Create apps that are safe from hacking,
attacks, and security breaches

Android Apps

Security

Sheran A. Gunasekera

Apress

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

LN

Apress®

[vww allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

About the AUthOrccccsrimsmrs s ———————————— xiii
About the Technical REVIEWETccussmsssssmsssmssssssmssssssmsssmsssssssssssssssssssssssssnsssnsssnsnss Xv
AcKnNOWIEdgMENESccuuiirrmmmssssnnsnnnnmmmsssssssssssssnnsmsssssssssssssnnsssssssssssnnnnnnsssssssssssnnnnnnnnsess XVii
Chapter 1: Android Architecture........ccuccmmrmisnnnmnnssnnmmssssnmmssssme s ——————— 1
Chapter 2: Information: The Foundation of an App........ccccccmnnnsesnmmmsssssnnmnsssssnmsssnns 13
Chapter 3: Android Security Architectureccccusemmmmsssssmnmmmsssssnnmmsssnmmsssssnnsnnn 31
Chapter 4: Concepts in Action — Part 1........c.cccccimnnnnmmmmnnnsssnnmmnsssnnmmsssssssssssssnnssnns 47
Chapter 5: Data Storage and Cryptography........cccummmmnnsemmmmmmsssssnmmmssssssmsssssssnsssssnns 55
Chapter 6: Talking t0 Web APPS.....ccciuusssmmmmmmssssnsmmsssssnsnssssssssnssssssnsnssssssnnnssssssnsnsssssnnns 87
Chapter 7: Security in the Enterprisecccuummnnemmmimmssssmmmsssssmmmssssssmssssssssssnn 121
Chapter 8: Concepts in Action: Part 2............cccinnnmemmmmnmssenmmmssssnmmsssssmmssssssnassnn 137
Chapter 9: Publishing and Selling Your ApPSooccmmmmmsssanmmmsssssnmmsssssssssssssssnsssssnnns 163
Chapter 10: Malware and SPYWAreucuumsssssssssmmmssssmssssssssssssssssssssssnssssssssssssssnnnnnnns 203
Appendix A: Android Permission Constantscccccuemmmmmsemnmmmssssnmmssssnmsssssnm. 213
INO@X eeiiersismrssnnsumnnnsm s s s s s n s r i n e ——————— 223
v

[vww allitebooks.cond

http://www.allitebooks.org

Chapter

Android Architecture

Google entered the mobile phone market in a style that only multibillion-dollar companies can
afford: it bought a company. In 2005, Google, Inc. purchased Android, Inc. At the time, Android
was relatively unknown, despite having four very successful people as its creators. Founded

by Andy Rubin, Rich Miner, Chris White, and Nick Sears in 2003, Android flew under the radar,
developing an operating system for mobile phones. With a quest to develop a smarter mobile
phone that was more aware of its owner’s preferences, the team behind the Android operating
system toiled away in secrecy. Admitting only that they were developing software for mobile
phones, the team remained quiet about the true nature of the Android operating system until the
acquisition in 2005.

With the full might of Google’s resources behind it, Android development increased at a rapid
pace. By the second quarter of 2011, Android had already captured nearly a 50% market share
in mobile phone operating systems shipped to end users. The four founders stayed on after the
acquisition, with Rubin taking the lead as Senior Vice President of Mobile. The official launch of
version 1.0 of Android took place on September 23, 2008, and the first device to run it was the
HTC Dream (see Figure 1-1).

[vww allitebooks.cond

http://www.allitebooks.org

2 CHAPTER 1: Android Architecture

B2 M 205 pm

_September 2008

Figure 1-1. An HTC Dream (Courtesy Michael Oryl)

One of the unique features of the Android operating system that has allowed it to grow

rapidly has been that the binaries and source code are released as open source software.

You can download the entire source code of the Android operating system, and it takes up
approximately 2.6 GB of disk space. In theory, this allows anyone to design and build a phone
that runs Android. The idea of keeping the software open source was followed until version

3.0. Versions of Android including and higher than 3.0 are still closed source. In an interview
given to Bloomberg Businessweek, Rubin said that the version 3.x code base took many
shortcuts to ensure it was released to market quickly and worked with very specific hardware.
If other hardware vendors adopted this version of Android, then the chances for a negative user
experience would be a possibility, and Google wished to avoid this."

Components of the Android Architecture

The Android architecture is divided into the following four main components (see Figure 1-2):

1. The kernel

2. The libraries and Dalvik virtual machine
3. The application framework

4. The applications

' Bloomberg Businessweek, “Google Holds Honeycomb Tight,” Ashlee Vance and Brad Stone,
www . businessweek.com/technology/content/mar2011/tc20110324 269784 .htm, March 24, 2011.

vww allitebooks.conl

http://www.businessweek.com/technology/content/mar2011/tc20110324_269784.htm
http://www.allitebooks.org

CHAPTER 1: Android Architecture

Application App0 Appi App2 App3 App4
Layer
T Activity Window Content View Notification
Frameworks Manager Manager Providers System Manager
L
ayer Package Resource XMPP
l Manager Manager Service
Surface Media .
Manager Framework SaLite
Core
: Libraries
Runtime .
Layer OpenGL/ES FreeType WebKit
Dalvik Virtual
Machine (DVM)
SGL SSL libc
T Display Mouse Ethernet Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver
Kernel
Layer - .
USB Keyboard WiFi Audio Power
Driver Driver Driver Drivers Management

Hardware

C, C++, Native Code

Java

[] = Linux Kernel [] = Android Frameworks

] = Libraries [] = Applications

[] = Android Runtime

Figure 1-2. The Android architecture

The Kernel

Android runs on top of a Linux 2.6 kernel. The kernel is the first layer of software that interacts
with the device hardware. Similar to a desktop computer running Linux, the Android kernel will
take care of power and memory management, device drivers, process management, networking,
and security. The Android kernel is available at http://android.git.kernel.org/.

Modifying and building a new kernel is not something you will want to consider as an application
developer. Generally, only hardware or device manufacturers will want to modify the kernel to
ensure that the operating system works with their particular type of hardware.

[vww allitebooks.cond

http://android.git.kernel.org/
http://www.allitebooks.org

4 CHAPTER 1: Android Architecture

The Libraries

The libraries component also shares its space with the runtime component. The libraries
component acts as a translation layer between the kernel and the application framework. The
libraries are written in C/C++ but are exposed to developers through a Java API. Developers can
use the Java application framework to access the underlying core C/C++ libraries. Some of the
core libraries include the following:

LibWebCore: Allows access to the web browser.

Media libraries: Allows access to popular audio- and video-recording and
playback functions.

Graphics libraries: Allows access to 2D and 3D graphics drawing engines.

The runtime component consists of the Dalvik virtual machine that will interact with and run
applications. The virtual machine is an important part of the Android operating system and
executes system and third-party applications.

The Dalvik Virtual Machine

Dan Bornstein originally wrote the Dalvik virtual machine. He named it after a small fishing village
in Iceland where he believed one of his ancestors once originated. The Dalvik VM was written
primarily to allow application execution on devices with very limited resources. Typically, mobile
phones will fall into this category because they are limited by processing power, the amount of
memory available, and a short battery life.

WHAT IS A VIRTUAL MACHINE?

A virtual machine is an isolated, guest operating system running within another host operating system. A virtual
machine will execute applications as if they were running on a physical machine. One of the main advantages of a
virtual machine is portability. Regardless of the underlying hardware, the code that you write will work on the VM. To
you as a developer, this means that you write your code only once and can execute it on any hardware platform that
runs a compatible VM.

The Dalvik VM executes .dex files. A .dex file is made by taking the compiled Java .class or .jar
files and consolidating all the constants and data within each .class file into a shared constant
pool (see Figure 1-3). The dx tool, included in the Android SDK, performs this conversion. After
conversion, .dex files have a significantly smaller file size, as shown in Table 1-1.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1: Android Architecture

Jar file
.class file

heterogeneous
constant pool

other data

.class file

heterogeneous
constant pool

other data

.class file

heterogeneous
constant pool

other data

Figure 1-3. Conversion of a .jar file to a .dex file

Table 1-1. A File Size Comparison (in Bytes) of .jar and .dex Files

.dex file

string_ids
constant pool

type_ids
constant pool

proto_ids
constant pool

field_ids
constant pool

method_ids
constant pool

other data

Application Uncompressed .jar Compressed .jar Uncompressed .dex
Common system 21445320 = 100% 10662048 = 50% 10311972 = 48%
libraries

Web browser app 470312 = 100% 232065 = 49% 209248 = 44%
Alarm clock app 119200 = 100% 61658 = 52% 53020 = 44%

The Application Framework

The application framework is one of the building blocks for the final system or end-user
applications. The framework provides a suite of services or systems that a developer will find
useful when writing applications. Commonly referred to as the API (application programming
interface) component, this framework will provide a developer with access to user interface
components such as buttons and text boxes, common content providers so that apps may
share data between them, a notification manager so that device owners can be alerted of
events, and an activity manager for managing the lifecycle of applications.

As a developer, you will write code and use the APIs in the Java programming language. Listing 1-1,
taken from Google’s sample APl demos (http://developer.android.com/resources/samples/
ApiDemos/index.html), demonstrates how to use the application framework to play a video file. The
import statements in bold allow access to the core C/C++ libraries through a Java API.

[vww allitebooks.cond

http://developer.android.com/resources/samples/ApiDemos/index.html
http://developer.android.com/resources/samples/ApiDemos/index.html
http://www.allitebooks.org

CHAPTER 1: Android Architecture

Listing 1-1. A Video Player Demo (Courtesy Google, Inc.)

N
X K K K K K K X K ¥ X X ¥ *

*
~

Copyright (C) 2009 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package com.example.android.apis.media;

import com.example.android.apis.R;
import android.app.Activity;

import android.os.Bundle;

import android.widget.MediaController;
import android.widget.Toast;

import android.widget.VideoView;

public class VideoViewDemo extends Activity {

/**

* TODO: Set the path variable to a streaming video URL or a local media
* file path.

*/

private String path = "";
private VideoView mVideoView;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.videoview);
mVideoView = (VideoView) findViewById(R.id.surface view);

if (path == "") {
// Tell the user to provide a media file URL/path.
Toast.makeText(
VideoViewDemo.this,
"Please edit VideoViewDemo Activity, and set path"

+ " variable to your media file URL/path",
Toast.LENGTH_LONG) . show();

} else {

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1: Android Architecture 7

/*

* Alternatively,for streaming media you can use

* mVideoView.setVideoURI(Uri.parse(URLstring));

*/
mVideoView.setVideoPath(path);
mVideoView.setMediaController(new MediaController(this));
mVideoView.requestFocus();

The Applications

The application component of the Android operating system is the closest to the end user. This
is where the Contacts, Phone, Messaging, and Angry Birds apps live. As a developer, your
finished product will execute in this space by using the API libraries and the Dalvik VM. In this
book, we will extensively look at this component of the Android operating system.

