
www.allitebooks.com

http://www.allitebooks.org

Instant Android

Fragmentation

Management How-to

A complete hands-on guide to solving the biggest problem

facing Android application developers today

Gianluca Pacchiella

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management

How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly

or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1160113

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-086-1

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Gianluca Pacchiella

Reviewers

Rick Boyer

Visar Shehu

Acquisition Editor

Martin Bell

Commissioning Editor

Maria D'souza

Technical Editor

Prasad Dalvi

Copy Editor

Aditya Nair

Project Coordinator

Priya Sharma

Proofreader

Maria Gould

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Sheetal Aute

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gianluca Pacchiella is an Italian developer living in Turin. He has a Master's degree in

Physics and a PhD in Mathematics. He started programming in 2000 with some weird web

languages (PHP, MySQL, HTML4, and CSS), but soon he was fascinated by real programming

on the UNIX systems, and fell in love with C language (and a little bit of assembly).

Some years later, Gianluca bought an Android phone and started to learn everything about

it and about embedded systems. Meanwhile, he continued to improve his skills with the web

application, using the Python language and the Django framework together with the Nginx

web server and the PostgreSQL database.

In his spare time, he tries to learn security concepts and cryptography applied to his projects.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Rick Boyer is an Android developer with over 20 years of programming experience,

with a passion for mobile development. Having programmed on different mobile devices,

including Windows CE, Windows Phone, and Android, he now focuses solely on Android with

his consulting business, NightSky Development. He also runs a LinkedIn forum focusing on

developers bringing their apps to the market.

He can be contacted via www.linkedin.com/in/boyerrick, www.NightSkyDev.com,

and LinkenIn Android Group at goo.gl/Byilc.

Visar Shehu has a PhD in Computer Science and is currently employed at the Computer

Science department of South East European University in Tetovo, Macedonia. His research

interests focus on intelligent web and mobile technologies that aim to integrate statistical and

data mining techniques in building adaptable user interfaces and applications. Visar Shehu

has been involved in multiple research projects and has authored and co-authored a number

of research papers. Besides his academic work, he has also contributed in the development

of various information systems ranging from mobile applications, custom-built content

management, and learning management systems.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub

iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up

for a range of free newsletters and receive exclusive discounts and offers on Packt books

and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access

PacktLib today and view nine entirely free books. Simply use your login credentials for

immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Instant Android Fragmentation Management How-to 5
Installing the compatibility package (Must know) 6

Fragments (Should know) 13

Loader (Should know) 26

ActionBar (Should know) 40

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface
Smartphones, by now, have entered our lives not only as users and consumers but also as

producers of our own content. Though this kind of device has been on the market since 1992

(the irst was the Simon model by IBM), the big diffusion was driven by Apple's iPhone, when it
was produced in 2007 (this year, the ifth generation of this device has been released).

Meanwhile, another big giant, Google, developed an open source product to be used as the

internal operating system in mobile devices; in a different manner from the leader of the

market, this company doesn't constraint itself to a unique hardware-speciic device, but allows
third-party companies to use it on their cell phones, which have different characteristics. The

big advantage was also to be able to sell this device to consumers that don't want to (or can't

have) spend as much money as the Apple phone costs. This allowed Android to win the battle

of diffusion.

But there is another side to the coin. A variety of devices by different producers means more

fragmentation of the underlying system and a non-uniform user experience that can be really

disappointing. As programmers, we have to take into account these problems and this book

strives to be a useful guideline to solve that problem.

What this book covers
Installing the compatibility package (Must know), provides Google's primary solution to the

backward compatibility problem.

Fragments (Should know), discusses the irst new feature introduced with the new Android
release. This recipe also explains how to create the context-adapting UI.

Loader (Should know), discusses how the smoothness of an Android application is guaranteed

using the built-in utilities that allow us to do expensive work in the background.

ActionBar (Should know), discusses the standard way to create an appealing UI that manages

user interactions with our applications.

www.allitebooks.com

http://www.allitebooks.org

Preface

2

What you need for this book
In order to follow the steps in this book, you only need to know the Android platform and be

able to compile and install applications. Some examples include the use of the Eclipse IDE,

but it is not mandatory for understanding the steps.

Who this book is for
The target audience of this book are the programmers that already know how to program the

Android platform, and want to know how to write well-behaving applications that are backward

compatible with almost the entire Android ecosystems.

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The JAR ile to add to the project is <AndroidSDK>\
extras\android\support\v4\android-support-v4.jar."

A block of code is set as follows:

public class FragmentCompatibility extends FragmentActivity {

...

}

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Launch the Android SDK

Manager from Eclipse, selecting Window | Android SDK Manager."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

3

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this

book—what you liked or may have disliked. Reader feedback is important for us to develop

titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in

the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you

to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can

visit http://www.PacktPub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration

and help us improve subsequent versions of this book. If you ind any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata

submission form link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by

selecting your title from http://www.packtpub.com/support.

Preface

4

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protection of our copyright and licenses very seriously. If you come across any

illegal copies of our works, in any form, on the Internet, please provide us with the location

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

Instant Android

Fragmentation

Management How-to

Welcome to Instant Android Fragmentation Management How-to.

One of the biggest challenges Android developers face is the fragmentation of the operating

system. If we look at the following distribution graph, we can see that there are three major

versions of the Android OS—Froyo, Gingerbread, and Ice Cream Sandwich (ICS)—each with its

own look, behavior, and API libraries:

Instant Android Fragmentation Management How-to

6

Because of these differences between the releases, the effort required in writing applications

that work seamlessly on all the devices out there can be exhausting. This How-to should reduce

the stress, providing you with some ready-to-use techniques to address these problems.

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you

purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the iles e-mailed directly to you.

Installing the compatibility package
(Must know)

As the name implies, Support Library provides support for the latest APIs on older versions

of the Android OS. This brings many of the latest features, such as Fragments, to the earlier

OS releases.

Additional information can be found in the appropriate section on the oficial Android
Developer site at http://developer.android.com/tools/extras/support-
library.html.

Getting ready

Before following the next sections you need to install all the tools that allow you to write,

compile, and install programs into your Android device or emulator.

The standard way is to install the Android SDK and in particular the Android Developer Tool, a

plugin for the Eclipse IDE. It provides integration with the SDK and a bunch of utilities to help

with your development.

In order to install this tool, follow the instructions in the original documentation that you can

ind at http://developer.android.com/tools/help/adt.html.

How to do it...

Let's install the library:

1. Launch the Android SDK Manager from Eclipse, selecting Window | Android SDK

Manager, as shown in the following screenshot:

Instant Android Fragmentation Management How-to

7

2. You will be presented with the list of all available packages (installed or not). Scroll

down until you reach the Extras section and select Android Support Library; now you

can click on the install packages button in the lower-right corner and wait several

minutes (the time depends on the quality of your Internet connection):

Instant Android Fragmentation Management How-to

8

The support library iles will be downloaded to the Android SDK folder. The JAR ile to add to the
project is <AndroidSDK>\extras\android\support\v4\android-support-v4.jar.

Let us reference this library from your Android project:

1. Copy the Support Library into the libs directory at the root of your project (create it if

doesn't exist).

2. Open your project in Eclipse and select the element corresponding to the Support

Library from Package explorer. Right-click and select Build Path | Add to build path

from the menu.

3. The inal step is to check if the setup is working correctly. To do this, add the following
import to a project and verify that there are no errors in Eclipse:

import android.support.v4.app.FragmentActivity;

4. Build the project:

If there are no build errors, everything is ok.

Instant Android Fragmentation Management How-to

9

How it works...

An Android application is irst of all a Java application, and like all these kinds of applications,
it needs to know where to look for the classes used in your code; this is simply done by adding

the library of your choice to the build path. Normally in Java, the libraries' path is indicated by

the JAVAPATH environmental variable, but since Eclipse uses its system, the details are more

subtle but the concepts are the same.

There's more...

Now let's talk about some other options, or possibly some pieces of general information that

are relevant to this task.

API levels
To better understand about the compatibility package, it's helpful to know a bit about

Android's history.

