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Data Science in the 
Cloud with Microsoft 

Azure Machine 
Learning and R 

Introduction 
Recently, Microsoft launched the Azure Machine Learning cloud 

platform—Azure ML. Azure ML provides an easy-to-use and 

powerful set of cloud-based data transformation and machine 

learning tools. This report covers the basics of manipulating data, as 

well as constructing and evaluating models in Azure ML, illustrated 

with a data science example. 

Before we get started, here are a few of the benefits Azure ML 

provides for machine learning solutions: 

• Solutions can be quickly deployed as web services. 

• Models run in a highly scalable cloud environment. 

• Code and data are maintained in a secure cloud environment. 

• Available algorithms and data transformations are extendable 

using the R language for solution-specific functionality. 

Throughout this report, we’ll perform the required data manipulation 

then construct and evaluate a regression model for a bicycle sharing 

demand dataset. You can follow along by downloading the code and 

data provided below. Afterwards, we’ll review how to publish your 

trained models as web services in the Azure cloud. 

www.allitebooks.com
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Downloads 
For our example, we will be using the Bike Rental UCI dataset 

available in Azure ML. This data is also preloaded in the Azure ML 

Studio environment, or you can download this data as a .csv file from 

the UCI website. The reference for this data is Fanaee-T, Hadi, and 

Gama, Joao, “Event labeling combining ensemble detectors and 

background knowledge,” Progress in Artificial Intelligence (2013): 

pp. 1-15, Springer Berlin Heidelberg. 

The R code for our example can be found at GitHub. 

Working Between Azure ML and RStudio 
When you are working between AzureML and RStudio, it is helpful 

to do your preliminary editing, testing, and debugging in RStudio. 

This report assumes the reader is familiar with the basics of R. If you 

are not familiar with using R in Azure ML you should check out the 

following resources: 

• Quick Start Guide to R in AzureML 

• Video introduction to R with Azure Machine Learning 

• Video tutorial of another simple data science example 

The R source code for the data science example in this report can be 

run in either Azure ML or RStudio. Read the comments in the source 

files to see the changes required to work between these two 

environments. 

Overview of Azure ML 
This section provides a short overview of Azure Machine Learning. 

You can find more detail and specifics, including tutorials, at the 

Microsoft Azure web page. 

In subsequent sections, we include specific examples of the concepts 

presented here, as we work through our data science example. 

Azure ML Studio 

Azure ML models are built and tested in the web-based Azure ML 

Studio using a workflow paradigm. Figure 1 shows the Azure ML 

Studio. 
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Figure 1. Azure ML Studio 

In Figure 1, the canvas showing the workflow of the model is in the 

center, with a dataset and an Execute R Script module on the canvas. 

On the left side of the Studio display, you can see datasets, and a 

series of tabs containing various types of modules. Properties of 

whichever dataset or module has been clicked on can be seen in the 

right panel. In this case, you can also see the R code contained in the 

Execute R Script module. 

Modules and Datasets 
Mixing native modules and R in Azure ML 

Azure ML provides a wide range of modules for data I/O, data 

transformation, predictive modeling, and model evaluation. Most 

native Azure ML modules are computationally efficient and scalable.  

The deep and powerful R language and its packages can be used to 

meet the requirements of specific data science problems. For example,  

solution-specific data transformation and cleaning can be coded in R. 

R language scripts contained in Execute R Script modules can be run 

in-line with native Azure ML modules. Additionally, the R language 

gives Azure ML powerful data visualization capabilities. In other 

cases, data science problems that require specific models available in 

R can be integrated with Azure ML. 
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Overview of Azure ML  

As we work through the examples in subsequent sections, you will 

see how to mix native Azure ML modules with Execute R Script 

modules. 

Module I/O 

In the AzureML Studio, input ports are located above module icons, 

and output ports are located below module icons. 

If you move your mouse over any of the ports on a 

module, you will see a “tool tip” showing the type of the 

port. 

For example, the Execute R Script module has five ports: 

• The Dataset1 and Dataset2 ports are inputs for rectangular Azure 

data tables. 

• The Script Bundle port accepts a zipped R script file ( .R file) or 

R dataset file. 

• The Result Dataset output port produces an Azure rectangular 

data table from a data frame. 

• The R Device port produces output of text or graphics from R. 

Workflows are created by connecting the appropriate ports between 

modules—output port to input port. Connections are made by 

dragging your mouse from the output port of one module to the input 

port of another module. 

