapter for the solution and compare your own
notes to see if you were on the right track.)

Listing 6-1. The Client Login

package net.zenconsult.android.examples;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import org.apache.http.HttpResponse;
import org.apache.http.NameValuePair;

http://en.wikipedia.org/wiki/DigiNotar

CHAPTER 6: Talking to Web Apps88

import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.message.BasicNameValuePair;

import android.util.Log;

public class Login {
 private final String TAG = "HttpPost";

 public Login() {

 }

 public HttpResponse execute() {
 HttpClient client = new DefaultHttpClient();
 HttpPost post = new HttpPost("http://logindemo1.appspot.com/logindemo");
 HttpResponse response = null;

 // Post data with number of parameters
 List < NameValuePair > nvPairs = new ArrayList < NameValuePair > (2);
 nvPairs.add(new BasicNameValuePair("username", "sheran"));
 nvPairs.add(new BasicNameValuePair("password", "s3kretc0dez"));

 // Add post data to http post
 try {
 UrlEncodedFormEntity params = new UrlEncodedFormEntity(nvPairs);
 post.setEntity(params);
 response = client.execute(post);

 } catch (UnsupportedEncodingException e) {
 Log.e(TAG, "Unsupported Encoding used");
 } catch (ClientProtocolException e) {
 Log.e(TAG, "Client Protocol Exception");
 } catch (IOException e) {
 Log.e(TAG, "IOException in HttpPost");
 }
 return response;
 }

}

Preparing Our Environment
Let’s begin by setting up our testing environment. We obviously will need a ready-made web
application-hosting infrastructure. I usually rely on Google App Engine when I need to deploy or
test a web application fast. It saves me a lot of time, and I don’t have to worry about setting up
the hardware, web server, and application server. With Google App Engine, I can start coding
with minimal setup overhead.

Let’s first sign up for an account on Google App Engine (if you already have a Google account
for Gmail, then you can skip the following steps and use that):

http://logindemo1.appspot.com/logindemo

CHAPTER 6: Talking to Web Apps

89

1. Navigate to http://code.google.com/appengine/ (see Figure 6-1).

Figure 6-1. The Google App Engine home page

2. Click the Sign Up link. When prompted, sign in with your Gmail account.

You will then be taken to your Applications list (see Figure 6-2).

Figure 6-2. The applications list

3. Click the Create Application button. The next page allows you to select

details about your application. (see Figure 6-3). Since your application will

be publicly visible, Google provides you with a subdomain for .appspot.
com. This subdomain pool is shared among the entire user base of App

Engine developers; so, in some cases, you may not receive the application

name you are after. For instance, you’re unlikely to receive the logindemo1

subdomain because I have already registered it. You can check the

availability of the subdomain by clicking the Check Availability button.

http://code.google.com/appengine/

CHAPTER 6: Talking to Web Apps90

Figure 6-3. Giving your application a name

Figure 6-4. Successful app creation

4. Fill in the subdomain of the application you want; it should be something

like < your name > logindemo1.appspot.com (see Figure 6-3). Give your

application a title, say Login Demo 1. Leave the rest of the options as

they are and click Create Application.

5. If all went well, you will see a page similar to Figure 6-4 telling you that your

application was created successfully. Next, you can explore the status of

your application by clicking the “dashboard” link. Your application hasn’t

done anything yet, so the statistics will still be empty (see Figure 6-5).

CHAPTER 6: Talking to Web Apps

91

Figure 6-5. The application dashboard

Next, you have to download the SDK for Google App Engine, so that you can write, run, and
debug your applications on your local computer before you publish them to the Google App
Engine servers. I use Eclipse for most of my development, and I will outline the steps required to
download the SDK and integrate it directly with Eclipse. Also, since we’re covering Android, we
will stick to the Java SDK for App Engine.

You will find detailed instructions on how to install the Google Apps plugin for Eclipse at the
following URL: http://code.google.com/eclipse/docs/getting_started.html. Even if the final
URL changes, you should always be able to reach the documentation section by navigating to
the base URL, which is http://code.google.com/eclipse.

We’re not going to write any back-end code yet. First, let’s write a stub application that we
can start with and build onto. In your Eclipse IDE, create a new Google App Engine Project by
going to File ➤ New ➤ Web Application Project. Fill in the Project Name as LoginDemo and
the package as net.zenconsult.gapps.logindemo. Uncheck the box next to Use Google Web
Toolkit (see Figure 6-6). When you’re done, click Finish. You will end up with a project named
LoginDemo; and inside the named package, you will find one file called LoginDemoServlet. The
file contains the code shown in Listing 6-2. For the moment, it does nothing special. The code
waits for an HTTP GET request and then responds with the plain text: “Hello, world.”

http://code.google.com/eclipse/docs/getting_started.html
http://code.google.com/eclipse

CHAPTER 6: Talking to Web Apps92

Listing 6-2. The default stub application package, net.zenconsult.gapps.logindemo

import java.io.IOException;
import javax.servlet.http.*;

@SuppressWarnings("serial")
public class LoginDemoServlet extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {

Figure 6-6. Creating a new Google App Engine project

4

CHAPTER 6: Talking to Web Apps

93

 resp.setContentType("text/plain");
 resp.getWriter().println("Hello, world");
 }

}

Let’s deploy this application to Google App Engine and see if we can reach it through our web
browser. To deploy the application, right-click it in the Eclipse Package Manager and click
Google ➤ Deploy to App Engine.

You’re then prompted to choose the name of the remote application that you created on the
Google website. Enter the name you created in the Application ID field (see Figure 6-7) and
click OK. In the next window, click Deploy to upload your application to Google (see Figure 6-8).

Figure 6-7. Selecting the name of the remote application

CHAPTER 6: Talking to Web Apps94

Once you have successfully deployed your app, you can check it by navigating to the URL that
you selected when you created your application (http://<your name > logindemo1.appspot.com).
In my case, when I navigate to http://logindemo1.appspot.com, I see the “Hello, world”
response message (see Figure 6-9).

Figure 6-8. Deploying the application to Google

Figure 6-9. Accessing the login servlet

We now have our very own working web application that we can use for whatever we choose.
You may have noticed how convenient it was to set up a Google App Engine application.
It certainly saves us the time and effort of building a server, installing an operating system,
installing server software, and configuring it. Let’s look at a bit of theory related to web
applications.

HTML, Web Applications, and Web Services
Any web developer will know what HTML is. It is one of the fundamental building blocks of any
modern website. HTML (Hyper Text Markup Language) started its life as a draft write up in 1991;
it was a very simple language that could be leveraged to create basic web pages. Fast-forward

http://<your name > logindemo1.appspot.com
http://logindemo1.appspot.com

CHAPTER 6: Talking to Web Apps

95

to 2008, when the draft for HTML version 5 was released. Pure HTML pages are referred to as
static pages. In other words, they render on an end user’s browser and remain there until the
user navigates to another page.

A web application is a piece of software that end users access over a network—just like HTML
pages. A web application, however, consists of more dynamic elements than plain vanilla HTML.
For instance, modern web applications have a lot of server-side languages. These languages
(e.g., PHP, JSP, and ASP) generate static HTML on the fly at runtime, based on an end user’s
input. The web application is installed on a web server and is hosted on hardware that can
be accessed by end users over a network such as the Internet. The server-side application
framework takes care of rendering the user interface, any application logic (e.g., search,
calculation, or any other process), and data storage or retrieval functions. All the end user has
to do is show up to the party with his favorite web browser. In other words, because all the
complex processing takes place at the back end or server side, the thinner, lighter web browser
is nothing more than a mechanism of interacting with the user interface.

Web applications offer developers a number of advantages and are a ubiquitous part of online
life today. One of their biggest advantages is the ability to roll out updates or patches to the
server and not have to worry about updating hundreds or thousands of clients. Another big
advantage of web applications is that end users only require a thin client—a web browser—and
that’s it. Thus, you can reach not only a large number of users from the personal computing
crowd, but also the mobile computing crowd.

A web service is similar to a web application in that it can be accessed remotely over a network.
It is also similar in that it also runs some sort of server software. The primary difference, however,
is that users do not access the service interactively. In most cases, web services interact with
other client or server applications. A web service is, in most cases, capable of describing
the services it offers and how other applications can access them. It uses a Web Services
Description Language (WSDL) file to do this. Other applications can understand how to work
with the web service by processing the WSDL file that is published. Generally, web services use
a specific XML format to exchange information. One of the popular protocols is SOAP (Simple
Object Access Protocol). SOAP is made up of various XML payloads based on the specific
application. An example of a SOAP message is shown in Listing 6-3.

Listing 6-3. An Example of a SOAP Message (courtesy of Wikipedia)

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap + xml; charset = utf-8
Content-Length: 299

SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

 <?xml version = "1.0"?>

<soap:Envelope xmlns:soap = "http://www.w3.org/2003/05/soap-envelope">
<soap:Body>
 <m:GetStockPrice xmlns:m = "http://www.example.org/stock">
 <m:StockName > IBM</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>

http://www.example.org
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope
http://www.example.org/stock

CHAPTER 6: Talking to Web Apps96

Another way web services can work is by exposing a RESTful API. REST, or Representational
State Transfer, is an architecture that uses an underlying, stateless, client-server protocol to
expose end-points of web services. The premise of REST is to use a much simpler medium of
access (like HTTP) with separate URIs for each resource, rather than relying on more complex
protocols like SOAP (which works with a single URI and multiple parameters).

You can read more about REST in Roy Fielding’s dissertation at www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch_style.htm or on Wikipedia at http://en.wikipedia.org/wiki/
Representational_state_transfer. Although using a RESTful web service is simple, it can still
perform the same tasks as a web service that uses SOAP. Take our SOAP example in Listing 6-3.
If our web service exposed this to us as a RESTful API, then we would do something like this:

http://www.example.com/stocks/price/IBM

Note that this is the extent of the request. It can be sent as a simple HTTP GET request to
the server, which can then respond. Sometimes, servers can return data in several different
representations. For example, if we were to request the server for XML output, we could add an
extension of xml. If we wanted it in JSON format instead, we could append a json extension, as
shown here:

http://www.example.com/stocks/price/IBM.xml
http://www.example.com/stocks/price/IBM.json

Now is a great time to talk a bit about HTTP (HyperText Transfer Protocol). HTTP is the protocol
that drives the web. While HyperText originally referred to plain old HTML, it can now be
expanded to include XML (Extensible Markup Language). XML follows the rules of HTTP, but it
includes custom HTML tags (or keywords) that can be used. HTTP functions as a request-and-
response protocol. The request-response cycle takes place between two parties, known as the
client and server. The client, or user-agent (a web browser), makes a request to a web server
that sends back a response of either HTML or XML. Most veteran web developers will also
sometimes expect comparable formats to XML, such as JSON (JavaScript Object Notation).

HTTP requests are further broken down into request types, or methods. While there are several
methods, the most popularly used ones are GET and POST. GET requests are used to retrieve data,
and POST requests are used to submit data. If you’re filling in a registration form, clicking the
Submit button prompts the browser to POST your data to the server. If you look back at
Listing 6-1 at the beginning of the chapter, you will see this line:

HttpPost post = new HttpPost("http://logindemo1.appspot.com/logindemo");

This is the creation of an HTTP POST request to a specific URL. As you’re probably aware, a URL
(Uniform Resource Locator) is a type of address that tells user-agents where to retrieve a specific
resource from. Resources can be files, documents, or objects stored on servers remotely. HTTP
requests and responses both have similar structures. Both contain headers and content areas.
You can find lots of additional information regarding HTTP at www.w3.org.

Components in a Web Application
Web applications are composed of various layers, or tiers. Typical web applications will have
three tiers (see Figure 6-10): the Presentation tier, the Logic tier, and the Data tier. Based on
the requirements and complexity of an application, the number of tiers can increase. There are

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.example.com/stocks/price/IBM
http://www.example.com/stocks/price/IBM.xml
http://logindemo1.appspot.com/logindemo
http://www.w3.org

CHAPTER 6: Talking to Web Apps

97

Presentation tier

Logic tier

GET LIST OF ALL

SALES MADE

LAST YEAR

QUERY
SALE 1
SALE 2
SALE 3
SALE 4

ADD ALL SALES

TOGETHER

Database
Storage

Data tier

The top-most level of the application
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

>GET SALES
 TOTAL

>GET SALES
 TOTAL

4 TOTAL SALES

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
Logic tier for processing, and then
eventually back to the user.

Figure 6-10. A three-tiered web application (courtesy of Wikipedia)

many advantages to having multi-tiered applications: one of them is that system owners can
replace or scale hardware or server configurations independently of the other tiers. Consider the
scenario where a company needs to increase its amount of data storage; the IT department can
upgrade this tier without making significant changes in the other tiers. The next advantage is that
the security teams can have control that is more granular at each tier. Each tier has a different
function, and thus a different set of requirements and related security controls. Multi-tiered
applications allow owners to have more locked-down controls at individual tiers rather than
leaving gaps because all three tiers are on one system.

Therefore, based on the three-tier architecture, a web application will contain a web server
to present its data, an application server to handle all requests for exchanging data, and a
database server that stores and retrieves data.

Let’s look at how each tier is involved by considering an example.

Login Process

A standard user-authentication session that a client makes with a server will look something
like this:

1. The client requests the Login page from the web server [Web Server/

Presentation Tier].

CHAPTER 6: Talking to Web Apps98

2. The client sends credentials to the web server [Web Server/

Presentation Tier].

3. The application server receives the data and checks whether it conforms

to validation rules [Application Server/Logic Tier].

4. If the data is good, the application server queries the database

server to find out whether matching credentials exist

[Application Server/Logic Tier].

5. The database server responds to the application server with success or

failure [Database Server/Data Tier].

6. The application server tells the web server to give the client its portal (if

the credentials were correct) or an error message (if the credentials didn’t

match) [Application Server/Logic Tier].

7. Web Server displays message from Application Server [Web Server/

Presentation Tier].

While this is a simplified example, it does illustrate how the process flow moves from the outside
to the inside—and back again.

Web App Technology
There are multiple technologies that you can use for each tier of a web application. You can
choose from many web servers, application frameworks, application servers, server-side
scripting languages, and database servers. Your selection criteria depend on factors such as
application requirements, budget, and availability of support for the technology you choose.

Since Android development is predominantly done on Java, I’ve decided to stick with Java for
our web application, as well. Apart from Java, you can use other server-side technologies. Some
of them are listed here:

PHP: 	 www.php.net

Python: 	 www.python.org

Django: 	 www.djangoproject.com

Perl: 	 www.perl.org (less common but still sometimes used)

Cold Fusion: 	 www.adobe.com/product/coldfusion-family.html

ASP.NET: 	 www.asp.net

Ruby on Rails: 	 www.rubyonrails.org

Similarly, you can use many popular databases for your application for the data tier, depending
on your requirements. Many free and commercial databases exist. This is one more decision

http://www.php.net
http://www.python.org
http://www.djangoproject.com
http://www.perl.org
http://www.adobe.com/product/coldfusion-family.html
http://www.asp.net
http://www.rubyonrails.org

CHAPTER 6: Talking to Web Apps

99

that you or your application architect will have to make initially. Here’s a short list of popular
databases and a URL indicating where you can learn more about them:

Oracle: 	 www.oracle.com

Microsoft SQL Server: 	 www.microsoft.com/sqlserver

MySQL: 	 www.mysql.com

PostgreSQL: 	 www.postgresql.org

CouchDB: 	 http://couchdb.apache.org

MongoDB: 	 www.mongodb.org

Let’s take a few minutes now to complete our web application, so that it supports rudimentary
password checks. Note that I have deliberately made the example very simple. Authentication
routines for actual web applications will be more complex. Check Listing 6-4 for the code.

Listing 6-4. The New Credential Verification Code

package net.zenconsult.gapps.logindemo;

import java.io.IOException;
import javax.servlet.http.*;

@SuppressWarnings("serial")
public class LoginDemoServlet extends HttpServlet {
 private String username = "sheran";
 private String password = "s3kr3tc0dez"; // Hardcoded here intended to
 // simulate a database fetch

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");
 resp.getWriter().println("Hello, world");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 String user = req.getParameter("username"); // No user input validation
 // here!
 String pass = req.getParameter("password"); // No user input validation
 // here!

 resp.setContentType("text/plain");
 if (user.equals(username) && pass.equals(password)) {
 resp.getWriter().println("Login success!!");
 } else {
 resp.getWriter().println("Login failed!!");
 }

 }
}

The next step is to publish your code, just as you did when you first set up your Google App
Engine account, and then create a new Android project that handles authentication (see
Figure 6-11 for the project structure). Listings 6-5, 6-6, 6-7, and 6-8 contain the source code for

http://www.oracle.com
http://www.microsoft.com/sqlserver
http://www.mysql.com
http://www.postgresql.org
http://couchdb.apache.org
http://www.mongodb.org

CHAPTER 6: Talking to Web Apps100

the Login, LoginDemoClient1Activity, strings.xml, and main.xml files, respectively. Make sure
to add this line to your AndroidManifest.xml file, as you will need to access the Internet to reach
your Google App Engine application:

<uses-permission android:name = "android.permission.INTERNET" > </uses-permission>

Listing 6-5. The Login Class

package net.zenconsult.android.examples;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import org.apache.http.HttpResponse;
import org.apache.http.NameValuePair;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.message.BasicNameValuePair;

import android.util.Log;

public class Login {
 private final String TAG = "HttpPost";
 private String username;
 private String password;

Figure 6-11. The project structure

CHAPTER 6: Talking to Web Apps

101

 public Login(String user, String pass) {
 username = user;
 password = pass;
 }

 public HttpResponse execute() {
 Log.i(TAG, "Execute Called");
 HttpClient client = new DefaultHttpClient();
 HttpPost post = new HttpPost("http://logindemo1.appspot.com/logindemo");
 HttpResponse response = null;

 // Post data with number of parameters
 List < NameValuePair > nvPairs = new ArrayList < NameValuePair > (2);
 nvPairs.add(new BasicNameValuePair("username", username));
 nvPairs.add(new BasicNameValuePair("password", password));

 // Add post data to http post
 try {
 UrlEncodedFormEntity params = new UrlEncodedFormEntity(nvPairs);
 post.setEntity(params);
 response = client.execute(post);
 Log.i(TAG, "After client.execute()");

 } catch (UnsupportedEncodingException e) {
 Log.e(TAG, "Unsupported Encoding used");
 } catch (ClientProtocolException e) {
 Log.e(TAG, "Client Protocol Exception");
 } catch (IOException e) {
 Log.e(TAG, "IOException in HttpPost");
 }
 return response;
 }

}

The code listing in 6-5 contains the login routine. The class constructor, Login, takes two
parameters, which are username and password. The execute() method will use these parameters
to make an HTTP POST request to the server.

Listing 6-6. The LoginDemoClient1Activity Class

package net.zenconsult.android.examples;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

http://logindemo1.appspot.com/logindemo

CHAPTER 6: Talking to Web Apps102

public class LoginDemoClient1Activity extends Activity implements
 OnClickListener {
 private final String TAG = "LoginDemo1";
 private HttpResponse response;
 private Login login;

 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button button = (Button) findViewById(R.id.login);
 button.setOnClickListener(this);

 }

 @Override
 public void onClick(View v) {
 String u = ((EditText) findViewById(R.id.username)).toString();
 String p = ((EditText) findViewById(R.id.password)).toString();

 login = new Login(u, p);

 String msg = "";
 EditText text = (EditText) findViewById(R.id.editText1);
 text.setText(msg);

 response = login.execute();
 Log.i(TAG, "After login.execute()");

 if (response ! = null) {
 if (response.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
 try {
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(response.getEntity()
 .getContent()));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = reader.readLine()) ! = null) {
 sb.append(line);
 }
 msg = sb.toString();
 } catch (IOException e) {
 Log.e(TAG, "IO Exception in reading from stream.");
 }

 } else {
 msg = "Status code other than HTTP 200 received";
 }
 } else {
 msg = "Response is null";
 }
 text.setText(msg);
 }

}

CHAPTER 6: Talking to Web Apps

103

The code listing in 6-6 is a standard Android activity. This can be considered the application’s
entry, or start point.

Listing 6-7. The strings.xml File

<?xml version = "1.0" encoding = "utf-8"?>
<resources>
 <string name = "hello" > Web Application response:</string>
 <string name = "app_name" > LoginDemoClient1</string>
 <string name = "username" > Username</string>
 <string name = "password" > Password</string>
 <string name = "login" > Login</string>

</resources>

Listing 6-8. The main.xml File

<?xml version = "1.0" encoding = "utf-8"?>
<LinearLayout xmlns:android = "http://schemas.android.com/apk/res/android"
 android:orientation = "vertical"
 android:layout_width = "fill_parent"
 android:layout_height = "fill_parent"
 android:weightSum = "1">
 <TextView android:textAppearance = "?android:attr/textAppearanceLarge"
 android:id = "@ + id/textView1" android:layout_height = "wrap_content"
 android:layout_width = "wrap_content" android:text = "@string/username">
 </TextView>
<EditText android:layout_height = "wrap_content"
 android:layout_width = "match_parent" android:id = "@ + id/username">
</EditText>
<TextView android:textAppearance = "?android:attr/textAppearanceLarge"
 android:id = "@ + id/textView2" android:layout_height = "wrap_content"
 android:layout_width = "wrap_content" android:text = "@string/password">
</TextView>
<EditText android:layout_height = "wrap_content"
 android:layout_width = "match_parent" android:inputType = "textPassword"
 android:id = "@ + id/password">
</EditText>
<Button android:text = "@string/login" android:layout_height = "wrap_content"
 android:layout_width = "166dp" android:id = "@ + id/login">
</Button>
<TextView android:text = "@string/hello" android:layout_height = "wrap_content"
 android:layout_width = "fill_parent">
</TextView>
<EditText android:id = "@ + id/editText1" android:layout_height = "wrap_content"
 android:layout_width = "match_parent" android:inputType = "textMultiLine"
 android:layout_weight = "0.13">
 <requestFocus > </requestFocus>
</EditText>

</LinearLayout>

The strings.xml and main.xml files contain our set of defined string constants and the graphical
layout of the application, respectively.

http://schemas.android.com/apk/res/android

CHAPTER 6: Talking to Web Apps104

Run your application and enter different usernames and passwords. You should see two distinct
response messages, one for success and another for a failed password (see Figure 6-12). That’s
it! You’re done writing both your mobile login client and server. Next, we’ll go over security on
the web and the various attacks that you may have to face on your web applications.

OWASP and Web Attacks
The Open Web Application Security Project (OWASP) at www.owasp.org is an organization
that provides a body of knowledge, techniques, and guidelines for testing and securing web
applications. OWASP was founded in December 2001 and attained US not-for-profit charitable
status in 2004. It lists, as its core purpose, to “be the thriving global community that drives

visibility and evolution in the safety and security of the world’s software.” It is a great resource for
learning about and fixing your web application’s security.

The OWASP Top Ten project has been a sub-project of the OWASP foundation since 2004.
On a semi-regular basis, the OWASP Top Ten lists the ten most critical application security
vulnerabilities. The vulnerabilities are listed as a broad consensus of what project members and
security experts globally have experienced in web applications. The Top Ten list is used and
adopted by a large number of commercial organizations, and it has become a de facto standard
for web application security.

At the time this book was published, the 2010 OWASP Top Ten was still the most recent update
to the list. It can be found here: www.owasp.org/index.php/Top_10_2010.

Figure 6-12. Logon failure

http://www.owasp.org
http://www.owasp.org/index.php/Top_10_2010

CHAPTER 6: Talking to Web Apps

105

The topics for the 2010 OWASP Top Ten are listed here:

A1: Injection	
A2: Cross-Site Scripting (XSS)	
A3: Broken Authentication and Session Management	
A4: Insecure Direct Object References	
A5: Cross-Site Request Forgery (CSRF)	
A6: Security Misconfiguration	
A7: Insecure Cryptographic Storage	
A8: Failure to Restrict URL Access	
A9: Insufficient Transport Layer Protection	
A10: Unvalidated Redirects and Forwards	

One of the newer OWASP projects is the Mobile Top Ten, which is part of the OWASP Mobile
Security Project. The project is still in development, and no finalized lists have been released
at the time of writing. There is, however, a list of practical tips on the website that will prove of
immense help to you as a mobile developer. Most of the topics covered in this chapter share
many techniques and principles with the Mobile Top Ten. Here are the topics covered by the list:

Identify and protect sensitive data on the mobile device.	
Handle password credentials securely on the device.	
Ensure that sensitive data is protected in transit.	
Implement user authentication/authorization and session management 	
correctly.