The Android platform was born in 2003, as the product of a company which at irst was
known as Android Inc. and which was acquired by Google in 2005. Its direct competitors

were and are still today the iOS platform by Apple and the RIM, know as Blackberry.

Technically speaking, its core is an operating system using a Linux Kernel, aimed to be

installed on devices with very different hardware (mainly mobile devices, but today it is also

used in general embedded systems like, for example, the game console OUYA that features

a modiied version of Android 4.0).

Like any software that has been around for a while, many changes happened to the

functionality and many versions came out, each with a name of a dessert:

 f Apple Pie (API level 1)

 f Banana Bread (API level 2)

 f 1.5 – Cupcake (API level 3)

 f 1.6 – Donut (API level 4)

 f 2.0-2.1x – Eclair (API level 5 to 7)

 f 2.2 – Froyo (API level 8)

 f 2.3 – Gingerbread (API level 9 and 10)

 f 3.0-3.2 – Honeycomb (API level 11 to 13)

 f 4.0 – Ice Cream Sandwich (API level 14 and 15)

 f 4.1 – Jelly Bean (API level 16)

Instant Android Fragmentation Management How-to

10

Like in many other software projects, the names, as well as the themes, are in alphabetical

order (another project that follows this approach is the Ubuntu distribution).

The API level written in the parenthesis is the main point about this compatibility package.

Each version of software introduces or removes features and bugs. In its lifetime, an operating

system such as Android aims to add more fantastic innovations while avoiding breaking

pre-installed applications in older versions, but also aims to make available to these older

versions the same features with a process technically called backporting.

For more information about the API levels, carefully read the oficial documentation available
at http://developer.android.com/guide/topics/manifest/uses-sdk-
element.html#ApiLevels.

All that you will read in the following sections is thought to address these problems, using

backporting; in particular, to speciically address the backward compatibility issues with
version 3.0 of the Android operating system—the version named Honeycomb.

Version 3.0 was irst intended to be installed on tablets, and in general, on devices with large
screens. Android is a platform that from the beginning was intended to be used on devices

with very different characteristics (think a system where an application must be usable on

VGA screens, with or without physical keyboards, with a camera, and so on); with the release

of 3.0, all this was improved with speciic APIs thought to extend and make developing
applications easier, and also to create new patterns with the graphical user interface.

The more important innovation was the introduction of the Fragment class. Earlier, the

only main class in developing the Android applications was Activity, a class that provides

the user with a screen in order to accomplish a speciic task, but that was too coarse grain
and not re-usable enough to be used in the applications with large screens such as a tablet.

With the introduction of the Fragment class to be used as the basic block, it is now possible

to create responsive mobile design; that is, producing content adapting to the context and

optimizing the block's placement, using relowing or a combination of each Fragment inside
the main Activity.

These are concepts inspired by the so called responsive web design, where developers build

web pages that adapt to the viewport's size; the preeminent book about this argument is

Responsive Web Design, Ethan Marcotte.

If all this seems a bit complicated, allow me to make a simple example using a real

application. The following image is the composition of two screenshots of the same

application (Google Play, the Android Market) with two different screen resolutions; you can

see how the information about the developer and the information about the application is

placed side by side on the tablet version, where as in the phone version they are just shown

one below the other.

Instant Android Fragmentation Management How-to

11

It's not the only possibility to create a so-called multi-paned layout; you can stretch, compress,

stack, or expand the Fragment depending on your plan. On the Android's site, it's available

as a guide worth following—in the design section of the site. It is available at http://
developer.android.com/design/patterns/multi-pane-layouts.html.

Another important element introduced in Google's platform is the UI pattern named

ActionBar—a piece of interface at the top of an application where the more important

menu's buttons are visualized in order to be easily accessible.

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management How-to

12

Also a new contextual menu is available in the action bar. When, for example, one or more

items in a list are selected (such as, the Gmail application), the appearance of the bar

changes and shows new buttons related to the actions available for the selected items.

For sake of completeness, let me list other new capabilities introduced with Honeycomb (as

previously said, look into the oficial documentation for a better understanding of them):

 f Copy and Paste: A clipboard-based framework

 f Loaders: Load data asynchronously

 f Drag and Drop: Permits the moving of data between views

 f Property animation framework: Supersedes the old Animation package, allowing the

animation of almost everything into an application

 f Hardware acceleration: From API level 11, the graphic pipeline uses dedicated

hardware when it is present

 f Support for encrypted storage

Instant Android Fragmentation Management How-to

13

Not all the things listed here are backported with the Support Library. In particular, there is

no oficial way to implement the new animation framework in a backward compatible way
(libraries that do this do exist though).

Unfortunately, the Support Library does not support all these features of previous versions of

the OS. Most notably, the oficial Google Support Library does not support the action bar.

Fortunately, for Android developers, there is an open-source project called

ActionBarSherlock, which does a fantastic job of bringing the ActionBar API back to

Android 1.6 (API level 4). We will discuss more on this in the ActionBar section.

Fragments (Should know)
This is the most important section. Here you will learn how to create an Android application

designed to be not only backwards compatible with versions down to API level 4, but also

capable of showing contents depending on the context. In a phone with normal-size display,

it will only show a list (single-paned coniguration), but when a larger screen is available, a
view with the details of the selection is also displayed (multi-paned coniguration).

How to do it...

Let's start creating a simple application composed of a single Activity and two Fragments.

One shows a list of items and the second one shows the data related to the selection.

1. Import all the necessary classes:

import android.content.*;

import android.support.v4.app.*;

import android.view.*;

import android.widget.*;

import android.os.Bundle;

2. Deine the Activity that will contain all the code, extending the FragmentActivity

class from the Support Library:

public class FragmentCompatibility extends FragmentActivity {

 ...

}

3. Implement its method onCreate(), where we are going to set the initial layout and

do what is necessary in order to manage it:

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

Instant Android Fragmentation Management How-to

14

 /*

 * There is the main_container view so we are not
 in multi paned

 * and we attach the fragment at runtime (we can
 not modify lately

 * the fragment organization if it's defined in
 XML)

 */

 boolean isMultiPaned = (findViewBy
 Id(R.id.main_container) == null);

 if (!isMultiPaned) {

 /*

 * If we are coming from a previous instance we don't

 * have to reattach the SmallListFragment.

 */

 if (savedInstanceState != null) {

 return;

 }

 SmallListFragment slf = new SmallListFragment();

 getSupportFragmentManager().beginTransaction()

 .add(R.id.main_container, slf).commit();

 }

}

4. Create the Fragment showing the list of primary options using ListFragment:

 public static class SmallListFragment extends ListFragment {

 ….

 }

5. Implement the onActivityCreate() method for this class, where we set the

content of the list:

@Override

public void onActivityCreated(Bundle b) {

 super.onActivityCreated(b);

 setListAdapter(

 new ArrayAdapter<String>(getActivity(),

 android.R.layout.simple_list_item_1,

 itemTitleArray

)

);

 // First, we need to understand if is multi paned

 mIsMultiPaned = (getActivity()
 .findViewById(R.id.main_container) == null);

}

Instant Android Fragmentation Management How-to

15

6. Implement the onListItemClick() method that shows to the user the selected

content updating the adjacent fragment or substituting the list:

@Override

public void onListItemClick(ListView l, View v, int position, long
id) {

 if (mIsMultiPaned) {

 //mDetail.updateContent(position);

 } else {

 SmallFragment sf = new SmallFragment();

 FragmentTransaction transaction =

 getActivity().getSupportFragmentManager().
 beginTransaction();

 transaction.replace(R.id.main_container, sf);

 transaction.addToBackStack(null);

 transaction.commit();

 }

 }

}

7. Add the deinition of the Fragment that will display the details:
 public static class SmallFragment extends Fragment {

 ...

 }

8. Implement its onCreateView() method, where we simply delate a layout ile
representing the contents of the Fragment:

 public View onCreateView(

 LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 View v = inflater.inflate(R.layout.simple, null);

 return v;

 }

Now it's time to write the layout iles.