In Figure 1, you can see that the output of the data is connected to the 

Dataset1 input port of the Execute R Script module. 

Azure ML Workflows 
Model training workflow 

Figure 2 shows a generalized workflow for training, scoring, and 

evaluating a model in Azure ML. This general workflow is the same 

for most regression and classification algorithms. 

www.allitebooks.com
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Figure 2. A generalized model training workflow for Azure ML 

models. 

Key points on the model training workflow: 

• Data input can come from a variety of data interfaces, including 

HTTP connections, SQLAzure, and Hive Query. 

• For training and testing models, you will use a saved dataset.  

• Transformations of the data can be performed using a 

combination of native Azure ML modules and the R language. 

• A Model Definition module defines the model type and 

properties. On the lefthand pane of the Studio you will see 

numerous choices for models. The parameters of the model are 

set in the properties pane. 

• The Training module trains the model. Training of the model is 

scored in the Score module and performance summary statistics 

are computed in the Evaluate module. 

The following sections include specific examples of each of the steps 

illustrated in Figure 2. 

Workflow for R model training 

The Azure ML workflow changes slightly if you are using an R model.  

The generalized workflow for this case is shown in Figure 3. 
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Overview of Azure ML  
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Figure 3. Workflow for an R model in Azure ML 

In the R model workflow shown in Figure 3, the computation and 

prediction steps are in separate Execute R Script modules. The R 

model object is serialized, passed to the Prediction module, and 

unserialized. The model object is used to make predictions, and the 

Evaluate module measures the performance of the model. 

Two advantages of separating the model computation step from the 

prediction step are: 

• Predictions can be made rapidly on any number of new data, 

without recomputing the model. 

• The Prediction module can be published as a web service. 

Publishing a model as a web service 

Once you have developed a satisfactory model you can publish it as 

a web service. You will need to create streamlined workflow for 

promotion to production. A generalized example is shown in Figure 

4. 
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Figure 4. Workflow for an Azure ML model published as a web 

service 

Key points on the workflow for publishing a web service: 

• Data transformations are typically the same as those used to 

create the trained model. 

• The product of the training processes (discussed above) is the 

trained model. 

• You can apply transformations to results produced by the model. 

Examples of transformations include deleting unneeded columns, 

and converting units of numerical results. 

A Regression Example 

Problem and Data Overview 
Demand and inventory forecasting are fundamental business 

processes. Forecasting is used for supply chain management, staff 

level management, production management, and many other 

applications. 

In this example, we will construct and test models to forecast hourly 

demand for a bicycle rental system. The ability to forecast demand is 

important for the effective operation of this system. If insufficient 

bikes are available, users will be inconvenienced and can become 
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reluctant to use the system. If too many bikes are available, operating 

costs increase unnecessarily. 

For this example, we’ll use a dataset containing a time series of 

demand information for the bicycle rental system. This data contains 

hourly information over a two-year period on bike demand, for both 

registered and casual users, along with nine predictor, or independent, 

variables. There are a total of 17,379 rows in the dataset.  

The first, and possibly most important, task in any predictive 

analytics project is to determine the feature set for the predictive 

model. Feature selection is usually more important than the specific 

choice of model. Feature candidates include variables in the dataset, 

transformed or filtered values of these variables, or new variables 

computed using several of the variables in the dataset. The process of 

creating the feature set is sometimes known as feature selection or 

feature engineering. 

In addition to feature engineering, data cleaning and editing are 

critical in most situations. Filters can be applied to both the predictor 

and response variables. 

See “Downloads” on page 2 for details on how to access the dataset 

for this example. 

A first set of transformations 

For our first step, we’ll perform some transformations on the raw 

input data using the code shown below in an Azure ML Execute R 

Script module: 

## This file contains the code for the 

transformation  
## of the raw bike rental data. It is intended to 

run in an  
## Azure ML Execute R Script module. By changing 
## some comments you can test the code in 

RStudio ## reading data from a .csv file.  