Keep the back-end APIs (services) and the platform (server) secure.	
Perform data integration with third party services/applications securely.	
Pay specific attention to the collection and storage of consent for the 	
collection and use of the user’s data.

Implement controls to prevent unauthorized access to paid-for resources 	
(e.g., wallet, SMS, and phone calls).

Ensure secure distribution/provisioning of mobile applications.	
Carefully check any runtime interpretation of code for errors.	

Authentication Techniques
Let’s continue with our topic of securing “data in transit” now. I wanted you to have a fair
understanding of what goes on behind the scenes in a web application, and that is why I
covered topics related to web applications in this chapter. If you’ve dedicated your life to being
a mobile application developer, then it is interesting to see how your application communicates
with the web app you want to talk to. A better understanding of the application can also lead you
to make improvements in security and performance. If, like me, you do all your coding from

CHAPTER 6: Talking to Web Apps106

end-to-end, including web application development, then you may already be familiar with the
topics I’ll discuss. Either way, since you’ve now had a short refresher on web applications and
security, let’s move onto the main task at hand.

Authentication is an important feature of mobile applications that need to interact with remote
web applications. Almost all present-day applications rely on some form of a username and
password or PIN combination to grant access to their data. The username and password are
stored on the server, and whenever an end user wishes to authenticate with the application, a
comparison is made. If you take a new look at Listing 6-1, you’ll see that we are doing exactly
that. The following lines contain the username and password for the web application:

nvPairs.add(new BasicNameValuePair("username", "sheran"));

nvPairs.add(new BasicNameValuePair("password", "s3kretc0dez"));

In this case, the information is hard-coded, but it could just as easily be stored on the device
(with encryption, of course!) and retrieved whenever a user wants to log in. But what if our traffic
was intercepted while it was in transit? “Aha! But we have SSL!” you say. That’s true, but we
don’t seem to be using it in our example because our POST request goes to a non-SSL/TLS port:

HttpPost post = new HttpPost("http://logindemo1.appspot.com/logindemo");

OK, that was a cheap shot. But let’s seriously consider that our SSL traffic has been breached.
The attacker that is eavesdropping on our conversation with the web application now has
access to our credentials. All she has to do now is to use them directly on the full web
application or on another mobile device. If she does, she will have full control over our user
profile. If this were a social networking site, then we might not be too concerned; however, if it
were our online banking application, then we would be pretty worried.

Thus far, we know the risks that we face when authenticating remotely. Although our data may
traverse a secure channel, it is still vulnerable to attacks. And it doesn’t have to be a severe
attack like the DigiNotar incident, where an attacker can issue her own certificates. For example,
the attack could be as prosaic as an SSL man-in-the-middle attack.

Since I’ve mentioned DigiNotar and not trusting SSL more than once, I think it is only fair that I
outline my reasoning.

You can’t always trust SSL. In general, end users think SSL means they are secure. A padlock
icon and the address bar on the browser turning green are indicators that tell you that you are
browsing a secure site. This need not be necessarily true, however. I’d like to take a moment to
go over some of the concepts of SSL.

SSL (Secure Sockets Layer) is a transport protocol that encrypts data in transit between two
computers. An eavesdropper cannot intercept encrypted data—at least not without going
through some effort. Thus, SSL ensures that data remains private between the client and server
computers. SSL is old. Most people refer to encrypted HTTP data transfer between client and
server as SSL; but in reality, the newer protocol is TLS (Transport Layer Security). An integral

http://logindemo1.appspot.com/logindemo

CHAPTER 6: Talking to Web Apps

107

TLS and SSL use a combination of cryptographic techniques to ensure data transmission is
secure. Let’s look at this session setup now. I’m not giving you surgical detail because you will
almost never need to write your own TLS negotiation algorithm. Instead, this section will give
you an idea of how encryption is set up and what takes place during a TLS session.

First, the client or browser will contact a web server and send it some information. The
information contains details of the version of TLS it can support and a list of encryption
algorithms. These are called CipherSuites, and they contain supported algorithms for various
tasks like key exchange, authentication, and bulk ciphers.

Next, the server responds after selecting a specific CipherSuite that it supports and the highest
common TLS version that both the client and server support. The server will then also send the
client its SSL Certificate.

The client then uses the server’s public key to encrypt and exchange a PreMaster key, a key that
generates a Master key.

Once the PreMaster key is exchanged, the client and server will use random values and the
PreMaster key to generate a final Master key. This master key is stored on the client and server.

Web
Browser

1. Browser requests Secure Socket.

2. Server responds with SSL Certificate.

3. Session key seed is encrypted with
 SSL Public Key and sent to server.

4. Server indicates all future
 transmissions are encrypted.

5. Server and Browser can send
 encrypted messages.

Web
Server

Figure 6-13. Setting up an SSL/TLS Session

part of SSL and TLS is the X.509 Certificate. X.509 is the standard for Public Key Infrastructure
(PKI) that I covered briefly in Chapter 5. Commonly, users will refer to the X.509 server certificate
as an SSL certificate. This is a key and very important component of SSL. Figure 6-13 shows a
browser setting up an SSL session.

CHAPTER 6: Talking to Web Apps108

The server and client then switch to encrypting all data sent back and forth. The selected
CipherSuite is used, and the symmetric Master key is used at both ends to encrypt and decrypt
data. Figure 6-14 shows what you would see if you were able to capture an encrypted data
session between the client and server. Figure 6-15 shows the handshake and other relevant
details when viewed using OpenSSL. One look at it will immediately tell you that there is
absolutely no usable data for an attacker. What does this mean to you as a developer, then?
That you should use SSL and never worry about prying eyes when you exchange sensitive
data between the client and server? I won’t accept your answer just yet. Let’s first look at a few
details, and we will come back to your answer later.

Figure 6-14. A traffic capture of an SSL session

CHAPTER 6: Talking to Web Apps

109

SSL is all about trust. Well, actually, X.509 is all about trust. An SSL certificate is issued to an
individual or company based on certain criteria. The issuing authority, known as the CA or
Certificate Authority, is responsible for determining if you are who you say you are. For example,
you couldn’t just request a www.google.com certificate without proving that you were somehow
affiliated with, or had the capacity to act on behalf of, the company. This matters because, if the
CA does not check these credentials, then anyone can apply for an SSL certificate and install it
on his web server.

By tricking an end user into believing your server is a google.com server, you could conduct a
man-in-the-middle (MitM) attack and intercept all his data. We’ll look at a man-in-the-middle
attack shortly; but first, I want to cover another topic that you may be aware of, the self-signed
certificate.

Figure 6-15. An SSL Handshake when viewed using the s_client option of OpenSSL

http://www.google.com

CHAPTER 6: Talking to Web Apps110

Note A CA issues SSL certificates to clients. While issuing the certificate, the CA will also sign the

SSL certificate with its own Root certificate. This signature indicates that the CA trusts the issued

SSL certificate. A browser can verify the SSL certificate by looking at the CA signature first and

verifying whether the signature is a match to the Root certificate.

Many well-known Root CAs exist around the world. Generally, the CA Root certificates come

packaged inside your web browser. This allows the browser to verify SSL certificates issued by

different CAs.

For example, let’s say you applied to VeriSign for a certificate for your domain, example.com.

VeriSign first establishes that you are the correct owner for this domain, and it then issues you

a certificate for your web server. It signs this certificate with its own Root certificate. After you

receive your SSL certificate, you install it on your web server and set up your website. Now when

I visit your website, my browser first looks at your SSL certificate, and then tries to verify whether

your certificate is indeed issued by a trusted CA. To do this, my browser will look at its internal

store of trusted Root certificates to determine whether the VeriSign Root certificate’s signature

matches the signature on your certificate. If it does, then I can continue browsing your site.

However, if there is difficulty in verifying your certificate, then my browser warns me that it was

unable to verify the certificate.

Note that your browser will verify a number of other details about the certificate before giving it the

green light.

Self-Signed Certificates
During the development and testing phase of some projects, developers will sometimes use
a self-signed certificate on their websites. This type of certificate is identical in all respects to
the SSL certificate issued by a CA. The main difference, however, is that the signature on this
certificate is not from a trusted CA. Instead, the developer signs the certificate himself. When
a browser connects to a site with a self-signed SSL certificate, it has no way of verifying who
signed certificate. That is because the person who signed it is not listed in the browser’s internal
trusted certificate store. The browser will then alert the user with a warning similar to the one
shown in Figure 6-16.

CHAPTER 6: Talking to Web Apps

111

This verification phase that takes place on the browser is very important. It exists so that an
attacker can’t simply issue himself a certificate belonging to www.google.com and trick users. The
browser will always alert a user if it cannot verify the SSL certificate.

Man-in-the-Middle Attack
A man-in-the-middle (MitM) attack is a method by which an attacker can eavesdrop on network
traffic or data flowing between two parties. The attacker positions herself so that he is able to
intercept traffic from both the sender and receiver, effectively putting himself in the middle of the
two (see Figure 6-17). In this position, he is able to intercept and relay information between the
two parties. If executed correctly, the users at either end of the conversation will not know that
the attacker is relaying and intercepting their traffic.

What follows is an example of an MitM attack using Figure 6-17 as a reference:

Alice "Hi Bob, it's Alice. Give me your key"--> Mallory Bob
Alice Mallory "Hi Bob, it's Alice. Give me your key"--> Bob
Alice Mallory <--[Bob's_key] Bob
Alice <--[Mallory's_key] Mallory Bob
Alice "Meet me at the bus stop!"[encrypted with Mallory's key]--> Mallory Bob
Alice Mallory "Meet me in the windowless van at 22nd Ave!"[encrypted with Bob's
 key]--> Bob

Figure 6-16. A warning for an untrusted or self-signed certificate

Figure 6-17. Mallory in the middle of Alice and Bob (courtesy of Wikipedia)

http://www.google.com

CHAPTER 6: Talking to Web Apps112

Most of the time, the attacks that we see are focused on self-signed certificates or tricking
browsers into believing that the attacker possesses a valid certificate. Until recently, attackers
knew very little about CA security, and there were far fewer incidents involving CAs. This was
true until June 2011, anyway.

In theory, attacking a CA to obtain legitimately signed, trusted SSL certificates is also an option.
Not many attackers would consider this because they would obviously expect a high degree
of security when it comes to CAs. Right? Wrong! In June 2011, a CA called DigiNotar was
attacked. The attacker issued himself over 500 rogue SSL certificates signed by DigiNotar. As
a trusted CA, DigiNotar had its Root certificate in all modern browsers. This meant that the
attacker had legitimate SSL certificates that he could use to carry out MitM attacks. Since the
browsers already trusted the DigiNotar Root certificate, they would always validate these rogue
SSL certificates, and an end user would never know that the attacker was intercepting her data.

Why did this happen? DigiNotar had very lax security controls in its infrastructure. The attacker
was able to remotely compromise its servers and gain access to the very systems that are
responsible for issuing legitimate certificates. After this, it is a relatively simple task for the
attacker to keep issuing himself certificates whenever he wants. Some of the more prominent
websites that had rogue certificates include:

*.google.com (This means any sub-domain of google.com, including
mail.google.com, docs.google.com, plus.google.com, and so on)

*.android.com

*.microsoft.com

*.mozilla.org

*.wordpress.org

www.facebook.com

www.mossad.gov.il

www.sis.gov.uk

All the web browser developers blacklisted DigiNotar’s Root certificate, and DigiNotar began to
systematically revoke all the rogue certificates. Unfortunately, by the time all of this took place,
DigiNotar had lost the trust of thousands of users worldwide. The company declared bankruptcy
in September 2011.

If such a large CA can suffer such a big breach of security, which compromised hundreds of SSL
certificates, then can we really just rely on SSL all the time? Actually, yes we can. Events such as
DigiNotar occur very infrequently, so I would choose to trust SSL. However, I would also choose
to deploy my own layer of data encryption between my mobile app and the server. Then, if the
SSL layer is breached in any way, the attacker will have yet another layer of encryption to deal
with. In most cases, this additional layer will act as a deterrent, and the attacker may leave your
application alone.

http://www.facebook.com
http://www.mossad.gov.il
http://www.sis.gov.uk

CHAPTER 6: Talking to Web Apps

113

Is there a way we can prevent an attacker from snooping on our credentials while traveling
over SSL? Yes indeed! Let’s look at two ways we can prevent our credentials from being
compromised even if our secure transport channels fail. One is OAuth, and the other is
Challenge/Response.

OAuth
The OAuth protocol allows third-party sites or applications, known as consumers, to use end-
user data on a web application called a service provider. The end user has ultimate control over
the amount of access he can grant to these third parties and will do so without having to divulge
or store his existing web application credentials.

Take the example of Picasa Web Albums; the photo editing application Picnik (www.picnik.com)
allows end users to edit their photographs. Picnik also allows end users to import from other
sites like Picasa and Flickr. Before OAuth, a user would have to log in to Picnik and also enter his
Picasa or Flickr username and password, so that Picnik could begin importing photos from these
sites. The problem with this approach is that now the user has saved or used his credentials with
Picnik. His level of exposure has increased because he has stored his credentials at Picasa and
Picnik.

If the same scenario were to be re-enacted with OAuth, then the user would not have to enter
his credentials once again on the Picnik site. Instead, Picnik (the consumer) would redirect him
to his Picasa (service provider) site (see Figure 6-18) and ask him to grant or deny access to the
photographs stored on Picasa (see Figure 6-19). In this way, the user’s credentials are safer.

Figure 6-18. Picnik requesting to connect to Picasa, so that it can request an access token

Figure 6-19. Picasa requests authorization for Picnik to look at some photos

http://www.picnik.com

CHAPTER 6: Talking to Web Apps114

OAuth works by using request tokens. Sites that want to access data in a web application need
to be granted a token from that same application before they can start accessing this data.

Let’s take a look at how OAuth works for the Picasa Web Albums first. As an example, suppose
you have written an Android application that lists a user’s Picasa albums. Your Android
application requires access to a user’s Picasa Web Album to do this. In this case, the actors are
your Android app (the consumer), Picasa (the service provider), and your end user.

OAuth requires that you first register your consumer application on the site that you are
authenticating against. This is necessary because you will receive an application identifier
that you will need to use in your code. To register your application, you have to visit
http://code.google.com/apis/console (see Figure 6-20), create a project, and create an OAuth
client ID (see Figures 6-21, 6-22, 6-23, and 6-24).

Figure 6-20. Creating a new project on Google APIs

Figure 6-21. Creating a new client ID

http://code.google.com/apis/console

CHAPTER 6: Talking to Web Apps

115

Figure 6-22. Fill in the details of your application

Figure 6-23. Choose your application type

CHAPTER 6: Talking to Web Apps116

Now that you’ve got your OAuth Client ID, let’s take a look at the authentication flow of an OAuth
Application (see Figure 6-25)

Figure 6-24. Your Client ID and Client Secret are now created

CHAPTER 6: Talking to Web Apps

117

Consumer

A

B

C

D

E

F

G

Request

Request Token

Request

Access Token

Access Protected

Resources

Person Using Web Browser
or Manual Entry Consumer/Service Provider

Direct User to

Service Provider

Grant

Request Token

Grant

Access Token

E
xc

h
a
n

g
e
 R

e
q

u
e
st

 T
o
k
e
n

fo
r

A
cc

e
ss

 T
o
k
e
n

U
se

r
A

u
th

o
ri

ze
s

R
e
q

u
e
st

 T
o
k
e
n

O
b

ta
in

 U
n

a
u

th
o
ri

ze
d

R
e
q

u
e
st

 T
o
k
e
n

Obtain User

Authorization

Direct User to

Consumer

Service Provider

Figure 6-25. OAuth authentication flow (courtesy of Google)

OAuth is a multi-stage process that has three main interacting parties. The consumer is the
application that wishes to access data from a service provider, and this can only happen if the
user authorizes the consumer explicitly. Let’s go over the steps in detail:

The following scenario is initiated when the end user opens your Android app:

1. Flow A: The Consumer application (your Android App) asks the Service

Provider (Picasa) for a Request Token.

2. Flow B: Picasa tells your application to redirect the end user to Picasa’s

web page. Your app then opens up a browser page that will direct the

end user to the specific URL.

CHAPTER 6: Talking to Web Apps118

3. Flow C: The end user enters her credentials in this screen. Remember

that she is logging into the service provider (Picasa) website and granting

access to your app. She is sending her credentials to the website and

not storing them anywhere on the device.

4. Flow D: Once Picasa is happy that the end user has entered the correct

username and password and has granted access to your app, it

replies with a response indicating whether the Request Token has been

authorized. At this point, your application has to detect this response and

act accordingly. Assuming authorization was granted, your application

now has an authorized Request Token.

5. Flow E: Using this authorized Request Token, your app makes another

request to the service provider.

6. Flow F: The service provider then exchanges the Request Token for an

Access Token and sends that back in the response.

7. Flow G: Your app now uses this Access Token to access any protected

resources (in this case, the user’s Picasa Albums) until such time that the

token expires.

Your app has now successfully gained access to Picasa without needing to store the end user’s
credentials. If the user’s phone is ever compromised and an attacker copies all the application
data, he is not going to find the Picasa username and password in your app data. In this way,
you’ve ensured that your app does not unnecessarily leak sensitive data.

I’ve used Picasa here simply as a frame of reference. Our ultimate goal is to create an OAuth
authentication system for our back-end applications, as well. Therefore, instead of Picasa being
the service provider, your back-end web application will be the OAuth service provider. Your
end user has to log onto your application via a web browser and explicitly authorize it to access
resources. Next, your mobile app and back-end web app will communicate using Request and
Access tokens. Most importantly, your mobile app will not save the username and password for
your web app.

To illustrate these concepts, I have created an example application for Picasa. I will show you
how to implement OAuth on your web application in Chapter 8.

Challenge/Response with Cryptography
The second mechanism for protecting your end-user credentials from traversing the Internet
is to use the Challenge/Response technique. This technique is similar in many respects to
OAuth in that no credentials go across the wire. Instead, one party requests the other party
for a challenge. The other party will then encrypt a random piece of information according to a
specifically chosen algorithm and cryptographic function. The key used to encrypt this data is
the user password. This encrypted data is sent to the challenging party, which then encrypts

CHAPTER 6: Talking to Web Apps

119

the same piece of information by using the password stored at its end. The ciphertext is then
compared; if it matches, the user is allowed access. The best way to learn about this technique
is to work through an actual example. As with OAuth, I have included source code and examples
of applications in Chapter 8.

Summary
In this chapter, we focused a lot on how to transport our data securely from mobile application
to web application. We also covered how there are mature protocols and mechanisms to secure
our data in transit. At the same time, we saw that, in some cases, we are unable to trust the
protocols themselves. In cases like this, we looked at options that can help us protect our end
user’s credentials from being stolen or intercepted.

We also covered topics that involve web application security. Considering that most mobile
applications communicate with a web application in some form or another, it is always good to
know how that side of technology works. Finally, we looked at some useful resources for helping
us secure our web applications, as well as some concrete examples for protecting our user
credentials while in transit.

121

Chapter 7
Security in the Enterprise

All along, we have been looking at mobile applications from the perspective of individual
developers. Although I believe that individual developers or smaller developer firms far outweigh
enterprise developers, I think it would be useful to focus a bit on the enterprise developer and
the unique challenges he can face. You might be tempted to skip this chapter because you do
not fit into the “enterprise developer” category; however, I would urge you to consider this: most
enterprises these days look at outsourcing their development work.

It might not make sense for an enterprise or business to have an in-house mobile development
team, unless that is the company’s core business focus. I have seen numerous businesses
outsourcing their development work to individuals or smaller companies, just so they don’t need
to worry about managing an in-house mobile development team.

If there comes a time when a business hires you to develop a mobile application for it, then you
might want to consider a few areas before you jump in and start developing. In most respects,
your target base is much smaller than if you were releasing your application to the public.

One important thing, however, is that, in the case of the enterprise, you could be dealing with
a lot more than a loss of personal information. For instance, in an enterprise environment,
the likelihood that you will deal with confidential information (e.g., trade secrets, corporate
financial information, or sensitive server credentials) is much higher than when you’re dealing
with an application that is released to the general public. Additionally, your application could
become more of a target given that, presently, many attackers view the mobile platform as
“easy pickings” due to its lower level of security. Let’s first look at some of the key differences in
enterprise applications when compared with an application released to the public.

Connectivity
Connecting to the enterprise environment from a remote location has become commonplace
lately. Telecommuting, remote support, and outsourcing have all led to enterprise technology
teams allowing authorized users into their organization’s networks. This doesn’t mean that the
network admin just leaves the firewall wide open for telnet and remote desktops; the inbound
connectivity is subject to certain security controls. To ensure the safest route, an organization will

CHAPTER 7: Security in the Enterprise122

usually use a VPN, or virtual private network (see Figure 7-1), to allow remote users to join
its network.

Figure 7-1. A virtual private network (VPN) (courtesy of Wikipedia)

A VPN is typically an additional logical or virtual network that a network administrator will usually
create on her border network devices. This network acts as a bridge between a public network,
such as the Internet, and the private internal network of an enterprise. Users can connect to the
VPN over this public network and use the internal resources of the enterprise (including file servers,
internal applications, and so on) just as if they were physically connected to the internal network.

VPNs are gradually making their way into the mobile space, as well. Devices such as the
BlackBerry, iPhone, and Android are now able to connect to corporate networks and transfer
data securely. Keep this in mind when you design for the enterprise. It’s quite likely that an
enterprise network administrator will tell you that you need to use the VPN; but in the event that
she fails to mention it, you should bring the subject up. Making an enterprise expose more than
it should to the Internet is not the goal, here.

If, for some reason, you encounter an organization that does not have or use a VPN, then you
might want to spend a bit of time arguing the merits of one. If it is an absolute no-go, then you’re
going to have to encrypt data between your application and the server. Bear in mind, however,
that it is costly to do so, especially if you have significant data exchange. In cases like this, you
might also want to consider data compression. I give you an example of data compression later
in this chapter. All this adds up to processor usage, though, and you will need to consider that
this will, in almost all cases, drain your end user’s device battery.

Enterprise Applications
So just what are these enterprise applications I keep talking about? Rest assured, they’re not
mythical like the unicorn; they do exist. If you’ve not had much opportunity to work within
enterprises, then you might not immediately recognize an enterprise system. There are many

CHAPTER 7: Security in the Enterprise 123

different types, but here we will focus on enterprise resource planning (ERP) applications,
mainly because they tend to cover a broad spectrum of uses in the enterprise. Your typical ERP
applications usually cover one of the following areas:

Supply chain management	
Customer relationship management	
Manufacturing	
Human resources	
Finance and accounting	
Project management	

It is quite likely that the ERP applications you will have to work with are mature and well
established. It is also likely that, as the new developer, you will have to write your application to
work with the existing systems. This can be a bit frustrating, especially when it means you have
to compromise on some form of functionality in your mobile application. One of the best ways
around this, in my opinion, is to adopt and use some form of mobile middleware.

Mobile Middleware
Instead of driving yourself insane trying to make your mobile application work with a legacy
enterprise application, you might do better if you spend some time developing your own mobile
middleware platform. Simply put, the mobile middleware platform acts as the go-between in
your mobile app’s communication with the enterprise system. The goal is to allow your mobile
app to be able to work with the data in the enterprise app without compromising on operating
system features or the limited resources available on a mobile device.

I once tested the security of a banking mobile application. The mobile application developer
followed the idea of using mobile middleware when integrating with a very proprietary, closed,
and inadequately documented application. The developer created a mobile middleware
component in the form of a screen translator. Essentially, this was a server-based application
that would fetch the website from the banking application, mine or copy all the text on specific
pages, and then convert these pages into mobile-formatted text.

Take a look at Figure 7-2. It shows how a mobile application can connect to a middleware
system that abstracts the data and user interface of a legacy application. In some cases, the
mobile client can access the legacy application directly through the mobile browser, but it would
not provide the ideal user experience in this case. Thus, by interfacing with mobile middleware,
an application’s communications infrastructure can be standardized. Most of the interaction with
the legacy application will be done on more powerful hardware.

CHAPTER 7: Security in the Enterprise124

With this in mind, we need to identify some of the key scenarios that we will encounter when we
decide to develop enterprise mobile applications. In this chapter, I look at two areas that have
proven to be a challenge when developing enterprise mobile apps: database access and data
representation. These specific areas have proven to be a challenge during mobile enterprise
application development. Let’s start with database access.

Database Access
Android supports the javax.sql and java.sql packages that you can use to access a database
server. Let’s start with a very straightforward, but insecure, example application—just to show you
how this approach falls short. Next, we will look at some better techniques. You may wonder
why I am wasting your time by looking in some detail at an insecure solution. The point is to see
why it is insecure; it is only when you understand how it is insecure that will you fully appreciate
the advantages of the correct approach. Feel free to skip forward—at your own peril!

