
Android
Espresso
Revealed

Writing Automated UI Tests
—
Denys Zelenchuk

www.allitebooks.com

http://www.allitebooks.org

Android Espresso
Revealed

Writing Automated UI Tests

Denys Zelenchuk

www.allitebooks.com

http://www.allitebooks.org

Android Espresso Revealed: Writing Automated UI Tests

ISBN-13 (pbk): 978-1-4842-4314-5 ISBN-13 (electronic): 978-1-4842-4315-2
https://doi.org/10.1007/978-1-4842-4315-2

Library of Congress Control Number: 2019933720

Copyright © 2019 by Denys Zelenchuk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243145. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Denys Zelenchuk
Zürich, Switzerland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4315-2
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Getting Started with Espresso for Android�� 1

User Interface Testing: Goals and Approach �� 2

Setting Up the Sample Project �� 2

Understanding Android Instrumentation ��� 5

Espresso Basics �� 8

Identifying Application UI Elements ��� 8

Espresso �� 12

Espresso ViewMatchers �� 13

Espresso’s ViewInteraction Class �� 25

Espresso’s ViewActions Class ��� 26

Espresso’s DataInteraction Class �� 31

Operating on RecyclerView Using Espresso �� 37

RecyclerViewActions ��� 37

Running Espresso Tests from AndroidStudio �� 40

Running Espresso Tests from the Terminal ��� 45

Running Instrumentation Tests Using Shell Commands �� 45

Running Instrumentation Tests Using Gradle Commands �� 47

Summary��� 48

About the Author ��� ix

About the Technical Reviewer ��� xi

Introduction ��� xiii

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: Customizing Espresso for Our Needs �� 49

Writing Custom ViewActions ��� 49

Adapting Espresso Swipe Actions ��� 50

Creating Custom RecyclerView Actions ��� 54

Writing Custom Matchers ��� 58

Creating Custom Matchers for Simple UI Elements ��� 59

Implementing Custom RecyclerView Matchers ��� 60

Handling Errors with a Custom FailureHandler ��� 62

Taking and Saving Screenshots Upon Test Failure �� 64

Summary��� 67

Chapter 3: Writing Espresso Tests with Kotlin�� 69

Migrating Espresso Java Tests to Kotlin ��� 70

Benefits of Writing Tests in Kotlin ��� 75

Function as a Type ��� 75

Extension Functions �� 76

String Templates �� 76

Import R�class Resources �� 76

Espresso Domain-Specific Language in Kotlin ��� 78

Summary��� 84

Chapter 4: Handling Network Operations and Asynchronous Actions �������������������� 85

IdlingResource Basics ��� 85

Writing the Code �� 88

Running the First Test �� 92

OkHttp3IdlingResource ��� 94

Picasso IdlingResource ��� 96

ConditionWatcher as an Alternative to IdlingResource ��� 98

Making Condition Watchers Part of Espresso Kotlin DSL �� 103

Summary��� 105

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 5: Verifying and Stubbing Intents with IntentMatchers �������������������������� 107

Setting Up Dependencies �� 108

Stubbing Activity Intents ��� 110

Stubbing Intents Without a Result ��� 111

Stubbing a Single Intent �� 118

Stubbing Intents with the Result ��� 127

Verifying Intents �� 133

Summary��� 136

Chapter 6: Testing Web Views �� 137

Espresso-Web Basics �� 138

Espresso-Web Building Blocks ��� 139

Writing Tests with Espresso-Web �� 144

Summary��� 155

Chapter 7: Accessibility Testing ��� 157

Android Accessibility Tools �� 157

Testing Application Accessibility ��� 158

Summary��� 164

Chapter 8: Espresso and UI Automator: the Perfect Tandem �������������������������������� 165

Starting with UI Automator �� 167

Finding and Acting on UI Elements ��� 171

Waiting for UI Elements ��� 179

Watching for Conditions �� 182

Combining Espresso and UI Automator in Tests �� 187

Summary��� 189

Chapter 9: Dealing with Runtime System Actions and Permissions �������������������� 191

Changing the Emulator System Language Programmatically ��� 192

Handling Runtime Permissions ��� 195

Enabling Permissions Using the GrantPermissionRule �� 196

Handling Runtime Permissions Using UI Automator �� 198

Summary��� 207

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-4315-2_5#Sec3
https://doi.org/10.1007/978-1-4842-4315-2_5#Sec4
https://doi.org/10.1007/978-1-4842-4315-2_5#Sec4
https://doi.org/10.1007/978-1-4842-4315-2_5#Sec6

vi

Chapter 10: Android Test Automation Tooling �� 209

Setting Up a Virtual or Physical Device for Test Automation ��� 209

Using the Espresso Test Recorder Tool ��� 215

Running Espresso Tests in the Firebase Test Lab from Android Studio ������������������������������������ 221

Chapter 11: The Screen Object Design Pattern in Android UI Tests ���������������������� 231

Pros and Cons of the Screen Object Design Pattern in Android Test Projects��������������������������� 231

Pros ��� 231

Cons ��� 233

Applying the Screen Object Design Pattern �� 235

Chapter 12: Testing Robot Pattern with Espresso and Kotlin ������������������������������� 245

Separating the What from the How ��� 245

Code Readability �� 254

Code Duplication Elimination ��� 254

Chapter 13: Supervised Monkey Tests with Espresso and UI Automator ������������� 255

The Monkeyrunner Issue and Solution �� 255

Monkey Tests for Instrumented and Third-Party Applications �� 256

Identifying Monkey Tests Operational Area ��� 256

Defining the Monkey Test Actions �� 260

Implementing Package-Dependent Functionality �� 264

Summary��� 269

Chapter 14: AndroidX Test Library �� 271

AndroidX Test Compared to the Testing Support Library ��� 271

Configuring Projects for AndroidX Test �� 273

Migrating to AndroidX ��� 274

ActivityScenario in UI Tests ��� 276

Using Truth Assertion Library in UI Tests ��� 276

Summary��� 280

Table of ConTenTs

vii

Chapter 15: Improving Productivity and Testing Unusual Components ��������������� 281

Creating Parameterized Tests ��� 281

Aggregating Tests into Test Suites �� 283

Using AndroidStudio Live Templates in UI Tests �� 284

Espresso Drawable Matchers ��� 286

Setting SeekBar Progress in Espresso UI Tests �� 289

Appendix A: Espresso-Web Cheat Sheet ��� 291

Appendix B: UI Automator Cheat Sheet �� 293

Appendix C: Apache License ��� 295

Index ��� 301

Table of ConTenTs

ix

About the Author

Denys Zelenchuk’s professional career as a test engineer

started in Poland in 2010. Since 2011, he has been involved

in testing mobile applications. He has worked at companies

such as Tieto Poland and XING (Hamburg, Germany)

and currently works and lives in Zurich, Switzerland for

Numbrs Personal Finance AG as Senior Quality Assurance

Engineer. As of October 2013, he’s been using the Espresso

for Android test automation framework to write automated

tests.

xi

About the Technical Reviewer

Massimo Nardone has more than 24 years of experience

in security, web/mobile development, and cloud and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching others how to

program using Android, Perl, PHP, Java, VB, Python, C/C++,

and MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a project manager, software engineer,

research engineer, chief security architect, information

security manager, PCI/SCADA auditor, and senior lead IT security/Cloud/SCADA

architect for many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,

Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (in the PKI, SIP, SAML, and Proxy areas).

He currently works as the Chief Information Security Officer (CISO) for Cargotec Oyj

and he is member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has

coauthored Pro JPA in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8 (Apress, 2018),

and Pro Android Games (Apress, 2015).

xiii

Introduction

 Who This Book Is For
This book is a guideline on how to write Android user interface tests for quality

assurance engineers and test automation engineers who are interested in Android test

automation using Espresso for Android (Espresso). It can also be valuable to Android

developers involved in writing UI or integration tests.

This book was written mostly for software or test engineers with medium to

advanced knowledge in Android test automation; however, engineers with basic

development and test automation experience will benefit from it as well.

 What This Book Covers
There is a lot of good official Android testing documentation out there, including

GitHub projects with source code, but it is sometimes hard to find the needed portion of

information, especially when it comes to plain automated UI end-to-end testing, which

Android Espresso users face on a daily basis.

I tried to cover all the major topics of writing functional UI automated tests using

the Espresso testing framework, including different ways of running automated tests,

architecting test projects in easy and maintainable ways, and using tools that help to

implement automated tests with the less effort.

 Source Code and Sample Project
To demonstrate all the code examples throughout the book, the Google samples Android

architecture TO-DO application project (https://github.com/googlesamples/

android-architecture) was forked and modified so it was possible to showcase the

majority of the Android UI test automation samples using the Espresso for Android and

UI Automator testing frameworks.

https://github.com/googlesamples/android-architecture
https://github.com/googlesamples/android-architecture

xiv

The sample TO-DO application project contains two branches, where one uses

Android Testing Support library dependencies and the other covers AndroidX Test

library usage. Readers are free to select the one they prefer.

The source code is also accessible via the Download Source Code link located at

www.apress.com/9781484243145.

 Chapter Overview
 Chapter 1: Getting Started with Espresso for Android
This chapter describes the basics of Espresso. It defines goals and approaches of user

interface testing and provides examples for setting up tests inside the Android Studio

IDE project. It also explains how to identify Android application UI elements, perform

actions and assertions, and apply matchers to them. At the end of this chapter, you will

be able to write simple tests and execute them from inside the Android Studio IDE on the

device or emulator. It also includes examples for how to run tests using Gradle or shell

commands.

 Chapter 2: Customizing Espresso for Our Needs
With more advanced examples, you will learn how to implement a custom ViewAction,

including clicks and swiping actions; and a ViewMatcher, such as matching complex

views as RecyclerView matchers. You will learn how to use custom actions and

matchers, implement a custom FailureHandler with the possibility to take and save

screenshots upon failure.

 Chapter 3: Writing Espresso Tests with Kotlin
This chapter gives an overview of the benefits of using the Kotlin programming language

in tests and explains how to migrate tests written in Java to Kotlin. It also provides an

example of creating an Espresso domain specific language in Kotlin.

InTroduCTIon

http://www.apress.com/9781484243145

xv

 Chapter 4: Handling Network Operations and
Asynchronous Actions
This chapter explains how to handle application network requests and long-lasting

operations during test execution with the help of the IdlingResource interface. It

provides an example of using ConditionalWatcher as an alternative to IdlingResource.

 Chapter 5: Verifying and Stubbing Intents with
IntentMatchers
This chapter explains using IntentMatchers inside an application as well as how to stub

external intents and provide extras. A good example of an external intent is selecting an

image from the photo gallery, which then can be used by the application you’re testing.

 Chapter 6: Testing Web Views
This chapter covers testing WebViews inside an application. Implemented WebViews

showcase different UI elements that the Espresso-Web API is able to operate on. You will

be provided an Espresso-Web cheat sheet as part of the book’s content.

 Chapter 7: Accessibility Testing
This chapter unleashes the topic of how to test application accessibility using Espresso

for Android. It raises awareness about the importance of accessibility testing and

provides an overview of manual tools that can be used to test application accessibility.

 Chapter 8: Espresso and UI Automator:
The Perfect Tandem
This chapter explains one of the most powerful test automation setups for Android,

which combines the Espresso test framework with the UI Automator testing tool.

Examples show how to test notifications or operate on third-party apps during Espresso

tests execution.

InTroduCTIon

xvi

 Chapter 9: Dealing with Runtime System Actions and
Permissions
This chapter explains different ways that you can deal with system actions like

permission request dialogs and describes possible solutions for changing the Android

emulator system language programmatically.

 Chapter 10: Android Test Automation Tooling
After reading this chapter, you will understand how to use the Espresso test recorder,

set up a test device or emulator to minimize test flakiness, and run tests in the Firebase

cloud.

 Chapter 11: Screen Object Design Pattern in
Android UI Tests
This chapter shows you how to apply the screen object (the same as page object)

architecture approach to the test project, which allows you to reduce the maintenance

effort spent on reworking tests after changes in the application’s source code.

 Chapter 12: Testing the Robot Pattern with Espresso
and Kotlin
In this chapter, you learn how to apply a testing robot pattern that splits the test

implementation from the business logic to the Espresso UI tests.

 Chapter 13: Supervised Monkey Tests with Espresso
and UI Automator
This chapter shows how to implement supervised pseudo-monkey tests using Espresso

and UI Automator, which can be applicable to applications whose source code you have

access to as well as to third-party applications.

InTroduCTIon

xvii

 Chapter 14: AndroidX Test Library
This chapter demonstrates how to migrate test code from Android support to the

AndroidX Test library. You will find information about new APIs introduced in the

AndroidX Test library and see how they can be applied to UI tests.

 Chapter 15: Improving Productivity and Testing Unusual
Components
This chapter contains code samples that were not covered in the other chapters and

Espresso testing tips that may increase your daily test writing productivity. This includes

creating parameterized tests, aggregating tests into test suites, using AndroidStudio

Live templates in UI tests, setting SeekBar progress in Espresso UI tests, and Espresso

Drawable matchers topics.

 What This Book Doesn’t Cover
The goal of the book is to create a guide for how to write end-to-end UI automated tests

for Android applications without mocking or stubbing application dependencies. From

my point of view, this is the closest way to reproduce end user behavior. The book does

not explain how to mock application data and network connection requests or bypass

some states in the application workflow.

 Tools Requirements
To be able to work with this book, you need to have at least a basic knowledge in working

with such tools and platforms as Android Studio IDE, Gradle, GitHub, and shell/bash. In

most cases, I explain how to configure your IDE and note which commands should be

used to run the specific scripts.

 Legal Notice
This book contains code, documentation, and images taken from the Android

developers page at https://developer.android.com. They are covered by the Apache

2.0 License (http://www.apache.org/licenses/) mentioned in Appendix C.

InTroduCTIon

https://developer.android.com/
http://www.apache.org/licenses/

1
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_1

CHAPTER 1

Getting Started with
Espresso for Android
Espresso for Android is a lightweight, fast, and customizable Android testing framework,

designed to provide concise and reliable automated UI tests. At the end of October

2013, Espresso was open sourced by Google after it was announced at the Google Test

Automation Conference. From that moment it has been gaining popularity across

Android software and test engineers. Now it is the most popular testing framework for

the Android platform because its features and development are driven by Google and

the Android Open Source community.

This chapter describes Espresso’s basics—the core components of the Espresso

testing framework that are used in test automation to replicate the end user behavior.

This includes locating application UI elements on the screen and operating on them.

Espresso includes the following packages:

• espresso-core—Contains core and basic view matchers, actions,

and assertions.

• espresso-contrib—External contributions that contain DatePicker,

RecyclerView, and Drawer actions, accessibility checks, and the

CountingIdlingResource.

• espresso-intents—Extensions to validate and stub intents for

hermetic testing.

• espresso-idling-resource—Espresso’s mechanism for

synchronizing background jobs.

• espresso-remote—Location of Espresso’s multi-process functionality.

• espresso-web—Contains resources for WebView support.

2

 User Interface Testing: Goals and Approach
As mentioned, this book focuses on writing functional end-to-end UI tests, which is the

closest way to replicate end user behavior and catch potential issues before a product

goes live. Despite the fact that such tests can be much slower than unit or integration

tests, they usually discover issues that were not caught during the unit and integration

testing stages.

I would like to emphasize the fact that all the test examples in the book do not contain

any conditional logic. Conditional logic in test automation is a bad practice because

the same test can be executed in different ways, which eliminates easy ways of bug

reproduction, reduces the trust in the tests, and increases the test maintenance effort.

Tests should be written in a simple and plain way, so everyone who looks at them

will understand what step led to the issue.

 Setting Up the Sample Project
The Espresso for Android testing framework supports devices running Android 2.3.3

(API level 10) and higher. It was developed for writing UI tests within a single target

application. In this book, all the examples were developed and tested with the following

environment:

• Device—Nexus 5X, Android 8.1.0 (API level 27)

• IDE—AndroidStudio 3.2.1

Let’s start setting up our sample project. It is a simple TO-DO application forked

from the googlesamples/android-architecture GitHub repository (https://github.

com/googlesamples/android-architecture) and modified in a way to show you most of

the Espresso use cases.

Here is the link to the GitHub page where you can download the source code or

check out the project directly in your AndroidStudio IDE—https://github.com/

Apress/android-espresso-revealed. The sample application allows us to add, edit, and

delete TO-DO tasks. It contains different types of UI elements without functional load

but the variety of the components used there allows us to see Espresso in action.

After the repository is pulled into the AndroidStudio IDE, you will see a todoapp

project with one app module. This sample project already contains a test package.

Espresso dependencies are added to the build.gradle file. See Figure 1-1. In general,

Chapter 1 GettinG Started with eSpreSSo for android

https://github.com/googlesamples/android-architecture
https://github.com/googlesamples/android-architecture
https://github.com/Apress/android-espresso-revealed
https://github.com/Apress/android-espresso-revealed

3

for every test project where Espresso is used, the following steps should be done (this

example is based on the TO-DO application):

 1. Add an androidTest package inside the application module.

 2. Set up the Espresso dependencies in the todoapp/app/build.

gradle file inside the application module. Put them in the

dependencies{...} section.

Figure 1-1. Sample project structure

Chapter 1 GettinG Started with eSpreSSo for android

4

// Android Testing Support Library's runner and rules

androidTestImplementation "com.android.support.test:runner:$rootProject.

ext.runnerVersion"

androidTestImplementation "com.android.support.test:rules:$rootProject.ext.

rulesVersion"

androidTestImplementation "android.arch.persistence.

room:testing:$rootProject.roomVersion"

// Espresso UI Testing

androidTestImplementation "com.android.support.test.espresso:espresso-

core:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso:espresso-

contrib:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso:espresso-

intents:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso.idling:idling-

concurrent:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso:espresso-

idling- resource:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso:espresso-

web:$rootProject.espressoVersion"

androidTestImplementation "com.android.support.test.espresso:espresso-

accessibility:$rootProject.espressoVersion"

 3. Put the Espresso dependency versions inside the root project

todoapp/build.gradle file (see Figure 1-2). This is not mandatory

but is good practice in case there’s a multi-module application

structure. Later, instead of updating dependency versions in

multiple gradle files, we would only need to update them in

one place.

Chapter 1 GettinG Started with eSpreSSo for android

5

In most cases, after dependencies have been added, changed, or

deleted, we must synchronize the project in AndroidStudio by

clicking on the Gradle Sync icon . You need an Internet

connection to download any changed dependencies.

 4. Add a test package inside the todoapp/app/src/androidTest/

java directory. Usually the test package will have the same name

as the application being tested, but with a .test postfix.

Starting from this moment, you can add your first test class and begin writing tests.

 Understanding Android Instrumentation
On Android UI tests, we use the instrumentation mechanism to execute tests. Unlike

unit tests, which can run on the JVM directly, instrumented tests run on a real device or

emulator. Such tests have access to the Instrumentation API, which enables us to control

the test application from our test code, provides access to the context of the application,

and allows us to replicate user behavior through different UI actions, like click, swipe,

etc. This is achieved because the instrumented test application runs in the same process

as the application being tested. Instrumentation will be instantiated before any of the

application code, allowing it to monitor the interactions that the system has with the

application.

Figure 1-2. todoapp/build.gradle: keeping dependency versions in one place

Chapter 1 GettinG Started with eSpreSSo for android

6

Instrumentation is usually declared in test application Android manifest file using

the instrumentation XML tag. Here is the example of instrumentation declaration with

the AndroidJUnitRunner from the Android Support library:

<instrumentation

 android:name="android.support.test.runner.AndroidJUnitRunner"

 android:targetPackage="com.example.android.architecture.blueprints.

todoapp" />

Here is the same sample for the AndroidX Test library:

<instrumentation

 android:name="androidx.test.runner.AndroidJUnitRunner"

 android:targetPackage="com.example.android.architecture.blueprints.

todoapp" />

This also can be achieved by declaring it in the application module build.gradle file:

android {

...

 defaultConfig {

 ...

 applicationId "com.example.android.architecture.blueprints.todoapp"

 testInstrumentationRunner 'android.support.test.runner.AndroidJUnitRunner'

 }

...

}

android {

...

 defaultConfig {

 ...

 applicationId "com.example.android.architecture.blueprints.todoapp"

 testInstrumentationRunner 'androidx.test.runner.AndroidJUnitRunner'

 }

...

}

Chapter 1 GettinG Started with eSpreSSo for android

7

In both cases, we provide the instrumentation test runner name and the target

application package, which is the test application package. In the build.gradle file, it

is called applicationId. AndroidJUnitRunner is the default Android JUnit test runner,

starting from API level 8 (Android 2.2). It allows us to run JUnit3 or JUnit4 based tests.

The test runner handles loading your test package and the test app to a device,

running your tests, and reporting the test results.

To access the information about the current test, we run the

InstrumentationRegistry class. It holds a reference to the instrumentation object

running in the process as well as to the target application context object, the test

application context object, and the command-line arguments passed into your test.

A couple of words about annotations used with Espresso:

• Whenever we create a test class, it or its superclass should be

annotated with a @RunWith(AndroidJUnit4.class) annotation.

Otherwise, the default JUnit runner will take over the running

process and the tests will fail.

• To execute code once before or after any test method inside the class,

the @BeforeClass or @AfterClass JUnit annotations can be used.

• To execute code before or after each test method inside the class, the

@Before or @After JUnit annotations can be used. This can be useful

when several tests need similar objects created or deleted before/

after they can run.

• The @Rule annotates fields that reference rules or methods that

return a rule. Rules can be used for different purposes. For example,

later in the book, we will talk about activity or TestWatcher rules.

Refer to the BaseTest.java class to see how some of the described annotations are used:

@RunWith(AndroidJUnit4.class)

public class BaseTest {

 @Before

 public void setUp() throws Exception {

 setFailureHandler(new CustomFailureHandler(

 InstrumentationRegistry.getInstrumentation().

getTargetContext()));

 }

Chapter 1 GettinG Started with eSpreSSo for android

8

 @Rule

 public ActivityTestRule<TasksActivity> menuActivityTestRule =

 new ActivityTestRule<>(TasksActivity.class);

}

 Espresso Basics
Every mobile application has some form of user interface (UI). In the Android world,

this is accomplished through the use of View and ViewGroup objects. They are used for

drawing UI elements on the Android device screen. From a testing point of view, we

are interested in these UI elements to further perform actions or verifications on them.

The first step we have to do is locate these views in the application UI.

 Identifying Application UI Elements
Before jumping into the Espresso topic, let’s think about the mobile application from the

end user perspective. What do users do when they use the application? They:

 1. Search for UI elements on the screen (buttons, lists, edit text fields,

icons, etc.).

 2. Perform actions on UI elements (click, double-click, swipe, type,

etc.).

 3. Check the result (text is typed, click led to expected result, list is

scrolled, etc.).

So, our first task when we start writing automated tests is to find the UI elements in

the application we would like to perform actions on. They can be easily located with the

help of a couple of tools. The first possibility is to use Android Device Monitor.

To start the standalone Device Monitor application, enter the following on the

command line inside the android-sdk/tools/ directory:

monitor

After the Android Device Monitor starts, connect the device. Select it by tapping on

the device name inside the Devices tab, open the screen you want to inspect, and click

the Phone icon (see Figure 1-3). After following these steps, you will be able to inspect

Chapter 1 GettinG Started with eSpreSSo for android

9

the application UI by just clicking on the available elements inside the Android Device

Monitor. The details of the element are shown on the right side, including resource ID,

text, content description, etc. This information is very important because it will become

the base for views identification inside the application UI.

The second option is to use Layout Inspector, which is available from the

AndroidStudio Tools ➤ Layout Inspector menu. Select the needed activity or fragment

and start to investigate the application layout (see Figures 1-4 and 1-5).

Figure 1-3. Identifying UI elements by clicking on them

Chapter 1 GettinG Started with eSpreSSo for android

10

Figure 1-4. Selecting a running process from the Layout Inspector

Chapter 1 GettinG Started with eSpreSSo for android

11

As you can see in Figure 1-5, the Layout Inspector view is more detailed. It provides

us with more data compared to the Android Device Monitor, which provides more

possibilities for view identification and verification. Another benefit of the Layout

Inspector is that it saves the layout dumps inside the /captures folder, which can be

easily accessed without the need to start another tool. They can be committed into the

source control system and used by multiple team members.

EXERCISE 1

Inspecting the Application Layout

now it is time for the first exercise—to build and install the sample to-do application on

an emulator or real device, launch it, and then make layout dumps with the Monitor and

Layout inspector tools in different application sections. You can then analyze the layouts and

understand how these tools work and finally decide which one is better for you.

Figure 1-5. Analyzing the application layout from the Layout Inspector

Chapter 1 GettinG Started with eSpreSSo for android

12

 1. Make the layout dump in the all to-dos list and study the hierarchy structure.

 2. open a contextual menu toolbar in the all to-dos list and create a layout dump.

Study the hierarchy structure.

 Espresso
At this moment, the UI elements are identified with the help of the tools or based on the

source code and we can use Espresso to start operating on them. The main Espresso

class is the entry point to the Espresso framework and is where core Espresso methods

live. Testing can be initiated by using one of the on methods (e.g., onView()) or by

performing top-level user actions (e.g., pressBack()).

• onView()—A ViewInteraction for a given view. Takes the hamcrest

ViewMatchers instance(s) as a parameter. You can pass one or more

of these to the onView() method to locate a view, based on view

properties, within the current view hierarchy.

Note the view has to be part of the view hierarchy. this may not be the case if it
is rendered as part of an AdapterView (e.g., a ListView). if this is the case, use
Espresso.onData to load the view first.

• onData()—A DataInteraction for a data object (e.g., a ListView).

Takes as a parameter a hamcrest matcher that matches the data

object represented by the single item in the list.

• pressBack()—A press on the back button. Throws PerformException

if the currently displayed activity is a root activity, since pressing the

back button would result in the application closing.

• closeSoftKeyboard()—Closes the soft keyboard if it’s open.

• openContextualActionModeOverflowMenu()—Opens the overflow

menu displayed in the contextual options of an ActionMode.

• openActionBarOverflowOrOptionsMenu()—Opens the overflow

menu displayed within an ActionBar.

Chapter 1 GettinG Started with eSpreSSo for android

13

We will start with the basic Espresso functionality. First we will see how operations

on single views work with the onView() method. As a parameter, it takes a hamcrest

matcher to match a view in the application UI. We will learn more about view matchers

in the next section.

 Espresso ViewMatchers
View matchers form a collection of hamcrest Java matchers that match views. The

Espresso ViewMatchers are as follows (I have noted the most frequently used ones based

on my experience):

• isAssignableFrom()—Matches a view based on an instance or

subclass of the provided class. Normally used in combination with

other ViewMatchers. Commonly used.

• withClassName()⎯Returns a matcher that matches views with class

name matching the given matcher.

• isDisplayed()⎯Returns a matcher that matches views that are

currently displayed on the screen to the user. Commonly used.

Note isDisplayed() will select views that are partially displayed (e.g.,
the full height/width of the view is greater than the height/width of the
visible rectangle). if you want to ensure the entire rectangle is displayed, use
isCompletelyDisplayed().

• isCompletelyDisplayed()⎯Returns a matcher that only accepts

a view whose height and width fit perfectly within the currently

displayed region of this view.

Note there exist views (such as ScrollViews) whose height and width
are larger than the physical device screen by design. Such views will never be
completely displayed.

Chapter 1 GettinG Started with eSpreSSo for android

14

• isDisplayingAtLeast()⎯Returns a matcher that accepts a view so

long as a given percentage of that view’s area is not obscured by any

parent view and is thus visible to the user.

• isEnabled()⎯Returns a matcher that matches view(s) that are

enabled. Commonly used.

• isFocusable()⎯Returns a matcher that matches view(s) that are

focusable.

• hasFocus()⎯Returns a matcher that matches view(s) that currently

have focus.

• isSelected()⎯Returns a matcher that matches view(s) that are

selected.

• hasSibling()⎯Returns a matcher that matches view(s) based on

their siblings. This may be particularly useful when a view cannot be

uniquely selected on properties such as text or view ID. For example,

a call button is repeated several times in a contact layout and the only

way to differentiate the call button view is by what appears next to it

(e.g., the unique name of the contact).

• withContentDescription()⎯Returns a matcher that matches view(s)

based on the content description property value. Commonly used.

• withId()⎯Returns a matcher that matches view(s) based on content

description’s id. Commonly used.

Note android resource ids are not guaranteed to be unique. You may have to pair
this matcher with another one to guarantee a unique view selection.

• withResourceName()⎯Returns a matcher that matches view(s) based

on resource ID names, (for instance, channel_avatar).

• withTagKey()⎯Returns a matcher that matches view(s) based on tag

keys.

• withTagValue()⎯Returns a matcher that matches view(s) based on

tag property values.

Chapter 1 GettinG Started with eSpreSSo for android

15

• withText()⎯Returns a matcher that matches view(s) based on its text

property value.

• withHint()⎯Returns a matcher that matches view(s) based on its hint

property value.

• isChecked()⎯Returns a matcher that accepts it only if the view is a

CompoundButton (or a subtype of) and is in checked state. Commonly

used.

• isNotChecked()⎯Returns a matcher that accepts it only if the view

is a CompoundButton (or subtype of) and is not in the checked state.

Commonly used.

• hasContentDescription()⎯Returns a matcher that matches view(s)

with any content description.

• hasDescendant()⎯Returns a matcher that matches view(s) based on

the presence of a descendant in its view hierarchy.

• isClickable()⎯Returns a matcher that matches view(s) that are

clickable.

• isDescendantOfA()⎯Returns a matcher that matches view(s) based

on the given ancestor type.

• withEffectiveVisibility()⎯Returns a matcher that matches

view(s) that have “effective” visibility set to the given value.

• withAlpha()⎯Matches view(s) with the specified alpha value. Alpha

is a view property value from 0 to 1, where 0 means the view is

completely transparent and 1 means the view is completely opaque.

• withParent()⎯A matcher that accepts a view only if the view’s parent

is accepted by the provided matcher.

• withChild()⎯Matches view(s) whose child is accepted by the

provided matcher.

• hasChildCount()⎯Matches a ViewGroup (e.g., a ListView) if it has

exactly the specified number of children.

• hasMinimumChildCount()⎯Matches a ViewGroup (e.g., a ListView) if it

has at least the specified number of children.

Chapter 1 GettinG Started with eSpreSSo for android

16

• isRoot()⎯Returns a matcher that matches the root view.

• hasImeAction()⎯Returns a matcher that matches views that support

input methods.

• hasLinks()⎯Returns a matcher that matches TextView(s) that have links.

• withSpinnerText()⎯Returns a matcher that matches a descendant of

a spinner that is displaying the string of the selected item associated

with the given resource ID.

• isJavascriptEnabled()⎯Returns a matcher that matches web

view(s) if they are evaluating JavaScript.

• hasErrorText()⎯Returns a matcher that matches EditText based on

the edit text error string value.

• withInputType()⎯Returns a matcher that matches android.text.

InputType.

• withParentIndex()⎯Returns a matcher that matches the child index

inside the ViewParent.

As an example, here is the withText() ViewMatcher that is passed to the onView()

method to match the view, shown in Figure 1-6, based on its text:

onView(withText("item 1")); // locating view with todo "item 1"

A similar approach is used to locate the filter view in Figure 1-3 based on the view ID

and using the withId() ViewMatcher. You probably know that all Android application

assets, from views to strings, are stored in dynamically created R.java files. Therefore,

if the target view has an ID value defined by a developer, we are able to locate it by

referencing the ID value from the R.java class⎯R.id.view_id:

onView(withId(R.id.menu_filter)); //locating the filter menu item

It is time to look at the official Espresso cheat sheet, available from the following

link⎯https://developer.android.com/training/testing/espresso/cheat-sheet.

(See Figure 1-6) At this moment we are interested in ViewMatchers section. You can see

that ViewMatchers are grouped into the following focus areas:

• User properties

• UI properties

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/training/testing/espresso/cheat-sheet

17

• Object matchers

• Hierarchy

• Input

• Class

• Root matchers

Let’s look at some examples of how these ViewMatchers can be used with our

sample application. Open the ViewMatchersExampleTest.java class and look at the test

methods. All of them are listed in Figure 1-7.

Figure 1-6. Espresso cheat sheet 2.1⎯ViewMatchers (source https://developer.
android.com/training/testing/espresso/cheat-sheet)

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet

18

@Test

public void userProperties() {

 onView(withId(R.id.fab_add_task));

 onView(withText("All TO-DOs"));

 onView(withContentDescription(R.string.menu_filter));

 onView(hasContentDescription());

 onView(withHint(R.string.name_hint));

}

Figure 1-7. List of TO-DOs in the TO-DO application

Chapter 1 GettinG Started with eSpreSSo for android

19

In the test case, you can see that we identify views on the screen shown in Figure 1-7.

The floating action button is identified by its ID⎯onView(withId(R.id.fab_add_task)).

The TO-DO items list title is identified based on its text⎯onView(withText("All TO-
DOs")). The filter icon in the toolbar is located by the content description text⎯onVie
w(withContentDescription(R.string.menu_filter)). The presence of the content

description is in a view or based on a view hint.

@Test

public void uiProperties() {

 onView(isDisplayed());

 onView(isEnabled());

 onView(isChecked());

}

In this test case, there are examples of identifying views by their UI appearance.

Based on the screen in Figure 1-7, we see that most of the views are displayed and

enabled. That means onView(isDisplayed()) or onView(isEnabled()) can’t be used

without additional matchers, because the tests will fail with ambiguous matching

exceptions. In the following test case, you can see how two matchers are combined into

a sequence of matchers with the help of the allOf() hamcrest logical matcher. It will

return the matched object only when all the matchers inside it successfully execute.

See Figures 1-8 through 1-10. In a later section, you will learn more about the hamcrest

matchers.

@Test

public void objectMatcher() {

 onView(not(isChecked()));

 onView(allOf(withText("item 1"), isChecked()));

}

@Test

public void hierarchy() {

 onView(withParent(withId(R.id.todo_item)));

 onView(withChild(withText("item 2")));

 onView(isDescendantOfA(withId(R.id.todo_item)));

 onView(hasDescendant(isChecked()));

Chapter 1 GettinG Started with eSpreSSo for android

20

 onView(hasSibling(withContentDescription(R.string.menu_filter)));

}

@Test

public void input() {

 onView(supportsInputMethods());

 onView(hasImeAction(EditorInfo.IME_ACTION_SEND));

}

@Test

public void classMatchers() {

 onView(isAssignableFrom(CheckBox.class));

 onView(withClassName(is(FloatingActionButton.class.

getCanonicalName())));

}

@Test

public void rootMatchers() {

 onView(isFocusable());

 onView(withText(R.string.name_hint)).inRoot(isTouchable());

 onView(withText(R.string.name_hint)).inRoot(isDialog());

 onView(withText(R.string.name_hint)).inRoot(isPlatformPopup());

}

@Test

public void preferenceMatchers() {

 onData(withSummaryText("3 days"));

 onData(withTitle("Send notification"));

 onData(withKey("example_switch"));

 onView(isEnabled());

}

@Test

public void layoutMatchers() {

 onView(hasEllipsizedText());

 onView(hasMultilineText());

}

Chapter 1 GettinG Started with eSpreSSo for android

21

Figure 1-8. EditText example from the General preferences in the application
settings

Chapter 1 GettinG Started with eSpreSSo for android

22

Figure 1-9. General preferences section in the application settings

Chapter 1 GettinG Started with eSpreSSo for android

23

We will not discuss the cursor matchers shown in the ViewMatchers section of the

Espresso spreadsheet, because their goal is to operate at a database level, which is used

in unit and integration tests and is therefore out of this book’s scope.

Now let’s take a step aside from our sample application and look at some examples of

hamcrest string matchers. For simplicity, the string "XXYYZZ" will be used as an expected

text pattern. The Espresso ViewMatcher class implements two string-matcher methods—

withText() and withContentDescription(). They match a view with text that’s equal to

the expected text or the expected content description:

onView(withText("XXYYZZ")).perform(click());

onView(withContentDescription("XXYYZZ")).perform(click());

Using Hamcrest string matchers, we can create more flexible matcher combinations.

We can match a view with text that starts with the "XXYY" pattern:

onView(withText(startsWith("XXYY"))).perform(click());

Figure 1-10. The TO-DO task detail view

Chapter 1 GettinG Started with eSpreSSo for android

24

We can match a view with text that ends with a "YYZZ" pattern:

onView(withText(endsWith("YYZZ"))).perform(click());

We can assert that the text of a particular view with specified R.id has a content

description that contains the "YYZZ" string anywhere:

onView(withId(R.id.viewId)).check(matches(withContentDescription(contains

String("YYZZ"))));

We can match a view with text that’s equal to the specified string, ignoring case:

onView(withText(equalToIgnoringCase("xxYY"))).perform(click());

We can match a view with text that’s equal to the specified text when whitespace

differences are (mostly) ignored:

onView(withText(equalToIgnoringWhiteSpace("XX YY ZZ"))).perform(click());

We can assert that the text of a particular view with specified R.id does not contain

the "YYZZ" string:

onView(withId(R.id.viewId)).check(matches(withText(not(containsString

("YYZZ")))));

Adding the allOf() or anyOf() hamcrest core matchers gives us even more power.

We can assert that the text of a particular view with a specified R.id doesn’t start with the

"ZZ" string and contains the "YYZZ" string anywhere:

onView(withId(R.id.viewId))

 .check(matches(allOf(withText(not(startsWith("ZZ"))),

 withText(containsString("YYZZ")))));

We can also assert that the text of a particular view with a specified R.id ends with

the "ZZ" string or contains the "YYZZ" string anywhere:

onView(withId(R.id.viewId))

 .check(matches(anyOf(withText(endsWith("ZZ")),

 withText(containsString("YYZZ")))));

To get a full overview of the hamcrest matchers, refer to their official documentation

at http://hamcrest.org/JavaHamcrest.

Chapter 1 GettinG Started with eSpreSSo for android

http://hamcrest.org/JavaHamcrest

25

So, now we have an understanding of ViewMatchers. We also understand that they

play one of the most important roles in the Espresso testing framework. Their task is to

locate the matched view inside the application layout or fail if the match did not happen.

 Espresso’s ViewInteraction Class
In the previous examples, we were doing new perform() and check() operations on the

views. These methods are representatives of the ViewInteraction class. Interactions act

like glue between the ViewMatcher and the ViewAssertion or ViewAction.

Each interaction is tied to the view that was previously located by the ViewMatcher.

You probably guessed based on the method names that the perform() method takes an

action and the check() method asserts some condition provided as a parameter. There is

one more ViewInteraction we haven’t used yet⎯inRoot().

• perform()⎯Receives a view action or a set of view actions as a

parameter and performs them on the view selected by the current

ViewMatcher.

• check()⎯Receives a view action or a set of view actions as a parameter

and checks it on the the view selected by the current ViewMatcher.

So, what about the inRoot() method then? With this view interaction, we are

targeting the multi-window states in our application. For example, the AutoComplete

window layout that is drawn over the test application. In this case, we should explicitly

indicate which window Espresso should operate on by matching the proper window

with the RootMatcher.

• inRoot()⎯Receives a root matcher as a parameter and sets the

scope of the view interaction to the root view, identified by the root

matcher.

Note espresso performs all the actions on the Ui thread, which means that it will
first wait for the application Ui to render and only after that perform the required
steps. this ensures that the application Ui elements are fully loaded and displayed
on the screen, which increases test reliability and robustness. it will also eliminate
the need of having waits and sleeps in the tests.

Chapter 1 GettinG Started with eSpreSSo for android

26

In the following section, you will see examples of how perform() and check() view

interactions can be used.

 Espresso’s ViewActions Class
As you may guess, a ViewAction is responsible for performing actions on a required view.

The target is to replicate the end user behavior by interacting with the UI elements on the

screen. Here are examples of the type of actions we can perform (see Figure 1-11):

• clearText()⎯Returns an action that clears text on the view. The view

must be displayed on the screen.

• click()⎯Returns an action that clicks the view. At least 90% of the

view must be displayed on the screen.

• swipeLeft()⎯Returns an action that performs a swipe right-to-left

across the vertical center of the view. The swipe doesn’t start at the

very edge of the view, but is a bit offset, since swiping from the exact

edge may cause unexpected behavior (e.g., it may open a navigation

drawer). Other swipe actions defined by Espresso are swipeRight(),

swipeDown(), and swipeUp(). For all the swipe actions, at least 90% of

the views must be displayed onscreen.

• closeSoftKeyboard()⎯Returns an action that closes the soft

keyboard. If the keyboard is already closed, it is non-operational.

• pressImeActionButton()⎯Returns an action that presses the current

action button (Next, Done, Search, etc.) on the IME (Input Method

Editor).

• pressBack()⎯Returns an action that clicks the hardware back button.

• pressMenuKey()⎯Returns an action that presses the hardware menu

key. Most modern devices on the market no longer support the

hardware menu key, so this method is rarely used.

• pressKey()⎯Returns an action that presses the key specified by the

key code (e.g., KeyEvent.KEYCODE_BACK). There is a huge list of all

possible key codes declared in the andrid.view.KeyEvent.java

class.

Chapter 1 GettinG Started with eSpreSSo for android

27

• doubleClick()⎯Similar to the click() action, this returns an

action that double-clicks the view. At least 90% of the view must be

displayed onscreen.

• longClick()⎯Returns an action that long-clicks the view. At least 90%

of the view must be displayed onscreen.

• scrollTo()⎯Returns an action that scrolls to the view. Based on the

current implementation, the view we would like to scroll to must be

a descendant of one of the following classes: ScrollView.class,

HorizontalScrollView.class, ListView.class. At least 90% of the

view must be displayed onscreen.

Note the scrollTo() action will have no effect if the view is already displayed.

• typeText()⎯Returns an action that selects the view (by clicking on

it) and types the provided string into the view. Appending an '\n' to

the end of the string translates to a Enter key event. The view must be

displayed onscreen and must support input methods.

Note the typeText() method performs a tap on the view before typing to force
the view into focus. if the view already contains text, this tap may place the cursor
at an arbitrary position within the text.

• replaceText()⎯Returns an action that updates the text attribute of a

view.

• openLink()⎯Returns an action that opens a link matching the given link

text and URI matchers. The action is performed by invoking the link’s

onClick method (as opposed to actually issuing a click on the screen).