1. Create a ile with the path res/layout/main.xml, declaring the single-paned UI:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"

 android:id="@+id/main_container"

Instant Android Fragmentation Management How-to

16

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <FrameLayout

 android:id="@+id/detail_container"

 android:layout_width="0dp"

 android:layout_height="match_parent"

 />

</LinearLayout>

2. Create a ile with the path res/layout-land/main.xml with the multi-paned UI:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <fragment android:name=
 "org.ktln2.android.packt.FragmentCompatibility
 $SmallListFragment"

 android:id="@+id/list_fragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_weight="1"

 />

 <fragment android:name=
 "org.ktln2.android.packt.FragmentCompatibility
 $SmallFragment"

 android:id="@+id/detail_fragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_weight="1"

 />

 </LinearLayout>

How it works...

The point of the code written in the How to do it... section is to create a simple application

capable of adapting its content from the context, and of course, make it launchable from

any device with a version of Android starting from API level 4.

This is possible using a speciic custom class, made available by the compatibility package,
named FragmentActivity; be aware of this, otherwise the Fragment-related stuff won't

work properly.

Instant Android Fragmentation Management How-to

17

The code creates a single Activity with two Fragments inside. One is a simple list of random

items taken from a simple array and the other is a very simple Fragment containing a constant

text. The application chooses how to organize the layout using the device's orientation. When

the device is in landscape mode, the Fragments are displayed side by side, otherwise we start

with the application showing only the list, and then after selecting one item in the list, we

switch to the detail replacing the list with the other Fragment.

It's the job of the Activity class to manage the Fragments displayed. There are two ways to

manage the Fragments:

 f Statically: By including the Fragment in the XML

 f Dynamically: By loading the Fragment during runtime with FragmentManager

The important point to note here is that a Fragment deined in the XML can't be removed with
FragmentManager during runtime, only Fragments loaded dynamically can be removed. This

is very important and can result in a very wrong behavior or worse; seems to work correctly,

but under the hood it introduces some very nasty bug (for example, pieces of UI that appear

multiple times).

A very useful tool is the Hierarchy Viewer, which is included with the

SDK. This tool shows the activities in a graphical hierarchical tree while

the application is running. The .bat ile can be found at <SDK_ROOT\
tools\hierarchyviewer.bat>.

Let me explain how Android works and how it saves the state of the UI between state

transitions.

A state transition happens when an Activity is paused or destroyed, which can happen quite

frequently, for example during a phone call (remember, the Android device may be a phone) or

even when the device orientation changes!

This last case may be a surprise when your application appears to be working just ine, but
then crashes when the orientation changes.

This is because a change in orientation destroys and rebuilds the UI (almost) from scratch.

The system makes the onSaveInstanceState() method available, which is called before

an Activity may be killed and passes to it a Bundle instance where we can save all that

we think is valuable in order to recreate the actual state. The state can be restored in the

onCreate() method where the system will pass back the same Bundle.

The system saves the state of the UI elements for which an ID has been deined, so for
example, if we have an EditText method deined into the XML with an associated ID, any
text written into it will survive from a state change.

Instant Android Fragmentation Management How-to

18

In our code, we have chosen to replace ListFragment with the Fragment containing the

detail, but in order to do so, we must create it programmatically from the beginning. But here

there is a subtle point; since the container view has an ID associated to it, it will have the

ListFragment saved from the previous state. So we must check if we are coming from a

previous state and just in case avoid reattaching the Fragment; the code used is the following:

if (savedInstanceState != null) {

 return;

}

If instead we are in portrait mode, without previous instances, we can simply attach

ListFragment, using FragmentManager and its methods.

Note that while with the normal Android's API, FragmentManager is

returned from getFragmentManager() and the Support Library must

be called with getSupportFragmentManager().

In order to understand the remaining code, we must master the Fragments' lifecycle, as

shown in the following table:

Fragment Activity

onAttach()

onCreate()

onCreateView() onCreate()

onActivityCreated()

onStart() onStart()

onResume() onResume()

onPause() onPause()

onStop() onStop()

onDestroyView()

onDestroy() onDestroy()

onDetach()

Instant Android Fragmentation Management How-to

19

An Activity and its Fragments have a tight relationship; what is more important for us now

is the creation time, that is, when the Activity's onCreate() method is called. As stated

previously, the Fragment may be directly placed in the XML layout by using a Fragment tag

or dynamically loading the Fragment at runtime. In all the cases, the onCreateView()

method of the Fragment must return this layout.

Notice that only after the Activity's onCreate() method has returned can we rely

on proper initialization of the content view hierarchy. At this point, the Fragment's

onActivityCreate() method is called.

There's more...

Now let's talk about some other options, or possibly some pieces of general information that

are relevant to this task.

Creating the context adapting interface
When we create the two possible layouts of the Fragments, we choose the landscape and

portrait orientation as a switch, but this is not completely the correct approach.

We know well how it is possible to provide various versions of the same resource (layouts,

images, and so on) by placing it in a directory whose name is appended with some speciic
qualiiers that identify the coniguration under which the resources must be used (in the
previous case, layout-land has been used as the directory's name to indicate as coniguration
to the device in landscape orientation). The qualiiers can be mixed together, but only in a
speciic order.

From API level 13 (that is, version 3.2), two new qualiiers are available:

 f w<N>dp: This qualiier speciies a minimum available screen width in dp units at
which the resource should be used—deined by the <N> value. This coniguration
value will change when the orientation changes between landscape and portrait to

match the current actual width.

 f h<N>dp: This qualiier speciies a minimum available screen height in dp units at
which the resource should be used—deined by the <N> value. This coniguration
value will change when the orientation changes between landscape and portrait to

match the current actual height.

With these qualiiers, it is also possible to use the extended layout on devices that have, for
example, the screen width on portrait mode large enough to contain it. If we decide that the

switch happens at 600 dp of screen width, we can place our extended layout XML ile into a
directory named res/layout-w600dp/.

Instant Android Fragmentation Management How-to

20

Another trick useful in cases like these is the use of <include> and <merge> tags into your

layout. In this way, we can create only one speciic layout ile and reference it from another if
we think it must be equal. If we want to use res/layout-w600dp/main.xml as our real

extended layout, we can reference it from res/layout-land/main.xml with the following

piece of code:

<?xml version="1.0" encoding="utf-8"?>

<merge>

 <include layout="@layout/skeleton_extended"/>

</merge>

Here we have renamed it to skeleton_extended.xml, the multi-paned layout.

The inal words are about managing themes and making them as version-independent
as possible. If, for example, we want to use a light theme (the default one is dark) and in

particular the Holo theme (a particular theme included in all Android OS starting from

Honeycomb that is a compatibility requirement for Android devices running Android 4.0

and forward) with devices with an API level equal or greater than 11, we need to declare

our custom theme. Create two directories, one with the path res/values/ and the other

named res/values-v11/.

In the irst, create the styles.xml ile with the following content:

<resources>

 <style

 name="AppTheme"

 parent="android:Theme.Light" />

</resources>

In the other instead write the following content:

<resources>

 <style

 name="AppTheme"

 parent="android:Theme.Holo.Light" />

</resources>

Finally insert the following code line in the AndroidManifest.xml ile as an attribute of the
<application> tag:

android:theme="@style/AppTheme"

It's important to note that these considerations don't help the backward compatibility directly,

but they avoid the loss of possibilities offered from new devices.

Instant Android Fragmentation Management How-to

21

Menu

Starting with the Honeycomb version, the way the menu is managed is also different. Because

of ActionBar, now it's possible to present some menu options on it so that it becomes easily

accessible. The ratio to be used in choosing the options to place in the ActionBar should

follow the FIT scheme—Frequent, Important, or Typical.

So the method used for building the menu, that is, OnCreateOptionsMenu(), is called—when

an action bar is present—at Activity start (on pre-Honeycomb devices, this function is activated

only by pressing the menu button). For example, we can deine a simple menu with two options
in it, into a ile at the res/menu/main.xml path.

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/menu_new"

 android:title="New"

 android:showAsAction="ifRoom"/>

 <item android:id="@+id/help"

 android:title="Help" />

</menu>

Since we have indicated the ifRoom value in the showAsAction attribute, this option will be

inserted to the right side of the ActionBar (in case there are more options with the same value

set, only those that it into the action bar will be displayed, the others will be shown normally
by the menu button).