## The next lines are used for testing in RStudio 

only. 
## These lines should be commented out and the 

following ## line should be uncommented when 

running in Azure ML. 
#BikeShare <- read.csv("BikeSharing.csv", sep = ",",  
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#                      header = T, stringsAsFactors 

= F ) 
#BikeShare$dteday <- as.POSIXct(strptime( 
#                         paste(BikeShare$dteday, " 

",  
#                               "00:00:00",  
#                               sep = ""),  
#                         "%Y-%m-%d %H:%M:%S")) 
BikeShare <- maml.mapInputPort(1) 
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## Select the columns we need 
BikeShare <- BikeShare[, c(2, 5, 6, 7, 9, 10,  
                           11, 13, 14, 15, 16, 17)]  

## Normalize the numeric perdictors 
BikeShare[, 6:9] <- scale(BikeShare[, 6:9])   

## Take the log of response variables. First we  
## must ensure there are no zero values. The 

difference ## between 0 and 1 is 

inconsequential.  
BikeShare[, 10:12] <- lapply(BikeShare[, 10:12],                              

function(x){ifelse(x == 0,                                                 

1,x)}) 
BikeShare[, 10:12] <- lapply(BikeShare[, 10:12],                              

function(x){log(x)}) 

## Create a new variable to indicate workday 
BikeShare$isWorking <- ifelse(BikeShare$workingday &  
                                !BikeShare$holiday, 

1, 0)  ##  

Create a new variable to indicate workday 

## Add a column of the count of months which 

could ## help model trend. Next line is only 

needed running 
## in Azure ML 
Dteday <- strftime(BikeShare$dteday,                    

format = "%Y-%m-%dT%H:%M:%S") yearCount 

<- 

as.numeric(unlist(lapply(strsplit(               

                      Dteday, "-"),  
                                  

function(x){x[1]}))) - 2011 BikeShare$monthCount <- 

12 * yearCount + BikeShare$mnth 

## Create an ordered factor for the day of the week  
## starting with Monday. Note this factor is then  
## converted to an "ordered" numerical 

value to be ## compatible with Azure ML 

table data types. 
BikeShare$dayWeek <- 

as.factor(weekdays(BikeShare$dteday)) 
BikeShare$dayWeek <- 

as.numeric(ordered(BikeShare$dayWeek,                                         

levels = c("Monday",                                                    

"Tuesday", 

                                                    
"Wednesday",  
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"Thursday",  

                                                   

"Friday",  
                                                   

"Saturday",  

                                                   

"Sunday"))) 

## Output the transformed data frame. 

maml.mapOutputPort('BikeShare') 

In this case, five basic types of transformations are being performed: 

• A filter, to remove columns we will not be using. 

• Transforming the values in some columns. The numeric 

predictor variables are being centered and scaled and we are 

taking the log of the response variables. Taking a log of a 

response variable is commonly done to transform variables with 

non-negative values to a more symmetric distribution. 

• Creating a column indicating whether it’s a workday or not.  

• Counting the months from the start of the series. This variable is 

used to model trend. 

• Creating a variable indicating the day of the week. 

In most cases, Azure ML will treat date-time formatted 

character columns as having a date-time type. R will 

interpret the Azure ML date-time type as POSIXct. To 

be consistent, a type conversion is required when reading 

data from a .csv file. You can see a commented out line 

of code to do just this. 

If you encounter errors with date-time fields when 

working with R in Azure ML, check that the type 

conversions are working as expected. 

Exploring the data 

Let’s have a first look at the data by walking through a series of 

exploratory plots. 
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At this point, our Azure ML experiment looks like Figure 5. The first 

Execute R Script module, titled “Transform Data,” contains the code 

shown here. 

 

Figure 5. The Azure ML experiment as it now looks 

The Execute R Script module shown at the bottom of Figure 5 runs 

code for exploring the data, using output from the Execute R Script 

module that transforms the data. 

Our first step is to read the transformed data and create a correlation 

matrix using the following code: 

## This code will create a series of data 

visualizations 
## to explore the bike rental dataset. This code is  
## intended to run in an Azure ML Execute 

R ## Script module. By changing some 

comments you can ## test the code in 

RStudio. 

## Source the zipped utility file 

source("src/utilities.R") 

## Read in the dataset.  
BikeShare <- maml.mapInputPort(1) 

## Extract the date in character format  
BikeShare$dteday <- get.date(BikeShare$dteday) 

## Look at the correlation between the predictors 

and  
## between predictors and quality. Use a 

linear ## time series regression to 

detrend the demand. 
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Time <- POSIX.date(BikeShare$dteday, BikeShare$hr) 
BikeShare$count <- BikeShare$cnt - 

fitted(   lm(BikeShare$cnt ~ Time, data = 

BikeShare)) cor.BikeShare.all <- 

cor(BikeShare[, c("mnth",                                        

"hr",  
                                       "weathersit",  
                                       "temp", 
                                       "hum",  
                                       "windspeed", 
                                       "isWorking",  
                                       "monthCount",  
                                       "dayWeek",  
                                       "count")]) 

diag(cor.BikeShare.all) <- 0.0  
cor.BikeShare.all 

library(lattice) 
plot( levelplot(cor.BikeShare.all,  
        main ="Correlation matrix for all bike 

users",         scales=list(x=list(rot=90), 

cex=1.0)) ) 

We’ll use lm() to compute a linear model used for de-trending the 

response variable column in the data frame. De-trending removes a 

source of bias in the correlation estimates. We are particularly 

interested in the correlation of the predictor variables with this 

detrended response. 