Chapter 1 GettinG Started with eSpreSSo for android

28

The Espresso cheat sheet in Figure 1-11 shows that all the actions are split into three

categories:

• Click/Press actions

• Gestures

• Text-related actions

From my point of view, we can add one more type here, which will probably come in

the next cheat sheet version:

• Conditional actions

These types of actions are represented by one method at this time—

repeatedlyUntil(). It enables performing a given action on a view until it reaches

the desired state matched by the given ViewMatcher. This action is useful when you’re

performing the action repeatedly on a view and then it changes its state at runtime. A

good use case to automate with this view action is going through the walkthrough or on-

boarding screens from the beginning until the end.

As you can see, Espresso provides almost all the actions needed to cover the end user

behavior, but still lacks some. The examples may be:

• Drag and drop actions

• Multi-gesture actions like pinch to zoom

Figure 1-11. Espresso cheat sheet 2.1—ViewActions (source https://developer.
android.com/training/testing/espresso/cheat-sheet)

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet

29

Having in our hands the Espresso core methods—ViewInteractions, ViewMatchers,

and ViewActions—we can start to automate simple use cases of our example TO-DO

application. Let’s come up with some:

• Add a new TO-DO that provides the title and description. Verify it is

shown in the TO-DO list.

• Add a new TO-DO, mark it completed, and verify it is in the list of

completed TO-DOs.

• Add a new TO-DO, edit it, and verify the changes.

Refer to the ViewActionsTest to see the example code. The first, second, and third

use cases are shown in the addsNewToDo(), checksToDoStateChange(), and editsToDo()

test cases, respectively. We will drill down into one of them to see some details:

@Test

public void checksToDoStateChange() {

 // adding new TO-DO

 onView(withId(R.id.fab_add_task)).perform(click());

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard());

 onView(withId(R.id.add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard());

 onView(withId(R.id.fab_edit_task_done)).perform(click());

 // marking our TO-DO as completed

 onView(withId(R.id.todo_complete)).perform(click());

 // filtering out the completed TO-DO

 onView(withId(R.id.menu_filter)).perform(click());

 onView(allOf(withId(android.R.id.title), withText(R.string.nav_completed)))

 .perform(click());

 onView(withId(R.id.todo_title))

 .check(matches(allOf(withText(toDoTitle), isDisplayed())));

}

Note that we introduced the TestData class to keep all the methods that generate

input data. This helps reduce the test method boilerplate code. You may notice that

we add a unique timestamp in milliseconds to each TO-DO item title and description.

Chapter 1 GettinG Started with eSpreSSo for android

30

This keeps our test data unique, which simplifies a lot of view identification and

validation inside the application layout.

Now, regarding the Espresso test code. Note the single combination of

ViewInteraction, ViewMatcher, and ViewAction, visible in the following line of code:

onView(withId(R.id.fab_add_task)).perform(click());

There are also examples of taking multiple view actions as parameters by the

perform() view interaction:

onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard());

There are also examples of how multiple ViewMatchers can be combined to give us

a stronger combination of conditions to match the desired view or validate its state, or to

avoid extra lines of code. The maximum number of matchers that can be provided to the

allOf() matcher is six:

onView(allOf(withId(android.R.id.title), withText(R.string.nav_completed)))

 .perform(click());

onView(withId(R.id.todo_title))

 .check(matches(allOf(withText(toDoTitle), isDisplayed())));

Notice how the Espresso notation is flexible—allOf() matcher can be used both

inside the onView() method and inside the check(matches()) view interaction.

EXERCISE 2

Writing Your First Espresso Test Cases

Based on the examples in ViewActionsTest, write test cases for the following application

functionality:

 1. add a to-do and mark it as completed. Verify that the checkbox of the

completed to-do is checked.

 2. add a new to-do, open the to-do details by clicking on it (hint: use

withText() matcher), and delete it by clicking the delete task button. Verify

the the all to-dos list is empty (i.e., verify that the text “You have no to-dos!”

and that the id R.id.noTasksIcon are displayed onscreen).

Chapter 1 GettinG Started with eSpreSSo for android

31

 Espresso’s DataInteraction Class
As mentioned in the “Understanding Android Instrumentation” section, the Android

application represents its elements via the View or ViewGroup. Single UI elements are

drawn inside the View. The ViewGroup is used to represent a set of views or another view

group. Think about ViewGroup as a container of UI elements. To represent a list of objects

in Android, you can use a class called AdapterView, which extends the ViewGroup class

and whose child views are determined by the Adapter. Another possibility to represent a

list of objects is to use the RecyclerView, but we discuss it in later chapters.

Thus, Adapter is responsible for transforming the data from an external source into

the View that’s bound to AdapterView. In the end, AdapterView contains many of views

with the data produced by Adapter and forms a list of items, which is called the ListView

(see Figure 1-12).

Figure 1-12. ListView visualization (source https://developer.android.com/
guide/topics/ui/layout/listview)

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/guide/topics/ui/layout/listview
https://developer.android.com/guide/topics/ui/layout/listview

32

To operate on the such lists, Espresso provides the DataInteraction interface,

which allows us to interact with elements displayed inside AdapterViews. Let’s briefly go

through the commonly used DataInteraction methods:

• atPosition(Integer atPosition)⎯Selects the view that matches the

nth position on the adapter based on the data matcher.

• inAdapterView(Matcher<View> adapterMatcher)⎯Points to a

specific adapter view on the screen to operate on. Should be used

when we have two or more AdapterViews in one layout. An example

may be the layout with a list view and a menu drawer list view.

• inRoot(Matcher<Root> rootMatcher)⎯Causes the data interaction

to work within the root window specified by the given root matcher.

May be useful when we have an AutoComplete list view popping up

over the application window.

• onChildView(Matcher<View> childMatcher)⎯Redirects perform

and check actions to the view inside the adapter item returned by

Adapter.getView().

Now, let’s see how DataInteraction methods are used in a test case written

for one of the setting functionalities. The Settings application was implemented

using the Android Preference component—the UI building block displayed by a

PreferenceActivity in the form of a ListView. This class provides the view to be

displayed in the activity and associates with a SharedPreferences to store/retrieve the

preference data. When specifying a preference hierarchy in XML, each element can

point to a subclass of Preference, similar to the view hierarchy and layouts. This class

contains a key that will be used as the key into the SharedPreferences.

As you can see in Figure 1-13, the main Settings section contains a list with four

preference headers (General, Notifications, Data&Sync and WebView sample), where

each header contains subsections with lists of preferences.

Chapter 1 GettinG Started with eSpreSSo for android

33

Open the DataInteractionsTest class to see the code examples.

@Test

public void dataInteraction() {

 openDrawer();

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click());

 // start of the flow as shown in Figure 1-13

 onData(instanceOf(PreferenceActivity.Header.class))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(0)

 .onChildView(withId(android.R.id.title))

 .check(matches(withText("General")))

 .perform(click());

 onData(withKey("email_edit_text"))

 /*we have to point explicitly to the parent of the General

prefs list

 because there are two {@ListView}s with id android.R.id.list in

the hierarchy*/

Figure 1-13. The dataInteraction() test case flow, starting from the Settings
section

Chapter 1 GettinG Started with eSpreSSo for android

34

 .inAdapterView(allOf(withId(android.R.id.list),

withParent(withId(android.R.id.list_container))))

 .check(matches(isDisplayed()))

 .perform(click());

 onView(withId(android.R.id.edit)).perform(replaceText("sample@ema.il"));

 onView(withId(android.R.id.button1)).perform(click());

 onData(withKey("email_edit_text"))

 .inAdapterView(allOf(withId(android.R.id.list),

withParent(withId(android.R.id.list_container))))

 .onChildView(withId(android.R.id.summary))

 .check(matches(withText("sample@ema.il")));

}

To understand better how DataInteraction methods work, we will split our test

case into two parts. The first part operates on the main Settings sections with the four

headers:

 onData(instanceOf(PreferenceActivity.Header.class))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(0)

 .onChildView(withId(android.R.id.title))

 .check(matches(withText("General")))

 .perform(click());

First, we explicitly point out that the object we should operate on is its instance of

PreferenceActivity.Header.class:

instanceOf(PreferenceActivity.Header.class)

Second, we point out which adapter contains our object. Inside an adapter of the

Android default ListView component, with an ID of android.R.id.list, at position “0”.

This is the first row in our list:

inAdapterView(withId(android.R.id.list)).atPosition(0)

Third, we point out that we would like to operate on the child view of our list item

with ID android.R.id.title that matches the text "General" and perform a click on it:

onChildView(withId(android.R.id.title)).check(matches(withText("General"))).

perform(click())

Chapter 1 GettinG Started with eSpreSSo for android

35

Moving on to the second part of our test case, which operates on the subsection of

the General Settings section:

 onData(withKey("email_edit_text"))

 .inAdapterView(allOf(withId(android.R.id.list),

withParent(withId(android.R.id.list_container))))

 .check(matches(isDisplayed()))

 .perform(click());

 onView(withId(android.R.id.edit)).perform(replaceText("sample@ema.il"));

 onView(withId(android.R.id.button1)).perform(click());

 onData(withKey("email_edit_text"))

 .inAdapterView(allOf(withId(android.R.id.list),

withParent(withId(android.R.id.list_container))))

 .onChildView(withId(android.R.id.summary))

 .check(matches(withText("sample@ema.il")));

Here, you may observe the preference matcher withKey("email_edit_text") pointing

to the EditTextPreference component by its key, which is set in the pref_general.xml file:

withKey("email_edit_text")

We again point to the ID of the adapter view our entry belongs to, combining it with

additional matcher to avoid multiple view matching. We check that such an object is

displayed on the screen and click on it:

.inAdapterView(allOf(

 withId(android.R.id.list),

 withParent(withId(android.R.id.list_container))))

.check(matches(isDisplayed()))

.perform(click())

At the very end, after the email is typed into the edit text field, we validate that the

summary of the list item matches the email we provided:

.inAdapterView(allOf(

 withId(android.R.id.list),

 withParent(withId(android.R.id.list_container))))

.onChildView(withId(android.R.id.summary))

.check(matches(withText("sample@ema.il")))

Chapter 1 GettinG Started with eSpreSSo for android

36

Let’s summarize what we have learned about DataInteractions with the help of the

Espresso cheat sheet shown in Figure 1-14. The Espresso onData() method is used to

operate on the object inside the list view. The list view item is identified by one or by a

combination of data options. After an object is identified and located, we can perform

actions or do assertions on it.

EXERCISE 3

Writing a Test Case that Operates on a ListView

Based on examples in the DataInteractionsTest:

 1. write a test case that navigates to the notifications Settings section and clicks

the enable notifications toggle by text or by id. Use the Layout inspector tool to

analyze the notifications Section layout

 2. expand the case from Step 1 and verify that after enable notification toggle is

switched on, the other notification settings are displayed on the screen.

Figure 1-14. Espresso cheat sheet—DataInteraction (source https://developer.
android.com/training/testing/espresso/cheat-sheet)

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet

37

 Operating on RecyclerView Using Espresso
RecyclerView is one of the most commonly used views in Android development. It is a

more advanced version of the ListView. Whether your application is an image gallery, a

news app, or a messenger, a RecyclerView is usually the best tool to implement it. That

is why understanding how to properly write automated tests for this component is so

important.

Similar to the simple view, Espresso has a RecyclerViewActions class that contains

all the actions you can perform on a RecyclerView, but unfortunately Espresso doesn’t

provide RecyclerView matchers. For now, we will look at the RecyclerViewActions

examples and in Chapter 2 you will see how to create your own RecyclerView matchers.

We will again refer to our sample TO-DO application, where a list of TO-DOs is

represented by a RecyclerView component.

 RecyclerViewActions
The current class represents view actions that can interact on a RecyclerView.

At first look, you may think that we can apply the onData() method here because

a RecyclerView is used to display the list of items, but in fact a RecyclerView is not

an AdapterView, hence it cannot be used with it. So, to operate on a RecyclerView,

we use onView() with a RecyclerView matcher to match the item or its child inside

the RecyclerView list. Then we have to perform a RecyclerViewAction or a simple

ViewAction on it.

• actionOnItem(final Matcher<View> itemViewMatcher, final

ViewAction viewAction)⎯Returns a ViewAction that scrolls a

RecyclerView to the view matched by viewHolderMatcher.

• actionOnHolderItem(final Matcher<VH> viewHolderMatcher,

final ViewAction viewAction)⎯Performs a ViewAction on a view

matched by viewHolderMatcher. First it scrolls a RecyclerView to the

view matched by itemViewMatcher and then performs an action on

the matched view.

• actionOnItemAtPosition(final int position, final ViewAction

viewAction)⎯First it scrolls a RecyclerView to the view matched by

itemViewMatcher and then performs an action on the view at position.

Chapter 1 GettinG Started with eSpreSSo for android

38

• scrollToHolder(final Matcher<VH> viewHolderMatcher)⎯Returns

a ViewAction that scrolls a RecyclerView to the view matched by

viewHolderMatcher.

• scrollTo(final Matcher<View> itemViewMatcher)⎯ViewAction that

scrolls a RecyclerView to the view matched by itemViewMatcher.

• scrollToPosition(final int position)⎯ViewAction that scrolls

a RecyclerView to a given position. The view we operate on must be

assignable from a RecyclerView class and should be displayed on the

screen.

The following code shows how RecyclerViewActions are used in real tests (the same

test case is present in the RecyclerViewActionsTest.java class):

@Test

public void addNewToDos() throws Exception {

 generateToDos(12);

 onView(withId(R.id.tasks_list))

 .perform(actionOnItemAtPosition(10, scrollTo()));

 onView(withId(R.id.tasks_list))

 .perform(scrollToPosition(1));

 onView(withId(R.id.tasks_list))

 .perform(scrollToPosition(12));

 onView(withId(R.id.tasks_list))

 .perform(actionOnItemAtPosition(12, click()));

 Espresso.pressBack();

 onView(withId(R.id.tasks_list))

 .perform(scrollToPosition(2));

}

You can omit for now the generateToDos() method and methods that take view

holder matchers as parameters (like scrollToHolder() and actionOnHolderItem()).

They will be discussed in Chapter 2. These tests add 12 TO-DOs, so that some of them

are not visible on the device screen. The important information here is that RecyclerView

adapter knows about all the 12 TO-DO items, but ViewActions can be performed only

on items that are displayed to the user. Here, the scrollToPosition() view holder

Chapter 1 GettinG Started with eSpreSSo for android

39

ViewAction helps us do the scrolling and make the needed TO-DO item visible on the

screen. Then, the view action can be performed without issues.

You may notice that both cases can perform the same actions and they are both valid:

onView(withId(R.id.tasks_list))

 .perform(actionOnItemAtPosition(12, scrollTo()));

and

onView(withId(R.id.tasks_list))

 .perform(scrollToPosition(12));

As a side note, the current test case is a good example of how can we chain

perform() actions if the same view is used in the onView() method⎯R.id.tasks_list.

This test case may look like this:

@Test

public void addNewToDosChained() throws Exception {

 generateToDos(12);

 onView(withId(R.id.tasks_list))

 .perform(actionOnItemAtPosition(10, scrollTo()))

 .perform(scrollToPosition(1))

 .perform(scrollToPosition(12))

 .perform(actionOnItemAtPosition(12, click()))

 .perform(pressBack())

 .perform(scrollToPosition(2));

}

The chained test case required only one change—the ViewActions.pressBack()

method was used instead of Espresso.pressBack().

EXERCISE 4

Experimenting with RecyclerView Actions

 1. Based on the examples here, experiment with actions in a recyclerView. try to

perform actions on the non-visible to-do items without scrolling to them and

observe the results.

Chapter 1 GettinG Started with eSpreSSo for android

40

 Running Espresso Tests from AndroidStudio
At this moment, we have a basic understanding on how to write automated tests with

Espresso. Let’s see how our Espresso tests can be run. This is achievable in two ways⎯via

AndroidStudio or from the command line.

Before jumping into running tests, we should understand the concept of the Gradle

BuildVariant in AndroidStudio. The BuildVariant represents the process that converts the

project into an Android Application Package (APK). The Android build process is very

flexible and enables you to create a custom build configuration without modifying the

application source code. The flexibility is achieved by BuildVariants, which are the the

combined product of build type and product flavor.

Build types define certain properties that Gradle uses when building and packaging

your application and are typically configured for different stages of your development

lifecycle. For example, the debug build type enables debug options and signs the APK

with the debug key, while the release build type may shrink, obfuscate, and sign your

APK with a release key for distribution.

The product flavor represents different versions of your app that you may release to

users, such as free and paid versions of your app. You can customize product flavors to

use different code and resources, while sharing and reusing the parts that are common

to all versions of your app.

Chapter 1 GettinG Started with eSpreSSo for android

41

Figure 1-15 shows the Android build process.

In short, unlike the release APK, the debug APK will contain debug or test dependencies

(such as Espresso dependencies) and test resources needed for our UI tests to run. Therefore,

it is important first to have the debug build type, as shown in the following build.gradle file:

buildTypes {

 debug {

 minifyEnabled true

 useProguard false

 proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

 testProguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguardTest-rules.pro'

 }

Figure 1-15. Android build process (source https://developer.android.com/
studio/build)

Chapter 1 GettinG Started with eSpreSSo for android

https://developer.android.com/studio/build
https://developer.android.com/studio/build

42

 release {

 minifyEnabled true

 useProguard true

 proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

 testProguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguardTest-rules.pro'

 }

}

Second, we must select the proper BuildVariant for our application module in

AndroidStudio, as shown in Figure 1-16.

Figure 1-16. Select a BuildVariant in AndroidStudio

Chapter 1 GettinG Started with eSpreSSo for android

43

When the proper build type is selected, we can right-click on the test class or test

method and create the run configuration for the UI test, as shown in Figure 1-17.

Figure 1-17. Creating an instrumentation test configuration

Chapter 1 GettinG Started with eSpreSSo for android

44

Then we select Create from the popup menu and confirm it with the OK button. See

Figure 1-18.

Figure 1-18. Creating an instrumentation test run configuration

Chapter 1 GettinG Started with eSpreSSo for android

45

When these steps are done, we are ready to run the selected test. We do so by clicking

the arrow button in the AndroidStudio toolbar.

 Running Espresso Tests from the Terminal
There are different ways to run Espresso and Android Instrumentation tests from the

terminal. Among them are:

• Running Instrumentation tests using shell commands

• Running Instrumentation tests using Gradle commands

 Running Instrumentation Tests Using Shell Commands
The following shell command can be used to run tests located in the app module.

Running App Module Tests with the Android Testing Support Library.

adb shell am instrument -w com.example.android.architecture.blueprints.

todoapp.mock.test/android.support.test.runner.AndroidJUnitRunner

Running App Module Tests with the AndroidX Test Library.

adb shell am instrument -w com.example.android.architecture.blueprints.

todoapp.test/androidx.test.runner.AndroidJUnitRunner

If you want to run tests from specific test classes, you would add the -e class

<Class> parameter to the previous command.

Running Tests from the chapter1.actions.ViewActionsTest.java Class with the

Android Testing Support Library.

adb shell am instrument -w -r -e debug false -e class com.example.android.

architecture.blueprints.todoapp.test.chapter1.actions.ViewActionsTest com.

example.android.architecture.blueprints.todoapp.test/android.support.test.

runner.AndroidJUnitRunner

Chapter 1 GettinG Started with eSpreSSo for android

46

Running Tests from the chapter1.actions.ViewActionsTest.java Class with the

AndroidX Test Library.

adb shell am instrument -w -r -e debug false -e class com.example.

android.architecture.blueprints.todoapp.test.chapter1.actions.

ViewActionsTest#addsNewToDo com.example.android.architecture.blueprints.

todoapp.mock.test/androidx.test.runner.AndroidJUnitRunner

In order to run specific test methods or functions, the class parameter can be

extended with the #<testMethod> value, as shown next.

Running Tests from the chapter1.actions.ViewActionsTest.addsNewToDo() Test

with the Android Testing Support Library.

adb shell am instrument -w -r -e debug false -e class com.example.

android.architecture.blueprints.todoapp.test.chapter1.actions.

ViewActionsTest#addsNewToDo com.example.android.architecture.blueprints.

todoapp.test/android.support.test.runner.AndroidJUnitRunner

Running Tests from the chapter1.actions.ViewActionsTest.addsNewToDo() Test

with the AndroidX Test Library.

adb shell am instrument -w -r -e debug false -e class com.example.

android.architecture.blueprints.todoapp.test.chapter1.actions.

ViewActionsTest#addsNewToDo com.example.android.architecture.blueprints.

todoapp.mock.test/androidx.test.runner.AndroidJUnitRunner

If you want to run tests configured to use the Android Test Orchestrator, the following

shell command should be used.

Running the chapter1.actions.ViewActionsTest.addsNewToDo() Test with the

Android Testing Support Library.

adb shell CLASSPATH=$(adb shell pm path android.support.test.

services) app_process / android.support.test.services.shellexecutor.

ShellMain am instrument -r -w -e targetInstrumentation com.example.

android.architecture.blueprints.todoapp.mock.test/android.support.

test.runner.AndroidJUnitRunner -e debug false -e class 'com.example.

android.architecture.blueprints.todoapp.test.chapter1.actions.

Chapter 1 GettinG Started with eSpreSSo for android

47

ViewActionsTest#addsNewToDo' -e clearPackageData true android.support.test.

orchestrator/android.support.test.orchestrator.AndroidTestOrchestrator

Running the chapter1.actions.ViewActionsTest.addsNewToDo() Test with the

AndroidX Test Library.

adb shell CLASSPATH=$(adb shell pm path androidx.test.services) app_process

/ androidx.test.services.shellexecutor.ShellMain am instrument -r -w -e

targetInstrumentation com.example.android.architecture.blueprints.todoapp.

mock.test/androidx.test.runner.AndroidJUnitRunner -e debug false -e class

'com.example.android.architecture.blueprints.todoapp.test.chapter1.actions.

ViewActionsTest#addsNewToDo' -e clearPackageData true androidx.test.

orchestrator/androidx.test.orchestrator.AndroidTestOrchestrator

 Running Instrumentation Tests Using Gradle Commands
The following Gradle command should be used in order to run all the tests from the app

project module (the current directory must be the project’s root directory):

./gradlew app:connectedAndroidTest

Note that for our sample application project (and for many other projects you may

work with), in order to test the application, it should be built with the debug build type.

On top of this, we have different flavors—mock and prod—as stated in the build.gradle

file. That means that the command to run all the tests from the app module will change

to reflect the build type and flavor, as shown here:

./gradlew app:connectedMockDebugAndroidTest

As is the case with shell commands, Gradle commands also can accept additional

arguments in order to run a specific test class or test method. Here is an example of

running the tests from a specific test class:

./gradlew app:connectedMockDebugAndroidTest -Pandroid.

testInstrumentationRunnerArguments.class=com.example.android.architecture.

blueprints.todoapp.test.chapter1.actions.ViewActionsTest

Similar to the shell commands, the class parameter in Gradle can be extended with

the #<testMethod> value.

Chapter 1 GettinG Started with eSpreSSo for android

48

Running the chapter1.actions.ViewActionsTest.checksToDoStateChange() Test.

./gradlew app:connectedMockDebugAndroidTest -Pandroid.testInstrumentation

RunnerArguments.class=com.example.android.architecture.blueprints.todoapp.

test.chapter1.actions.ViewActionsTest#checksToDoStateChange

EXERCISE 5

Creating a Test Run Configuration

 1. Create a test run configuration for a test method, a test class, and a package.

run the tests.

 2. edit one of the configurations by navigating to the androidStudio menu run ➤

edit Configurations.... remove one of the configurations.

 3. practice running a test class or a specific test method using the shell terminal

commands.

 4. practice running a test class or a specific test method using the gradle

terminal commands.

 Summary
In this first chapter, you learned all about the Espresso basics, starting from the

dependencies declaration to writing a simple test, which will be the foundation for

more advanced examples described later in this book. In addition to that, you received

information about how the application layout should be inspected using the Monitor

and Layout Inspector tools, how the build process looks, and how Espresso tests are

configured and run from the AndroidStudio IDE.

Chapter 1 GettinG Started with eSpreSSo for android

49
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_2

CHAPTER 2

Customizing Espresso
for Our Needs
Espresso is a really good testing framework, but it is not possible to cover all the test

automation cases with a predefined set of methods and classes. In the same way

that Android’s fundamental components can be customized during application

development, Espresso enables us to customize its components. Engineers are free do

create their own actions, matchers, and failure handlers and plug them into the tests. In

this chapter, we learn how to create our custom view, swipe, and recycler view actions;

understand how to build different types of matchers; handle test failures in a customized

way, and take the proper screenshots on failure.

 Writing Custom ViewActions
ViewActions are one of the most commonly used Espresso functionalities. Espresso

provides a big list of them, but we need more just because they may not suit our

specific needs. In my practice, most of the time, the following view action types require

customization:

• Swipe actions

• Recycler view actions

• ViewActions

We also discuss examples of customizing a simple click action for specific cases in

this chapter.

50

 Adapting Espresso Swipe Actions
In Chapter 1, we mentioned four swipe actions that Espresso provides—swipeUp(),

swipeDown(), swipeLeft(), and swipeRight(). This is how the swipeUp() action is

implemented:

public static ViewAction swipeUp() {

 return actionWithAssertions(new GeneralSwipeAction(Swipe.FAST,

 GeneralLocation.translate(GeneralLocation.BOTTOM_CENTER, 0, -EDGE_

FUZZ_FACTOR),

 GeneralLocation.TOP_CENTER, Press.FINGER));

}

As you may guess, GeneralLocation.BOTTOM_CENTER and GeneralLocation.TOP_

CENTER represent the from and to coordinates inside the view we would like to swipe.

The full positions list, which can be used as from and to coordinates, are TOP_LEFT,

TOP_CENTER, TOP_RIGHT, CENTER_LEFT, CENTER, CENTER_RIGHT, BOTTOM_LEFT, and BOTTOM_

CENTER, BOTTOM_RIGHT.

Swipe.FAST represents the length of time a “fast” swipe should last, in milliseconds.

For now, Swipe has FAST (100 milliseconds) and SLOW (1500 milliseconds) swipe speeds.

The Press.FINGER returns a touch target with the size 16x16 mm. Other press

options are PINPOINT 1x1 mm and THUMB 25x25 mm press areas.

The -EDGE_FUZZ_FACTOR value defines the distance from the edge to the swipe

action’s starting point in terms of the view’s length. This is helpful when swiping from the

exact edge can lead to undesired behavior—for example, opening the navigation drawer.

The other three swipe actions happen in a similar way, with the difference only in the

from and to coordinates.

There may be cases when these four swipe actions are not enough. You may need

swiping left or right slowly or swiping up or down from the middle of the screen. In such

cases, you can create your own custom swipe action.

To implement our own action, we will follow the approach of how Espresso swipe

actions like swipeDown() are implemented. First, we add our own CustomSwipe type and

call it CUSTOM. This enum class should implement the Espresso Swiper interface like Swipe

enum does, where the FAST and SLOW swiping types are declared.

Chapter 2 Customizing espresso for our needs

51

chapter2.customswipe.CustomSwipe.java.

public enum CustomSwipe implements Swiper {

 CUSTOM{

 @Override

 public Status sendSwipe(UiController uiController,

 float[] startCoordinates,

 float[] endCoordinates,

 float[] precision) {

 return sendLinearSwipe(

 uiController,

 startCoordinates,

 endCoordinates,

 precision,

 swipeCustomDuration);

 }

 };

 /** The number of motion events to send for each swipe. */

 private static final int SWIPE_EVENT_COUNT = 10;

 /** The duration of a swipe */

 private static int swipeCustomDuration = 0;

 /**

 * Setting duration to our custom swipe action

 * @param duration length of time a custom swipe should last for in

milliseconds.

 */

 public void setSwipeDuration(int duration) {

 swipeCustomDuration = duration;

 }

 private static Swiper.Status sendLinearSwipe(UiController uiController,

 float[] startCoordinates,

 float[] endCoordinates,

 float[] precision,

 int duration) {

Chapter 2 Customizing espresso for our needs

52

 ...

 }

 private static float[][] interpolate(float[] start, float[] end, int steps) {

 ...

 return res;

 }

}

In our implementation, we can control the swipe duration by setting it in the

setSwipeDuration() method, which modifies the swipeCustomDuration static variable.

We also have to paste the interpolate() and sendLinearSwipe() methods from the

Espresso Swipe enum because they are not public. The full source code is available in the

chapter2.customswipe.CustomSwipe.java class.

So, at this moment, we already have a fully customizable swipe type. Now we add the

swipeCustom() view action.

chapter2.customactions.CustomSwipeActions.java.

public class CustomSwipeActions {

 /**

 * Fully customizable Swipe action for any need

 * @param duration length of time a custom swipe should last for, in

milliseconds.

 * @param from for example [GeneralLocation.CENTER]

 * @param to for example [GeneralLocation.BOTTOM_CENTER]

 */

 public ViewAction swipeCustom(int duration, GeneralLocation from,

GeneralLocation to) {

 CustomSwipe.CUSTOM.setSwipeDuration(duration);

 return actionWithAssertions(new GeneralSwipeAction(

 CustomSwipe.CUSTOM,

 translate(from, 0f, 0f),

 to, Press.FINGER)

);

 }

Chapter 2 Customizing espresso for our needs

53

 /**

 * Translates the given coordinates by the given distances.

 * The distances are given in term of the view's size

 * -- 1.0 means to translate by an amount equivalent

 * to the view's length.

 */

 private static CoordinatesProvider translate(final CoordinatesProvider

coords, final float dx, final float dy) {

 return new CoordinatesProvider() {

 @Override

 public float[] calculateCoordinates(View view) {

 float xy[] = coords.calculateCoordinates(view);

 xy[0] += dx * view.getWidth();

 xy[1] += dy * view.getHeight();

 return xy;

 }

 };

 }

}

The swipeCustom() method first sets the swipe duration and then performs

GeneralSwipeAction with our CUSTOM swipe type. Again, we have to paste the

translate() method from inside the GeneralSwipeAction class, as it cannot be

accessed from outside of the class.

EXERCISE 6

Writing a Test Case with a Custom Swipe Action

 1. Write a test case that refreshes the to-do list by performing the swipeDown()

action on the to-do list view with id R.id.tasks_list.

 2. replace the swipeDown() action from the first task with the swipeCustom()

view action.

Chapter 2 Customizing espresso for our needs

54

 Creating Custom RecyclerView Actions
The RecyclerViewActions class provides a limited amount of actions that can be used

inside a recycler view or recycler view item. For example, clicking on the whole TO-DO

item in the TO-DO recycler view is useful and can be used to open item details. But what

if we need to click on the checkbox to mark a TO-DO item as done. Of course, we can do

this based on position. As an engineer who owns the test data, I have the full control over

each TO-DO name and I can make all the names unique. This enables me to identify each

TO-DO item based on its name and then narrow down the focus to the specific element

inside the TO-DO item. In our case, we want to click on the checkbox. Take a look at

how this custom recycler view action may look on the clickTodoCheckBoxWithTitle()

method from the CustomRecyclerViewActions.java class.

chapter2.customactions.CustomRecyclerViewActions.java.

class ClickTodoCheckBoxWithTitleViewAction implements

CustomRecyclerViewActions {

 private String toDoTitle;

 public ClickTodoCheckBoxWithTitleViewAction(String toDoTitle) {

 this.toDoTitle = toDoTitle;

 }

 public static ViewAction clickTodoCheckBoxWithTitle(final String

toDoTitle) {

 return actionWithAssertions(new ClickTodoCheckBoxWithTitleViewAction

(toDoTitle));

 }

 @Override

 public Matcher<View> getConstraints() {

 return allOf(isAssignableFrom(RecyclerView.class), isDisplayed());

 }

 @Override

 public String getDescription() {

 return "Completes the task by clicking its checkbox.";

 }

Chapter 2 Customizing espresso for our needs

55

 @Override

 public void perform(UiController uiController, View view) {

 try {

 RecyclerView recyclerView = (RecyclerView) view;

 RecyclerView.Adapter adapter = recyclerView.getAdapter();

 if (adapter instanceof TasksFragment.TasksAdapter) {

 int itemCount = adapter.getItemCount();

 for (int i = 0; i < itemCount; i++) {

 View taskItemView = recyclerView.getLayoutManager().

findViewByPosition(i);

 TextView textView = taskItemView.findViewById(R.id.title);

 if (textView != null && textView.getText() != null) {

 if (textView.getText().toString().equals(toDoTitle)) {

 CheckBox completeCheckBox = taskItemView.

findViewById(R.id.todo_complete);

 completeCheckBox.performClick();

 }

 } else {

 throw new RuntimeException(

 "Unable to find view with ID R.id.todo_title

as child of TO-DO item at position " + i);

 }

 }

 }

 uiController.loopMainThreadForAtLeast(ViewConfiguration.

getTapTimeout());

 } catch (RuntimeException e) {

 throw new PerformException.Builder().

withActionDescription(this.getDescription())

 .withViewDescription(HumanReadables.describe(view)).

withCause(e).build();

 }

 }

}

Chapter 2 Customizing espresso for our needs

56

The clickTodoCheckBoxWithTitle() view action returns a new

ClickTodoCheckBoxWithTitleViewAction class where the getConstraints() method

filters out views that are assignable from the RecyclerView.class and are visible on the

screen:

 public Matcher<View> getConstraints() {

 return allOf(isAssignableFrom(RecyclerView.class), isDisplayed())

 }

The getDescription() method describes our ViewAction. This is what you will see if

the test fails in the Espresso exception trace.

 public String getDescription() {

 return "Completes the task by clicking its checkbox.";

 }

The perform() method is doing the heavy work here—we already can rely on the

fact that our view is RecyclerView. Then we get the adapter from it and ensure that the

adapter is an instance of the TasksFragment.TasksAdapter class. After that, we iterate

through each item inside the adapter and fetch an item title from TextView with an ID

of R.id.title. If the item’s title is equal to the title from TaskItem, we search for the

CheckBox element with a R.id.todo_complete ID and call a click action on it. In the

end, we loop the main thread for a short period of time to let the application handle

our tap event. If a TO-DO with the expected title doesn’t exist in the list, it will throw an

exception with the help of Espresso’s PerformException class.

chapter2.customactions.CustomRecyclerViewActions.java.

public void perform(UiController uiController, View view) {

 try {

 RecyclerView recyclerView = (RecyclerView) view;

 RecyclerView.Adapter adapter = recyclerView.getAdapter();

 if (adapter instanceof TasksFragment.TasksAdapter) {

Chapter 2 Customizing espresso for our needs

57

 int itemCount = adapter.getItemCount();

 for (int i = 0; i < itemCount; i++) {

 View taskItemView = recyclerView.getLayoutManager().

findViewByPosition(i);

 TextView textView = taskItemView.findViewById(R.id.title);

 if (textView != null && textView.getText() != null) {

 if (textView.getText().toString().equals(toDoTitle)) {

 CheckBox completeCheckBox = taskItemView.

findViewById(R.id.todo_complete);

 completeCheckBox.performClick();

 }

 } else {

 throw new RuntimeException(

 "Unable to find TO-DO item with title " +

toDoTitle);

 }

 }

 }

 uiController.loopMainThreadForAtLeast(ViewConfiguration.

getTapTimeout());

 } catch (RuntimeException e) {

 throw new PerformException.Builder().withActionDescription(this.

getDescription())

 .withViewDescription(HumanReadables.describe(view)).

withCause(e).build();

 }

}

Another example of RecyclerViewAction is shown in the same

CustomRecyclerViewActions.java class inside the scrollToLastHolder() method and

it explains how to implement the scroll action on RecyclerView. We will not discuss the

getConstraints() and getDescription() methods since they are the same. As for the

perform() method, you can see that it retrieves the items count from the RecyclerView

adapter and scrolls to the last item using the scrollToPosition() RecyclerView

method:

Chapter 2 Customizing espresso for our needs

58

public void perform(UiController uiController, View view) {

 RecyclerView recyclerView = (RecyclerView) view;

 int itemCount = recyclerView.getAdapter().getItemCount();

 try {

 recyclerView.scrollToPosition(itemCount - 1);

 uiController.loopMainThreadUntilIdle();

 } catch (RuntimeException e) {

 throw new PerformException.Builder().withActionDescription(this.

getDescription())

 .withViewDescription(HumanReadables.describe(view)).

withCause(e).build();

 }

}

EXERCISE 7

Writing a Custom RecyclerView Action

 1. Based on the clickTodoCheckBoxWithTitle() action, implement a

RecyclerView action that verifies that the to-do item is not present in the

list. hint: use one of the JUnit assert methods inside the perform()

method. the final use may look like the following:

 onView(withId(R.id.tasks_list)).perform(assertNotInTheListTodoWithTitle("title"))

 Writing Custom Matchers
Espresso matchers are powerful tools that help locate or validate elements in the

application layout. Espresso view matchers may not fully fit your use cases or needs. In

that case, you can create custom matchers.

Chapter 2 Customizing espresso for our needs

59

 Creating Custom Matchers for Simple UI Elements
We will start using the simple matchers as an introduction. The following use case will be

used as an example:

Add a new TO-DO without a title and description, and as a result,

the TO-DO title field’s hint color should become red.

In this case, BoundedMatcher is the perfect candidate since it returns the

Matcher<View> type but will operate only on elements with EditText type. Refer to

the CustomViewMatchers.java class, which contains the withHintColor() matcher

implementation that matches the color of the EditText hint.

chapter2.custommatchers.CustomViewMatchers.java.

public static Matcher<View> withHintColor(final int expectedColor) {

 return new BoundedMatcher<View, EditText>(EditText.class) {

 @Override

 protected boolean matchesSafely(EditText editText) {

 return expectedColor == editText.getCurrentHintTextColor();

 }

 @Override

 public void describeTo(Description description) {

 description.appendText("with TO-DO title: " + expectedColor);

 }

 };

}

Here, BoundedMatcher enables us to match the EditText view that’s the subtype of

the Android View type and return to the end object of the Matcher<View> type. When the

EditText element is identified on the screen, its hint color is compared to the expected

color, returning a true or false value. Whenever a true value is returned, it means that

EditText with the expected hint color was found.

Here is how the usage of the withHintColor() matcher looks in a real test case (refer

to the CustomViewMatchers.java class for more details).

Chapter 2 Customizing espresso for our needs

60

chapter2.custommatchers.CustomViewMatchersTest.java.

@Test

public void addsNewToDoError() {

 // adding new TO-DO

 onView(withId(R.id.fab_add_task)).perform(click());

 onView(withId(R.id.fab_edit_task_done)).perform(click());

 onView(withId(R.id.add_task_title))

 .check(matches(hasErrorText("Title cannot be empty!")))

 .check(matches(withHintColor(Color.RED)));

}

 Implementing Custom RecyclerView Matchers
From my point of view, the RecyclerView matchers are the most hidden part in

Espresso. The Android documentation does not explain how to implement them but,

based on the past examples from this book, you may guess that the BoundedMatcher class

can be used to create them.

We will refer to our sample application and create the RecyclerView matcher that

matches the TO-DO item in the TO-DO list based on its title. Again, the title is assumed

to be unique since we have the full control over the test data.

chapter2.custommatchers.RecyclerViewMatchers.java.

public static Matcher<RecyclerView.ViewHolder> withTitle(final String

taskTitle) {

 Checks.checkNotNull(taskTitle);

 return new BoundedMatcher<RecyclerView.ViewHolder, TasksFragment.

TasksAdapter.ViewHolder>(

 TasksAdapter.ViewHolder.class) {

 @Override

 protected boolean matchesSafely(TasksAdapter.ViewHolder holder) {

 final String holderTaskTitle = holder.getHolderTask().

getTitle();

 return taskTitle.equals(holderTaskTitle);

 }

Chapter 2 Customizing espresso for our needs

61

 @Override

 public void describeTo(Description description) {

 description.appendText("with task title: " + taskTitle);

 }

 };

}

Here it is important to understand the application under test and know which

ViewHolder to use. In the sample, we put TasksFragment.TasksAdapter.ViewHolder as

the second parameter into BoundedMatcher. Whenever our matcher identifies elements

on the screen with the type, we retrieve the title from the holder and compare it to the

title we provided as a matcher parameter.

chapter2.custommatchers.RecyclerViewMatchers.java.

public static Matcher<RecyclerView.ViewHolder> withTask(final TaskItem

taskItem) {

 Checks.checkNotNull(taskItem);

 return new BoundedMatcher<RecyclerView.ViewHolder, TasksFragment.

TasksAdapter.ViewHolder>(

 TasksAdapter.ViewHolder.class) {

 @Override

 protected boolean matchesSafely(TasksAdapter.ViewHolder holder)

{

 final String holderTaskTitle = holder.getHolderTask().

getTitle();

 final String holderTaskDesc = holder.getHolderTask().

getDescription();

 return taskItem.getTitle().equals(holderTaskTitle)

 && taskItem.getDescription().

equals(holderTaskDesc);

 }

 @Override

 public void describeTo(Description description) {

 description.appendText("task with title: " + taskItem.getTitle()

 + " and description: " + taskItem.

getDescription());

Chapter 2 Customizing espresso for our needs

62

 }

 };

 }

 public static Matcher<RecyclerView.ViewHolder>

withTaskTitleFromTextView(final String taskTitle) {

 Checks.checkNotNull(taskTitle);

 return new BoundedMatcher<RecyclerView.ViewHolder, TasksFragment.

TasksAdapter.ViewHolder>(

 TasksAdapter.ViewHolder.class) {

 @Override

 protected boolean matchesSafely(TasksAdapter.ViewHolder holder)

{

 final TextView titleTextView = (TextView) holder.itemView.

findViewById(R.id.title);

 return taskTitle.equals(titleTextView.getText().

toString());

 }

 @Override

 public void describeTo(Description description) {

 description.appendText("with task title: " + taskTitle);

 }

 };

 }

}

 Handling Errors with a Custom FailureHandler
The Espresso testing framework is very flexible and customizable, and error handling

is no exception. Espresso provides an interface called FailureHandler that can be

implemented in a custom failure handler to manage failures that happen during test

execution.

The reason to implement a custom FailureHandler may be to reduce the exception

text or to save on screenshots or other application data, such as saving device dumps, etc.

As an example, the sample TO-DO application codebase contains a

CustomFailureHandler.