The application will connect to a MySQL database and read the data from the table called
apress. To execute this correctly, both the Android device and the database server should reside
on the same network. I will leave the database setup and creation up to you. Make sure that you
set up the database server to listen on the public IP address. You can do this by editing the
my.cnf file in your MySQL installation. Listing 7-1 contains the database schema. Make sure you
create the database named android first. After you create the table, enter some test data into it,
so that you can retrieve it when you connect to it with your Android app.

Listing 7-1. A MySQL SQL Statement to Create the apress Table

CREATE TABLE `apress` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(50) NOT NULL DEFAULT '',
 `email` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE = MyISAM AUTO_INCREMENT = 4 DEFAULT CHARSET = latin1;

MOBILE DEVICE

ALLOWS MORE

NATIVE COMM.

MOBILE

MIDDLEWARE

WEB

SERVER
DATABASE

APPLICATION

SERVER

COMPUTER

Figure 7-2. Mobile middleware example

CHAPTER 7: Security in the Enterprise

125

Let’s get started with our app development now. Create a new project called MySQLConnect. In
your project folder, create a new folder called lib. Now download the latest version of MySQL
Connector/J from www.mysql.com/products/connector/. Next, decompress the archive and copy
the .jar file to your lib directory. The file should look something like mysql-connector-java-
5.1.15-bin.jar. If you’re using Eclipse to develop, then your project layout will look something
like the one in Figure 7-3. In my layout, you can see that I have several versions of the MySQL
Connector, but I’m using the latest version.

Figure 7-3. The MySQLConnect project structure

In this example, we create a ListView layout. This renders a nice full-screen list of the data
we retrieve from our database. Inasmuch as the ListView will contain individual items,
we have to tell Android what each item is. To do this, we create a new XML file called
list_item.xml containing the text in Listing 7-2, and then save this under the layout folder,
as shown in Figure 7-3.

http://www.mysql.com/products/connector/

CHAPTER 7: Security in the Enterprise126

Listing 7-2. The list_item.xml File Contents

<?xml version = "1.0" encoding = "utf-8"?>
<TextView xmlns:android = "http://schemas.android.com/apk/res/android"
 android:layout_width = "fill_parent"
 android:layout_height = "fill_parent"
 android:padding = "10dp"
 android:textSize = "16sp" >

</TextView>

This tells Android that each list item is of a text type and gives it some further details about its
text padding and font size. Next comes the code for the MySQLConnectActivity.java file (see
Listing 7-3). Make a note to change the host IP address, username, and password to what you
have created.

Listing 7-3. The MySQLConnectActivity.java Source Code

package net.zenconsult.android;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Enumeration;

import java.util.Hashtable;

import android.app.ListActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

public class MySQLConnectActivity extends ListActivity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Connection conn = null;

 String host = "192.168.3.105";

 int port = 3306;

 String db = "android";

 String user = "sheran";

 String pass = "P@ssw0rd";

http://schemas.android.com/apk/res/android

CHAPTER 7: Security in the Enterprise

127

 String url = "jdbc:mysql://" + host + ":" + port + "/" + db + "?user = "

 + user + "&password = " + pass;

 String sql = "SELECT * FROM apress";

 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 conn = DriverManager.getConnection(url);

 PreparedStatement stmt = conn.prepareStatement(sql);

 ResultSet rs = stmt.executeQuery();

 Hashtable < String, String > details = new Hashtable < String, String > ();

 while (rs.next()) {

 details.put(rs.getString("name"), rs.getString("email"));

 }

 String[] names = new String[details.keySet().size()];

 int x = 0;

 for (Enumeration < String > e = details.keys(); e.hasMoreElements();) {

 names[x] = e.nextElement();

 x++;

 }

 conn.close();

 this.setListAdapter(new ArrayAdapter < String > (this,

 R.layout.list_item, names));

 ListView lv = getListView();

 lv.setTextFilterEnabled(true);

 lv.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView < ? > parent, View view,

 int position, long id) {

 Toast.makeText(getApplicationContext(),

 ((TextView) view).getText(), Toast.LENGTH_SHORT).show();

 }

 });

 } catch (ClassNotFoundException e) {

 Log.e("MYSQL", "Class not found!");

 } catch (SQLException e) {

 Log.e("MYSQL", "SQL Exception " + e.getMessage());

 } catch (InstantiationException e) {

 Log.e("MYSQL", "Instantiation error " + e.getMessage());

 } catch (IllegalAccessException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

Because we’re accessing the network, you have to make sure that your app has the
android.permission.INTERNET permission set in the AndroidManifest.xml file.

CHAPTER 7: Security in the Enterprise128

Save your project and run it on your Android simulator. Your app should start up, connect to
the database, retrieve the data, and display it in a full-screen list view similar to that shown in
Figure 7-4.

Figure 7-4. The output when the app is executed correctly

As you can see, even though we are able to read data directly from a database, there seems to
be a lot of cumbersome code that we need to write, in addition to packaging large JDBC driver
libraries with our app.

In some cases, if you have to connect to a database without pure JDBC drivers, then you’re
stuck. If you look at the security implications, then you need to consider that your database
server has to be exposed to the Internet or on the VPN because both the mobile device and
the database server should be able to talk to each other. Finally, you can see that the database
credentials are stored within the application.

Look at the following section of code:

Connection conn = null;
 String host = "192.168.3.105";
 int port = 3306;
 String db = "android";

 String user = "sheran";
 String pass = "P@ssw0rd";

CHAPTER 7: Security in the Enterprise

129

 String url = "jdbc:mysql://" + host + ":" + port + "/" + db + "?user = "
 + user + "&password = " + pass;

 String sql = "SELECT * FROM apress";

The lines starting with String user and String pass show how the database credentials are
hardcoded in the application. If the phone is compromised, an attacker can read the database
credentials from your app’s data and use them to connect from another computer and attack
your database directly.

Therefore, it is not the best approach to use native JDBC connectivity in your Android app. It
is better to write a mobile middleware module to allow the app to access the data in a more
convenient and secure manner.

How can we improve the database access process? One of the simplest and possibly most
mature request/response mechanisms is HTTP. By using HTTP, we can certainly simplify and
improve the security of our data access methods. Android already has a very capable HTTP
client built in; we have SSL to protect our data; and, if required, we can add an additional layer
of encryption to the data going back and forth. You might say it’s a no-brainer to use HTTP, so
let’s do just that.

But how are we supposed to use HTTP to request data from a database? We can use web
services to fetch data from our back end. Rather than making very complex web services, we
can use REST (representational state transfer) to communicate. Exposing a RESTful API will
greatly simplify how our mobile application requests data. Consider this example:

https://192.168.3.105/apress/members

By making this get request, we can fetch the same set of data that we fetched in our
MySQLConnect example earlier. It is definitely much simpler to use an HTTP request to fetch
the data. Of course, the next step is in retrieving the data. Because we’ve picked HTTP as our
transport mechanism, we have to use a response mechanism that is also HTTP-friendly. This
brings us to the problem of data representation. We look at that in the next section.

I hope you’re building your own set of libraries for reuse later on. It is a very good practice to get
into. I have several different libraries that I create for different tasks when I develop. I have one
that handles database connections, one that handles data encoding and decoding, and many
other small utility libraries that I use when I build apps. They speed up my development cycles
and generally keep everything in a consistent state. I bring this point up now because, if you are
going to embark on the journey to build your own custom mobile middleware, then you would
be better off if you designed it so that you can plug it into as many deployment scenarios as
possible. From there, you can just tweak configuration settings, so you can get up and
running quickly.

https://192.168.3.105/apress/members

CHAPTER 7: Security in the Enterprise130

Data Representation
Having got that out of the way, let’s talk about data representation. By data representation, I’m
referring to how your mobile application receives data from the back-end web application. In our
case, we’re trying to standardize how our mobile app will receive and treat the data. The most
common data representation formats available today are XML (eXtensible Markup Language)
and JSON (JavaScript Object Notation). So, let’s aim to write our mobile application framework
to receive and process this type of data. Refer to the appendix for a quick primer on XML and
JSON. Another reason to select this type of data representation is that there are many third-party,
open source libraries that you can either use or adapt to suit your purpose.

Getting back to our RESTful API request, let’s look at the following two potential responses we
could have from our mobile middleware:

XML

<?xml version = "1.0" encoding = "UTF-8"?>
<apress>
 <users>
 <user name = "Sheran" email = "sheranapress@gmail.com" />
 <user name = "Kevin" email = "kevin@example.com" />
 <user name = "Scott" email = "scottm@example.com" />
 </users>
</apress>

JSON

{
 users:{
 user:[

Note Custom Libraries

Developing your own libraries as you go is a good practice. For me, writing my own libraries means

I will never forget a particular implementation that I did months ago. I can simply call up my shared

library function and integrate it with few or no concerns.

Bear in mind, however, that all your external library functions should be extremely simple. These

basic functions can later be strung together to perform one complex function. Thus, you can build

upon your libraries and completely speed up your development time.

Imagine you spent a lot of time and effort in writing your client an e-commerce application. After your

project is completed, there might not be an explicit requirement to keep the source code around.

This could matter to you, however, if you meet another customer that wants you to build a similar

e-commerce store. Provided you have undisputed ownership of the code you wrote in the earlier

application, you can reuse it and, thus, drastically reduce the time required to prepare new applications.

CHAPTER 7: Security in the Enterprise

131

 {
 name:'Sheran',
 email:'sheranapress@gmail.com'
 },
 {
 name:'Kevin',
 email:'kevin@example.com'
 },
 {
 name:'Scott',
 email:'scottm@example.com'
 }
]
 }
}

The good part is you won’t need to write so much code to read the XML and JSON
representations. Android includes libraries for parsing both formats. Let’s look at some source
code. Once again, create a new project and call it RESTFetch. Create the list_item.xml file as
you did in the previous example, and then assign the android.permission.INTERNET permission
to the app. Listing 7-4 contains the code to the app that will make a request, process the XML
response, and render the results in a list. Figure 7-5 contains the output.

Listing 7-4. Fetching Data Using the RESTful API and Processing XML Output

package net.zenconsult.android;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.StringReader;
import java.net.URI;
import java.net.URISyntaxException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

import android.app.ListActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;

CHAPTER 7: Security in the Enterprise132

import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

public class RESTFetchActivity extends ListActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 BufferedReader in = null;

 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet();
 request.setURI(new URI("http://192.168.3.105/apress/members"));
 HttpResponse response = client.execute(request);
 in = new BufferedReader(new InputStreamReader(response.getEntity()
 .getContent()));
 StringBuffer sb = new StringBuffer("");
 String line = "";
 String newLine = System.getProperty("line.separator");
 while ((line = in.readLine()) ! = null) {
 sb.append(line + newLine);
 }
 in.close();

 Document doc = null;

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 DocumentBuilder db = dbf.newDocumentBuilder();

 InputSource is = new InputSource();
 is.setCharacterStream(new StringReader(sb.toString()));
 doc = db.parse(is);

 NodeList nodes = doc.getElementsByTagName("user");
 String[] names = new String[nodes.getLength()];
 for (int k = 0; k < nodes.getLength(); ++k) {
 names[k] = nodes.item(k).getAttributes().getNamedItem("name")
 .getNodeValue();
 }

 this.setListAdapter(new ArrayAdapter < String > (this,
 R.layout.list_item, names));

 ListView lv = getListView();
 lv.setTextFilterEnabled(true);

 lv.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView < ? > parent, View view,
 int position, long id) {
 Toast.makeText(getApplicationContext(),
 ((TextView) view).getText(), Toast.LENGTH_SHORT)
 .show();
 }
 });

http://192.168.3.105/apress/members

CHAPTER 7: Security in the Enterprise 133

 } catch (IOException e) {
 Log.e("REST", "IOException " + e.getMessage());
 } catch (URISyntaxException e) {
 Log.e("REST", "Incorret URI Syntax " + e.getMessage());
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (SAXException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
}

Figure 7-5. The output from the RESTful API query with XML response

For the JSON request/response code and output, take a look at Listing 7-5 and Figure 7-6,
respectively.

Listing 7-5. Fetching Data Using the RESTful API and Processing JSON Output

package net.zenconsult.android;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.net.URISyntaxException;

CHAPTER 7: Security in the Enterprise134

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.ListActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

public class RESTJSONActivity extends ListActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 BufferedReader in = null;

 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet();
 request.setURI(new URI("http://192.168.3.105/apress/members.json"));
 HttpResponse response = client.execute(request);
 in = new BufferedReader(new InputStreamReader(response.getEntity()
 .getContent()));
 StringBuffer sb = new StringBuffer("");
 String line = "";
 while ((line = in.readLine()) ! = null) {
 sb.append(line);
 }
 in.close();

 JSONObject users = new JSONObject(sb.toString())
 .getJSONObject("users");
 JSONArray jArray = users.getJSONArray("user");
 String[] names = new String[jArray.length()];
 for (int i = 0; i < jArray.length(); i++) {
 JSONObject jsonObject = jArray.getJSONObject(i);
 names[i] = jsonObject.getString("name");
 }

 this.setListAdapter(new ArrayAdapter < String > (this,
 R.layout.list_item, names));

 ListView lv = getListView();
 lv.setTextFilterEnabled(true);

 lv.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView < ? > parent, View view,

http://192.168.3.105/apress/members.json

CHAPTER 7: Security in the Enterprise

135

 int position, long id) {
 Toast.makeText(getApplicationContext(),
 ((TextView) view).getText(), Toast.LENGTH_SHORT)
 .show();
 }
 });

 } catch (IOException e) {
 Log.e("RESTJSON", "IOException " + e.getMessage());
 } catch (URISyntaxException e) {
 Log.e("RESTJSON", "Incorret URI Syntax " + e.getMessage());
 } catch (JSONException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
}

Figure 7-6. The output from the RESTful API query with a JSON response

If required, you can combine both the XML and JSON examples into one class file. To distinguish
between the response types, you can usually append a file extension to the members request.
Thus, for an XML response, call http://192.168.3.105/apress/members.xml; and, for a JSON
response, call http://192.168.3.105/apress/members.json. Again, we can modify our examples
so that we analyze the response data to discover the structure automatically. This will free us
to extract data based on certain keywords, regardless of where they appear. In most cases,
however, it doesn’t hurt to define your data structure in your code because, after all, your mobile
app will only talk to your mobile middleware.

http://192.168.3.105/apress/members.xml
http://192.168.3.105/apress/members.json

CHAPTER 7: Security in the Enterprise136

Speaking of mobile middleware, where exactly is the server-side code to generate the XML and
JSON responses? At the present time, such code is beyond the scope of this book. But in order
to give you a better understanding of how you can implement this type of mobile middleware,
take a look at the appendix for a very basic example that also shares deployment instructions.

Summary
We took a very quick look at two of the problems you would face if asked to develop a mobile
application that works with a legacy enterprise system. No doubt, you might come across
different challenges when you set foot in the realm of mobile enterprise app development. In
almost all cases, you can overcome these problems by building translation or bridge modules in
your mobile middleware.

As far as security is concerned, at the beginning of this chapter, we discussed that opening
up the enterprise environment to the public is a bad idea. The best approach is to reduce the
exposure that enterprise systems have by using middleware. We decided to use HTTP, not only
for its simplicity, but also because we don’t need to do anything magical to secure it. The same
security controls as SSL can be applied without having to change any of our code. Of course,
we could also create additional layers of encryption and compression for our data.

i

137

Chapter 8
Concepts in Action: Part 2

In this chapter, as in Chapter 4, we will take a closer look at source code and applications
that implement some of the theoretical concepts we’ve discussed. This will give you a better
feeling for how to apply them in practice. This chapter’s code examples will focus on secure
authentication and safeguarding passwords on the device. Recall that we’ve discussed two
mechanisms of logging in to back-end applications without storing credentials on the device.
Here, we will explore more detailed source code related to that.

OAuth
Let’s revisit the OAuth login example covered in Chapter 6. We discussed developing an
application that will interact with Google Picasa Web Albums to read off a list of albums from a
specific user. The code in this chapter will do this. Check this book’s page on the Apress web
site at www.apress.com for the latest code. First, let’s look at our project structure in Figure 8-1.
You will see several source files. We will go over each source file’s key functionality.

Retrieving the Token
You can see the structure of the OAuth example project in Figure 8-1. Let’s start with the
application’s entry point, which is OAuthPicasaActivity.java, shown in Listing 8-1.

http://www.apress.com

CHAPTER 8: Concepts in Action: Part 2138

Figure 8-1. The OAuth example’s project structure

You will see that this file is doing several things. First, it instantiates the OAuth class. Next,
it retrieves the Token object and tests whether the token is valid to make a request in the
isValidForReq() function. It also tests whether the token is expired in the isExpired()
function. If the token is valid, then it goes onto instantiate the DataFetcher object that queries
Picasa for a list of all albums belonging to the user, sheranapress. This is done in the
df.fetchAlbums("sheranapress") line.

Listing 8-1. The Application Entry Point

package net.zenconsult.android;

import android.app.ListActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

CHAPTER 8: Concepts in Action: Part 2

139

import android.widget.ListView;

import android.widget.TextView;
import android.widget.Toast;

public class OAuthPicasaActivity extends ListActivity {
 OAuthPicasaActivity act;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 act = this;
 OAuth o = new OAuth(this);
 Token t = o.getToken();

 if (!t.isValidForReq()) {
 Intent intent = new Intent(this, AuthActivity.class);
 this.startActivity(intent);
 }
 if (t.isExpired()) {
 o.getRequestToken();
 }

 DataFetcher df = new DataFetcher(t);
 df.fetchAlbums("sheranapress");
 String[] names = new String[] {}; // Add bridge code here to parse XML
 // from DataFetcher and populate
 // your List

 this.setListAdapter(new ArrayAdapter < String > (this, R.layout.list_item,
 names));

 ListView lv = getListView();
 lv.setTextFilterEnabled(true);

 lv.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView <?> parent, View view,
 int position, long id) {
 Toast.makeText(getApplicationContext(),
 ((TextView) view).getText(),
Toast.LENGTH_SHORT).show();
 }
 });
 }

}

Obviously, the first time this application is run, there won’t be a valid Token object. The application
handles this condition by first fetching an authorization code, and then fetching a request token
with that authorization code (per Google’s OAuth 2 specification). Let’s see how this is done next.

Handling Authorization
Listing 8-2 shows the source code for the part of our application that handles authorization.
If you look at the doAuth() function, you will see that a request to Google is made, and the

CHAPTER 8: Concepts in Action: Part 2140

application displays the response in a WebView object. A WebView object is a field that displays
HTML content. You can think of it like a minimalistic browser. This allows the end user to log
into her Google account and grant or deny our application access. The user is presented
with the Google login web page and is asked to log in with her credentials. These credentials
are not stored anywhere in our application. If he grants our application permission to use her
Picasa stream, then Google sends back an authorization code. Our application will store this
authorization code in the Token object. This is done in the ClientHandler object (see Listing 8-3).

Listing 8-2. The Auth Activity Gets the Authorization Code.

package net.zenconsult.android;

import java.net.URI;
import java.net.URISyntaxException;

import org.apache.http.message.BasicNameValuePair;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.util.Log;
import android.webkit.WebView;

public class AuthActivity extends Activity {
 private BasicNameValuePair clientId = new BasicNameValuePair("client_id",
 "200744748489.apps.googleusercontent.com");
 private BasicNameValuePair clientSecret = new BasicNameValuePair(
 "client_secret", "edxCTl_L8_SFl1rz2klZ4DbB");
 private BasicNameValuePair redirectURI = new BasicNameValuePair(
 "redirect_uri", "urn:ietf:wg:oauth:2.0:oob");
 private String scope = "scope=https://picasaweb.google.com/data/";
 private String oAuth = "https://accounts.google.com/o/oauth2/auth?";
 private String httpReqPost = "https://accounts.google.com/o/oauth2/token";
 private final String FILENAME = ".oauth_settings";
 private URI uri;
 private WebView wv;
 private Context ctx;
 private Token token;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.auth);
 doAuth();
 }

 public void doAuth() {
 try {
 uri = new URI(oAuth + clientId + "&" + redirectURI + "&" + scope
 + "&response_type = code");
 wv = (WebView) findViewById(R.id.webview);
 wv.setWebChromeClient(new ClientHandler(this));
 wv.setWebViewClient(new MWebClient());
 wv.getSettings().setJavaScriptEnabled(true);

https://picasaweb.google.com/data/
https://accounts.google.com/o/oauth2/auth
https://accounts.google.com/o/oauth2/token

CHAPTER 8: Concepts in Action: Part 2

141

 wv.loadUrl(uri.toASCIIString());
 Log.v("OAUTH", "Calling " + uri.toASCIIString());
 } catch (URISyntaxException e) {
 e.printStackTrace();
 }
 }

}

Think of the ClientHandler as an observer. It watches for a specific string—"Success"—in each
HTML web page. If it finds the word, then we’ve got the correct authorization code, which
means that our end user has approved our access.

Listing 8-3. The ClientHandler Writes the Authorization Code to the Token Object.

package net.zenconsult.android;

import android.app.Activity;
import android.util.Log;

import android.webkit.WebChromeClient;

import android.webkit.WebView;
import android.widget.Toast;

public class ClientHandler extends WebChromeClient {
 private Activity activity;
 private OAuth oAuth;

 public ClientHandler(Activity act) {
 activity = act;
 oAuth = new OAuth(activity);
 }

 @Override
 public void onReceivedTitle(WebView view, String title) {
 String code = "";
 if (title.contains("Success")) {
 code = title.substring(title.indexOf(' = ') + 1, title.length());
 setAuthCode(code);
 Log.v("OAUTH", "Code is " + code);
 oAuth.getRequestToken();
 oAuth.writeToken(oAuth.getToken());
 Toast toast = Toast.makeText(activity.getApplicationContext(),
 "Authorization Successful", Toast.LENGTH_SHORT);
 toast.show();
 activity.finish();
 } else if (title.contains("Denied")) {
 code = title.substring(title.indexOf(' = ') + 1, title.length());
 setAuthCode(code);
 Log.v("OAUTH", "Denied, error was " + code);
 Toast toast = Toast.makeText(activity.getApplicationContext(),
 "Authorization Failed", Toast.LENGTH_SHORT);
 toast.show();
 activity.finish();
 }
 }

CHAPTER 8: Concepts in Action: Part 2142

 public String getAuthCode() {
 return oAuth.getToken().getAuthCode();
 }

 public void setAuthCode(String authCode) {
 oAuth.getToken().setAuthCode(authCode);
 }

 @Override
 public void onProgressChanged(WebView view, int progress) {

 }

}

After the authorization code has been written to the internal storage, you will need to fetch a
request token. In Oauth, you will need a request token to begin the process of requesting access
to any resources. Please refer to Figure 6-25 for the OAuth flow process. If you look at our
ClientHandler code once more, you will see the lines oAuth.getRequestToken() and
oAuth.writeToken(oAuth.getToken()). These two lines use the instantiated OAuth class
(see Listing 8-4) to ask for a request token and then write it to the internal storage.
The getRequestToken() function handles that part. It is also worth noting that whenever
I mention storage, you should consider using encryption. Please refer to the “Data Storage in
Android” section in Chapter 5 for more information on implementing secure data storage.

You might have already noticed that the token is being used as a singleton. It gets written to
and read from the device’s internal storage. This allows different areas of the application to
read and write to it during different phases of the authentication process. Ideally, this should be
synchronized to ensure that reads and writes occur exclusively from one class.