In pre-Honeycomb devices without ActionBar, all the options will appear normally with the

usual menu buttons.

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management How-to

22

Fragments without UI

Since the Fragments are components at application level and not at UI level, it's possible to

instance these without associating layout elements to them.

We do this programmatically with the add(fragment, tag) function.

This is available with an instance of FragmentTransaction. The tag parameter is a normal

string (do not confuse this parameter with the tags used in the View class) that can then be

used to ind the Fragment with the findFragmentByTag() function.

If you are wondering why you would want to use a Fragment with no UI, keep in mind that

in this way Fragments are not destroyed when the UI is recreated (such as during

orientation changes).

minSdkVersion and targetSdkVersion

Since the devil is in the detail, it is important to understand the role of the variables in the

<uses-sdk> tag used in AndroidManifest.xml, which expresses the application's

compatibility with one or more versions of the Android platform.

As the meaning of minSdkVersion is rather obvious, let me quote an excerpt from the

documentation of targetSdkVersion:

This attribute informs the system that you have tested against the target version

and the system should not enable any compatibility behaviors to maintain your

app's forward-compatibility with the target version. The application is still able to

run on older versions (down to minSdkVersion).

... if the API level of the platform is higher than the version declared by your app's

targetSdkVersion, the system may enable compatibility behaviors to ensure that

your app continues to work the way you expect. You can disable such compatibility

behaviors by specifying targetSdkVersion to match the API level of the platform on

which it's running.

In our case, we want to create applications installable from devices with API level 4, and in

particular, we want to use capabilities introduced with Honeycomb (that is, API level 11), so

inally the AndroidManifest.xml ile must contain the following content:

 <uses-sdk

 android:minSdkVersion="4"

 android:targetSdkVersion="11" />

Instant Android Fragmentation Management How-to

23

For the Eclipse users, it's possible to set these values initially from the Android projects

creation wizard:

The targetSdkVersion is Build SDK as set in the shown dialog.

The maxSdkVersion must be set manually.

Instant Android Fragmentation Management How-to

24

Dialog
As you can clearly see in the code, there is a special type of Fragment, a ListFragment,

which is a fragment that displays a list of items by binding them to a data source and exposes

event handlers when the user selects an item.

Support Library also provides the backward compatible implementation of the

FragmentDialog class used to display, obviously, dialog windows. In the documentation,

it is explained as follows:

A fragment that displays a dialog window, loating on top of its activity's window.
This fragment contains a Dialog object, which it displays as appropriate based on

the fragment's state. Control of the dialog (deciding when to show, hide, dismiss it)

should be done through the API here, not with direct calls on the dialog.

Let's write some example code in order to show how this is supposed to work:

1. Import ordinary classes that are used to create a Dialog:

import android.app.Dialog;

import android.app.AlertDialog;

2. Create a class extending FragmentDialog:

 static public class DialogCompatibility extends DialogFragment
{

 …

 }

3. Override the method that is used to create the Dialog:

 @Override

 public Dialog onCreateDialog(Bundle savedInstan
 ceState) {

 return new AlertDialog.Builder(getActivity())

 .setTitle("Fragment and dialog")

 .create();

 }

4. Add an option in the menu's resource ile:
 <item android:id="@+id/menu_dialog"

 android:title="Dialog"

 android:showAsAction="ifRoom"

 />

5. Finally, add the following code snippet in the Activity class'

onOptionsItemSelected() function to call this Dialog:

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

Instant Android Fragmentation Management How-to

25

 case R.id.menu_dialog:

 DialogCompatibility dc = new DialogCompatibility();

 DialogCompatibility.newInstance()
 .show(getSupportFragmentManager(), "dialog");

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

Obviously this is a very simple example and much more could be said, but it's left as an

exercise for the reader (as, for example, how to embed a dialog into an Activity).

VERSION_CODES

Not all the possible problems can be addressed with the Support Library, so it is necessary

to learn some ways to manage the different availability of features between versions.

One solution could be the creation of different APKs, one for each particular version of

Android, and uploading each one separately on the Android market; this is not particularly

smart, since it causes a lot of code duplication and is maintainability hell.

A better solution is to create branches in the interested code, using an if statement and

checking for VERSION_CODES. This is accessible from the android.os.Build package and

it presents an enumeration of all versions of Android. To be able to check for the actual version

at runtime, the SDK_INT ield must be used in the android.os.Build.VERSION package.

At the end, we should write some code similar to the following:

if (android.os.Build.VERSION.SDK_INT => android.os.Build.VERSION_
CODES.HONECOMB) {

 // ...

} else if (android.os.Build.VERSION.SDK_INT =>

android.os.Build.VERSION_CODES.GINGERBREAD){

 // ...

}

A more sophisticated approach would be to use the resource system in order to set

appropriate Boolean variables with values of interest. Suppose we create two values

iles, one with the path res/values/bools.xml and with the following content:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <bool name="isHoneycomb">false</bool>

</resources>

Instant Android Fragmentation Management How-to

26

The other at the path res/values-v11/bools.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <bool name="isHoneycomb">true</bool>

</resources>

Inside the code, the isHoneycomb variable can be referenced with a simple piece of code,

as shown as follows:

Resource r = getResources();

boolean isHoneycomb = r.getBoolean(R.bool.isHoneycomb)

This can be used directly in the code.

Loader (Should know)
In this task, we'll show the use of the class called Loader, a class speciically intended to do
asynchronous work in the background in order to update the application-related data; before

the introduction of the Loader and related classes, the only way to manage data was using

Cursor with some speciic Activity class's method:

public void startManagingCursor(Cursor)

public Cursor managedQuery(Uri, String, String, String, String)

The problem with this approach is these calls are on the main application thread and can

make the application non-responsive and potentially cause the dreaded ANRs!

In the following steps, we will show the code of an application that loads the RSS from Packt's

website by an HTTP request to a web server and obviously this can't be instantaneous; here is

where the Loader class will be used. All of this is done with the Support Library; in this way,

the application will be compatible with the previous Android platforms.

How to do it...

Let's list the steps required for completing the task:

1. First of all, include the necessary Support Library classes:

import android.support.v4.app.FragmentActivity;

import android.support.v4.app.*;

import android.support.v4.content.*;

Instant Android Fragmentation Management How-to

27

2. Deine a class subclassing the FragmentActivity class as usual and deine the
onCreate() method that creates the GUI for us:

public class LoaderCompatibilityApplication extends
FragmentActivity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

}

3. Deine a Fragment that will display the desired data. It's important that it implements
LoaderManager.LoaderCallbacks:

 static public class RSSFragment extends ListFragment

 implements LoaderManager.LoaderCallbacks<String[]> {

 }

4. Implement the adapter for its own data in its onActivityCreated(), and more

importantly, call Loader by using the LoaderManager class' method named

initLoader():

 @Override

 public void onActivityCreated(Bundle savedInstance) {

 super.onActivityCreated(savedInstance);

 setListAdapter(

 new ArrayAdapter<String>(

 getActivity(),

 android.R.layout.simple_list_item_1,

 new String[]{}

)

);

 /*

 * Differently to what the documentation says,

 * append forceLoad() otherwise the Loader will not be
 called.