Chapter 2 Customizing espresso for our needs

63

chapter2.customfailurehandler.CustomFailureHandler.java.

public class CustomFailureHandler implements FailureHandler{

 private final FailureHandler delegate;

 public CustomFailureHandler(Context targetContext) {

 delegate = new DefaultFailureHandler(targetContext);

 }

 @Override

 public void handle(Throwable error, Matcher<View> viewMatcher) {

 try {

 delegate.handle(error, viewMatcher);

 } catch (NoMatchingViewException e) {

 // For example save device dump, take screenshot, etc.

 throw e;

 }

 }

}

You can see the try...catch block in the handle() method. That’s where we catch

the error and can do whatever we want with it. Usually the exception is propagated

further after all needed steps are complete.

To let Espresso intercept each test failure with a CustomFailureHandler, it is

important to register it inside the test class or inside the base test class, as shown in the

BaseTest.java class:

@Before

public void setUp() throws Exception {

 setFailureHandler(new CustomFailureHandler(

 InstrumentationRegistry.getInstrumentation().

getTargetContext()));

}

Chapter 2 Customizing espresso for our needs

64

If you register it in a base test class, don’t forget to call super.setUp() from inside

your test class:

@Before

public void setUp() throws Exception {

 super.setUp();

}

EXERCISE 8

Applying a CustomFailureHandler to a New Test Class

 1. Create a new test class with a test method that will fail on every run. apply

CustomFailureHandler to it.

 Taking and Saving Screenshots Upon Test Failure
Running tests is important, but it is also important to get proper and descriptive test

results, especially when you have a test failure, so they can be easily analyzed. The JUnit

reporter that is used by AndroidJUnitRunner reports test results in old, simple raw text

format. Engineers then have to adapt it to their needs. Of course, one of those needs is to

create a screenshot when a test fails. There are many third-party libraries and tools that

can take screenshots upon test failure. A good example is Spoon from Square. But here

we will talk about the native solution that comes with JUnit and Espresso.

Let’s identify what we want to achieve in the test run flow:

 1. Identify the moment when the test fails.

 2. Take a screenshot and name it appropriately.

 3. Save the screenshot on the given device or emulator.

The JUnit Library starting with version 4.9 provides a TestWatcher mechanism that

allows us to monitor and log passing and failing tests. It is an abstract class that extends

TestRule and enables us to react to the following test states:

• succeeded(Description description)—Invoked when a test succeeds.

• failed(Throwable e, Description description)—Invoked when

a test fails.

Chapter 2 Customizing espresso for our needs

65

• skipped(AssumptionViolatedException e, Description

description)—Invoked when a test is skipped due to a failed

assumption.

• starting(Description description)—Invoked when a test is about

to start.

• finished(Description description)—Invoked when a test method

finishes (whether passing or failing).

Here we are interested in the failed() method, which we will override the BaseTest

class (however, other methods can be also helpful in many cases). This addresses our

first point (identify the moment when the test fails).

The Android Testing support library provides the Screenshot and

ScreenshotCapture classes, which capture the screenshot in bitmap format during

instrumentation tests on an Android device or an emulator:

private void captureScreenshot(final String name) throws IOException {

 ScreenCapture capture = Screenshot.capture();

 capture.setFormat(Bitmap.CompressFormat.PNG);

 capture.setName(name);

 capture.process();

}

As to the screenshot name, we need help from the TestName() JUnit rule available

from JUnit version 4.7. The TestName rule makes the current test name available

from inside the test. It returns the currently-running test method name via the

getMethodName() function:

@Rule

public TestName testName = new TestName();

The second point has also been addressed (take a screenshot and name it

appropriately).

Actually, it’s almost solved since we need the following permissions to be granted in

order to let the Screenshot class save screenshots to an external storage location:

• android.Manifest.permission.READ_EXTERNAL_STORAGE

• android.Manifest.permission.WRITE_EXTERNAL_STORAGE

Chapter 2 Customizing espresso for our needs

66

Luckily, the Android Testing support library provides GrantPermissionRule to do this

at runtime. The only limitation is that it can be used only from Android M (API level 23):

@Rule

public GrantPermissionRule mRuntimePermissionRule = GrantPermissionRule

 .grant(android.Manifest.permission.WRITE_EXTERNAL_STORAGE,

 android.Manifest.permission.READ_EXTERNAL_STORAGE);

At this moment, all three points have been addressed (the final one being to save the

screenshot on a given device or emulator), and this is how it looks in the BaseTest.class.

com.example.android.architecture.blueprints.todoapp.test.BaseTest.java.

@RunWith(AndroidJUnit4.class)

public class BaseTest {

 @Rule

 public GrantPermissionRule mRuntimePermissionRule = GrantPermissionRule

 .grant(android.Manifest.permission.WRITE_EXTERNAL_STORAGE,

 android.Manifest.permission.READ_EXTERNAL_STORAGE);

 @Rule

 public TestName testName = new TestName();

 public class ScreenshotWatcher extends TestWatcher {

 @Override

 protected void succeeded(Description description) {

 // all good, tell everyone

 }

 @Override

 protected void failed(Throwable e, Description desc) {

 try {

 captureScreenshot(testName.getMethodName());

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 }

Chapter 2 Customizing espresso for our needs

67

 private void captureScreenshot(final String name) throws

IOException {

 ScreenCapture capture = Screenshot.capture();

 capture.setFormat(Bitmap.CompressFormat.PNG);

 capture.setName(name);

 capture.process();

 }

 }

}

One last note—screenshots will be saved in the sdcard/Pictures/screenshots

directory. On Android emulator, it is /storage/emulated/0/Pictures/screenshots.

EXERCISE 9

Failing One of the Tests and Observing the Screenshots

 1. modify one of the tests so that it will fail. run the test. after the test runs, with

the help of the adb command, start the shell session on the device or emulator

and navigate to the folder that contains the screenshot.

 2. pull the screenshot taken in step 1 from your device to your hard disk.

 Summary
As you can see, Espresso for Android is a flexible and customizable framework that

allows us to create custom classes and methods to meet specific testing needs.

There are, of course, some limitations, such as the missing RecyclerView matchers.

These limitations can be mitigated by using a custom ViewAction. Creating custom

ViewActions, ViewMatchers, and other methods and classes is essential knowledge,

sometimes even a must-have for an experienced Espresso user. In addition to that, you

can fully customize UI error handling and perform desired actions on each test error.

Chapter 2 Customizing espresso for our needs

69
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_3

CHAPTER 3

Writing Espresso Tests
with Kotlin
The Google I/O event in May 2017 announced official Kotlin support. From that

moment, Kotlin popularity skyrocketed among Android developers. Keeping in mind

the current trends and considering Google’s announcements about shifting the Android

toward Kotlin, which is reflected in the Android documentation and the code examples,

we can assume that in two to three years, Kotlin will displace Java.

Figure 3-1 shows Java vs. Kotlin usage prediction, which indicates that Kotlin will

soon overtake Java in the Android development world.

Figure 3-1. Kotlin vs. Java usage on Android (source: https://realm.io/realm-
report/)

This chapter explains how to migrate existing Espresso Java tests to Kotlin, lists

the possible benefits of writing UI tests in Kotlin, and provides an example of creating

Espresso DSL with practical examples and tasks.

https://realm.io/realm-report/
https://realm.io/realm-report/

70

 Migrating Espresso Java Tests to Kotlin
Kotlin works side-by-side with Java on Android, meaning that you can add Kotlin code to

your existing projects and can call Java code from Kotlin and vice versa.

The first step is to tell the Android Studio IDE that the project uses Kotlin by adding

the kotlin-gradle-plugin dependency to the project build.gradle file, as shown:

dependencies {

 classpath "com.android.tools.build:gradle:3.1.4"

 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.2.61"

 ...

}

After the project is synched, you can start converting Java classes to Kotlin. This can

easily be achieved by selecting a Java file or a package, opening the Code menu, and

choosing the Convert Java File to Kotlin File option. You can also right-click the file or

package and select this option from the pop-up menu (see Figure 3-2).

Chapter 3 Writing espresso tests With Kotlin

71

Things can look simple for the test classes files, but can be complicated for

complex ViewActions or ViewMatchers. When the IDE convertor can’t handle the code

complexity, it will require developer interaction. The dialog box in Figure 3-3 alerts the

developer to this fact.

Figure 3-2. Converting a Java file to Kotlin

Chapter 3 Writing espresso tests With Kotlin

72

You can also paste existing Java code into a Kotlin file. In this case, the IDE will

identify that the code in the clipboard was copied from a Java file and will suggest

converting it to Kotlin code, as shown in Figure 3-4.

You will be asked to add new imports to the Kotlin file if they are not present, as

shown in Figure 3-5.

Figure 3-3. Code corrections when converting from Java to Kotlin

Figure 3-4. Converting Java code from the clipboard to Kotlin

Chapter 3 Writing espresso tests With Kotlin

73

The conversion cannot handle methods with multiple imports. This requires manual

interaction from the developer as well (see Figure 3-6).

The following shows an example of an Espresso UI test method conversion from

Java to Kotlin. As you may notice, there is almost no difference except for the function

declaration and semicolons at the end of the lines.

Figure 3-5. Adding new imports to a file after conversion to Kotlin

Figure 3-6. Multiple choices when converting from Java to Kotlin

Chapter 3 Writing espresso tests With Kotlin

74

Adding a New TO-DO Test in the Java and Kotlin Languages, Respectively.

@Test

public void addsNewToDo() {

 // adding new TO-DO

 onView(withId(R.id.title)).perform(click());

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard());

 onView(withId(R.id.add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard());

 onView(withId(R.id.fab_edit_task_done)).perform(click());

 // verifying new TO-DO with title is shown in the TO-DO list

 onView(withText(toDoTitle)).check(matches(isDisplayed()));

}

@Test

fun addsNewToDo() {

 // adding new TO-DO

 onView(withId(R.id.title)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(R.id.add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard())

 onView(withId(R.id.fab_edit_task_done)).perform(click())

 // verifying new TO-DO with title is shown in the TO-DO list

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

}

You can see more examples of converting Java files to Kotlin—based on the examples

implemented in the ViewActionsTest.kt, RecyclerViewActionsTest.kt, and

DataInteractionsTest.kt classes—in the chapter3/testsamples package.

Chapter 3 Writing espresso tests With Kotlin

75

EXERCISE 10

Converting Java Code to Kotlin

 1. Convert an existing Java file to Kotlin.

 2. Convert a package containing multiple Java files to Kotlin.

 3. Copy a Java code sample and paste it into a Kotlin file. see what happens if you

paste only half of the Java method. Will the conversion be correct?

 Benefits of Writing Tests in Kotlin
Bringing Kotlin into your test codebase has many advantages. Among them are these:

• Function as a type support

• Extension functions

• String templates

• Ability to import R.class resources

• Much cleaner code

 Function as a Type
This process saves a function in a variable and then uses it as another function

argument or returns a function by another function. In the following example, you can

see how the Espresso ViewMatchers.withText() function is returned as a value of the

viewWithText() function:

fun viewWithText(text: String): ViewInteraction =

 Espresso.onView(ViewMatchers.withText(text))

Chapter 3 Writing espresso tests With Kotlin

76

 Extension Functions
Extensions do not actually modify the classes they extend. By defining an extension, you

do not add new members into a class, but only make new functions callable with the

dot-notation on instances of this type. With the help of extension functions, the Espresso

perform(ViewAction.typeText()) function can be represented in the following way:

fun ViewInteraction.type(text: String): ViewInteraction =

 perform(ViewActions.typeText(text))

In this example, we extended the ViewInteraction class with an additional type()

method.

 String Templates
Strings may contain template expressions, i.e. pieces of code that are evaluated and

whose results are concatenated into the string. A template expression starts with a dollar

sign ($) and contains a simple name. Take a look at this example:

fun main(args: Array<String>) {

 val i = 10

 println("i = $i") // prints "i = 10"

}

Or consider an arbitrary expression in curly braces:

 fun main(args: Array<String>) {

 val s = "abc"

 println("$s.length is ${s.length}") // prints "abc.length is 3"

}

 Import R.class Resources
Kotlin—together with the Kotlin Android Gradle plugin—simplifies the way that

project resources (including string values, IDs, and drawables) can be accessed. In the

following listing, based on the addsNewToDo() test implementation from the chapter3/

testsamples/ViewActionsKotlinTest.kt file, you can see how Kotlin allows us to

import application resources.

Chapter 3 Writing espresso tests With Kotlin

77

chapter3.testsamples.ViewActionsKotlinTest.kt.

... // other imports and package

import com.example.android.architecture.blueprints.todoapp.R.id.*

class ViewActionsKotlinTest : BaseTest() {

 private var toDoTitle = ""

 private var toDoDescription = ""

 @Before

 override fun setUp() {

 super.setUp()

 toDoTitle = TestData.getToDoTitle()

 toDoDescription = TestData.getToDoDescription()

 }

 @Test

 fun addsNewToDo() {

 // adding new TO-DO

 onView(withId(fab_add_task)).perform(click())

 onView(withId(add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard())

 onView(withId(fab_edit_task_done)).perform(click())

 // verifying new TO-DO with title is shown in the TO-DO list

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

 }

}

Instead of the whole R.class, Android Studio IDE allows you to import only one or

several resources (see Figure 3-7).

Chapter 3 Writing espresso tests With Kotlin

78

 Espresso Domain-Specific Language in Kotlin
With the help of the Kotlin extension functions and function as a type support, we can

drastically reduce the boilerplate of the test code by implementing Espresso domain-

specific language (DSL). The goal of our Espresso DSL is to simplify our test codebase,

make it more legible and, most importantly, make our tests easy to write and maintain.

First, we must determine which Espresso functions or expressions we use the most

in our UI test codebase:

• View or data interactions represented by the Espresso.onView()

and Espresso.onData() methods—The starting point of every line of

Espresso test code.

• Different view actions, like ViewActions.click(), ViewActions.

typeText(), ViewActions.swipeDown(), ViewActions.

closeSoftKeyboard(), etc.

• Plenty of view matchers, which are the most used functions inside

the test codebase, since they are used not only to locate elements on

the page but also in combination with view assertions check view

properties: ViewMatchers.withId(), ViewMatchers.withText(),

check(matches(ViewMatchers.isDisplayed())), and so on.

• Aggregated Hamcrest matchers like Matchers.allOf() or Matchers.

anyOf().

• Recycler view actions such as RecyclerViewActions.

scrollToHolder() and RecyclerViewActions.actionOnItem().

Figure 3-7. Importing R class resources with Kotlin

Chapter 3 Writing espresso tests With Kotlin

79

Of course, this list can be extended or reduced based on your needs. It is worth it

to highlight that the aim of this paragraph is not to standardize the Espresso DSL with

Kotlin, but to provide an example of how it can be done, so that you can apply it to your

test projects.

The core Espresso.onView() and Espresso.onData() methods are the first

functions we going to work with. Seeing that they always take a parameter view matcher

or object matcher, we can convert the whole expression into one single Kotlin function,

as follows:

fun viewWithText(text: String): ViewInteraction = Espresso.

onView(ViewMatchers.withText(text))

Or in case of onData():

fun onAnyData(): DataInteraction = Espresso.onData(CoreMatchers.anything())

You may notice that the returning types are identical to those returned by

the onView() and onData() methods—ViewInteraction and DataInteraction,

respectively. Another thing is that it is possible to pass a parameter into the extension

function that’s used inside the original one. These examples are using Kotlin local

functions (i.e., a function inside another function) to simplify the code and can be

represented by the following more complex function declarations:

fun viewWithText(text: String): ViewInteraction {

 return Espresso.onView(ViewMatchers.withText(text))

}

and

fun onAnyData(): DataInteraction {

 return Espresso.onData(CoreMatchers.anything())

}

Now moving to view actions. It is time to use Kotlin extension function support. Here

is how the Espresso click action on a view with text looks:

onView(withText("item 1")).perform(ViewActions.click())

Chapter 3 Writing espresso tests With Kotlin

80

You already know that the onView() method returns a ViewInteraction type

containing the perform() public method. Now we are going to declare another function

that will replace perform(ViewActions.click()). In order to keep the dot notation for

the ViewInteraction class, we are going to extend it with our new function, as follows:

fun ViewInteraction.click(): ViewInteraction = perform(ViewActions.click())

This way, we represent the perform(ViewActions.click()) expression by a simple

click() function. This example, using the view with text, looks this way now:

viewWithText("item 1").click()

Here we also keep the right return ViewInteraction type. It’s the same one that is

returned by the original perform() method.

The same extension function can be added to the DataInteraction class.

The only thing we need to do is replace the ViewInteraction extension class with

DataInteraction:

fun DataInteraction.click(): ViewInteraction = perform(ViewActions.click())

That is it. Looking good so far.

Moving forward to view matchers and view assertions where the same approach with

extension functions is used. Here is an example of an assertion of a view being displayed:

onView(withText("item 1")).check(matches(isDisplayed()))

The check part of the expression can be replaced with this extension function:

fun ViewInteraction.checkDisplayed(): ViewInteraction =

 check(ViewAssertions.matches(ViewMatchers.isDisplayed()))

This, in combination with the viewWithText() extension function example, is

transformed into the following simplified expression:

viewWithText("item 1").checkIsDisplayed()

Again, replacing ViewInteraction with the DataInteraction class adds the same

extension function to DataInteraction.

fun DataInteraction.checkDisplayed(): ViewInteraction =

 check(ViewAssertions.matches(ViewMatchers.isDisplayed()))

Chapter 3 Writing espresso tests With Kotlin

81

Having DSL samples of the Espresso.onView(), ViewActions, and ViewAssertions

methods allows us to compare one of the commonly used raw Espresso expressions with

one written in DSL (also assuming that we imported all the Espresso static methods):

onView(withText("item 1")).check(matches(isDisplayed())).perform(click())

Here’s the same line written using DSL:

viewWithText("item 1").checkIsDisplayed().click()

We can apply the same approach to an aggregated allOf() Hamcrest matcher:

check(matches(allOf(withText(), isDisplayed())))

This will turn into the allOf() function, as follows:

fun ViewInteraction.allOf(vararg matcher: Matcher<View>): ViewInteraction {

 return check(ViewAssertions.matches(Matchers.allOf(matcher.asIterable())))

}

And the usage will be as follows:

viewWithId(R.id.title).allOf(withText("item 1"), isDisplayed())

Next, we have the recycler view actions. Similar to the previous examples, we can

handle recycler view actions. The following example is based on RecyclerViewActions.

actionOnItemAtPosition() and looks the following way:

onView(withId(R.id.tasks_list)).perform(actionOnItemAtPosition(10, scrollTo()));

After applying the DSL to this method, we have the following expression:

fun ViewInteraction.actionAtPosition(position: Int, action: ViewAction):

ViewInteraction =

 perform(actionOnItemAtPosition<RecyclerView.ViewHolder>(position,

action))

So, the final usage is:

viewWithId(R.id.tasks_list)).actionAtPosition(10, scrollTo())

Chapter 3 Writing espresso tests With Kotlin

82

These examples and even more are defined in the chapter3/EspressoDsl.kt file of

our sample project for your reference.

Now it is time to apply our domain specific language to our tests and observe how

converted Espresso Kotlin tests look compared to those written using DSL. First let’s look

at the ViewActions tests samples implemented in ViewActionsKotlinTest.kt.

The checksToDoStateChange() Test Method Implemented in chapter3.
testsamples.ViewActionsKotlinTest.kt.

@Test

fun checksToDoStateChange() {

 // adding new TO-DO

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(R.id.add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard())

 onView(withId(R.id.fab_edit_task_done)).perform(click())

 // marking our TO-DO as completed

 onView(withId(R.id.todo_complete)).perform(click())

 // filtering out the completed TO-DO

 onView(withId(R.id.menu_filter)).perform(click())

 onView(allOf(withId(R.id.title), withText("Active"))).perform(click())

 onView(withId(R.id.todo_title)).check(matches(not(isDisplayed())))

 onView(withId(R.id.menu_filter)).perform(click())

 onView(allOf(withId(R.id.title), withText("Completed"))).

perform(click())

 onView(withId(R.id.todo_title))

 .check(matches(allOf(withText(toDoTitle), isDisplayed())))

}

Chapter 3 Writing espresso tests With Kotlin

83

Now we can compare this to the tests from ViewActionsKotlinDslTest.kt.

The checksToDoStateChange() Test Method Implemented in chapter3.
testsamples.ViewActionsKotlinDslTest.kt.

// ViewInteractions used in tests

private val addFab = viewWithId(fab_add_task)

private val taskTitleField = viewWithId(add_task_title)

private val taskDescriptionField = viewWithId(add_task_description)

private val editDoneFab = viewWithId(fab_edit_task_done)

private val todoCheckbox = viewWithId(todo_complete)

private val toolbarFilter = viewWithId(menu_filter)

private val todoTitle = viewWithId(todo_title)

private val allFilterOption = onView(allOf(withId(title), withText("All")))

private val activeFilterOption = onView(allOf(withId(title), withText("Active")))

private val completedFilterOption = onView(allOf(withId(title),

withText("Completed")))

@Test

fun checksToDoStateChangeDsl() {

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 // marking our TO-DO as completed

 todoCheckbox.click()

 // filtering out the completed TO-DO

 toolbarFilter.click()

 activeFilterOption.click()

 todoTitle.checkNotDisplayed()

 toolbarFilter.click()

 completedFilterOption.click()

 todoTitle.checkMatches(allOf(withText(toDoTitle), isDisplayed()))

}

Chapter 3 Writing espresso tests With Kotlin

84

As you may notice, the test method implemented with DSL is much more legible and

clean. For even more readability, we declared all used view interactions at the beginning

of the test class. This makes the tests even smoother.

EXERCISE 11

Practicing Espresso DSL Usage

 1. look through the tests implemented in the DataInteractionKotlinDslTest.kt

and RecyclerViewActionsKotlinDslTest.kt classes and understand how

Dsl was applied to these tests.

 2. Based on the editsToDo() test method from ViewActionsKotlinTest.kt,

finish implementation of the editsToDoDsl() test case located in

ViewActionsKotlinDslTest.kt using Dsl.

 Summary
After many years of the Java language dominating the Android platform, Kotlin brings a

fresh and progressive approach to its applications and to test development. Tests written

in Kotlin are more legible, cleaner, and easier to maintain. Its extension functions support

allows developers to easily create and test domain-specific language, which simplifies

the test code even more. Migration from Java to Kotlin is painless and fast. In the end, it is

clear that at some point Kotlin will replace Java in Android application development. You

should be prepared to at least migrate to Kotlin and improve your test code.

Chapter 3 Writing espresso tests With Kotlin

85
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_4

CHAPTER 4

Handling Network
Operations and
Asynchronous Actions
One of the key benefits of the Espresso framework is its test robustness. It is achieved

through automatic synchronization of most of the test actions. Espresso waits for the

main application UI thread while it is busy and releases test actions after the UI thread

becomes idle. Moreover, it also waits for AsyncTask operations to complete before it

moves to the next test step. In this chapter, we will see how Espresso can handle network

operations using the IdlingResource mechanism and become familiar with the

ConditionWatcher mechanism as an alternative to IdlingResource.

 IdlingResource Basics
Each time your test invokes onView() or onData(), Espresso waits to perform the

corresponding UI action or assertion until the following synchronization conditions

are met:

• The message queue is empty.

• There are no instances of AsyncTask currently executing a task.

• All developer-defined idling resources are idle.

By performing these checks, Espresso substantially increases the likelihood that only

one UI action or assertion can occur at any given time. This capability gives you more

reliable and dependable test results.

86

However, it is not possible in every case to rely on automatic synchronization,

for instance when the application being tested executes network calls via

ThreadPoolExecutor. In order to let Espresso handle these kinds of long-lasting

asynchronous operations, the IdlingResource must be created and registered before the

test is executed.

It is important to register IdlingResource when these operations update the

application UI you would like to further validate.

The common use cases in which IdlingResource can be used are when your app is:

• Performing network calls.

• Establishing database connections.

At the moment, Espresso provides the following idling resources:

• CountingIdlingResource—Maintains a counter of active tasks.

When the counter is zero, the associated resource is considered idle.

This functionality closely resembles that of a semaphore. In most

cases, this implementation is sufficient for managing your app’s

asynchronous work during testing.

• UriIdlingResource—Similar to CountingIdlingResource, but the

counter needs to be zero for a specific period of time before the

resource is considered idle. This additional waiting period takes

consecutive network requests into account, where an app in your

thread might make a new request immediately after receiving a

response to a previous request.

• IdlingThreadPoolExecutor—A custom implementation of

ThreadPoolExecutor that keeps track of the total number of

running tasks within the created thread pools. This class uses a

CountingIdlingResource to maintain the counter of active tasks.

• IdlingScheduledThreadPoolExecutor—A custom implementation

of ScheduledThreadPoolExecutor. It provides the same functionality

and capabilities as the IdlingThreadPoolExecutor class, but it

can also keep track of tasks that are scheduled for the future or are

scheduled to execute periodically.

Chapter 4 handling network operations and asynChronous aCtions

87

To start using an idling resource mechanism in an application, the following

dependency must be added to the application buid.gradle file (dependencies are

mentioned for the Android Support and AndroidX Libraries).

IdlingResource Dependency in the Android Support Library.

androidTestImplementation "com.android.support.test.espresso.idling:idling-

concurrent:3.0.1"

IdlingResource Dependency in the AndroidX Library.

androidTestImplementation 'androidx.test.espresso.idling:idling-

concurrent:3.1.0'

These idling resource types use CountingIdlingResource in their implementation,

so we will focus on CountingIdlingResource as a reference.

The IdlingResource interface contains three methods:

• getName()—Returns the name of the resources.

Note the IdlingResource name is represented by a String class and is
used when logging, and for registration/unregistration purposes. therefore, the
name of the resource should be unique.

• isIdleNow()—Returns true if the resource is currently idle. Espresso

will always call this method from the main thread; therefore, it should

be non-blocking and return immediately.

• registerIdleTransitionCallback()—Registers the given resource

callback with the idling resource. The registered callback is then used

in the isIdleNow() method.

Note the IdlingResource class contains a ResourceCallback interface
that is used in the registerTransitionCallback() method. whenever
the application is going to switch states from busy to idle, the callback.
onTransitionToIdle() method should be called to notify espresso about it.

Chapter 4 handling network operations and asynChronous aCtions

88

CountingIdlingResource is an implementation of IdlingResource that determines

idleness by maintaining an internal counter. When the counter is zero, it is considered

to be idle; when it is non-zero, it is not idle. This is very similar to the way a java.util.

concurrent.Semaphore behaves.

The counter may be incremented or decremented from any thread. If it

reaches an illogical state (like a counter that’s less than zero), it will throw an

IllegalStateException. This class can then be used to wrap operations that, while in

progress, block tests from accessing the UI.

 Writing the Code
This is how the simple CountingIdlingResource looks in our application (see the util/

SimpleCountingIdlingResource.java file from the main application source code):

public final class SimpleCountingIdlingResource implements IdlingResource {

 private final String mResourceName;

 private final AtomicInteger counter = new AtomicInteger(0);

 // written from main thread, read from any thread.

 private volatile ResourceCallback resourceCallback;

 /**

 * Creates a SimpleCountingIdlingResource

 *

 * @param resourceName the name of the resource to report to Espresso.

 */

 public SimpleCountingIdlingResource(String resourceName) {

 mResourceName = checkNotNull(resourceName);

 }

 @Override

 public String getName() {

 return mResourceName;

 }

Chapter 4 handling network operations and asynChronous aCtions

89

 @Override

 public boolean isIdleNow() {

 return counter.get() == 0;

 }

 @Override

 public void registerIdleTransitionCallback(ResourceCallback

resourceCallback) {

 this.resourceCallback = resourceCallback;

 }

 /**

 * Increments the count of in-flight transactions to the resource being

monitored.

 */

 public void increment() {

 counter.getAndIncrement();

 }

 /**

 * Decrements the count of in-flight transactions to the resource being

monitored.

 *

 * If this operation results in the counter falling below 0 - an

exception is raised.

 *

 * @throws IllegalStateException if the counter is below 0.

 */

 public void decrement() {

 int counterVal = counter.decrementAndGet();

 if (counterVal == 0) {

 // we've gone from non-zero to zero. That means we're idle now!

Tell espresso.

 if (null != resourceCallback) {

 resourceCallback.onTransitionToIdle();

 }

 }

Chapter 4 handling network operations and asynChronous aCtions

90

 if (counterVal < 0) {

 throw new IllegalArgumentException("Counter has been corrupted!");

 }

 }

}

The SimpleCountingIdlingResource class is used by the EspressoIdlingResource

class in the same location that contains a static reference to it (see the util/

EspressoIdlingResource.java file) and it uses its increment() and decrement()

methods:

public class EspressoIdlingResource {

 private static final String RESOURCE = "GLOBAL";

 private static SimpleCountingIdlingResource mCountingIdlingResource =

 new SimpleCountingIdlingResource(RESOURCE);

 public static void increment() {

 mCountingIdlingResource.increment();

 }

 public static void decrement() {

 mCountingIdlingResource.decrement();

 }

 public static IdlingResource getIdlingResource() {

 return mCountingIdlingResource;

 }

}

Now let’s take a look at the tasks/TasksPresenter.java class from the main

application source code where EspressoIdlingResource is used. This class is

responsible for loading TO-DOs and presenting them in the TO-DO list. You can see

how the EspressoIdlingResource.increment() method is called when the task load

process starts to pause the tests. When the task is loaded, EspressoIdlingResource.

decrement() is called to notify Espresso about the upcoming idling state:

Chapter 4 handling network operations and asynChronous aCtions

91

private void loadTasks(boolean forceUpdate, final boolean showLoadingUI) {

 if (showLoadingUI) {

 mTasksView.setLoadingIndicator(true);

 }

 if (forceUpdate) {

 mTasksRepository.refreshTasks();

 }

 // The network request might be handled in a different thread so make

sure Espresso

 // knows that the app is busy until the response is handled.

 EspressoIdlingResource.increment(); // App is busy until further notice

 mTasksRepository.getTasks(new TasksDataSource.LoadTasksCallback() {

 @Override

 public void onTasksLoaded(List<Task> tasks) {

 List<Task> tasksToShow = new ArrayList<Task>();

 // This callback may be called twice, once for the cache and

once for loading

 // the data from the server API, so we check before

decrementing, otherwise

 // it throws "Counter has been corrupted!" exception.

 if (!EspressoIdlingResource.getIdlingResource().isIdleNow()) {

 EspressoIdlingResource.decrement(); // Set app as idle.

 }

 ... // other code here

 }

 }

}

Chapter 4 handling network operations and asynChronous aCtions

92

 Running the First Test
To see EspressoIdlingResource in action, we add some logging to the increment() and

decrement() methods in the SimpleCountingIdlingResource.java class and run the

addNewToDosChained() test:

@Override

public boolean isIdleNow() {

 Log.d(getName(), "Counter value is " + counter.get());

 return counter.get() == 0;

}

and

public void decrement() {

 int counterVal = counter.decrementAndGet();

 Log.d(getName(), "Counter decremented. Value is " + counterVal);

 if (counterVal == 0) {

 // we've gone from non-zero to zero. That means we're idle now!

Tell espresso.

 if (null != resourceCallback) {

 resourceCallback.onTransitionToIdle();

 }

 }

 if (counterVal < 0) {

 throw new IllegalArgumentException("Counter has been corrupted!");

 }

}

During the test run, observe the logcat logs of our application, which can be filtered

out by the GLOBAL tag. Figure 4-1 shows what you will see; each time a TO-DO is added, a

TO-DO list is displayed to the user and the counter is incremented and decremented just

after the load is done.

Chapter 4 handling network operations and asynChronous aCtions

93

IdlingResource should be registered before usage. IdlingRegistry handles

registering and unregistering IdlingResource.

Registering and Unregistering IdlingResource Instances.

@Before

fun registerResources() {

 val idlingRegistry = IdlingRegistry.getInstance()

 val okHttp3IdlingResource = OkHttp3IdlingResource(client)

 val picassoIdlingResource = PicassoIdlingResource()

 idlingRegistry.register(okHttp3IdlingResource)

 idlingRegistry.register(picassoIdlingResource)

}

@After

fun unregisterResources() {

 val idlingRegistry = IdlingRegistry.getInstance()

 for (idlingResource in idlingRegistry.resources) {

 if (idlingResource == null) {

 continue

 }

 idlingRegistry.unregister(idlingResource)

 }

}

Figure 4-1. Idling resource counter logging

Chapter 4 handling network operations and asynChronous aCtions

94

So, at this moment the CountingIdlingResource mechanism should be clear. This

example described the way that we handle long-lasting or asynchronous actions of the

application being tested. It is important to be careful with such idling resources and not

to lock them during the test execution.

 OkHttp3IdlingResource
Another idling resource sample that we look at is the OkHttp3IdlingResource. Why we

should specifically look at it? OkHttp is one of the most used HTTP client libraries. It was

developed by Square and used in a lot of Android applications. Probably because of this

one, Square developer Jake Wharton implemented and open sourced this resource. See

https://github.com/JakeWharton/okhttp-idling-resource. Here is how it looks.

chapter4.idlingresources.OkHttp3IdlingResource.kt.

public final class OkHttp3IdlingResource implements IdlingResource {

 @CheckResult

 @NonNull

 @SuppressWarnings("ConstantConditions") // Extra guards as a library.

 public static OkHttp3IdlingResource create(@NonNull String name,

@NonNull OkHttpClient client) {

 if (name == null) throw new NullPointerException("name == null");

 if (client == null) throw new NullPointerException("client == null");

 return new OkHttp3IdlingResource(name, client.dispatcher());

 }

 private final String name;

 private final Dispatcher dispatcher;

 volatile ResourceCallback callback;

 private OkHttp3IdlingResource(String name, Dispatcher dispatcher) {

 this.name = name;

 this.dispatcher = dispatcher;

 dispatcher.setIdleCallback(new Runnable() {

 @Override public void run() {

 ResourceCallback callback = OkHttp3IdlingResource.this.

callback;

Chapter 4 handling network operations and asynChronous aCtions

https://github.com/JakeWharton/okhttp-idling-resource

95

 if (callback != null) {

 callback.onTransitionToIdle();

 }

 }

 });

 }

 @Override public String getName() {

 return name;

 }

 @Override public boolean isIdleNow() {

 return dispatcher.runningCallsCount() == 0;

 }

 @Override public void registerIdleTransitionCallback(ResourceCallback

callback) {

 this.callback = callback;

 }

}

Basically, this resource works out-of-the-box and almost everything is done for us

here. The dispatcher.runningCallsCount() method call from the iSIdleNow() method

returns both running synchronous and asynchronous requests counts, which are

compared to zero. When the result is true, the resource is idle. There are, however, some

steps we still have to take in order to use it:

 1. Add a dependency in the build.gradle file:

androidTestCompile 'com.jakewharton.espresso:okhttp3-idling-resource:1.0.0'

 2. In your test code, obtain the OkHttpClient instance and create an

idling resource:

OkHttpClient client = // ... get OkHttpClient instance

IdlingResource resource = OkHttp3IdlingResource.create("OkHttp", client);

 3. Register the idling resource in the test code before running any

Espresso tests:

IdlingRegistry.getInstance().register(resource);

Chapter 4 handling network operations and asynChronous aCtions

96

By the way, don’t use the deprecated Espresso.registerIdlingResources()

method; instead use the IdlingRegistry implementation shown in this section.

 Picasso IdlingResource
Picasso is a powerful image-downloading and caching library for Android from Square.

Picasso allows for hassle-free image loading in your application—often in one line of

code (http://square.github.io/picasso/):

Picasso.get().load("http://i.imgur.com/DvpvklR.png").into(imageView);

Picasso is the most popular image-downloading library for Android, which means it

is a perfect candidate for another type of IdlingResource. The image-download idling

resource can be used when we want to ensure that the whole application window layout

is loaded together with the graphics. This can be extremely important in cases where

graphical resources should be verified in tests. Here is the example of the PicassoIdling

resource that’s also implemented in the androidTest/com.squareup.picasso package.

androidTest/com.squareup.picasso.PicassoIdlingResource.java.

public class PicassoIdlingResource implements IdlingResource,

ActivityLifecycleCallback {

 private static final int IDLE_POLL_DELAY_MILLIS = 100;

 private ResourceCallback mCallback;

 private WeakReference<Picasso> mPicassoWeakReference;

 private final Handler mHandler = new Handler(Looper.getMainLooper());

 @Override

 public String getName() {

 return "PicassoIdlingResource";

 }

 @Override

 public boolean isIdleNow() {

 if (isIdle()) {

 notifyDone();

 return true;

Chapter 4 handling network operations and asynChronous aCtions

http://square.github.io/picasso/

97

 } else {

 /* Force a re-check of the idle state in a little while.

 * If isIdleNow() returns false, Espresso only polls it every few

seconds which can slow down our tests.

 */

 mHandler.postDelayed(new Runnable() {

 @Override

 public void run() {

 isIdleNow();

 }

 }, IDLE_POLL_DELAY_MILLIS);

 return false;

 }

 }

 public boolean isIdle() {

 return mPicassoWeakReference == null

 || mPicassoWeakReference.get() == null

 || mPicassoWeakReference.get().targetToAction.isEmpty();

 }

 @Override

 public void registerIdleTransitionCallback(ResourceCallback

resourceCallback) {

 mCallback = resourceCallback;

 }

 void notifyDone() {

 if (mCallback != null) {

 mCallback.onTransitionToIdle();

 }

 }

 @Override

 public void onActivityLifecycleChanged(Activity activity, Stage stage)

{

 switch (stage) {

Chapter 4 handling network operations and asynChronous aCtions

98

 case RESUMED:

 mPicassoWeakReference = new WeakReference<>(Picasso.

with(activity));

 break;

 case PAUSED:

 // Clean up reference

 mPicassoWeakReference = null;

 break;

 default: // NOP

 }

 }

}

Note the reason that the picasso IdlingResource is in a separate package is
because of the visibility of the targetToAction variable in the Picasso class,
which is package protected.

 ConditionWatcher as an Alternative
to IdlingResource
As you may notice, the IdlingResource implementation is not trivial and requires

continuous control over registering and unregistering. It is also not convenient to use

IdlingResource in deep UI tests when a specific activity instance is needed to make it work.

As an alternative, you can try the ConditionWatcher class from AzimoLabs (https://

github.com/AzimoLabs/ConditionWatcher). It is simple class that makes Android

automation testing easier, faster, cleaner, and more intuitive. It synchronizes operations

that might occur on any thread, with the test thread. ConditionWatcher can be used as a

replacement to Espresso’s IdlingResources or it can work in parallel with them.

This is how it works: ConditionWatcher receives an instance of the Instruction

class that contains a logical expression. Tests are paused until the moment the condition

returns true. After that, the tests are immediately released. If the condition is not met

within a specified timeout, the exception will be thrown and the test will fail.

Chapter 4 handling network operations and asynChronous aCtions

https://github.com/AzimoLabs/ConditionWatcher
https://github.com/AzimoLabs/ConditionWatcher

99

ConditionWatcher acts on the same thread it is requested, which is the test thread.

By default, ConditionWatcher includes three methods:

• setWatchInterval() — Sets the interval for periodic check of the

logical expression. By default, it is set to 250 milliseconds.

• setTimeoutLimit() — Sets the timeout for the ConditionWatcher to

wait for a true value from the checkCondition() method. By default,

it is set to 60 seconds.

• waitForCondition() — Takes instructions containing a logical

expression as a parameter and calls its checkCondition() method

with the currently set interval, until it returns value true or until the

timeout is reached. During that time, the test code won’t proceed to

the next line. If timeout is reached, an Exception is thrown.

From the other side, the Instruction class happens to have a very similar structure

to IdlingResource:

• checkCondition() — A core method that’s equivalent to isIdleNow()

of IdlingResource. It’s a logical expression and its changes, along with

the monitored dynamic resource status, should be implemented there.

• getDescription() — A string returned along with the timeout

exception. The test author can include helpful information for the test

crash debugging process.

• setDataContainer() and getDataContainer() —A bundle that can

be added to the Instruction class to share primitive types (e.g., a

universal instruction that waits for any kind of view to become visible

can be created, and resId could be sent via the bundle).

The following dependency should be added to the build.gradle file in order to start

using ConditionWatcher:

dependencies {

 androidTestCompile 'com.azimolabs.conditionwatcher:conditionwatcher:0.2'

}

Or just copy the source code of the two ConditionWatcher.java and Instruction.

java classes into your test source code.

Chapter 4 handling network operations and asynChronous aCtions

100

The simplest example of ConditionWatcher usage is a condition to wait for an

element be displayed on the screen:

ConditionWatcher.waitForCondition(new Instruction() {

 @Override

 public String getDescription() {

 return "waitForElementIsDisplayed";

 }

 @Override

 public boolean checkCondition() {

 try {

 interaction.check(matches(isDisplayed()));

 return true;

 } catch (NoMatchingViewException ex) {

 return false;

 }

 }

});

I prefer to wrap the ConditionWatcher into a method instead of creating

a class that extends the Instruction class. Next, you see an example of the

 waitForElementIsDisplayed(final ViewInteraction interaction, final int

timeout) watcher from the ConditionWatchers.java class:

public static ViewInteraction waitForElementIsDisplayed(

 final ViewInteraction interaction,

 final int timeout) throws Exception {

 ConditionWatcher.setTimeoutLimit(timeout);

 ConditionWatcher.waitForCondition(new Instruction() {

 @Override

 public String getDescription() {

 return "waitForElementIsDisplayed";

 }

Chapter 4 handling network operations and asynChronous aCtions

101

 @Override

 public boolean checkCondition() {

 try {

 interaction.check(matches(isDisplayed()));

 return true;

 } catch (NoMatchingViewException ex) {

 return false;

 }

 }

 });

 return interaction;

}

With this implementation of waitForElementIsDisplayed(), we receive one

important benefit—if the watcher receives ViewInteraction as a parameter, the wrapper

method can return the same ViewInteraction, which simplifies our test source code:

private ViewInteraction addTaskFab = onView(withId(R.id.fab_add_task));

@Test

public void waitForElementCondition() throws Exception {

 waitForElementIsDisplayed(addTaskFab, 4000).perform(click());

}

Now let’s move to more complicated examples. In our sample application, we have a

nasty snackbar that pops up every time a new TO-DO is added. It doesn’t allow us to add

multiple TO-DOs to our list without waiting until it disappears. Our task is to create a

watcher that will wait for the snackbar view to be gone. This is how it can be done.

chapter4.conditionwatchers.ConditionWatchers.tasksListSnackbarGone().

public static void tasksListSnackbarGone() throws Exception {

 ConditionWatcher.waitForCondition(new Instruction() {

 @Override

 public String getDescription() {

 return "Condition tasksListSnackbarGone";

 }

Chapter 4 handling network operations and asynChronous aCtions

102

 @Override

 public boolean checkCondition() {

 final FragmentActivity fragmentActivity = getCurrentActivity();

 if (fragmentActivity != null) {

 Fragment currentFragment = fragmentActivity

 .getSupportFragmentManager()

 .findFragmentById(R.id.contentFrame);

 if (currentFragment instanceof TasksFragment) {

 View contentView =

 fragmentActivity.getWindow().getDecorView().

findViewById(android.R.id.content);

 if (contentView != null) {

 TextView snackBarTextView =

 contentView.findViewById(android.support.

design.R.id.snackbar_text);

 return snackBarTextView == null;

 }

 }

 }

 return false;

 }

 });

}

ConditionWatchers can be extremely helpful when we have to wait for the different

view states, but we should not overuse them in terms of waiting time. A problem can

occur in cases when we may wait too much for a specific state of the view to be reached.