Listing 8-4. If Authorization Code Is Valid, OAuth Class Gets Request Tokens from Google.

package net.zenconsult.android;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.StreamCorruptedException;

import java.io.UnsupportedEncodingException;

import java.net.URI;

import java.util.ArrayList;
import java.util.List;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.NameValuePair;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.HttpClient;

CHAPTER 8: Concepts in Action: Part 2 143

import org.apache.http.client.entity.UrlEncodedFormEntity;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.util.EntityUtils;

import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;

import android.content.Context;

import android.util.Log;

import android.webkit.WebView;
import android.widget.Toast;

public class OAuth {
 private BasicNameValuePair clientId = new BasicNameValuePair("client_id",
 "200744748489.apps.googleusercontent.com");
 private BasicNameValuePair clientSecret = new BasicNameValuePair(
 "client_secret", "edxCTl_L8_SFl1rz2klZ4DbB");
 private BasicNameValuePair redirectURI = new BasicNameValuePair(
 "redirect_uri", "urn:ietf:wg:oauth:2.0:oob");
 private String scope = "scope=https://picasaweb.google.com/data/";
 private String oAuth = "https://accounts.google.com/o/oauth2/auth?";
 private String httpReqPost = "https://accounts.google.com/o/oauth2/token";
 private final String FILENAME = ".oauth_settings";
 private URI uri;
 private WebView wv;
 private Context ctx;
 private Activity activity;
 private boolean authenticated;
 private Token token;

 public OAuth(Activity act) {
 ctx = act.getApplicationContext();
 activity = act;
 token = readToken();
 }

 public Token readToken() {
 Token token = null;
 FileInputStream fis;
 try {
 fis = ctx.openFileInput(FILENAME);
 ObjectInputStream in = new ObjectInputStream(
 new BufferedInputStream(fis));
 token = (Token) in.readObject();
 if (token == null) {
 token = new Token();
 writeToken(token);
 }
 in.close();
 fis.close();
 } catch (FileNotFoundException e) {

https://picasaweb.google.com/data/
https://accounts.google.com/o/oauth2/auth
https://accounts.google.com/o/oauth2/token

CHAPTER 8: Concepts in Action: Part 2144

 writeToken(new Token());
 } catch (StreamCorruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return token;
 }

 public void writeToken(Token token) {
 try {
 File f = new File(FILENAME);
 if (f.exists()) {
 f.delete();
 }
 FileOutputStream fos = ctx.openFileOutput(FILENAME,
 Context.MODE_PRIVATE);

 ObjectOutputStream out = new ObjectOutputStream(
 new BufferedOutputStream(fos));
 out.writeObject(token);
 out.close();
 fos.close();
 } catch (FileNotFoundException e1) {
 Log.e("OAUTH", "Error creating settings file");
 } catch (IOException e2) {
 // TODO Auto-generated catch block
 e2.printStackTrace();
 }
 }

 public void getRequestToken() {
 HttpClient httpClient = new DefaultHttpClient();
 HttpPost post = new HttpPost(httpReqPost);
 List < NameValuePair > nvPairs = new ArrayList < NameValuePair > ();
 nvPairs.add(clientId);
 nvPairs.add(clientSecret);
 nvPairs.add(new BasicNameValuePair("code", token.getAuthCode()));
 nvPairs.add(redirectURI);
 nvPairs.add(new BasicNameValuePair("grant_type", "authorization_code"));
 try {
 post.setEntity(new UrlEncodedFormEntity(nvPairs));
 HttpResponse response = httpClient.execute(post);
 HttpEntity httpEntity = response.getEntity();
 String line = EntityUtils.toString(httpEntity);
 JSONObject jObj = new JSONObject(line);
 token.buildToken(jObj);
 writeToken(token);
 } catch (UnsupportedEncodingException e) {

CHAPTER 8: Concepts in Action: Part 2

145

 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 if (e.getMessage().equals("No peer certificate")) {
 Toast toast = Toast.makeText
(activity.getApplicationContext(),
 "Possible HTC Error for Android 2.3.3",
 Toast.LENGTH_SHORT);
 toast.show();
 }
 Log.e("OAUTH", "IOException " + e.getMessage());
 } catch (JSONException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 public Token getToken() {
 return token;
 }

 public void setToken(Token token) {
 this.token = token;
 }

}

I have provided the source code to the Token object in Listing 8-5. The object implements the
Serializable interface; therefore, it can be written in its entirety to the internal store. Make sure
you run it through your data storage encryptor for added security. The Token object contains little
logic apart from checking its own expiry date.

Listing 8-5. The Token Object

package net.zenconsult.android;

import java.io.Serializable;
import java.util.Calendar;

import org.json.JSONException;
import org.json.JSONObject;

public class Token implements Serializable {
 /**
 *
 */
 private static final long serialVersionUID = 6534067628631656760L;
 private String refreshToken;
 private String accessToken;
 private Calendar expiryDate;
 private String authCode;
 private String tokenType;

CHAPTER 8: Concepts in Action: Part 2146

 private String name;

 public Token() {
 setExpiryDate(0);
 setTokenType("");
 setAccessToken("");
 setRefreshToken("");
 setName("");
 }

 public Token(JSONObject response) {
 try {
 setExpiryDate(response.getInt("expires_in"));
 } catch (JSONException e) {
 setExpiryDate(0);
 }
 try {
 setTokenType(response.getString("token_type"));
 } catch (JSONException e) {
 setTokenType("");
 }
 try {
 setAccessToken(response.getString("access_token"));
 } catch (JSONException e) {
 setAccessToken("");
 }
 try {
 setRefreshToken(response.getString("refresh_token"));
 } catch (JSONException e) {
 setRefreshToken("");
 }
 }

 public void buildToken(JSONObject response) {
 try {
 setExpiryDate(response.getInt("expires_in"));
 } catch (JSONException e) {
 setExpiryDate(0);
 }
 try {
 setTokenType(response.getString("token_type"));
 } catch (JSONException e) {
 setTokenType("");
 }
 try {
 setAccessToken(response.getString("access_token"));
 } catch (JSONException e) {
 setAccessToken("");
 }
 try {
 setRefreshToken(response.getString("refresh_token"));
 } catch (JSONException e) {
 setRefreshToken("");
 }
 }

CHAPTER 8: Concepts in Action: Part 2

147

 public boolean isValidForReq() {
 if (getAccessToken() != null && !getAccessToken().equals("")) {
 return true;
 } else {
 return false;
 }
 }

 public boolean isExpired() {
 Calendar now = Calendar.getInstance();
 if (now.after(getExpiryDate()))
 return true;
 else
 return false;
 }

 public String getRefreshToken() {
 return refreshToken;
 }

 public void setRefreshToken(String refreshToken) {
 if (refreshToken == null)
 refreshToken = "";
 this.refreshToken = refreshToken;
 }

 public String getAccessToken() {
 return accessToken;
 }

 public void setAccessToken(String accessToken) {
 if (accessToken == null)
 accessToken = "";
 this.accessToken = accessToken;
 }

 public Calendar getExpiryDate() {
 return expiryDate;
 }

 public void setExpiryDate(int seconds) {
 Calendar now = Calendar.getInstance();
 now.add(Calendar.SECOND, seconds);
 this.expiryDate = now;
 }

 public String getAuthCode() {
 return authCode;
 }

 public void setAuthCode(String authCode) {
 if (authCode == null)
 authCode = "";
 this.authCode = authCode;
 }

CHAPTER 8: Concepts in Action: Part 2148

 public String getTokenType() {
 return tokenType;
 }

 public void setTokenType(String tokenType) {
 if (tokenType == null)
 tokenType = "";
 this.tokenType = tokenType;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

Finally, there is the DataFetcher class (see Listing 8-6). You use this class to make all protected
queries to Picasa. For example, you can use this class to fetch albums and photos or even
to upload photos. Picasa sends back all its replies in XML (notice that I have left the XML
parsing component out). If you want to know how to write a simple XML parser to read Picasa
responses, then look in the book’s Appendix.

Listing 8-6. The DataFetcher Class

package net.zenconsult.android;

import java.io.IOException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.util.EntityUtils;

public class DataFetcher {
 private HttpClient httpClient;
 private Token token;

 public DataFetcher(Token t) {
 token = t;
 httpClient = new DefaultHttpClient();
 }

 public void fetchAlbums(String userId) {
 String url = "https://picasaweb.google.com/data/feed/api/user/"
 + userId;
 try {

https://picasaweb.google.com/data/feed/api/user/

CHAPTER 8: Concepts in Action: Part 2

149

 HttpResponse resp = httpClient.execute(buildGet(
 token.getAccessToken(), url));
 if (resp.getStatusLine().getStatusCode() == 200) {
 HttpEntity httpEntity = resp.getEntity();
 String line = EntityUtils.toString(httpEntity);

 // Do your XML Parsing here
 }

 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public HttpGet buildGet(String accessToken, String url) {
 HttpGet get = new HttpGet(url);
 get.addHeader("Authorization", "Bearer " + accessToken);
 return get;
 }

}

Challenge Response
We very briefly discussed challenge response-based authentication in Chapter 6. Let’s take a
closer look at challenge-response authentication techniques. What follows is a brief overview
of the steps required, also shown in Figure 8-2. Bear in mind that this is simply a one-way
authentication with the server authenticating the client:

1. Client requests a secure resource.

2. Server sends a challenge string C.

3. Client generates a random string R.

4. Client generates a hash based on C, R, and the user’s password.

5. Client sends R and the hash back to the server.

6. Server calculates hash based on the stored user password and R.

7. Server sends back the requested resource if correctly authenticated;

otherwise, an error message is sent back.

CHAPTER 8: Concepts in Action: Part 2150

Client requests a server resource

Server sends a challenge string C

Client generates a random string R

Client sends R and the hash of the server

Server calculates hash based or

stored user password and R

Server sends back authorization

status to client

Client generates a hash based or

C, R, and the user password

1

3

4

5

6

7

2
CLIENT

SERVER

Figure 8-2. A graphical representation of the data exchange between client and server during a

challenge-response session

Note You could also have a mutual authentication scenario where the client authenticates

the server.

Let’s write some simple code that helps us use challenge-response authentication techniques in
our applications. You should evolve these sections of code to suit your own needs and then use
them them in your applications. They can help reduce the exposure of your end users because
you won’t be storing any credentials on your device. I’ve given you examples of both client and
server-side code. The server-side code is written in Java, and it can be packaged as a Java Web
Archive File (WAR file). To test it, package it as a WAR file and simply drop it in the deployment
directory of your servlet container or application server.

Let’s start with the server-side code. We will create a Java servlet that will handle the HTTP
communications with our client. Figure 8-3 shows the project structure. The structure illustrates
that we have a fairly simple project with only four files.

CHAPTER 8: Concepts in Action: Part 2

151

Figure 8-3. Our challenge-response server-side project structure

One of them, the Hex.java file, is a utility class that I use for converting various data types into
hexadecimal strings; the other, Constants.java, holds the username and password. These
credentials will be used to compare what the client enters.

You will also notice that we are using the Apache Commons Codec library to help with
our Base64 encoding and decoding. In this example, we are adapting the CRAM-MD5
authentication approach to use SHA1 hashes instead. (CRAM is the Challenge Response
Authentication Mechanism.)

I’ll lay out the code first, and then explain what we’re trying to do. Let’s start with our servlet
Login.java, shown in Listing 8-7. This code has two main branches:

Main Branch 1 handles cases where a request is received without the 	
“challenge” parameter.

Main Branch 2 handles cases where a request is received with the 	
“challenge” parameter.

Listing 8-7. The Login Class

package net.zenconsult.android;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

CHAPTER 8: Concepts in Action: Part 2152

/**
 * Servlet implementation class login
 */
@WebServlet(description = "Login Servlet", urlPatterns = { "/login" })

public class Login extends HttpServlet {
 private static final long serialVersionUID = 1 L;

 /**
 * @see HttpServlet#HttpServlet()
 */
 public Login() {
 super();
 // TODO Auto-generated constructor stub
 }

 /**
 * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse
 * response)
 */
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 HttpSession session = request.getSession();
 String param = request.getParameter("challenge");
 if (param != null) {
 CRAM c = (CRAM) session.getAttribute("challenge");
 if (c == null) {
 c = new CRAM();
 session.setAttribute("challenge", c);
 response.setHeader("Content-Type", "text/xml");
 response.getWriter().write(c.generate());
 } else {
 if (c.verifyChallenge(param.trim())) {
 response.setHeader("Content-Type", "text/xml");
 response.getWriter().write
(c.generateReply("Authorized"));
 session.invalidate();
 } else {
 response.setHeader("Content-Type", "text/xml");
 response.getWriter().write
(c.generateReply("Unauthorized"));
 session.invalidate();
 }
 }
 } else {
 CRAM c = new CRAM();
 session.setAttribute("challenge", c);
 response.setHeader("Content-Type", "text/xml");
 response.getWriter().write(c.generate());
 }
 }

CHAPTER 8: Concepts in Action: Part 2 153

GET /ChallengeResponse/
login

GET /ChallengeResponse/login?
challenge=c2hlcmFulGM1...

<ServerResponse>
<AuthChallenge>

 <Challenge>ebZqLLIOV32YZBL...
</Challenge>

</AuthChallenge>
</ServerResponse>

<ServerResponse>
<AuthChallenge>

 <Response>Authorized</Response>
</AuthChallenge>

</ServerResponse>

1

3

2

4

Figure 8-4. The challenge response message flow

 /**
 * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse
 * response)
 */
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // TODO Auto-generated method stub
 }

}

In each case, we are creating a CRAM object. This object will generate our challenge strings
and also do a comparison of the user response. We associate the CRAM object with each HTTP
session, so that the same challenge bytes are used for verification.

Now would be a great time to take a protocol-level look at what takes place between client and
server (see Figure 8-4). The entire flow had four steps and is quite simple:

1. The client requests a protected resource.

2. The server replies with a challenge.

3. The client uses the end-user credentials to calculate the response and

send it back to the server.

4. Finally, the server will calculate the same response, compare it, and

decide whether the user is authorized.

All of this is done without sending the user credentials over the Web.

CHAPTER 8: Concepts in Action: Part 2154

The source code for the CRAM object is shown in Listing 8-8.

Listing 8-8. The CRAM Class

package net.zenconsult.android;

import java.io.StringWriter;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import javax.crypto.Mac;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import org.apache.commons.codec.binary.Base64;

import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.w3c.dom.Text;

public class CRAM implements Constants {
 private final byte[] secret = new byte[32];

 public CRAM() {
 SecureRandom sr = new SecureRandom();
 sr.nextBytes(secret);
 }

 public String generate() {
 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
 DocumentBuilder dBuilder = null;
 try {
 dBuilder = dbFactory.newDocumentBuilder();
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Document doc = dBuilder.newDocument();

 // Build Root
 Element root = doc.createElement("ServerResponse");
 doc.appendChild(root);

 // Challenge Section

CHAPTER 8: Concepts in Action: Part 2

155

 Element authChallenge = doc.createElement("AuthChallenge");
 root.appendChild(authChallenge);

 // The Challenge
 Element challenge = doc.createElement("Challenge");
 Text challengeText = doc.createTextNode(Base64
 .encodeBase64String(secret));
 challenge.appendChild(challengeText);
 authChallenge.appendChild(challenge);

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = null;
 try {
 transformer = tFactory.newTransformer();
 } catch (TransformerConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
 transformer.setOutputProperty(OutputKeys.INDENT, "yes");
 StringWriter sw = new StringWriter();
 StreamResult res = new StreamResult(sw);
 DOMSource source = new DOMSource(doc);
 try {
 transformer.transform(source, res);
 } catch (TransformerException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 String xml = sw.toString();
 return xml;
 }

 public boolean verifyChallenge(String userResponse) {
 String algo = "HmacSHA1";
 Mac mac = null;
 try {
 mac = Mac.getInstance(algo);
 } catch (NoSuchAlgorithmException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 SecretKey key = new SecretKeySpec(PASSWORD.getBytes(), algo);

 try {
 mac.init(key);
 } catch (InvalidKeyException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 String tmpHash = USERNAME + " " + Hex.toHex(mac.doFinal(secret));
 String hash = Base64.encodeBase64String(tmpHash.getBytes());
 return hash.equals(userResponse);
 }

CHAPTER 8: Concepts in Action: Part 2156

 public String generateReply(String response) {
 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
 DocumentBuilder dBuilder = null;
 try {
 dBuilder = dbFactory.newDocumentBuilder();
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Document doc = dBuilder.newDocument();

 // Build Root
 Element root = doc.createElement("ServerResponse");
 doc.appendChild(root);

 // Challenge Section
 Element authChallenge = doc.createElement("AuthChallenge");
 root.appendChild(authChallenge);

 // Reply
 Element challenge = doc.createElement("Response");
 Text challengeText = doc.createTextNode(response);
 challenge.appendChild(challengeText);
 authChallenge.appendChild(challenge);

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = null;
 try {
 transformer = tFactory.newTransformer();
 } catch (TransformerConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
 transformer.setOutputProperty(OutputKeys.INDENT, "yes");
 StringWriter sw = new StringWriter();
 StreamResult res = new StreamResult(sw);
 DOMSource source = new DOMSource(doc);
 try {
 transformer.transform(source, res);
 } catch (TransformerException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 String xml = sw.toString();
 return xml;
 }

}

At the point when the CRAM object is instantiated, a new 32-byte random number is generated.
This is a field, and it is closely associated with the CRAM object. This random string of bytes will
be used for further challenge generation and response verification.

Next comes the generate() function, which does nothing more than create a Base64 encoding
of the random bytes that we generated. It then creates an XML response, along with this
challenge string, and then returns it to the servlet so that it can be sent to the end user.

CHAPTER 8: Concepts in Action: Part 2

157

The next function, verifyChallenge(String userResponse), is an important one. It generates the
response that a client should generate if the correct credentials were used. The original random
byte sequence is hashed using the HMAC-SHA1 algorithm using the stored user password.
The username is then prepended to this hash and Base64 encoded. Next, it is compared to the
client response, which should be the same—provided the username and password are correctly
entered, of course.

Finally, the generateReply(String response) function will send back the word specified in the
response variable as XML text. The servlet calls this function using either of the following words,
depending on whether the client response is correct:

	"Authorized"

	"Unauthorized"

You could also have a special authorization cookie set to indicate that the session is
authenticated. There are many ways in which this code can be improved and built upon. I’ve
included basic code here, so that you can get a better understanding of how to implement a
challenge-response authentication mechanism in your front- and back-end applications.

Now that we’ve looked at the server-side code, let’s write some code for the client side. I’ve
shown the project structure in Figure 8-5. Once again, the skeletal project is fairly simple,
with only three files, not counting the hexadecimal functions class. I will take you through the
functionality of each file, starting with the entry point, ChallengeResponseClientActivity.java
(see Listing 8-9). The code is fairly straightforward with the creation of a Comms object
(see Listing 8-10) and a CRAM object (see Listing 8-11). The Comms object handles all network
communication between the client and server, while the CRAM object handles the hash generation
part. The CRAM object is very similar to the CRAM object on the server side. In this case, there is
no verification component because the client does not verify the server. Instead, the CRAM object
uses the HMAC-SHA1 to calculate the hash based on the server challenge.

Listing 8-9. The Entry Point and Main Activity

package net.zenconsult.android;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.Toast;

public class ChallengeResponseClientActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 final Activity activity = this;

 final Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 Comms c = new Comms(activity);

CHAPTER 8: Concepts in Action: Part 2158

 String challenge = c.getChallenge();
 CRAM cram = new CRAM(activity);
 String hash = cram.generate(challenge);
 String reply = c.sendResponse(hash);
 if (c.authorized(reply)) {
 Toast toast = Toast.makeText(
 activity
.getApplicationContext(), "Login success",
 Toast.LENGTH_LONG);
 toast.show();
 } else {
 Toast toast = Toast.makeText(
 activity
.getApplicationContext(), "Login failed",
 Toast.LENGTH_LONG);
 toast.show();
 }
 }
 });
 }

}

Listing 8-10. The Comms Class Handles All HTTP Requests for This App.

package net.zenconsult.android;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;
import java.util.List;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.apache.http.HttpResponse;

import org.apache.http.NameValuePair;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.client.utils.URLEncodedUtils;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.util.EntityUtils;

import org.w3c.dom.Document;

import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

import android.app.Activity;

import android.content.Context;

import android.util.Log;
import android.widget.Toast;

CHAPTER 8: Concepts in Action: Part 2

159

public class Comms {
 private final String url = "http://192.168.3.117:8080/ChallengeResponse/login";
 private Context ctx;
 private DefaultHttpClient client;

 public Comms(Activity act) {
 ctx = act.getApplicationContext();
 client = new DefaultHttpClient();
 }

 public String sendResponse(String hash) {
 List < NameValuePair > params = new ArrayList < NameValuePair > ();
 params.add(new BasicNameValuePair("challenge", hash));
 String paramString = URLEncodedUtils.format(params, "utf-8");
 String cUrl = url + "?" + paramString;
 return doGetAsString(cUrl);
 }

 public boolean authorized(String response) {
 InputStream is = new ByteArrayInputStream(response.getBytes());
 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = null;
 Document doc = null;
 String reply = "";
 try {
 db = dbFactory.newDocumentBuilder();
 doc = db.parse(is);
 NodeList nl = doc.getElementsByTagName("Response");
 reply = nl.item(0).getTextContent();
 is.close();
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (SAXException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return reply.matches("Authorized");
 }

 public String getChallenge() {
 InputStream challengeText = doGetAsInputStream(url);
 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = null;
 Document doc = null;
 String challenge = "";
 try {
 db = dbFactory.newDocumentBuilder();
 doc = db.parse(challengeText);
 NodeList nl = doc.getElementsByTagName("Challenge");
 challenge = nl.item(0).getTextContent();

http://192.168.3.117:8080/ChallengeResponse/login

CHAPTER 8: Concepts in Action: Part 2160

 challengeText.close();
 } catch (SAXException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return challenge;
 }

 public String doGetAsString(String url) {
 HttpGet request = new HttpGet(url);
 String result = "";
 try {
 HttpResponse response = client.execute(request);
 int code = response.getStatusLine().getStatusCode();
 if (code == 200) {
 result = EntityUtils.toString(response.getEntity());
 } else {
 Toast toast = Toast.makeText(ctx, "Status Code " + code,
 Toast.LENGTH_SHORT);
 toast.show();
 }
 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;
 }

 public InputStream doGetAsInputStream(String url) {
 HttpGet request = new HttpGet(url);
 InputStream result = null;
 try {
 HttpResponse response = client.execute(request);
 int code = response.getStatusLine().getStatusCode();
 if (code == 200) {
 result = response.getEntity().getContent();
 } else {
 Toast toast = Toast.makeText(ctx, "Status Code " + code,
 Toast.LENGTH_SHORT);
 toast.show();
 }
 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {

CHAPTER 8: Concepts in Action: Part 2

161

 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;
 }

}

Listing 8-11. The CRAM Class

package net.zenconsult.android;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.Mac;

import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import android.app.Activity;

import android.util.Base64;
import android.widget.TextView;

public class CRAM {
 private Activity activity;

 public CRAM(Activity act) {
 activity = act;
 }

 public String generate(String serverChallenge) {
 String algo = "HmacSHA1";
 TextView pass = (TextView) activity.findViewById(R.id.editText2);
 byte[] server = Base64.decode(serverChallenge, Base64.DEFAULT);

 Mac mac = null;
 try {
 mac = Mac.getInstance(algo);
 } catch (NoSuchAlgorithmException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 String keyText = pass.getText().toString();
 SecretKey key = new SecretKeySpec(keyText.getBytes(), algo);
 try {
 mac.init(key);
 } catch (InvalidKeyException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 byte[] tmpHash = mac.doFinal(server);
 TextView user = (TextView) activity.findViewById(R.id.editText1);
 String username = user.getText().toString();
 String concat = username + " " + Hex.toHex(tmpHash);
 String hash = Base64.encodeToString(concat.getBytes(), Base64.URL_SAFE);
 return hash;
 }

}

CHAPTER 8: Concepts in Action: Part 2162

Summary
I hope these examples give you a better understanding of how to implement alternate
authentication mechanisms in your mobile and back-end web applications. By depending less
and less on user credential storage, you are improving the security of your app significantly.

Implementing OAuth in your front- and back-end code is not going to be the easiest thing to
accomplish. However, it can be rewarding to spend some initial effort and prepare a reusable set
of libraries for your future code. The same goes for CRAM. These authentication methods aren’t
the first thing that many developers will want to consider because of the effort involved. It can,
however, ensure your app is more secure than the ones that store and forward user credentials
over the wire.

Hopefully, you will consider what you have learned so far useful. My hopes are that you’ll be
convinced that you haven’t been wasting your time on the abbreviation of this new protocol,
known as the Challenge Response Authentication Protocol.

Figure 8-5. A successful challenge-response authentication

On the client side, if all goes according to plan, your app will greet you with a wonderful “Login
success” pop-up message, as shown in Figure 8-5.

163

Chapter 9
Publishing and Selling

Your Apps

You may decide that you want to make some cash by selling the applications that you’ve spent
countless hours developing. With the way the mobile space has evolved lately, it is now easier
than ever for an individual developer to market, sell, and earn income from his applications.
Apple has the iTunes App Store, BlackBerry has AppWorld, and Android has the Market. The
process of selling your apps is simple: sign up as an application seller and publish your app on
the online store. Once approved, your app will be instantly available for download by Android
users. In this chapter, we will examine this process in a bit more detail, and I’ll cover the basics
of how you can get your app listed on the Android Market. Along the way, I’ll touch on what
steps are involved from the time when you’ve decided your app works well, up until the point
you decide to publish it online. I am also going to cover another important point when it comes
to selling your apps online: revenue protection. If your app becomes popular on any of the online
stores, then it is more than likely that you’re going to attract individuals who want to “crack” and
pirate your app. Unless you’ve planned to give out your app for no charge, this could hurt your
income. I will spend some time on this topic and explore how you can write good license key
and registration routines that will deter piracy. During this section, I will also shed some light on
some of the things your app may have to go through if it finds itself in a hostile environment.