The levelplot() function from the lattice package is 

wrapped by a call to plot(). This is required since, in 

some cases, Azure ML suppresses automatic printing, 

and hence plotting. Suppressing printing is desirable in 

a production environment as automatically produced 

output will not clutter the result. As a result, you may 

need to wrap expressions you intend to produce as 

printed or plotted output with the print() or plot() 

functions. 

You can suppress unwanted output from R functions 

with the capture.output() function. The output file 

can be set equal to NUL. You will see some examples of 

this as we proceed. 

www.allitebooks.com
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This code requires a few functions, which are defined in the utilities.R 

file. This file is zipped and used as an input to the Execute R Script 

module on the Script Bundle port. The zipped file is read with the 

familiar source() function. 

fact.conv <- function(inVec){   ## 

Function gives the day variable 

meaningful  
  ## level names.   

outVec <- 

as.factor(inVec) 
  levels(outVec) <- c("Monday", "Tuesday", 

"Wednesday",                       "Thursday", 

"Friday", "Saturday",  
                      "Sunday") 
  

outVec 

} 

get.date <- function(Date){   ## 

Funciton returns the data as a 

character  
  ## string from a POSIXct datatime 

object.   strftime(Date, format = 

"%Y-%m-%d %H:%M:%S") } 

POSIX.date <- function(Date,Hour){ 
  ## Function returns POSIXct time series object  
  ## from date and hour arguments.   

as.POSIXct(strptime(paste(Date, " ", 

as.character(Hour),  
                            ":00:00", sep = ""),  
                        "%Y-%m-%d %H:%M:%S")) 
} 

Using the cor() function, we’ll compute the correlation matrix. This 

correlation matrix is displayed using the levelplot() function in 

the lattice package. 

A plot of the correlation matrix showing the relationship between the 

predictors, and the predictors and the response variable, can be seen 

in Figure 6. If you run this code in an Azure ML Execute R Script, 

you can see the plots at the R Device port. 
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Figure 6. Plot of correlation matrix 

This plot is dominated by the strong correlation between dayWeek 

and isWorking—this is hardly surprising. It’s clear that we don’t 

need to include both of these variables in any model, as they are 

proxies for each other. 

To get a better look at the correlations between other variables, see 

the second plot, in Figure 7, without the dayWeek variable. 

 

Figure 7. Plot of correlation matrix without dayWeek variable 
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In this plot we can see that a few of the predictor variables exhibit 

fairly strong correlation with the response. The hour (hr), temp, and 

month (mnth) are positively correlated, whereas humidity (hum) and 

the overall weather (weathersit) are negatively correlated. The 

variable windspeed is nearly uncorrelated. For this plot, the 

correlation of a variable with itself has been set to 0.0. Note that the 

scale is asymmetric. 

We can also see that several of the predictor variables are highly 

correlated—for example, hum and weathersit or hr and hum. 

These correlated variables could cause problems for some types of 

predictive models. 

You should always keep in mind the pitfalls in the 

interpretation of correlation. First, and most importantly, 

correlation should never be confused with causation. A 

highly correlated variable may or may not imply 

causation. Second, a highly correlated or nearly 

uncorrelated variable may, or may not, be a good 

predictor. The variable may be nearly collinear with 

some other predictor or the relationship with the 

response may be nonlinear. 