When this waiting time becomes too long, it can seem like an issue with the application

being tested and it is better to raise a bug than handle it inside your tests. Ideally, in most

situations, IdlingResources should handle the majority of time the application is not

idle, so ConditionWatchers should be a small addition to the waiting mechanism and be

used occasionally, like in our snackbar case.

Chapter 4 handling network operations and asynChronous aCtions

103

EXERCISE 12

Using a ConditionWatcher in a Test

 1. implement a test that opens the menu drawer and navigates to another section.

in this test, add a condition watcher that waits for a menu drawer to be shown

or hidden. use ViewMatchers.isDisplayed() for the shown state and

hamcrest CoreMatchers.not(ViewMatchers.isDisplayed()) for

hidden.

 2. implement a waitForElement() ConditionWatcher that can be

used with the DataInteraction type. use the ViewInteraction

waitForElement() function as a reference.

 Making Condition Watchers Part of Espresso
Kotlin DSL
Chapter 3 explained the Espresso Kotlin DSL as an example of much cleaner and

compact test code. As you may notice, in the current implementation, all the functions

from the ConditionWatchers class are not yet ready to be used in a similar way.

The thing is ConditionWatchers, as well as other Espresso methods, are

implemented and executed in the same place and at the same time as the test code,

which is the opposite to how IdlingResources are used—by registering them before the

test run (usually in the @Before method).

So, ConditionWatchers should ideally become part of the Espresso Kotlin

DSL and be used as one of the chains while writing the test code. This is how our

ConditionWatchers can be declared as part of the DSL (see EspressoDsl.kt for the

implementation details):

• ConditionWatchers.waitForElement():

fun ViewInteraction.wait(): ViewInteraction =

 ConditionWatchers.waitForElement(this, FOUR_SECONDS)

Chapter 4 handling network operations and asynChronous aCtions

104

• ConditionWatchers.waitForElementFullyVisible():

fun ViewInteraction.waitFullyVisible(): ViewInteraction =

 ConditionWatchers.waitForElementFullyVisible(this, FOUR_SECONDS)

• ConditionWatchers.waitForElementIsGone():

fun ViewInteraction.waitForGone(): ViewInteraction =

 ConditionWatchers.waitForElementIsGone(this, FOUR_SECONDS)

All of these examples have the ViewInteraction return type and can be chained to

Espresso test code as follows.

chapter3.testsamples.ViewActionsKotlinDslTest.addsNewToDoWithWaiterDsl().

@Test

fun addsNewToDoWithWaiterDsl() {

 // adding new TO-DO

 addFab.click()

 taskTitleField.wait().type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 snackbar.waitForGone()

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

}

EXERCISE 13

ConditionWatcher as Part of the DSL

 1. implement a test that opens a menu drawer and navigates to another section.

in this test, add a condition watcher that waits for the menu drawer to be

shown or hidden. use ViewMatchers.isDisplayed() for the shown state

and hamcrest CoreMatchers.not(ViewMatchers.isDisplayed()) for

hidden.

 2. Make the DataInteraction waitForElement() function in the previous

task part of the dsl.

Chapter 4 handling network operations and asynChronous aCtions

105

 Summary
Properly handling network operations and asynchronous actions is a must-have in your

UI tests. Applying IdlingResource or ConditionWatcher makes your UI tests much more

stable and reliable. After using them at least once, it will be clear that there is no need to

use explicit Thread.sleep() methods all over the tests, which is a bad practice and error-

prone.

Chapter 4 handling network operations and asynChronous aCtions

107
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_5

CHAPTER 5

Verifying and Stubbing
Intents with IntentMatchers
Throughout this chapter, we will discuss how to verify and stub application intents.

An intent is a messaging object you can use to request an action from another app

component. Intents facilitate communication between components in several ways.

According to the Android Intent and Filters documentation (https://developer.

android.com/guide/components/intents-filters), there are three fundamental

use cases:

• Starting an activity—An activity represents a single screen in the

Android application. An activity instance can be launched by passing

an intent to Context.startActivity(Intent). Passed intents should

contain information about which activity will be started and may

contain extra data. The Context.startActivityForResult(Intent)

method is used when we expect to receive the result from a launched

activity. The result is returned in the form of an intent object and can

be handled in an Activity.onActivityResult() callback.

• Starting a service—A service in Android represents a mechanism

that performs operations in the background. Similar to an

activity, a service is started by passing an intent to Context.

startService(Intent). Provided intents define the service to start

and may contain extra data.

• Delivering a broadcast —A broadcast represents a message that

can be sent and received by any application or system. An example

of a system broadcast can be a system bootup event. Broadcasts

can be delivered to other apps by passing an intent to Context.

sendBroadcast(Intent).

https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters

108

Here are examples of intents that belong to these intent types:

• Starting an activity intent—Usually an intent to start an activity for a

result. An example can be clicking the attachment button in Gmail,

which opens the file browser so you can find and attach a file to the

email.

• Starting a service intent—Used to trigger long-lasting processes that

are running in the background, like file downloads or for listening for

some system events like connectivity state changes.

• Delivering a broadcast—Used when there is a need to send a local

intent, meaning that we would like to broadcast to receivers that are in

the same app as the sender. Or just send our broadcast to all apps in the

system that can handle it. An example is a broadcast to send an SMS.

As you may already know, Espresso cannot operate outside of the application being

tested, which is the common case in starting an activity intent or delivering a broadcast.

Therefore, to make Espresso tests isolated and hermetic, we need to use Espresso-

Intents, which is an extension to Espresso that enables validation and stubbing of intents

sent out by the application being tested.

 Setting Up Dependencies
In order to use Espresso-Intents, the following line of code should be added inside the

build.gradle file of your app module:

Android Testing Support Library Espresso-Intents Dependency.

androidTestImplementation 'com.android.support.test.espresso:espresso-

intents:3.0.2'

AndroidX Test Library Espresso-Intents Dependency.

androidTestImplementation 'androidx.test.espresso:espresso-intents:3.1.0'

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

109

Note espresso-intents is only compatible with espresso 2.1+ and the testing
Support library 0.3+ or androidX test library.

So, to fulfill this compatibility requirement, the following dependencies must be

updated as well.

Android Testing Support Library Dependencies.

androidTestImplementation 'com.android.support.test:runner:1.0.2'

androidTestImplementation 'com.android.support.test:rules:1.0.2'

androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

Or in case of AndroidX Test library usage, we need the following.

AndroidX Test library Dependencies.

androidTestImplementation 'androidx.test:runner:1.1.0'

androidTestImplementation 'androidx.test:rules:1.1.0'

androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.0'

In Chapter 1, we discussed the purpose and role of ActivityTestRule in Espresso

tests. Similar to ActivityTestRule, Espresso has the IntentsTestRule, which is the

extension of ActivityTestRule and must be used when intents should be stubbed or

validated. As in the case of ActivityTestRule, an IntentsTestRule initializes Espresso-

Intents before each test is annotated with @Test and releases Espresso-Intents after each

test run.

Here is an IntentsTestRule example:

@get:Rule

var intentsTestRule = IntentsTestRule(TasksActivity::class.java)

Our sample application contains functionality for attaching an image to the TO-DO

item and is an example of an activity for a result intent that receives an image file from

the system. Figure 5-1 shows the intent flow when the start activity intent is sent to a

third-party application.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

110

Step 1 demonstrates sending a start activity intent from our application to notify the

system about the need to delegate some functionality to a third-party application. In

its order, the system knows what application(s) can be sent in Step 1 and, if at least one

application is found, it retransmits the same activity intent to it, which is shown in Step 2.

In Step 3, the selected application receives the intent and starts the appropriate activity.

In case of an intent that is sent with startActivityForResult(), the result of the started

activity (for example, the selected image link from the Gallery or Photos application) is

returned to the application that initially created the intent.

It is a time to look at how Espresso stubs intents sent to the third-party applications

outside of the application context.

 Stubbing Activity Intents
As mentioned, Espresso does not support leaving applications under the text context,

i.e. leaving the tested application, in order to interact with third-party applications.

For this reason, Espresso provides the stubbing mechanism intending() method in the

Intents class.

Figure 5-1. Activity intent flow (image source: https://developer.android.
com/guide/components/intents-filters)

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters

111

This method enables stubbing intent responses and is particularly useful when

the activity launching the intent expects data to be returned (and especially when the

destination activity is external). In this case, the test author can call:

intending(intentMatcher).thenRespond(myResponse)

and validate that the launching activity handles the result correctly.

Note the third-party application destination activity will not be launched in this
code sample.

 Stubbing Intents Without a Result
The first use case with intent stubbing can isolate our application from any action that

can lead to the state when a third-party application is launched. To achieve this, the

Espresso intending() mechanism enables stubbing intents that are not internal, i.e.,

that do not belong to our application. Here is how it can be implemented in the test class

@Before method.

chapter5.StubAllIntentsTest.kt.

@Before

fun stubAllExternalIntents() {

 // By default Espresso Intents does not stub any Intents. Stubbing

needs to be setup before

 // every test run. In this case all external Intents will be blocked.

 intending(not(isInternal()))

 .respondWith(Instrumentation.ActivityResult(Activity.RESULT_OK,

null))

}

Note the method annotated with the @Before annotation will be executed for
every test case before it’s run.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

112

You can observe two new methods in this code example:

• isInternal()—Intent matcher that matches an intent if its package

is the same as the target package for the instrumentation test.

• Instrumentation.ActivityResult(Activity.RESULT_OK,

null)—The ActivityResult class that allows us to create a

new ActivityResult, which will be propagated back to the

original activity with the specified result code. See the Android

Instrumentation.java class and the Activity.setResult() method

for more details.

We are already familiar with hamcrest matchers from Chapters 1 and 2.

IntentMatchers have a similar functionality. Along with intent matchers, Espresso

provides BundleMatchers, ComponentNameMatchers, and UriMatchers, which are used

together with IntentMatchers. Here is a brief overview of all of them.

IntentMatchers:

• anyIntent()—Matches any intent.

• hasAction()—Matches an intent by intent action. The most common

example is Intent.ACTION_CALL to perform the phone call action or

Intent.ACTION_SEND to send an email or SMS. For more action types,

refer to the Android Intent.java class.

• hasCategories()—Matches an intent category, which is the

string containing additional information about the kind of

component that should handle the intent. For example, the string

value for CATEGORY_LAUNCHER is android.intent.category.

LAUNCHER and is used to specify the initial application activity.

• hasComponent()—Can match an intent by class name, package

name, or short class name. Uses ComponentNameMatchers.

• hasData()—Matches an intent that has specific data this intent is

operating on. Often it uses the content: scheme, specifying data

in a content provider. Other schemes may be handled by specific

activities, such as http: by the web browser. Uses UriMatchers.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

113

• hasExtraWithKey()—Matches an intent that has specific bundle

attached to the intent. Uses a hasExtras() method that takes the

bundle matcher as a parameter.

• hasExtra()—Same as hasExtras() but with extra data.

• hasExtras()—Matches an intent that has specific extended or extra

data. This data is put into the intent in the form of a <name, value>

pair by one of the overloaded Intent.putExtra() methods. The

name of the extra parameter must include a package prefix. For

example, the app com.android.contacts would use names like com.

android.contacts.ShowAll.

• hasType()—Matches an intent with the explicit MIME type included

in it.

• hasPackage()—Matches an intent that is limited to a specified

application package name.

• toPackage()⎯Matches an intent based on the package of activity that

can handle the intent.

• hasFlag()⎯Same as getFlags().

• hasFlags()⎯Matches an intent with specified flag(s) associated with

it. The list of flags can be found at https://developer.android.com/

reference/android/content/Intent#setFlags(int).

• isInternal()⎯Matches an intent if its package is the same as the

target package for the instrumentation test.

The BundleMatchers class represents hamcrest matchers for intent bundles. Bundles

are used for passing data between activities, usually in form of a <key, value> pair.

• hasEntry()⎯Matches a bundle object based on a <key, value> pair.

• hasKey()⎯Matches a bundle object based on a key.

• hasValue()⎯Matches a bundle object based on a value.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

https://developer.android.com/reference/android/content/Intent#setFlags(int)
https://developer.android.com/reference/android/content/Intent#setFlags(int)

114

ComponentNameMatchers:

• hasClassName()⎯Matches a component based on a class name.

• hasPackageName()⎯Matches a component based on a provided

package name.

• hasShortClassName()⎯Matches a component based on the short

class name.

• hasMyPackageName()⎯Matches a component based on the

target package name found through the Instrumentation Registry for

the test.

UriMatchers⎯used for matching intents based on the URI object. For example, if the

action is ACTION_EDIT, the data should contain the URI of the document to edit.

• hasHost()⎯Matches the URI object based on the host. For example, if

the authority is "bob@google.com", this method will try to match the

object based on "google.com".

• hasParamWithName()⎯Matches the URI object based on the

parameter name.

• hasParamWithValue()⎯Matches the URI object based on the

parameter value.

• hasPath()⎯Matches the URI object based on the path. Like

mailto:nobody@google.com.

• hasSchemeSpecificPart()⎯Matches the URI object based on

the specific scheme part. This is everything between the scheme

separator ':' and the fragment separator '#'. If this is a relative URI,

this method returns the entire URI. For example, "//www.google.

com/search?q=android".

Now let’s return to the chapter5.StubAllIntentsTest.kt class and see how intent

stubbing works. Here is the class implementation.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

http://google.com
http://www.google.com/search?q=android
http://www.google.com/search?q=android

115

chapter5.StubAllIntentsTest.kt.

class StubAllIntents {

 @get:Rule

 var intentsTestRule = IntentsTestRule(TasksActivity::class.java)

 private var toDoTitle = ""

 private var toDoDescription = ""

 // ViewInteractions used in tests

 private val addFab = viewWithId(R.id.fab_add_task)

 private val taskTitleField = viewWithId(R.id.add_task_title)

 private val taskDescriptionField = viewWithId(R.id.add_task_description)

 private val editDoneFab = viewWithId(R.id.fab_edit_task_done)

 private val shareMenuItem =

 onView(allOf(withId(R.id.title), withText(R.string.share)))

 @Before

 fun setUp() {

 toDoTitle = TestData.getToDoTitle()

 toDoDescription = TestData.getToDoDescription()

 }

 @Before

 fun stubAllExternalIntents() {

 // By default Espresso Intents does not stub any Intents. Stubbing

needs to be setup before

 // every test run. In this case all external Intents will be blocked.

 intending(not(isInternal()))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

 }

 @Test

 fun stubsShareIntent() {

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

116

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

 openContextualActionModeOverflowMenu()

 shareMenuItem.click()

 //viewWithText(toDoTitle).click()

 }

}

Our class contains a simple test that adds a new TO-DO item and then clicks on the

share button from the action bar menu. As you can see, we use the IntentsTestRule and

stubAllExternalIntents() method.

The stubsShareIntent() test adds a new TO-DO item in the list, opens the action

bar menu, and clicks on the Share option, which from its side, triggers the share intent

to send it to the system. In a real use case, the system will redirect this intent to another

application. If the system has more than one application that can handle the intent, a

popup window showing the options will appear.

In our case, the stubsAllExternalIntents() method that is run before each test

method will do its job and the intent will not go out of the application. Try to run the

test and see the result. Figure 5-2 shows the end state of the application after the last test

method step.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

117

Let’s see what happens when external intent stubbing is not in place⎯just comment

out the stubAllExternalIntents() method and run the test again. Figure 5-3 shows the

final application state.

Figure 5-2. The final state of the stubsShareIntent() test with stubbed external
intents

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

118

You see the difference and proof that intent stubbing works. The thing is that in

both cases, the test passes. But in the second case, it passes just because we don’t have

any additional steps after the intent is sent. If you comment out this line of code, which

follows the moment the intent is stubbed:

//viewWithText(toDoTitle).click()

and run the test again, you will see that the test fails. Uncommenting the

stubAllExternalIntents() method will make the test green again.

 Stubbing a Single Intent
We just saw how all external application intents are stubbed, but what if we want to stub

just one intent? Then the only thing we have to do is replace the intentMatcher from the

following expression with a specific one using the intent matchers:

intending(intentMatcher).thenRespond(myResponse)

Figure 5-3. The final state of the stubsShareIntent() test without stubbed
external intents

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

119

The share TO-DOs intent implementation looks the following way.

Share Intent Java Implementation from the com.example.android.architecture.

blueprints.todoapp.tasks.TasksFragment.java Class.

String email = PreferenceManager

 .getDefaultSharedPreferences(getContext())

 .getString("email_text", "");

Intent shareIntent = new Intent();

shareIntent.setAction(Intent.ACTION_SEND);

shareIntent.setType("text/plain");

shareIntent.putExtra(Intent.EXTRA_TEXT, getTaskListAsArray());

shareIntent.putExtra(Intent.EXTRA_EMAIL, email);

startActivity(Intent.createChooser(shareIntent,

getResources().getText(R.string.share_to)));

First, we will brake down the intent implementation and see what intent matchers

can be applied to it:

• shareIntent.setAction(Intent.ACTION_SEND)⎯This intent property

can be matched by an hasAction() intent matcher.

• shareIntent.setType("text/plain")⎯Can be matched by the

hasType() intent matcher.

• shareIntent.putExtra(Intent.EXTRA_TEXT,

getTaskListAsArray()) and shareIntent.putExtra(Intent.

EXTRA_EMAIL, email)⎯Can be matched by the hasExtra() or

hasExtras() intent matchers.

It looks simple and clear, so to show how intent matchers can be implemented for

each case, open the chapter5.StubIntentTest.kt class. Its implementation is similar

to the chapter5.StubAllIntentsTest.kt class, but instead of applying external intents

stubbing for each test method, we apply them on the method level, where specific intent

matchers are applied.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

120

chapter5.StubIntentTest.kt Class Shows How to Stub Intents Using Different Intent

Matchers.

class StubIntentTest {

 private var toDoTitle = ""

 private var toDoDescription = ""

 // ViewInteractions used in tests

 private val addFab = viewWithId(R.id.fab_add_task)

 private val taskTitleField = viewWithId(R.id.add_task_title)

 private val taskDescriptionField = viewWithId(R.id.add_task_description)

 private val editDoneFab = viewWithId(R.id.fab_edit_task_done)

 private val shareMenuItem =

 onView(allOf(withId(R.id.title), withText(R.string.share)))

 @get:Rule

 var intentsTestRule = IntentsTestRule(TasksActivity::class.java)

 @Before

 fun setUp() {

 toDoTitle = TestData.getToDoTitle()

 toDoDescription = TestData.getToDoDescription()

 }

 @Test

 fun stubsShareIntentByAction() {

 Intents.intending(hasAction(equalTo(Intent.ACTION_SEND)))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

 //open menu and click on Share item

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

121

 openContextualActionModeOverflowMenu()

 shareMenuItem.click()

 viewWithText(toDoTitle).click()

 }

 @Test

 fun stubsShareIntentByType() {

 Intents.intending(hasType("text/plain"))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

 //open menu and click on Share item

 openContextualActionModeOverflowMenu()

 shareMenuItem.click()

 viewWithText(toDoTitle).click()

 }

 @Test

 fun stubsShareIntentByExtra() {

 Intents.intending(hasType("text/plain"))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

122

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

 //open menu and click on Share item

 openContextualActionModeOverflowMenu()

 shareMenuItem.click()

 viewWithText(toDoTitle).click()

 }

}

And after running all these tests, you might be surprised to see that they fail.

After starting to analyze the intent implementation from com.example.android.

architecture.blueprints.todoapp.tasks.TasksFragment.java, we can clearly see

what action, type, and extra parameters are set to our intent. Why then do they fail?

After debugging and drilling down to the implementation of how our share intent is

launched, as follows:

startActivity(Intent.createChooser(

 shareIntent,

 getResources().getText(R.string.share_to)));

We can see that the Android Intent.createChooser() method was used to send

this intent to the system with a custom title. This method wraps the provided intent

parameter with a specified action, type, and extra parameters into another intent with a

new action and adds our intent as part of its extra parameters. Figure 5-4 shows how it

looks when you try to debug what is happening.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

123

The initial intent looks the same way we expect it to with the proper action (see the

highlighted mAction variable) and proper extra parameters (see the highlighted mExtras

variable). But if we put the debug breakpoint inside the IntentMatchers.hasExtras()

matcher in the place where the intents are compared, we can see Figure 5-5.

Figure 5-4. ShareIntent instance implemented in the com.example.android.
architecture.blueprints.todoapp.tasks.TasksFragment.java class

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

124

At this moment in time, it is clear that the initial intent was added as an extra

parameter inside the new intent (see the highlighted mExtras variable) with a modified

action (see the highlighted mAction variable).

Now, to make our stubsShareIntentByAction() test green, we can change the

action to ACTION_CHOOSER.

chapter5.StubChooserIntentTest.kt Class.

 @Test

 fun stubsShareIntentByAction() {

 Intents.intending(hasAction(equalTo(Intent. ACTION_CHOOSER)))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

 // adding new TO-DO

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

Figure 5-5. Hitting the breakpoint when tapping the Share menu item during test
execution

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

125

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 editDoneFab.click()

 // verifying new TO-DO with title is shown in the TO-DO list

 viewWithText(toDoTitle).checkDisplayed()

 //open menu and click on Share item

 openContextualActionModeOverflowMenu()

 shareMenuItem.click()

 viewWithText(toDoTitle).click()

 }

Here are examples of working intent matchers when the Intent.

createChooser() method is used to start the intent implemented in the chapter5.

StubChooserIntentTest.kt class.

• Based on initial intent action:

Intents.intending(hasAction(equalTo(Intent.ACTION_CHOOSER)))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

• Based on initial intent type:

Intents.intending(hasExtras(hasEntry(Intent.EXTRA_INTENT, hasType("text/

plain"))))

 .respondWith(Instrumentation.ActivityResult(Activity.RESULT_OK, null))

• Based on the EXTRA_TITLE parameter:

Intents.intending(hasExtras(hasEntry(Intent.EXTRA_TITLE, "Share to")))

 .respondWith(Instrumentation.ActivityResult(Activity.RESULT_OK, null))

And finally, to make the test from the chapter5.StubIntentTest.kt class pass,

we change the way that the share TO-DO intent starts by replacing line 192 of the com.

example.android.architecture.blueprints.todoapp.tasks.TasksFragment.java class:

startActivity(Intent.createChooser(shareIntent, getResources().getText(R.

string.share_to)));

with this:

startActivity(shareIntent);

This way, the intent is not modified, and we fully rely on the system to show the

popup to the user (see Figure 5-6).

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

126

EXERCISE 14

Stubbing intents

 1. put a breakpoint on line 191 of the TaskFragment.java file, as shown in

figure 5-4, and on line 204 of the IntentMatchers.java file, as shown in

figure 5-5. run tests from the StubIntentTest.kt file in debug mode. when

you reach the breakpoints, observe the shareIntent and intent variables.

 2. run all tests from the StubIntentTest.kt class and check the result. the

test should fail. in the TaskFragment.java file, comment out line 191 and

uncomment line 192. run the test again and verify that they pass.

 3. revert to the changes done in Step 2 and run all the tests from the

StubChooserIntentTest.kt class. the tests should all pass.

Figure 5-6. The share todo intent sent with Intent.createChooser() (left) and
without using the Intent.createChooser() method (right)

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

127

 Stubbing Intents with the Result
In many cases, activity intents started by the application being tested have to

return the results in the form of the image from a gallery or in form of a file from

the device’s filesystem. In Android, this is achieved by starting an activity using the

startActivityForResult() method from inside the application’s activity or fragment.

When an activity is started, the user takes some action that generates the result and

this result is returned to the activity or fragment that initially sent the intent. The

onActivityResult() method from the Android activity class is responsible for receiving

the result from a previous call to the startActivityForResult() method.

The sample TO-DO application contains an example of sending an intent with

startActivityForResult() and handles the result in the onActivityResult() method

implemented in the com.example.android.architecture.blueprints.todoapp.

addedittask.AddEditTaskFragment.java class.

Starting and Handling Image Intents in AddEditTaskFragment.java

public void onImageButtonClick() {

 Intent intent = new Intent();

 intent.setType("image/*");

 intent.setAction(Intent.ACTION_GET_CONTENT);

 startActivityForResult(intent, SELECT_PICTURE);

}

public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (resultCode == RESULT_OK) {

 if (requestCode == SELECT_PICTURE) {

 Uri selectedImageUri = data.getData();

 BitmapDrawable bitmapDrawable =

 ImageUtils.scaleAndSetImage(selectedImageUri,

getContext(), 200);

 // Apply the scaled bitmap

 imageView.setImageDrawable(bitmapDrawable);

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

128

 // Now change ImageView's dimensions to match the scaled image

 ConstraintLayout.LayoutParams params =

 (ConstraintLayout.LayoutParams) imageView.

getLayoutParams();

 params.width = imageView.getWidth();

 params.height = imageView.getHeight();

 imageView.setLayoutParams(params);

 }

 }

}

You can observe that the intent from the onImageButtonClick() method has a preset

type and action, which can be used in tests to match the intent and stub it.

The mechanism of starting an activity for a result should be clear now. The last thing

we have to do is create the result used for stubbing. In the previous paragraph, we used

the mechanism of returning the result, but we were setting it to null mainly because we

were not expecting a result in the share intent case:

intending(not(isInternal()))

 .respondWith(Instrumentation.ActivityResult(Activity.

RESULT_OK, null))

Now we need to implement the result on our own. We will discuss two

ways of getting the result with stubbed images from an activity launched by the

startActivityForResult() method:

• Providing the result with the image file stored in the test application

drawables.

• Providing the result with the image file stored in the test application

assets folder.

In Figure 5-7, you can observe the todo_image_drawable.png and todo_image_

assets.png files stored in the test application res/drawable-xxxhdpi and assets

folders, respectively.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

129

To showcase the implementation of both approaches, the sample application

contains the chapter5.StubSelectImageIntentTest.kt class with test cases and the

chapetr5.IntentHelper.kt object that holds methods responsible for generating the

activity results used in intents stubbing.

Test Methods Implemented in the StubSelectImageIntentTest.kt Class

@Test

fun stubsImageIntentWithDrawable() {

 val toDoImage =

 com.example.android.architecture.blueprints.todoapp.mock.test.R.drawable.

todo_image

 Intents.intending(not(isInternal()))

 .respondWith(IntentHelper.createImageResultFromDrawable(toDoImage))

 // Adding new TO-DO.

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

Figure 5-7. The location of the .png files used in intents stubbing

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

130

 // Click on Get image from gallery button. At this point stubbed image

is returned.

 addImageButton.click()

 editDoneFab.click()

 viewWithText(toDoTitle).click()

}

@Test

fun stubsImageIntentWithAsset() {

 val imageFromAssets = "todo_image_assets.png"

 Intents.intending(not(isInternal()))

 .respondWith(IntentHelper.createImageResultFromAssets(imageFrom

Assets))

 // Adding new TO-DO.

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 // Click on Get image from gallery button. At this point stubbed image

is returned.

 addImageButton.click()

 editDoneFab.click()

 viewWithText(toDoTitle).click()

}

IntentHelper.kt Objects That Provides Methods Responsible for Generating the

Activity Results Used in Intents Stubbing.

object IntentHelper {

 /**

 * Creates new activity result from an image stored in test

application drawable.

 * See {@link Activity#setResult} for more information about the result.

 */

 fun createImageResultFromDrawable(drawable: Int): Instrumentation.

ActivityResult {

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

131

 val resultIntent = Intent()

 val testResources = InstrumentationRegistry.getContext().resources

 // Build a stubbed result from drawable image.

 resultIntent.data = Uri.parse(ContentResolver.SCHEME_ANDROID_RESOURCE

 + "://${testResources.getResourcePackageName(drawable)}"

 + "/${testResources.getResourceTypeName(drawable)}"

 + "/${testResources.getResourceEntryName(drawable)}")

 return Instrumentation.ActivityResult(Activity.RESULT_OK, resultIntent)

 }

 /**

 * Creates new activity result from an image stored in test

application assets.

 * See {@link Activity#setResult} for more information about the result.

 */

 fun createImageResultFromAssets(imageName: String): Instrumentation.

ActivityResult {

 val resultIntent = Intent()

 // Declare variables for test and application context.

 val testContext = InstrumentationRegistry.getContext()

 val appContext = InstrumentationRegistry.getTargetContext()

 val file = File("${appContext.cacheDir}/todo_image_temp.png")

 // Read file from test assets and save it into main application

cache todo_image_temp.png.

 if (!file.exists()) {

 try {

 val inputStream = testContext.assets.open(imageName)

 val fileOutputStream = FileOutputStream(file)

 val size = inputStream.available()

 val buffer = ByteArray(size)

 inputStream.read(buffer)

 inputStream.close()

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

132

 fileOutputStream.write(buffer)

 fileOutputStream.close()

 } catch (e: Exception) {

 throw RuntimeException(e)

 }

 }

 // Build a stubbed result from temp file.

 resultIntent.data = Uri.fromFile(file)

 return Instrumentation.ActivityResult(Activity.RESULT_OK, resultIntent)

 }

}

The stubsImageIntentWithDrawable() test case stubs the intent result with an

image located in the test application drawables and stubsImageIntentWithAsset()

does the intent stubbing with an image stored in the test application assets folder.

Storing all the test images and files inside the test application is really convenient

because the main application does not store any unnecessary test data. In this same way,

we can store all the file types that may be used in intents stubbing.

EXERCISE 15

Stubbing Intents with the Result

 1. run all the tests from the current section and observe them passing. replace

the images in the res/drawable-xxxhdpi and assets folders with different

ones. run the tests again.

 2. based on the image intent implemented in AddEditTaskFragment.java,

change the Intents.intending(not(isInternal())) implementation

and replace the not(isInternal()) part with a hasAction()

IntentMatcher.

 3. do the same change as in Step 2, but instead of hasAction(), use a

hasType() IntentMatcher.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

133

 Verifying Intents
As of now, we are armed with the knowledge of intent matchers and have used them in

test examples. It is time to move to the topic of verifying intents.

Along with the Intents.intending() mechanism for intent stubbing, Espresso

provides Intents.indended() for intent validation. This mechanism records all intents

that attempt to launch activities from the application being tested. Using the intended()

method, you can assert that a given intent has been seen. A lot of information and

examples about intents matching was provided in previous section, so we provide the

same intent matchers to the intended() method.

Note even if we stub intents, they can be further validated using the
intended() method.

To see intended() in action, let’s modify the existing

stubsImageIntentWithDrawable() test as follows.

chapter5.StubSelectImageIntentTest.stubsImageIntentWithAsset().

@Test

fun stubsImageIntentWithAsset() {

 val imageFromAssets = "todo_image_assets.png"

 Intents.intending(not(isInternal()))

 .respondWith(IntentHelper.createImageResultFromAssets(imageFrom

Assets))

 // Adding new TO-DO.

 addFab.click()

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 // Click on Get image from gallery button. At this point stubbed image

is returned.

 addImageButton.click()

 // Validate sent intent action.

 intended(hasAction(Intent.ACTION_GET_CONTENT))

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

134

 editDoneFab.click()

 viewWithText(toDoTitle).click()

}

In the current implementation, the tests pass because the image intent has set the

ACTION_GET_CONTENT action. Of course, we can use the allOf() hamcrest matcher to

combine different IntentMatchers and narrow down our validation.

Sometimes you may not see the intent implementation, but there is still a way to get

all intents inside the Espresso failure stacktrace when the intended validation fails.

Part of Espresso Stacktrace from a Failed intended(intentMatcher) Validation.

IntentMatcher: has action: is "android.intent.action.ANSWER"

Matched intents:[]

Recorded intents:

-Intent { cmp=com.example.android.architecture.blueprints.todoapp.

mock/com.example.android.architecture.blueprints.todoapp.addedittask.

AddEditTaskActivity } handling packages:[[com.example.android.architecture.

blueprints.todoapp.mock]])

-Intent { act=android.intent.action.GET_CONTENT typ=image/* } handling

packages:[[com.android.documentsui, com.google.android.apps.docs, com.

google.android.apps.photos]])

This stacktrace was received after setting the wrong intent action in the previous test

method to:

intended(hasAction(Intent.ACTION_ANSWER))

From the stacktrace, we can see that among the image intents:

 { act=android.intent.action.GET_CONTENT typ=image/* }

There is another one:

{ cmp=com.example.android.architecture.blueprints.todoapp.mock/com.example.

android.architecture.blueprints.todoapp.addedittask.AddEditTaskActivity }

To understand how intents appear in the stacktrace, let’s take a closer look at the

Espresso Intents.java class. This class is responsible for validating and stubbing intents

sent out by the application being tested. It contains the init() method, which initializes

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

135

intents and begins recording them. It must be called prior to triggering any actions that

send out intents that need to be verified or stubbed. And it is because it is used by the

IntentsTestRule that it’s required to run intent tests.

Having this information, we can add modifications to the

stubsImageIntentWithAsset() test case. We will also verify that after clicking the Add

TO-DO floating action button, the AddEditTaskActivity is launched.

Modified stubsImageIntentWithAsset() Test Case.

@Test

fun stubsImageIntentWithAsset() {

 val imageFromAssets = "todo_image_assets.png"

 Intents.intending(not(isInternal()))

 .respondWith(IntentHelper.createImageResultFromAssets(imageFrom

Assets))

 // Adding new TO-DO.

 addFab.click()

 // Validate that AddEditTaskActivity was launched.

 intended(hasComponent(AddEditTaskActivity::class.java.name))

 taskTitleField.type(toDoTitle).closeKeyboard()

 taskDescriptionField.type(toDoDescription).closeKeyboard()

 // Click on Get image from gallery button. At this point stubbed image

is returned.

 addImageButton.click()

 // Validate sent intent action.

 intended(hasAction(Intent.ACTION_GET_CONTENT))

 editDoneFab.click()

 viewWithText(toDoTitle).click()

}

It is also important to pay attention to the stacktrace intent details and debug

information, as shown in Figures 5-4 and 5-5. Both of these sources contain information

about intents, like its action, type, or component. Let’s take one more look at the stacktrace:

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

136

Recorded intents:

-Intent { cmp=com.example.android.architecture.blueprints.todoapp.

mock/com.example.android.architecture.blueprints.todoapp.addedittask.

AddEditTaskActivity } handling packages:[[com.example.android.architecture.

blueprints.todoapp.mock]])

-Intent { act=android.intent.action.GET_CONTENT typ=image/* } handling

packages:[[com.android.documentsui, com.google.android.apps.docs, com.

google.android.apps.photos]])

As you may guess:

• cmp⎯Stands for component. Applies hasComponent() IntentMatcher.

• packages⎯Stands for package. Applies hasPackage() or toPackage()

IntentMatcher.

• act⎯Stands for action. Applies hasAction() IntentMatcher.

• typ⎯Stands for type. Applies hasType() IntentMatcher.

EXERCISE 16

Verifying Intents

 1. Modify one of the intent tests and make it fail at the moment of intent validation

with the intended() method. Observe the stacktrace.

 2. implement a test that verifies the share intent functionality discussed in the

“Stubbing intents without result” section. Make the verification based on the intent

type and action. use the allOf() hamcrest matcher to validate both of them.

 Summary
Espresso-Intents enables you to keep your UI tests hermetic, without the need to

interact with third-party applications, and allows you to validate intents sent within or

outside of the application being tested. It is a powerful mechanism that helps you test

and stub application intents. After you get familiar with it, it will improve your overall

Android system knowledge since the majority of communication among application

components, applications, and the system is done through intents.

Chapter 5 Verifying and Stubbing intentS with intentMatCherS

137
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_6

CHAPTER 6

Testing Web Views
Today we can find mobile applications for almost everything—gaming, social

networking, banking, music, etc. Such a variety of applications developed by a single

developer, small startup, or solid company means different development approaches.

These approaches are represented by native and hybrid applications. Native applications

are developed for a mobile operating system following platform standards, user

interface, and user experience guidelines and access mobile device capabilities like the

camera, GPS, etc. Hybrid applications typically use websites that are in a native wrapper

or container. On Android, this container is called the WebView.

However, there is a gray area. Even when a developer selects the native application

development, there are many places in an application that may use the integrated

Android WebView component. This makes sense, because web views represent features

that should be controlled remotely without the need to create redundant application

releases. The common areas where WebView components can be used are as follows:

• Web browser applications

• Registration or login forms with Google, Facebook, or Twitter

accounts

• Legal and privacy disclaimers

• Application FAQs

• Support contact forms

We already know that native Android applications can be tested by Espresso. This

chapter presents Espresso-Web and shows how it can be used to test Android WebView UI

components integrated into mobile applications. Both Espresso and Espresso-Web can

be used in combination to fully interact with an application on its different levels.

138

 Espresso-Web Basics
Similar to Espresso’s onData() method, a WebView interaction is comprised of several

atoms. WebView interactions use a combination of the Java programming language and

a JavaScript bridge to do their work. Because there is no chance of introducing race

conditions by exposing data from the JavaScript environment—everything Espresso sees

on the Java-based side is an isolated copy—returning data from Web.WebInteraction

objects is fully supported, allowing you to verify all the data that’s returned from a request.

The WebDriver framework uses atoms to find and manipulate web elements

programmatically. Atoms are used by WebDriver to accommodate browser

manipulation. An atom is conceptually similar to a ViewAction. It’s a self-contained unit

that performs an action in your UI. You expose atoms using a list of defined methods,

such as findElement() and getElement(), to drive the browser from the user’s point of

view. However, if you use the WebDriver framework directly, atoms need to be properly

orchestrated, requiring logic that is quite verbose.

Within Espresso, the Web and Web.WebInteraction classes wrap this boilerplate

and give an Espresso-like feel to interacting with WebView objects. So, in the context of

a WebView, atoms are used as a substitution to traditional Espresso ViewMatchers and

ViewActions.

The API then looks quite simple, as follows.

Espresso-Web API Usage Formula.

onWebView()

 .withElement(Atom)

 .perform(Atom)

 .check(WebAssertion)

To add Espresso-Web to a project, insert the following line of code into the

application build.gradle file.

Espresso-Web Dependency in the Android Support Library.

androidTestImplementation 'com.android.support.test.espresso:espresso- web:3.0.2'

Or add the same dependency to the AndroidX Test Library.

Espresso-Web Dependency in the AndroidX Test Library.

androidTestImplementation 'androidx.test.espresso:espresso-web:3.1.0'

Chapter 6 testing Web VieWs

139

 Espresso-Web Building Blocks
Espresso-Web contains the following API components:

• WebInteractions—An analogue to Espresso’s ViewInteraction

or DataInteraction. Used to perform actions and call validation

methods, locate web elements, and set WebView properties.

• DriverAtoms—A collection of JavaScript atoms from the WebDriver

project.

• WebAssertions—Asserts that the given atom’s result is accepted by

the provided matcher.

Web interactions:

• reset()—Deletes the Element and Window references from the web

interaction.

• forceJavascriptEnabled()—Forces JavaScript usage on a WebView.

Enabling JavaScript may reload the WebView under test.

• withNoTimeout()—Disables all timeouts on this WebInteraction.

• withTimelout()—Sets a defined timeout for current

WebInteraction.

• inWindow()—Causes this WebInteraction to perform JavaScript

evaluation in a specific DOM window.

• withElement()—Causes this WebInteraction to supply the given

ElementReference to the atom prior to evaluation. After calling this

method, it resets any previously selected ElementReference.

• withContextualElement()—Evaluates this WebInteraction on the

subview of the selected element. Similar to the Espresso withChild()

method.

• perform()—Executes the provided atom within the current context.

This method blocks until the atom returns. Produces a new instance

of WebInteraction that can be used in further interactions.

Chapter 6 testing Web VieWs

140

• check()—Evaluates the given WebAssertion. After this method

completes, the result of the atom’s evaluation is available via get.

• get()—Returns the result of a previous call to perform or check.

For better understanding, web interactions can be split into different groups where

each group represents some functional load, as shown in Figure 6-1.

Driver atoms:

• webClick()—Simulates the JavaScript events to click on a particular

element.

• clearElement()—Clears content from an editable element.

• webKeys()—Simulates JavaScript key events sent to a certain

element.

• findElement()—Finds an element using the provided locatorType

strategy.

• selectActiveElement()—Finds the currently active element in the

document.

• selectFrameByIndex()—Selects a subframe of the currently selected

window by its index.

• selectFrameByIdOrName()—Selects a subframe of the given window

by its name or ID.

• getText()—Returns the visible text beneath a given DOM element.

• webScrollIntoView()—Returns true if the desired element is in view

after scrolling.

Chapter 6 testing Web VieWs

141

DriverAtoms can be grouped by the return type, which determines where a specific

method will be used. See Figure 6-2.

Figure 6-1. WebInteractions grouped by functional load

Figure 6-2. DriverAtoms grouped by the return type

Chapter 6 testing Web VieWs

142

Web assertions (see Figure 6-3):

• webMatches()—A WebAssertion that asserts that the given atom’s

result is accepted by the provided matcher.

• webContent()—A WebAssertion that asserts that the document is

matched by the provided matcher.

Now we can extend the Espresso-Web API usage formula with more detailed

information, as shown in Figure 6-4.

You might wonder why the onWebView() method shown in Figure 6-4 takes the

Espresso ViewMatcher (discussed in Chapter 1) as a parameter. The WebView UI element

is still an Android native component and can have its own ID, content description,

and other element properties. If we have multiple WebView components inside the

application screen, we have to specify which WebView we want to operate on.