Developer Registration
Do you recall the Proxim app that we wrote before? Let’s publish that on the Android Market
for free. I’ll take you through the basics of publishing an app. In this case, I won’t enter any
specific financial information that would allow me to receive money (e.g., my bank account
number) because I’m not planning on selling the app. Also, I don’t want to spend too much time
telling you how to register yourself as a developer because Google already has a lot of helpful
information on that and a comprehensive set of articles on how to get started.

CHAPTER 9: Publishing and Selling Your Apps164

One of the first things you need to do before publishing your app is to sign up as a developer.
You can sign up using one of your existing Gmail accounts for this. Navigate to http://market.
android.com/publish and sign in (see Figure 9-1). At the time of publication, the cost to register
a developer is $25. You pay this amount through Google Checkout, and it is a one-time fee
for registration (see Figure 9-2). The fee exists to make sure that you are a serious developer.
According to Google, it helps to reduce the number of “spammy products” that may make their
way onto the market.

Figure 9-1. Registering to publish your application

Figure 9-2. The registration fee payment

http://market.android.com/publish
http://market.android.com/publish

CHAPTER 9: Publishing and Selling Your Apps

165

Your Apps—Exposed
It’s a jungle out there. Who knows where your apps will end up? Well, this is probably an
exaggeration; but as I mentioned in the beginning of this chapter, any number of people who
have access to the Android Market can download your app. It’s great if these downloads
translate into revenue; unfortunately, in some cases, piracy of your app can make you lose
revenue. Piracy is nothing new. It has existed since the desktop computing era began. The
formal term for piracy is copyright infringement of software; it means copying a piece of
software from one device to another without the proper authorization. In most cases, this simply
translates into copying software that you haven’t purchased and paid for. If a friend buys some
software and gives you a copy that you don’t pay for, then you are in possession of software that
you have not purchased. Growing up, I remember how I would eagerly go into this store where
I bought my first 8088 computer (a huge beast of heavy, impregnable metal) and spend my
weekly allowance on the latest games. At the time, I never thought that I was engaged in aiding
piracy. As far as I knew, I paid cash and received a game in return. I never realized that I was
paying about a tenth of what the software cost to buy from the original developer. I was also not
aware that my money never reached the original developer; it stayed in the store.

Developers still lose revenue to software piracy. How popular your software is and how you
distribute it will play a key role in how much your software is pirated. For instance, if you allow
a free trial download of your app that is limited to seven days, but allow full access to all its
features, then it is likely that someone will try to circumvent this seven-day trial. If successful,
then there is no need for that person to pay for and download the full version of your app.
Another insidious form of copyright infringement is code theft. This occurs when someone
downloads your software, reverse-engineers it, and copies the code. The person then repackages
your code as a new product and puts it on sale, usually for a lower price. The only way to prove
this copyright infringement is to download the new and similar app, reverse engineer it and look
for coding structures that are identical to your own. If the code is modified though, it will be a
tough task to prove and even tougher to fight in court because of high costs involved. As an
individual developer, you are probably not going to have many resources to devote to fighting
piracy. Therefore it is best to decide if you want to protect your apps from piracy—and if so, how.

In this section, I will discuss some of the topics that you will want to consider in your decision.
Then, if you are convinced that you need to secure your apps from piracy, I will give you some
examples of how to use Android’s License Verification Library (LVL) to deter future pirates from
illegally copying and distributing your apps. Let’s start with what happens to your app when it is
placed on the Android Market.

Available for Download
When your app is available on the Android Market, end-users can download it. If you charge for
the app, then obviously the end-user will have to purchase it first before downloading it. Once
the app is on a device, you can copy it onto a computer by using the Android Debug Bridge
(adb). adb allows you to interact with your Android device in different ways. You can install
software, open a Linux shell to explore the device file system, and copy files to and from the
device. I’ve given you a full list of adb features in Listing 9-1. You can find adb in your Android
SDK under the platform-tools directory. For me, this location is at /Users/sheran/
android-sdk-mac_x86/platform-tools.

CHAPTER 9: Publishing and Selling Your Apps166

Listing 9-1. Adb Commands and Features

Android Debug Bridge version 1.0.29

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is
 present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is running.
 -s < serial number> - directs command to the USB device or emulator with
 the given serial number. Overrides ANDROID_SERIAL
 environment variable.
 -p < product name or path> - simple product name like 'sooner', or
 a relative/absolute path to a product
 out directory like 'out/target/product/sooner'.
 If -p is not specified, the ANDROID_PRODUCT_OUT
 environment variable is used, which must
 be an absolute path.
 devices - list all connected devices
 connect < host > [:<port>] - connect to a device via TCP/IP
 Port 5555 is used by default if no port number is
 specified.
 disconnect [<host > [:<port>]] - disconnect from a TCP/IP device.
 Port 5555 is used by default if no port number is
 specified.
 Using this command with no additional arguments
 will disconnect from all connected TCP/IP devices.

device commands:
 adb push < local > <remote> - copy file/dir to device
 adb pull < remote > [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host- > device only if changed
 (−l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively
 adb shell < command> - run remote shell command
 adb emu < command> - run emulator console command
 adb logcat [<filter-spec>] - View device log
 adb forward < local > <remote > − forward socket connections
 forward specs are one of:
 tcp:<port>
 localabstract:<unix domain socket name>
 localreserved:<unix domain socket name>
 localfilesystem:<unix domain socket name>
 dev:<character device name>
 jdwp:<process pid > (remote only)
 adb jdwp - list PIDs of processes hosting a JDWP transport
 adb install [−l] [−r] [−s] < file > − push this package file to the device and install
 it
 ('-l' means forward-lock the app)
 ('-r' means reinstall the app, keeping its data)
 ('-s' means install on SD card instead of internal

CHAPTER 9: Publishing and Selling Your Apps

167

 storage)
 adb uninstall [−k] < package > − remove this app package from the device
 ('-k' means keep the data and cache directories)
 adb bugreport - return all information from the device
 that should be included in a bug report.

 adb backup [−f < file>] [−apk|-noapk] [−shared|-noshared] [−all] [−system|-nosystem]
 [<packages...>]
 - write an archive of the device's data to < file > .
 If no -f option is supplied then the data is written
 to "backup.ab" in the current directory.
 (−apk|-noapk enable/disable backup of the .apks
 themselves
 in the archive; the default is noapk.)
 (−shared|-noshared enable/disable backup of the
 device's
 shared storage / SD card contents; the default is
 noshared.)
 (−all means to back up all installed applications)
 (−system|-nosystem toggles whether -all automatically
 includes
 system applications; the default is to include
 system apps)
 (<packages... > is the list of applications to be
 backed up. If
 the -all or -shared flags are passed, then the
 package
 list is optional. Applications explicitly given
 on the
 command line will be included even if –nosystem
 would
 ordinarily cause them to be omitted.)

 adb restore < file> - restore device contents from the < file > backup archive

 adb help - show this help message
 adb version - show version num

scripting:
 adb wait-for-device - block until device is online
 adb start-server - ensure that there is a server running
 adb kill-server - kill the server if it is running
 adb get-state - prints: offline | bootloader | device
 adb get-serialno - prints: <serial-number>
 adb status-window - continuously print device status for a specified device
 adb remount - remounts the /system partition on the device read-write
 adb reboot [bootloader|recovery] - reboots the device, optionally into the
 bootloader or recovery program
 adb reboot-bootloader - reboots the device into the bootloader
 adb root - restarts the adbd daemon with root permissions
 adb usb - restarts the adbd daemon listening on USB
 adb tcpip < port> - restarts the adbd daemon listening on TCP on the
 specified port
networking:
 adb ppp < tty > [parameters] - Run PPP over USB.

CHAPTER 9: Publishing and Selling Your Apps168

 Note: you should not automatically start a PPP connection.
 <tty > refers to the tty for PPP stream. Eg. dev:/dev/omap_csmi_tty1
 [parameters] - Eg. defaultroute debug dump local notty usepeerdns

adb sync notes: adb sync [<directory>]
 <localdir > can be interpreted in several ways:

 - If < directory > is not specified, both /system and /data partitions will be updated.

 - If it is "system" or "data", only the corresponding partition
 is updated.

environmental variables:
 ADB_TRACE - Print debug information. A comma separated list of
 the following values
 1 or all, adb, sockets, packets, rwx, usb, sync,
 sysdeps, transport, jdwp
 ANDROID_SERIAL - The serial number to connect to. -s takes priority
 over this if given.
 ANDROID_LOG_TAGS - When used with the logcat option, only these debug
 tags are printed.

For someone wishing to copy files to or from the Android device to his computer, the pull and
push commands are useful. Generally, third-party apps are stored in the /data/app directory
of the device. First, let’s check out the what’s in the application directory:

1. Open a shell to your device by typing adb shell.

2. Change directories to /data/app by doing cd /data/app.

3. List the contents by using ls.

You will see something similar to this as your output:

$./adb shell
cd /data/app
ls
net.zenconsult.android.chucknorris-1.apk
test_limits_host
ApiDemos.apk
test_list_host
test_set_host
CubeLiveWallpapers.apk
test_iostream_host
test_iomanip_host
SoftKeyboard.apk
test_iterator_host
test_vector_host
test_algorithm_host
test_uninitialized_host
GestureBuilder.apk
test_sstream_host
test_char_traits_host
test_memory_host

CHAPTER 9: Publishing and Selling Your Apps

169

test_ios_base_host
test_type_traits_host
test_ios_pos_types_host
test_streambuf_host
test_functional_host

test_string_host

Let’s look at the net.zenconsult.android.chucknorris-1.apk package. We can copy it to have a
look at it.

To copy a package from the device, you use the command adb pull. Let’s do that. Exit your
current adb shell session by typing exit and pressing Return. Next, type in the following:

adb pull /data/app/ net.zenconsult.android.chucknorris-1.apk.

This will copy the package to your current directory. If you want to copy the file elsewhere on
your computer, replace the period with a directory of your choice. You now have a copy of the
package file, just as it would have left the developer’s computer. We can explore this file further.

Reverse Engineering
The curious sort will not stop with just copying the package file from the device. They will want
to take a closer look at the application and code. This is where reverse engineering comes into
play. Reverse engineering is the process of taking a compiled binary program and generating
equivalent assembly or source code for easier readability. In most cases, obtaining source code
is the ideal situation because it is far easier to read source code than it is to read assembly code.
The process of reverse engineering a program into assembly code is known as dis-assembly,
and generating source code from a program is called de-compiling. You have to understand that
each CPU will have its own assembler and its own assembly language. That is why assembly
code on an Intel x86 CPU is different from that on an ARM–based CPU. We don’t have to go to
such a low level though. Generally, working to the level of the Dalvik VM (DVM) is sufficient.

The DVM also contains an assembler. For the purpose of this explanation, assume that the
DVM is the CPU. Therefore, your Java code has to be built to work on the DVM by using this
assembler. This is what happens when you build your application using the Android SDK. The
resulting executable files that will run on the DVM are called Dalvik Executable (DEX) files. You
write your code in Java and compile it into a Java class file using the standard Java compiler
(javac). Then, to convert this class file into the DEX format, you can use the command called dx.
You can find this tool in your platform-tools directory, as well. Once the DEX file is generated, it
is packaged into an APK file. You may already be aware that an APK file is nothing more than a
ZIP file. If I wanted to examine the files in my APK file, I would extract the file as follows:

$ unzip net.zenconsult.android.chucknorris-1.apk
Archive: net.zenconsult.android.chucknorris-1.apk
 inflating: res/layout/main.xml
 inflating: AndroidManifest.xml
 extracting: resources.arsc
 extracting: res/drawable-hdpi/ic_launcher.png
 extracting: res/drawable-ldpi/ic_launcher.png
 extracting: res/drawable-mdpi/ic_launcher.png
 inflating: classes.dex
 inflating: META-INF/MANIFEST.MF

h

CHAPTER 9: Publishing and Selling Your Apps170

 inflating: META-INF/CERT.SF
 inflating: META-INF/CERT.RSA

$

Notice the DEX file.

Fortunately, Eclipse will handle the entire build process and will make sure to insert, align, and
package all relevant files within our project. I’ve shown the entire build process in Figure 9-3.

Application

Resources

aapt R.java
Application

Source Code

Java

Compiler

.class Files

Other Resources

Debug or Release

Keystore

dex

.dex files

apkbuilder
Compiled

Resources

Android Package

(.apk)

Jarsigner

Signed .apk

zipalign (release

mode)

Signed and

Aligned .apk

Java

Interfaces

.aidl Files

aidl

3rd Party Libraries

and .class Files

Figure 9-3. The Android Build Process

CHAPTER 9: Publishing and Selling Your Apps

171

Now that you have a brief idea of how the applications are built, let’s see how we can take
them apart. As we saw when we extracted the contents of our APK file, we have direct access
to the classes.dex file. Since we’re considering DVM to be our CPU, this is our binary. Just
like a Win32 PE-file or a Linux ELF file, this DEX file is our binary because it runs on our CPU
(DVM). Google has also provided us with the tool called dexdump (also found in your platform-
tools directory). If I were to run dexdump on my extracted classes.dex file, I would get a lot of
information on how the file was built, including members, calls, and so on. Listing 9-2 shows
what a typical dexdump disassembly looks like.

Listing 9-2. Dexdump Output

$ dexdump –d classes.dex
...
...
Virtual methods -
 #0 : (in Lnet/zenconsult/android/chucknorris/e;)
 name : 'a'
 type : '()Ljava/lang/String;'
 access : 0x0011 (PUBLIC FINAL)
 code -
 registers : 16
 ins : 1
 outs : 2
 insns size : 180 16-bit code units
0009d4: |[0009d4] net.zenconsult.android
.chucknorris.e.a:()Ljava/lang/String;
0009e4: 1202 |0000: const/4 v2, #int 0 // #0
0009e6: 1a00 5100 |0001: const-string v0,
 "http://www.chucknorrisfacts.com/" // string@0051
0009ea: 7020 2900 0f00 |0003: invoke-direct {v15, v0},
 Lnet/zenconsult/android/chucknorris/e;.a:(Ljava/lang/String;)Ljava/io/InputStream;
 // method@0029
0009f0: 0c05 |0006: move-result-object v5
0009f2: 7100 1600 0000 |0007: invoke-static {},
 Ljavax/xml/parsers/DocumentBuilderFactory;.newInstance:()Ljavax/xml/
parsers/DocumentBuilderFactory; // method@0016
0009f8: 0c00 |000a: move-result-object v0
0009fa: 1a01 0000 |000b: const-string v1, "" // string@0000
0009fe: 2206 1100 |000d: new-instance v6,
 Ljava/util/Vector; // type@0011
000a02: 7010 1000 0600 |000f: invoke-direct {v6},
 Ljava/util/Vector;. < init>:()V // method@0010
000a08: 6e10 1500 0000 |0012: invoke-virtual {v0},
 Ljavax/xml/parsers/DocumentBuilderFactory;.newDocumentBuilder:()Ljavax/xml
/parsers/DocumentBuilder; // method@0015
000a0e: 0c00 |0015: move-result-object v0
000a10: 6e20 1400 5000 |0016: invoke-virtual {v0, v5},
...

...

I guess you get the idea. Disassembled DEX files are hard to read, just like disassembled code
on Linux or Windows. It is not impossible; but for the uninitiated, it can seem overwhelming.

http://www.chucknorrisfacts.com/

CHAPTER 9: Publishing and Selling Your Apps172

Thanks to some very clever people who also believed disassembled DEX files are hard to read,
we now have disassemblers that can generate more readable output. A talented individual
known as JesusFreke built a completely new assembler and disassembler for the DEX file
format. He called these smali and baksmali, respectively; and he has released them as open
source software at http://code.google.com/p/smali/. The beauty of his approach is that you can
disassemble a file, modify the disassembly code, and reassemble it into a DEX file. You may
wonder what’s special about smali and baksmali, so I’ll show you some output of the same file
disassembled by baksmali:

$ java -jar ~/Downloads/baksmali-1.2.8.jar classes.dex
$ cd out/net/zenconsult/android/chucknorris/
$ ls
ChuckNorrisFactsActivity.smali b.smali d.smali
a.smali c.smali e.smali

$

This disassembles the files into individual ones, and it is far easier to examine. Let’s look at the
file b.smali. Listing 9-3 shows the disassembled code.

Listing 9-3. Code Disassembled by baksmali

.class public final Lnet/zenconsult/android/chucknorris/b;

.super Ljava/lang/Thread;

instance fields
.field private a:Lnet/zenconsult/android/chucknorris/a;

direct methods
.method public constructor < init > (Lnet/zenconsult/android/chucknorris/a;)V
 .registers 2

 invoke-direct {p0}, Ljava/lang/Thread;- > <init > ()V

 iput-object p1, p0, Lnet/zenconsult/android/chucknorris/b;- > a:Lnet/zenconsult
/android/chucknorris/a;

 return-void
.end method

virtual methods
.method public final run()V
 .registers 3

 new-instance v0, Lnet/zenconsult/android/chucknorris/e;

 invoke-direct {v0}, Lnet/zenconsult/android/chucknorris/e;- > <init > ()V

 iget-object v1, p0, Lnet/zenconsult/android/chucknorris/b;- > a:Lnet/zenconsult
/android/chucknorris/a;

 invoke-virtual {v0}, Lnet/zenconsult/android/chucknorris/e;- > a()Ljava/lang/String;

 move-result-object v0

 invoke-interface {v1, v0}, Lnet/zenconsult/android/chucknorris/a;- > a
(Ljava/lang/String;)V

 return-void

.end method

http://code.google.com/p/smali/

CHAPTER 9: Publishing and Selling Your Apps 173

This isn’t all that much better, but it is significantly easier to understand and follow. Another tool
that allows you to disassemble DEX files is called dedexer, and it was written by Gabor Paller.
You can find it at http://dedexer.sourceforge.net/.

A significantly easier tool to use is dex2jar, which you can find at http://code.google.com/p/
dex2jar/. This tool helps you deconstruct android .dex files directly into a Java JAR file. After you
have the JAR file generated, you can use any standard Java decompiler to retrieve the Java source
code. I use JD-, or Java Decompiler, which you can find at http://java.decompiler.free.fr/.

To run dex2jar, simply download and unpack the archive file from the URL given, and then run
the .bat or .sh file, as shown in Figure 9-4. This will generate a .jar file with a similar sounding
name, except it ends in _dex2jar.jar. If you open this file in JD-GUI, you can look at the
reconstructed Java source code. In most cases, the decompiled code can be recompiled in your
development environment like Eclipse.

Figure 9-4. Running dex2jar on a classes.dex file

Figure 9-5 shows you what the decompiled source code looks like in JD-GUI. JD-GUI has an
easy and intuitive interface for browsing the JAR file source code and can even export the
source into Java files.

http://dedexer.sourceforge.net/
http://code.google.com/p/dex2jar/
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/

CHAPTER 9: Publishing and Selling Your Apps174

With evolving tools like this, it is much easier for determined users to download, modify, and
repackage your apps. If you plan to write your own protection mechanisms to prevent piracy,
then you’re off to a good start. But is it something you should consider? I’ll talk briefly about that
in the next section.

Should You License?
This question is a common one that I see developers asking. Do you really want to spend as
much time as you took developing your app just to write a licensing routine? The answer is very
subjective, and it really depends on what your app does. If your app has features that are unique
or several times more efficient than other apps; or if it demonstrates a sense of uniqueness that
can ensure it sells very well, then it might be worth considering to develop a licensing routine.
Note, however, that when I say licensing, that does not mean the same thing as charging. You
can still charge users for your app; it’s just that, if your app doesn’t have a way of monitoring
licenses, then end users will have free rein in copying and distributing the app.

Another reason you might consider developing a licensing routine would be if you plan on
developing more apps in the future, and you would want to license them, as well. In that case,
you could simply use the one licensing library you’ve already created. One caveat to this,
however, is that you need to vary the algorithms or license check routines for each app slightly.
So, if one of your apps is pirated, then the same technique will not work on the other apps.

Figure 9-5. Decompiling the JAR file using JD-GUI

CHAPTER 9: Publishing and Selling Your Apps

175

Android License Verification Library
Google has provided the Android LVL to help developers protect their apps from indiscriminate
distribution. You add LVL to your application build path and use APIs from it to check and verify
user licenses. LVL interfaces with the Android Market App (see Figure 9-6) that will then check
with the Google market server. Based on the response you receive, you can choose whether to
permit or deny further application use. The best way to learn about LVL is to use it in an example
app, so let’s do that. Before you proceed, however, you will need to sign up as an app publisher.
You don’t need to do that right now, though. Let’s begin by writing a very basic app with which
to test our licensing routines. Listings 9-4 through 9-7 demonstrate the code for this basic app.

User and App Data

Market AppmyApp.apk

LVL

Main Activity

Binder

Publisher

App Listing

User Purchase Status

License Status (Signed)

Market License Server

Figure 9-6. The LVL library interfaces with the Market App and then the Market Server

The app itself is quite simple. It involves Chuck Norris (as you would have guessed from the
previous section of extracting and reverse engineering.) We all know and fear Chuck Norris. His
roundhouse kicks are legendary, and people report that they are often the cause of many a natural
disaster. To pay my respects to the great man, I will create my app around fetching the latest
Chuck Norris fact from a popular site called Chuck Norris Facts (www.chucknorrisfacts.com/).
The app will fetch all quotes from this site and display a random one in the text area of our app
screen. Simply click the button to fetch another fact. I am relying on the randomness of the quotes
from the site to make sure a new quote appears each time. As always, this app is merely an
illustration of how and where you will need to add LVL checks. There is little to no error checking,
and the functionality of the app is minimal. Having said this, I don’t know why I need to defend
myself; it’s a Chuck Norris app. That alone should be sufficient. You may notice several areas in
the app that you can improve. Feel free to do so.

http://www.chucknorrisfacts.com/

CHAPTER 9: Publishing and Selling Your Apps176

Listing 9-4. The Main Activity—ChuckNorrisFactsActivity.java

package net.zenconsult.android.chucknorris;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class ChuckNorrisFactsActivity extends Activity implements CommsEvent {
 private Activity activity;
 private TextView view;
 private CommsEvent event;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 activity = this;
 event = this;
 view = (TextView) findViewById(R.id.editText1);

 // Click Button
 final Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 view.setText("Fetching fact...");
 CommsNotifier c = new CommsNotifier(event);
 c.start();
 }
 });
 }

 @Override
 public void onTextReceived(final String text) {
 runOnUiThread(new Runnable() {
 public void run() {
 view.setText(text);
 }
 });

 }
}

Listing 9-5. The CommsEvent.java file

package net.zenconsult.android.chucknorris;

public interface CommsEvent {
 public void onTextReceived(String text);

}

CHAPTER 9: Publishing and Selling Your Apps

177

Listing 9-6. The CommsNotifier.java ile

package net.zenconsult.android.chucknorris;

public class CommsNotifier extends Thread {
 private CommsEvent event;

 public CommsNotifier(CommsEvent evt) {
 event = evt;
 }

 public void run() {
 Comms c = new Comms();
 event.onTextReceived(c.get());
 }

}

Listing 9-7. The Comms.java File

package net.zenconsult.android.chucknorris;

import java.io.IOException;
import java.io.InputStream;
import java.util.Random;
import java.util.Vector;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.apache.http.HttpResponse;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.util.EntityUtils;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

import android.app.Activity;
import android.content.Context;
import android.util.Log;
import android.widget.Toast;

public class Comms {
 private final String url = "http://www.chucknorrisfacts.com/";

 private DefaultHttpClient client;

 public Comms() {

 client = new DefaultHttpClient();
 }

http://www.chucknorrisfacts.com/

CHAPTER 9: Publishing and Selling Your Apps178

 public String get() {
 InputStream pageStream = doGetAsInputStream(url);
 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = null;
 Document doc = null;
 String pageText = "";
 Vector < String > quotes = new Vector < String > ();
 try {
 db = dbFactory.newDocumentBuilder();
 doc = db.parse(pageStream);
 NodeList nl = doc.getElementsByTagName("div");
 for (int x = 0; x < nl.getLength(); ++x) {
 Node node = nl.item(x);
 NamedNodeMap attributes = node.getAttributes();
 for (int y = 0; y < attributes.getLength(); ++y) {
 if (attributes.getNamedItem("class") ! = null) {
 Node attribute =
 attributes.getNamedItem("class");
 if (attribute.getNodeValue()
 .equals("views-
field-title")) {
 NodeList children =
 node.getChildNodes();
 for (int z = 0; z <
 children.getLength(); ++z) {
 Node child =
 children.item(z);
 if (child.getNodeName()

.equalsIgnoreCase("span"))
 quotes.add
(child.getTextContent());
 }
 }
 }
 }
 }
 Random r = new Random();
 pageText = quotes.get(r.nextInt(quotes.size() - 1));
 pageStream.close();
 } catch (SAXException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return pageText;
 }

CHAPTER 9: Publishing and Selling Your Apps

179

 public String doGetAsString(String url) {
 HttpGet request = new HttpGet(url);
 String result = "";
 try {
 HttpResponse response = client.execute(request);
 int code = response.getStatusLine().getStatusCode();
 if (code == 200) {
 result = EntityUtils.toString(response.getEntity());
 } else {
 Log.e("CN", "Non 200 Status Code " + code);
 }
 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;
 }

 public InputStream doGetAsInputStream(String url) {
 HttpGet request = new HttpGet(url);
 InputStream result = null;
 try {
 HttpResponse response = client.execute(request);
 int code = response.getStatusLine().getStatusCode();
 if (code == 200) {
 result = response.getEntity().getContent();
 } else {
 Log.e("CN", "Non 200 Status Code " + code);
 }
 } catch (ClientProtocolException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;

 }

}

Starting from the main activity, you can see that there is a button and a text view that we will
use for our user interaction. When the user clicks our button, we start our CommNotifier thread.
This thread will execute the HTTP get request in our Comms file and return a random quote
picked from the list of Chuck Norris facts that it gathers from the website. The CommNotifier then
triggers the onTextReceived(String text) function. Our main activity implements the CommEvent
interface. Therefore, whenever this method is fired, we need to access the text argument to
receive our quote. When we execute the app and click the button, we see something similar to
the output shown in Figure 9-7. Chuck Norris is indeed scary.