 */

 getLoaderManager().initLoader(0, null,
 this).forceLoad();

 }

Instant Android Fragmentation Management How-to

28

5. Now, it's time to implement the methods deined in the LoaderManager.
LoaderCallbacks interface:

 public RSSLoader onCreateLoader(int id, Bundle args) {

 return new RSSLoader(getActivity());

 }

 public void onLoaderReset(Loader<String[]> loader) {

 }

 public void onLoadFinished(Loader<String[]> loader,
 String[] data) {

 setListAdapter(

 new ArrayAdapter<String>(

 getActivity(),

 android.R.layout.simple_list_item_1,

 data

)

);

 }

6. Finally, deine the Loader subclass (there are two functions, doGet() and

getNews(), that will not be shown here; they simply retrieve the XML and

manage to transform it into an array of strings). In particular, implement the

loadInBackground() method. The reader must note that here we are extending

the AsyncTaskLoader class that is included in the Support Library:

 static public class RSSLoader extends AsyncTaskLoader<String[]>
{

 @Override

 public String[] loadInBackground() {

 String xml = "";

 String[] news;

 try {

 xml = doGet();

 news = getNews(xml);

 } catch (Exception e) {

 news = new String[] {e.getMessage()};

 }

 return news;

 }

 }

Instant Android Fragmentation Management How-to

29

7. Add a simple layout ile:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <fragment android:name="org.ktln2.android.
 packt.LoaderCompatibilityApplication$RSSFragment"

 android:id="@+id/rss_list"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 />

</LinearLayout>

How it works...

The preceding code snippet simply facilitates the synchronization between the Fragment

class instance to which the Loader belongs and the Loader itself. The irst time the Fragment
queries LoaderManager by its initLoader() method, a new Loader is created using

onCreateLoader() (if a Loader with the given ID already exists, simply return the old

instance without calling this method).

From now on, Loader follows the state of the Fragment (it will be stopped when the

Fragment will be stopped) and will call the onLoadFinished() method when the data is

ready. In the preceding example, the list is updated with the array containing news built on

loadInBackground().

There's more...

Now let's talk about some other options, or possibly some pieces of general information that

are relevant to this task.

Low level
Under the hood, an Android application is not a unique block of instructions executed one

after the other, but is composed of multiple pipelines of execution. The main concepts here

are the process and thread. When an application is started, the operating system creates a

process (technically a Linux process) and each component is associated to this process.

Together with the process, a thread of execution named main is also created. This is a

very important thread because it is in charge of dispatching events to the appropriate user

interface elements and receiving events from them. This thread is also called UI Thread.

Instant Android Fragmentation Management How-to

30

It's important to note that the system does not create a separate thread for each element, but

instead uses the same UI thread for all of them. This can be dangerous for the responsiveness

of your application, since if you perform an intensive or time expensive operation, this will

block the entire UI. All Android developers ight against the ANR (Application Not Responding)

message that is presented when the UI is not responsive for more than 5 seconds.

Following Android's documentation, there are only two rules to follow to avoid the ANR:

 f Do not block the UI thread

 f Do not access the Android UI toolkit from outside the UI thread

These two rules can seem simple, but there are some particulars that have to be clear. First of

all, let me show you the simplest way to create a new thread, using the class named Thread.

This class implements the Runnable interface deined with a single method called run();

when an instance of a Thread calls its own method start(), it launches in the background

the instructions deined in the run() method. Nothing new for everyone with experience in

Java programming; this is plain Java, so it is completely available in all API levels.

For example, if we want to create a simple task that sleeps for 5 seconds, without blocking the

UI, we can use the following piece of code:

new Thread(new Runnable() {

 public void run() {

 this.sleep(5000);

 }

}).start();

Instant Android Fragmentation Management How-to

31

All is clear, but in a general case, we would like to interact with the UI, in order to update

a progress bar, to show an error, or to change the appearance of a UI element; using an

example from Android's documentation, we are tempted to write a piece of code where we

update an ImageView by using a remote PNG:

public void onClick(View v) {

 new Thread(new Runnable() {

 public void run() {

 Bitmap b = loadImageFromNetwork
 ("http://example.com/image.png");

 mImageView.setImageBitmap(b);

 }

 }).start();

}

All seems ok, but when running this code, it results in an infamous exception appearing in the

application's log:

Only the original thread that created a view hierarchy can touch its views.

This is because setImageBitmap() is executed in the thread created by us and not in the

UI thread, violating the second rule expressed above (this is not allowed since the UI thread

is not thread-safe, that is, it is not assured that concurrent access to an element doesn't

cause problems).

Before we solve this problem, let me show you the innermost structures introduced by the

Android system to manage threads—the Looper and Handler classes.

An instance of the irst class is simply used to run a message loop in a thread that will be
handled by an instance of the second class. On the other hand, a Handler instance manages

message instances between threads, but its context of execution is the thread where it was

initially deined.

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management How-to

32

In order to understand, it's better to write a complex example involving two threads

communicating with messages. Suppose we have a generic Activity class, and inside its

onCreate() method, we deine two threads communicating after every 5 seconds:

 new Thread(new Runnable() {

 @Override

 public void run() {

 Looper.prepare();

 mFirstHandler = new Handler() {

 @Override

 public void handleMessage(Message message) {

 android.util.Log.i(TAG, (String)message.obj);

 }

 };

 Looper.loop();

 }

 }).start();

 new Thread(new Runnable() {

 @Override

 public void run() {

 int cycle = 0;

 while (true) {

 try {

 Thread.sleep(5000);

 Message msg = mFirstHandler.obtainMessage();

 msg.obj = "Hi thread we are at " + cycle;

 mFirstHandler.sendMessage(msg);

 cycle++;

 } catch (java.lang.InterruptedException error) {

 android.util.Log.i(TAG, "error: " + error.getMessage());

 }

 }

 }

 }).start();

Instant Android Fragmentation Management How-to

33

This is how it appears in Eclipse's thread panel when the code is running:

The more fascinating thing is that there is also a possibility to queue the Runnable classes

to be executed in the original thread of the Handler class. Instead of sendMessage(), it is

possible to use mFirstHandler.post() with a Runnable class's deinition as the argument.

The fundamental point to remember in order to use these classes is to call Looper.
prepare() and Looper.loop() in the run() method of the thread and the code

related to the Handler class in between—that's all.

The only thread that has yet a Looper deined is the UI Thread that makes some methods
available in order to post the Runnable class instance in it.

Now, back to the earlier problem, let me explain how to solve it using the Runnable class;

we can post the updating UI code by using a utility method available to any View, such as

the View.post(Runnable) method.

Now, we can substitute the line causing the problem with the following code:

 mImageView.post(new Runnable() {

 public void run() {

 mImageView.setImageBitmap(bitmap);

 }

 });

Instant Android Fragmentation Management How-to

34

Looper and Handler are important since they are at the core of the system, and more

importantly, they have been available since API level 1, making them good resources for

writing the Android applications.

Another important class, available since API level 3, is AsyncTask. If you have worked on an

application using background threads, it is probable that you have used it since it is intended

for this purpose; to facilitate the managing of the threads, and to avoid all the headache and

the error-prone code of the Looper and Handler classes.

Its deinition is particular. It uses generics; that is, there are some parameters indicated with
Params, Progress, and Result that identify the signature of some functions used internally

to manage threads.

In particular, AsyncTask has four methods as follows:

 f void onPreExecute(): Its role is to set up the task.

 f protected Result doInBackground(Params...): This is the core of

the AsyncTask class and your code has to be written here. Just after

onPreExecute() is terminated, a background thread is created for the

execution of this function. It's important to remember not to attempt to

update the UI from this function. Use the onProgressUpdate() to post

updates back to the UI.

 f onProgressUpdate(Progress...): This is used to publish progresses in

some way.

 f onPostExecute(Result): This receives the result of the

doInBackground() function.

All but the doInBackground() function are executed in the UI thread, so it's important

to remember not to perform time-consuming work in them.

If we want to replicate the code that downloads a remote PNG and updates an ImageView

with it, we should write something, as shown in the following code snippet:

class PNGUpdate extends AsyncTask<URL, Integer, Long> {

 Bitmap mBitmap;

 ImageView mImageView;

 public PNGUpdate(ImageView iv) {

 mImageView = iv;

 }

 protected Long doInBackground(URL... urls) {

 int count = urls.length;

 for (int i = 0; i < count; i++) {

 mBitmap = loadImageFromNetwork(urls[i]);

Instant Android Fragmentation Management How-to

35

 }

 return 0;

 }

 protected void onPostExecute(Long result) {

 mImageView.setImageBitmap(mBitmap);

 }

}

For where we will want to call it, we have to insert a line, such as the following:

new PNGUpdate(myImageView).execute(pngURL)

What you may have noted is that in the initial steps, when we deined our Loader, we
subclassed a class named AsyncTaskLoader. It is simply a Loader with an AsyncTask

inside; the only difference here is that it doesn't get three parameters in its deinition, but
only one since it's not supposed by a Loader to return information about the status of an

operation (for example, no progress bar is shown).