Even though every component of the Android operating system can be modified, you will only
have direct control over your own application’s security. This does not, however, give you free
rein to ignore what happens if the device is compromised with a kernel or VM exploit. Ensuring
your application does not fall victim to an attack because of an unrelated exploit is also your
responsibility.

What This Book Is About

Now that you’ve got an overall understanding of the Android architecture, let’s turn to what
you will not learn in this book. First, you are not going to learn how to develop Android
apps from scratch in this book. You will see many examples and source code listings;

and while | will explain each section of code, you might have additional questions that

you might not find answered in this book. You are required to have a certain degree of
experience and skill at writing Java applications for the Android platform. | also assume
that you have already setup your Android development environment using the Eclipse IDE.
In this book, | will focus on how you can develop more secure applications for the Android
operating system.

Android has had its fair share of security setbacks and a burgeoning list of malware that is worth
examining and learning from. Armed with where to look and how to tackle security aspects of
developing for Android will not necessarily make you a better coder, but it will start you on your
way to becoming more responsible with your end users’ privacy and security.

I’'ve tried to write this book in a manner that will help you understand the concepts of security in
relation to the applications you develop. In most cases, the best way | find | can achieve this is
by teaching through example. Therefore, you will usually find me asking you to write and execute
source code listings first. | will then follow up with an explanation of the specific concept that we
are covering. With this in mind, let’s take a look at some of the security controls available on the
Android operating system.

[vww allitebooks.cond

http://www.allitebooks.org

8 CHAPTER 1: Android Architecture

Security
Security isn’t a dirty word, Blackadder!

—General Melchett, Blackadder IV

Security is a vast subject and is applicable to many areas depending on what context it is taken
in. | wrote this book to cover a small component of a small component of security. It is written to
give you a good understanding of Android application security. However, what does that really
mean? What are we trying to secure? Who will benefit from this? Why is it important? Let’s try to
answer those questions and possibly come up with a few new ones.

First, let’s identify who you really are. Are you a developer? Maybe you’re a security practitioner
conducting research. Alternatively, maybe you’re an end user interested in safeguarding yourself
from an attack. I’d like to think that | fit into each of these categories. No doubt, you will fit into
one or more of them. The vast majority, however, will fit into one category: an end user who
wants to use the features of a well-written application in a manner that does not compromise her
privacy and security. If you’re a developer, and I'm guessing you are if you’ve picked this book
up, this is your target audience: the end user. You write applications to distribute to your users.
You may choose to sell them or give them away for free. Either way, you are writing applications
that will end up installed on someone else’s device, possibly thousands of miles away.

Protect Your User

Your application should strive to provide the best functionality possible while taking care to
protect your users’ data. This means thinking about security before you begin development.

Your user might not always know about the security practices you employ “under the hood” of
your application, but one breach in your application is all it will take to ensure that all his Twitter
and Facebook followers find out. Planning and thinking about security prior to the development
phase of your application can save you the embarrassment of bad reviews and the loss of
paying customers. The end user is almost never quick to forgive or forget.

As we go along, you will learn principles and techniques to identify sensitive user data and
create a plan to protect this data. The goal is to eliminate or vastly reduce any unintentional harm
your application could cause. So, what are you really protecting the end user from?

Security Risks

Mobile device users face some unique risks when compared with desktop computer users.
Aside from the higher possibility of losing or having their device stolen, mobile device users risk
losing sensitive data or having their privacy compromised. Why would this be different from
desktop users? First, the quality of data stored on a user’s mobile device tends to be more
personal. Apart from e-mail, there are instant messages, SMS/MMS, contacts, photos, and
voicemail. “So what?” you say. “Some of these things exist on a desktop computer.” True, but
consider this: The data on your mobile device is most likely going to be of higher value than that

CHAPTER 1: Android Architecture 9

on your desktop because you carry it around with you all the time. It is a converged platform

of both your computer and mobile phone that contains a richer collection of personal data.
Because the level of user interaction is higher on the smartphone, the data is always newer than
on your desktop computer. Even if you have configured real-time sync to a remote location, that
still only protects you from a loss of data and not a loss of privacy.

Consider also that the format of data stored on mobile devices is fixed. Every phone will have
SMS/MMS, contacts, and voicemail. Phones that are more powerful will have photos, videos,
GPS locations, and e-mail, but all of it is common regardless of the operating system. Now
consider how important all of this information is to an end user. To a user who has no backups,
losing data of this nature can be unthinkable. Losing important phone numbers, precious
moments of her daughter’s first steps caught on video, or important SMS messages can be
catastrophic to the everyday phone user.

What about the user who combines both business and personal activities on his phone? What
would you do if someone copied an entire file of passwords for your office server farm from your
phone? Or if an e-mail containing trade secrets and confidential pricing for proposals leaked out
onto the Internet? What if you lost the address of your child’s school? Consider a stalker gaining
access to this information and more, such as your home address and phone number.

It is clear when you think about it that the data stored on the phone is, in most cases, far more
valuable than that of the device itself. The most dangerous type of attack is the one that takes
place silently and remotely; an attacker does not need physical access to your phone. These
types of attacks can happen at any time and can often happen because of weak security
elsewhere on the device. These lapses in security might not be because your application is
insecure. They could be due to a bug in the kernel or web browser. The question is this: can your
application protect its data from attackers even when they gain access to the device through
different routes?

Android Security Architecture

As we discussed previously, Android runs on top of the Linux 2.6 kernel. We also learned that
the Android Linux kernel handles security management for the operating system. Let’s take a
look at the Android Security Architecture.

Privilege Separation

The Android kernel implements a privilege separation model when it comes to executing
applications. This means that, like on a UNIX system, the Android operating system requires
every application to run with its own user identifier (uid) and group identifier (gid).

Parts of the system architecture themselves are separated in this fashion. This ensures that
applications or processes have no permissions to access other applications or processes.

10 CHAPTER 1: Android Architecture

WHAT IS PRIVILEGE SEPARATION?

Privilege separation is an important security feature because it denies one of the more common types of attacks.
In many cases, the first attack that is performed is not the most effective one. It is usually the stepping-stone or
gateway to a bigger attack. Often, attackers will exploit one component of a system first; and once there, they will try
to attack a more important component in the system. If both these components are running with the same privileges,
then it is a very trivial task for the attacker to hop from one component to the next. By separating privileges,

the attacker’s task becomes more difficult. He has to be able to escalate or change his privileges to that of the
component he wishes to attack. In this manner, the attack is stopped, if not slowed.

Because the kernel implements privilege separation, it is one of the core design features of
Android. The philosophy behind this design is to ensure that no application can read or write

to code or data of other applications, the device user, or the operating system itself. Thus, an
application might not be able to arbitrarily use the device’s networking stack to connect to
remote servers. One application might not read directly from the device’s contact list or calendar.
This feature is also known as sandboxing. After two processes have run in their own sandboxes,
the only way they have to communicate with each other is to explicitly request permission to
access data.

Permissions

Let’s take a simple example. We have an application that records audio from the built-in
microphone of the device. For this application to work correctly, the developer has to make sure
to add a request for the RECORD_AUDIO permission in the application’s AndroidManifest.xml file.
This allows our application to request permission to use the system component that handles
audio recording. But who decides whether to grant or deny access? Android allows the end user
to perform this final approval process. When the user installs our application, he is prompted
with the screen shown in Figure 1-4. It is worthwhile to note that no prompt for permissions will
take place when the application is executing. Instead, the permission will need to be granted at
install time.

If we do not explicitly set our need for the RECORD_AUDIO permission, or if the device owner does
not grant us the permission after we request it, then an exception will be thrown by the VM and
the application will fail. It is up to the developer to know to request the permission and handle
the scenario where permission is not granted by catching the relevant exception. To request this
permission, the following tag must be included in the AndroidManifest.xml file of the project:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

The full list of permissions is given in this book’s appendix.

CHAPTER 1: Android Architecture 11

The following one or more
applications request permission to
access your account, now and in the
future.

® Google Reader

Google Reader

Do you want to allow this request?

T

Figure 1-4. The Android permissions request screen

Application Code Signing

Any application that is to run on the Android operating system must be signed. Android uses
the certificate of individual developers in order to identify them and establish trust relationships
among the various applications running in the operating system. The operating system will

not allow an unsigned application to execute. The use of a certification authority to sign the
certificate is not required, and Android will happily run any application that has been signed with
a self-signed certificate.

Like permissions checks, the certificate check is done only during installation of the application.
Therefore, if your developer certificate expires after your application is installed on the device,
then the application will continue to execute. The only difference at this point would be that you
would need to generate a new certificate before you could sign any new applications. Android
requires two separate certificates for debug versions of your application and release versions
of your application. Generally, the Eclipse environment running the Android Development

Tools (ADT) is already setup to help you generate your keys and install your certificate, so

that your applications can be automatically packaged and signed. The Android emulator
behaves identically to the physical device. Like the physical device, it will only execute signed
applications. We will cover application code signing in detail, as well as publishing and selling
your applications online.

12 CHAPTER 1: Android Architecture

Summary

As we’ve seen so far, Android received a tremendous boost in resources and attention thanks
to Google’s takeover of Android. This same care and attention has helped propel Android to
one of the most rapidly growing smartphone operating systems in the world today. Android’s
open source model has helped its numbers grow, mainly because many different hardware
manufacturers can use the operating system on their phones.

We’ve also seen that the core of Android is based on the Linux kernel. The kernel’s two main
tasks are (1) to serve as a bridge between hardware and operating system, and (2) to handle
security, memory management, process management, and networking. The kernel is usually
one of the main components that will be modified when different hardware manufacturers start
adopting Android to work with their hardware.

The next layer that goes around the Android kernel is the runtime layer that comprises the core
libraries and the Dalvik virtual machine. The Dalvik VM is a fundamental part of executing your
applications on the Android platform. As you will see in the following chapters, the Dalvik VM
has some unique features when it comes to executing applications securely and efficiently in a
resource-constrained environment.

The next upper layers to be added are the frameworks and applications, respectively. You can
think of the framework layer as yet another bridge between the Java API and the native code
and system processes running below. This is where all the Android Java APIs live. Any libraries
that you wish to import in your program are imported from here. The applications layer is
where your applications will finally live and work. You will share this space with other developer
applications and Android’s bundled applications such as the Phone, Calendar, E-mail, and
Messaging applications.