CHAPTER 9: Publishing and Selling Your Apps180

Now that we’ve got our application, let’s see what we can do to protect it using LVL.

I’m going to run this demo on an Android simulator. This involves an additional step because
the Android simulators do not come pre-packaged with the Android Market app. I will need
to download the Google API Add-On platform, which provides a rudimentary background
implementation of the Android Market. It implements the Licensing Service that we need to test out
LVL. I’m getting ahead of myself, though. Let’s start by preparing our development environment.
I’m going to make the assumption that you use Eclipse for your development and that you already
downloaded and installed the Android SDK with at least API level 8. And off we go!

Download the Google API Add-On
I’m going to describe the steps required to get the Google API Add-On if you use Eclipse. First,
open the Android SDK Manager. Select Window ➤ Android SDK Manager. Next, navigate to the
API level you plan on using and tick the Google API’s by Google Inc. (see Figure 9-8). Before
you click the Install button, navigate once more to the Extras folder and tick the Google Market
Licensing Package (see Figure 9-9). Now click the Install button. For this app, I use the Android
API level 10 for version 2.3.3, so that is what I selected.

Figure 9-7. The Chuck Norris Facts app in action

CHAPTER 9: Publishing and Selling Your Apps

181

That’s it. Eclipse will download and install your APIs to your SDK directory. To locate the LVL
sources, navigate from your Android SDK directory to /extras/google/market_licensing/
library. Here, you will see a directory structure similar to that shown in Figure 9-10. Let’s move
onto the next set of steps, which are importing, modifying, and building LVL.

Figure 9-8. Installing the Google APIs for Android Version 2.3.3

Figure 9-9. Installing the Market Licensing Package

CHAPTER 9: Publishing and Selling Your Apps182

Copy LVL Sources to a Separate Directory
Now that we have the LVL source with us, let’s move it to another working directory. The main
reason for doing this is because, if we continue to work from the original source directory,
whenever we do an update, all our changes are likely going to be overwritten. Therefore, we need
to keep our LVL source in a separate directory that will not be overwritten. This is simple enough.
Copy the library directory and all subdirectories and files into your development directory.

Import LVL Source As a Library Project
We will now build the LVL library. To do this, we have to create a new Eclipse Android project
and mark the project as a Library Project. A Library project has no activity and does not interact
directly with the end user. Instead, it exists so that other apps can use its functions from within
their code. To create a new Eclipse project, select File ➤ New ➤ Other, open the Android folder,
and choose Android Project (see Figure 9-11). Name your project (see Figure 9-12) and select
the correct API version that you plan to develop the project (see Figure 9-13). You will need to
name your package the same as the LVL source code, which is com.android.vending.licensing
(see Figure 9-14).

Figure 9-10. The LVL sources

CHAPTER 9: Publishing and Selling Your Apps 183

Figure 9-11. The Android project

Figure 9-12. Name your project

CHAPTER 9: Publishing and Selling Your Apps184

Figure 9-13. Select the API version

CHAPTER 9: Publishing and Selling Your Apps

185

Once this is done, let’s import the LVL source into our project. But before this, let’s set the
project as a Library project. Right click the project name in your Project Explorer window and
select Properties. Select the Android option in the left-hand pane and in the bottom half of the
right pane, you will see a tick box marked Is Library. Tick this option and click the OK button (see
Figure 9-15).

Figure 9-14. Specify the package name. It should be the same as the LVL source package

CHAPTER 9: Publishing and Selling Your Apps186

Now we can import our source. Right-click the project name in the Project Explorer window and
select Import. In the resulting window, choose File System (see Figure 9-16) and click the Next
button. In the next window, click the Browse button and navigate to the library folder that is part
of the Android LVL source. On the left-middle window pane, you should then see the directory
appear. Tick the library directory and click the Finish button to import the LVL source into your
project (see Figure 9-17). If you’re asked to overwrite the AndroidManifest.xml file, choose Yes.
Your LVL source is now part of your project.

Figure 9-15. Mark the project as a Library

CHAPTER 9: Publishing and Selling Your Apps

187

Figure 9-16. Importing a file system

CHAPTER 9: Publishing and Selling Your Apps188

Building and Including LVL in our app
Let’s first integrate the basic version of LVL that Google provides into our app. After this, I will
explain some possible areas where you can modify the LVL source to make it your own. I highly
recommend this approach because, as I mentioned before, the LVL modified source code
you write will not be well known, and thus it will take an attacker longer to break your
licensing module.

To include the LVL in your app, navigate to your app name in the Project Explorer view in Eclipse,
right click, and select Properties. Select the Android option from the left window pane and, in the
bottom-right window page, click the Add button. You’re then prompted to select a library project
(see Figure 9-18). Choose the Android LVL library project that we just created. After this is done,
you will see the library project included in your app’s project (see Figure 9-19).

Figure 9-17. Locate and import the source

CHAPTER 9: Publishing and Selling Your Apps

189

Figure 9-18. Select the Android LVL library project

Figure 9-19. The LVL library project is included in the app project

CHAPTER 9: Publishing and Selling Your Apps190

Now let’s change our ChuckNorrisFactsActivity.java file to that shown in Listing 9-8. You
can see that we have added a new private class called LicCallBack. This implements the LVL’s
LicenseCheckerCallBack class. This class is called when the license check is complete and
when there is either a positive or a negative response from the license server. The allow() or
dontAllow() methods are called, respectively.

Listing 9-8. The Modified ChuckNorrisFactsActivity.java File

package net.zenconsult.android.chucknorris;

import java.util.UUID;

import com.android.vending.licensing.AESObfuscator;
import com.android.vending.licensing.LicenseChecker;
import com.android.vending.licensing.LicenseCheckerCallback;
import com.android.vending.licensing.ServerManagedPolicy;

import android.app.Activity;
import android.content.Context;
import android.os.Build;
import android.os.Bundle;
import android.provider.Settings.Secure;
import android.view.View;
import android.view.Window;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class ChuckNorrisFactsActivity extends Activity implements CommsEvent {
 private Button button;
 private TextView view;
 private Activity activity;
 private CommsEvent event;
 private LicCallBack lcb;
 private static final String PUB_KEY = "MIIBI...";// Add your Base64 Public
 // key here
 private static final byte[] SALT = new byte[] { −118, -112, 38, 124, 15,
 -121, 59, 93, 35, -55, 14, -15, -52, 67, -53, 54, 111, -28,
 -87, 12 };

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
 setContentView(R.layout.main);
 event = this;
 activity = this;
 view = (TextView) findViewById(R.id.editText1);

 // Click Button
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // Do License Check before allowing click

CHAPTER 9: Publishing and Selling Your Apps

191

 // Generate a Unique ID
 String deviceId = Secure.getString(getContentResolver(),
 Secure.ANDROID_ID);
 String serialId = Build.SERIAL;
 UUID uuid = new UUID(deviceId.hashCode(),
 serialId.hashCode());
 String identity = uuid.toString();
 Context ctx = activity.getApplicationContext();

 // Create an Obfuscator and a Policy
 AESObfuscator obf = new AESObfuscator(SALT,
 getPackageName(),
 identity);
 ServerManagedPolicy policy = new
 ServerManagedPolicy(ctx, obf);

 // Create the LicenseChecker
 LicenseChecker lCheck = new LicenseChecker(ctx,
 policy, PUB_KEY);
 // Do the license check
 lcb = new LicCallBack();
 lCheck.checkAccess(lcb);
 }
 });
 }

 @Override
 public void onTextReceived(final String text) {
 runOnUiThread(new Runnable() {
 public void run() {
 setProgressBarIndeterminateVisibility(false);
 view.setText(text);
 button.setEnabled(true);
 }
 });

 }

 public class LicCallBack implements LicenseCheckerCallback {

 @Override
 public void allow() {
 if (isFinishing()) {
 return;
 }
 Toast toast = Toast.makeText(getApplicationContext(),
 "Licensed!",
 Toast.LENGTH_LONG);
 toast.show();
 button.setEnabled(false);
 setProgressBarIndeterminateVisibility(true);
 view.setText("Fetching fact...");
 CommsNotifier c = new CommsNotifier(event);
 c.start();
 }

CHAPTER 9: Publishing and Selling Your Apps192

 @Override
 public void dontAllow() {
 if (isFinishing()) {
 return;
 }
 Toast toast = Toast.makeText(getApplicationContext(),
 "Unlicensed!", Toast.LENGTH_LONG);
 toast.show();
 }

 @Override
 public void applicationError(ApplicationErrorCode errorCode) {
 // TODO Auto-generated method stub

 }

 }

}

The next thing you will notice is that we don’t do any activity on our button click. Instead,
we do a license check. This means that we move our quote fetching activity into the allow()
section of the LicenseCallBack class. To use the license check from LVL, you have to call the
checkAccess() method of the LicenseChecker class. You have to build the LicenseChecker with
the following arguments:

1. Application Context

2. A Licensing Policy

3. Your Public Key

For the application context, you can use the current application context. If your LicenseChecker
is instantiated in another class, then you will need to pass the Application Context object along
to this class. Your Base 64 encoded public key will be in your Publisher profile page online. To
access it, log into https://market.android.com/publish/Home, click Edit Profile, and then scroll
down to the section called Licensing & In-App Billing. The text area named Public Key holds
your key (see Figure 9-20). Copy and paste this into your app. The licensing policy requires a bit
more explanation, so I will describe it in the next section.

https://market.android.com/publish/Home

CHAPTER 9: Publishing and Selling Your Apps 193

Look at this line code, as well:

AESObfuscator obf = new AESObfuscator(SALT, getPackageName(),identity);

When your app receives a response from the Android license server, it will need to store
information about this response locally, on the device. Leaving the response data in plain text
form will only mean that an attacker can read and tamper with this information. To prevent this
from happening, LVL allows us to obfuscate the information before storing it on the device. The
AESObfuscator class does just this. It requires a salt value (which is just a random 20 bytes) and
a unique device identity. The unique identity ensures that the data can only be read from the
device with this matching identity. In your own code, you will want to build this identity string
from as many sources of information as possible. In this case, I am using the ANDROID_ID and
OS Build serial number.

Note also that your app will have to request a new permission. For it to be able to verify
licenses through the Android Market, make sure you add the following permission to your
AndroidManifest.xml file:

<uses-permission android:name = "com.android.vending.CHECK_LICENSE">

Your publisher dashboard has a pull-down menu marked Test Response (see Figure 9-20). You
can test your app by setting this value to either LICENSED or NOT_LICENSED. The Google API and
LVL will contact the Android Market server and present this response to your app. Setting the
Test Response value to NOT_LICENSED lets you see how your app behaves if an unlicensed user
attempts to use it (see Figure 9-21). Accordingly, you can make changes and either present
a message (I present a one word response to indicate whether the app is licensed or not) or
redirect the user to the Android Market, so that she may purchase your app.

Figure 9-20. The Base64 encoded public key

CHAPTER 9: Publishing and Selling Your Apps194

Licensing Policy
One of the key mechanisms that you can use to customize your licensing process is the
licensing policy. Android LVL ships with two default policies:

StrictPolicy	
ServerManagedPolicy	

Google recommends that you use the ServerManagedPolicy because, among other things,
it also handles caching of the server response. This is often useful because Google enforces
limits on the number of times your application can query its servers. The StrictPolicy will always
make a query to the server; and while this can be more secure by the fact that it prevents local
device data tampering, it may lock your end-user out if the Google server refuses to give you a
response because you reached your limits.

Both Policy objects provide two basic methods that you will be concerned with: allowAccess()
and processServerResponse(). The allowAccess() method must return a Boolean value. When
called, return true if you choose to permit access; otherwise, return false. Look at the sample
implementation in Listing 9-9.

Figure 9-21. An unlicensed user receives a negative response, and the app does not work

CHAPTER 9: Publishing and Selling Your Apps

195

Listing 9-9. The allowAccess() method in the ServerManagedPolicy object (courtesy of Google)

public boolean allowAccess() {
 long ts = System.currentTimeMillis();
 if (mLastResponse == LicenseResponse.LICENSED) {
 // Check if the LICENSED response occurred within the validity timeout.
 if (ts < = mValidityTimestamp) {
 // Cached LICENSED response is still valid.
 return true;
 }
 } else if (mLastResponse == LicenseResponse.RETRY &&
 ts < mLastResponseTime + MILLIS_PER_MINUTE) {
 // Only allow access if we are within the retry period or we haven't
 used up our
 // max retries.
 return (ts < = mRetryUntil || mRetryCount < = mMaxRetries);
 }
 return false;
 }

You can see that the function returns true if it receives LicenseResponse.LICENSED as its
response. The function first checks whether the last response received indicated that the
app was licensed. It then checks whether the date is still within the valid period. If so, then it
returns true. If the date is greater than the validity period, it returns false. The function also
checks whether the server has asked us to keep retrying, and it does so within reasonable
retry limits and time intervals. The response object, mLastResponse,is derived from the
processServerResponse() method shown in Listing 9-10. You can see that this function checks
for three responses:

LicenseResponse.RETRY	
LicenseResponse.LICENSED	
LicenseResponse.NOT_LICENSED	

Accordingly, it then sets parameters that the allowAccess() method can read. You will notice
one other thing. The last line in the processServerResponse() object is a commit() operation.
This is the caching function where the response is obfuscated and then stored in the device’s
Shared Preferences. This part does not exist in the StrictPolicy because no data is cached.

Listing 9-10. The processServerResponse() method in the ServerManagedPolicy object (courtesy of Google)

public void processServerResponse(LicenseResponse response, ResponseData rawData) {

 // Update retry counter
 if (response != LicenseResponse.RETRY) {
 setRetryCount(0);
 } else {
 setRetryCount(mRetryCount + 1);
 }

 if (response == LicenseResponse.LICENSED) {
 // Update server policy data
 Map < String, String > extras = decodeExtras(rawData.extra);

CHAPTER 9: Publishing and Selling Your Apps196

 mLastResponse = response;
 setValidityTimestamp(extras.get("VT"));
 setRetryUntil(extras.get("GT"));
 setMaxRetries(extras.get("GR"));
 } else if (response == LicenseResponse.NOT_LICENSED) {
 // Clear out stale policy data
 setValidityTimestamp(DEFAULT_VALIDITY_TIMESTAMP);
 setRetryUntil(DEFAULT_RETRY_UNTIL);
 setMaxRetries(DEFAULT_MAX_RETRIES);
 }

 setLastResponse(response);
 mPreferences.commit();
 }

Effective Use of LVL
It is worth the effort if you modify the LVL source code (i.e., your policy) so that it becomes
something unique to your app. One mistake you can make is to use a vanilla implementation
of LVL to which everyone knows the source. This makes it easier for someone to patch your
app and bypass your license checking routines. Justin Case has already demonstrated this
vulnerability over at the Android Police site. You can find the article at www.androidpolice.com/
2010/08/23/exclusive-report-googles-android-market-license-verification-easily-
circumvented-will-not-stop-pirates/. Granted, it is an old article, but it still demonstrates the
principle that you can easily understand and modify reverse-engineered code if you know what
the source looks like. In this case, Justin demonstrates how to patch and bypass LVL checking
in a demo and an actual commercial app.

Another good set of guidelines comes to us from Trevor Johns over at the Android Developers
blog. The article is a great read and lists a few techniques for more effective use of LVL. One
particular piece of code was very interesting. Look at Figure 9-22. Trevor tells us that an attacker
can guess the response of the LICENSED and NOT_LICENSED constant values, and then swap them
so that an unlicensed user will receive full use of the app. To prevent this, Trevor shows us some
code that will run a CRC32 check on the responses; and instead of checking for the constants,
check for the result of the CRC32 check on the constant. I want to expand on this subject a little
bit more. Imagine if you will, rather than running a check for a fixed value, you execute another
HTTP fetch to retrieve a response from your own server.

http://www.androidpolice.com/2010/08/23/exclusive-report-googles-android-market-license-verification-easily-circumvented-will-not-stop-pirates/
http://www.androidpolice.com/2010/08/23/exclusive-report-googles-android-market-license-verification-easily-circumvented-will-not-stop-pirates/
http://www.androidpolice.com/2010/08/23/exclusive-report-googles-android-market-license-verification-easily-circumvented-will-not-stop-pirates/

CHAPTER 9: Publishing and Selling Your Apps

197

Consider the code in Listing 9-11. Instead of making a direct comparison to a number, you make
an additional request to your server and retrieve the response code from there. One of the good
points about this is that you can engineer your ServerVerifier object in any way you prefer. You
can even set it up so that the response code changes every single time. You may even consider
making use of Challenge Response in your code to vary the response each time.

Listing 9-11. The Modified Verify Function

public void verify(PublicKey publicKey, int responseCode, String signedData, String
 signature) {
 // ... Response validation code omitted for brevity ...

 // Compute a derivative version of the response code
 // Rather than comparing to a static value, why not retrieve the value from
 a server that you control?

 java.util.zip.CRC32 crc32 = new java.util.zip.CRC32();
 crc32.update(responseCode);
 int transformedResponseCode = crc32.getValue();
 ServerVerifier sv = new ServerVerifier(); // This class will make an
 HTTP request to your server to fetch the code.
 int serverResponse = sv.retrieveLicensedCode(); // There is no limit
 to how you can create this routine.

Figure 9-22. An alternate response verification idea

CHAPTER 9: Publishing and Selling Your Apps198

 // ... put unrelated application code here ...
 // crc32(LICENSED) == 3523407757 But this part is calculated on your server.
 if (transformedResponse == serverResponse) {
 LicenseResponse limiterResponse = mDeviceLimiter.isDeviceAllowed(userId);
 handleResponse(limiterResponse, data);
 }

 ...
 ...
 ...

Alternatively, this can take place in the Policy, as well (as opposed tochecking a hardcoded
server response):

if (response == LicenseResponse.LICENSED)

You can have the response checked by retrieving it from one of your servers that you trust in a
manner similar to this:

ServerVerifier sv = new ServerVerifier();

if (response == sv.getLicensedResponse())

Obfuscation
Obfuscation is another important point that you will want to consider. It applies to software
piracy, as well as to intellectual property theft. Obfuscation is a process by which you change
all class names, variable names, and method names in your source code to random, unrelated
ones. You may have wondered why my decompiled app had files like a.smali, b.smali, c.smali,
and so on in the directory listing. When I used BakSmali to decompile my app, I was running
it on an obfuscated version of the binary. The code obfuscator made sure to change my class
names like Comms, CommsEvent, CommsNotifier, and so on to ones that do not volunteer information
about what they do. Additionally, if you look inside these files, you will see that the method
names and member names are all obfuscated. This can be very frustrating to someone trying
to reverse engineer code, and it can act as an excellent deterrent to intellectual property or
code theft.

Obfuscation cannot guarantee that your code won’t be stolen or pirated. It simply makes the
task of reverse engineering much harder. The Android SDK ships with an obfuscator called
ProGuard. You can use ProGuard for obfuscating any of your Java code. You can download it at
http://proguard.sourceforge.net/; it is free and open source software. The Android developer
documents strongly encourage you to obfuscate your code when you are packaging your
apps for release. If you use Eclipse, then this is a straightforward task. Locate your
project.properties file in your project (see Figure 9-23) and add this line (see Figure 9-24):

http://proguard.sourceforge.net/

CHAPTER 9: Publishing and Selling Your Apps

199

proguard.config = proguard.cfg

Note that this line assumes you haven’t moved the location of the proguard.cfg file from its
default location.

To export either a signed or an unsigned APK file, right-click your project name, select Android
Tools, and then select Export Unsigned Application Package or Export Signed Application
Package (see Figure 9-25).

Figure 9-23. The Project properties file

Figure 9-24. Adding the proguard.config property

Figure 9-25. Exporting the obfuscated package

CHAPTER 9: Publishing and Selling Your Apps200

ProGuard is a free, open source Java code obfuscator. In addition to obfuscation, ProGuard
also attempts to shrink, optimize, and preverify the code that you feed it. Preverification is
important for mobile apps in terms of improving execution times. The preverification phase
ensures that the Java class is annotated in a manner that allows the VM to read and perform
some runtime checks much faster. In most cases, using the default proguard.cfg file should
suffice. Figure 9-26 shows output from a decompiled, obfuscated class file. As you can see, the
code itself is quite unreadable due to the renamed, mostly cryptic looking class and variable
names. Obfuscation is not meant to stop reverse engineering; rather, it acts more as a deterrent
because it could take a long time to rebuild variable and class names that are renamed. Some
commercial Java obfuscators go as far as even obfuscating the strings within the class file. This
makes the code even more difficult to reverse engineer.

Figure 9-26. A decompiled, obfuscated class file

CHAPTER 9: Publishing and Selling Your Apps

201

Summary
This chapter was dedicated to some important issues you will face when monetizing your app.
While sites like Apple App Store, BlackBerry App World, and the Android Market make it easy for
you to pull in revenue, you will no doubt have to face issues like software piracy and intellectual
property theft. You should keep in mind that the topics discussed in this chapter aren’t magic
bullets. They will not protect you completely, but they will offer you an edge so that your code
becomes harder to attack. In a best case scenario, an attacker will leave your app alone
because he will not want to make the effort it would cost to reverse engineer it.

In this chapter, we looked at what your app can be subject to if it finds itself in a hostile
environment. We looked at how your app can be reverse engineered and re-built after
modifications. We showed how you can obfuscate your source code so that it becomes harder
for an attacker to read your code even after reverse engineering. We then looked at how you
can check licenses in your app so that you ensure your end-users aren’t pirating your app. We
did this by using the Android LVL. One thing to remember is to always write your own routines in
the license checking libraries. This ensures that your code is fresh, new and is not well known. It
makes reverse engineering harder.

Bear in mind these few steps before you release your application. You can find full descriptions
of them online at http://developer.android.com/guide/publishing/preparing.html.

1. Choose a good package name. One that will work for the entire life of

the app.

2. Turn off debugging and logging. Make sure to search for debug tracing

and disable that.

3. Clean your project directories from backup files or other unnecessary

files you may have created during development and testing.

4. Review your Manifest file and ensure all the required permissions exist.

Ensure that your label and icon values are set as well as the correct

versionCode and versionName attributes.

5. Check and optimize your application for the correct versions of

Android. Make sure your app is suited to run on devices with different

specifications.

6. Update your URLs within your app. This means removing any local IP

addresses and testing servers. Change them to the correct production IP

Addresses.

7. Implement licensing in your app.

http://developer.android.com/guide/publishing/preparing.html

203

Chapter 10
Malware and Spyware

Like the personal computer, the mobile smartphone is susceptible to various types of malware.
Throughout this chapter, I will refer to malware and spyware collectively as malware. Even
though I do this, it is essential to know the difference between each of these types of
hostile applications.