A inal note from the documentation about the serial/parallel execution of threads:

When irst introduced, AsyncTasks were executed serially on a single background
thread. Starting with DONUT, this was changed to a pool of threads allowing

multiple tasks to operate in parallel. Starting with HONEYCOMB, tasks are executed

on a single thread to avoid common application errors caused by parallel execution.

If you truly want parallel execution, you can invoke executeOnExecutor(java.util.

concurrent.Executor, Object[]) with THREAD_POOL_EXECUTOR.

General structure of a Loader
The initial instructions about writing a Loader have used the simple AsyncTaskLoader that

simpliies a lot for the life of a developer, creating for you the correct subdivision between
background threads and UI threads.

This is important, mainly since it avoids wasting your time with little errors, and more

importantly, makes the code more modular, avoiding the need of reinventing the wheel.

However, now we are to reinvent the wheel in order to understand how to correctly manage

the Loader classes with your applications.

The Loader is intended to be used with dynamic data, where it is important to be notiied for
updates in order to refresh the related element of the UI; in order to notify our loader that the

underlying data is changed, we'll implement a class named RSSObservable that controls

that the XML (representing the RSS) is different from the previous version. It's important to

note that this is a proof of concept and is not intended to be used in the real world. Both the

Loader and the Observable classes download the RSS, causing the drain of the battery (and

in some case, you will be billed for the bandwidth).

Instant Android Fragmentation Management How-to

36

Once you read this code, try to compare it with the original implementation of the

AsyncTaskLoader class that you can ind in Android's source code in the ile frameworks/
base/core/java/android/content/AsyncTaskLoader.java. Obviously, we are not

going to implement all the things that you can ind there.

So let's implement our custom Loader:

1. Import the required classes:

import android.content.Context;

import android.support.v4.content.Loader;

import android.os.AsyncTask;

import java.util.Observer;

import java.util.Observable;

2. Deine our custom loader, extending the Loader class and indicating the

implementation of the Observer interface:

class RSSLowLevelLoader extends Loader<String[]> implements
Observer {

 …

}

3. Deine the internal variables that will reference the Task and Observable instances:

private Task mTask = null;

private RSSObservable mTimerObservable = null;

4. Deine the constructor where we initialize all the things needed for the class to
work correctly.

/*

 * Don't retain a reference to the context in the class since this

 * will / can cause a memory leak.

 */

 public RSSLowLevelLoader(Context context) {

 super(context);

 mTimerObservable = new RSSObservable();

 mTimerObservable.start(mURL);

 mTimerObservable.addObserver(this);

 }

5. Deine a customized AsyncTask that returns the data of your choice; in its

doInBackground() method, simply do the same as the previous example.

onPostExecute() warns LoaderManager of the concluded task.

 private class Task extends AsyncTask<Void, Void,
 String[]> {

 @Override

Instant Android Fragmentation Management How-to

37

 protected String[] doInBackground(Void... params) {

 String xml = "";

 String[] news = null;

 try {

 xml = RemoteHelper.doGet
 ("http://www.packtpub.com/rss.xml");

 news = RemoteHelper.getNews(xml);

 } catch (java.lang.Exception e) {

 news = new String[] {e.getMessage()};

 }

 return news;

 }

 @Override

 protected void onPostExecute(String[] results) {

 // remember: deliverResult() must be called from
 the UI Thread

 RSSLowLevelLoader.this.deliverResult(results);

 }

 }

6. Now implement the behavior for the main actions that can be performed on a Loader:

 @Override

 protected void onStartLoading() {

 if (takeContentChanged()) {

 forceLoad();

 }

 }

 @Override

 protected void onStopLoading() {

 if (mTask != null) {

 boolean result = mTask.cancel(false);

 android.util.Log.i(TAG, "onStopLoading() =
 " + result);

 mTask = null;

 }

 }

 @Override

 protected void onForceLoad() {

 android.util.Log.i(TAG, "onForceLoad()");

Instant Android Fragmentation Management How-to

38

 super.onForceLoad();

 onStopLoading();

 mTask = new Task();

 mTask.execute();

 }

 @Override

 protected void onReset() {

 mTimerObservable.stop();

 }

7. Implement the deliverResult() method:

@Override

public void deliverResult(String[] data) {

 if (isReset()) {

 // if there is data to be garbage collected do it now

 return;

 }

 super.deliverResult(data);

}

8. Write the callback of the Observer interface:

 @Override

 public void update(Observable obs, Object data) {

 /*

 * The default implementation checks to see if the
 loader

 * is currently started; if so, it simply calls
 forceLoad().

 */

 onContentChanged();

 }

9. Write a class representing the Observable interface, where we implement the code

that watches and notiies us of data changes:

public class RSSObservable extends Observable {

 private String mContents = "";

 private String mURL = null;

 private Timer mTimer = null;

 public RSSObservable() {

Instant Android Fragmentation Management How-to

39

 mTimer = new Timer();

 }

 private class InnerTimer extends TimerTask {

 @Override

 public void run() {

 String xml = "";

 try {

 xml = RemoteHelper.doGet(mURL);

 } catch (Exception e) {}

 if (xml != mContents) {

 RSSObservable.this.setChanged();

 RSSObservable.this.notifyObservers(null);

 mContents = xml;

 }

 }

 }

 public void start(String URL) {

 mURL = URL;

 mTimer.schedule(new InnerTimer(), 10000, 20000);

 }

 public void stop() {

 mTimer.cancel();

 }

}

The more cumbersome part is understanding the underlying low of the Loader. First of all,
there are three states in which it can exist. Those are as follows:

 f STARTED: Loaders execute their loads and notify the Activity class using

onLoadFinished().

 f STOPPED: Loaders continue to monitor for changes, but must not deliver results. This

state is induced by calling stopLoading() from LoaderManager when the related

Activity/Fragment class is being stopped.

 f RESET: Loaders must not monitor changes, deliver results, and so on. The data

already collected should be garbage collected.

Each of these states can be reached from the others.

Instant Android Fragmentation Management How-to

40

Since all happens asynchronously, it's possible that a notiication of data update can reach
the Loader instance when the state is different from STARTED; this explains the various

checks present in the code.

One thing introduced in the preceding code snippet, not mentioned in the AsyncTaskLoader

example, is the Observer/Observable design pattern. The irst is deined as an interface
and the second as a class, both in the java.util package (and both have been available

from API level 1, so do not cause compatibility issues). The observer receives notiication of
updates by the update() method, whereas the observable registers some observers (by

the addObserver() method) to be notiied (by the notifyObservers() method) when a

change occurs.

A last note

cancelLoad() is not present in the Loader class version of the

Compatibility Library.

ActionBar (Should know)
One thing not addressed by the compatibility package is ActionBar, a new UI pattern

introduced from Google in the Honeycomb platform. Since this is a very important element

for integration with the Android ecosystem, some alternatives are born, the irst one from
Google itself, as a simple code sample named ActionBar Compatibility that you can ind in
the sample/ directory of the Android SDK.

We will follow a different approach, using a famous open source project,

ActionBarSherlock.

Getting ready

The code for this library is not available from SDK, so we need to download it from its website

(http://actionbarsherlock.com/).

You can also download it from the github repository of the author; once the archive has been

downloaded, you can extract it to a directory of your choice.

How to do it...

Let's include ActionBarSherlock as a library in Eclipse and then create a simple project

using it:

1. Open Eclipse and create a new project to import the source iles that you can ind in
the libraries/ directory of the ActionBarSherlock source code. This can be

done by selecting File | New | Other....