Let’s take a look again at our sample application, where the Settings section contains

a WebView sample entry with an integrated WebView component. Figure 6-5 shows the

layout hierarchy in LayoutInspector.

Figure 6-3. WebAssertions methods

Figure 6-4. Extended Espresso-Web API usage formula

Chapter 6 testing Web VieWs

143

As you can see, the WebView component can be identified using Espresso

ViewMatcher based on the ID property web_view.

For your convenience, an Espresso-Web cheat sheet is included in Appendix A and

as an addition to the sample application source code.

EXERCISE 17

Verifying Intents

 1. Launch a sample application and navigate to settings. Open the WebView

sample section and do the layout dump with the Layoutinspector tool. Observe

which WebView properties can be used in Ui tests.

 2. similar to step 1, do the layout dump using a monitor application. Observe

which WebView properties can be analyzed using the monitor tool and compare

it to the Layoutinspector results.

Figure 6-5. Application Settings subsection layout of the WebView component

Chapter 6 testing Web VieWs

144

 Writing Tests with Espresso-Web
We are now ready to dive into Espresso web tests. For better understanding, open the

web_form.html and web_form_response.html files from the main application assets

folder in any browser, open the browser developer tools, and then start to inspect the

web pages. It is assumed that you have a basic understanding of HTML page structure

and can inspect web page UI elements using browser developer tools.

With Espresso-Web, UI elements can be located in the layout with the following

locator types:

• CLASS_NAME("className")

• CSS_SELECTOR("css")

• ID("id")

• LINK_TEXT("linkText")

• NAME("name")

• PARTIAL_LINK_TEXT("partialLinkText")

• TAG_NAME("tagName")

• XPATH("xpath")

Figure 6-6 shows the web_form.html page in the Chrome Developer Tools view.

Chapter 6 testing Web VieWs

145

The web page is built in a way that allows you to showcase most of the Espresso-Web

functionality. Open the chapter6.WebViewTest.kt class to see the implemented test

cases. Here is the updatesLabelAndOpensNewPage() test case.

chapter6.WebViewTest.updatesLabelAndOpensNewPage().

@Test

fun updatesLabelAndOpensNewPage() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

Figure 6-6. Chrome browser developer tools view

Chapter 6 testing Web VieWs

146

 onWebView()

 .forceJavascriptEnabled()

 // Find edit text and type text.

 .withElement(findElement(Locator.ID, "text_input"))

 .perform(webKeys("Espresso WebView testing"))

 // Find button by id and click.

 .withElement(findElement(Locator.ID, "submitBtn"))

 .perform(webClick())

 // Find element by id and check its text.

 .withElement(findElement(Locator.ID, "response"))

 .check(webMatches(getText(), containsString("Espresso+WebView+t

esting")))

}

Here, everything is simple. After navigating to the Settings section and clicking on

the WebView sample item, the WebView is shown using Android WebViewClient. Espresso-

Web handles web page loading, so there is no need to implement additional waiters. All

the elements in this test case are located by their IDs, which is the ideal case.

The next test case shows how to find web elements by their CSS properties. This is the

common case when element IDs are dynamically created and we cannot rely on them.

chapter6.WebViewTest.selectsRadioButtonWithCss().

@Test

fun selectsRadioButtonWithCss() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

 onWebView()

 // Find radio button by CSS.

 .withElement(findElement(Locator.CSS_SELECTOR,

"input[value=\"rb1\"]"))

 .perform(webClick())

}

Chapter 6 testing Web VieWs

147

Another way a web element can be located is by the XPATH selector, as follows.

chapter6.WebViewTest.findsElementsByXpath().

@Test

fun findsElementsByXpath() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

 onWebView()

 // Find label XPATH and check its text.

 .withElement(findElement(Locator.XPATH, "//label[@

id=\"selection_result\"]"))

 .perform(webScrollIntoView())

 .check(webMatches(getText(), equalTo("Select option")))

}

Note Web browser developer tools can help locate elements by Xpath or Css
selectors. it is enough to use the CMD+F or CtrL+F shortcut and try expression
on the search field. elements are highlighted in the page layout.

The next sample test case shows how to operate on elements inside the dialog popup.

chapter6.WebViewTest.opensModal().

@Test

fun opensModal() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

Chapter 6 testing Web VieWs

148

 .atPosition(3)

 .perform(click())

 onWebView()

 // Find button and click.

 .withElement(findElement(Locator.ID, "updateDetails"))

 .perform(webClick())

 // Find edit text field and input text in the popped up dialog.

 .withElement(findElement(Locator.ID, "modal_text_input"))

 .perform(webKeys("Text from modal"))

 // Find and click Confirm button.

 .withElement(findElement(Locator.ID, "confirm"))

 .perform(webClick())

 // Verify text from modal is set in label.

 .withElement(findElement(Locator.ID, "modal_message"))

 .check(webMatches(getText(), equalTo("Text from modal")))

}

In the current case, the dialog belongs to the HTML page and the elements inside

can be easily found using the same onWebView() method, as shown in Figure 6-7.

Chapter 6 testing Web VieWs

149

The next test case is about testing the interaction with the HTML <select>

component. This turns out to be a problematic topic. To begin, the following test case

was implemented.

chapter6.WebViewTest.failsToClickSelectDropDown().

@Test

fun failsToClickSelectDropDown() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

Figure 6-7. The HTML <dialog> shown inside the Android web view client

Chapter 6 testing Web VieWs

150

 onWebView()

 // Supposed to click on select.

 .withElement(findElement(Locator.ID, "selection_id"))

 .perform(webClick())

 // Select list is not shown, so test fails.

 .check(webMatches(getText(), equalTo("Item 3")))

}

The thing is that this test case fails on the last check only because the HTML

<select> component list is not shown, even though webClick() was sent to the found

element. Changing the locator type doesn’t help in this case and it is not needed

because the element was found. This leads to the fact that something is wrong with the

webClick() action only for the HTML <select> element. And after a bit of research, it

turned out to be a known problem and there is even a workaround to make it work with

the additional button:

Browsers do not allow expanding <select> in pure JavaScript, that control
can be expanded only by directly clicking on it using the mouse. The “select.
click()” won't work. But there is a solution. We imitate expanded <select>
control by creating another select with multiple options being displayed at
once, this can be done by setting the “size” parameter. That multiselect will
be positioned absolutely over the old single-option select control, and the
old one will be hidden using style’s visibility. That way the layout is kept the
same, and the new control is displayed seamlessly. The new control looks
only little differently, but that shouldn't be a problem, see it for yourself in
screenshots below.

https://code.google.com/archive/p/expandselect/

But there is a workaround from the testing side, without introducing UI components

on the web page. Being on the screen with the web view shown, we can expand

<select> by sending a ViewActions.pressKey(KeyEvent.KEYCODE_SPACE) event

when it is focused. Just as if you do it via the browser. To move focus to the <select>

element, we send as many tab actions as needed to navigate to the desired UI element—

ViewActions.pressKey(KeyEvent.KEYCODE_TAB). Unfortunately, tests should sleep for a

short amount of time, so the sent action can be applied in the web view. This is how it is

done with our sample application.

Chapter 6 testing Web VieWs

https://code.google.com/archive/p/expandselect/

151

chapter6.WebViewTest.verifiesSelectDropDown().

@Test

fun verifiesSelectDropDown() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

 // Send TAB keys as many times as needed to reach the "select".

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_TAB))

 Thread.sleep(300)

 // Send SPACE key to expand "select".

 onView(withId(R.id.web_view)).perform(pressKey(KeyEvent.KEYCODE_SPACE))

 /**

 * At this point android platform popup is shown.

 * Use Espresso native methods to select item from the list.

 */

 onView(withText("Item 3")).click()

Chapter 6 testing Web VieWs

152

 onWebView()

 // Check that text from select list is set into the label.

 .withElement(findElement(Locator.ID, "selection_result"))

 .check(webMatches(getText(), equalTo("Item 3")))

}

This test case is fully functional but doesn’t look good. By adding an additional

expand function to ViewInteraction, we can clean up our test code.

Test Case chapter6.WebViewTest.verifiesSelectDropDown().

/**

 * Expand function for web view test case.

 * It contains a Thread.sleep() each time key event is sent.

 *

 * @param key - keycode from {@link KeyEvent}

 * @param milliseconds - milliseconds to sleep

 * @param count - amount of times {@link KeyEvent} should be executed

 */

fun ViewInteraction.pressKeyAndSleep(key: Int, milliseconds: Long, count:

Int = 1): ViewInteraction {

 for (i in 1..count) {

 /**

 * Having Thread.sleep() in tests is a bad practice.

 * Here we are using it just to solve specific issue and nothing more.

 */

 Thread.sleep(milliseconds)

 perform(ViewActions.pressKey(key))

 }

 return this

}

Chapter 6 testing Web VieWs

153

The verifiesSelectDropDown() test case becomes much more readable.

Test Case chapter6.WebViewTest.verifiesSelectDropDown().

@Test

fun verifiesSelectDropDown() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

 onView(withId(R.id.web_view))

 // Send TAB keys as many times as needed to reach the "select".

 .pressKeyAndSleep(KeyEvent.KEYCODE_TAB, 500, 6)

 // Send SPACE key to expand "select".

 .perform(ViewActions.pressKey(KeyEvent.KEYCODE_SPACE))

 /**

 * At this point android platform popup is shown.

 * Use Espresso native methods to select item from the list.

 */

 onView(withText("Item 3")).click()

 onWebView()

 // Check that text from select list is set into the label.

 .withElement(findElement(Locator.ID, "selection_result"))

 .check(webMatches(getText(), equalTo("Item 3")))

}

A small note about the <select> drop-down. It is presented to the user as a native

platform popup that can be interacted with via the Espresso methods, as shown in

Figure 6-8.

Chapter 6 testing Web VieWs

154

The last test case in the WebViewTest.kt class contains the rest of the Locator type’s

usage samples.

Test Case chapter6.WebViewTest.showsOtherLocatorsSample().

@Test

fun showsOtherLocatorsSample() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

 onData(instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(3)

 .perform(click())

Figure 6-8. HTML <select> drop-down options shown inside the Android web
view client

Chapter 6 testing Web VieWs

155

 onWebView()

 // Find element by Locator.NAME

 .withElement(findElement(Locator.NAME, "text_input"))

 .perform(webScrollIntoView())

 // Find element by Locator.LINK_TEXT

 .withElement(findElement(Locator.LINK_TEXT, "Espresso Web."))

 .perform(webScrollIntoView())

 // Find element by Locator.PARTIAL_LINK_TEXT

 .withElement(findElement(Locator.PARTIAL_LINK_TEXT, "Espresso"))

 .perform(webScrollIntoView())

 // Find element by Locator.CLASS_NAME

 .withElement(findElement(Locator.CLASS_NAME, "header"))

 .check(webMatches(webScrollIntoView(), `is`(true)))

}

This test case shows how the webScrollIntoView() action can be used as a

parameter to the WebAssertion.webMatches() method. This approach provides a more

readable error description when the element we operate on is not found.

EXERCISE 18

Writing Web View Tests

 1. Open the web_form.html page in the web browser and analyze the page

structure. search the elements by Xpath and Css selectors.

 2. Update the selectsRadioButtonWithCss() test so that the radio button

with “Option 2” label is selected.

 3. Write a test that finds all the elements by their Xpaths only.

 4. Write a test that finds all the elements by their Css locators only.

 Summary
Espresso-Web is a nice addition to the Espresso APIs. It allows you to test hybrid

applications with WebView components. Yes, it is not perfect and can’t be used for

purely web application testing, but it does its job quite well in an Espresso-like manner.

Chapter 6 testing Web VieWs

157
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_7

CHAPTER 7

Accessibility Testing
Most mobile applications are developed with established assumptions about the

users or user types. In software testing, the term user personas reflects such user types,

including their possible usage flows and how the application might help them in their

daily activities. Despite the fact that user personas are created during the early stages of

the software development lifecycle, they may not consider people with disabilities.

Around 300 million people around the world have a visual impairment and use

mobile applications with the help of specific accessibility tools installed on their mobile

devices.

 Android Accessibility Tools
There are three tool types available on the Android platform for people with visual

impairments:

• TalkBack—The preinstalled screen reader application that allows

users to interact with Android applications without visual access to

the screen. Users with visual impairments may rely on TalkBack to

use your app.

• BrailleBack—An accessibility service that helps users with visual

impairments use Braille devices. Working in combination with the

TalkBack app, it provides a combined Braille and speech experience.

• Voice Access—Lets users control their Android devices with voice

commands. Voice Access is available on devices running Android 5.0

(API level 21) and higher.

158

As you can see, BrailleBack relies on TalkBack, which reads back each interactive

element available on the active screen to the user. In order to make Android applications

accessible to users with visual impairments, developers should follow accessibility

guidelines. Among them:

• Label UI elements—Many screen readers, such as TalkBack, rely on

this service to properly explain the function of a particular control.

For example, for UI objects such as ImageView and ImageButton

objects, the android:contentDescription parameter is set to specify

its purpose. For EditText objects, android:hint is used.

• Group content—Just as the visual UI is grouped into understandable

components like lists with list items, so the screen reader content

should also be grouped in a logical way. Instead of being presented

as separate elements, items should be read back as a single

announcement—a TO-DO item with a title, a description, and a

checkbox state.

• Create an easy-to-follow navigation—Applications should support

keyboards navigation and navigation gestures. Avoid having UI

elements fade out or disappear after a certain amount of time.

• Make touch targets large—By providing larger touch targets, you

make it substantially easier for users to navigate your app. In general,

according to the guidelines, the touchable area of focusable item

should be a minimum of 48dpx48dp.

• Provide adequate color contrast—People with poor vision or those

who use devices with dimmed displays have difficulty reading

information on the screen. By providing increased contrast ratios

between the foreground and background colors in your app, you

make it easier for users to navigate within and between screens.

 Testing Application Accessibility
The Espresso testing framework supports writing automated accessibility tests that

evaluate the accessibility of your application. In order to start writing accessibility tests,

add the following dependencies to the build.gradle file.

Chapter 7 aCCessibility testing

159

Android Testing Support Library Accessibility Dependencies in the build.gradle File

Inside the App Module.

androidTestImplementation "com.android.support.test.espresso:espresso-

accessibility:3.0.2"

androidTestImplementation "com.google.android.apps.common.testing.

accessibility.framework:accessibility-test-framework:2.1"

AndroidX Test library Accessibility Dependencies in the build.gradle file Inside the

App Module.

androidTestImplementation 'androidx.test.espresso:espresso-

accessibility:3.1.0'

androidTestImplementation "com.google.android.apps.common.testing.

accessibility.framework:accessibility-test-framework:2.1"

After adding these dependencies, you have to enable accessibility checks, as shown

in this sample:

companion object {

 @BeforeClass

 @JvmStatic

 fun setAccessibilityPrefs() {

 AccessibilityChecks.enable()

 }

}

Note AccessibilityChecks should be enabled only once per test class,
otherwise, the test will fail. therefore, the @BeforeClass annotation should be used
with methods in which checks are enabled. in Kotlin, the method annotated with the
@BeforeClass annotation should be declared in the class companion object.

With AccessibilityChecks.enable() set, checks are enabled each time the

Espresso ViewAction is called on the UI element, including its descendants. Such

approach limits accessibility testing to UI test coverage.

To cover more UI elements within the test run, set setRunChecksFromRootView(true),

which enables you to validate the entire view hierarchy.

Chapter 7 aCCessibility testing

160

Companion Object in chapter7.AccessibilityTest.kt Class.

 @BeforeClass

 @JvmStatic

 fun setAccessibilityPrefs() {

 AccessibilityChecks.enable().setRunChecksFromRootView(true)

 }

Unfortunately, it is not possible to set accessibility checks on each test method or test

class, or to disable it after a test run.

There can be cases when an accessibility issue is known but has not been resolved.

With the help of AccessibilityValidator implemented in com.google.android.apps.

common.testing.accessibility.framework, you can suppress it:

@BeforeClass

@JvmStatic

fun setAccessibilityPrefs() {

 AccessibilityChecks.enable()

 .setRunChecksFromRootView(true)

 .setSuppressingResultMatcher(AccessibilityCheckResultUtils.

matchesViews(

 hasSibling(withId(R.id.menu_filter))))

}

In a similar way, you can suppress multiple accessibility issues with the help of the

anyOf() matcher, as shown here:

@BeforeClass

@JvmStatic

fun setAccessibilityPrefs() {

 AccessibilityChecks.enable()

 .setRunChecksFromRootView(true)

 .setSuppressingResultMatcher(AccessibilityCheckResultUtils.

matchesViews(anyOf(

 hasSibling(withId(R.id.menu_filter)),

 withChild(withChild(withId(android.support.design.R.id.

snackbar_text))))))

}

Chapter 7 aCCessibility testing

161

By the way, you may notice accessibility issues with the native Android UI elements

like snackbar. Suppressing them sometimes is not an easy task. In the previous code

sample, the withChild() view matcher was used twice to locate the snackbar root layout

and suppress the accessibility issue for it.

You can also keep tests running even with accessibility issues, by providing a false

value to the setThrowExceptionForErrors() method:

@BeforeClass

@JvmStatic

fun setAccessibilityPrefs() {

 AccessibilityChecks.enable()

 .setRunChecksFromRootView(true)

 .setSuppressingResultMatcher(AccessibilityCheckResultUtils.

matchesViews(anyOf(

 hasSibling(withId(R.id.menu_filter)),

 withChild(withChild(withId(android.support.design.R.id.

snackbar_text))))))

 .setThrowExceptionForErrors(false)

}

In this case, all the issues will be redirected to the logcat log, where logs with I are

informative and shown in black, W are warnings and are in blue, and E are errors and are

in red. See Figure 7-1.

Figure 7-1. Accessibility logcat logs when setThrowExceptionForErrors(false) is set

Chapter 7 aCCessibility testing

162

This is how the accessibility issue stacktrace looks like after a test fails:

com.google.android.apps.common.testing.accessibility.framework.integrations.

AccessibilityViewCheckException: There was 1 accessibility error:

OverflowMenuButton{id=-1, desc=More options, visibility=VISIBLE, width=105,

height=126, has-focus=false, has-focusable=false, has-window-focus=false,

is-clickable=true, is-enabled=true, is-focused=false, is-focusable=true,

is-layout-requested=false, is-selected=false, layout-params=android.

support.v7.widget.ActionMenuView$LayoutParams@48cbb74, tag=null, root-is-

layout-requested=true, has-input-connection=false, x=127.0, y=10.0}: View

falls below the minimum recommended size for touch targets. Minimum touch

target width is 48dp. Actual width is 40dp.

at com.google.android.apps.common.testing.accessibility.framework.

integrations.espresso.AccessibilityValidator.processResults(AccessibilityVa

lidator.java:187)...

You may notice that the header parts in both cases are identical.

In addition to automated accessibility testing, Google developers also provide a

possibility to test manually using the Accessibility Scanner application (https://play.

google.com/store/apps/details?id=com.google.android.apps.accessibility.

auditor).

This application allows you to check for accessibility issues types and better

understand errors shown in your Espresso accessibility test reports or inside the logcat

logs based on the visual representation.

Chapter 7 aCCessibility testing

https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor

163

Figure 7-2 shows the accessibility scanner setup process.

Figure 7-3 shows a couple of accessibility analysis examples with accessibility issues

in the sample TO-DO application.

Figure 7-2. Start using the Accessibility scanner flow

Figure 7-3. Accessibility issues in the Create Task view

Chapter 7 aCCessibility testing

164

EXERCISE 19

Executing Accessibility Tests

 1. install the accessibility scanner application and enable accessibility checks.

launch the sample tO-DO application and perform the accessibility checks

across the application. Observe the issue types.

 2. run tests from the AccessibilityTest.kt class with the

AccessibilityChecks.enable() option only. Observe the test results.

 3. run tests from the AccessibilityTest.kt class with the setRunChecksF

romRootView(true) option. Observe the test results.

 4. suppress some accessibility failures, as shown in the AccessibilityTest.kt

class’s setAccessibilityPrefs() method, and run the tests again. Observe

the test results.

 5. add the setThrowExceptionForErrors(false) parameter and run the

tests. Observe the test results and device logcat logs.

 Summary
Unfortunately, accessibility testing is frequently ignored, with the focus mostly on

functional testing. It may be not clear from the first look, but good accessibility support

is important too. Its main goal is to make applications accessible to people with visual

impairments, but it also has nice side effects—it makes your applications more testable

and helps you understand different application use cases. It maybe even result in your

application getting a higher Google PlayStore rating, since Android-crawling algorithms

may analyze the application from the accessibility side and give preference to those with

proper accessibility support.

Chapter 7 aCCessibility testing

165
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_8

CHAPTER 8

Espresso and
UI Automator:
the Perfect Tandem
Espresso is a perfect and fast test automation framework, but it has one important

limitation—we are allowed to operate only inside our test application context. This

means that it is not possible to automate tests for the following use cases:

• Clicking application push notifications

• Accessing system settings

• Navigating from another app to the app being tested and vice versa

The reason for such a limitation lies in the nature of the Android Test

instrumentation. Since during an Espresso test run, the application being tested and

the test application processes are spawned, we are not allowed to interact with other

applications installed on the mobile device, like the notification bar, camera, or system

settings applications. But it is possible to access them using the UI Automator. The UI

testing framework is suitable for cross-app functional UI testing.

Note The UI Automator test framework supports Android 4.3 (API level 18) and
higher.

166

The key features of the UI Automator include the following:

• A uiautomatorviewer to inspect the layout hierarchy. Starting with

Android Studio 2.3, this was replaced by a monitor tool.

• An API to retrieve device state information and perform operations

on it. The examples are pressing the device home or back button,

changing device rotation, opening notifications, and taking a

screenshot.

• APIs that support cross-application UI testing.

We will focus a bit on the UI Automator APIs:

• By—By is a utility class that enables the creation of BySelectors in

a concise manner. Its primary function is to provide static factory

methods for constructing BySelectors using a shortened syntax. For

example, you would use findObject(By.text("foo")) rather than

findObject(new BySelector().text("foo")) to select UI elements

with the text value "foo".

• BySelector—A BySelector specifies criteria for matching UI elements

during a call to findObject(BySelector).

• Configurator—Allows you to set key parameters for running UI

Automator tests. The new settings take effect immediately and can be

changed any time during the test run.

• UiCollection—Used to enumerate a container’s UI elements for the

purpose of counting or targeting a subelement by a child’s text or

description.

• UiObject—A UiObject is a representation of a view. It is not in any

way directly bound to a view as an object reference. A UiObject

contains information to help it locate a matching view at runtime

based on the UiSelector properties specified in its constructor. Once

you create an instance of a UiObject, it can be reused for different

views that match the selector criteria.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html

167

• UiObject2—A UiObject2 represents a UI element. Unlike UiObject,

it is bound to a particular view instance and can become stale if the

underlying view object is destroyed. As a result, it may be necessary

to call findObject(BySelector) to obtain a new UiObject2 instance if

the UI changes significantly.

• UiScrollable—UiScrollable is a UiCollection and provides support

for searching for items in scrollable layout elements. This class can be

used with horizontally or vertically scrollable controls.

• UiSelector—Specifies the elements in the layout hierarchy for tests to

target, filtered by properties such as text value, content-description,

class name, and state information. You can also target an element by

its location in a layout hierarchy.

In addition to this list of APIs, we should be familiar with the following framework class:

• Until—The Until class provides factory methods for constructing

common conditions.

Note The UI Automator testing framework is an instrumentation-based API and
works with the AndroidJUnitRunnertest runner. This fact allows us to use
espresso together with UI Automator code in the same test.

 Starting with UI Automator
To start using UI Automator, we should first set the dependency in the build.gradle file,

as follows.

UI Automator Android Testing Support Library Dependency in the build.gradle File.

 androidTestImplementation 'com.android.support.test.

uiautomator:uiautomator-v18:2.1.3'

And set the AndroidX Test library dependency as well.

UI Automator AndroidX Test Library Dependency in the build.gradle File.

androidTestImplementation 'androidx.test.uiautomator:uiautomator:2.2.0'

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

https://developer.android.com/reference/android/support/test/uiautomator/UiCollection.html

168

Let’s analyze the UI Automator from an Espresso perspective, which we are already

familiar with, and try to figure out how different they are. We will also consider the UI

Automator’s strengths and weakness:

• Handling application transitions:

• Espresso—Handles window transitions automatically.

• UI Automator—Doesn’t support automatic window transitions,

i.e., switching between activities or fragments. You should

explicitly use waitings.

• Locating UI elements:

• Espresso—Core Espresso onView() and onData() methods

together with view matchers or data matchers are used to locate

the UI element.

• UI Automator—Similar to Espresso, UI Automator has

its own core UiDevice class. It contains such methods as

hasObject(BySelector), findObject(BySelector), and

findObjects(BySelector) that are used to search for an element

or check its presence in the application UI.

• Waitings:

• Espresso—The IdlingResource and third-party

ConditionWatcher classes can be used as waiting mechanisms,

including both networks related and element presence waitings.

Both waiters should be implemented for each specific case.

• UI Automator—Unlike Espresso, UI Automator has defined

wait() and performActionAndWait() methods in the UiDevice

class. Waitings can be easily tweaked by providing custom

SearchCondition or EventCondition parameters.

• UI/view actions:

• Espresso—Supports a wide range of view actions with the

possibility to define your own. It’s able to interact only with the

application being tested.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

169

• UI Automator—As mentioned, the UI Automator can interact

with any application on the device. But the degree of action is

very limited.

• Device controls:

• Espresso—No support.

• UI Automator—Provides a long list of device control methods

starting from the device home button click to orientation control.

• Reporting:

• Espresso—Supports much richer test failure reports and makes it

easy to analyze test failures.

• UI Automator—Usually returns nondescriptive stacktraces upon

failure, which should be analyzed to realize what went wrong.

Based on these differences, you can see that in combination, these two form a very

powerful feature set that covers almost all the needs in the Android test automation.

To more easily understand the UI Automator framework, we can describe its features

using verbs:

• UiDevice().find—Shows UI Automator find methods.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

170

• UiDevice().act—Consolidates all actions that can be done with the

device, from pressing the back device button to a shell command

execution.

• UiDevice().wait—Waits for a certain condition to be fulfilled.

• UiDevice().watch—Represents a group of methods used to create

and control condition watchers.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

171

• UiDevice().get—Retrieves device or application parameters.

• UiDevice().set—Enables or disables layout hierarchy compression.

In the following sections, we will see how most of these UiDevice methods can be

used when Espresso for Android cannot handle the issue.

 Finding and Acting on UI Elements
The main UI Automator functionality is locating UI elements and performing actions

on them. If we talk about UI Automator usage in combination with Espresso, then it

can be used to navigate through third-party or system applications, take screenshots

or, for example, execute shell commands. But, of course, the UI Automator can act as a

standalone test automation framework.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

172

As was described, the UI element search is done by the findObject() and

findObjects() methods. The findObject() method takes instances of the following

classes as parameters that specify criteria for matching UI elements in the hierarchy:

• UiSelector()

• BySelector()

The conceptual difference between them is in the way that search criteria specified

by each selector is applied. To understand this, we will first look at the UiSelector

sample tests implemented in the UiAutomatorUiSelectorTest.kt test class.

chapter8.UiAutomatorUiSelectorTest.uiSelectorSample().

private val instrumentation = InstrumentationRegistry.getInstrumentation()

private val uiDevice: UiDevice = UiDevice.getInstance(instrumentation)

private val fourSecondsTimeout = 4000L

@get:Rule

var activityTestRule = ActivityTestRule(TasksActivity::class.java)

/**

 * Creates two TO-DO items, marks first as done and verifies its text.

 */

@Test

fun uiSelectorSample() {

 // Add first To-Do item.

 uiDevice.findObject(

 UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/fab_add_task"))

 .click()

 uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

add_task_title"))

 .text = "item 1"

 uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

fab_edit_task_done"))

 .click()

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

173

 uiDevice.findObject(UiSelector().text("TO-DO saved")).waitUntilGone

(fourSecondsTimeout)

 // Add second To-Do item.

 uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

fab_add_task"))

 .click()

 uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

add_task_title"))

 .text = "item 2"

 uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

fab_edit_task_done"))

 .click()

 uiDevice.findObject(UiSelector().text("TO-DO saved")).waitUntilGone

(fourSecondsTimeout)

 // Mark first To-Do item as done, click on it and validate text.

 uiDevice.findObject(UiSelector().className(RecyclerView::class.java.name)

 .childSelector(UiSelector().checkable(true)))

 .click()

 uiDevice.findObject(UiSelector().className(RecyclerView::class.java.name)

 .childSelector(UiSelector().className(LinearLayout::class.

java)).instance(0))

 .click()

 val detailViewTitle = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.mock:id/

task_detail_title"))

 assertTrue("To-Do \"item 1\" is not shown.", detailViewTitle.exists())

 assertTrue("To-Do \"item 1\" is not shown.", detailViewTitle.text.

equals("item 1"))

}

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

174

As you can see, the UI Automator test contains an ActivityTestRule rule to start the

application main TasksActivity. After that, the UI Automator code takes over the test

execution and performs the UI interactions. All the resourceId values were taken from

the monitor tool after dumping the application layout.

Also notice that the test code is barely readable because of the uiDevice.

findObject(UiSelector) method calls on each test step. But there is a simple fix⎯since

uiDevice.findObject(UiSelector) returns an UiObject instance that locates a

matching view at runtime, it can be declared in advance and later reused for different

views that match the selection criteria.

This is how the test method will look after simplification.

chapter8.UiAutomatorUiSelectorTest.uiSelectorSampleSimplified().

 /**

 * Shows how interactsWithToDoInRecyclerViewUiSelector() test can be

simplified

 * by declaring UiObject elements in advance.

 */

 @Test

 fun uiSelectorSampleSimplified() {

 // Declare UiObject instances that will be used later in test.

 val fabAddTask = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/fab_add_task"))

 val taskTitle = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/add_task_title"))

 val fabDone = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/fab_edit_task_done"))

 val todoSavedText = uiDevice.findObject(UiSelector().text("TO-DO

saved"))

 val taskDetailsTitle = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/task_detail_title"))

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

175

 val firstTodoCheckbox = uiDevice.findObject(UiSelector()

 .className(RecyclerView::class.java.name)

 .childSelector(UiSelector().checkable(true)).instance(0))

 val firstTodoItem = uiDevice.findObject(UiSelector().

className(RecyclerView::class.java.name)

 .childSelector(UiSelector().className(LinearLayout::class.

java)).instance(0))

 // Add first To-Do item.

 fabAddTask.click()

 taskTitle.text = "item 1"

 fabDone.click()

 todoSavedText.waitUntilGone(fourSecondsTimeout)

 // Add second To-Do item.

 fabAddTask.click()

 taskTitle.text = "item 2"

 fabDone.click()

 todoSavedText.waitUntilGone(fourSecondsTimeout)

 // Mark first To-Do item as done, click on it and validate text.

 firstTodoCheckbox.click()

 firstTodoItem.click()

 assertTrue("To-Do \"item 1\" is not shown.", taskDetailsTitle.exists())

 assertTrue("To-Do \"item 1\" title was wrong.", taskDetailsTitle.

text.equals("item 1"))

 }

This test method looks much nicer and is more readable. As a side effect, you receive

easily maintainable code, so whenever element properties like id or class are changed,

it will be enough to update them once in the declaration instead of changing them across

the test code.

Let’s move forward to the BySelector test samples implemented in the

UiAutomatorBySelectorTest.kt class. The bySelectorSample() test demonstrates how

the same test scenario automated in the UiAutomatorUiSelectorTest.kt class can be

tested using BySelector and UiObject2.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

176

chapter8.UiAutomatorBySelectorTest.bySelectorSample().

private val instrumentation = InstrumentationRegistry.getInstrumentation()

private val uiDevice: UiDevice = UiDevice.getInstance(instrumentation)

private val twoSeconds = 2000L

private val fourSeconds = 4000L

private val applicationPackage = "com.example.android.architecture.

blueprints.todoapp.mock"

@get:Rule

var activityTestRule = ActivityTestRule(TasksActivity::class.java)

/**

 * Creates two To-Do items, marks first as done and verifies its text.

 */

@Test

fun bySelectorSample() {

 // Add first To-Do item.

 uiDevice.wait(

 Until.findObject(By.res(applicationPackage, "fab_add_task")),

twoSeconds)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.findObject(By.res(applicationPackage, "add_task_title")).

text = "item 1"

 uiDevice.findObject(By.res(applicationPackage, "fab_edit_task_done"))

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.wait(Until.gone(By.text("TO-DO saved")), fourSeconds)

 // Add second To-Do item.

 uiDevice.wait(Until.findObject(By.res(applicationPackage, "fab_add_

task")), twoSeconds)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.findObject(By.res(applicationPackage, "add_task_title")).

text = "item 2"

 uiDevice.findObject(By.res(applicationPackage, "fab_edit_task_done"))

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.wait(Until.gone(By.text("TO-DO saved")), fourSeconds)

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

177

 // Mark first To-Do item as done, click on it and validate text.

 val todoList = uiDevice.findObject(By.clazz(RecyclerView::class.java))

 todoList.children[0]

 .findObject(By.checkable(true))

 .click()

 todoList.children[0]

 .click()

 assertTrue("To-Do \"item 1\" is not shown.", uiDevice.hasObject(By.

text("item 1")))

}

The test code with BySelector may initially look more readable, but there is

one drawback—BySelector() is applied and executed during a call to UiDevice.

findObject(BySelector), reducing the flexibility in test code writing. That means the

following line cannot be declared as a variable at the beginning of the test method and

later reused.

chapter8.UiAutomatorBySelectorTest.bySelectorSample(): Clicking Add Task

Floating Action Button.

uiDevice.findObject(By.res(applicationPackage, "fab_edit_task_done")).click()

What we still can do is extract the selector itself, as follows.

chapter8.UiAutomatorBySelectorTest.bySelectorSample(): Finding and Clicking

Done Floating Action Button.

val fabDone = By.res(applicationPackage, "fab_edit_task_done")

uiDevice.findObject(fabDone).click()

The possible test method improvements are shown in the following code.

chapter8.UiAutomatorBySelectorTest.bySelectorSampleWithFindObjects().

 @Test

 fun bySelectorSampleWithFindObjects() {

 val fabAddTask = By.res(applicationPackage, "fab_add_task")

 val taskTitle = By.res(applicationPackage, "add_task_title")

 val fabDone = By.res(applicationPackage, "fab_edit_task_done")

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

178

 val todoSavedText = By.text("TO-DO saved")

 val checkBox = By.checkable(true)

 val toDoRecyclerView = By.clazz(RecyclerView::class.java)

 // Add first To-Do item.

 uiDevice.waitForWindowUpdate(uiDevice.currentPackageName, twoSeconds)

 uiDevice.wait(Until.findObject(fabAddTask), twoSeconds)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.findObject(taskTitle).text = "item 1"

 uiDevice.findObject(fabDone)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.wait(Until.gone(todoSavedText), fourSeconds)

 // Add second To-Do item.

 uiDevice.wait(Until.findObject(fabAddTask), twoSeconds)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.findObject(taskTitle).text = "item 2"

 uiDevice.findObject(fabDone)

 .clickAndWait(Until.newWindow(), twoSeconds)

 uiDevice.wait(Until.gone(todoSavedText), fourSeconds)

 // Mark first To-Do item as done, click on it and validate text.

 // Showcases findObjects() method use.

 val todoListItems = uiDevice.findObjects(toDoRecyclerView)

 todoListItems[0].findObject(checkBox).click()

 todoListItems[0].click()

 assertTrue("To-Do \"item 1\" is not shown.", uiDevice.hasObject(By.

text("item 1")))

 }

The last method also has a findObjects(BySelector) sample. In our specific case,

we use this method to get the list of TO-DO items and then navigate through its items

based on the position in the list.

This should be it about finding and acting on elements using the UI Automator. Of

course, we haven’t covered all the possible search criteria and actions, but the examples

we discuss should be a good basis for you to move forward.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

179

 Waiting for UI Elements
In such test frameworks like UI Automator—where automated tests interact with

multiple applications and where we don’t have much control over network requests

execution, application transitions, or animations—it is important to have proper waiting

mechanisms that will allow us to write more reliable test code.

UI Automator waitings are presented by three types:

• Waiting for EventCondition—A condition that depends on an event

or series of events having occurred.

• Waiting for SearchCondition—A condition that is satisfied by

searching for UI elements.

• Waiting for UiObject2Condition—A condition that is satisfied when

a UiObject2 is in a particular state.

All the conditions are implemented in the android.support.test.uiautomator.

Until.java class in the Android Testing Support library or in androidx.test.

uiautomator inside the AndroidX Test library.

The previous section contains some waiting examples and you probably noticed

them. Waiting for an EventCondition was used in the following line and is responsible

for finding the Add Task floating action button, clicking it, and then waiting for a new

window to be presented to the user.

chapter8.UiAutomatorUiWatcherTest.kt: Instantiating UiWatcher Object.

uiDevice.wait(

 Until.findObject(By.res(applicationPackage, "fab_add_task")),

twoSeconds)

 .clickAndWait(Until.newWindow(), twoSeconds)

Here, EventCondition is a change from the current window to a new one. It is used

only as a parameter to the clickAndWait(EventCondition, Timeout) method. Here is

are the EventConditions:

• newWindow()—Returns a condition that depends on a new window

having appeared.

• scrollFinished()—Returns a condition that depends on a scroll

having reached the end in the given direction.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

180

SearchCondition is responsible for locating elements in the layout and represents

the second waitings group:

• gone()—Returns a link SearchCondition that is satisfied when no

elements matching the selector can be found.

• hasObject()—Returns a link SearchCondition that is satisfied when

at least one element matching the selector can be found.

• findObject()—Returns a SearchCondition that is satisfied when at

least one element matching the selector can be found. The condition

will return the first matching element.

• findObjects()—Returns a link SearchCondition that is satisfied

when at least one element matching the selector can be found. The

condition will return all matching elements.

We already used the gone() method while waiting for snackbar with the TO-DO

saved text gone in the create TO-DO flow, as shown here:

 uiDevice.wait(Until.gone(By.text("TO-DO saved"), twoSeconds)

Here is an example of hasObject():

 uiDevice.wait(Until.hasObject(By.text("TO-DO saved"), twoSeconds)

And the last type is UiObject2Condition. It waits for the specific UI object state or

property:

• checkable()—Returns a condition that depends on a UiObject2

checkable state.

• checked()—Returns a condition that depends on a UiObject2

checked state.

• clickable()—Returns a condition that depends on a UiObject2

clickable state.

• enabled()—Returns a condition that depends on a link UiObject2

enabled state.

• focusable()—Returns a condition that depends on a link UiObject2

focusable state.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

181

• focused()—Returns a condition that depends on a UiObject2’s

focused state.

• longClickable()—Returns a condition that depends on a

UiObject2’s long clickable state.

• scrollable()—Returns a condition that depends on a UiObject2’s

scrollable state.

• selected()—Returns a condition that depends on a UiObject2’s

selected state.

• descMatches()—Returns a condition that is satisfied when the

object’s content description matches the given regex.

• descEquals()—Returns a condition that is satisfied when the object’s

content description exactly matches the given string.

• descContains()—Returns a condition that is satisfied when the

object’s content description contains the given string.

• descStartsWith()—Returns a condition that is satisfied when the

object’s content description starts with the given string.

• descEndsWith()—Returns a condition that is satisfied when the

object’s content description ends with the given string.

• textMatches()—Returns a condition that is satisfied when the

object’s text value matches the given regex.

• textNotEquals()—Returns a condition that is satisfied when the

object’s text value does not match the given string.

• textEquals()—Returns a condition that is satisfied when the object’s

text value exactly matches the given string.

• textContains()—Returns a condition that is satisfied when the

object’s text value contains the given string.

• textStartsWith()—Returns a condition that is satisfied when the

object’s text value starts with the given string.

• textEndsWith()—Returns a condition that is satisfied when the

object’s text value ends with the given string.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

182

The list is big enough and covers most used elements properties. They are similar to

Espresso’s ViewMatchers, which we are already familiar with.

Waiting for UiObject2Condition can be demonstrated by the following line of code,

which searches for the first element inside the TO-DO recycler view list, locates the

checkbox element in it, and waits until it is checked.

Waiting for UiObject2Condition Sample.

uiDevice.findObject(By.clazz(RecyclerView::class.java)).children[0]

 .findObject(By.clickable(true))

 .wait(Until.checked(true), twoSeconds)

Considering what we’ve covered so far, we can admit that UI Automator is a powerful

test framework that can be used as a standalone test automation tool. But wait, we

haven’t yet unleashed its full power. Let’s move to the next section and see what it

prepared for us.

 Watching for Conditions
There is one not widely known UI Automator feature that can add big value to your

automated tests. The UiWatcher class represents a conditional watcher on the target

device being tested. It contains only one method:

• checkForCondition()⎯Custom handler that is automatically called

when the testing framework is unable to find a match using the

UiSelector.

The checkForCondition() method is called automatically when UI Automator

framework is in the process of matching a UiSelector and it is unable to match any

element based on the specified criteria in the selector. When this happens, the callback

will perform retries for a predetermined time, waiting for the display to update and show

the desired widget. While the framework is in this state, it will call registered watchers’

checkForCondition(). This gives the registered watchers a chance to look at the display

and see if there is a recognized condition that can be handled. In doing so, this allows the

current test to continue.

The possible use cases where UiWatcher can be useful can be handling one-time

popups like low battery level dialogs, application feedback dialogs, advertisements, and

permission granting for third-party applications. The beauty of this approach is that

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

183

UiWatcher should not be part of the test method but can be registered once per test class

or per test package and act only when there is a need.

In order to control the UiWatcher states, there is list of methods in the UiDevice class:

• registerWatcher()—Registers a UiWatcher to run automatically

when the testing framework is unable to find a match using a

UiSelector.

• removeWatcher()—Removes a previously registered UiWatcher.

• resetWatcherTriggers()—Resets a UiWatcher that has been

triggered. If a UiWatcher runs and its checkForCondition() call

returns true, then the UiWatcher is considered triggered.

• runWatchers()—This method forces all registered watchers to run.

As an example, the TO-DO application’s Statistics screen shows a dialog that must be

dismissed. Open the UiAutomatorUiWatcherTest.kt class to see the details.

chapter8.UiAutomatorUiWatcherTest.kt.