Next, time series plots for selected hours of the day are created, using 

the following code: 

## Make time series plots for certain hours of the 

day 
times <- c(7, 9, 12, 15, 18, 20, 22) 

lapply(times, 

function(x){        plot(Time[BikeShare$

hr == x],  
            BikeShare$cnt[BikeShare$hr == x],             

type = "l", xlab = "Date",             ylab = "Number of 

bikes used",             main = paste("Bike demand at ",                       

as.character(x), ":00", spe ="")) } ) Two examples of the 

time series plots for two specific hours of the day are shown in 

Figures 8 and 9. 
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Figure 8. Time series plot of bike demand for the 0700 hour 
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Figure 9. Time series plot of bike demand for the 1800 hour 

Notice the differences in the shape of these curves at the two different 

hours. Also, note the outliers at the low side of demand. Next, we’ll 

create a number of box plots for some of the factor variables using 

the following code: 

## Convert dayWeek back to an ordered factor so the 

plot is in ## time order. 
BikeShare$dayWeek <- fact.conv(BikeShare$dayWeek) 

## This code gives a first look at the predictor 

values vs the demand for bikes. library(ggplot2) 
labels <- list("Box plots of hourly bike 

demand",             "Box plots of monthly 

bike demand", 
            "Box plots of bike demand by weather 

factor", 

            "Box plots of bike demand by workday vs. 

holiday", 

            "Box plots of bike demand by day of the 

week") 

xAxis <- list("hr", "mnth", "weathersit",  
              "isWorking", "dayWeek") 

capture.output( Map(function(X, 

label){       ggplot(BikeShare, 



 

20 | Data Science in the Cloud with Microsoft Azure Machine Learning and R  

aes_string(x = X,                                    

y = "cnt",                                   

group = X)) +       geom_boxplot( ) + 

ggtitle(label) +                            

theme(text =                                    

element_text(size=18)) }, 
    xAxis, labels),   

file = "NUL" ) 

If you are not familiar with using Map() this code may look a bit 

intimidating. When faced with functional code like this, always read 

from the inside out. On the inside, you can see the ggplot2 package 

functions. This code is wrapped in an anonymous function with two 

arguments. Map() iterates over the two argument lists to produce the 

series of plots. 

Three of the resulting box plots are shown in Figures 10, 11, and 12. 

 

Figure 10. Box plots showing the relationship between bike demand 

and hour of the day 
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Figure 11. Box plots showing the relationship between bike demand 

and weather situation 

 

Figure 12. Box plots showing the relationship between bike demand 

and day of the week. 

From these plots you can see a significant difference in the likely 

predictive power of these three variables. Significant and complex 

variation in hourly bike demand can be seen in Figure 10. In contrast, 

it looks doubtful that weathersit is going to be very helpful in 
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predicting bike demand, despite the relatively high (negative) 

correlation value observed. 

The result shown in Figure 12 is surprising—we expected bike 

demand to depend on the day of the week. 

Once again, the outliers at the low end of bike demand can be seen in 

the box plots. 

In our example, we are making heavy use of the ggplot2 

package. If you would like to learn more about ggplot2, 

we recommend R Graphics Cookbook: Practical 

Recipes for Visualizing Data by Winston Chang 

(O’Reilly). 

Finally, we’ll create some plots to explore the continuous variables, 

using the following code: 

## Look at the relationship between predictors and 

bike demand 
labels <- c("Bike demand vs 

temperature",             "Bike demand 

vs humidity", 
            "Bike demand vs windspeed", 
            "Bike demand vs hr") xAxis <- 

c("temp", "hum", "windspeed", "hr") 

capture.output( Map(function(X, 

label){       ggplot(BikeShare, aes_string(x = X, 

y = "cnt")) +       geom_point(aes_string(colour 

= "cnt"), alpha = 0.1) +       

scale_colour_gradient(low = "green", high = 

"blue") +  
      geom_smooth(method = "loess") +  
      ggtitle(label) + 
      theme(text = element_text(size=20)) }, 
    xAxis, labels),   

file = "NUL" ) 

This code is quite similar to the code used for the box plots. We have 

included a “loess” smoothed line on each of these plots. Also, note 

that we have added a color scale so we can get a feel for the number 

of overlapping data points. Examples of the resulting scatter plots are 

shown in Figures 13 and 14. 

http://shop.oreilly.com/product/0636920023135.do
http://shop.oreilly.com/product/0636920023135.do
http://shop.oreilly.com/product/0636920023135.do
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Figure 13. Scatter plot of bike demand versus humidity 

Figure 13 shows a clear trend of generally decreasing bike demand 

with increased humidity. However, at the low end of humidity, the 

data are sparse and the trend is less certain. We will need to proceed 

with care. 

 

Figure 14. Scatter plot of bike demand versus hour of the day 
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Figure 14 shows the scatter plot of bike demand by hour. Note that 

the “loess” smoother does not fit parts of these data very well. This is 

a warning that we may have trouble modeling this complex behavior.  