We then looked briefly at the security risks, how you have the responsibility to protect your end
user, and some of the ways in which Android facilitates this. The three areas we looked at were
privilege separation, permissions, and application code signing. In the next chapters, we will
explore what you can do to not only make use of these features, but also add in your own levels
of security and end-user protection.

Chapter

Information: The Foundation
of an App

The basis of all meaningful applications is information, and we design and build applications
to exchange, create, or store it. Mobile applications are no different. In today’s well-connected
mobile landscape, information exchange is the name of the game. To illustrate this point,
imagine an Android phone without mobile network or WiFi coverage. While there would still be
uses for such a phone, you would have lost access to some of the more important applications
on your device. For example, e-mail, instant messaging, web browsing, and any other
application that require the Internet would now be nonfunctional.

In later chapters, we will focus our efforts on examining information in transit and how to secure
it. In this chapter, we will focus mostly on what happens to information that is stored.

Securing Your Application from Attacks

When created or received, data needs to be stored somewhere. How this information is stored
will ultimately reflect on how secure your application really is. Releasing your application to the
public should be approached with the same caution and paranoia as launching a website on the
Internet. You should assume that your application will be either directly or indirectly attacked at
some time and that the only thing standing between your end user’s privacy and data protection
is your application.

Indirect Attacks

As dramatic as that last sentence sounds, it is not without basis. Before we go further, let’s take
a look at whether my fear mongering is justified. In the latter part of 2010 and early 2011, two
vulnerabilities were discovered in Android versions 2.2 and 2.3, respectively. The vulnerability is
essentially the same one, in which an attacker can copy any file that is stored on the device’s SD

13

14 CHAPTER 2: Information: The Foundation of an App

Card without permission or even without a visible cue that this is happening. The vulnerability
works as shown in Figure 2-1.

evil.html

% Malicious |:|
—> ooo
Page 9c8

auto saved

No tosDCard.
prompt

SD [« s

Y

Full access
to SDCard.

javascript
executed.

Figure 2-1. Data theft vulnerabilities

The following are the most noteworthy points:
1. A user visits a malicious website hosting a file, such as evil.html.

2. Due to one part of the vulnerability, the evil.html file is downloaded and
saved to the device SD Card without prompting the user.

3. Due to another part of the vulnerability, the saved file can be made to
execute JavaScript code as soon as it is saved. Once again, there is no
prompt to the end user.

4. Due to the final part of this vulnerability, the executed JavaScript from
the preceding point, because it is running under the “local” context of the
device, will have full access to upload files stored on the SD Card to a
website of the attacker’s choosing.

For the sake of argument, assume that your application writes all saved information to the SD
Card for storage under its own directory. Because of the vulnerability just discussed, the data
used by your application is at risk of being stolen. Any Android device that runs your application
and the vulnerable firmware versions poses a risk of data theft to its end user. This is an example
of an indirect attack on your application.

How vulnerable your application is to an indirect attack depends largely on how much effort you
put into architecting and considering security aspects before you begin writing a single line of
code. You may ask the question, “I’'m just a small app developer planning to sell my app for a
low price online, so do | really need to waste time doing so much planning beforehand?” And |
would answer you with a resounding, “Yes!” Whether you are part of a team of thirty developers
or an individual working from home, a well-architected application is something you should
always strive to create. | hope that this is what you will learn from this book.

CHAPTER 2: Information: The Foundation of an App 15

Direct Attacks

Direct attacks are significantly different and can take many different forms. A direct attack can
be classified as one that is targeted directly at your application. Thus, the attacker is looking to
leverage weaknesses in your application design to either collect sensitive information on your
application’s users or to attack the server that your application talks to. Take, for instance, a
mobile-banking application. An attacker may go after the mobile applications belonging to a
specific bank. If the application design is weak—for example, if that sensitive user data is stored
in clear text, or the communication between application and server is not secured by SSL-then
an attacker can craft special attacks that only target these weaknesses. This is a direct attack on
a specific application. | will cover direct attacks in more detail in Chapter 9 of this book.

Project 1:*“Proxim” and Data Storage

Let’s get started with a simple example called Proxim. I’ve been contracted to write an
application that can send an SMS to specific, defined contacts when a user is within certain
proximity to a set of GPS coordinates. For instance, with this application, a user can add his
wife as a contact and have the application SMS her every time he is within three miles of his
workplace and house. This way, she knows when he is close to home and the office.

You can download and examine the entire source code for the Proxim application from the
Source Code/Download area of the Apress website (www.apress.com). For the sake of clarity, let’s
take a look at the most important areas.

The data-storage routine is shown in Listing 2-1.
Listing 2-1. The Save Routine, SaveController. java
package net.zenconsult.android.controller;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Llocation;
import android.content.Context;

import android.os.Environment;

import android.util.Log;

public class SaveController {
private static final String TAG = "SaveController";

public static void saveContact(Context context, Contact contact) {
if (isReadWrite()) {
try {
File outputFile = new File(context.getExternalFilesDir(null),contact.getFirstName());
FileOutputStream outputStream = new FileOutputStream(outputFile);
outputStream.write(contact.getBytes());
outputStream.close();

http://www.apress.com

16 CHAPTER 2: Information: The Foundation of an App

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"I0 Exception");

}

} else {
Log.e(TAG,"Error opening media card in read/write mode!");
}

}

public static void savelocation(Context context, Location location) {
if (isReadWrite()) {
try {
File outputFile = new File(context.getExternalFilesDir(null),location.getIdentifier());
FileOutputStream outputStream = new FileOutputStream(outputFile);
outputStream.write(location.getBytes());
outputStream.close();

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"I0 Exception");

}

} else {
Log.e(TAG,"Exror opening media card in read/write mode!");
}

}

private static boolean isReadOnly() {
Log.e(TAG,Environment
.getExternalStorageState());
return Environment.MEDIA MOUNTED READ ONLY.equals(Environment
.getExternalStorageState());

}

private static boolean isReadWrite() {
Log.e(TAG,Environment
.getExternalStorageState());

return Environment.MEDIA MOUNTED.equals(Environment
.getExternalStorageState());

}

Each time a user selects the Save Location button or the Save Contact button, it triggers the
preceding code. Let’s take a look at the Location (see Listing 2-2) and Contact (see Listing
2-3) classes in more detail. While we could implement one main save routine, | am keeping it
separate in case there is a need to act on different objects in a different manner.

CHAPTER 2: Information: The Foundation of an App 17

Listing 2-2. The Location Class, Location.java

package net.zenconsult.android.model;

publicclass Location {
private String identifier;
privatedouble latitude;
privatedouble longitude;

public Location() {

}

publicdouble getlatitude() {
return latitude;
}

publicvoid setlLatitude(double latitude) {
this.latitude = latitude;
}

publicdouble getLongitude() {
return longitude;
}

publicvoid setlongitude(double longitude) {
this.longitude = longitude;
}

publicvoid setIdentifier(String identifier) {
this.identifier = identifier;
}

public String getIdentifier() {
return identifier;
}

public String toString() {
StringBuilder ret = new StringBuilder();
ret.append(getIdentifier());
ret.append(String.valueOf(getLatitude()));
ret.append(String.valueOf(getLongitude()));
return ret.toString();

}

publicbyte[] getBytes() {
return toString().getBytes();
}

[vww allitebooks.cond

http://www.allitebooks.org

18 CHAPTER 2: Information: The Foundation of an App

Listing 2-3. The Contact Class, Contact.java
package net.zenconsult.android.model;

publicclass Contact {
private String firstName;
private String lastName;
private String addressi;
private String address2;
private String email;
private String phone;

public Contact() {
}
public String getFirstName() {

return firstName;
}

publicvoid setFirstName(String firstName) {
this.firstName = firstName;
}

public String getlLastName() {
return lastName;
}

publicvoid setlastName(String lastName) {
this.lastName = lastName;
}

public String getAddressi() {
return addressi;
}

publicvoid setAddressi(String addressi) {
this.address1 = addressi;
}

public String getAddress2() {
return address2;
}

publicvoid setAddress2(String address2) {
this.address2 = address2;
}

public String getEmail() {
return email;
}

CHAPTER 2: Information: The Foundation of an App 19

publicvoid setEmail(String email) {
this.email = email;
}

public String getPhone() {
return phone;
}

publicvoid setPhone(String phone) {
this.phone = phone;
}

public String toString() {
StringBuilder ret = new StringBuilder();
ret.append(getFirstName() + "|");
ret.append(getLastName() + "|");
ret.append(getAddress1i() + "|");
ret.append(getAddress2() + "|");
ret.append(getEmail() + "|");
ret.append(getPhone() + "|");
return ret.toString();

}

publicbyte[] getBytes() {
return toString().getBytes();
}

}

The Location and Contact classes are standard classes designed to hold data specific to each
type. Each of them contains toString() and getBytes() methods that return the entire contents
of the class as either a String or an array of bytes.

If we were to manually add a Contact object, then we would most likely use code similar to what
is shown in Listing 2-4.

Listing 2-4. Code that Adds a New Contact Object

final Contact contact = new Contact();
contact.setFirstName("Sheran");
contact.setlLastName("Gunasekera");
contact.setAddress1("");
contact.setAddress2("");
contact.setEmail("sheran@zenconsult.net");
contact.setPhone("12120031337");

Assume for the moment that the code in Listing 2-4 is called when a user fills in the screen to
add a new contact to the application. Rather than seeing hardcoded values, you will use the
getText () methods from each of the EditText objects that are displayed on your main View.

If you execute the code SaveController.saveContact(getApplicationContext(), contact))in
your Android simulator, the SaveController will take the newly created Contact and store it in the
external media source (refer back to Listing 2-1).

20 CHAPTER 2: Information: The Foundation of an App

Note It is always good practice to use the getExternalFilesDir () method to find the
location of the SD Card on an Android device. Because Android can run on a large number of
devices with different specifications, the location of the SD Card directory may not always be in
/sdcard. The getExternalFilesDir() method will query the operating system for the correct
location of the SD Card and return the location to you.