Instant Android Fragmentation Management How-to

41

2. Open the project where you want to use the library (otherwise create a new one).

3. Tell Eclipse to use the ActionBarSherlock library by selecting the project from

the Package explorer and then selecting Project | Property from the main menu. A

dialog will show up. Now add the library from the Android section:

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management How-to

42

4. In the ile containing the main Activity of your project, import the required classes:
import com.actionbarsherlock.app.SherlockFragmentActivity;

import com.actionbarsherlock.app.SherlockFragment;

import com.actionbarsherlock.app.ActionBar;

import com.actionbarsherlock.view.Menu;

import com.actionbarsherlock.view.MenuItem;

import com.actionbarsherlock.view.MenuInflater;

5. Implement the Activity class where the ActionBar will be used, extending

SherlockFragmentActivity:

public class ActionBarActivity extends SherlockFragmentActivity {

 …

}

6. In the onCreate() method of the Activity, conigure the ActionBar:
 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // if you wan to configure something

 // about ActionBar use this instance

 ActionBar ab = getSupportActionBar();

 }

7. Add the required the following code snippet in order to create the menu options:

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getSupportMenuInflater();

 inflater.inflate(R.menu.main, menu);

 return true;

 }

8. Implement onOptionsItemSelected() of the Activity class with the desired

behavior (here we have shown only a simple toast notiication):
 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 default:

 Toast.makeText(this, "Hi!", 1000).show();

 }

 return super.onOptionsItemSelected(item);

 }

Instant Android Fragmentation Management How-to

43

9. Deine which menu options you want in the related XML ile located at res/menu/
main.xml:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/first"

 android:title="First"

 android:showAsAction="ifRoom"/>

 <item android:id="@+id/second"

 android:title="Second"

 android:showAsAction="ifRoom"/>

</menu>

How it works...

Using this external library, we permit our application to have an implementation of the

ActionBar UI pattern. ActionBarSherlock re-implements most of the core classes that

you can ind in the normal Android framework. One simple rule to remember is to prepend
the word Sherlock to any of the interested classes.

Since it can be tricky remembering which classes belong to this library, let me list these classes:

 f com.actionbarsherlock.ActionBarSherlock

 f com.actionbarsherlock.app.ActionBar

 f com.actionbarsherlock.app.SherlockActivity

 f com.actionbarsherlock.app.SherlockDialogFragment

 f com.actionbarsherlock.app.SherlockExpandableListActivity

 f com.actionbarsherlock.app.SherlockFragment

 f com.actionbarsherlock.app.SherlockFragmentActivity

 f com.actionbarsherlock.app.SherlockListActivity

 f com.actionbarsherlock.app.SherlockListFragment

 f com.actionbarsherlock.app.SherlockPreferenceActivity

 f com.actionbarsherlock.view.ActionMode

 f com.actionbarsherlock.view.ActionProvider

 f com.actionbarsherlock.view.CollapsibleActionView

 f com.actionbarsherlock.view.Menu

 f com.actionbarsherlock.view.MenuInflater

Instant Android Fragmentation Management How-to

44

 f com.actionbarsherlock.view.MenuItem

 f com.actionbarsherlock.view.SubMenu

 f com.actionbarsherlock.view.Window

 f com.actionbarsherlock.widget.ActivityChooserModel

 f com.actionbarsherlock.widget.ActivityChooserView

 f com.actionbarsherlock.widget.ShareActionProvider

If some problem occurs, remember to double-check whether you have used the correct class

and not imported the one from the Support Library or the original framework.

This library tries hard to maintain an API compatibility with the original ActionBar. The only

difference to remember is to substitute getActionBar() with getSupportActionBar()

and to use getSupportMenuInflater() instead of getMenuInflater().

ActionBarSherlock is built on top of the Support Library, so in order to obtain

FragmentManager, you must use the getSupportFragmentManager() function.

There's more...

Now let's talk about some other options, or possibly some pieces of general information that

are relevant to this task.

The ActionBar is not only a bar, a visual element, but it's also the gate to a bunch of new UI

functionalities; in the following sections, we'll show some of these functionalities and how to

use it.

Home button

From the start, the Android platform has made available a Back button with which one can

step back during the navigation between activity and applications. To allow a more structured

navigation, the Up button was introduced to permit a user to create a new task from an

activity that does not belong to the original task that created it (it's not completely true, since

if the original application is the same, no tasks are created).

For example, we start a news reader and then we choose a speciic news item that we want
to share with our friends by sending it via e-mail; in order to do so, we launch an Email

application that is started in the same task of the news reader. If the Email application has an

Up button, clicking on it will start a new task with the home Activity of the Email application.

What we obtain with the Up button is a hierarchical navigation inside the active application.

Obviously, the Up button should not be present in the main Activity because there is no

upward navigation there.

Instant Android Fragmentation Management How-to

45

In order to enable the Up button in our code, simply activate it by using the following code line:

actionbarinstance.setDisplayHomeAsUpEnabled(true);

We can now write the code that will handle the click on the icon on the left-hand side of the

ActionBar. This code is as follows:

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case android.R.id.home:

 Intent intent = new Intent(this, MyOwnActivity.class);

 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

Remember only that the Up button is represented on the ActionBar with a widget having

android.R.id.home as an identiier.

Action view

Another UI pattern from the ActionBar is the action view. It is possible to associate a

particular widget to an action item. A widget here is, a visual element that can be expanded

to occupy all the available space of the ActionBar; in the following code, we will implement a

fake search entry—initially on the ActionBar there is only the Search button:

After selecting this element, it will appear expanded, as shown in the following screenshot:

1. Import the required classes:

import com.actionbarsherlock.view.MenuItem;

import com.actionbarsherlock.view.MenuInflater;

import android.widget.EditText;

Instant Android Fragmentation Management How-to

46

2. Implement the method of the Activity class used to create the menu:

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getSupportMenuInflater();

 inflater.inflate(R.menu.main, menu);

 MenuItem menuItem = menu.findItem(R.id.search);

 menuItem.setOnActionExpandListener
 (new MenuItem.OnActionExpandListener() {

 @Override

 public boolean onMenuItemActionCollapse(MenuItem
 item) {

 return true;

 }

 @Override

 public boolean onMenuItemActionExpand(MenuItem item)
 {

 return true;

 }

 });

 EditText fakeSearchView =
 (EditText)menuItem.getActionView();

 return true;

}

3. Deine the XML ile for the menu with an action view:
<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/search"

 android:title="Search"

 android:showAsAction="always|collapseActionView"

 android:actionLayout="@layout/action_view"

 />

</menu>

4. Deine the layout for the action view into a ile placed in res/layout/action_
view.xml:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/
android"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:hint="Search"/>

Instant Android Fragmentation Management How-to

47

This example mimics the example from the Android documentation where the SearchView

class is used instead. This class is not available with ActionBarSherlock, but is planned to

be included (maybe) in future releases.

For further information about this issue, please follow the discussion on the github project

page at https://github.com/JakeWharton/ActionBarSherlock/issues/70.

ShareActionProvider

An extension to the concept of action view is the action provider—a widget that not only

controls its appearance, but also extends its controls. An action provider available with the

Android framework is ShareActionProvider that allows us to easily share the contents

showing a menu with some share target in it.

Since we are interested in maintaining backward compatibility using ActionBarSherlock,

here are the steps necessary to implement this:

1. Import the required classes:

import com.actionbarsherlock.widget.ShareActionProvider;

import android.content.Intent;

2. Attach an Intent to the action provider:

 public boolean onCreateOptionsMenu(Menu menu) {

 // remember to use getSupportMenuInflater()

 MenuInflater inflater = getSupportMenuInflater();

 inflater.inflate(R.menu.main, menu);

 ShareActionProvider sap = (ShareActionProvider)menu.
 findItem(R.id.share).getActionProvider();

 // be cautious about the parameter otherwise the

 // menu can be empty

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 sap.setShareIntent(intent);

 return true;

 }

3. Deine the XML ile:
<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android=" http://schemas.android.com/apk/res/android">

 <item android:id="@+id/share"

 android:title="Share"

 android:showAsAction="always"

 android:actionProviderClass="com.actionbarsherlock.widget.
ShareActionProvider" />

</menu>

Instant Android Fragmentation Management How-to

48

In the following screenshot, you can see how the menu item appears:

Contextual ActionBar
The necessity to make simple and quick actions on speciic elements such as list items (for
example, removing a contact) or copying some selected text into the clipboard, makes the

employ of the contextual action bar useful. The appearance of the bar changes so that it can

show the speciic menu item for the action desired.