Once again, in both scatter plots we can see the prevalence of outliers 

at the low end of bike demand. 

Exploring a potential interaction 

Perhaps there is an interaction between time of day and day of the 

week. A day of week effect is not apparent from Figure 12, but we 

may need to look in more detail. This idea is easy to explore. Adding 

the following code to the visualization Execute R Script module 

creates box plots for working and non-working days for peak demand 

hours: 

## Explore the interaction between time of day 
## and working or non-working days. 
labels <- list("Box plots of bike demand at 0900 for 

\n working and non-working days", 
               "Box plots of bike demand at 1800 for 

\n  
working and non-working days") 
Times <- list(8, 17) 
capture.output( Map(function(time, 

label){       ggplot(BikeShare[BikeShare$hr == 

time, ],          aes(x = isWorking, y = cnt, 

group = isWorking)) +  
      geom_boxplot( ) + ggtitle(label) +       

theme(text = element_text(size=18)) }, 
    Times, labels),   

file = "NUL" ) 

The result of running this code can be seen in Figures 15 and 16. 

www.allitebooks.com
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Figure 15. Box plots of bike demand at 0900 for working and 

nonworking days 

 

Figure 16. Box plots of bike demand at 1800 for working and 

nonworking days 

Now we can clearly see that we are missing something important in 

the initial set of features. There is clearly a different demand between 

working and non-working days at peak demand hours. 
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Creating a new variable 

We need a new variable that differentiates the time of the day by 

working and non-working days; to do this, we will add the following 

code to the transform Execute R Script module: 

## Add a variable with unique values for time of day 

for working and non-working days. 
BikeShare$workTime <- ifelse(BikeShare$isWorking,  
                             BikeShare$hr,  
                             BikeShare$hr + 24)  

We have created the new variable using working versus 

non-working days. This leads to 48 levels (2 × 24) in this 

variable. We could have used the day of the week, but 

this approach would have created 168 levels (7 × 24). 

Reducing the number of levels reduces complexity and 

the chance of overfitting—generally leading to a better 

model. 

Transformed time: Another new variable 

As noted earlier, the complex hour-to-hour variation bike demand 

shown in Figures 10 and 14 may be difficult for some models to deal 

with. Perhaps, if we shift the time axis we will create a new variable 

where demand is closer to a simple hump shape. The following code 

shifts the time axis by five hours: 

## Shift the order of the hour variable so that it 

is smoothly ## "humped over 24 hours. 
BikeShare$xformHr <- ifelse(BikeShare$hr > 4,  
                            BikeShare$hr - 5,  
                            BikeShare$hr + 19) 

We can add one more plot type to the scatter plots we created in the 

visualization model, with the following code: 

## Look at the relationship between predictors and 

bike demand 
labels <- c("Bike demand vs 

temperature",             "Bike demand 

vs humidity", 
            "Bike demand vs windspeed", 
            "Bike demand vs hr", 
            "Bike demand vs xformHr") 
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xAxis <- c("temp", "hum", "windspeed", "hr", 

"xformHr") 
capture.output( Map(function(X, 

label){       ggplot(BikeShare, aes_string(x = 

X, y = "cnt")) +  
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      geom_point(aes_string(colour = "cnt"), alpha = 

0.1) +       scale_colour_gradient(low = "green", high = 

"blue") +  
      geom_smooth(method = "loess") +  
      ggtitle(label) + 
      theme(text = element_text(size=20)) }, 
    xAxis, labels),   

file = "NUL" ) 

The resulting plot is shown in Figure 17. 

 

Figure 17. Bike demand by hour with a time-shifted axis 

The bike demand by transformed hour is definitely more of a hump 

shape. However, there is still a bit of residual structure at the lower 

end of the horizontal axis. The question is, will this new variable 

improve the performance of any of the models? A First Model 
Now that we have some basic data transformations, and had a first 

look at the data, it’s time to create a first model. Given the complex 

relationships we see in the data, we will use a nonlinear regression 

model. In particular, we will try the Decision Forest Regression 

module. Figure 18 shows our Azure ML Studio canvas once we have 

all the modules in place. 
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Figure 18. Azure ML Studio with first bike demand model 

There are quite a few new modules on the canvas at this point.  

We added a Split module after the Transform Data Execute R Script 

module. The subselected data are then sampled into training and test 

(evaluation) sets with a 70%/30% split. Ideally, we should introduce 

another split to make separate test and evaluation datasets. The test 

dataset is used for performing model parameter tuning and feature 

selection. The evaluation dataset is used for final performance 

evaluation. For the sake of simplifying our discussion here, we will 

not perform this additional split. 