Let’s take it a line at a time, beginning with the constructor for the saveContact() method:

public static void saveContact(Context context, Contact contact) {
if (isReadWrite()) {

try {

The preceding snippet expects a Context object and a Contact object. Each application on
Android has its own Context. A Context object holds application-specific classes, methods,

and resources that can be shared among all the classes within an application. For example, a
Context object will contain information about the location of the SD Card directory. To access it,
you have to invoke the Context.getExternalFilesDir() method. After the method accepts the
parameters, it will check to see if the SD Card on the device is mounted and if it is writeable. The
isReadWrite() method will execute and return a true or false value to indicate this:

File outputFile = new File(context.getExternalFilesDir(null),contact.getFirstName());

This code creates a File object that points to the location of the SD Card directory. We use the
first name of the Contact object as the file name:

FileOutputStream outputStream = new FileOutputStream(outputFile);
outputStream.write(contact.getBytes());
outputStream.close();

Using this code, we create a FileOutputStream that points to the location of our File object.
Next, we write the contents of our Contact object to the output stream using the getBytes()
method to return an array of bytes. Finally, we close the FileOutputStream.

When execution completes, we should have a file with the name “Sheran” written to the SD Card
directory on the device. I’m using the Android simulator on Mac OS X Snow Leopard. Therefore,
when | navigate to the location of the simulator, | can see the screen shown in Figure 2-2.

CHAPTER 2: Information: The Foundation of an App

Android-2.3.3.avd

Date Modified

Figure 2-2. The SD Card image file on Max 0S X

When this image is mounted by navigating to Android/data/net.zenconsult.android/files, the

= cache.img
2 config.ini
2 emulator-user.ini
@) hardware-gemu.ini

= userdata-gemu.img
- userdata.img

£} Today, 6:11 PM
£ Today, 5:10 PM
© Aug 4, 2011 11
£ Today, 5:10 PM

B sdcard.img Today, 5:22 PM

£ Today, 6:54 PM
£} Today, 5:10 PM

newly created contact file name is visible (see Figure 2-3).

¥ DEVICES
I azazel
Q Macintosh HD
|_| SDCARD

¥ SHARED
IEJ gate
IEJ black
El thinkpad

¥ PLACES
E Desktop
ﬁ'j sheran
ﬁ Applications
@ Documents
ﬁ Projects

¥ SEARCH FOR
() Today

(L) Yesterday

M Sheran

Date Modified | Size

Today, 5:16 PM 512 bytes

alnf

m

o
5
} 4

Figure 2-3. The Contact object that was written to a file

If we open the file up in a text editor, we can see the plain text data that was saved from the
application (see Figure 2-4).

21

22 CHAPTER 2: Information: The Foundation of an App

N-Yole M Sheran
1 | Sheran|Gunasekeral | | sheranBzenconsult.net|121206031337|

Figure 2-4. The contents of the Contact object

Classification of Information

One of the things | struggled with when starting out in mobile-application development was the
fact that I’d get into code writing from the get go. I'd make up the features in my head and code
them as | went along. All too often, | would later spend time revising my code and going back to
write a plan midstream. This had devastating effects on my deadlines and deliverables. It also
had a detrimental effect on the security of my applications.

| have since learned that writing up a brief outline of the project that | am about to embark on

will help me think of things ahead of time. While this seems like an obvious thing, there are many
developers that | have spoken with who fail to follow this simple step. One other thing that | have
also begun doing religiously is finding time to look at the information or data that my application
will be handling. For instance, | use a table like the one shown in Table 2-1 to classify the data
that my application handles. The table is very basic; however, by putting it down on paper, | am
able to visualize the types of data my application will handle—moreover, I’'m able to formulate a
plan to secure that information.

Table 2-1. Data Classification Table

Data Type Personal? Sensitive? Create Store Send Receive
Name Yes No X X X

E-mail Address Yes Yes X X X

Phone No. Yes Yes X X

Address Yes Yes X X

If you look at the data classification table in Table 2-1 closely, you will realize that some of the
headings are very subjective. Different people will have different opinions on what constitutes
sensitive or personal information. Nevertheless, it is usually best to try and zero in on a common
frame of reference as to what constitutes sensitive and personal information. In this section,
you will try to do that by taking a look at the table header first, and then going over each of the
columns:

Data Type: You will be handling this data within your application. It is self-
explanatory.

Personal?: This column indicates whether the data type is classified as personal
information.

CHAPTER 2: Information: The Foundation of an App 23

Sensitive?: This column indicates whether the data type is classified as sensitive
information.

Create: Does your application allow this user to create this data type?

Store: Does your application store this data type either on the device or remotely
on a server?

Sent: Is this data type sent across the network to another party or server?

Receive: Is this data type received over the network from another party?

What Is Personal Information?

Personal information can be classified as data that is known to you and a limited number of
people within your social circle. Personal information is usually something that is private to
you, but that you would be willing to share with close friends and family members. Examples of
personal information can be your phone number, address, and e-mail address. The effects of
having this information compromised and leaked will usually not cause significant physical or
emotional harm to yourself or your family members. Instead, it may give rise to situations that
will greatly inconvenience you.

What Is Sensitive Information?

Sensitive information is worth much more than personal information. Sensitive information is
usually information that you will not share with anyone under most circumstances. Data of this
type includes your passwords, Internet banking credentials (such as PIN codes), mobile phone
number, Social Security number, or address. If sensitive information is compromised, then the
effects may cause you either physical or emotional harm. This information should be protected
all the time, regardless of whether it is in transit or in storage.

Caution How can the loss of sensitive information cause you physical or emotional harm?
Consider losing your online banking credentials. An attacker can cause you immense financial
(physical and emotional) harm by stealing all your money. A stalker that gets hold of your
phone number or address can pose a grave threat to you or your family’s physical well being.

Analysis of Code

If we go back to the indirect attack that we discussed earlier in this chapter, it is evident that
data kept in clear view on an SD Card is a significant risk and should be avoided at all costs.
Data theft or exposure has been one of the leading causes of financial and reputational loss for
corporations. But just because you’re writing an application for a single user of a smartphone
does not mean you should treat data theft lightly. In the case of Proxim, this weakness of clear

24 CHAPTER 2: Information: The Foundation of an App

text data storage exists. Anyone who has access to the device’s SD Card will be able to copy
personal information, such as names, addresses, phone numbers, and e-mail addresses.

We can trace the flaw in the original code to the point where we save the data. The data itself

is not obscured or encrypted in any way. If we were to encrypt the data, then the personal
information would still be safe. Let’s take a look at how we can implement encryption in our
original Proxim code. Chapter 5 will cover public key infrastructure and encryption in depth; so
for the purposes of this exercise, we will cover a very basic example of Advanced Encryption
Standard (AES) encryption. Public Key encryption or Asymmetric encryption is a method of
encrypting or obfuscating data by using two different types of keys. Each user has two keys, a
public and a private one. His private key can only decrypt data that is encrypted by the public
key. The key is called public because it is freely given away to other users. It is this key that other
users will use to encrypt data.

Where to Implement Encryption

We will encrypt our data just before we save it to the SD Card. In this way, we never write the
data to the SD Card in a format that can be read by anyone. An attacker that collects your
encrypted data has to first use a password to decrypt the data before having access to it.

We will use AES to encrypt our data using a password or key. One key is required to both
encrypt and decrypt the data. This is also known s symmetric key encryption. Unlike public key
encryption, this key is the sole one used to both encrypt and decrypt data. This key will need
to be stored securely because, if it is lost or compromised, an attacker can use it to decrypt the
data. Listing 2-5 shows the encryption routine.

Listing 2-5. An Encryption Routine

privatestaticbyte[] encrypt(byte[] key, byte[] data){

SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");

Cipher cipher;

byte[] ciphertext = null;

try {
cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT MODE, sKeySpec);
ciphertext = cipher.doFinal(data);

} catch (NoSuchAlgorithmException e) {
Log.e(TAG, "NoSuchAlgorithmException");

} catch (NoSuchPaddingException e) {
Log.e(TAG, "NoSuchPaddingException");

} catch (IllegalBlockSizeException e) {
Log.e(TAG,"I1legalBlockSizeException");

} catch (BadPaddingException e) {
Log.e(TAG,"BadPaddingException");

} catch (InvalidKeyException e) {
Log.e(TAG, "InvalidKeyException");

}

return ciphertext;

CHAPTER 2: Information: The Foundation of an App 25

Let’s go through the code, section by section. The first bit of code initializes the SecretKeySpec class
and creates a new instance of the Cipher class in preparation of generating an AES secret key:

SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
Cipher cipher;
byte[] ciphertext = null;

The preceding code also initializes a byte array to store the ciphertext. The next bit of code
prepares the Cipher class to use the AES algorithm:

cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT MODE, sKeySpec);

The cipher.init() function initializes the Cipher object, so it can perform encryption using the
generated secret key. The next line of code encrypts the plain text data and stores the encrypted
contents in the ciphertext byte array:

ciphertext = cipher.doFinal(data);

In order for the preceding routine to work, it should always have an encryption key. It is
important that we use the same key for the decryption routine, as well. Otherwise, it will fail. It

is generally better to write your own key generator that will generate a random number-based
key. This will make it harder for an attacker to guess than a normal password. For this exercise, |
used the key-generation algorithm shown in Listing 2-6.

Listing 2-6. A Key-Generation Algorithm

publicstaticbyte[] generateKey(byte[] randomNumberSeed) {

SecretKey sKey = null;

try {
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
random. setSeed(randomNumberSeed);
keyGen.init(256,random);
sKey = keyGen.generateKey();

} catch (NoSuchAlgorithmException e) {
Log.e(TAG,"No such algorithm exception");

}

return sKey.getEncoded();
}

Now, let’s analyze the code. This pair of lines initializes the KeyGenerator class so it can generate
AES-specific keys, and then initializes the device’s random-number generator so it can generate
random numbers:

KeyGenerator keyGen = KeyGenerator.getInstance("AES");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

These random numbers are encoded using SHA1. SHA1, or Secure Hash Algorithm 1, is a
cryptographic hashing function. The algorithm will operate on a piece of data that has an
arbitrary length and will produce a short string that is of fixed size. If any piece of the data being
hashed is changed, then the resulting hash will vary. This is an indication that a piece of data has
been tampered with.

26 CHAPTER 2: Information: The Foundation of an App

The next snippet of code uses the random-number seed provided to generate a 256-bit key
using this random number:

random. setSeed(randomNumberSeed);
keyGen.init(256,random);
sKey = keyGen.generateKey();

Simply run the key-generation algorithm once and save the resulting key to use with the
decryption routine.

Results of Encryption

When we examine the same Contact object in the SD Card, the contents appear garbled (see
Figure 2-5) and unreadable by any casual snoopers or deliberate attackers.

N.Yole) ™ Sheran

Figure 2-5. The encrypted contents of the Contact object

Reworked Project 1

Our changes to the Proxim project mostly affect the saveController() method (see Listing 2-7).