Malware is defined as any piece of malicious software that lives on a user’s computer or
smartphone whose sole task is to cause destruction of data, steal personal information, or gain
access to system resources in order to gain full control of the device it is on. Malware is written
with the sole intent of causing harm; and usually, malware authors will write the malware to
target a specific weakness in an operating system or platform. Often, the malware author will
want to maximize the spread of her malware and will look to implement a mechanism where his
software can copy itself to other, similar devices.

Spyware is a term used to refer to malware that accesses and exfiltrates personal or private
information from a device. For instance, in the case of mobile phone malware, the application
may be after an end user’s e-mail messages, contact list, SMS messages, or even photos.
Spyware generally needs to be stealthy and stay on the device for long periods. Thus, spyware
authors will aim to perform little or no disruptive activity on the device, so that the end user is not
aware of her data being stolen. Just about anyone can use malware; it is no longer a requirement
that you know how to code the malware yourself.

Many companies sell malware to individuals, large corporations, or even governments (see the
case study later on in this chapter). I have seen two types of companies selling malware: the
ones that sell to large organizations or governments and the ones that sell to individual retail
consumers. As we will review later in this chapter, one large Middle Eastern telecommunications
provider was caught spying on its entire BlackBerry subscriber base. The software that helped
do this was sold by a well known US company that specializes in legal interception. It turns
out that the source code was completely developed from scratch, and its sole purpose was to
capture and exfiltrate e-mail messages from an infected device.

On the other end of the spectrum, you will find the malware or spyware packaged and sold to
any individual who is willing to spy on someone that she knows. In most cases, the companies
that sell this type of software will proclaim “Catch cheating spouses!” Apparently, this is quite
appealing to some folks! I will also look at one of these versions of retail malware in some detail.

CHAPTER 10: Malware and Spyware204

Four Stages of Malware
We can classify malware operations into four different, but distinct, stages. While not
formal, these stages have been visible in most instances where malware has been discovered
on devices.

Infection
This is the stage where the malware is introduced to the device. The holy grail of infection is one
where no end-user interaction is involved. This occurs when malware can be copied to a device
by something as harmless as sending a user an SMS message or compromising the device
when it is on a wireless network.

The second method of infection is through a partially assisted action. The user is asked to click
a link in a malicious website. Once he does this, the malware will copy itself to the device. An
attacker sends this link to a user in an SMS or e-mail message. While effective, this requires user
intervention; in most cases, diligent users will always be suspicious about clicking random links
sent to them.

The last form of infection occurs when an attacker will physically copy the malware to the
device, either through a USB port or via browsing to a website. This takes place in instances
where the attacker and end user know each other, or the attacker has physical access to the end
user’s device. This technique is not effective if a user has password protected his device and
requires a password to use it or install applications on it.

Compromise
Most often, infection and compromise go hand in hand. In this context, I am using the word
compromise to describe how the malware is able to gain super-user access to the device. As a
result, the malware can make changes to the device configuration in any manner it chooses to
do so—and without requiring device-owner interaction.

As we saw in previous chapters, programs running on Android will require a user to grant it explicit
permissions to access facilities like the Internet or read e-mail messages. During the compromise
stage, the malware will use a weakness in the operating system to circumvent the permission
granting process, thereby allowing it to execute any function without the user being aware.

Spread
Unless specifically targeted at an individual, a malware author will typically want to infect a large
number of users. He may want to control an army of devices or just access private information
from many different people. The Zeus Trojan (found on the personal computer platforms) will
spread using weaknesses found in the operating system. Its sole purpose is to collect a user’s
keystrokes and collect credentials to banking and social networking websites.

i

CHAPTER 10: Malware and Spyware

205

Lately, another popular mechanism of spreading and even infection has been to use the Google
Android Market (where authors can sell or freely distribute their applications). Malware authors
can upload harmless looking applications like games or social network interaction tools to the
Android Market. When an end user buys or downloads this app, her device is infected.

Exfiltration
Malware will often target personal or confidential information. It may log keystrokes to try to
capture usernames or passwords to websites like online banking and e-mail. However, simply
collecting this information is insufficient. The attacker needs to have access to this information,
so malware will find a way of “phoning home” or communicating with a remote server, either to
receive new instructions or to upload the captured information. This stage is called exfiltration.
Let’s take a look at a case study that illustrates how this can work.

Case Study 1: Government Sanctioned Malware
In July of 2009, a telecommunications provider for the United Arab Emirates (UAE), Etisalat,
sent an SMS message to its entire subscriber base of BlackBerry device owners to download
and install a system patch. This patch was purported to improve performance of the device’s
3G capabilities. It turned out that this “patch” was nothing more than malware designed to read
each user’s outgoing e-mail.

To this day, the company maintains that the patch was meant to improve performance. Most of
the researchers who examined the malware, including myself and Research In Motion (RIM), can
see that there are no performance benefits whatsoever. Instead, examining the code reveals a
deliberate attempt to capture all of the device owner’s outgoing e-mail and send a copy of it for
examination to the provider’s servers.

The case title, Government Sanctioned Malware, may be a bit strong, especially when you
consider that no conclusive evidence has materialized from the investigation of this case. My
choice of title was based on the 11 years I spent working in the UAE (five of them for Etisalat),
recent events in the media, and my knowledge of how closely the government and regulatory
authorities control the media and communications infrastructure of the country.

The media events I mention took place around August of 2010, when the government of the
UAE announced that it would shut down all BlackBerry services within the country if RIM did not
provide a means of monitoring user messages, including e-mail and BlackBerry Messenger
(a native messaging platform that allows BlackBerry users to send messages to each other).
Since I’m not writing a spy novel, I’ll shelve all of my theories for my next book and instead take
you through some of the more factual aspects of the malware itself. In this case study, we will try
to uniquely identify the stages for malware infection.

q

CHAPTER 10: Malware and Spyware206

Once a user clicked the accompanying URL, the device would download and install and
application called Registration. The device would prompt the end user to grant the application
specific permissions. Since the WAP-push message arrived from a seemingly legitimate source,
most users had no reason to distrust the request and often granted the application full permissions.

Compromise
In this case, the malware did not rely on a weakness in the OS to gain access to personal
information. The user, believing that the application was legitimate, granted all the necessary
permissions during the installation phase.

Spread
The malware released by Etisalat was designed to remain on the device and collect information.
It was not designed to spread to other devices. Rather than spreading, the malware relied
on the WAP-push message. The installation would take place in one go and would not
spread thereafter.

Exfiltration
This is the most important stage for the Etisalat malware. It was designed to attach itself to the
sent items of the user’s e-mail messages and send a copy of each outgoing message to a server
inside Etisalat. This was taken care of by the built-in BlackBerry API calls.

An actual message (that the malware uses to check in with the server) is depicted in Figure 10-1.
This is a message that is sent to the server every hour. The operators of the malware system can
then see which devices are infected by the malware, including which of those are checking
in regularly.

 Dear Etisalat BlackBerry Customer,

 Etisalat is always keen to provide you with the best BlackBerry service and ultimate experience,

for that we will be sending you a performance enhancement patch that you need to install on your

device. For more information, please call 101

--

Empower your Business with BlackBerry® and Mobile Solutions from Etisalat

Infection
Etisalat introduced the malware onto its subscriber’s devices by making use of a simple
WAP-push message. This is a message that appears in the device’s SMS inbox, and it contains
both text and a URL. The text of the WAP-push message was as follows:

CHAPTER 10: Malware and Spyware

207

Detection
This specific malware was only detected because it was badly written. As soon as the malware
was released, the server that was supposed to receive the exfiltrated data was inundated with
messages. Unable to bear the load, the server crashed. This caused the malware on the devices
to constantly retry the connection to a non-responsive server. This continued set of connection
attempts increased processor usage on the devices themselves.

At this point, end users began to notice sluggishness in their device performance and premature
battery drain. Some users even noticed their device overheating. This prompted several
researchers to investigate the Registration application, whereupon they discovered that it was
really malware. Figure 10-2 shows a flowchart of how the malware operates when installed on a
device. What follows is a detailed list of the characteristics of the Registration malware:

It checks to see if it is listed as visible in the BlackBerry installed applications.	
If it is visible, it hides itself from view of the subscriber. This prevents a user 	
from finding it and deleting it.

It iterates over all the mail accounts on the handheld and attaches itself to 	
each of them, looking for received e-mail messages and PIN messages.

It intercepts and monitors the state of the handheld for network events that 	
occur. It notifies the service-provider’s server when these events occur.

It listens for messages received from specific addresses through either 	
e-mail or BlackBerry PIN. These are control messages that can enable or
disable the interception of the subscribers’ messages.

It reports to the predefined service-provider server regularly.	
If enabled, the application will forward a copy of e-mails sent out by the 	
subscriber to the service-provider server.

Figure 10-1. A captured “heartbeat” message as used by the Registration malware

CHAPTER 10: Malware and Spyware208

Check if it is
visible in the
Installed Apps

Visible?

Yes

No

Set flags so that it
hides itself

Initialize and
Hook Radio and

GlobalEvents

Listen / Stay
Active

5 seconds ?

MsgRecv?

1 hour?

Interrupt?

Remove Hooks &
Throw Exception

Process Cmd

Send Version
Info

Yes

No

Yes

Yes

NoNo

No

Yes

Figure 10-2. A flowchart of Etisalat malware operation

CHAPTER 10: Malware and Spyware

209

Case Study 2: Retail Malware—FlexiSPY
Now let’s look at a second malware application: FlexiSPY, a type of retail malware. FlexiSPY
eavesdrops on all communications when an attacker installs it on the target device. The latest
version of FlexiSPY Omni offers the following features to Android users:

Capture SMS and e-mails	
Capture call logs	
Discover GPS location through GPS and cell tower information	
Turn the phone into a listening device	
Intercept phone calls	
SIM card change notification	

This seems to be sufficient coverage for spying on anyone, and I found the list of features
intriguing enough to acquire a copy and analyze it.

Note In the spirit of full disclosure, I’ll mention that, at the time that I reviewed FlexiSPY, I looked

at the BlackBerry version because that was my primary phone. The protocols to activate and

enable the device are all web-based, so they remain more or less the same, regardless of the

supported device platform (including on Android, of course).

Once a buyer parts with her $349, she will receive a user manual that provides information on
how the application can be installed on a target’s phone. When going through the user manual,
one of the first things that jumped out at me was that it provided . . . explicit instructions to set

the Default Permissions of the BlackBerry handheld to Allow All.

This means that, not just FlexiSPY, but every single application the target installs on his phone
after this can gain full control (within the scope of the programming interface or API) over
the handheld. Obviously, user protection is not a high priority in this case. In a similar twist,
looking at the Android manual for FlexiSPY, the device itself has to be rooted before you can
successfully install the malware on the device. The site offers a solution to root the device in the
form of Super One Click. The site offers no direct links, save for this text. Finding the exploit is
left up to the customer.

FlexiSPY requires activation before it can begin to spy on a target. To do this, a user has to dial
the number *#900900900, which causes a hidden screen to be activated. On this screen, a user
is prompted to enter the activation code. Never one to leave home without my favorite network
packet sniffer, Wireshark, I sniffed the traffic that went through during the activation process.
Here is the information that went across the wire:

	POST /t4l-mcli/cmd/productactivate?mode = 0&ver = 0302&pid = FSP_BB_
V4.2&actcode = [Activation Code] &hash = [IMEI]&phmodel = 8300(4.5.0.44)
HTTP/1.1

CHAPTER 10: Malware and Spyware210

This request is made to a server with the following second level domain:

aabackup.info

It resolves to the same IP Address as the host djp.cc listed previously. As you can see, the
phone’s IMEI is being sent back to FlexiSPY HQ. Also visible is the activation code, which
returns a hash value. It appears that the phone calculates a similar algorithm and waits for a
matching hash. Once the correct hash is received, the app is activated.

From this point on, it’s a case of configuring the application to intercept SMS messages, e-mail
messages, call logs, and so on. The application has a command channel through SMS. Thus,
you have a list of eight commands, which do the following:

Start Capture: Begin capturing events like e-mail, SMS, location, and so on.	
Stop Capture: Stop an already started capture.	
Send Immediate: Send all collected events to the central logging host.	
Send Diagnostics: Send diagnostic info.	
Start SIM Monitor: Watch for any attempt at changing the SIM card.	
Stop SIM Monitor: Stop monitoring the SIM card.	
Start Mic Monitor: Wait for calls from a trigger number.	
Stop Mic Monitor: Stop monitoring calls from that trigger number.	

The funny thing is that the command channel SMS messages cannot be deleted, so the
manual advises a user to select short phrases like “Good morning” or similar to begin capturing
information. The phrases should be chosen so as not to arouse the target’s suspicion.

Bear in mind that I performed the preceding checks on a BlackBerry version of FlexiSPY. Given
the similarities of each platform running Java, Android would behave in a similar manner.

Anti-Forensics
Currently, the most widely used detection mechanism is signature based. This means that
any anti-malware company writing removal or detection capabilities needs to know about the
malware beforehand. If it encounters it, then it can remove it. Consequently, a new strain of
malware is unlikely to be detected. This is unfortunate because, if the anti-malware companies
are unable to keep up with the evolution of malware, then there is always a lag from the point
when malware is released, to the point when it is discovered and addressed. During this lag
period, all users are at risk.

As a developer, you have no direct control of whether a user chooses to install anti-malware
applications. Your responsibility lies in making sure that your application handles its data
securely. We’ve covered most of these techniques in our previous chapters, but I wanted to
highlight another available, yet unorthodox, option: anti-forensics.

CHAPTER 10: Malware and Spyware

211

Anti-forensics is a technique that is used to defeat forensic analysis of computers or mobile
devices by reducing the quality of information that can be gathered. Forensic analysis involves
examining such devices for evidence. Most often, the evidence that has to be gathered is very
fragile. Anti-forensics seeks to destroy this information by using automated tools running at
periodic intervals. Then, when a forensic analysis takes place, the investigator will only find
garbled or useless data. This considerably lowers the quality of information that can be retrieved.
We can use a similar technique to thwart the actions of malware.

I will start with a simple example: let’s say your application reads and writes to a device’s
message stores. Since you have access to this data, you can artificially generate e-mail
messages and delete them at will. Assume that there is a malware application installed on the
device waiting to copy messages entering the inbox. By generating many fake messages and
later deleting them on a periodic basis, you are feeding the malware low quality, useless data
that will exfiltrate. If done correctly, this process can make it tedious for a malware author to
extract valid information. This concept is illustrated in Figures 10-3 and 10-4.

CMIME

Mail Store

Hooks folders

Exfiltration

Engine

Captured

Email

trigger when

messages added

Inbox

Outbox

Misc

Figure 10-3. Malware intercepting mail messages

CHAPTER 10: Malware and Spyware212

This technique can be considered a bit aggressive; and obviously, an end user should consent
to this type of behavior from your application. I have mentioned it here as another technique to
consider. I will leave it up to your imagination as to how to come up with additional mechanisms
of defeating malware. However, unless your primary goal is to develop such anti-malware
applications, you may choose to skip them.

Summary
In this chapter, we looked at malware and spyware and what they are. We also examined the
various stages of malware and how we can classify them into broad categories. We learned that
malware can be used by anyone and that there are many commercial entities that offer malware
to both individual and corporate consumers. Our case study involved a real-world malware
infection that took place in 2009 when Etisalat, one of the telecom providers for the UAE,
subjected its entire subscriber base of BlackBerry users to a spyware application.

We’ve seen that, as an application developer, you are generally limited in your abilities to control
what malware is introduced onto the device. Instead, your goal is to handle your application’s
data (and end-user data) securely. We very briefly covered a topic that looks at how some
anti-forensics techniques can be used to purposely feed malware with useless data, thus forcing
the malware author to wade through these messages to find the real ones. While this is by no
means a foolproof solution, this technique mostly acts as a deterrent. Unless a malware author
specifically targets you, he is unlikely to waste his time sifting through useless data. Instead, he
will simply move onto the next person he has infected.

CMIME
Mail Store

Exfiltration
Engine

Overwhelming
Flood

of email

trigger when
messages added

Poisoned
Email

Anti Malware

Inbox

Outbox

Misc

Hooks folders
through

FolderListener

Figure 10-4. Generating fake messages

213

Appendix A
Android Permission Constants

For reference purposes, this appendix provides a complete list of Android permission constants.
Permissions and their use are discussed throughout the book, particularly in Chapter 3.

Permission Constant Description

ACCESS_CHECKIN_PROPERTIES Allows read/write access to the properties table in the

checkin database, enabling the ability to change values that

get uploaded

ACCESS_COARSE_LOCATION Allows an application to access coarse (e.g., Cell-ID, WiFi)

location

ACCESS_FINE_LOCATION Allows an application to access fine (e.g., GPS) location

ACCESS_LOCATION_EXTRA_

COMMANDS

Allows an application to access extra location provider

commands

ACCESS_MOCK_LOCATION Allows an application to create mock location providers for

testing

ACCESS_NETWORK_STATE Allows applications to access information about networks

ACCESS_SURFACE_FLINGER Allows an application to use SurfaceFlinger’s low-level features

ACCESS_WIFI_STATE Allows applications to access information about

Wi-Fi networks

ACCOUNT_MANAGER Allows applications to call into AccountAuthenticators

AUTHENTICATE_ACCOUNTS Allows an application to act as an AccountAuthenticator for

the AccountManager

BATTERY_STATS Allows an application to collect battery statistics

BIND_APPWIDGET Allows an application to tell the AppWidget service which

application can access AppWidget’s data

BIND_DEVICE_ADMIN Must be required by device administration receiver, to ensure

that only the system can interact with it

(continued)

Appendix A: Android Permission Constants214

Permission Constant Description

BIND_INPUT_METHOD Must be required by an InputMethodService to ensure that

only the system can bind to it

BIND_REMOTEVIEWS Must be required by a RemoteViewsService to ensure that only

the system can bind to it

BIND_WALLPAPER Must be required by a WallpaperService to ensure that only the

system can bind to it

BLUETOOTH Allows applications to connect to paired bluetooth devices

BLUETOOTH_ADMIN Allows applications to discover and pair bluetooth devices

BRICK Required to be able to disable the device (very dangerous!)

BROADCAST_PACKAGE_REMOVED Allows an application to broadcast a notification that an

application package has been removed

BROADCAST_SMS Allows an application to broadcast an SMS receipt notification

BROADCAST_STICKY Allows an application to broadcast sticky intents

BROADCAST_WAP_PUSH Allows an application to broadcast a WAP PUSH–receipt

notification

CALL_PHONE Allows an application to initiate a phone call without going

through the Dialer user interface for the user to confirm the call

being placed

CALL_PRIVILEGED Allows an application to call any phone number, including

emergency numbers, without going through the Dialer user

interface for the user to confirm the call being placed

CAMERA Required to be able to access the camera device

CHANGE_COMPONENT_ENABLED_

STATE

Allows an application to change whether an application

component (other than its own) is enabled or not

CHANGE_CONFIGURATION Allows an application to modify the current configuration, such

as locale

CHANGE_NETWORK_STATE Allows applications to change network connectivity state

CHANGE_WIFI_MULTICAST_STATE Allows applications to enter Wi-Fi Multicast mode

CHANGE_WIFI_STATE Allows applications to change Wi-Fi connectivity state

CLEAR_APP_CACHE Allows an application to clear the caches of all installed

applications on the device

CLEAR_APP_USER_DATA Allows an application to clear user data

CONTROL_LOCATION_UPDATES Allows enabling/disabling location update notifications from

the radio

DELETE_CACHE_FILES Allows an application to delete cache files

DELETE_PACKAGES Allows an application to delete packages

DEVICE_POWER Allows low-level access to power management

DIAGNOSTIC Allows applications to RW to diagnostic resources

Appendix A: Android Permission Constants

215

Permission Constant Description

DISABLE_KEYGUARD Allows applications to disable the keyguard

DUMP Allows an application to retrieve state dump information from

system services

EXPAND_STATUS_BAR Allows an application to expand or collapse the status bar

FACTORY_TEST Run as a manufacturer test application, running as the root

user

FLASHLIGHT Allows access to the flashlight

FORCE_BACK Allows an application to force a BACK operation on whatever

is the top activity

GET_ACCOUNTS Allows access to the list of accounts in the Accounts Service

GET_PACKAGE_SIZE Allows an application to find out the space used by any

package

GET_TASKS Allows an application to get information about the currently or

recently running tasks: a thumbnail representation of the tasks,

what activities are running in it, and so on

GLOBAL_SEARCH Can be used on content providers to allow the global search

system to access their data

HARDWARE_TEST Allows access to hardware peripherals

INJECT_EVENTS Allows an application to inject user events (e.g., keys, touch,

and trackball) into the event stream and deliver them to ANY

window

INSTALL_LOCATION_PROVIDER Allows an application to install a location provider into the

Location Manager

INSTALL_PACKAGES Allows an application to install packages

INTERNAL_SYSTEM_WINDOW Allows an application to open windows that are for use by

parts of the system user interface

INTERNET Allows applications to open network sockets

KILL_BACKGROUND_PROCESSES Allows an application to call killBackgroundProcesses(String)

MANAGE_ACCOUNTS Allows an application to manage the list of accounts in the

AccountManager

MANAGE_APP_TOKENS Allows an application to manage (e.g., create, destroy, and

Z-order) application tokens in the window manager

MASTER_CLEAR

MODIFY_AUDIO_SETTINGS Allows an application to modify global audio settings

MODIFY_PHONE_STATE Allows modification of the telephony state—power on, mmi,

and so on

MOUNT_FORMAT_FILESYSTEMS Allows formatting file systems for removable storage

(continued)

Appendix A: Android Permission Constants216

Permission Constant Description

MOUNT_UNMOUNT_FILESYSTEMS Allows mounting and unmounting file systems for removable

storage

NFC Allows applications to perform I/O operations over NFC

PERSISTENT_ACTIVITY This constant is deprecated. This functionality will be removed

in the future; please do not use it. Allows an application to

make its activities persistent.

PROCESS_OUTGOING_CALLS Allows an application to monitor, modify, or abort outgoing

calls

READ_CALENDAR Allows an application to read the user’s calendar data

READ_CONTACTS Allows an application to read the user’s contacts data

READ_FRAME_BUFFER Allows an application to take screen shots and more generally

get access to the frame buffer data

READ_HISTORY_BOOKMARKS Allows an application to read (but not write) the user’s

browsing history and bookmarks

READ_INPUT_STATE Allows an application to retrieve the current state of keys and

switches

READ_LOGS Allows an application to read the low-level system log files

READ_PHONE_STATE Allows read only access to phone state

READ_SMS Allows an application to read SMS messages

READ_SYNC_SETTINGS Allows applications to read the sync settings

READ_SYNC_STATS Allows applications to read the sync stats

REBOOT Required to be able to reboot the device

RECEIVE_BOOT_COMPLETED Allows an application to receive the ACTION_BOOT_COMPLETED

that is broadcast after the system finishes booting

RECEIVE_MMS Allows an application to monitor incoming MMS messages

and to record or perform processing on them

RECEIVE_SMS Allows an application to monitor incoming SMS messages and

to record or perform processing on them

RECEIVE_WAP_PUSH Allows an application to monitor incoming WAP push

messages

RECORD_AUDIO Allows an application to record audio

REORDER_TASKS Allows an application to change the Z-order of tasks

RESTART_PACKAGES This constant is deprecated. The restartPackage(String) API

is no longer supported

SEND_SMS Allows an application to send SMS messages

SET_ACTIVITY_WATCHER Allows an application to watch and control how activities are

started globally in the system

Appendix A: Android Permission Constants

217

Permission Constant Description

SET_ALARM Allows an application to broadcast an Intent to set an alarm for

the user

SET_ALWAYS_FINISH Allows an application to control whether activities are

immediately finished when put in the background

SET_ANIMATION_SCALE Modifies the global animation scaling factor

SET_DEBUG_APP Configures an application for debugging

SET_ORIENTATION Allows low-level access to setting the orientation (actually,

rotation) of the screen

SET_POINTER_SPEED Allows low-level access to setting the pointer speed

SET_PREFERRED_APPLICATIONS This constant is deprecated and no longer useful; see

addPackageToPreferred(String) for details

SET_PROCESS_LIMIT Allows an application to set the maximum number of (not

needed) application processes that can be running

SET_TIME Allows applications to set the system time

SET_TIME_ZONE Allows applications to set the system time zone

SET_WALLPAPER Allows applications to set the wallpaper

SET_WALLPAPER_HINTS Allows applications to set the wallpaper hints

SIGNAL_PERSISTENT_PROCESSES Allow an application to request that a signal be sent to all

persistent processes

STATUS_BAR Allows an application to open, close, or disable the status bar

and its icons

SUBSCRIBED_FEEDS_READ Allows an application to allow access the subscribed feeds

ContentProvider

SUBSCRIBED_FEEDS_WRITE

SYSTEM_ALERT_WINDOW Allows an application to open windows using the type

TYPE_SYSTEM_ALERT—shown on top of all other applications

UPDATE_DEVICE_STATS Allows an application to update device statistics

USE_CREDENTIALS Allows an application to request authtokens from the

AccountManager

USE_SIP Allows an application to use SIP service

VIBRATE Allows access to the vibrator

WAKE_LOCK Allows using PowerManager WakeLocks to keep processor

from sleeping or screen from dimming

WRITE_APN_SETTINGS Allows applications to write the apn settings

WRITE_CALENDAR Allows an application to write (but not read) the user’s calendar

data

WRITE_CONTACTS Allows an application to write (but not read) the user’s contacts

data

(continued)

Appendix A: Android Permission Constants218

Permission Constant Description

WRITE_EXTERNAL_STORAGE Allows an application to write to external storage

WRITE_GSERVICES Allows an application to modify the Google service map

WRITE_HISTORY_BOOKMARKS Allows an application to write (but not read) the user’s

browsing history and bookmarks

WRITE_SECURE_SETTINGS Allows an application to read or write the secure system

settings

WRITE_SETTINGS Allows an application to read or write the system settings

WRITE_SMS Allows an application to write SMS messages

Content Provider Classes

Class Name Description

AlarmClock The AlarmClock provider contains an Intent action and

extras that can be used to start an Activity to set a new

alarm in an alarm clock application

Browser

Browser.BookmarkColumns Column definitions for the mixed bookmark and history

items available at BOOKMARKS_URI

Browser.SearchColumns Column definitions for the search history table, available at

SEARCHES_URI

CallLog The CallLog provider contains information about placed and

received calls

CallLog.Calls Contains the recent calls

ContactsContract The contract between the contacts provider and

applications

ContactsContract.AggregationExceptions Constants for the contact aggregation exceptions table,

which contains aggregation rules overriding those used by

automatic aggregation

ContactsContract.