Now, let's see how to add a contextual action bar with two action items to your application:

1. Import all the necessary libraries:

import com.actionbarsherlock.app.SherlockFragmentActivity;

import com.actionbarsherlock.view.ActionMode;

2. Implement the Callback interface of the ActionMode class; it will manage the

lifecycle of the contextual menu:

private ActionMode.Callback mActionModeCallback = new
ActionMode.Callback() {

 // Called after startActionMode()

 @Override

Instant Android Fragmentation Management How-to

49

 public boolean onCreateActionMode
 (ActionMode mode, Menu menu) {

 // Inflate a menu resource providing context menu
 items

 MenuInflater inflater = mode.getMenuInflater();

 inflater.inflate(R.menu.context_menu, menu);

 return true;

 }

 // Called each time the action mode is shown. Always
 called after onCreateActionMode, but

 // may be called multiple times if the mode is
 invalidated.

 @Override

 public boolean onPrepareActionMode
 (ActionMode mode, Menu menu) {

 return false; // Return false if nothing is done

 }

 // Called when the user selects a contextual menu item

 @Override

 public boolean onActionItemClicked
 (ActionMode mode, MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_1:

 mode.finish(); // Action picked, so close the CAB

 return true;

 default:

 return false;

 }

 }

 // Called when the user exits the action mode

 @Override

 public void onDestroyActionMode(ActionMode mode) {

 }

};

3. Attach a listener to the desired element that will activate the action mode (in this

example, we attach it to the click event on a list item):

 getListView().setOnItemClickListener
 (new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?>
 parent, View view, int position, long id) {

Instant Android Fragmentation Management How-to

50

 if (mActionMode != null) {

 return;

 }

 // Start the CAB using the ActionMode.Callback
 defined above

 ActionBarActivity.this.startActionMode
 (mActionModeCallback);

 view.setSelected(true);

 }

 });

4. In an XML ile, deine the contextual menu layout such as a normal menu:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/action_1"

 android:title="Action 1" />

 <item android:id="@+id/action_2"

 android:title="Action 2" />

</menu>

The following screenshot shows how the contextual menu will appear:

Remember that the OK button (the button at the very left of the bar) simply dismisses the

contextual action bar and the system adds it for you.

The obvious extension of this mechanism is the possibility to select multiple elements

and to act on it. This exists and it possibly started from Honeycomb, using the

MultiChoiceModeListener interface that belongs to the AbsListView class. The only

problem is that it is not available with ActionBarSherlock, so as hinted from the original

Android documentation, it is better to fall back to a loating contextual menu.

ViewPagerIndicator

Let's explain how to create a more interesting visual layout for your application, for example,

one UI pattern that we see all the time is the "swipey-tabs" one, used in the Android Market.

This UI pattern allows the user to switch between sections of the application, simply swiping

left/right and having the title on the tab following the swipe motion (for more technical
information about this design, I advise you to read the post from an Android Market designer

at http://www.pushing-pixels.org/2011/08/11/android-tips-and-tricks-
swipey-tabs.html).

Instant Android Fragmentation Management How-to

51

In order to do this, we need to download another library from the web page of its project,

located at http://viewpagerindicator.com/.

The steps required to add this library to our project are the same as those shown at the start

of this section. Only keep in mind that the path to the library is where you have extracted it.

Now, we are ready to add ViewPageIndicator to your application:

1. Import the correct classes:

import com.actionbarsherlock.app.SherlockFragmentActivity;

import com.actionbarsherlock.app.ActionBar;

import android.support.v4.view.ViewPager;

import com.viewpagerindicator.TitlePageIndicator;

2. Create an Activity class subclassing SherlockFragmentActivity and

implementing the TabListener interface:

public class ActionBarActivity extends SherlockFragmentActivity
implements ActionBar.TabListener {

…

}

3. Implement the onCreate() method where we set the layout and conigure
the ActionBar; since we are creating a tab-driven application, we have to set

NAVIGATION_MODE_TABS as the navigation mode:

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ActionBar ab = getSupportActionBar();

 ab.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 ViewPager pager =
 (ViewPager)findViewById(R.id.pager);

 pager.setAdapter
 (new TabsAdapter(getSupportFragmentManager()));

 //Bind the title indicator to the adapter

 TitlePageIndicator titleIndicator =
 (TitlePageIndicator)findViewById(R.id.titles);

 titleIndicator.setViewPager(pager);

 }

www.allitebooks.com

http://www.allitebooks.org

Instant Android Fragmentation Management How-to

52

4. Create a subclass of the FragmentPageAdapter class that will bind each

tab to a speciic fragment (here we have used a unique fragment class called
DummyFragment, not implemented, that simply shows a simple text):

 public class TabsAdapter extends FragmentPagerAdapter {

 public TabsAdapter(FragmentManager fm) {

 super(fm);

 }

 @Override

 public Fragment getItem(int position) {

 return new DummyFragment();

 }

 @Override

 public int getCount() {

 return 3;

 }

 @Override

 public CharSequence getPageTitle(int position) {

 return "Page " + position;

 }

 }

5. Implement the TabListener interface in the Activity class that reacts to the events

that will happen on tabs:

 /*

 * TabListener interface's methods

 */

 public void onTabReselected(ActionBar.Tab tab,
 FragmentTransaction ft) {

 // User selected the already selected tab. Usually do
 nothing.

 }

 public void onTabUnselected(ActionBar.Tab tab,
 FragmentTransaction ft) {

 }

 public void onTabSelected(ActionBar.Tab tab,
 FragmentTransaction ft) {

 }

Instant Android Fragmentation Management How-to

53

6. Deine a layout with TitlePageIndicator (double-check that the fully qualiied
name used as the tag is correctly entered):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <com.viewpagerindicator.TitlePageIndicator

 android:id="@+id/titles"

 android:layout_height="wrap_content"

 android:layout_width="fill_parent" />

<android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 />

</LinearLayout>

What we obtain is an application where the various Fragments served from the ViewPager

class are inserted, one for each tab, and the TitlePagerIndicator class furnishes us

with a visual effect when the transition between tabs happens. The following screenshot

shows how the tab part appears in our application (obviously, it is not possible to show the

animation on paper):

Thank you for buying
Instant Android

Fragmentation

Management How-to

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL

Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,

cutting-edge books for communities of developers, administrators, and newbies alike.

For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be

sent to author@packtpub.com. If your book idea is still at an early stage and you would like to

discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing

experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 recipes covering every aspect of Android

development

1. Written for Android 3.0 but also applicable to

lower versions

2. Quickly develop applications that take advantage

of the very latest mobile technologies, including

web apps, sensors, and touch screens

3. Part of Packt's Cookbook series: Discover tips and

tricks for varied and imaginative uses of the latest

Android features

Android NDK Beginner's
Guide
ISBN: 978-1-84969-152-9 Paperback: 436 pages

Discover the native side of Android and inject the power

of C/C++ in your applications

1. Create high performance applications with C/C++
and integrate with Java

2. Exploit advanced Android features such as

graphics, sound, input and sensing

3. Port and reuse your own or third-party libraries

from the proliic C/C++ ecosystem

Please check www.PacktPub.com for information on our titles

Android Database

Programming
ISBN: 978-1-84951-812-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven Android

applications with this practical tutorial

1. Master the skills to build data-centric Android

applications

2. Go beyond just code by challenging yourself to

think about practical use-cases with SQLite and

others

3. Focus on lushing out high level design concepts,
before drilling down into different code examples

Android Application Testing
Guide
ISBN: 978-1-84951-350-0 Paperback: 332 pages

Build intensively tested and bug free Android

applications

1. The irst and only book that focuses on testing
Android applications

2. Step-by-step approach clearly explaining the most

eficient testing methodologies

3. Real world examples with practical test cases that

you can reuse

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Android Fragmentation Management How-to
	Installing the compatibility package
(Must know)
	Fragments (Should know)
	Loader (Should know)
	ActionBar (Should know)