Listing 2-7. The Reworked SaveControllerjava method
package net.zenconsult.android.controller;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyGenerator;

import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import net.zenconsult.android.crypto.Crypto;
import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Llocation;
import android.content.Context;

import android.os.Environment;

import android.util.log;

CHAPTER 2: Information: The Foundation of an App 27

public class SaveController {
private static final String TAG = "SaveController";

public static void saveContact(Context context, Contact contact) {
if (isReadwrite()) {
try {

File outputFile = new File(context.getExternalFilesDir«
(null),contact.getFirstName());

FileOutputStream outputStream = new FileOutputStreame
(outputFile);

byte[] key = Crypto.generateKey+
("randomtext".getBytes());

outputStream.write(encrypt(key,contact.getBytes()));

outputStream.close();

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"IO0 Exception");

} else {
Log.e(TAG, "Exror opening media card in read/write mode!");
}

}

public static void savelocation(Context context, Location location) {
if (isReadwrite()) {
try {

File outputFile = new File(context.getExternalFilesDir«
(null),location.getIdentifier());

FileOutputStream outputStream = new FileOutputStreame
(outputFile);

byte[] key = Crypto.generateKey+
("randomtext".getBytes());

outputStream.write(encrypt(key,location.getBytes()));

outputStream.close();

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"IO0 Exception");

}

} else {
Log.e(TAG, "Exror opening media card in read/write mode!");
}

[vww allitebooks.cond

http://www.allitebooks.org

28 CHAPTER 2: Information: The Foundation of an App

private static boolean isReadOnly() {
Log.e(TAG, Environment
.getExternalStorageState());
return Environment.MEDIA MOUNTED READ ONLY.equals(Environment
.getExternalStorageState());
}

private static boolean isReadWrite() {
Log.e(TAG,Environment
.getExternalStorageState());

return Environment.MEDIA_MOUNTED.equals(Environment
.getExternalStorageState());

}

private static byte[] encrypt(byte[] key, byte[] data){
SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
Cipher cipher;
byte[] ciphertext = null;
try {
cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT MODE, sKeySpec);
ciphertext = cipher.doFinal(data);
} catch (NoSuchAlgorithmException e) {
Log.e(TAG, "NoSuchAlgorithmException");
} catch (NoSuchPaddingException e) {
Log.e(TAG, "NoSuchPaddingException");
} catch (IllegalBlockSizeException e) {
Log.e(TAG,"I1legalBlockSizeException");
} catch (BadPaddingException e) {
Log.e(TAG, "BadPaddingException");
} catch (InvalidKeyException e) {
Log.e(TAG, "InvalidKeyException");
}

return ciphertext;

Exercise

ADD ENCRYPTION AT OBJECT CREATION TIME

There are many ways to encrypt the data in our Proxim application. What | have done is to encrypt it at storage time.
Your exercise is to rewrite the Proxim application so that the data is encrypted as soon as it is created.

Tip Do not modify the SaveController. java file. Look elsewhere.

CHAPTER 2: Information: The Foundation of an App 29

WRITE A DECRYPTION ROUTINE FOR THE PROXIM APPLICATION

Use the Android API reference and write a simple decryption routine based on the same principle as the encryption
routine. Create a new class called LoadController that will handle the loading of information from the SD Card.

Summary

Storing plain text or other easily read data on mobile devices is something you should avoid
doing at all costs. Even though your application itself might be written securely, an indirect
attack that originates from a completely different area on the device can still collect and read
sensitive or personal information written by your application. Follow the following basic steps
during application design:

1.

First, determine what data types are stored, created, or exchanged by
your application. Next, classify them into personal or sensitive data,
so that you will be aware of how to treat the data during application
execution.

Have a collection of encryption routines that you can reuse in your
applications. It is best to keep this collection as a separate library that
you can include in your project.

Generate a different key for each application that you write. Write a good
key-generator algorithm that creates lengthy and unpredictable secret
keys.

Encrypt data either at creation or storage time.

Chapter

Android Security Architecture

In Chapter 2, we looked at a simple example of how we can protect information using
encryption. However, that example did not make use of Android’s built-in security and
permissions architecture. In this chapter, we will take a look at what Android is able to offer the
developer and end user with regard to security. We will also look at some direct attacks that can
take place on applications and how to take the necessary safeguards to minimize the loss of
private data.

The Android platform has several mechanisms that control the security of the system and
applications, and it attempts to ensure application isolation and compartmentalization at every
stage. Each process within Android runs with its own set of privileges, and no other application
is able to access this application or its data without explicit permissions provided by the end
user. Even though Android exposes a large number of APIs to the developer, we cannot use all
of these APIs without requiring the end user to grant access.

Revisiting the System Architecture

Let’s start by looking at the Android architecture once more. We covered the Android system
architecture in Chapter 1, where you will recall that each process runs in its own isolated
environment. There is no interaction possible between applications unless otherwise explicitly
permitted. One of the mechanisms where such interaction is possible is by using permissions.
Again in Chapter 1, we looked at a simple example of how we needed to have the RECORD_AUDIO
permission set, so that our application can make use of the device’s microphone. In this chapter,
we will look at the permissions architecture in a little bit more detail (see Figure 3-1).

31

32 CHAPTER 3: Android Security Architecture

R T T T ere T I
' Installed Applications i System : .

' 1+ Applications__ Display
NN N NN N\ —
IESIERIER I E A ER I ER I AN
HENEIENEE|[E(|5[]| Bletooth
=B IR R R —
1 ["\
S LS LS LA L LA LA L GPS
121 8))l 2)ii2]| 8| 8)i\ Receiver
PN N N— 11 N— |
itttk bbbttty ‘ Cellular

(Binder) (Radio)
(Embedded Linux)

Figure 3-1. The Android system architecture

Figure 3-1 depicts a simpler version of the Android architecture than the one presented in
Chapter 2; specifically, this figure focuses more on the applications themselves.

As we saw previously, Android applications will execute on the Dalvik virtual machine (DVM).
The DVM is where the bytecode, or the most fundamental blocks of code, will execute. It is
analogous to the Java Virtual Machine (JVM) that exists on personal computers and servers
today. As depicted in Figure 3-1, each application—even a built-in system application—will
execute in its own instance of the Dalvik VM. In other words, it operates inside a walled garden
of sorts, with no outside interaction among other applications, unless explicitly permitted. Since
starting up individual virtual machines can be time consuming and could increase the latency
between application launch and startup, Android relies on a preloading mechanism to speed up
the process. The process, known as Zygote, serves two functions: it acts first as a launch pad
for new applications; and second, as a repository of live core libraries to which all applications
can refer during their life cycles.

The Zygote process takes care of starting up a virtual machine instance and preloading and
pre-initializing any core library classes that the virtual machine requires. Then, it waits to receive
a signal for an application startup. The Zygote process is started up at boot time and works

in a manner similar to a queue. Any Android device will always have one main Zygote process
running. When the Android Activity Manager receives a command to start an application, it calls
up the virtual machine instance that is part of the Zygote process. Once this instance is used to
launch the application, a new one is forked to take its place. The next application that is started
up will use this new Zygote process, and so on.

The repository part of the Zygote process will always make the set of core libraries available to
applications throughout their life cycles. Figure 3-2 shows how multiple applications make use of
the main Zygote process’s repository of core libraries.

CHAPTER 3: Android Security Architecture

33

Zygote Maps
Zygote hea
ygote heap Maps dex file Browser
(shared dirty,
copy-on-write; (mmap()ed) Browser dex file Home
rarely written)
Maps live code (mmap()ed) Home dex file
and heap
] Browser live (mmap()ed)
core Ilpraw dex (private dirty) code and heap
files [eeye— .) Home live code
shared from (private dirty) and heap
(mmap()ed) Zygote
shared from (private dirty)
Zygote
shared from
“live” core Zygote
libraries
(shared dirty;
read-only)

Figure 3-2. How applications use Zygote’s repository of core libraries

Understanding the Permissions Architecture

As we discussed in Chapter 1, applications running on the Android operating system all run with
their own set of user and group identifiers (UID and GID, respectively). The constrained manner
in which applications execute make it impossible for one application to read or write data from
another. To facilitate information sharing and interprocess communication among applications,
Android uses a system of permissions.

By default, an application has no permissions to perform any types of activities that would cause
damage or drastically impact other applications on the device. It also has no ability to interact
with the Android operating system, nor can it call any of the protected APIs to use the camera,
GPS, or networking stacks. Finally, a default application does not have the ability to read or write
to any of the end user’s data. The Linux kernel handles this task.

In order for an application to access high-privileged APIs or even gain access to user data,

it has to obtain permission from the end user. You, as the developer, have to understand

what permissions your application will require before you release it to the public. Once you
make a list of all your required permissions, you will need to add each one of them to your
AndroidManifest.xml file. Then, when installing an application for the first time, the end user is
prompted by the device to grant or deny specific permissions as required by the application.
Therefore, a good practice is to develop your application in a manner that will fail modularly if a
user does not provide a specific permission. For example, let’s say you’ve written an application
that uses GPS Location inquiries, accesses user data, and sends SMS messages. The end user
grants your application two of the three permissions, but leaves out SMS message sending. You
should be able to write your application such that the functionality requiring SMS sending will
disable itself (unless omitting this permission breaks your entire application). This way, the end
user can still use your application with reduced functionality.

34 CHAPTER 3: Android Security Architecture

Before exploring permissions further, you need to familiarize yourself with a couple of topics that
are used in the context of Android software development and security: content providers and
intents. Although you most likely have heard these terms mentioned before, let’s go over them
here to make sure your understanding is complete.

Content Providers

Content providers are synonymous with data stores. They act as repositories of information
from which applications can read and write. Since the Android architecture does not allow for a
common storage area, content providers are the only way that applications can exchange data.
As a developer, you might be interested in creating your own content providers, so that other
applications can gain access to your data. This is as easy as subclassing the ContentProvider
object in the android.content package. We will cover the creation of a custom ContentProvider
objects in more detail in subsequent chapters of this book.

In addition to allowing the creation of your own content providers, Android provides several
content providers that allow you to access the most common types of data on the device,
including images, videos, audio files, and contact information. The Android provider package,
android.provider, contains many convenience classes that allow you to access these content
providers; Table 3-1 lists these.

Table 3-1. Content Provider Classes

Class Name Description

AlarmClock Contains an intent action and extras that can be
used to start an activity to set a new alarm in an
alarm clock application.

Browser

Browser.BookmarkColumns Column definitions for the mixed bookmark and
history items available at BOOKMARKS_URI.

Browser.SearchColumns Column definitions for the search history table,
available at SEARCHES_URI.

CallLog Contains information about placed and received
calls.

CallLog.Calls Contains the recent calls.