CommonDataKinds

Container for definitions of common data types stored in

the ContactsContract.Data table

ContactsContract.

CommonDataKinds.Email

A data kind representing an email address

ContactsContract.

CommonDataKinds.Event

A data kind representing an event

ContactsContract.

CommonDataKinds.GroupMembership

Group Membership

Appendix A: Android Permission Constants

219

Class Name Description

ContactsContract.

CommonDataKinds.Im

A data kind representing an IM address

You can use all columns defined for ContactsContract.

Data, as well as the following aliases

ContactsContract.

CommonDataKinds.Nickname

A data kind representing the contact’s nickname

ContactsContract.

CommonDataKinds.Note

Notes about the contact

ContactsContract.

CommonDataKinds.Organization

A data kind representing an organization

ContactsContract.

CommonDataKinds.Phone

A data kind representing a telephone number

ContactsContract.

CommonDataKinds.Photo

A data kind representing a photo for the contact

ContactsContract.

CommonDataKinds.Relation

A data kind representing a relation

ContactsContract.

CommonDataKinds.SipAddress

A data kind representing a SIP address for the contact

ContactsContract.

CommonDataKinds.StructuredName

A data kind representing the contact’s proper name

ContactsContract.

CommonDataKinds.StructuredPostal

A data kind representing a postal addresses

ContactsContract.

CommonDataKinds.Website

A data kind representing a website related to the contact

ContactsContract.Contacts Constants for the contacts table, which contains a record

per aggregate of raw contacts representing the same

person

ContactsContract.

Contacts.AggregationSuggestions

A read-only subdirectory of a single contact aggregate that

contains all aggregation suggestions (e.g., other contacts)

ContactsContract.Contacts.Data A subdirectory of a single contact that contains all of the

constituent raw contactContactsContract.Data rows

ContactsContract.Contacts.Entity A subdirectory of a contact that contains all of

its ContactsContract.RawContacts, as well as

ContactsContract.Data rows

ContactsContract.Contacts.Photo A read-only subdirectory of a single contact that contains

the contact’s primary photo

ContactsContract.Data Constants for the data table, which contains data points

tied to a raw contact

ContactsContract.Directory A Directory represents a contacts corpus

ContactsContract.Groups Constants for the groups table

(continued)

Appendix A: Android Permission Constants220

Class Name Description

ContactsContract.Intents Contains helper classes used to create or manage Intents

that involve contacts

ContactsContract.Intents.Insert Convenience class that contains string constants used to

create contact Intents

ContactsContract.PhoneLookup A table that represents the result of looking up a phone

number (e.g., for caller ID)

ContactsContract.QuickContact Helper methods to display QuickContact dialogs that allow

users to pivot on a specific Contacts entry

ContactsContract.RawContacts Constants for the raw contacts table, which contains one

row of contact information for each person in each synced

account

ContactsContract.RawContacts.

Data

A subdirectory of a single raw contact that contains all of its

ContactsContract.Data rows

ContactsContract.RawContacts.

Entity

A subdirectory of a single raw contact that contains all of its

ContactsContract.Data rows

ContactsContract.

RawContactsEntity

Constants for the raw contacts entities table, which can be

thought of as an outer join of the raw_contacts table with

the data table

ContactsContract.Settings Contacts-specific settings for various Accounts

ContactsContract.StatusUpdates A status update is linked to a ContactsContract.Data

row and captures the user’s latest status update via the

corresponding source

ContactsContract.SyncState A table provided for sync adapters to use for storing private

sync state data

LiveFolders A LiveFolder is a special folder whose content is provided

by a ContentProvider

MediaStore The Media provider contains metadata for all available

media on both internal and external storage devices

MediaStore.Audio Container for all audio content

MediaStore.Audio.Albums Contains artists for audio files

MediaStore.Audio.Artists Contains artists for audio files

MediaStore.Audio.Artists.Albums A subdirectory of each artist containing all albums on which

a song by the artist appears

MediaStore.Audio.Genres Contains all genres for audio files

MediaStore.Audio.Genres.Members A subdirectory of each genre containing all members

MediaStore.Audio.Media

MediaStore.Audio.Playlists Contains playlists for audio files

MediaStore.Audio.Playlists.Members A subdirectory of each playlist containing all members

Appendix A: Android Permission Constants

221

Class Name Description

MediaStore.Files Media provider table containing an index of all files in the

media storage, including non-media files

MediaStore.Images Contains metadata for all available images

MediaStore.Images.Media

MediaStore.Images.Thumbnails This class allows developers to query and get two kinds of

thumbnails: MINI_KIND: 512 x 384 thumbnail and MICRO_

KIND: 96 x 96 thumbnail

MediaStore.Video

MediaStore.Video.Media

MediaStore.Video.Thumbnails This class allows developers to query and get two kinds of

thumbnails: MINI_KIND: 512 x 384 thumbnail and MICRO_

KIND: 96 x 96 thumbnail

SearchRecentSuggestions This is a utility class providing access to

SearchRecentSuggestionsProvider

Settings The Settings provider contains global system-level device

preferences

Settings.NameValueTable Common base for tables of name/value settings

Settings.Secure Secure system settings, which contain system preferences

that applications can read, but are not allowed to write

Settings.System System settings, which contain miscellaneous system

preferences

SyncStateContract The ContentProvider contract for associating data with any

data array account

SyncStateContract.Constants

SyncStateContract.Helpers

UserDictionary A provider of user-defined words for input methods to use

for predictive text input

UserDictionary.Words Contains the user-defined words

223

■ A
Android architecture

components
application framework, 5–7
Dalvik Virtual Machine, 4–5
divisions, 2–3
kernel, 3
libraries, 4

HTC Dream, 1–2
security

API call process, 37–38
content providers, 33–37
definition, 8
intents, 37
protecting user’s data, 8
protection levels, 39–40
risks, 8–9
sample code, 40–43
self-defined permissions, 38–39
zygote process, 31–32

security architecture
application code signing, 11
permissions, 10–11
privilege separation, 9–10

Android Debug Bridge (ADB) commands and
features, 161–164

Android LVL. See License verification library
(LVL)

Android permission constants, 209–214
Android security architecture

permissions architecture
API call process, 37–38
content providers, 33–37
intents, 37
protection levels, 39–40
sample code, 40–43
self-defined permissions, 38–39

zygote process, 31–32

Anti-forensics
detection mechanism, 206
fake messages, 207–208
mail messages, 207
technique, 207

Authentication techniques
browser setting, 103–104
CA trusts, 107
CipherSuites, 104
cryptography, 115–116
DigiNotar, 103
feature, 103
handshake, 105–106
introduction, 102–103
man-in-the-middle (MitM)

data flow, 108
DigiNotar, 109–110
reference, 108–109
websites, 109

mobile device, 103
OAuth

access token, Picnik, 110
Android app, 114–115
application details, 111–112
authentication flow, 113–114
back-end web application, 115
client ID, 111
consumers, 110
ID and secret, 111, 113
photos, 110
Picasa/Flickr, 110
Picnik, 110
project creation, 111
service provider, 110
type, 111–112

POST request, 103
PreMaster key, 104
self-signed certificate, 107–108
SSL, 103–104

Index

Index224

TLS, 104–105
traffic capture, 105
transport protocols, 103
username and password, 103

■ B
Base64 encoded public key, 189
Block ciphers, modes of operation, 60–64

■ C
CBC mode. See Cipher-block chaining (CBC)

mode
CFB mode. See Cipher feedback (CFB) mode
Challenge response authentication

client side, login, 158
Constants.java, 149
CRAM object, 149–152
generate() function, 152
generateReply(String response)

function, 153
graphical representation, 145–146
Hex.java file, 147
Login.java class, 147–149
project structure, 146–147
response, 153
server-side code, 153–157
steps, 145
verifyChallenge(String userResponse),

153
Challenge response message flow (CRAM),

149–152
Cipher-block chaining (CBC) mode,

61, 64
Cipher feedback (CFB) mode, 62
Connectivity, 117–118
Contact Class, Contact.java, 18–19
Contact object, 21
Content provider classes, 214–217
Cryptography, 115–116

additional layer, 53–54
in mobile applications

block ciphers, modes of operation,
60–64

data padding, 60
key generation, 58–59
symmetric key algorithm, 58

public key infrastructure
instructions, 54–55
story and PKI elements, 55–56

terminology, 57

■ D
Dalvik Executable (DEX) files, 165–166
Dalvik Virtual Machine, 4–5
Data classification table, 22
Data padding, 60
Data storage, Android

combining data storage and encryption
cryptographic module, 78–79
KeyManager Module, 76–78
modified RetrieveData Class, 81–82
modified StoreData Class, 80–81
New StorageExample3, 79–80
output, 82
specifications, 76

internal storage
main class, 68–69
output, 70
RetrieveData.java, 69–70
StoreData.java, 69

mechanisms of, 65
shared preferences

data retrieving code, 66–67
data storing code, 66
main class, 67
output, 68

SQLite databases
contact object, 74, 75
ContactsDb class, 74
ContactsDB helper class, 72–73
contacts table, 71
main class, 71–72
output, 75
project structure, 71
RetrieveData class, 73–75
SQLiteOpenHelper, 74
StoreData Class, 73

Data theft vulnerabilities, 14
Dedexer, 169
DEX. See Dalvik Executable (DEX) files

■ E, F, G
Electronic codebook (ECB) encryption, 61

Authentication techniques (cont.)

Index 225

Encryption
key-generation algorithm, 25–26
results, 26
routine, 24–25

Enterprise resource planning (ERP)
applications, 118–119
business, 117
connectivity, 117–118
mobile application, 117
mobile middleware

banking application, 119
database access, 120–126
data representation, 126–132
goals, 119
interaction, 119–120

■ H, I
HTTP (HyperText Transfer Protocol), 93

■ J
JSON (JavaScript Object Notation),

129–132

■ K
Key generation, 58–59

■ L
License verification library (LVL)

alternate response verification idea,
192–193

Base64 encoded public key, 189
Chuck Norris facts app, 175–176
CommsEvent.java file, 172
Comms.java File, 173–175
CommsNotifier.java file, 173
copying LVL sources to separate

directory, 178
downloading Google API Add-On,

176–178
importing LVL source as library project

importing file system, 183
locating and importing source, 184
marking project as library, 182
naming Android project, 179
selecting API version, 180
specifying package name, 181

included in app project, 185
interfacing with market app and server,

171
Main Activity-ChuckNorrisFactsActivity.

java, 171–172
modified ChuckNorrisFactsActivity.java

File, 186–188
modified Verify Function, 193–194
selecting LVL library project, 184–185
unlicensed user receiving negative

response, 189–190
Licensing policy

allowAccess() method, 190–191
default policies, 190
processServerResponse() method,

191–192
Licensing, publishing and selling, 170
Location Class, Location.java, 16–17

■ M, N
Malware

anti-forensics
definition, 199
detection mechanism, 206
fake messages, 207–208
mail messages, 207
technique, 207

exfiltration, 201
FlexiSPY

activation, 205–206
commands, 206
explicit instructions, 205
features, 205

Government sanctioned malware
compromise, 202
detection, 203–204
exfiltration, 202–203
flowchart, 204
infection, 202
RIM, 201
SMS message, 201
spread, 202

infection, 200
spread, 200–201
spyware, definition, 199
stages

compromise, 200

Index226

Man-in-the-middle (MitM)
data flow, 108
DigiNotar, 109–110
reference, 108–109
websites, 109

Mobile middleware
banking application, 119
database access

apress, 120
HTTP, 125
javax.sql and java.sql packages, 120
JDBC drivers, 124–125
libraries, 126
ListView layout, 121–122
my.cnf file, 120
MySQLConnectActivity.java file,

122–123
program output, 123–124
project structure, 121

data representation
data formats, 126
JSON output, 129–132
RESTful API request, 126–127
XML output, 126–129

goal, 119
interaction, 119–120

■ O
OAuth

access token, Picnik, 110
Android app, 114–115
application details, 111–112
authentication flow, 113–114
back-end web application, 115
client ID, 111
consumers, 110
handling authorization

authorization code, 138–141
ClientHandler, 137–138
DataFetcher class, 144–145
doAuth() function, 135–137
getRequestToken() function, 138
Token object, 141–144

ID and secret, 111, 113
photos, 110
Picasa/Flickr, 110
Picnik, 110
project creation, 111

service provider, 110
token-retrieving

application entries, 134–135
isValidForReq() function, 134
project structure, 133–134

type, 111–112
Obfuscation

adding proguard.config property, 195
decompiled, obfuscated class file, 196
definition, 194
exporting obfuscated package, 195
project properties file, 195

OFB mode. See Output feedback (OFB) mode
Open Web Application Security Project

(OWASP)
foundation, 101
list, 102
mobile security project, 102
testing, 101

Output feedback (OFB) mode, 63

■ P, Q
PCBC mode. See Propagating cipher-block

chaining (PCBC) mode
Permission constants. See Android

permission constants
ProGuard obfuscator, 196
Propagating cipher-block chaining (PCBC)

mode, 62
Proxim application

contact object, 47–48
cryptography routine, 51–52
location object, 48–49
save controller, 49–51
structure, 45–47

Public key infrastructure
instructions, 54–55
story and PKI elements, 55–56

Publishing and selling
developer registration, 159–160
download availability

ADB commands and features, 161–164
application directory, 164–165

license verification library (LVL)
alternate response verification idea,

192–193
building and including LVL, 184–190
Chuck Norris facts app, 175–176

Index

227

CommsEvent.java file, 172
Comms.java File, 173–175
CommsNotifier.java ile, 173
copying LVL sources to separate

directory, 178
downloading Google API Add-On,

176–178
importing LVL source as library project,

178–184
interfacing with market app and server,

171
Main Activity-ChuckNorrisFactsActivity.

java, 171–172
modified Verify Function, 193–194
obfuscation, 194

licensing, 170
licensing policy

allowAccess() method, 190–191
default policies, 190
processServerResponse() method,

191–192
reverse engineering

Android build process, 166
baksmali, code disassembling,

168–169
decompiling JAR file, 170
dexdump output, 167–168
DEX file, 165–166
running dex2jar, 169

■ R
Reverse engineering

Android build process, 166
baksmali, code disassembling, 168–169
decompiling JAR file, 170
dexdump output, 167–168
DEX file, 165–166
running dex2jar, 169

■ S
SaveController.saveContact(getApplication

Context(), contact), 19–20
Save Routine, SaveController.java, 15–16
SD card image file, 20–21
Security

API call process, 37–38
architecture

application code signing, 11
permissions, 10–11
privilege separation, 9–10

content providers, 33–37
intents, 37
protection levels, 39–40
sample code, 40–43
self-defined permissions, 38–39
zygote process, 31–32

Shared preferences
data retrieving code, 66–67
data storing code, 66
main class, 67
output, 68

Spyware. See Malware
SQLite databases

ContactsDB helper class, 72–73
contacts table, 71
main class, 71–72
output, 75
project structure, 71
RetrieveData class, 73–74
StoreData Class, 73

SSL (Secure Sockets Layer), 103–104
Stored information

classification
personal information, 23
sensitive information, 23
types, 22–23

encryption
key-generation algorithm, 25–26
results, 26
routine, 24–25

proxim and data storage
Contact Class, Contact.java, 18–19
contact object, 21
Location Class, Location.java, 16–17
reworked SaveController.java method,

26–28
SaveController.saveContact(get

ApplicationContext(), contact), 19–20
Save Routine, SaveController.java,

15–16
SD card image file, 20–21

security
direct attacks, 15
indirect attacks, 13–14

Symmetric key algorithm, 58

Index228

■ T, U
Theoretical concepts

challenge response authentication
client side, login, 158
Constants.java, 147
CRAM object, 149–152
generate() function, 152
generateReply(String response)

function, 153
graphical representation, 145–146
Hex.java file, 147
Login.java class, 147–149
project structure, 146–147
response, 153
server-side code, 153–157
steps, 145
verifyChallenge(String userResponse),

153
OAuth

handling authorization, 135–145
token-retrieving, 133–135

TLS (Transport Layer Security), 104–105

■ V
Virtual machine (VM), 4
Virtual private network (VPN), 117–118

■ W
Web applications. See also Authentication

techniques
advantages, 92
components

advantages, 94
login process, 94–95
three-tier architecture, 93–94

definition, 92
GET and POST, 93
HTML pages, 91–92

HTTP, 14
JSON (JavaScript Object Notation), 93
methods, 93
OWASP

foundation, 101
list, 102
mobile security project, 102
testing, 101

RESTful API, 93
SOAP, 92
source code, 84–85
technologies

databases and URL, 95–96
execute() method, 98–99
login class, 97–98
logon failure, 101
project structure, 96–97
server-side, 95
verification code, 96
XML files, 100

testing environment
app creation, 87
applications list, 86
dashboard, 87–88
Google App Engine project, 88–89
home page, 85–86
login servlet, 90–91
name creation, 86–87
remote application, 90
stub application package, 89–90

transit, 84
web service, 92
XML, 93

Web service, 92

■ X, Y, Z
XML (eXtensible Markup Language), 93,

126–129
XOR, 63

Android Apps Security

Sheran Gunasekera

Android Apps Security

Copyright © 2012 by Sheran Gunasekera

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version,
and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4062-4

ISBN-13 (electronic): 978-1-4302-4063-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the beneit of the
trademark owner, with no intention of infringement of the trademark.

he images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and used
according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and Google-based
marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not
ailiated with Google, Inc., and this book was written without endorsement from Google, Inc.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. he
publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh, Douglas Pundick
Technical Reviewer: Michael homas
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick, Jonathan

Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas
Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Brigid Dufy
Copy Editor: Jill Steinberg
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

For Tess and Shana

—Sheran

vii

Contents

About the Author ... xiii

About the Technical Reviewer .. xv

Acknowledgments .. xvii

Chapter 1: Android Architecture ■ .. 1

Components of the Android Architecture...2

The Kernel ..3

The Libraries ...4

The Dalvik Virtual Machine ...4

The Application Framework ..5

The Applications ...7

What This Book Is About ..7

Security ...8

Protect Your User ..8

Security Risks ...8

Android Security Architecture ...9

Privilege Separation ...9

Permissions ..10

Application Code Signing ..11

Summary ...12

Contentsviii

Chapter 2: Information: The Foundation of an App ■ .. 13

Securing Your Application from Attacks ..13

Indirect Attacks ...13

Direct Attacks ...15

Project 1:“Proxim” and Data Storage ..15

Classification of Information ...22

What Is Personal Information? ...23

What Is Sensitive Information? ...23

Analysis of Code ..23

Where to Implement Encryption ...24

Results of Encryption ..26

Reworked Project 1 ...26

Exercise ...28

Summary ...29

Chapter 3: Android Security Architecture ■ ... 31

Revisiting the System Architecture ...31

Understanding the Permissions Architecture ..33

Content Providers ...34

Intents ...38

Checking Permissions ...38

Using Self-Defined Permissions ...39

Protection Levels ..40

Sample Code for Custom Permissions ...41

Summary ...44

Chapter 4: Concepts in Action – Part 1 ■ .. 47

The Proxim Application ..47

Summary ...54

Chapter 5: Data Storage and Cryptography ■ ... 55

Public Key Infrastructure ...56

Terms Used in Cryptography ...59

Contents

ix

Cryptography in Mobile Applications ...59

Symmetric Key Algorithms ...60

Key Generation ...60

Data Padding ..62

Modes of Operation for Block Ciphers ..62

Data Storage in Android ..66

Shared Preferences ..67

Internal Storage ..70

SQLite Databases ...73

Combining Data Storage with Encryption ...78

Summary ...85

Chapter 6: Talking to Web Apps ■ ... 87

Preparing Our Environment ...88

HTML, Web Applications, and Web Services ..94

Components in a Web Application ..96

Web App Technology ...98

OWASP and Web Attacks ...104

Authentication Techniques ..105

Self-Signed Certificates ..110

Man-in-the-Middle Attack ..111

OAuth ..113

Challenge/Response with Cryptography ...118

Summary ...119

Chapter 7: Security in the Enterprise ■ .. 121

Connectivity ...121

Enterprise Applications ...122

Mobile Middleware ..123

Database Access ..124

Data Representation ...130

Summary ...136

Contentsx

■Chapter 8: Concepts in Action: Part 2 .

137 OAuth ...

137

Retrieving the Token ...137

Handling Authorization ...139

Challenge Response ..149

Summary ...162

■ Chapter 9: Publishing and Selling Your Apps .

163 Developer Registration ..163

Your Apps—Exposed ...165

Available for Download ...165

Reverse Engineering ...169

Should You License? ...174

Android License Verification Library ..175

Download the Google API Add-On ...180

Copy LVL Sources to a Separate Directory ...182

Import LVL Source As a Library Project...182

Building and Including LVL in our app ..188

Licensing Policy ...194

Effective Use of LVL ...196

Obfuscation ...198

Summary ...201

■Chapter 10: Malware and Spyware .

203 Four Stages of Malware ..

204

Infection ..204

Compromise ...204

Spread ..204

Exfiltration ..205

Case Study 1: Government Sanctioned Malware ..205

Infection ..206

Compromise ...206

xiContents

Spread ..206

Exfiltration ..206

Detection ..207

Case Study 2: Retail Malware—FlexiSPY ..209

Anti-Forensics ...210

Summary ...212

Appendix A: Android Permission Constants ... 213

Content Provider Classes ..218

Index ... 223

xiii

About the Author

Sheran Gunasekera is a security researcher and software
developer with more than 13 years of information security
experience. He is director of research and development for
ZenConsult Pte. Ltd., where he oversees security research in both
the personal computer and mobile device platforms. Sheran has
been very active in BlackBerry and Mobile Java security research
and was the author of the whitepaper that revealed the inner
workings of the first corporate-sanctioned malware application
deployed to its subscribers by the UAE telecommunications
operator Etisalat. He has spoken at many security conferences in
the Middle East, Europe and Asia Pacific regions and also provides
training on malware analysis for mobile devices and secure

software development for both Web and mobile devices. He also writes articles and publishes
research on his security-related blog, http://chirashi.zenconsult.net.

http://chirashi.zenconsult.net

xv

About the Technical

Reviewer

Michael Thomas has worked in software development for over
20 years as an individual contributor, team lead, program manager,
and Vice President of Engineering. Michael has over 10 years
experience working with mobile devices. His current focus is in
the medical sector using mobile devices to accelerate information
transfer between patients and health care providers.

xvii

Acknowledgments

I’d like to thank the editors, reviewers, and staff at Apress who worked tirelessly to help get this
book published. They were the driving force behind this book in more ways than one. They put
up with more than they should have. I am not a model author.

I’d also like to thank my dear friends and colleagues, Michael Harrington and Shafik Punja,
without whom I would not have had the opportunity to publish this book. Thanks guys, this has
been a great experience.

–Sheran Gunasekera

	Android Apps Security
	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Index