@RunWith(AndroidJUnit4::class)

class UiAutomatorUiWatcherTest {

 @get:Rule

 var activityTestRule = ActivityTestRule(TasksActivity::class.java)

 @Before

 // Register dialog watcher.

 fun before() = registerStatisticsDialogWatcher()

 @After

 fun after() = uiDevice.removeWatcher("StatisticsDialog")

 @Test

 fun dismissesStatisticsDialogUsingWatcher() {

 val toolbar =

 "com.example.android.architecture.blueprints.todoapp.

mock:id/toolbar"

 val menuDrawer =

 "com.example.android.architecture.blueprints.todoapp.

mock:id/design_navigation_view"

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

184

 // Open menu drawer.

 uiDevice.findObject(

 UiSelector().resourceId(toolbar))

 .getChild(UiSelector().className(ImageButton::class.java.

name))

 .click()

 // Open Statistics section.

 uiDevice.findObject(

 UiSelector()

 .resourceId(menuDrawer)

 .childSelector(

 UiSelector()

 .className(LinearLayoutCompat::

class.java.name).instance(1)))

 .click()

 /**

 * Locate Statistics label based on the view id.

 * At this moment watcher kicks in and dismissed dialog by clicking

on OK button.

 */

 val statistics: UiObject = uiDevice.findObject(UiSelector()

 .resourceId("com.example.android.architecture.blueprints.

todoapp.mock:id/statistics"))

 // Assert expected text is shown.

 assertTrue("Expected statistics label: \"You have no tasks.\" but

got: ${statistics.text}",

 statistics.text == "You have no tasks.")

 }

 /**

 * Register Statistics dialog watcher that will monitor dialog

presence.

 * Dialog will be dismissed when appeared by clicking on OK button.

 */

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

185

 private fun registerStatisticsDialogWatcher() {

 uiDevice.registerWatcher("StatisticsDialog", statisticsDialogWatcher)

 // Run registered watcher.

 uiDevice.runWatchers()

 }

 /**

 * Remove previously registered Statistics dialog.

 */

 private fun removeStatisticsDialogWatcher() {

 uiDevice.removeWatcher("StatisticsDialog")

 }

 companion object {

 private val instrumentation = InstrumentationRegistry.

getInstrumentation()

 private val uiDevice: UiDevice = UiDevice.

getInstance(instrumentation)

 val statisticsDialogWatcher = UiWatcher {

 val okDialogButton = uiDevice.findObject(By.res("android:id/

button1"))

 if (null != okDialogButton) {

 okDialogButton.click()

 return@UiWatcher true

 }

 false

 }

 }

}

If we break it down, we will see that the UiWatcher instance is created first.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

186

chapter8.UiAutomatorUiWatcherTest.kt: Instantiating UiWatcher Object.

companion object {

 private val instrumentation = InstrumentationRegistry.

getInstrumentation()

 private val uiDevice: UiDevice = UiDevice.getInstance(instrumentation)

 val statisticsDialogWatcher = UiWatcher {

 val okButton = uiDevice.findObject(By.res("android:id/button1"))

 if (null != okButton) {

 okButton.click()

 return@UiWatcher true

 }

 false

 }

Then, from the setUp() method that will be executed before each test run, we call

registerStatisticsDialogWatcher() to register the watcher and run it.

chapter8.UiAutomatorUiWatcherTest.kt: Registering and Running UiWatcher.

@Before

// Register dialog watcher.

fun before() = registerStatisticsDialogWatcher()

/**

 * Register Statistics dialog watcher that will monitor dialog presence.

 * Dialog will be dismissed when appeared by clicking on OK button.

 */

private fun registerStatisticsDialogWatcher() {

 uiDevice.registerWatcher("StatisticsDialog", statisticsDialogWatcher)

 // Run registered watcher.

 uiDevice.runWatchers()

}

At this point, everything is ready for running the dismissesStatisticsDialogUsing

Watcher() test. The test starts the application, opens the menu drawer, and navigates

to the Statistics section, where the AlertDialog is popping up. Then the UI Automator

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

187

framework tries to locate the Statistics text but can’t. The UiWatcher mechanism starts

to check if there is something on the screen that was expected to be cached by the

running watcher. In our case, it is the AlertDialog OK button, which is clicked from

inside the watcher.

In general, it is worth trying to use UiWatcher in automated tests, which can enrich

test automation tooling and make test more legible.

 Combining Espresso and UI Automator in Tests
At this point it should be clear enough how to use the UI Automator test framework as a

standalone test automation tool and it is a time to reveal the full power of Android test

automation using both Espresso and UI Automator inside a single test. To demonstrate

this, we will automate the use case where the TO-DO application sends the notification,

which, after clicked, opens TasksActivity (i.e., tasks list screen) to the user. The first

part of the test is automated using Espresso, starting from the moment when we click

Notification, the UI Automator will be used. At the end, the Espresso code will be used

again to verify the state of the application.

Let’s take a look at the test itself.

chapter8.EspressoUiAutomatorTest.clickNotificationOpenMainPage().

private val instrumentation = InstrumentationRegistry.getInstrumentation()

private val uiDevice: UiDevice = UiDevice.getInstance(instrumentation)

private val twoSeconds = 2000L

@get:Rule

var activityTestRule = ActivityTestRule(TasksActivity::class.java)

 /**

 * Clicks notification triggered by application under test and

 * verifies that TasksActivity is shown.

 */

@Test

fun clickNotificationOpensTasksActivity() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.settings_title))).perform(click())

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

188

 onData(CoreMatchers.instanceOf(PreferenceActivity.Header::class.java))

 .inAdapterView(withId(android.R.id.list))

 .atPosition(1)

 .onChildView(withId(android.R.id.title))

 .check(matches(withText("Notifications")))

 .perform(click())

 // Click on Send notification item

 onData(withKey("notifications_send"))

 .inAdapterView(allOf(

 withId(android.R.id.list),

 withParent(withId(android.R.id.list_container))))

 .check(matches(isDisplayed()))

 .perform(click())

 // Perform UI Automator actions.

 uiDevice.openNotification()

 // Click notification by text and wait for application to appear.

 uiDevice.findObject(By.text("My notification"))

 .clickAndWait(Until.newWindow(), twoSeconds)

 // Verify application layout with Espresso

 onView(withId(R.id.noTasksIcon)).check(matches(isDisplayed()))

}

If the notification is delayed, we can wait for it using the wait() method. This case

is covered by the second test method in the same class. The TO-DO application sends a

notification with a small delay and the test handles it by waiting for the notification object.

chapter8.EspressoUiAutomatorTest: Clicking on Delayed Notification By Its Text.

// Wait and click delayed notification by text.

uiDevice.findObject(By.res("com.android.systemui:id/notification_stack_

scroller"))

 .wait(Until.findObject(By.text("My notification")), 8000)

 .clickAndWait(Until.newWindow(), twoSeconds)

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

189

As you can see, with both frameworks, we can cover most of the use cases we need,

starting from testing an application using Espresso to more complicated cases like

interacting with notifications, opening system settings, and dealing with other third-

party applications using UI Automator.

EXERCISE 20

Implementing a Practice Test Using Espresso and UI Automator

 1. Implement a test using the UI Automator UiSelector that creates and then

modifies the To-do item.

 2. Implement a test using the UI Automator BySelector that creates two To-do

items, marks one as done, filters out the active To-do item, and verifies it.

 3. Implement a test that opens a contextual menu in the To-do list toolbar and

clicks on the share button. modify the existing UiWatcher to wait for Gmail

application icon/text shown in the application chooser and click on it from

inside the UiWatcher.

 4. Implement a test that uses espresso and the UI Automator code and automates

the process described in step 3.

 Summary
Depending on its goal, an Android UI test may target different applications:

instrumented applications, third-party applications, or both. In the case of third-party or

mixed applications, the testing is performed using the UI Automator framework, which is

a powerful testing tool that allows wider test coverage compared to pure Espresso tests.

Combining Espresso and the UI Automator framework creates UI tests that are powerful

enough to cover most of the use cases we can imagine.

ChAPTer 8 esPresso And UI AUTomATor: The PerfeCT TAndem

191
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_9

CHAPTER 9

Dealing with Runtime
System Actions
and Permissions
Nowadays, most Android applications support multiple locales, and many request

different system permissions, for example permission to access the device camera,

location permissions, and permission to write to external storage.

With the evolution of the Android platform, the approach to application permissions

has changed in favor of user privacy. Starting from API level 23, application permissions

are asked during application runtime and upon user requests. Such permissions are

represented by a system popup or system dialog and are not the part of the application

being tested. Moreover, these permissions can be revoked by the users any time from

the application settings. Of course, the mentioned application states should be handled

properly before or during UI tests are run.

This chapter explains the different ways we can deal with system actions like

permission request dialogs and describes the possible solutions for changing the

Android emulator system language programmatically.

192

 Changing the Emulator System Language
Programmatically
Up to API level 27, Android provided a possibility to set the system locale by sending

the intent via an adb command or directly from the test code. This could be achieved

because CustomLocale.apk was preinstalled on emulators and was able to handle the

sent intent. An example of adb shell am command is the following:

adb shell am broadcast -a com.android.intent.action.SET_LOCALE --es \

 com.android.intent.extra.LOCALE "en_US" com.android.customlocale2

However, starting with API level 28, the CustomLocale.apk application was removed

from the emulator image, which required another solution. After a closer look at the

Android emulator release notes (https://developer.android.com/studio/releases/

emulator), the solution was clear. Starting with Android emulator version 27.2.9 (from

May 2018), you can load a QuickBoot snapshot without restarting the emulator. The

emulator release notes page explains how to do this manually with the help of the

emulator Extended Controls window inside the Settings section. See Figure 9-1.

Figure 9-1. Emulator extended controls

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

https://developer.android.com/studio/releases/emulator
https://developer.android.com/studio/releases/emulator

193

When the snapshot view appears, you put the device into the desired state and click

the TAKE SNAPSHOT button. The new snapshot with an automatically generated name

is taken and shown in the snapshot list. See Figure 9-2.

Note renaming the snapshot in the emulator extended Controls window will not
rename it globally, but just creates the alias. the actual snapshot name will remain
unchanged.

The same can be done by communicating with the Android emulator via the telnet

console command (more information about the emulator telnet command can be

found at https://developer.android.com/studio/run/emulator-console). In the

following code examples, you can see how to establish the telnet session with a running

emulator, list existing snapshots, take the snapshot, and load it during emulator runtime.

Figure 9-2. Taking emulator snapshots

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

https://developer.android.com/studio/run/emulator-console

194

Sample Script to Save and Load the Emulator Snapshot.

telnet localhost 5554

avd snapshot list

avd snapshot save snap_de

emulator -avd Pixel2_API_28 -snapshot snap_de

Since the main topic of this book is test automation, the following Python script

creates the telnet connection to the localhost port 5554 (which is the first port the

Android emulator takes when it is created) and loads the previously saved snapshot.

Python Script to Establish the Emulator Telnet Connection and Load the Emulator

Snapshot.

import telnetlib

HOST = "localhost"

PORT = "5554"

tn = telnetlib.Telnet(HOST, PORT)

tn.write(b"avd snapshot load name\n")

tn.write(b"exit\n")

Alternatively, you can do the same thing using the expect scripting utility (for

MacOS and UNIX users only).

Expect Utility Script to Establish the Emulator Telnet Connection and Load the

Emulator Snapshot.

#!/usr/bin/expect

set timeout 15

spawn telnet localhost 5554

expect "OK"

send "avd snapshot load snap_de\r"

expect "OK"

send "exit\r"

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

195

To install the expect utility on your computer, use these commands:

• Mac: brew install expect

• UNIX/Linux: yum install expect

In general, the current snapshot approach works not only for setting emulator

language but also gives us the ability to have different snapshots for many use cases,

which you can come up with by your own.

EXERCISE 21

Using the Emulator Snapshot Functionality

 1. launch an emulator and save a couple of emulator snapshots with the help of

emulator extended Controls window. load the snapshots manually.

 2. launch an emulator using the console commands. Connect the telnet session

to the emulator and save a couple of emulator snapshots. load the snapshots

from the console.

 3. Create a python script with emulator telnet commands and run it. observe the

result.

 4. install the expect utility on your computer, and then create and execute the

script with the expect telnet commands. observe the results.

 Handling Runtime Permissions
Another burning topic in Android test automation related to system popups are runtime

permissions. Appropriate permission should be requested by the Android application

when it requires resources or information outside of its sandbox. The application

declares permissions in the AndroidManifest.xml file and then requests that the user

approve each permission at runtime (on Android 6.0 and higher).

When the user triggers a piece of code that requires additional permissions, the

prompt shown by the system describes the permission group your app needs access to,

not the specific permission.

In order to showcase this functionality, our sample application requests permission

when we are adding an image to the TO-DO item. Try it out.

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

196

 Enabling Permissions Using the GrantPermissionRule
Now let’s take a look at the RuntimePermissionTest.kt class, which contains the

GrantPermissionRule sample. The GrantPermissionRule rule grants runtime

permissions on Android M (API 23) and above. This rule is used when a test requires

a runtime permission to do its work. When applied to a test class, this rule attempts to

grant all requested runtime permissions. The requested permissions will then be granted

on the device and will take immediate effect.

Clicking on the camera icon in the sample TO-DO application triggers the Camera

permission prompt to be shown to the user. The prompt belongs to the different

application package, called com.andriod.packageinstaller, which Espresso cannot

interact with. So, in order to reduce external dependencies and keep our Espresso tests

hermetic, GrantPermissionRule can be used to start the test with the already granted

permission.

chapter9.RuntimePermissionsTest.kt.

@RunWith(AndroidJUnit4::class)

class RuntimePermissionsTest {

 /**

 * Manifest.permission.CAMERA permission will be granted before the

test run.

 */

 @get:Rule

 var mRuntimePermissionRule = GrantPermissionRule

 .grant(Manifest.permission.CAMERA)

 /**

 * Provided activity will be launched before each test.

 */

 @get:Rule

 var activityTestRule = ActivityTestRule(TasksActivity::class.java)

 @Test

 fun takesCameraPicture() {

 val toDoTitle = TestData.getToDoTitle()

 val toDoDescription = TestData.getToDoDescription()

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

197

 // Adding new TO-DO.

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(R.id.add_task_description))

 .perform(typeText(toDoDescription), closeSoftKeyboard())

 // Clicking on camera button to trigger the permission dialog.

 onView(withId(R.id.makePhoto)).perform(click())

 onView(withId(R.id.picture)).perform(click())

 waitForElement(onView(withId(R.id.fab_edit_task_done))).

perform(click())

 // verifying new TO-DO with title is shown in the TO-DO list.

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

 }

}

This current approach works well, but it has its pros and cons. The positive aspects are:

• UI tests remain hermetic and do not require interactions with other

system services.

• Permission is granted for each test case inside the test class.

However, there are also some negative moments:

• It is not possible to test different runtime permission use cases like

getting permission after denial or trying to use the feature without

permission granted.

• There is no way to revoke a permission after it is granted. Attempting

to do so will crash the instrumentation process.

In general, using GrantPermissionRule is a nice way to grant runtime permissions

and avoid permission dialogs from showing up and blocking the application UI. From

the other side, as was stated, it limits us in terms of covering multiple runtime

permission requests use cases that are also part of the application that should be tested.

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

198

 Handling Runtime Permissions Using UI Automator
Another way to handle runtime permissions is to use the UI Automator test framework

functionality together with Espresso. Since it allows us to interact with any application,

we are able to perform UI actions on permission dialogs as well.

First, let’s consider the possible use cases. In total, there can be at least three use

cases where the runtime permission dialog is involved:

• Camera permissions granted the first time the permission dialog is

shown to the user.

• Camera permission denied by the user during the first occurrence,

but then the user realizes that she needs such functionality and

enables it when the permission dialog is presented a second time.

• Permission is denied two times. The second denial was made with

the Don’t Ask Again checkbox checked. The user tries to use the

Camera feature again, but now she must manually enable it from the

application permission settings.

And just to be clear, there is an application code-behind all four use cases, which in

the case of using GrantPermissionRule, are not covered by automated tests and require

manual testing.

Second, we may face an issue using only AndroidJUnitRunner for permission tests.

The thing is that each test requires a clean application state without granted permissions.

Therefore, the option with the Android Test Orchestrator described in Chapter 1 should

be used with testInstrumentationRunnerArguments clearPackageData: 'true'

parameter (see app/build.gradle file for more details). It ensures that each

test will be run within its own invocation, including the cleaned application permissions

state.

Third, we have to inspect all areas we will navigate to with the Monitor tool, making

the UI dump and collect identifiers from elements used in defined use cases.

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

199

Figure 9-3 shows the Grant Camera Permission dialog, used when a TO-DO item is

created with an attached image.

Figure 9-3. Dumping the TO-DO application UI with Camera Permission
dialog

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

200

Figure 9-4 demonstrates the inspection of the TO-DO application settings page in the

system’s settings application.

Figure 9-4. UI dump of the TO-DO application on the settings page

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

201

Figure 9-5 shows the inspection of the TO-DO application permissions settings page

inside the system’s settings application.

This is the list of UI elements we should collect and which tests will operate on

(referenced device Nexus 5X, operation system Android 8.1.0):

• Allow button— com.android.packageinstaller:id/permission_

allow_button

• Deny button —com.android.packageinstaller:id/permission_

deny_button

• Don’t Ask Again checkbox—com.android.packageinstaller:id/

do_not_ask_checkbox

Figure 9-5. UI dump of the TO-DO application in the settings app permissions
page

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

202

• Permissions list item—Fourth item in the recycler view com.android.

settings:id/list

• Camera permission list item—Zeroth element in the list view

android:id/list

And finally, our tests. Take a look at RuntimePermissionsUiAutomatorTest.kt. For

convenience, we declared some reusable instances:

private val instrumentation = InstrumentationRegistry.getInstrumentation()

private val uiDevice: UiDevice = UiDevice.getInstance(instrumentation)

private val todoAppPackageName = InstrumentationRegistry.

getTargetContext().packageName

private val testContext = InstrumentationRegistry.getContext()

The first use case is represented by the takesCameraPicture() test case, where the

user clicks just once on the permission dialog.

Test Method chapter9.RuntimePermissionsUiAutomatorTest.takesCameraPicture().

@Test

fun takesCameraPicture() {

 val toDoTitle = TestData.getToDoTitle()

 // Adding new TO-DO.

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 // Clicking on camera button to trigger the permission dialog.

 onView(withId(R.id.makePhoto)).perform(click())

 // UI Automator - click permission dialog ALLOW button.

 uiDevice.findObject(By.res("com.android.packageinstaller:id/permission_

allow_button")).click()

 onView(withId(R.id.picture)).perform(click())

 waitForElement(onView(withId(R.id.fab_edit_task_done))).perform(click())

 // verifying new TO-DO with title is shown in the TO-DO list.

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

}

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

203

The second use case is covered by the deniesAndGrantsPermission() test.

Test Method chapter9.RuntimePermissionsUiAutomatorTest.

deniesAndGrantsPermission().

@Test

fun deniesAndGrantsPermission() {

 val toDoTitle = TestData.getToDoTitle()

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(R.id.makePhoto)).perform(click())

 // UI Automator - click permission dialog DENY button.

 uiDevice.findObject(By.res("com.android.packageinstaller:id/permission_

deny_button")).click()

 onView(withId(R.id.makePhoto)).perform(click())

 onView(withId(R.id.snackbar_action)).perform(click())

 uiDevice.findObject(By.res("com.android.packageinstaller:id/permission_

allow_button")).click()

 onView(withId(R.id.picture)).perform(click())

 waitForElement(onView(withId(R.id.fab_edit_task_done))).perform(click())

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

}

In the third use case, it gets a bit more complicated since we have to interact with the

settings application. Here goes the test.

Test Method chapter9.RuntimePermissionsUiAutomatorTest.

deniesAndGrantsPermissionFromSettings().

@Test

fun deniesAndGrantsPermissionFromSettings() {

 val toDoTitle = TestData.getToDoTitle()

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.makePhoto)).perform(click())

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

204

 uiDevice

 .findObject(By.res("com.android.packageinstaller:id/permission_

deny_button"))

 .click()

 onView(withId(R.id.makePhoto)).perform(click())

 onView(withId(R.id.snackbar_action)).perform(click())

 // UI Automator - click on permission dialog checkbox and DENY button

 uiDevice

 .findObject(By.res("com.android.packageinstaller:id/do_not_ask_

checkbox"))

 .click()

 uiDevice

 .findObject(By.res("com.android.packageinstaller:id/permission_

deny_button"))

 .click()

 // Clicking camera button to trigger permission dialog.

 onView(withId(R.id.makePhoto)).perform(click())

 onView(withId(R.id.snackbar_text))

 .check(matches(allOf(isDisplayed(), withText("Camera

unavailable"))))

 sendApplicationSettingsIntent()

 enableCameraPermission()

 launchBackToDoApplication()

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(toDoTitle), closeSoftKeyboard())

 onView(withId(R.id.makePhoto)).perform(click())

 onView(withId(R.id.picture)).perform(click())

 waitForElement(onView(withId(R.id.fab_edit_task_done))).

perform(click())

 onView(withText(toDoTitle)).check(matches(isDisplayed()))

}

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

205

Where sendApplicationSettingsIntent() is responsible for creating and firing an

intent to show the TO-DO application settings page.

Sends Intent to Open the TO-DO Application Settings chapter9.RuntimePermissions

UiAutomatorTest.sendApplicationSettingsIntent().

private fun sendApplicationSettingsIntent() {

 // Create intent to open To-Do application settings.

 val intent = Intent()

 intent.action = Settings.ACTION_APPLICATION_DETAILS_SETTINGS

 val uri = Uri.fromParts("package", todoAppPackageName, null)

 intent.data = uri

 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK)

 testContext.startActivity(intent)

}

Then enableCameraPermission() contains the code to open the application’s

permission settings and click on the camera permission item (see Figures 9-4 and 9-5).

Enables Camera Permission in the TO-DO application settings chapter9.

RuntimePermissionsUiAutomatorTest.enableCameraPermission().

private fun enableCameraPermission() {

 // Wait for application Settings to appear

 uiDevice.wait(Until.hasObject(By.pkg("com.android.settings")), 5000)

 // Click on Permissions item.

 uiDevice.findObject(By.res("com.android.settings:id/list"))

 .children[3].clickAndWait(Until.newWindow(), 2000)

 // CLick on Camera item and wait for checked toggle state.

 uiDevice.findObject(By.res("android:id/list"))

 .children[0].click()

 uiDevice.findObject(By.res("android:id/list"))

 .children[0].wait(Until.checked(true), 1000)

}

Finally, launchBackToDoApplication() sends an intent to launch the sample

application.

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

206

Sends Intent to Open the TO-DO Application chapter9.RuntimePermissions

UiAutomatorTest.launchBackToDoApplication().

private fun launchBackToDoApplication() {

 // Create intent to open To-Do application.

 val intent = testContext.packageManager.getLaunchIntentForPackage(todoA

ppPackageName)

 InstrumentationRegistry.getContext().startActivity(intent)

}

After running tests from RuntimePermissionsUiAutomatorTest, we can see in

Figure 9-6 that the runtime looks good—36 seconds for three tests that interact with

third-party applications.

EXERCISE 22

Using Runtime Permissions

 1. Delete GrantPermissionRule from RuntimePermissionsTest.kt and

run a test. observe the results. revert the GrantPermissionRule deletion

and run the test again. observe the results.

 2. run all tests implemented in the RuntimePermissionsUiAutomatorTest.

kt class. remove any android test orchestrator dependencies from the

application build.gradle file and run the test again. observe the results.

revert to the original file.

 3. write a test that opens the to-Do application settings and enables camera

permission. then open the to-Do application and proceed with task creation.

Figure 9-6. RuntimePermissionsUiAutomatorTest.kt tests runtime

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

207

 Summary
This chapter showed how to change the Android emulator system language at runtime

and described different ways of handling runtime permissions in UI tests. It should be

clear that multi-language support is a must-have for modern Android applications. This

requires thorough testing and enabling the test environment to switch emulator system

languages easily is an essential part of this test infrastructure.

Having an easy and reliable way to set runtime permissions is a crucial and sensitive

topic for the end users. It impacts user satisfaction and should be thoroughly tested.

Applications should handle different permission flows properly and without mistakes. Of

course, it is up to you to select which testing approach works best for your specific case—

using the GrantPermissionRule or fully automating the permission granting with the UI

Automator framework. With the knowledge from this chapter, you can do that easily.

Chapter 9 Dealing with runtime SyStem aCtionS anD permiSSionS

209
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_10

CHAPTER 10

Android Test
Automation Tooling
This chapter contains information about the tools provided by the Android platform that

are used in test automation. We will discuss topics about setting up virtual or physical

devices for test automation, figure out how the Espresso Test Recorder can help us when

writing automated tests, and learn how to run automated tests in the Firebase Test Lab.

 Setting Up a Virtual or Physical Device for Test
Automation
A properly configured virtual or physical device is a must-have for reliable tests. Here is a

list of device properties that may affect test execution and produce flakiness in your tests:

• System animations

• Touch and hold delay

• Virtual keyboard appearance

Let’s start with system animations. Unfortunately, Espresso cannot handle system

animations, which may lead to flaky tests. This is one of Espresso’s major limitations. On

the other hand, animations should be tested manually and disabling them in automated

tests doesn’t harm us. The Android operation system has three system animation types:

• Window animation scale—Sets the window animation playback

speed so you can check its performance at different speeds. A lower

scale results in a faster speed.

210

• Transition animation scale—Sets the transition animation playback

speed so you can check its performance at different speeds. A lower

scale results in a faster speed.

• Animation duration scale—Sets the animation’s duration.

These animation properties are available from the Settings ➤ System ➤ Developer

option, inside the Drawing section, as shown in Figure 10-1.

And of course, we want all animations to be disabled automatically. This is

achievable in two ways. We can execute the following shell commands before the test

runs or when the device starts.

Figure 10-1. System animation properties in the device developer options

Chapter 10 android test automation tooling

211

Shell Commands to Set System Animation Properties.

adb shell settings put global animator_duration_scale 0.0

adb shell settings put global transition_animation_scale 0.0

adb shell settings put global window_animation_scale 0.0

The second option is to execute the same commands, but using a UiDevice instance

before the test runs.

Setting System Animation Properties in the @BeforeClass Method.

companion object {

 @BeforeClass

 @JvmStatic

 fun setDevicePreferencies() {

 val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 uiDevice.executeShellCommand("settings put global animator_

duration_scale 0.0")

 uiDevice.executeShellCommand("settings put global transition_

animation_scale 0.0")

 uiDevice.executeShellCommand("settings put global window_animation_

scale 0.0")

 }

}

In this example, we used the @BeforeClass annotation to execute it once for the

whole test class.

The second device property that can bring flakiness is the Touch and Hold Delay.

You can find it in the System ➤ Accessibility section, as shown in Figure 10-2.

Chapter 10 android test automation tooling

212

This property is responsible for setting the time used by the system to differentiate

between click and long click actions. If a click’s touch time exceeds the Touch and Hold

Delay limit, it’s interpreted as a long click. This is visible if you tap and hold the toolbar

icon to see its content description. On some real devices, when this delay value is short, a

single click may become a long click, which causes the automated UI test to fail. To avoid

this, we can modify the Touch and Hold Delay value. The first option for doing so is to

execute the following shell command (the delay value is in milliseconds):

adb shell settings put secure long_press_timeout 1500

The second option is run from inside the @BeforeClass method, as follows.

Setting Touch and Hold Delay in the @BeforeClass Method.

companion object {

 @BeforeClass

 @JvmStatic

Figure 10-2. The Touch and Hold Delay accessibility property

Chapter 10 android test automation tooling

213

 fun setDevicePreferencies() {

 val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 uiDevice.executeShellCommand("settings put secure long_press_

timeout 1500")

 }

}

By the way, the default Short value is set to 500 milliseconds, Medium is set to 1000

milliseconds, and Long is set to 1500 milliseconds.

Let’s now discuss the final device property that can cause flakiness in our tests—the

virtual keyboard appearance. At first look, the virtual keyboard seems not related at all

to test flakiness but there is one thing we have to keep in mind—Espresso for Android

operates only in our application under the test context and it is not allowed to interact

with any third-party applications.

Guess what? The virtual keyboard doesn’t belong to our application. So, there

may be cases when mobile device performance becomes slow and the ViewActions.

closeSoftKeyboard() method is not executed fast enough. At that point, if the tests need

to click on UI elements that are hidden behind the virtual keyboard (which is supposed

to be closed, but is still in the process of closing), they accidentally click on the keyboard

instead. The following exception is thrown:

java.lang.SecurityException: Injecting to another application requires

INJECT_EVENTS permission

To avoid this issue, we can manually disable the virtual keyboard appearance on the

virtual device. Unfortunately, there is no nice way to do this on real devices unless you

connect physical keyboards to them. To disable a virtual keyboard, navigate to Settings

➤ System ➤ Languages & Input ➤ Physical keyboard and disable the Show Virtual

Keyboard option. Or, again, this can be done via the shell:

adb shell settings put secure show_ime_with_hard_keyboard 0

You can also execute the same command from inside the test, as follows.

Chapter 10 android test automation tooling

214

Disabling a Virtual Keyboard in the @BeforeClass Method.

companion object {

 @BeforeClass

 @JvmStatic

 fun setDevicePreferencies() {

 val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 uiDevice.executeShellCommand("settings put secure show_ime_with_

hard_keyboard 0")

 }

}

After combining all the mentioned commands, here is what we get.

chapter10.devicesetup.DeviceSetupTest.kt.

companion object {

 @BeforeClass

 @JvmStatic

 fun setDevicePreferences() {

 val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 uiDevice.executeShellCommand("settings put global animator_

duration_scale 0.0")

 uiDevice.executeShellCommand("settings put global transition_

animation_scale 0.0")

 uiDevice.executeShellCommand("settings put global window_animation_

scale 0.0")

 uiDevice.executeShellCommand("settings put secure long_press_

timeout 1500")

 uiDevice.executeShellCommand("settings put secure show_ime_with_

hard_keyboard 0")

 }

}

It does not matter which approach you use to set test devices in a test friendly state;

they will definitely make your automated tests more reliable and less flaky.

Chapter 10 android test automation tooling

215

EXERCISE 23

Configuring a Device for Test Automation

 1. Create an android emulator and observe the default values for system

animations, Virtual Keyboard, and touch and hold delay in the accessibility

menu. run the test implemented in chapter10.DeviceSetupTest.kt. after

the test runs, observe the same properties’ values and compare the results.

 2. set the default emulator or device system animations, Virtual Keyboard, and

touch and hold delay states. execute all shell commands manually from the

terminal. observe the mentioned properties afterward.

 3. Create a shell script with all the shell commands from this paragraph that

executes them on the connected device.

 Using the Espresso Test Recorder Tool
The Espresso authors were probably inspired by the Selenium IDE test recorder and

decided to add this same capability into Espresso as well. The Espresso Test Recorder

tool allows inexperienced users to create Espresso UI tests with less effort. It became

available and stable in Android Studio version 2.3.

The Test Recorder tool is integrated into Android Studio IDE and available from the

Run ➤ Record Espresso Test menu, as shown in Figure 10-3.

Figure 10-3. Record Espresso Test option in the Android Studio Run menu

Chapter 10 android test automation tooling

216

Before starting, you should have a test device connected or a virtual device created

in advance. After recording is triggered, you are asked to select a target device. After the

application is built, it will be deployed to the target device and will run in debug mode.

See Figure 10-4.

While recording is ongoing, application interactions will be tracked and shown

inside recorder view. Figure 10-5 demonstrates adding a new TO-DO flow in the sample

application.

Figure 10-4. Target device selection dialog

Figure 10-5. Espresso Test Recorder window

Chapter 10 android test automation tooling

217

The Add Assertion button allows you to add an assertion of the following types (see

Figure 10-6):

• Text is—Equivalent to check(matches(withText()))

• Exists—Equivalent to check(matches(isDisplayed()))

• Does not exist—Equivalent to check(doesNotExist())

After you are done with the recording and you click the OK button, you will be asked

to provide the name of the test class and select the test class language (Java or Kotlin).

See Figure 10-7.

Figure 10-6. Adding assertions to the Espresso Test Recorder

Chapter 10 android test automation tooling

218

You can’t save a recorded test in a test class that already exists. If you try to do this,

the error in Figure 10-8 will be shown.

By default, recorded tests are stored inside the tasks package, which is automatically

created inside the application’s package. See Figure 10-9.

Figure 10-7. Saving the recorded test in a test class file

Figure 10-8. Error when trying to save a recorded test into an existing file

Figure 10-9. Path where recorded tests are saved

Chapter 10 android test automation tooling

219

The Espresso Test Recorder can be tweaked from inside Android Studio preferences.

You can observe that with the default depth values (Max UI depth = 3, ScrollView

detection = 5, and Assertion depth = 3), the test recorder and the application are quite

slow. If you lowering them to 1 or 2, they become much more responsive. See Figure 10- 10.

Next, you can see how clicking on the Add TO-DO floating action button is recorded

with the default depth values.

Click Add TO-DO Button Code Generated by Recorder with Default Depth Values.

val floatingActionButton = onView(

 allOf(withId(R.id.fab_add_task), withContentDescription("Add todo"),

 childAtPosition(

 allOf(withId(R.id.coordinatorLayout),

 childAtPosition(

 withClassName(`is`("android.widget.

LinearLayout")),

 1)),

 1),

 isDisplayed()))

floatingActionButton.perform(click())

Figure 10-10. Espresso Test Recorder preferences

Chapter 10 android test automation tooling

220

Here is an example of the same action, but with the Max UI depth set to 1.

Click Add TO-DO Button Code Generated by Recorder with Depth Values set to 1.

val floatingActionButton = onView(

 allOf(withId(R.id.fab_add_task), isDisplayed()))

floatingActionButton.perform(click())

You can observe and compare how the add new TO-DO test code looks when

recording it with the default depth values in the chapter10.testrecorder.

AddTodoEspressoTestRecorder.kt class and with the depth values set to 1 in the

chapter10.testrecorder.AddTodoEspressoTestRecorderLowerDepth.kt class.

After getting familiar with the Espresso Test Recorder, you’ll notice that:

• For all the EditText fields, it adds the closeSoftKeyboard()

ViewAction.

• When the target view is part of the ScrollView layout, the scrollTo()

ViewAction is added before another action has been done on it.

• If the application requires a permission, GrantPermissionRule is

added to the test class.

In general, the Espresso Test Recorder may be a good way to start with Espresso

itself, but it has some drawbacks as well:

• Application speed while recording is slow (even slower with higher

depth values, but lowering the depth value can lead to failed tests).

• Generated code can be massive and hard to read.

• It has limited assertion support.

• Automatically generated tests usually require additional

customization.

• There is no support for application delays caused by network

requests, so you should manually create and register an

IdlingResource.

• WebView layouts are not supported.

Chapter 10 android test automation tooling

221

EXERCISE 24

Using the Espresso Test Recorder

 1. record a test that adds and edits a new to-do with assertions. save the test

class in the Kotlin language. observe the generated code. run the recorded test.

 2. open android studio preferences ➤ espresso test recorder and lower the max ui

depth and assertion depth to 1. record the test described in step 1. observe the

generated code and compare it to the code from step 1. run the recorded test.

 3. record a test that triggers the Camera permission dialog. observe the

generated code. run the recorded test.

 Running Espresso Tests in the Firebase Test Lab
from Android Studio
It is widely known that the Android platform, by its nature, has significant device

fragmentation. To deal with this, you may have a wide range of mobile devices based on

the usage statistics. But this is quite costly, taking into account the fact that you have to

maintain it. Even if this is a must-have in manual testing, in test automation we tend to

use Android emulators, custom device labs, or third-party services. Third-party services

did provide such a possibility for mobile developers but they were not standardized

and were costly. Then Google decided to bring its own device-testing solution into

the Android ecosystem. It’s called the Firebase Test Lab. It allows developers to run

automated tests on real devices or emulators without the need to maintain them.

Let’s look at how to start using Firebase and what benefits it brings. First, starting

from https://firebase.google.com/, you should navigate to the Firebase console and

log in with your Google account (see Figure 10-11).

Figure 10-11. The Firebase toolbar

Chapter 10 android test automation tooling

https://firebase.google.com/

222

There you will notice that you will already have a couple of sample projects to play

with and the possibility to add your own by clicking on Add Project. See Figure 10-12.

After clicking Add Project, you will be asked to provide the project name and select

other parameters related to the service location. When the project name is provided,

the project will automatically receive its project ID, which is a unique identifier for your

Firebase project. See Figure 10-13.

Figure 10-12. The Firebase welcome desktop

Chapter 10 android test automation tooling

223

After you are done with it, you will land on the Project Overview screen. From there,

you can navigate to the Test Lab, as shown in Figure 10-14.

Figure 10-13. Firebase, Add a Project

Figure 10-14. The Firebase Test Lab initial state

Chapter 10 android test automation tooling

224

In the Deployment Target options, we should set the Firebase Test Lab Device Matrix

option as a target and then sign in with the same Google account into the Firebase, as

shown in Figure 10-16.

It is now all set and ready to be used by our automated tests. Since we want to run

them via Android Studio, we have to set up the proper test configuration from there. To

do this, we open the Run ➤ Edit Configurations… menu, select Android Instrumentation

Tests, and add a new one by clicking on the + button, as shown in Figure 10-15.

Figure 10-15. Adding the Firebase Test Lab instrumentation test
configuration

Chapter 10 android test automation tooling

225

Figure 10-16. Logging in to the Firebase Test Lab

Chapter 10 android test automation tooling

226

Figure 10-18 shows how the device matrix dialog looks.

After that you can select your project and configure the device matrix, as shown in

Figure 10-17.

Figure 10-17. Selecting the Firebase Test Lab project

Figure 10-18. Selecting the Firebase Test Lab device matrix

Chapter 10 android test automation tooling

227

It’s worth mentioning that, for our sample project, we used the Spark pricing plan,

which is free and has its limitations. You get 10 tests per day on virtual devices and five

tests per day on real devices.

When all is ready, we can select and run the test using the Firebase test

configuration, as shown in Figure 10-19.

Figure 10-19. Running tests in the Firebase Test Lab inside Android Studio

Chapter 10 android test automation tooling

228

After clicking on the specific test execution, you will land at the detail test run

description with the possibility to preview device logs, recorded video, and device

performance during the test run (see Figure 10-21).

When the test execution is finished, we can return to the Firebase Test Lab console

and observe the test results from the last run, as shown in Figure 10-20.

Figure 10-20. Test results overview in the Firebase Test Lab console

Figure 10-21. Detailed test case overview in the Firebase Test Lab console

Chapter 10 android test automation tooling

229

EXERCISE 25

Running Espresso and UI Automator Tests in the Firebase Test Lab

 1. Configure your Firebase account, open the Firebase console, and set up the

project.

 2. in the android studio ide, add a new android instrumentation test configuration

and connect to the project created in step 1.

 3. run the tests and observe the results locally and inside the Firebase test lab

console.

Chapter 10 android test automation tooling

231
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_11

CHAPTER 11

The Screen Object Design
Pattern in Android UI Tests
The Screen Object Design Pattern in mobile UI tests is equivalent to the well known

Page Object Design Pattern in web tests, which is the abstraction layer representing an

interface that allows its users to operate page elements or validate the page state. Since

Page Object takes its name from the web page, it is hard to name a mobile application

View or Screen, which is represented to the users as a page. This chapter demonstrates

how the Screen Object Design Pattern can be applied to Android UI tests using Kotlin.

You will learn to create a screen object that represents a single Android application

activity or fragment (i.e., a screen) and then use these objects or their methods in tests

that represent real user flows.

 Pros and Cons of the Screen Object Design Pattern
in Android Test Projects
When a screen object is defined, it contains a set of methods that are used in tests and

represent the screen functionality or specific screen state validation. From the test

execution side, this eliminates the need to write step-by-step test instructions in favor of

calling those methods.

 Pros
Let’s look at the benefits to this approach:

• Logical test steps separation

• More readable tests

• Easy-to-build user flows

232

• Easily maintainable tests

• Code reuse

 Logical Test Steps Separation

A test step refers to the functional user action that sometimes may consist of multiple

test interactions with the application being tested. For example, adding new TO-DO to

the sample TO-DO application consists of three actions: typing title, typing a description,

and clicking the Done button.

 More Readable Tests

Based on these logical steps, after all the screens are defined, we will end up having

a set of these steps that have easy-to-understand names. So, even inexperienced test

engineers can easily understand the test flow’s logic.

 Easy-to-Build User Flows

The user flow here is the set of chained test methods that can represent one screen or

navigate from one screen to another, thereby replicating the end user behavior. They are

super useful to understand the end user flow’s test coverage.

 Easily Maintainable Tests

Since all the screen elements declarations are located in one class, it reduces the amount

of maintenance effort when there is application refactoring. Imagine a situation in which

the login button is identified by its ID. This button is used in multiple tests and is clicked by

the Espresso onView(withId(R.id.loginButton)).perform(click()) code. Then the ID

of the button changes, which leads to updating all the code lines where it is used. Having,

let’s say, a LoginScreen class that contains a Login button declaration and implements the

login method makes the change done only in one place—the LoginScreen.

 Code Reuse

This point is very similar to the previous one, because of the fact that view elements are

encapsulated in the screen or their methods and usually are not accessible by other

screens. That means they can be reused in multiple test flows by calling screen methods

that contain screen elements.

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

233

 Cons
Here are some cons to using the Screen Object Design Pattern:

• There is no clear way to handle views used across different screens

• The same action may open different screens depending on the

navigation stack

• Too detailed screen methods lead to long tests

 Handling Views Across Different Screens

As mentioned, there is no clear way to handle views or view groups used across different

screens. Android mobile applications have shared and reusable components across

many application screens and this impacts and challenges this test design pattern. Here

we are talking about such views as menu drawers or tab bars. Figure 11-1 shows two of

the TO-DO application screenshots.

Figure 11-1. Menu drawer opened from the TO-DOs list screen (left side) and
from the Statistics screen (right side)

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

234

Both of them have the same menu drawer component. Now where should this menu

drawer component be declared? Should it belong to each screen duplicating the test

source code? We will see later how this case can be handled.

 Same Action Opening Different Screens

Recall that the same action may open different screens depending on the navigation

stack. In Android applications, depending on the activity navigation stack or on the

application logic, the same action on one screen may have a different end result based

on the navigation flow prior to the current application state. A good example of such

a case is the TO-DO application Back or Up button click navigation from the Settings

section. Let’s try two flows:

 1. Open the Settings section from the TO-DO list screen. From the

Settings screen, click the Up button.