ContactsContract The contract between the contacts provider and
applications.

ContactsContract.AggregationExceptions Constants for the contact aggregation exceptions
table, which contains aggregation rules overriding
those used by automatic aggregation.

ContactsContract. CommonDataKinds Container for definitions of common data types
stored in the ContactsContract.Data table.

ContactsContract. CommonDataKinds.Email A data kind representing an e-mail address.

ContactsContract.CommonDataKinds.Event A data kind representing an event.

(continued)

CHAPTER 3: Android Security Architecture 35

Table 3.1 (continued)

Class Name

Description

ContactsContract. CommonDataKinds.
GroupMembership

ContactsContract. CommonDataKinds.Im

ContactsContract. CommonDataKinds.Nickname
ContactsContract. CommonDataKinds.Note
ContactsContract. CommonDataKinds.Organization
ContactsContract. CommonDataKinds.Phone
ContactsContract. CommonDataKinds.Photo
ContactsContract. CommonDataKinds.Relation

ContactsContract. CommonDataKinds.SipAddress
ContactsContract. CommonDataKinds.

StructuredName

ContactsContract. CommonDataKinds.
StructuredPostal
ContactsContract. CommonDataKinds.Website

ContactsContract.Contacts

ContactsContract.Contacts.AggregationSuggestions

ContactsContract.Contacts.Data

ContactsContract.Contacts.Entity

ContactsContract.Contacts.Photo

ContactsContract.Data

ContactsContract.Directory

ContactsContract.Groups

Group membership.

A data kind representing an IM address. You can use
all columns defined for ContactsContract.Data, as
well as the following aliases.

A data kind representing the contact’s nickname.
Notes about the contact.

A data kind representing an organization.

A data kind representing a telephone number.

A data kind representing a photo for the contact.
A data kind representing a relation.

A data kind representing an SIP address for the
contact.

A data kind representing the contact’s proper name.

A data kind representing a postal address.

A data kind representing a web site related to the
contact.

Constants for the Contacts table, which contains a
record per aggregate of raw contacts representing
the same person.

A read-only subdirectory of a single contact
aggregate that contains all aggregation suggestions
(other contacts).

A subdirectory of a single contact that contains all of
the constituent raw contactContactsContract.Data
rows

A subdirectory of a contact that contains all of
its ContactsContract.RawContacts, as well as
ContactsContract.Data rows.

A read-only subdirectory of a single contact that
contains the contact’s primary photo.

Constants for the data table that contains data
points tied to a raw contact.

Represents a group of contacts.
Constants for the Groups table.

(continued)

36 CHAPTER 3: Android Security Architecture

Table 3.1 (continued)

Class Name

Description

ContactsContract.Intents

ContactsContract.Intents.Insert

ContactsContract.PhonelLookup

ContactsContract.QuickContact

ContactsContract.RawContacts

ContactsContract.RawContacts.Data

ContactsContract.RawContacts.Entity

ContactsContract.RawContactsEntity

ContactsContract.Settings

ContactsContract.StatusUpdates

ContactsContract.SyncState

LiveFolders

MediaStore

MediaStore.Audio

MediaStore.Audio.Albums

MediaStore.Audio.Artists
MediaStore.Audio.Artists.Albums

MediaStore.Audio.Genres
MediaStore.Audio.Genres.Members
MediaStore.Audio.Media
MediaStore.Audio.Playlists

Contains helper classes used to create or manage
intents that involve contacts.

Convenience class that contains string constants
used to create contact intents.

Table that represents the result of looking up a
phone number (e.g., for caller ID).

Helper methods to display QuickContact dialogs that
allow users to pivot on a specific Contacts entry.

Constants for the raw contacts table, which contains
one row of contact information for each person in
each synced account.

A subdirectory of a single raw contact that contains
all of its ContactsContract.Data rows.

A subdirectory of a single raw contact that contains
all of its ContactsContract.Data rows.

Constants for the raw contacts entities table, which
can be thought of as an outer join of the raw_
contacts table with the data table.

Contact-specific settings for various Accounts.

A status update is linked to a ContactsContract.Data
row and captures the user’s latest status update via
the corresponding source.

A table provided for sync adapters to use for storing
private sync state data.

A LiveFolder is a special folder whose content is
provided by a ContentProvider.

The Media provider contains meta data for all
available media on both internal and external
storage devices.

Container for all audio content.
Contains artists for audio files.
Contains artists for audio files.

Subdirectory of each artist containing all albums on
which a song by the artist appears.

Contains all genres for audio files.

Subdirectory of each genre containing all members.

Contains playlists for audio files.
(continued)

CHAPTER 3: Android Security Architecture 37

Table 3.1 (continued)

Class Name

Description

MediaStore.Audio.Playlists.Members
MediaStore.Files

MediaStore.Images
MediaStore.Images.Media

MediaStore.Images.Thumbnails

MediaStore.Video
MediaStore.Video.Media
MediaStore.Video. Thumbnails

SearchRecentSuggestions

Settings
Settings.NameValueTable
Settings.Secure
Settings.System

SyncStateContract

SyncStateContract.Constants
SyncStateContract.Helpers

UserDictionary

UserDictionary.Words

Subdirectory of each playlist containing all members.

Media provider table containing an index of all files
in the media storage, including nonmedia files.

Contains metadata for all available images.

Allows developers to query and get two kinds of
thumbnails: MINI_KIND (512 x 384 pixels) and
MICRO_KIND (96 x 96 pixels).

Allows developers to query and get two kinds of
thumbnails: MINI_KIND (512 x 384 pixels) and
MICRO_KIND (96 x 96 pixels).

A utility class providing access to
SearchRecentSuggestionsProvider.

Contains global system-level device preferences.
Common base for tables of name/value settings.

Secure system settings containing system
preferences that applications can read, but are not
allowed to write.

System settings containing miscellaneous system
preferences.

The ContentProvider contract for associating data
with any data array account.

A provider of user-defined words for input methods
to use for predictive text input.

Contains the user-defined words.

Accessing a content provider requires prior knowledge of the following information:

The content provider object (Contacts, Photos, Videos, etc.)

The columns required from this content provider

The query to fetch this information

As stated previously, content providers act in a similar manner to a Relational Database, such as
Oracle, Microsoft SQL Server, or MySQL. This becomes evident when you first try to query one.
For example, you access the MediaStore.Images.Media content provider to query for images.

38 CHAPTER 3: Android Security Architecture

Let’s assume that we want to access each of the image names stored on the device. We first
need to create a content provider URI to access the external store on the device:

Uri images = MediaStore.Images.Media.EXTERNAL_CONTENT URI;

Next, we need to create a receiver object for the data we will be fetching. Simply declaring an
array does this:

String[] details = new String[] {MediaStore.MediaColumns.DISPLAY NAME};

To traverse the resulting dataset, we need to create and use a managedQuery and then use the
resulting Cursor object to move through rows and columns:

Cursor cur = managedQuery(details,details, null, null null);

We can then iterate over the results using the Cursor object we created. We use the
cur.moveToFirst() method to move to the first row and then read off the image name, like so:

String name = cur.getString(cur.getColumnIndex(MediaStore.MediaColumns.DISPLAY NAME));

After that, we advance the cursor to the next record by calling the cur.moveToNext () method.
To query multiple records, this process can be wrapped in either a for loop or do/while block.

Note that some content providers are controlled, and your application will need to request
specific permissions before attempting to access them.

Intents

Intents are types of messages that one application sends to another to control tasks or transport
data. Intents work with three specific types of application components: activity, service, and
broadcast receiver. Let’s take a simple example where your application requires the Android
device browser to start up and load the contents of a URL. Some of the main components of an
Intent object include the intent action and the intent data. For our example, we want our user to
view the browser, so we will use the Intent.ACTION_VIEW constant to work with some data that is
at the URL, http://www.apress.com. Our Intent object will be created like this:

Intent intent = new Intent(Intent.ACTION VIEW, Uri.parse(http://www.apress.com);
To invoke this intent, we call this code:
startActivity(intent);

To control which applications can receive intents, a permission can be added to the intent prior
to dispatching it.

Checking Permissions

We’ve very briefly covered content providers and intents, including how the Android operating
system controls access to these objects through the use of permissions. In Chapter 1, we
looked at how an application can request the end user for specific permissions to interact with
the system. Let’s look at how permission checks really take place and where.

A validation mechanism will handle permission checks within the Android operating system.
When your application makes any API call, the permission validation mechanism will check if

[vww allitebooks.cond

http://www.apress.com
http://www.allitebooks.org

CHAPTER 3: Android Security Architecture 39

your application has the required permissions to complete the call. If a user grants permission,
the API call is processed; otherwise, a SecurityException is thrown.

API calls are handled in three separate steps. First, the API library is invoked. Second, the library
will invoke a private proxy interface that is part of the API library itself. Finally, this private proxy
interface will use interprocess communication to query the service running in the system process
to perform the required API call operation. This process is depicted in Figure 3-3.

_Application Process System Processes
Dalvik Virtual Machine Dalvik Virtual Machine
_API Library — Thraad
) IBindar
Application |-t pigl'c 4| |nterfaces -Hbo— Binder |#———— Service1
Hidder
i
Natlve Code Thraad !
‘ .
Nativie .
Application C Library Bindar | SarvicaN
Component

Figure 3-3. The API call process

In some instances, an application may also use native code to conduct API calls. These native
API calls are also protected in a similar manner because they are not allowed to proceed unless
they are called through Java wrapper methods. In other words, before a native API call can

be invoked, it has to go through a wrapped Java API call that is then subject to the standard
permission-validation mechanism. All validation of permissions is handled by the system process.
Additionally, applications that require access to the BLUETOOTH, WRITE_EXTERNAL_STORAGE,

and INTERNET permissions will be assigned to a Linux group that has access to the network
sockets and files associated with those permissions. This small subset of permissions has its
validation performed at the Linux kernel.

Using Self-Defined Permissions

Android allows developers to create and enforce their own permissions. As with system
permissions, you need to declare specific tags and attributes within the AndroidManifest.xml
file. If you write an application that provides a specific type of functionality accessible by other
developers, you can choose to protect certain functions with your own custom permissions.