Note that we have placed the Project Columns module after the Split 

module so we can prune the features we’re using without affecting 

the model evaluation. We use the Project Columns module to select 

the following columns of transformed data for the model: 

• dteday 

• mnth 
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• hr 

• weathersit 

• temp 

• hum 

• cnt 

• monthCount 

• isWorking 

• workTime 

For the Decision Forest Regression module, we have set the 

following parameters: 

• Resampling method = Bagging 

• Number of decision trees = 100 

• Maximum depth = 32 

• Number of random splits = 128 

• Minimum number of samples per leaf = 10 

The model is scored with the Score Model module, which provides 

predicted values for the module from the evaluation data. These 

results are used in the Evaluate Model module to compute the 

summary statistics shown in Figure 19. 

 

Figure 19. Performance statistics for the model 

These results are interesting, but a bit abstract. We have included 

another Execute R Script module, which provides some performance 

evaluations specific to our use case. 

The second Project Columns module selects two columns from the 

Scoring module: cnt and Scored Labels. This data is then used in an 

Execute R Script module. 
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For the first step of this evaluation we’ll create some time series plots 

to compare the actual bike demand to the demand predicted by the 

model using the following code: 

Please replace this entire listing with the 

following to ensure proper indentation: 

## This code will produce various measures of model  
## performance using the actual and predicted values  
## from the Bike rental data. This code is 

intended ## to run in an Azure ML Execute R 

Script module.  
## By changing some comments you can test 

the code ## in RStudio. 

## Source the zipped utility file 

source("src/utilities.R") 

## Read in the dataset if in Azure ML. 
## The second and third line are for test in RStudio  
## and should be commented out if running in Azure 

ML. inFrame <- maml.mapInputPort(1) 
#inFrame <- outFrame[, c("actual", "predicted")] 
#refFrame <- BikeShare 

## Another data frame is created from the data 

produced 
## by the Azure Split module. The columns we need 

are  
## added to inFrame 
## Comment out the next line when running in 

RStudio. refFrame <- maml.mapInputPort(2) 

inFrame[, c("dteday", "monthCount", "hr")] 

<-   refFrame[, c("dteday", "monthCount", 

"hr")] 

## Assign names to the data frame for easy reference 

names(inFrame) <- c("cnt", "predicted", "dteday",                     

"monthCount", "hr") 

## Since the model was computed using the log of 

bike  
## demand transform the results to actual 

counts. inFrame[ , 1:2] <- lapply(inFrame[, 

1:2], exp) 

## If running in Azure ML uncomment the following 

line  
## to create a character representation of the 

POSIXct  
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## Datetime object. This is required since 
## R will interpret the Azure DateTime type as 

POSIXct. inFrame$dteday <- get.date(inFrame$dteday) 

## A POSIXct time series object for the x axis of 

the  
## time series plots. inFrame$Time <- 

POSIX.date(inFrame$dteday, inFrame$hr) 

## Since the sampling process randomized the order 

of  
## the rows sort the data by the Time 

object. inFrame <- 

inFrame[order(inFrame$Time),] 
## Time series plots showing actual and predicted 

values;  
## columns 3 and 4. times <- c(7, 9, 12, 

15, 18, 20, 22) lapply(times, 

function(x){   plot(inFrame$Time[inFrame$

hr == x],      inFrame$cnt[inFrame$hr == 

x], type = "l",      xlab = "Date", ylab 

= "Number of bikes used", 
     main = paste("Bike demand at ",                   

as.character(x), ":00", spe ="")); 
  lines(inFrame$Time[inFrame$hr == x],  
        inFrame$predicted[inFrame$hr == x], type 

= "l",         col = "red")} ) 

Please note the following key steps in this code: 

• A second data frame is read using a second maml.mapInput 

Port() function. The second data frame contains columns used 

to compute the evaluation summaries. Reading these columns 

independently allows you to prune any columns used in the 

model without breaking the evaluation code. 

• The actual and predicted bike demand are transformed to actual 

counts from the logarithmic scale used for the modeling. 

• A POSIXct time series object including both date and hours is 

created. 

• The rows of the data frame are sorted in time series order. The 

Split module randomly samples the rows in the data table. To 

plot these data properly, they must be in time order.  