 2. Open the Settings section from the Statistics screen. From the

Settings screen, click the Up button.

As you can see in Figures 11-2 and 11-3, the Up button is used in both cases, but the

end result is different. In the first case, we navigate back to the TO-DO list screen. In the

second case, we navigate back to the Statistics screen.

How do we deal with such a case? We will see later in the chapter one possible

solution.

Figure 11-2. Open Settings and click Up from TO-DO list screen

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

235

 Detailed Screen Methods Lead to Long Tests

Sometimes test engineers tend to be too detailed when creating screen classes and

their methods. They try to wrap almost each single action or verification into a method,

dramatically increasing the number of steps inside each test. We should try to always

find a golden middle—on the one side having the proper logical split without making

screen methods too small and detailed; and on the another side we should not put a lot

of screen actions or verifications into a small number of methods.

 Applying the Screen Object Design Pattern
It is a time to switch to the example. First, we will look at how a single TO-DO application

screen can be implemented, including its visual representation. Figure 11-4 breaks down

the New TO-DO screen into functional sections.

Figure 11-3. Open Settings and click Up from the Statistics screen

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

236

As Figure 11-4 shows, the New TO-DO screen contains six functional or actionable

elements. Each of these elements represents a single method in the AddEditToDoScreen.

For example, the typeToDoTitle method will look the following way:

class AddEditToDoScreen {

 private val addToDoTitleEditText = onView(withId(R.id.add_task_title))

 fun typeToDoTitle(title: String): AddEditToDoScreen {

 addToDoTitleEditText.perform(typeText(title), closeSoftKeyboard())

 return this

 }

}

Figure 11-4. The New TO-DO screen broken into functional screen object
elements

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

237

Performing an action on elements two and three will keep users on the same screen;

therefore, their methods will return the same AddEditToDoScreen instance.

In a similar way, methods for other elements are created. The rest of them redirect

the user to different application screens. This is the example of a method that clicks the

Done floating action button that returns a ToDoListScreen instance:

class AddEditToDoScreen {

 private val doneFabButton = onView(withId(R.id.fab_edit_task_done))

 fun clickDoneFabButton(): ToDoListScreen {

 doneFabButton.perform(click())

 return ToDoListScreen()

 }

}

Here, the clickDoneFabButton() method returns an instance of ToDoListScreen

according to the application flow. We should also include verification methods that

validate the screen in a specific state and system back action.

And one more thing—single screen actions may be too detailed for the test step and

logically may be grouped into a set of screen actions. A good example is when adding new

TO-DO flows that consist of three actions: typing a title, typing a description, and clicking

a floating action button. Let’s look at the final ToDoListScreen implementation state.

chapter11.screens.AddEditToDoScreen.kt.

class AddEditToDoScreen : BaseScreen() {

 private val addToDoDescriptionEditText = onView(withId(R.id.add_task_

description))

 private val addToDoTitleEditText = onView(withId(R.id.add_task_title))

 private val doneFabButton = onView(withId(R.id.fab_edit_task_done))

 private val emptyToDoSnackbar = onView(withText(R.string.empty_task_

message))

 private val upButton = onView(allOf(

 instanceOf(ImageButton::class.java),

 withParent(withId(R.id.toolbar))))

 fun typeToDoTitle(title: String): AddEditToDoScreen {

 addToDoTitleEditText.perform(typeText(title), closeSoftKeyboard())

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

238

 return this

 }

 fun typeToDoDescription(description: String): AddEditToDoScreen {

 addToDoDescriptionEditText.perform(typeText(description),

closeSoftKeyboard())

 return this

 }

 /**

 * Represents adding new to-do flow

 */

 fun addNewToDo(taskItem: TodoItem): ToDoListScreen {

 typeToDoTitle(taskItem.title)

 typeToDoDescription(taskItem.description)

 clickDoneFabButton()

 return ToDoListScreen()

 }

 fun addEmptyToDo(): AddEditToDoScreen {

 clickDoneFabButton()

 return this

 }

 fun clickDoneFabButton(): ToDoListScreen {

 doneFabButton.perform(click())

 return ToDoListScreen()

 }

 fun clickUpButton(): ToDoListScreen {

 hamburgerUpButton.perform(click())

 return ToDoListScreen()

 }

 fun clickBackButton(): ToDoListScreen {

 Espresso.pressBack()

 return ToDoListScreen()

 }

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

239

 fun verifySnackbarForEmptyToDo(): AddEditToDoScreen {

 emptyToDoSnackbar.check(matches(withEffectiveVisibility(Visibility.

VISIBLE)))

 return this

 }

}

In this code snippet, you can see that the AddEditToDoScreen class extends the

BaseScreen class, which can contain common screen elements like the Up button

ViewInteraction in our case.

In this same way, other applications screens can be created. When this is done, we

can start writing UI tests. To tell the truth, it now becomes really easy—test steps are

chained based on the logical functional flows.

chapter11.tests.AddToDoTest.kt.

/**

 * Validates TO-DOs creation flows using Screen Object Pattern.

 */

class AddToDoTest : BaseTest() {

 @Test

 fun addsNewTodo() {

 ToDoListScreen()

 .clickAddFabButton()

 .addNewToDo(todoItem)

 .verifyToDoIsDisplayed(todoItem)

 }

 @Test

 fun addsNewTodoWithoutDescription() {

 ToDoListScreen()

 .clickAddFabButton()

 .typeToDoTitle(todoItem.title)

 .clickDoneFabButton()

 .verifyToDoIsDisplayed(todoItem)

 }

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

240

 @Test

 fun triesToAddEmptyToDo() {

 ToDoListScreen()

 .clickAddFabButton()

 .addEmptyToDo()

 .verifySnackbarForEmptyToDo()

 }

 companion object {

 private var todoItem = TodoItem()

 @Before

 fun setUp() {

 todoItem = TodoItem.new

 }

 }

}

Returning to the advantages of the Screen Object Design Pattern, we can see that all

of them are covered:

• Logical test steps separation—Achieved by splitting actions per screen

and creating functional flows like the addNewToDo(...) method.

• More readable tests—With the current implementation, it is clear

from the test where we start and what exact actions are performed.

• Easy-to-build user flows—Having a set of screens returning their

public results makes writing test cases easy.

• Easily maintainable tests—Achieved by isolating element declaration

inside the screen class. So, there is no need to update them in

multiple places after the application is refactored.

• Code reuse—As you can see, the screen methods can be reused by

any test without the need to replicate the same or similar code.

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

241

We also covered one negative point:

• Too detailed screen methods lead to long tests—This issue should

be solved by creating functional flows as was shown by the

addNewToDo(...) method. Instead of writing many steps belonging

to the same screen, we group them into one method. Keep in mind

that functional flows ideally should be isolated per screen; otherwise,

it will be hard to understand test steps or analyze test failures.

Now we will analyze the case shown in Figure 11-1 where the menu drawer view was

used across different TO-DO application screens (ToDoListScreen, StatisticsScreen,

etc.). In this situation, we have two options—we can duplicate the code in each screen

(which we don’t want) or we can create the new class similar to the screen but that will

represent the common view. Since it doesn’t represent the screen itself, we will call it

MenuDrawerView. In the example application, it is implemented inside the BaseScreen class.

chapter11.screens.BaseScreen.MenuDrawerView inner class.

/**

 * Base screen that shares common functionality for main application

settings

 * like TO-DO list screen and Statistics screen.

 */

open class BaseScreen {

 private val hamburgerButton = onView(allOf(

 instanceOf(ImageButton::class.java),

 withParent(withId(R.id.toolbar))))

 fun openMenu(): MenuDrawerView {

 hamburgerButton.perform(click())

 return MenuDrawerView()

 }

 inner class MenuDrawerView {

 private val todoListMenuItem = onView(allOf(

 withId(R.id.design_menu_item_text),

 withText(R.string.list_title)))

 private val statisticsMenuItem = onView(allOf(

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

242

 withId(R.id.design_menu_item_text),

 withText(R.string.statistics_title)))

 private val settingsMenuItem = onView(allOf(

 withId(R.id.design_menu_item_text),

 withText(R.string.settings_title)))

 private val todoMenuLogo = onView(withId(R.id.headerTodoLogo))

 private val todoMenuText = onView(withId(R.id.headerTodoText))

 fun clickTodoListMenuItem(): ToDoListScreen {

 todoListMenuItem.perform(click())

 return ToDoListScreen()

 }

 fun clickStatisticsMenuItem(): StatisticsScreen {

 statisticsMenuItem.perform(click())

 return StatisticsScreen()

 }

 fun clickSettingsMenuItem(): SettingsScreen {

 settingsMenuItem.perform(click())

 return SettingsScreen()

 }

 fun verifyMenuLayout(): MenuDrawerView {

 todoMenuText.check(matches(allOf(

 isDisplayed(),

 withText(R.string.navigation_view_header_title))))

 statisticsMenuItem.check(matches(isDisplayed()))

 todoListMenuItem.check(matches(isDisplayed()))

 return this

 }

 }

}

Now we address the last problematic moment we mentioned—the same action

may open different screens depending on the navigation stack shown in Figures 11-2

and 11-3. Here we will use simplest solution and add multiple methods with the same

functionality. The only difference is in the type of returned screen.

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

243

chapter11.screens.SettingsScreen.kt.

class SettingsScreen {

 private val upButton = onView(allOf(

 instanceOf(AppCompatImageButton::class.java),

 withParent(withId(R.id.action_bar))))

 fun navigateUpToToDoListScreen(): ToDoListScreen {

 upButton.perform(click())

 return ToDoListScreen()

 }

 fun navigateUpToStatisticsScreen(): StatisticsScreen {

 upButton.perform(click())

 return StatisticsScreen()

 }

}

Here is the test case implementation.

chapter11.tests.SettingsTest.verifiesUpNavigation().

/**

 * Validates TO-DOs application Settings functionality.

 */

class SettingsTest : BaseTest() {

 /**

 * Validates application UP button navigation from Settings screen.

 */

 @Test

 fun verifiesUpNavigation() {

 ToDoListScreen()

 .openMenu()

 .clickSettingsMenuItem()

 .navigateUpToToDoListScreen()

 .verifyToDoListScreenInitialState()

 .openMenu()

 .clickStatisticsMenuItem()

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

244

 .dismissAlertDialog()

 .openMenu()

 .clickSettingsMenuItem()

 .navigateUpToStatisticsScreen()

 .verifyStatisticsScreenInitialState()

 }

}

EXERCISE 26

Writing Tests Using the Screen Object Design Pattern

 1. Create screen classes for all the application activities and fragments.

 2. Write at least one test per created screen.

Chapter 11 the SCreen ObjeCt DeSign pattern in anDrOiD Ui teStS

245
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_12

CHAPTER 12

Testing Robot Pattern
with Espresso and Kotlin
The next test automation pattern we discuss is the Testing Robot Pattern, which in fact is

not much different than the Screen Object Pattern. The main idea behind it is similar—

you separate the test implementation from the business logic. This pattern was created

by Jake Wharton and was first presented in May, 2016.

 Separating the What from the How
The concept of the Testing Robot Pattern is to separate what we are testing (the high-

level representation of real-user application interactions or flows) from how we perform

the testing (the low-level implementation of interactions performed by automated tests).

Figure 12-1 shows examples of the what and how.

246

The idea is to create a robot with as many “what” methods as there is screen

functionality represented by the robot. Let’s start with basic samples and move to the

final Espresso Testing Robots implementation. First, we look at the Builder Pattern

(where each class method returns the same class instance), which is very similar to the

Screen Object Pattern we discussed in Chapter 11. It’s the initial step on the way to the

Testing Robot Pattern. Here is the BuilderToDoListRobot.kt class, which represents the

Builder Pattern applied to the TO-DO list screen.

chapter12.robots.BuilderToDoListRobot.kt Represents the Builder Pattern.

/**

 * Builder Pattern applied to TO-DO list screen.

 */

class BuilderToDoListRobot {

 fun addToDo() {

 onView(withId(R.id.fab_add_task)).perform(click())

 }

Figure 12-1. Separating the what from the how when testing

Chapter 12 testing robot pattern with espresso and Kotlin

247

 fun showCompleted(): BuilderToDoListRobot {

 onView(withId(R.id.menu_filter)).perform(click())

 onView(allOf(withId(R.id.title), withText("Completed"))).

perform(click())

 return this

 }

 fun showActive(): BuilderToDoListRobot {

 onView(withId(R.id.menu_filter)).perform(click())

 onView(allOf(withId(R.id.title), withText("Active"))).

perform(click())

 return this

 }

 fun verifyToDoShown(withTitle: String): BuilderToDoListRobot {

 onView(withText(withTitle)).check(matches(isDisplayed()))

 return this

 }

 fun verifyToDoNotShown(withTitle: String): BuilderToDoListRobot {

 onView(withText(withTitle)).check(matches(not(isDisplayed())))

 return this

 }

 fun markCompleted(toDoTitle: String): BuilderToDoListRobot {

 onView(allOf(withId(R.id.todo_complete), hasSibling(withText(toDoTi

tle)))).perform(click())

 return this

 }

 fun checkDefaultLayout(): BuilderToDoListRobot {

 onView(withId(R.id.noTasksMain)).check(matches(isDisplayed()))

 onView(withId(R.id.noTasksIcon)).check(matches(isDisplayed()))

 return this

 }

}

Chapter 12 testing robot pattern with espresso and Kotlin

248

In a similar way, the BuilderAddEditToDoRobot.kt class is implemented. The test

case that uses the Builder Pattern is shown next.

chapter12.RobotsTest.robotChecksToDoStateChangeBuilder() Showcases the

Builder Pattern.

@Test

fun robotChecksToDoStateChangeBuilder() {

 BuilderToDoListRobot()

 .checkDefaultLayout()

 .addToDo()

 BuilderAddEditToDoRobot()

 .title(toDoTitle)

 .description(toDoDescription)

 .done()

 BuilderToDoListRobot()

 .verifyToDoShown(toDoTitle)

 .markCompleted(toDoTitle)

 .showActive()

 .verifyToDoNotShown(toDoTitle)

 .showCompleted()

 .verifyToDoShown(toDoTitle)

}

You can see that the BuilderToDoListRobot.kt test class functions represent the

“how” and the test case steps show us the “what”. Notice the clear screen separation—

each time we start the test or go to a different screen (i.e., an Activity or Fragment), we

create a new class instance. This approach works, but it is far from the final Robot Pattern

implementation.

The next step is to use the Kotlin language advantages to simplify the Builder Pattern

implementation. To understand how this is done, we must refer to the chapter12.

ToDoListRobot.kt file, where the ToDoListRobot class together with toDoList()

function are declared.

Chapter 12 testing robot pattern with espresso and Kotlin

249

Declared in chapter12.robots.ToDoListRobot.kt.

/**

 * Extension function that takes ToDoListRobot class function(s)

 * as a parameter, executes this function(s), and returns a

* ToDoListRobot instance.

 */

fun toDoList(func: ToDoListRobot.() -> Unit) = ToDoListRobot().apply { func() }

 1. Here, toDoList(func: ToDoListRobot.() -> Unit) is an

extension function that accepts the ToDoListRobot function func

as a parameter. Based on the Unit type, you can guess that the

func function returns nothing.

 2. The apply { func() } function in the ToDoListRobot().apply

{ func() } expression executes the provided functions inside

the apply() function block as if they are called from inside the

ToDoListRobot class. This is possible due to the nature of the

apply() function, which according to Kotlin documentation:

/**

 * Calls the specified function [block] with `this` value as its receiver

and returns `this` value.

 */

Where this in the current case is the ToDoListRobot class.

In this same way, we implement a similar function for the AddEditToDoRobot class:

fun addEditToDo(func: AddEditToDoRobot.() -> Unit) = AddEditToDoRobot().

apply { func() }

Now let’s see how two static functions transform the previously discussed test case.

Chapter 12 testing robot pattern with espresso and Kotlin

250

Test Case Where Robot Constructors Are Replaced by Extension Functions.

chapter12 .RobotsTest.robotChecksToDoStateChangeRobotsSeparation().

@Test

fun robotChecksToDoStateChangeRobotsSeparation() {

 toDoList {

 checkDefaultLayout()

 addToDo()

 }

 addEditToDo {

 title(toDoTitle)

 description(toDoDescription)

 done()

 }

 toDoList {

 verifyToDoShown(toDoTitle)

 markCompleted(toDoTitle)

 showActive()

 verifyToDoNotShown(toDoTitle)

 showCompleted()

 verifyToDoShown(toDoTitle)

 }

}

As you can see, we no longer need the constructors. Instead, we call the static

functions toDoList{ } and addEditTodo{ }, which act on behalf of the ToDoListRobot

and AddEditToDoRobot classes.

In the next step, the functions that return new robots are modified. In the test case

we work with, it is the addToDo() and done() functions. So, it becomes almost equivalent

to the toDoList{ } and addEditTodo{ } static functions:

infix fun addToDo(func: AddEditToDoRobot.() -> Unit): AddEditToDoRobot {

 onView(withId(R.id.fab_add_task)).perform(click())

 return AddEditToDoRobot().apply(func)

}

Chapter 12 testing robot pattern with espresso and Kotlin

251

The test case is changed into the following.

Test Case Where Robots Transition Functions Act Similarly to toDoList{ } and

addEditTodo{ }. chapter12 .RobotsTest.robotChecksToDoStateChange().

@Test

fun robotChecksToDoStateChange() {

 toDoList {

 checkDefaultLayout()

 }.addToDo {

 title(toDoTitle)

 description(toDoDescription)

 }.done {

 verifyToDoShown(toDoTitle)

 markCompleted(toDoTitle)

 showActive()

 verifyToDoNotShown(toDoTitle)

 showCompleted()

 verifyToDoShown(toDoTitle)

 }

}

The last thing we have to do to make the Testing Robot Pattern better is to use

Kotlin’s infix function notation for functions that return new robots. The infix notation

allows us to call a function without using the period and brackets:

infix fun addTask(func: AddEditToDoRobot.() -> Unit): AddEditToDoRobot {

 onView(withId(R.id.fab_add_task)).perform(click())

 return AddEditToDoRobot().apply(func)

}

Chapter 12 testing robot pattern with espresso and Kotlin

252

This is how the final test case looks.

Test Case Where Robots Transition Functions Act Similarly to toDoList{ } and

addEditTodo{ }. chapter12 .RobotsTest.robotChecksToDoStateChange().

@Test

fun robotChecksToDoStateChangeInfix() {

 toDoList {

 checkDefaultLayout()

 } addToDo {

 title(toDoTitle)

 description(toDoDescription)

 } done {

 verifyToDoShown(toDoTitle)

 markCompleted(toDoTitle)

 showActive()

 verifyToDoNotShown(toDoTitle)

 showCompleted()

 verifyToDoShown(toDoTitle)

 }

}

At this point, we have a clear separation of what we are testing from the how we do

the test. The test case in this chapter represents the business logic of what should be

tested. This keeps the test structure short, logical, and without technical implementation

details.

To improve it even more, we can use Kotlin’s inner classes to represent smaller view

groups, like filtering or menus belonging to the same robot. Take a look at the example

shown in Figure 12-2.

As shown in Figure 12-2, the TO-DO list screen is split into three parts:

 1. The main functional area is represented by the

ToDoListRobotWithInnerClasses class.

 2. A filter view group called ToDoListFilter is declared as an inner

class.

 3. A menu view group called ToDoListMenu is declared as an inner

class.

Chapter 12 testing robot pattern with espresso and Kotlin

253

For convenience, we added Espresso actions that trigger view groups to appear

inside inner classes constructors.

Inner Class Inside the TasksListRobotWithInnerClasses Class.

fun toDoListFilter(func: ToDoListFilter.() -> Unit) = ToDoListFilter().

apply { func() }

inner class ToDoListFilter {

 init {

 onView(withId(R.id.menu_filter)).perform(click())

 }

 fun showAll() {

 onView(allOf(withId(R.id.title), withText("All"))).perform(click())

 }

 fun showCompleted() {

 onView(allOf(withId(R.id.title), withText("Completed"))).perform(click())

 }

Figure 12-2. Adding inner classes inside a robot class

Chapter 12 testing robot pattern with espresso and Kotlin

254

 fun showActive() {

 onView(allOf(withId(R.id.title), withText("Active"))).

perform(click())

 }

}

Using this inner classes approach, we actually gain more benefits:

• Code readability

• Code duplication elimination

 Code Readability
The robot class implementation and the test code both become more readable and

easier to maintain due to the clear split into functional areas or view groups.

 Code Duplication Elimination
Inner class constructors can execute the steps needed to trigger functionality, such as

clicking the Filter toolbar icon to show all possible filtering options and then navigate

through the options.

EXERCISE 27

Writing Tests Using the Screen Testing Robots Pattern

 1. Create robots for the settings and statistics screen.

 2. think about the menu drawer and implement a solution that will best fit its

functionality. write a test that involves the menu drawer navigation.

Chapter 12 testing robot pattern with espresso and Kotlin

255
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_13

CHAPTER 13

Supervised Monkey
Tests with Espresso
and UI Automator
Application stability is a top application quality indicator. Poor stability leads to low

user ratings in Android PlayStore, which in turn lowers the application’s overall rating

and reduces the downloads. In order to keep applications stable, the Android platform

provides a tool called monkeyrunner (https://developer.android.com/studio/test/

monkeyrunner) to test the application from the stability side.

Unfortunately, monkeyrunner is not integrated into Espresso or the UI Automator

framework, which makes it almost useless for applications that require user login or for

specific application states that monkey tests should start from. Moreover, it is impossible

to collect valuable test results without implementing custom tests, which results in

parsing solutions.

Taking this information into account, it is clear that monkey-like tests must be

much smarter and easier to control. This chapter explains how to implement your own

supervised monkey tests.

 The Monkeyrunner Issue and Solution
Let’s take a closer look at what makes monkeyrunner so unusable:

• With monkeyrunner, tests are not part of the project codebase and are

not controlled by Espresso or the UI Automator test framework.

• It is not the part of androidx or android.support library.

https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner

256

• It is a standalone tool with its own issues and need for maintenance.

• It is hard to fetch and process test results.

• It was written in the Python programming language, which makes it

harder to integrate with existing UI tests.

This list of monkeyrunner cons forces us to implement our own solution. Luckily, we

don’t need to do much to have it in place. The idea is to write monkey tests in a native

test framework like Espresso or UI Automator, or both. This introduces the following

advantages:

• Monkey tests become part of the UI tests’ codebase, which means

they are fully owned and controlled by you.

• You can use UI tests in combination with monkey tests (for example,

you can use a UI test to log in and afterward start the monkey tests).

• It’s easy to fetch and process test results, using the existing reporting

infrastructure.

• Monkey tests can be supervised, which means if you leave the

application, you can identify it and launch the application.

• Different UI events or gestures can be implemented when needed.

 Monkey Tests for Instrumented and Third-Party
Applications
As mentioned, the monkeyrunner tool does not satisfy our requirements for monkey

tests; therefore, in this section, we will implement our own supervised monkey tests.

 Identifying Monkey Tests Operational Area
We have tools that we will use to write monkey tests. Now we have to think about the

concept of how and where these monkey tests should operate. Figure 13-1 defines the

areas where the monkey test should perform its actions.

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

257

According to the official Android documentation, the top and the bottom bars are

called the navigation bar (see Figure 13-2) and status bar (see Figure 13-3).

Figure 13-1. Device screen areas. Red represents areas that should be ignored and
blue shows the areas of interest.

Figure 13-2. Navigation bar

Figure 13-3. Status bar

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

258

Our first task is to identify the dimensions of the navigation and status bar and

calculate the coordinates of the area we want our monkey tests to operate on. The

ScreenDimensions class contains all the methods that perform this calculation. On top

of this, it also generates random coordinates for monkey actions in our areas of interest.

To fully understand how these calculations are performed, Figure 13-4 shows the device

screen coordinates system.

In short, the elements height calculation is determined from the top down, starting

from the (0, 0) coordinate. Now it should be clear that to calculate the zero coordinate

of the desired area, we need to know the height of the status bar. The same goes for the

bottom-right corner, but in this case, we also need the height of the navigation bar. All of

these calculations are done in the ScreenDimensions.kt class.

Figure 13-4. Android screen coordinates system

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

259

chapter13.ScreenDimensions.kt Class Keeps All the Functions That Calculate

Screen Dimensions and Generates Random Coordinates.

/**

 * Calculates screen dimensions, navigation, status and action bars

dimensions.

 * Generates random coordinates for monkey clicks.

 */

object ScreenDimensions {

 private val heightWithoutNavigationBar: Int

 private var width = 0

 private val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 private val appContext = InstrumentationRegistry.getInstrumentation().

targetContext

 private val navBarResourceId =

 appContext.resources.getIdentifier("navigation_bar_height",

"dimen", "android")

 private val statusBarResourceId =

 appContext.resources.getIdentifier("status_bar_height",

"dimen", "android")

 init {

 width = uiDevice.displayWidth

 heightWithoutNavigationBar = uiDevice.displayHeight -

ScreenDimensions.navigationBarHeight

 }

 /**

 * Calculate navigation bar height.

 */

 val navigationBarHeight : Int get() {

 return if (navBarResourceId > 0) {

 appContext.resources.getDimensionPixelSize(navBarResourceId)

 } else {

 0

 }

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

260

 }

 /**

 * Calculate status bar height.

 */

 val statusBarHeight: Int get() {

 return if (statusBarResourceId > 0) {

 appContext.resources.getDimensionPixelSize(statusBarResourceId)

 } else {

 0

 }

 }

 val randomY: Int

 get() = (statusBarHeight..heightWithoutNavigationBar).random()

 val randomX: Int

 get() = (0..width).random()

 private fun IntRange.random() =

 Random().nextInt((endInclusive + 1) - start) + start

}

As you can see, we are using the UiDevice instance to get the device screen’s width

and height and using the application context to get the navigation bar and status bar

height based on their resource identifiers.

 Defining the Monkey Test Actions
The next step is to define the actions that our monkey tests will perform:

• Click action—This action should indicate a click on random

coordinates (randomX, randomY) inside the area of interest marked

off in Figure 13-1. The UiDevice.click(int x, int y) action will be

used for this purpose.

• Drag (or swipe)—Drag and swipe actions should be executed based

on randomly defined start (startX, startY) and end (endX, endY)

coordinates. We use the UiDevice.drag(int startX, int startY,

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

261

int endX, int endY, int steps) action here. The steps parameter

is the number of steps for the swipe action. Each step execution is

throttled to five milliseconds per step, so for 100 steps, the swipe will

take around 0.5 seconds to complete.

• Click system back button—The UiDevice.pressBack() action will be

used to simulate a short press on the system’s back button.

• Launch application—Here we will have different approaches to

launching an application based on the application being tested. For

a debug application, we need access to the source code, so we will

use ActivityTestRule from the android.support library project and

the ActivityScenario.launch(Activity.class) function from the

androidx.test library. For third-party applications, we have another

way of launching applications using the package name, which will be

discussed later.

• Relaunch application in case monkey tests left it—Basically we

reuse the implementation from the previous point. This allows the

monkey tests to leave the application and will make the tests more

closely emulate real use case scenarios, when mobile users leave

an application after a certain amount of time and then launch the

application again.

Now we move to the implementation of all the mentioned actions, which can be

seen in the chapter13.Monkey.kt file.

chapter13.Monkey.kt.

/**

 * Class that keeps Monkey tests logic and main actions.

 */

object Monkey {

 private val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 private val appContext = InstrumentationRegistry.getInstrumentation().

targetContext

 private val toDoAppPackageName = appContext.packageName

 private const val numberOfSteps = 10

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

262

 // Random integer value used by modulus operator (%) to decide which

action should be performed.

 private const val dragNow = 7

 private const val pressNowBack = 13

 // Variable that will keep action description for logging/exception

building purpose.

 private var monkeyAction = ""

 /**

 * Drags from start to end coordinate.

 *

 * @param startX - start x coordinate

 * @param startY - start y coordinate

 * @param endX - end x coordinate

 * @param endY - end y coordinate

 */

 private fun drag(startX: Int, startY: Int, endX: Int, endY: Int) {

 uiDevice.drag(

 startX,

 startY,

 endX,

 endY,

 numberOfSteps)

 }

 /**

 * Runs monkey tests for provided package.

 *

 * @param actionsCount - number of events to execute during monkey tests.

 * @param packageName - package name that should be tested. If not

provided TO-DO application is tested.

 */

 fun run(actionsCount: Int, packageName: String = toDoAppPackageName) {

 loop@ for (i in 0..actionsCount) {

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

263

 if (PackageInfo.shouldRelaunchTheApp(monkeyAction, packageName)) {

 relaunchApp(packageName)

 }

 val randomX = ScreenDimensions.randomX

 val randomY = ScreenDimensions.randomY

 when {

 i % dragNow == 0 -> {

 val randomX2 = ScreenDimensions.randomX

 val randomY2 = ScreenDimensions.randomY

 monkeyAction = String.format(

 "drag from: %d - %d to: %d - %d", randomX,

 randomY, randomX2, randomY2

)

 drag(randomX, randomY, randomX2, randomY2)

 continue@loop

 }

 i % pressNowBack == 0 -> {

 monkeyAction = "press back system button"

 uiDevice.pressBack()

 continue@loop

 }

 else -> {

 monkeyAction = "click coordinate x:$randomX y:$randomY"

 uiDevice.click(randomX, randomY)

 continue@loop

 }

 }

 }

 }

 /**

 * Launches the application by its package name.

 * In case package name is equal to the TO-DO application

package ActivityScenario.launch() is used.

 *

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

264

 * @param packageName - name of the package to relaunch

 */

 private fun relaunchApp(packageName: String) {

 if (packageName == toDoAppPackageName) {

 ActivityScenario.launch(TasksActivity::class.java)

 } else {

 PackageInfo.launchPackage(packageName)

 }

 }

}

This implementation of the monkey actions looks clear and easy extendable. Even

this number of actions is enough to perform good monkey tests. But it is also easy to

extend it, which we can do by introducing one more action inside the when {} block.

The dragNow and pressNowBack constants are defined in a way to minimize cases

where both expressions actionCount % dragNow or actionCount % pressNowBack

return 0 (zero). You can of course change them to values suitable for your needs.

One of the important roles that logic plays in monkey tests is handled by this condition:

if (PackageInfo.shouldRelaunchTheApp(monkeyAction, packageName)) {

 relaunchApp(packageName)

}

In short, this condition checks if the tests left the tested application or a crash

occurred. If the monkey tests left an application, the relaunch mechanism is triggered.

If an error occurred, an exception is created and thrown.

 Implementing Package-Dependent Functionality
There are three monkey test functionalities that rely on the application package name

that we would like to implement:

• Launching or relaunching the test application in case we are testing a

third-party application.

• Checking if the test application process is in the error state.

• Creating a function that identifies the need to relaunch the test

application.

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

265

All of these cases are implemented in the chapter13.PackageInfo.kt file, as shown

here.

chapter13.PackageInfo.kt.

/**

 * Provides package helper methods.

 */

object PackageInfo {

 private val uiDevice = UiDevice.getInstance(InstrumentationRegistry.

getInstrumentation())

 private val testContext = InstrumentationRegistry.getInstrumentation().

context

 /**

 * Checks if there is a need to relaunch the application.

 *

 * @return true when application under test is not displayed to the user.

 */

 fun shouldRelaunchTheApp(monkeyAction: String, packageName: String):

Boolean {

 if (!isAppInErrorState(monkeyAction, packageName)

 && uiDevice.currentPackageName != packageName) {

 return true

 }

 return false

 }

 /**

 * Launches application based on its package name.

 * @param packageName - the name of the package to launch.

 */

 fun launchPackage(packageName: String) {

 val intent = testContext

 .packageManager

 .getLaunchIntentForPackage(packageName)!!

 testContext.startActivity(intent)

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

266

 uiDevice.wait(Until.hasObject(By

 .pkg(packageName)),

 5000)

 }

 /**

 * Checks if target application process is in error state and throws an

exception, otherwise returns true.

 *

 * @return false if application is in error state, otherwise throws

exception and fails the test.

 */

 private fun isAppInErrorState(monkeyAction: String, packageName:

String): Boolean {

 val manager = testContext.getSystemService(Context.ACTIVITY_

SERVICE) as ActivityManager

 var errorDescription = ""

 // Get processes in error state, return false when list is null.

 manager.processesInErrorState?.forEach {

 val isTargetPackage = it.processName.contains(packageName)

 when {

 isTargetPackage && it.condition == CRASHED ->

 errorDescription = "Application $packageName crashed

after $monkeyAction action"

 isTargetPackage && it.condition == NOT_RESPONDING ->

 errorDescription = "Application $packageName not

responding after $monkeyAction action"

 }

 /** Build and throw new Espresso PerformException with proper

description and stacktrace

 * At this point test is failed.

 */

 throw PerformException.Builder()

 .withActionDescription(errorDescription)

 .withCause(Throwable(it.stackTrace))

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

267

 .build()

 }

 return false

 }

}

Here, the shouldRelaunchTheApp() function validates two conditions. First, it

determines if the test application is in an error state (CRASH or ANR). If it’s not, then it

checks if the tested application has been shown to the user and if not relaunches it.

The launchPackage(packageName) function uses the test context to send the start

activity intent to the system and, with the help of the UiDevice wait mechanism, waits

for the application to start. The last function, called isAppInErrorState(monkeyAction,

packageName), ensures that the tested application process is currently not in the

error state. When an error state is identified, the Espresso PerformException function

is created with additional information about the last monkey action performed and the

exception stacktrace. This way we are using the Espresso error reporting mechanism and

the fail monkey test.

Next are the actual monkey tests for the instrumented and third-party applications.

The com.google.android.dialer package (Android Phone application) is used for the

third-party example.

chapter13.MonkeyTest.kt.

/**

 * Test class that demonstrates supervised monkey tests.

 */

@RunWith(AndroidJUnit4::class)

class MonkeyTest {

 @get:Rule

 var grantPermissionRule: GrantPermissionRule = GrantPermissionRule.grant(

 Manifest.permission.CAMERA,

 Manifest.permission.WRITE_EXTERNAL_STORAGE)

 @get:Rule

 var screenshotWatcher = ScreenshotWatcher()

 /**

 * Monkey tests will be executed against TO-DO application.

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

268

 */

 @Test

 fun testsInstrumentedApp() {

 ActivityScenario.launch(TasksActivity::class.java)

 Monkey.run(200)

 }

 /**

 * Monkey tests will be executed against provided application package name.

 * This is the example of how to test 3rd party application.

 */

 @Test

 fun testsThirdPartyApp() {

 val packageName = "com.google.android.dialer"

 PackageInfo.launchPackage(packageName)

 Monkey.run(200, packageName)

 }

}

While running these tests, we can see that the monkey actions are a bit slower than

the monkeyrunner tests because of the need to check the application state during each

test step. But we can neglect this issue, keeping in mind all the pros of having them

implemented using Android native testing frameworks.

EXERCISE 28

Running Monkey Tests

 1. Check out the master branch of the to-do application project and migrate it

to androidX. after migration, execute Build ➤ Clean project. run some tests.

if there are failures, analyze and fix them by updating the proguard rules or

updating dependences in the build.gradle file.

 2. implement a test class with a test that launches application activity using

ActivityScenario.launch(Activity.class) in the @Before method

and then runs the test.

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

269

 Summary
Unfortunately, on the Android platform, monkey tests are not treated very important.

The outdated monkeyrunner Python tool is supplied for this need instead of providing

better support via native Android platform testing frameworks like UI Automator or

Espresso. But even so, without too much effort, it is possible to run meaningful monkey

tests that include easy ways to start and prepare the proper application under a test state,

run supervised monkey tests, and report test results using the native testing frameworks

functionality.

Chapter 13 SuperviSed Monkey teStS with eSpreSSo and ui autoMator

271
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_14

CHAPTER 14

AndroidX Test Library
A May 2018 Google I/O event announced the AndroidX open source project, which is

used to develop, test, package, version, and release libraries within Android Jetpack.

AndroidX replaces the Android Support Library. One of its major improvements is the

fact that AndroidX packages are separately maintained and updated, so you can update

AndroidX Libraries in your project independently.

Since Android Test Libraries are part of the Android Support Library, AndroidX also

contains the AndroidX Test Library. Its beta version was announced at the Google I/O

event in May 2018. During the Android DevSummit 2018 event, Google announced its

stable 1.0 version. The AndroidX Test Library eliminates the need to maintain many

different testing tools, with styles and APIs that are used on different test levels.

For your convenience, the second branch is called androidx-espresso-revealed

with a TO-DO sample application project that was migrated to AndroidX. In order to

use it, just switch the branch using the git checkout androidx-espresso-revealed

command. You may need to clean the project using the Android Studio Build ➤ Clean

option or even use File ➤ Invalidate Cashes / Restart… to avoid build issues.

 AndroidX Test Compared to the Testing
Support Library
The test pyramid in Figure 14-1 shows different test levels that were isolated from each

other by the technology and the tools used to test them.

272

The problem was that tests from different levels were not portable; they were tied

to the testing tools and the environment they were written on. With the AndroidX Test

Library, this problem is resolved. Now you can use a single set of test libraries to write tests

related to different test levels—unit, integration, and user interface (or end-to-end) tests.

As we are talking about UI end-to-end tests in this book, we will focus on the new

features in the AndroidX Test Library compared to the Android Testing Support Library

from the UI test perspective:

• ApplicationProvider— Provides the ability to retrieve the current

application context in tests.

• ActivityScenario and FragmentScenario— ActivityScenario

provides APIs to start and drive an activity’s lifecycle state for testing.

It works with arbitrary activities and works consistently across

different versions of the Android framework. FragmentScenario

provides an API to start and drive a fragment’s lifecycle state for

testing. It works with arbitrary fragments and works consistently

across different versions of the Android framework.

• The new Truth Assertion Library—Truth is a fluent assertions library

that can be used as an alternative to JUnit- or Hamcrest-based

assertions when constructing the validation step for your tests.

• Migrated all other libraries and dependencies to androidx.test—

All the dependencies from the android.test.support library were

migrated to androidx.test.

UI Tests

Integration Tests

Unit Tests

Figure 14-1. Testing pyramid

Chapter 14 androidX test Library

273

 Configuring Projects for AndroidX Test
In order to start using AndroidX Test in a newly created project, you have to follow nearly

the same steps as with the android.support library:

 1. To ensure you will have most recent AndroidX Test Libraries, add

Google’s Maven repository inside the build.gradle file as the

following:

allprojects {

 repositories {

 jcenter()

 google()

 }

}

 2. Add the AndroidX Test dependencies you need in the UI tests:

// Espresso UI Testing

androidTestImplementation "androidx.test.espresso:espresso-

core:$rootProject.espressoVersion"

androidTestImplementation "androidx.test.espresso:espresso-

contrib:$rootProject.espressoVersion"

androidTestImplementation "androidx.test.espresso:espresso-

intents:$rootProject.espressoVersion"

androidTestImplementation "androidx.test.espresso.idling:idling-

concurrent:$rootProject.espressoVersion"

androidTestImplementation "androidx.test.espresso:espresso-idling-

resource:$rootProject.espressoVersion"

androidTestImplementation "androidx.test.espresso:espresso-

web:$rootProject.espressoVersionAndroidX"

androidTestImplementation "androidx.test.espresso:espresso-

accessibility:$rootProject.espressoVersion"

 3. Add the AndroidX Test instrumentation runner:

testInstrumentationRunner 'androidx.test.runner.AndroidJUnitRunner'

Chapter 14 androidX test Library

274

 4. To use the Android Test Orchestrator, add this line:

testOptions {

 execution 'ANDROIDX_TEST_ORCHESTRATOR'

}

This is enough to start writing UI tests, as we do in the sample TO-DO application.

 Migrating to AndroidX
AndroidX migration is integrated into Android Studio IDE, so it is quite easy to migrate

both main and test applications. To start the migration process, choose Refactor ➤

Migrate to AndroidX… from Android Studio menu. You can also right-click on the project

inside the project view and select these menu options. See Figure 14-2.

Before the migration is initiated, you will be asked to back up your project just in

case you have compile issues after the migration. You will be also warned about fixing

migration errors manually depending on your project dependencies.

Figure 14-2. The Migrate to AndroidX option in Android Studio

Chapter 14 androidX test Library

275

In a couple of minutes (depending on the project’s complexity), the whole

project will be migrated to the AndroidX Library. It’s really simple and easy. After it’s

automatically triggered, the gradle sync task all seems to be good, as it shows BUILD

SUCCESSFUL. But (there is always a but), during the first test run, the following issue

occurred just after the test started.

Proguard Obfuscation Issue When Migrating to AndroidX.

Started running tests

java.lang.NoClassDefFoundError: Failed resolution of: Landroidx/test/

espresso/IdlingRegistry;

...

Caused by: java.lang.ClassNotFoundException: Didn't find class "androidx.

test.espresso.IdlingRegistry" on path: DexPathList[[zip file "/system/

framework/android.test.runner.jar", zip file "/system/framework/android.test.

mock.jar", zip file "/data/app/com.example.android.architecture.blueprints.

todoapp.mock.test-U-I7D8dt-qcnzY2buNTPzw==/base.apk", zip file "/data/app/com.

example.android.architecture.blueprints.todoapp.mock- JWNE8BTGptjn2ZWTifC78Q==/

base.apk"],nativeLibraryDirectories=[/data/app/com.example.android.

architecture.blueprints.todoapp.mock.test-U-I7D8dt- qcnzY2buNTPzw==/lib/

arm64, /data/app/com.example.android.architecture.blueprints.todoapp.mock-

JWNE8BTGptjn2ZWTifC78Q==/lib/arm64, /system/lib64, /vendor/lib64]]

...

Tests ran to completion.

It turns out that AndroidX migration doesn’t care, for good or bad, about project

proguard files, meaning that if there were some defined proguard rules for the android.

support libraries, they are not touched. The following sample code contains an example

of the not-migrated android.support library classes mentioned in the proguard-rules.

pro TO-DO application.

Migrate to AndroidX… Doesn’t Migrate Proguard Files.

-keep class android.support.v4.widget.DrawerLayout { *; }

-keep class android.support.test.espresso.IdlingResource { *; }

-keep class android.support.test.espresso.IdlingRegistry { *; }

As mentioned, manual migration error fixes would be necessary.