In your application’s AndroidManifest.xml file, you have to define your permissions as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.zenconsult.mobile.testapp" >
<permission android:name="net.zenconsult.mobile.testapp.permission.PURGE_DATABASE"
android:label="@string/label_purgeDatabase"
android:description="@string/description_purgeDatabase"
android:protectionLevel="dangerous" />

</manifest>

40 CHAPTER 3: Android Security Architecture

You define the name of your permission in the android:name attribute. The android:1label and
android:description attributes are required. They are pointers to strings that you define in your
AndroidManifest.xml file. The strings will identify what the permission is and describe what this
permission does to end users that browse the list of permissions present on the device. You will
want to set these strings with something descriptive, as in this example:

<string name=" label purgeDatabase ">purge the application database </string>

<string name="permdesc_callPhone">Allows the application to purge the core database of
the information store. Malicious applications may be able to wipe your entire application
information store.</string>

The android:protectionLevel attribute is required. It categorizes the permission into one of the
four levels of protection discussed earlier.

Optionally, you can also add an android:permissionGroup attribute to have Android group
your permission along with either the system groups or with groups you have defined yourself.
Grouping your custom permission with an already existing permissions group is best because
this way, you can present a cleaner interface to the end user when browsing permissions. For
example, to add the purgeDatabase permission into the group that accesses the SD card, you
would add the following attribute to the AndroidManifest.xml file:

android:permissionGroup=" android.permission-group.STORAGE"

One thing to note is that your application will need to be installed on the device before any other
dependent application. This is usually the case; but during development, it bears remembering
because you may run into difficulties if the application is not installed first.

Protection Levels

When creating your own permissions, you have the option of categorizing the permission
according to the level of protection you want the operating system to offer. In our preceding
example, we defined the protectionlevel of our permission to purge the database as
"dangerous". The "dangerous" protection level indicates that, by granting this permission, the
end user will enable an application to modify private user data in a way that could adversely
affect him.

A permission marked with protectionLevel "dangerous" or higher will automatically trigger the
operating system to prompt or notify the end user. This behavior exists to let the end user know
that the application being executed has the potential to cause harm. It also offers the user a
chance to either signify trust or mistrust in the application by granting or denying permission to
the requested API call. Descriptions of the permission protection levels are provided in Table 3-2.

CHAPTER 3: Android Security Architecture 41

Table 3-2. Permission Protection Levels

Constant Value Description

normal 0 A somewhat low-risk permission that gives an application access to isolated
application-level features, with minimal risk to other applications, the
system, or the user. The system automatically grants this type of permission
to a requesting application at installation, without asking for the user’s
explicit approval (though the user always has the option to review these
permissions before installing).

dangerous 1 A higher risk permission that gives a requesting application access to
private user data or control over the device in a way that can negatively
impact the user. Because this type of permission introduces potential risk,
the system may not automatically grant it to the requesting application. Any
dangerous permissions requested by an application may be displayed to the
user and require confirmation before proceeding, or some other approach
may be taken so the user can avoid automatically allowing the use of such
facilities.

signature 2 The system will grant this permission only if the requesting application
is signed with the same certificate as the application that declared the
permission. If the certificates match, the system automatically grants
the permission without notifying the user or asking for the user’s explicit
approval.

signatureOrSystem 3 The system grants this permission only to packages in the Android system
image or that are signed with the same certificates. Please avoid using this
option because the signature protection level should be sufficient for most
needs, and it works regardless of exactly where applications are installed.
This permission is used for certain special situations where multiple vendors
have applications built into a system image, and these applications need to
share specific features explicitly because they are being built together.

Sample Code for Custom Permissions

The sample code in this section provides concrete examples of how to implement custom
permissions in an Android application. The project package and class structure is depicted in
Figure 3-4.

‘,%ZenLibrary
CHore
' net.zenconsult.libs
m CBOps.java
1J] Mofest.java
m ZenLibraryActivity. java

M~

Figure 3-4. The structure and classes of the example

42 CHAPTER 3: Android Security Architecture

The Mofest. java file contains a nested class called permissions that holds the permission string
constants that will be invoked by calling applications. The source code is in Listing 3-1.

Listing 3-1. The Mofest Class
package net.zenconsult.libs;

public class Mofest {
public Mofest(){

}

public class permission {
public permission(){
final String PURGE_DATABASE =+
"net.zenconsult.libs.Mofest.permission.PURGE_DATABASE";
}
}
}

At this point, the DBOps. java file is of no consequence because it contains no code. The
ZenLibraryActivity. java file contains our application’s entry point. Its source code is given in
Listing 3-2.

Listing 3-2. The ZenLibraryActivity Class
package net.zenconsult.libs;

import android.app.Activity;
import android.os.Bundle;

public class ZenlLibraryActivity extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

Again, this class does nothing remarkable; it starts up the main activity of this application.
The real changes lie in the AndroidManifest.xml file of this project, which is shown in Listing 3-3.
This is where the permissions are defined and used.

CHAPTER 3: Android Security Architecture

Listing 3-3. The Project’s AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.zenconsult.1ibs"
android:versionCode="1"
android:versionName="1.0">
<uses-sdk android:minSdkVersion="10" />
<permission android:name="net.zenconsult.libs.Mofest.permission.PURGE_DATABASE"
android:protectionLevel="dangerous"
android:label="@string/label_purgeDatabase"
android:description="@string/description_purgeDatabase"
android:permissionGroup="android.permission-group.COST_MONEY"/>
<uses-permission android:name="net.zenconsult.libs.Mofest.permission+~
-PURGE_DATABASE" />
<uses-permission android:name="android.permission.SET_WALLPAPER" />

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".ZenlLibraryActivity"
android:permission="net.zenconsult.libs.Mofest.permission+~
-PURGE_DATABASE"
android:label="@string/app_name"

>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

43

As you can see, we both declare and use the PURGE_DATABASE permission in this application. The

code that is in bold all pertains to our custom permission implementation for this application.

To ensure that the installer will prompt for a permission request screen, you have to build the
project as an .apk file and sign it. Next, upload the .apk file to a web server or copy it to the

device. Clicking this file will start the installation process; and at that time, the device will display
the request for permissions screen to the end user. Figure 3-5 shows what this screen looks like.

44 CHAPTER 3: Android Security Architecture

Do you want to install this
application?

Allow this application to:

® System tools
lIpaper

Install Cancel

Figure 3-5. The permissions request screen

Summary

In this chapter, we looked at Android permissions, both built-in and custom. We also examined
intents, content providers, and how to check permissions in more detail. The key points
discussed were as follows:

Android has a core set of mechanisms that handle application isolation and
security.

Each application will run in its own isolated space with unique user and
group identifiers.

Applications are not allowed to exchange data unless they explicitly request
permissions from the user.

Content providers store and allow access to data. They behave similar to
databases.

Intents are messages sent between applications or the system process to
invoke or shut down another service or application.

CHAPTER 3: Android Security Architecture 45

Access to specific APIs is controlled using permissions. Permissions are
divided into four categories, and category 1, 2, and 3 permissions will
always notify or prompt the end user. Since these permissions have the
ability to adversely affect user data and experience, they are handed over to
the user for final confirmation.

Custom permissions can be created to protect your individual applications. An
application that wishes to use your application will need to explicitly request your
ermission to do so by using the <uses-permission> tag in the AndroidManifest.xml file.

Chapter

Concepts in
Action — Part 1

In this chapter, we will merge together all the topics we discussed in the previous chapters. If

you recall, we discussed the Proxim application, through which we looked at data encryption.

We will analyze its source code in detail here. We will also work through some examples of
applications that require and use permissions.

The

Proxim Application

The Proxim project should have a structure similar to that depicted in Figure 4-1

Let’s start with the Activity, which is where your programs usually will start (see Listing 4-1). In

the Activity, we are creating a new Contact object with some information inside.

Listing 4-1. The Main Activity

package net.zenconsult.android;

import
import
import
import
import
import
import

public

net.zenconsult.android.controller.SaveController;
net.zenconsult.android.model.Contact;
android.app.Activity;

android.os.Bundle;

android.view.View;
android.view.View.OnClickListener;
android.widget.Button;

class ProximActivity extends Activity {

/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

47

48 CHAPTER 4: Concepts in Action - Part 1

1% Package brplorer % -k

T:L% Proxim
¥ i Hsrc
b L net
b £ net.zenconsult
¥ 4 net.zenconsult.android
> m ProximActivity.java
|=| .D5_Store

TJ':-E} net.zenconsult.android.controller
b [J| SaveController.java
v EE‘ net.zenconsult.android.crypto
> m Crypto.java
¥ 4 net.zenconsult.android.model
b [J] Contact. java
P [J] Location.java
|=| .05 _Stare
> G@ gen [Generated Java Files]
b =i Android 2.3.3
E'@assets
> = bin
['EI@ res
|%] .classpath
|=| .D5_Store
|X| .project
|| AndroidManifest.xmil
proguard.cfg
project.properties

Figure 4-1. The Proxim Application structure

final Contact contact = new Contact();

contact.setFirstName("Sheran");

contact.setLastName("Gunasekera");

contact.setAddress1("");

contact.setAddress2("");

contact.setEmail("sheran@zenconsult.net");

contact.setPhone("12120031337");

final Button button = (Button) findViewById(R.id.button1);

button.setOnClickListener(new OnClickListener() {

public void onClick(View v) {
SaveController.saveContact(getApplicationContext(), contact);

}

D;

CGHAPTER 4: Concepts in Action - Part 1

It is this line that creates a Contact object:
Contact contact = new Contact();

Subsequent lines that have set in the start of the method name simply add the relevant pieces
of data into the Contact object. To understand what the Contact object looks like, take a look
at Listing 4-2. As you can see, the object itself is very simple. It has a collection of getters and
setters that will retrieve and insert data, respectively. Consider the firstName variable. To add a
person’s first name to this object, you call the setFirstName() method and pass in a value like
Sheran (as shown in the main Activity).

Listing 4-2. The Proxim Application’s Contact Object

package net.zenconsult.android.model;

public class Contact {
private String firstName;
private String lastName;
private String addressi;
private String address2;
private String email;
private String phone;

public Contact() {

}

public String getFirstName() {
return firstName;
}

public void setFirstName(String firstName) {
this.firstName = firstName;
}

public String getlLastName() {
return lastName;
}

public void setlLastName(String lastName) {
this.lastName = lastName;
}

public String getAddressi() {
return addressi;
}

public void setAddressi(String address1) {
this.address1 = addressi;
}

public String getAddress2() {
return address2;
}

public void setAddress2(String address2) {
this.address2 = address2;
}

[vww allitebooks.cond

49

http://www.allitebooks.org

50 CHAPTER 4: Concepts in Action - Part 1

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getPhone() {
return phone;
}

public void setPhone(String phone) {
this.phone = phone;
}

public String toString() {
StringBuilder ret = new StringBuilder();
ret.append(getFirstName()+"|");
ret.append(getLastName()+"|");
ret.append(getAddressi()+"|");
ret.append(getAddress2()+"|");
ret.append(getEmail() +"|");
ret.append(getPhone()+"|");
return ret.toString();

}

public byte[] getBytes() {
return toString().getBytes();

}

}

Since we’re covering the data storage objects (or the Model in Model-View-Controller
programming concepts), let’s also look at our Location object in Listing 4-3. This is, once again,
your average, everyday, straightforward Location object with getters and setters.