Chapter 14 androidX test Library

276

 ActivityScenario in UI Tests
ActivityScenario provides APIs to start and drive the activity’s lifecycle stage (for

example, Stage.CREATED, Stage.RESUMED, Stage.DESTROYED, etc.) for testing. These

APIs are more suitable to integration tests when each activity state can be tested quickly

and easily. What is important for UI tests is the fact that they can be used instead of

ActivityTestRule to launch the application under the test activity before each test run.

chapter14.ActivityScenarioTest.kt.

/**

 * Sample of ActivityScenario.launch(Activity.class) method usage.

 */

@RunWith(AndroidJUnit4::class)

class ActivityScenarioTest {

 @Before

 fun launchTasksActivity() {

 ActivityScenario.launch(TasksActivity::class.java)

 }

 @Test

 fun activityScenarioLaunchSample() {

 openContextualActionModeOverflowMenu()

 onView(allOf(withId(R.id.title), withText(R.string.refresh))).

perform(click())

 }

}

As you can see, it doesn’t differ much from a usage perspective. But you will not have

an instance of ActivityTestRule and, as a result, cannot access the launched activity.

 Using Truth Assertion Library in UI Tests
Although it was developed mostly for unit and integration tests, the Truth Assertion

Library can provide benefits to UI tests as well. We used JUnit assertions in Chapter 8 to

assert element presence on the screen in the UI automator tests. Let’s take a look at the

difference between basic JUnit and Truth assertions.

Chapter 14 androidX test Library

277

To tell the truth, the Truth syntax is more readable, easier to write, and is similar to

Hamcrest library methods, which we used while writing Espresso tests. Now moving

to the test failure reporting part. It is important to have a meaningful and descriptive

test failure stacktrace, so the failure analysis doesn’t require much time and effort. The

TruthTest.kt class contains two tests that fail to demonstrate the failure reporting by

both JUnit and Truth and compare them afterward.

chapter14.TruthTest.kt. Both Tests Fail to Demonstrate the Stacktrace Difference

Between JUnit and Truth Assertions.

@RunWith(AndroidJUnit4::class)

class TruthTest {

 private val uiDevice: UiDevice = UiDevice.getInstance(Instrumentation

Registry.getInstrumentation())

 @Before

 fun launchTasksActivity() {

 ActivityScenario.launch(TasksActivity::class.java)

 }

 /**

 * Specifically fails the test using JUnit assertion.

 */

 @Test

 fun generatesJunitAssertionError() {

 val selector = uiDevice.findObject(UiSelector().resourceId(

Table 14-1. Basic JUnit and Truth Assertions Comparison

JUnit Truth

assertEquals(b, a)

assertTrue(c)

assertTrue(d.contains(a))

assertThat(a).isEqualTo(b)

assertThat(c).isTrue()

assertThat(d).contains(a)

assertTrue(d.contains(a) && d.contains(b))

assertTrue(d.contains(a) || d.contains(b)

|| d.contains(c))

assertThat(d).

containsAllOf(a, b)

assertThat(d).

containsAnyOf(a, b, c)

Chapter 14 androidX test Library

278

 "com.example.android.architecture.blueprints.todoapp.

mock:id/fab_add_task"))

 // JUnit assertion.

 assertFalse(

 "Element with selector $selector is present on the screen

when it should not",

 selector.exists())

 }

 /**

 * Specifically fails the test using Truth assertion.

 */

 @Test

 fun generatesTruthAssertionError() {

 val selector = uiDevice.findObject(UiSelector().resourceId(

 "com.example.android.architecture.blueprints.todoapp.

mock:id/fab_add_task"))

 // Truth assertion.

 assertThat(selector.exists()).isFalse()

 }

}

Here is a sample error stacktrace from an old JUnit assertTrue(MESSAGE, CONDITION)

method and one generated by the TruthTest.generatesJunitAssertionError() method

implemented in the chapter’s TO-DO sample.

JUnit Error Stacktrace Generated by Failure in the generatesJunitAssertionError() Test.

java.lang.AssertionError: Element with selector androidx.test.uiautomator.

UiObject@ce91768 is present on the screen when it should not

at org.junit.Assert.fail(Assert.java:88)

at org.junit.Assert.assertTrue(Assert.java:41)

at org.junit.Assert.assertFalse(Assert.java:64)

at com.example.android.architecture.blueprints.todoapp.test.chapter14.

TruthTest.generatesJunitAssertionError(TruthTest.kt:33)

at java.lang.reflect.Method.invoke(Native Method)

Chapter 14 androidX test Library

279

at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(Framework

Method.java:50)

at org.junit.internal.runners.model.ReflectiveCallable.

run(ReflectiveCallable.java:12)

at org.junit.runners.model.FrameworkMethod.invokeExplosively(Framework

Method.java:47)

at org.junit.internal.runners.statements.InvokeMethod.

evaluate(InvokeMethod.java:17)

at androidx.test.internal.runner.junit4.statement.RunBefores.

evaluate(RunBefores.java:80)

at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:325)

at org.junit.runners.BlockJUnit4ClassRunner.

runChild(BlockJUnit4ClassRunner.java:78)

at org.junit.runners.BlockJUnit4ClassRunner.

runChild(BlockJUnit4ClassRunner.java:57)

at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)

at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)

at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)

at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)

at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)

at org.junit.runners.ParentRunner.run(ParentRunner.java:363)

at androidx.test.ext.junit.runners.AndroidJUnit4.run(AndroidJUnit4.java:104)

at org.junit.runners.Suite.runChild(Suite.java:128)

at org.junit.runners.Suite.runChild(Suite.java:27)

at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)

at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)

at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)

at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)

at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)

at org.junit.runners.ParentRunner.run(ParentRunner.java:363)

at org.junit.runner.JUnitCore.run(JUnitCore.java:137)

at org.junit.runner.JUnitCore.run(JUnitCore.java:115)

at androidx.test.internal.runner.TestExecutor.execute(TestExecutor.java:56)

at androidx.test.runner.AndroidJUnitRunner.onStart(AndroidJUnitRunner.java:388)

at android.app.Instrumentation$InstrumentationThread.run(Instrumentation.

java:2145)

Chapter 14 androidX test Library

280

It is worth mentioning that the JUnit assertTrue() method accepts the error

description message that’s present in the first stacktrace line.

By contrast, here is the Truth assertThat(CONDITION).isFalse() sample error

stacktrace.

Truth Error Stacktrace Generated by Failure in the generatesTruthAssertionError() Test.

expected to be false

at com.example.android.architecture.blueprints.todoapp.test.chapter14.

TruthTest.generatesTruthAssertionError(TruthTest.kt:41)

EXERCISE 29

Migrating to AndroidX

 1. Check out the master branch of the to-do application project and migrate it

to androidX. after the migration is complete, choose build ➤ Clean project.

run some tests. if there are failures, analyze and fix them by updating the

proguard rules or updating dependences in the build.gradle file.

 2. implement a test class with a test that launches application activity using

ActivityScenario.launch(Activity.class) in the @Before method

and then runs the test.

 3. implement a test using an Ui automator testing framework that will use the

JUnit assertion Library to validate the test results. Make the test fail and

observe the stacktrace.

 4. implement a test using an Ui automator testing framework that will use the

Truth assertion Library to validate the test results. Make the test fail and

observe the stacktrace.

 Summary
In general, AndroidX Test is a nice step forward. It brings alignment among different test

types in terms of testing tools and dependencies used. The main weakness so far is that

it targets unit and integration tests with only tiny improvements on UI tests. But more

will certainly come for UI tests in time and hopefully with higher frequency than with the

testing support library.

Chapter 14 androidX test Library

281
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2_15

CHAPTER 15

Improving Productivity
and Testing Unusual
Components
This chapter contains code samples that were not covered in other chapters and

Espresso testing tips that may increase your daily test writing productivity.

 Creating Parameterized Tests
Sometimes we may have a need to write a single test that is applicable to many similar

cases. For example, we might need a test that validates how the same EditText

field behaves with different String values provided as input. In this case, the JUnit

Parameterized custom runner can be used. It allows us to have one test inside a

parameterized class (https://github.com/junit-team/junit4/wiki/parameterized-

tests). The following example demonstrates a parameterized test class with a single

parameter.

chapter15.parameterizedtest.ParameterizedTestSingleParameter.kt.

/**

 * Parameterized test with single parameter.

 */

@RunWith(value = Parameterized::class)

class ParameterizedTestSingleParameter(private val title: String) :

BaseTest() {

https://github.com/junit-team/junit4/wiki/parameterized-tests
https://github.com/junit-team/junit4/wiki/parameterized-tests

282

 @Test

 fun usesSingleParameters() {

 // Add new TO-DO.

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(title), closeSoftKeyboard())

 onView(withId(R.id.fab_edit_task_done)).perform(click())

 // Verify new TO-DO with title is shown in the TO-DO list.

 onView(withText(title)).check(matches(isDisplayed()))

 }

 companion object {

 @JvmStatic

 @Parameterized.Parameters

 fun data() = listOf(

 TodoItem().title,

 TodoItem().title,

 TodoItem().title)

 }

}

During the test run, each instance of the ParameterizedTestSingleParameter class

will be constructed using the provided title argument. So, in the end, we will have as

many test runs as the number of parameters provided. In this case, it is three.

A parameterized test class with multiple test parameters can be created in a similar

way, as follows.

chapter15.parameterizedtest.ParameterizedTestMultipleParameters.kt.

/**

 * Parameterized test with multiple parameters.

 */

@RunWith(value = Parameterized::class)

class ParameterizedTestMultipleParameters(

 private val title: String,

 private val description: String) : BaseTest() {

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

283

 @Test

 fun usesMultipleParameters() {

 // Add new TO-DO.

 onView(withId(R.id.fab_add_task)).perform(click())

 onView(withId(R.id.add_task_title))

 .perform(typeText(title), closeSoftKeyboard())

 onView(withId(R.id.add_task_description))

 .perform(typeText(description), closeSoftKeyboard())

 onView(withId(R.id.fab_edit_task_done)).perform(click())

 // Verify new TO-DO with title is shown in the TO-DO list.

 onView(withText(title)).check(matches(isDisplayed()))

 }

 companion object {

 @JvmStatic

 @Parameterized.Parameters

 fun data() = arrayOf(

 arrayOf("item 1", "description 1"),

 arrayOf("item 2", "description 2"),

 arrayOf("item 3", "description 3"))

 }

}

 Aggregating Tests into Test Suites
In order to run a set of tests that may belong or may test for a particular application

functionality, they are best organized into test suites. The JUnit Suite Runner can be

the right choice here. It allows you to manually build a suite containing tests from many

test classes. Here is how it looks.

chapter15.testsuite.TestSuiteSample.kt

/**

 * Organizing test classes into a test suite.

 */

@RunWith(Suite::class)

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

284

@Suite.SuiteClasses(

 AddToDoTest::class,

 EditToDoTest::class,

 FilterToDoTest::class)

class TestSuiteSample

This way, you can organize tests into a logical structure depending on the tested

functionality or on the test types, such as Smoke, Regression, etc.

 Using AndroidStudio Live Templates in UI Tests
The code completion feature in many modern integrated development environments

(IDEs) increased our code writing productivity quite a lot. But thanks to AndroidStudio,

we have an even more powerful tool that can help us code even faster—live templates.

Live templates are predefined code snippets that can be inserted into code by typing

their abbreviations. They can be added to AndroidStudio via Preferences ➤ Editor ➤

Live Templates. There are a set of predefined Live Templates groups and you can add

your own group or your own live template. To do this, click the + button and select the

proper option. After that, you provide an abbreviation name, template text (the code

snippet that will be later inserted instead of the abbreviation), an optional description,

and the proper context where your template will be available. In our case, the Kotlin and

Java contexts were selected, as shown in Figure 15-1.

Figure 15-1. Adding a live template

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

285

The created templates can be used in specified contexts, by just typing the template

abbreviation and clicking the Tab button, as shown in Figure 15-2.

It is also easy to export predefined live templates when you switch your computer or

want to share them. To do this, just open the File ➤ Export Settings … menu and select

Live Templates, as shown in Figure 15-3.

For your convenience, a small list of Espresso live templates was created and

exported as a .jar file into the TO-DO application project in the following path:

todoapp/book_assets/livetemplates.jar.

Figure 15-2. Using a live template by typing the abbreviation and clicking Tab

Figure 15-3. Exporting live templates

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

286

 Espresso Drawable Matchers
Another custom matcher type that we must know about are the Drawable matchers. This

matcher type can be used to compare icons and images. These types of validation in UI

tests are not widely discussed and, in general, Android snapshot tests are not popular

and can be done only by using third-party libraries. To cover this area, we introduce

additional drawables validation as part of the UI tests.

So what do we compare the application drawables to? We must remember that a

test is built as a separate application and has its own resources, context, etc. So, the

solution is simple—we just copy the application’s drawables that will be used in tests

into a test application resource and use them in UI tests. Here is the Drawable matchers

implementation that covers the TextView and ImageView drawables.

chapter15.drawablematchers.DrawableMatchers.kt.

/**

 * Contains TextView and ImageView Drawable matchers.

 */

class DrawableMatchers {

 fun withTextViewDrawable(drawableToMatch: Drawable): Matcher<View> {

 return object : BoundedMatcher<View, TextView>(TextView::class.

java) {

 override fun describeTo(description: Description) {

 description.appendText("Drawable in TextView

$drawableToMatch")

 }

 override fun matchesSafely(editTextField: TextView): Boolean {

 val drawables = editTextField.compoundDrawables

 val drawable = drawables[2]

 return isSameBitmap(drawableToMatch, drawable)

 }

 }

 }

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

287

 fun withImageViewDrawable(expectedDrawable: Drawable?): Matcher<View> {

 return object : BoundedMatcher<View, ImageView>(ImageView::class.

java) {

 override fun describeTo(description: Description) {

 description.appendText("Drawable in ImageView

$expectedDrawable")

 }

 public override fun matchesSafely(imageView: ImageView) =

 isSameBitmap(imageView.drawable, expectedDrawable)

 }

 }

 fun isSameBitmap(drawable: Drawable?, expectedDrawable: Drawable?):

Boolean {

 var localDrawable = drawable

 var localExpectedDrawable = expectedDrawable

 // Return if null.

 if (localDrawable == null || localExpectedDrawable == null) {

 return false

 }

 // StateListDrawable lets you assign a number of graphic images to

a single

 // Drawable and swap out the visible item by a string ID value.

 if (localDrawable is StateListDrawable

 && localExpectedDrawable is StateListDrawable) {

 localDrawable = localDrawable.current

 localExpectedDrawable = localExpectedDrawable.current

 }

 // BitmapDrawable - a Drawable that wraps a bitmap and can be

tiled, stretched, or

 // aligned.

 if (localDrawable is BitmapDrawable) {

 val bitmap = localDrawable.bitmap

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

288

 val otherBitmap = (localExpectedDrawable as BitmapDrawable).

bitmap

 return bitmap.sameAs(otherBitmap)

 }

 return false

 }

}

Here is its usage.

chapter15.drawablematchers.DrawableMatchersTest.kt.

/**

 * Demonstrates Drawable matchers usage.

 */

class DrawableMatchersTest : BaseTest() {

 @Test

 fun checkDrawableInMenuDrawer() {

 openDrawer()

 onView(withId(R.id.headerTodoLogo))

 .check(matches(DrawableMatchers()

 .withImageViewDrawable(getMenuIconDrawable())))

 }

 private fun getMenuIconDrawable(): Drawable? {

 val drawableId = com.example.android.architecture.blueprints.

todoapp.mock.test

 .R.drawable.test_logo

 return InstrumentationRegistry.getInstrumentation().context.

getDrawable(drawableId)

 }

}

In this test, we are comparing the icon shown inside the TO-DO application drawer

called logo.png name in main application drawables with the one stored in the test

application drawable resources called test_logo.

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

289

Note It is not possible to import the R.class file from the main and test
applications, so we have to explicitly provide the path to test the application
R.class.

 Setting SeekBar Progress in Espresso UI Tests
This section demonstrates how to set the SeekBar progress with a custom Espresso

ViewAction. We know from Chapter 2 how to create a custom ViewAction and the

SeekBar case is one of the simplest.

chapter15.setseekbarprogress.SeekBarViewActions.kt.

/**

 * ViewActions that operate on SeekBar

 */

object SeekBarViewActions {

 /**

 * Sets progress of a SeekBar.

 *

 * @param value - the progress value between min and max SeekBar value

 */

 fun setProgress(value: Int): ViewAction {

 return object : ViewAction {

 override fun getConstraints(): Matcher<View> {

 return isAssignableFrom(SeekBar::class.java)

 }

 override fun getDescription(): String {

 return ("Set slider progress to $value.")

 }

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

290

 override fun perform(uiController: UiController, view: View) {

 val seekBar = view as SeekBar

 seekBar.progress = value

 }

 }

 }

}

The usage in the test also looks simple, as follows.

chapter15.setseekbarprogress.SetSeekBarProgressTest.kt.

/**

 * Testing SeekBar change.

 */

class SetSeekBarProgressTest: BaseTest() {

 @Test

 fun sliderActionSample() {

 openDrawer()

 onView(allOf(withId(R.id.design_menu_item_text),

 withText(R.string.statistics_title))).perform(click())

 onView(withId(android.R.id.button1)).perform(click())

 onView(withId(R.id.simpleSeekBar)).perform(setProgress(10))

 onView(withId(R.id.seekBarTextView)).check(matches(withText

("Progress: 10")))

 }

}

Chapter 15 ImprovIng produCtIvIty and testIng unusual Components

291
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2

 APPENDIX A

Espresso-Web Cheat Sheet

https://doi.org/10.1007/978-1-4842-4315-2

293
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2

 APPENDIX B

UI Automator Cheat Sheet

https://doi.org/10.1007/978-1-4842-4315-2

295
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2

APPENDIX C

Apache License
Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and

distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the

copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other

entities that control, are controlled by, or are under common control

with that entity. For the purposes of this definition, "control" means

(i) the power, direct or indirect, to cause the direction or management

of such entity, whether by contract or otherwise, or (ii) ownership of

fifty percent (50%) or more of the outstanding shares, or (iii) beneficial

ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising

permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation source,

and configuration files.

https://doi.org/10.1007/978-1-4842-4315-2

296

"Object" form shall mean any form resulting from mechanical transformation

or translation of a Source form, including but not limited to compiled

object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object

form, made available under the License, as indicated by a copyright notice

that is included in or attached to the work (an example is provided in the

Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form,

that is based on (or derived from) the Work and for which the editorial

revisions, annotations, elaborations, or other modifications represent, as

a whole, an original work of authorship. For the purposes of this License,

Derivative Works shall not include works that remain separable from, or

merely link (or bind by name) to the interfaces of, the Work and Derivative

Works thereof.

"Contribution" shall mean any work of authorship, including the original

version of the Work and any modifications or additions to that Work or

Derivative Works thereof, that is intentionally submitted to Licensor

for inclusion in the Work by the copyright owner or by an individual

or Legal Entity authorized to submit on behalf of the copyright owner.

For the purposes of this definition, "submitted" means any form of

electronic, verbal, or written communication sent to the Licensor or its

representatives, including but not limited to communication on electronic

mailing lists, source code control systems, and issue tracking systems that

are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously

marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity

on behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this

License, each Contributor hereby grants to You a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable copyright license to

Appendix C ApAChe LiCense

297

reproduce, prepare Derivative Works of, publicly display, publicly perform,

sublicense, and distribute the Work and such Derivative Works in Source or

Object form.

3. Grant of Patent License. Subject to the terms and conditions of this

License, each Contributor hereby grants to You a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable (except as stated

in this section) patent license to make, have made, use, offer to sell,

sell, import, and otherwise transfer the Work, where such license applies

only to those patent claims licensable by such Contributor that are

necessarily infringed by their Contribution(s) alone or by combination

of their Contribution(s) with the Work to which such Contribution(s)

was submitted. If You institute patent litigation against any entity

(including a cross-claim or counterclaim in a lawsuit) alleging that the

Work or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses granted to

You under this License for that Work shall terminate as of the date such

litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or

Derivative Works thereof in any medium, with or without modifications, and

in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy

of this License; and

You must cause any modified files to carry prominent notices stating that

You changed the files; and

You must retain, in the Source form of any Derivative Works that You

distribute, all copyright, patent, trademark, and attribution notices from

the Source form of the Work, excluding those notices that do not pertain to

any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then

any Derivative Works that You distribute must include a readable copy of

the attribution notices contained within such NOTICE file, excluding those

notices that do not pertain to any part of the Derivative Works, in at

least one of the following places: within a NOTICE text file distributed as

part of the Derivative Works; within the Source form or documentation, if

Appendix C ApAChe LiCense

298

provided along with the Derivative Works; or, within a display generated

by the Derivative Works, if and wherever such third-party notices normally

appear. The contents of the NOTICE file are for informational purposes only

and do not modify the License. You may add Your own attribution notices

within Derivative Works that You distribute, alongside or as an addendum

to the NOTICE text from the Work, provided that such additional attribution

notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions for

use, reproduction, or distribution of Your modifications, or for any

such Derivative Works as a whole, provided Your use, reproduction, and

distribution of the Work otherwise complies with the conditions stated in

this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work by You

to the Licensor shall be under the terms and conditions of this License,

without any additional terms or conditions. Notwithstanding the above,

nothing herein shall supersede or modify the terms of any separate license

agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor, except

as required for reasonable and customary use in describing the origin of

the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed

to in writing, Licensor provides the Work (and each Contributor provides

its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied, including, without limitation,

any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY,

or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the Work and

assume any risks associated with Your exercise of permissions under this

License.

Appendix C ApAChe LiCense

299

8. Limitation of Liability. In no event and under no legal theory, whether

in tort (including negligence), contract, or otherwise, unless required by

applicable law (such as deliberate and grossly negligent acts) or agreed to

in writing, shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or

inability to use the Work (including but not limited to damages for loss

of goodwill, work stoppage, computer failure or malfunction, or any and

all other commercial damages or losses), even if such Contributor has been

advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the

Work or Derivative Works thereof, You may choose to offer, and charge a

fee for, acceptance of support, warranty, indemnity, or other liability

obligations and/or rights consistent with this License. However, in

accepting such obligations, You may act only on Your own behalf and on

Your sole responsibility, not on behalf of any other Contributor, and only

if You agree to indemnify, defend, and hold each Contributor harmless for

any liability incurred by, or claims asserted against, such Contributor by

reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK

To apply the Apache License to your work, attach the following boilerplate

notice, with the fields enclosed by brackets "[]" replaced with your own

identifying information. (Don't include the brackets!) The text should

be enclosed in the appropriate comment syntax for the file format. We

also recommend that a file or class name and description of purpose be

included on the same "printed page" as the copyright notice for easier

identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Appendix C ApAChe LiCense

300

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

Appendix C ApAChe LiCense

301
© Denys Zelenchuk 2019
D. Zelenchuk, Android Espresso Revealed, https://doi.org/10.1007/978-1-4842-4315-2

Index

A
actionOnHolderItem(), 38
Activity intent flow, 110
ActivityResult class, 112
ActivityScenario and

FragmentScenario, 272
Activity.setResult() method, 112
ActivityTestRule rule, 174
AdapterView, 31
AddEditToDoRobot class, 249
addsNewToDo(), 29
adequate color contrast, 158
allOf() hamcrest logical matcher, 19
allOf() hamcrest matcher, 134
Android accessibility testing

application, 158–159
AccessibilityChecks.enable() set, 159
accessibility logcat logs, 161–162
accessibility scanner flow, 163
anyOf() matcher, 160
create task view, 163
RootViewAccessibilityTest.kt

Class, 160
setThrowExceptionForErrors()

method, 161
UI elements, 159, 161

guidelines, 158
tools, 157

Android Application Package (APK), 40
Android build process, 41

AndroidJUnitRunner, 6–7, 198

AndroidManifest.xml file, 195

AndroidStudio

build.gradle file, 41

BuildVariant, 42

instrumentation test configuration, 43

instrumentation test run

configuration, 44

live templates, 284–285

Android testing framework

androidTest package, 3

build.gradle file, 2

dependencies, 3–4

todoapp/build.gradle file, 4

androidx.test, 272

AndroidX test library

ActivityScenario and

FragmentScenario, 272

ActivityScenarioTest.kt, 276

android.support, 273–274

androidx.test, 272

ApplicationProvider, 272

JUnit and Truth assertions, 276–280

JUnit assertTrue() method, 280

migration, 274–275

testing pyramid, 271–272

Truth Assertion Library, 272

TruthTest.

generatesJunitAssertionError()

method, 278, 279

https://doi.org/10.1007/978-1-4842-4315-2

302

Animation duration scale, 210
Annotations, 7
anyOf() hamcrest core matchers, 24
Application layout, 11–12
ApplicationProvider, 272
Application UI elements, identification, 8

B
BrailleBack, 157
BuilderAddEditToDoRobot.kt class, 248
BuilderToDoListRobot.kt test class, 248
BundleMatchers class, 113
bySelectorSample() test, 175, 177

C
check() method, 25
checkForCondition() method, 182
checksToDoStateChange(), 29
clearText(), 26
clickDoneFabButton() method, 237
clickTodoCheckBoxWithTitle() view

action, 56
closeSoftKeyboard(), 12, 26
Code duplication elimination, 254
ComponentNameMatchers, 114
ConditionWatcher

Espresso Kotlin DSL, 103–104
Instruction class, 99
methods, 99

CountingIdlingResource, 86, 88
CustomLocale.apk application, 192
Custom matchers, 59

D
DataInteraction methods, 32, 34
DataInteractionsTest class, 33–34, 36

deniesAndGrantsPermission()
test, 203

Device Monitor application, 8
dispatcher.runningCallsCount()

method, 95
doubleClick(), 27
Drawable matchers, 286

E
Easy-to-follow navigation, 158
Emulator extended controls, 192
Emulator snapshots

emulator telnet connection and
load, 194

expect utility, 195
script, save and load, 194
TAKE SNAPSHOT button, 193

enableCameraPermission(), 205
Espresso, 12, 137

error handling, 62–63
framework, 49
functionalities, 49
live templates, 285
RecyclerViewActions, creation, 54
swipe actions

customactions.
CustomSwipeActions.java, 52

customswipe.CustomSwipe.java, 51
swipeDown() action, 50
swipeUp() action, 50

test failure, screenshot, 64
Testing Robots implementation, 246
Test Recorder tool

assertion, adding, 217–218
preferences, 219
recorder view, 216
tasks package, 218

Index

303

test device, 216
test menu, 215

Espresso.onData() methods, 79
Espresso.onView() methods, 79
Espresso.pressBack(), 39
Espresso.registerIdlingResources()

method, 96
EspressoUiAutomatorTest, 187–188
Espresso-Web, 137–138

API components, 139, 143
driver atoms, 140–141
web assertions, 142
web interactions, 139–141

API usage formula, 142
chrome browser developer tools

view, 144–145
layout hierarchy, 142–143
locator types, 144
onWebView() method, 142
WebViewTest.updatesLabelAndOpens

NewPage(), 145
Espresso-Web tests, 144

onWebView() method, 148–149
<select> drop-down, 153–154
WebAssertion.webMatches()

method, 155
WebViewTest.

failsToClickSelectDropDown(),
149, 150

WebViewTest.findsElements
ByXpath(), 147

WebViewTest.opensModal(), 147, 148
WebViewTest.selectsRadioButton

WithCss(), 146, 147
WebViewTest.showsOtherLocators

Sample(), 154, 155
WebViewTest.updatesLabelAndOpens

NewPage(), 145

WebViewTest.
verifiesSelectDropDown(),
151–153

F
findObject() method, 172
Firebase Test Lab, 221

Add Project, 222–223
device matrix, 224, 226
initial state, 223
running tests, 227–228
test configuration, 224
toolbar, 221

G
generateToDos() method, 38
getDescription() method, 56
gone() method, 180
Gradle BuildVariant, 40
Grant Camera Permission dialog, 199
GrantPermissionRule, 196–198, 207
Group content, 158

H
Hamcrest string matchers, 23

I
IdlingResource

code, 88
ConditionWatcher, 98
Espresso, 86
methods, 87
synchronization conditions, 85
test, 92
use cases, 86

Index

304

IdlingThreadPoolExecutor, 86
infix notation, 251
init() method, 134
Inner classes approach, 254
inRoot() method, 25
Instrumentation, 6–7
Instrumentation.ActivityResult(Activity.

RESULT_OK, null), 112
InstrumentationRegistry class, 7
Integrated development environments

(IDEs), 284
intended() method, 110–111, 133
Intent.createChooser() method, 122,

125–126
IntentHelper.kt Objects, 130–131
intentMatchers, 112–113, 118, 134
IntentMatchers.hasExtras()

matcher, 123
Intents

class, 110
dependencies, setting, 108
stubbing. (see Stubbing activity

intents)
types, 108
use cases

activity, 107
broadcast, 107
service, 107

verifying, 133
Intents.intending() mechanism, 133
IntentsTestRule, 135
iSIdleNow() method, 95
isInternal(), 112

J
JUnit Parameterized, 281
JUnit Suite Runner, 283

K
Kotlin

benefits
extension function, 76
function as a type, 75
R.class resources, import, 76, 78
string template, 76

Espresso java test, 70
vs. Java, 69

Kotlin, Espresso domain-specific
language

checksToDoStateChange() Test
method, 83–84

function declarations, 79
UI test codebase, 78
viewWithText() extension function, 80

L
Label UI elements, 158
launchBackToDoApplication(), 205
Layout inspector, 10–11
Live templates, 284
longClick(), 27

M
Monkeyrunner, 255–256
MonkeyTest.kt, 267

N
Native application development, 137
NewTo-DoScreen, 237, 239

O
OkHttp3IdlingResource, 94–96
onActivityResult() method, 127

Index

305

onData() method, 12, 36–37
onImageButtonClick() method, 128
onView() method, 12, 39
openActionBarOverflowOrOptions

Menu(), 12
openContextualActionModeOverflow

Menu(), 12
openLink(), 27

P, Q
Packages, 1
Parameterized tests, 281–283
perform() method, 25, 56
Picasso IdlingResource, 96–98
PreferenceActivity, 32
pressBack(), 12, 26
pressImeActionButton(), 26
pressKey(), 26
pressMenuKey(), 26

R
RecyclerViewActions, 37–39

customactions.CustomRecyclerView
Actions.java, 54

RecyclerView matchers, 60
repeatedlyUntil() method, 28
replaceText(), 27
Running instrumentation tests

Gradle command, 47
shell command, 45–46

Runtime permissions
GrantPermissionRule, 196
UI Automator test framework

deniesAndGrantsPermission()
test, 203

enableCameraPermission(), 205

GrantPermissionRule, 198
launchBackToDoApplication(), 205
sendApplicationSettings

Intent(), 205
takesCameraPicture() test case, 202
TO-DO item, 199–201
use cases, 198

RuntimePermissionsTest.kt, 196–197
RuntimePermissionsUiAutomator

Test.kt, 202

S
ScheduledThreadPoolExecutor, 86
ScreenDimensions class, 258
Screen object design pattern, Android UI

tests
BaseScreen class, 239
benefits, 232

code reuse, 232
easily maintainable tests, 232
easy-to-build user flows, 232
logical test steps separation, 232
readable tests, 232

clickDoneFabButton() method, 237
disadvantages, 233–235

detailed screen methods, 235
different screens, same action, 234
handling views, 233–234

NewToDoScreen, 236, 239
screens.BaseScreen.MenuDrawerView

class, 241–242
screens.NewToDoScreen.kt, 237–239
screens.SettingsScreen.kt, 243
tests.AddToDoTest.kt, 239–240
tests.SettingsTest.

verifiesUpNavigation(), 243
ToDoListScreen, 237

Index

306

scrollTo() action, 27
scrollToHolder(), 38
scrollToPosition(), 38
SearchCondition, 180
SeekBar progress

custom Espresso ViewAction, 289
SetSeekBarProgressTest.kt, 290
ViewAction, 289

setTimeoutLimit() methods, 99
setUp() method, 186
setWatchInterval() methods, 99
shouldRelaunchTheApp() function, 267
startActivityForResult() method, 110,

127–128
stubAllExternalIntents() method, 116–118
StubAllIntentsTest.kt, 111
Stubbing activity intents

AddEditTaskFragment.java, 127–128
@Before method, 111
BundleMatchers class, 113
ComponentNameMatchers, 114
debugging, 122
Intent.createChooser() method, 122
IntentMatchers, 112–113
IntentsTestRule and

stubAllExternalIntents()
method, 116

onActivityResult() method, 127
.png files, location, 129
results, 129
share todo intent, Intent.

createChooser(), 126
startActivityForResult()

method, 127–128
StubAllIntentsTest.kt, 115
stubsShareIntent() test, 117–118
TO-DOs intent implementation, 119
UriMatchers, 114

StubChooserIntentTest.kt Class, 124
StubIntentTest.kt Class, 120–121
stubsAllExternalIntents() method, 116
StubSelectImageIntentTest.kt

Class, 129–130
StubSelectImageIntentTest.

stubsImageIntentWithAsset(), 133
stubsImageIntentWithAsset() test

case, 132, 135
stubsImageIntentWithDrawable()

test, 132–133
stubsShareIntent() test, 116
stubsShareIntentByAction(), 124
Supervised monkey tests

actions, defining, 260–261
android screen coordinates

system, 258
device screen areas, 257
dragNow and pressNowBack, 264
navigation bar, 257
package-dependent functionality,

implementation, 264
ScreenDimensions.kt class, 258–260
status bar, 257

swipeCustom() method, 53
swipeLeft(), 26

T
takesCameraPicture() test case, 202
TalkBack, 157
Test automation

@BeforeClass method, 211, 212, 214
DeviceSetupTest.kt, 214
system animations

properties, 210–211
types, 209–210

Touch and Hold Delay, 211–213

Index

307

ViewActions.closeSoftKeyboard()
method, 213

virtual keyboard, 213–214
Testing robot pattern

AddEditToDoRobot classes, 249, 250
addToDo() and done() functions, 250
BuilderAddEditToDoRobot.kt

class, 248
Builder Pattern, 246
BuilderToDoListRobot.kt class, 246
Kotlin’s infix function

notation, 251
inner classes, adding, 253
RobotsTest.

robotChecksToDoStateChange
Builder(), 248

RobotsTest.robotChecksToDoState
ChangeRobotsSeparation(), 250

TasksListRobotWithInnerClasses
Class, 253

testing, what and how, 245–246
toDoList{ } and addEditTodo{ },

250, 252
toDoList() function, 248
ToDoListRobot, 250
TO-DO list screen, 252

test_logo, 288
testsuite.TestSuiteSample.kt, 283
TextView and ImageView

drawables, 286
TO-DO application, settings page,

200–201, 205
ToDoListRobot class, 248
ToDoListScreen, 237
touch targets large, 158
Transition animation scale, 210
Truth Assertion Library, 272
typeText() method, 27

U
UI Automator

APIs, 166–167
build.gradle file, 167
checkForCondition() method, 182
clickNotificationOpenMainPage(),

187–188
device controls, 169
features, 166
handling application transitions, 168
locating UI elements, 168
reporting, 169
UiAutomatorUiWatcherTest.kt

class, 183, 185–186
UiDevice().act—Consolidates, 170
UiDevice().find—Shows, 169
UiDevice().get—Retrieves, 171
UiDevice().set—Enables, 171
UiDevice().wait—Waits, 170
UiDevice().watch—Represents, 170
UI element. (see UI element)
UI/view actions, 168
UiWatcher class, 182–183
waitings, 168

EventCondition, 179
SearchCondition, 180
UiObject2Condition, 180–181

UiAutomatorBySelectorTest.bySelector
SampleWithFindObjects(), 177

UiAutomatorUiSelectorTest.kt class,
172, 175

UiAutomatorUiSelectorTest.
uiSelectorSampleSimplified(),
174–175

UiAutomatorUiWatcherTest.kt
class, 183, 185–186

UiDevice.findObject(BySelector), 174, 177

Index

308

UI element
bySelectorSample() test, 175, 177
findObject() and findObjects()

methods, 172
findObjects(BySelector) sample, 178
hasObject(), 180
TasksActivity, 174
UiDevice.findObject(BySelector), 177
UiSelector sample tests, 172, 173

UiObject2Condition, 180–181
UiSelector sample tests, 172, 173
UI testing, 2, 8
UiWatcher class, 182
UriIdlingResource, 86
UriMatchers, 114
User interface (UI), 8

V
ViewActions class, 26
ViewActions.pressBack() method, 39
ViewActionsTest, 29
ViewInteraction class, 25–26
View matchers, Espresso, 14, 16–17

cheat sheet, 17
EditText example, 21
general preferences section, 22
hamcrest matchers, 19
hasChildCount(), 15
hasContentDescription(), 15
hasDescendant(), 15
hasErrorText(), 16
hasFocus(), 14
hasImeAction(), 16
hasLinks(), 16
hasMinimumChildCount(), 15
hasSibling(), 14
isAssignableFrom(), 13

isChecked(), 15
isClickable(), 15
isCompletelyDisplayed(), 13
isDescendantOfA(), 15
isDisplayed(), 13
isDisplayingAtLeast(), 14
isEnabled(), 14
isFocusable(), 14
isJavascriptEnabled(), 16
isNotChecked(), 15
isRoot(), 16
isSelected(), 14
list of TO-DOs, 18
TO-DO task, 23
withAlpha(), 15
withChild(), 15
withClassName(), 13
withContentDescription(), 14, 23
withEffectiveVisibility(), 15
withHint(), 15
withId(), 14
withInputType(), 16
withParent(), 15
withParentIndex(), 16
withResourceName(), 14
withSpinnerText(), 16
withTagKey(), 14
withTagValue(), 14
withText(), 15, 23

Voice Access, 157

W, X, Y, Z
waitForCondition() methods, 99
WebView component, 137
Window animation scale, 209
withId() ViewMatcher, 16
withText() ViewMatcher, 16

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started with Espresso for Android
	User Interface Testing: Goals and Approach
	Setting Up the Sample Project
	Understanding Android Instrumentation
	Espresso Basics
	Identifying Application UI Elements
	Espresso
	Espresso ViewMatchers
	Espresso’s ViewInteraction Class
	Espresso’s ViewActions Class
	Espresso’s DataInteraction Class

	Operating on RecyclerView Using Espresso
	RecyclerViewActions

	Running Espresso Tests from AndroidStudio
	Running Espresso Tests from the Terminal
	Running Instrumentation Tests Using Shell Commands
	Running Instrumentation Tests Using Gradle Commands

	Summary

	Chapter 2: Customizing Espresso for Our Needs
	Writing Custom ViewActions
	Adapting Espresso Swipe Actions
	Creating Custom RecyclerView Actions

	Writing Custom Matchers
	Creating Custom Matchers for Simple UI Elements
	Implementing Custom RecyclerView Matchers

	Handling Errors with a Custom FailureHandler
	Taking and Saving Screenshots Upon Test Failure
	Summary

	Chapter 3: Writing Espresso Tests with Kotlin
	Migrating Espresso Java Tests to Kotlin
	Benefits of Writing Tests in Kotlin
	Function as a Type
	Extension Functions
	String Templates
	Import R.class Resources

	Espresso Domain-Specific Language in Kotlin
	Summary

	Chapter 4: Handling Network Operations and Asynchronous Actions
	IdlingResource Basics
	Writing the Code
	Running the First Test

	OkHttp3IdlingResource
	Picasso IdlingResource
	ConditionWatcher as an Alternative to IdlingResource
	Making Condition Watchers Part of Espresso Kotlin DSL
	Summary

	Chapter 5: Verifying and Stubbing Intents with IntentMatchers
	Setting Up Dependencies
	Stubbing Activity Intents
	Stubbing Intents Without a Result
	Stubbing a Single Intent
	Stubbing Intents with the Result

	Verifying Intents
	Summary

	Chapter 6: Testing Web Views
	Espresso-Web Basics
	Espresso-Web Building Blocks
	Writing Tests with Espresso-Web
	Summary

	Chapter 7: Accessibility Testing
	Android Accessibility Tools
	Testing Application Accessibility
	Summary

	Chapter 8: Espresso and UI Automator: the Perfect Tandem
	Starting with UI Automator
	Finding and Acting on UI Elements
	Waiting for UI Elements
	Watching for Conditions
	Combining Espresso and UI Automator in Tests
	Summary

	Chapter 9: Dealing with Runtime System Actions and Permissions
	Changing the Emulator System Language Programmatically
	Handling Runtime Permissions
	Enabling Permissions Using the GrantPermissionRule
	Handling Runtime Permissions Using UI Automator

	Summary

	Chapter 10: Android Test Automation Tooling
	Setting Up a Virtual or Physical Device for Test Automation
	Using the Espresso Test Recorder Tool
	Running Espresso Tests in the Firebase Test Lab from Android Studio

	Chapter 11: The Screen Object Design Pattern in Android UI Tests
	Pros and Cons of the Screen Object Design Pattern in Android Test Projects
	Pros
	Logical Test Steps Separation
	More Readable Tests
	Easy-to-Build User Flows
	Easily Maintainable Tests
	Code Reuse

	Cons
	Handling Views Across Different Screens
	Same Action Opening Different Screens
	Detailed Screen Methods Lead to Long Tests

	Applying the Screen Object Design Pattern

	Chapter 12: Testing Robot Pattern with Espresso and Kotlin
	Separating the What from the How
	Code Readability
	Code Duplication Elimination

	Chapter 13: Supervised Monkey Tests with Espresso and UI Automator
	The Monkeyrunner Issue and Solution
	Monkey Tests for Instrumented and Third-Party Applications
	Identifying Monkey Tests Operational Area
	Defining the Monkey Test Actions
	Implementing Package-Dependent Functionality

	Summary

	Chapter 14: AndroidX Test Library
	AndroidX Test Compared to the Testing Support Library
	Configuring Projects for AndroidX Test
	Migrating to AndroidX
	ActivityScenario in UI Tests
	Using Truth Assertion Library in UI Tests
	Summary

	Chapter 15: Improving Productivity and Testing Unusual Components
	Creating Parameterized Tests
	Aggregating Tests into Test Suites
	Using AndroidStudio Live Templates in UI Tests
	Espresso Drawable Matchers
	Setting SeekBar Progress in Espresso UI Tests

	Appendix A: Espresso-Web Cheat Sheet
	Appendix B: UI Automator Cheat Sheet
	Appendix C: Apache License
	Index