Listing 4-3. The Location Object

package net.zenconsult.android.model;

public class Location {
private String identifier;
private double latitude;
private double longitude;

public Location() {

}

public double getlatitude() {
return latitude;
}

CGHAPTER 4: Concepts in Action - Part 1 51

public void setlLatitude(double latitude) {
this.latitude = latitude;
}

public double getLongitude() {
return longitude;
}

public void setLongitude(double longitude) {
this.longitude = longitude;
}

public void setIdentifier(String identifier) {
this.identifier = identifier;
}

public String getIdentifier() {
return identifier;
}

public String toString() {
StringBuilder ret = new StringBuilder();
ret.append(getIdentifier());
ret.append(String.valueOf(getLatitude()));
ret.append(String.valueOf(getLongitude()));
return ret.toString();

}

public byte[] getBytes() {
return toString().getBytes();
}

}

Excellent! We’ve got that out of the way, so now let’s look more closely at our save controller and
our cryptography routines. We can see these in Listings 4-4 and 4-5, respectively.

Listing 4-4. The Save Controller

package net.zenconsult.android.controller;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import net.zenconsult.android.crypto.Crypto;
import net.zenconsult.android.model.Contact;
import net.zenconsult.android.model.Llocation;

52 CHAPTER 4: Concepts in Action - Part 1

import android.content.Context;
import android.os.Environment;
import android.util.log;

public class SaveController {
private static final String TAG = "SaveController";

public static void saveContact(Context context, Contact contact) {
if (isReadWrite()) {
try {
File outputFile = new File(context.getExternalFilesDir(null),contact.
getFirstName());
FileOutputStream outputStream = new FileOutputStream(outputFile);
byte[] key = Crypto.generateKey("randomtext".getBytes());
outputStream.write(encrypt(key,contact.getBytes()));
outputStream.close();

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"I0 Exception");

}

} else {
Log.e(TAG, "Error opening media card in read/write mode!");
}

}

public static void savelocation(Context context, Location location) {
if (isReadWrite()) {
try {
File outputFile = new File(context.getExternalFilesDir(null),location.
getIdentifier());

FileOutputStream outputStream = new FileOutputStream(outputFile);
byte[] key = Crypto.generateKey("randomtext".getBytes());
outputStream.write(encrypt(key,location.getBytes()));
outputStream.close();

} catch (FileNotFoundException e) {
Log.e(TAG,"File not found");

} catch (IOException e) {
Log.e(TAG,"I0 Exception");

}

} else {
Log.e(TAG, "Exror opening media card in read/write mode!");
}

}

private static boolean isReadOnly() {
Log.e(TAG,Environment
.getExternalStorageState());
return Environment.MEDIA MOUNTED READ ONLY.equals(Environment
.getExternalStorageState());

CGHAPTER 4: Concepts in Action - Part 1

}

private static boolean isReadWrite() {
Log.e(TAG, Environment
.getExternalStorageState());

return Environment.MEDIA MOUNTED.equals(Environment
.getExternalStorageState());

}

private static byte[] encrypt(byte[] key, byte[] data){
SecretKeySpec sKeySpec = new SecretKeySpec(key,"AES");
Cipher cipher;
byte[] ciphertext = null;
try {
cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);
ciphertext = cipher.doFinal(data);
} catch (NoSuchAlgorithmException e) {
Log.e(TAG, "NoSuchAlgorithmException");
} catch (NoSuchPaddingException e) {
Log.e(TAG, "NoSuchPaddingException");
} catch (IllegalBlockSizeException e) {
Log.e(TAG, "I1legalBlockSizeException");
} catch (BadPaddingException e) {
Log.e(TAG, "BadPaddingException");
} catch (InvalidKeyException e) {
Log.e(TAG, "InvalidKeyException");
}

return ciphertext;

Listing 4-5. The Cryptography routine

package net.zenconsult.android.crypto;

import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

import android.util.Log;

public class Crypto {

private static final String TAG = "Crypto";
public Crypto() {
}

public static byte[] generateKey(byte[] randomNumberSeed) {
SecretKey sKey = null;
try {
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
random. setSeed(randomNumberSeed);
keyGen.init(256,random);

53

54 CHAPTER 4: Concepts in Action - Part 1

sKey = keyGen.generateKey();
} catch (NoSuchAlgorithmException e) {
Log.e(TAG,"No such algorithm exception");

}
return sKey.getEncoded();
}
}
Summary

In this chapter, we’ve looked at two key concepts that we covered in prior chapters: encrypting
data before storing it and using permissions in your application. Specifically, we looked

at two applications that incorporate these concepts and studied the various outcomes of
running each application with different parameters. The concept of data encryption may be
fairly straightforward to grasp, but the topic of Android application permissions may not be
immediately apparent. In most cases, the permissions you require have to do with accessing
various features on the device itself. An example of this is in connectivity. If your app needs to
communicate with the Internet, then you need the Internet permission. Our example application
deals more with creating and using custom application permissions. Let’'s now move on to
addressing encryption of data in transit and talking to web applications.

Chapter

Data Storage
and Cryptography

We touched on cryptography very briefly in Chapter 4. This chapter will focus more on the
importance of using cryptography to obfuscate and secure user data that you will either store or
transport. First, we will cover the basics of cryptography and how they apply to us in the context
of application development. Next, we will look at the various mechanisms of storing data on

the Android platform. Along the way, | will give examples of how to store and retrieve data from
different mechanisms and outline what function each store is ideally suited to perform.

One very important point to keep in mind is you should never attempt to write your own
cryptographic routines unless you are familiar with cryptographic topics. | have seen many
developers try to do this and end up with vulnerable applications both on mobile devices and in
web applications. Cryptography is a vast subject by itself; and, in my opinion, | think it is best left
to the folks who dedicate their lives to the subject. As an application developer, you will only be
interested in a specific subset of topics in cryptography.

| won’t cover the history of cryptography. You only need to keep one thing in mind: make
your sensitive user data unreadable to unauthorized users. If an attacker compromises your
application using either an indirect or direct attack, then your additional layer (see Figure 5-1)
of cryptography will not make it trivial for him to steal the sensitive user data. Instead, he has
an additional layer that he has to attack. This principle is similar to the Information Assurance
principle of Defense in Depth that the US National Security Agency developed.

56 CHAPTER 5: Data Storage and Cryptography

L]

USER 0S
INTERACTION INTERACTION

APPLICATION
LOGIC

A 4

\

UNENCRYPTED

£ ENCRYPTED
DATA

-1 DATA

NN

N

Figure 5-1. An example of the Defense in Depth principle

Public Key Infrastructure

Since we’re on the subject of cryptography, it is worthwhile learning a bit about Public Key
Infrastructure (PKI). PKI is based on the principle of identity and trust verification based on a
trusted third party. Let’s examine a scenario that illustrates the principles involved. Bear in mind
that this example has nothing to do with application development for the moment. We will look
at that subject in depth soon enough.

Mr. Krabs owns Krusty Krab, one of the most popular fast food restaurants in the city. He credits
his famous Krabby Patty (a wonderfully moist, delicious burger) with the reason for its popularity.
No one except Mr. Krabs knows the Krabby Patty’s super-secret recipe. Given his popularity,

he recently started selling franchises to his restaurant. As most of the new branches under his
franchise will be geographically distant, Mr. Krabs decides to dispatch his secret recipe to the
owners via courier. The only problem with this approach is that Mr. Krabs’s rival, Sheldon James
Plankton, has attempted to steal his secret recipe before, and it is likely that he will try again.

I love food, especially burgers, so | decide to open a Krusty Krab franchise in my city. | contact
Mr. Krabs; and along with the relevant paperwork, he attaches a document on how | should
receive and safeguard his secret Krabby Patty recipe. I’ll spare you the countless pages of
details and legalese, and instead list only the most salient points. The instructions state that | am
to do the following:

1. Register myself at the nearest police department under the KK program
through the IV department.

2. Receive one padlock with one key that opens the padlock from the
police department’s IV department.

3. Give the padlock to my police department.
4. Guard the key with my life.

5. Receive and open the steel box that will be sent to me via courier.

CHAPTER 5: Data Storage and Cryptography

Sure enough, after | complete these steps, a package arrives in the mail. Oddly, the outer
cardboard packaging seems tampered with, but not the padlock or the solid steel box inside.
The key opens the padlock easily and viola! | have the secret Krabby Patty recipe. Later, | hear
from Mr. Krabs that Plankton had attempted to hijack and open the steel box, but failed. This
explains the outer package tampering that | noticed.

To spare you from more of my idiocy, I’'m going to correlate characters and objects in this story
to elements associated with PKI (see Table 5-1).

Table 5-1. The Relationship Between the Story and PKI

Story Element PKI Element

Mr. Krabs The message sender
Me The message receiver
Plankton The attacker

The secret recipe

The steel box

My padlock

The key to my padlock
The police department
The KK program

The IV department

The message/sensitive data
The encrypted message

My public key

My private key

The Certificate Authority (CA)
The CA domain

The Registration Authority (RA)

When you look at Table 5-1, it is immediately evident that the setup and running of a PKl is quite
complex. All of the elements are essential, however, and serve a very specific purpose to ensure the
exchange of messages and keys in a secure and trustworthy manner. Let’s analyze each element.

Mr. Krabs and I: These are the sender and receiver, respectively. We need to
exchange sensitive data (the secret recipe) and follow PKI policies

and procedures to do so.

Plankton: He is the attacker. He wants access to the sensitive data and

decides to attack it in transit.

Secret recipe: This is the sensitive data. We want to exchange this recipe

and keep it private.

The steel box: This is the encrypted message. The sender will encrypt it
or lock it so that only the key holder can open it. The key holder (me) is

the receiver.

My padlock: This is my public key. When you consider the story, you might
wonder how a padlock can also be a key, but look at it from a metaphorical
sense. My padlock is something anyone can use to lock or encrypt a

57

58 CHAPTER 5: Data Storage and Cryptography

message. | am not afraid to give anyone my padlock or public key because
only | can open the message. | can have an unlimited number of padlocks to
give out to anyone who wants to send me a message securely.

The key to my padlock: This is my private key. It is private because no one
else has a copy. Only | am able to open my padlocks with this key. | have
to safeguard this key at a