• Time series plots are created for the actual and predicted values  

using lapply(). Note that we use the plot() and line() 
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functions in the same iteration of lapply so that the two sets of 

lines will be on the correct plot. 

Some results of running this code are shown in Figures 20 and 21. 

 

Figure 20. Time series plot of actual and predicted bike demand at 

0900 
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Figure 21. Time series plot of actual and predicted bike demand at 

1800 

By examining these time series plots, you can see that the model is a 

reasonably good fit. However, there are quite a few cases where the 

actual demand exceeds the predicted demand. 

Let’s have a look at the residuals. The following code creates box 

plots of the residuals, by hour: 

## Box plots of the residuals by hour 
library(ggplot2) 
inFrame$resids <-  inFrame$predicted - inFrame$cnt 

capture.output( plot( ggplot(inFrame, aes(x = 

as.factor(hr),                                           

y = resids)) +  

                        geom_boxplot( ) +                         

ggtitle("Residual of actual versus  
predicted bike demand by 

hour") ),                 file 

= "NUL" ) 

The results can be seen in Figure 22. 
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Figure 22. Box plots of residuals between actual and predicted values 

by hour 

Studying this plot, we see that there are significant residuals at certain 

hours. The model consistently underestimates demand at 0800, 1700, 

and 1800—peak commuting hours. Further, the dispersion of the 

residuals appears to be greater at the peak hours. Clearly, to be useful, 

a bike sharing system should meet demand at these peak hours.  

Using the following code, we’ll compute the median residuals by 

both hour and month count: 

library(dplyr) 
## First compute and display the median residual by 

hour 
evalFrame <- inFrame %>%     

group_by(hr) %>% 
    summarise(medResidByHr = 

format(round(         median(predic

ted - cnt), 2),       nsmall = 2))  

## Next compute and display the median residual by 

month 
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tempFrame <- inFrame %>%     

group_by(monthCount) %>% 
    summarise(medResid = median(predicted - cnt))  

evalFrame$monthCount <- tempFrame$monthCount 

evalFrame$medResidByMcnt <- format(round( 
    tempFrame$medResid, 2),   

nsmall = 2) 

print("Breakdown of residuals") 

print(evalFrame) 

## Output the evaluation results 

outFrame <- data.frame(evalFrame) 

maml.mapOutputPort('outFrame') 

The median residuals by hour and by month are shown in Figure 23. 

 

Figure 23. Median residuals by hour of the day and month count 

The results in Figure 23 show that residuals are consistently biased to 

the negative side, both by hour and by month. This confirms that our 

model consistently underestimates bike demand. 

The danger of over-parameterizing or overfitting a 

model is always present. While decision forest 

algorithms are known to be fairly insensitive to this 

problem, we ignore this problem at our peril. Dropping 
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features that do little to improve a model is always a 

good idea. 

In the course of this model investigation, I pruned the features one at 

a time to determine which ones contributed little to the reduction of 

the residuals. I found that while wind speed improved the aggregate 

error statistics, it caused residuals for some times of the day to 

increase quite a lot. This behavior is a sign of overfitting, so I dropped 

this feature from the model. 

As we try other models, we’ll continue to prune features, so that the 

remaining features are those best suited to each model. 
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In our example, we’ve made use of the dplyr package. 

This package is both powerful and deep with 

functionality. If you would like to know more about 

dplyr, read the vignettes in CRAN. 

Improving the Model and 

Transformations 
The question now is, how can we improve these model results? It is  

possible that improvements in the choice of model parameters or an 

alternative model might give better results. However, it is typically 

the case that improved feature engineering and data cleaning leads to 

greater improvements in results than small model improvements. 

Another Data Transformation 

Looking at Figures 10, 13, and 14, as well as differences in the time 

series plots in Figures 8 and 9, you can see outliers in demand on the 

low side. These outliers may well be a source of bias leading to the 

model underestimating demand. 

Let’s try another data transformation—filtering out the low end 

outliers. To wit, we’ve added another Execute R Script module as 

shown in Figure 24. The code in this module will filter out down-

side outliers in the training data. 

We only want to apply this filter to the training data, not the 

evaluation data. When using the predictive module in production, we 

are computing an estimate of the response, and will not have the 

actual response values to trim. Consequently, the new Execute R 

Script module is placed after the Split module. 

http://cran.r-project.org/web/packages/dplyr/index.html
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Figure 24. Updated experiment with new Execute R Script to trim 

outliers 

The code for this new Execute R Script module is shown here: 

## This code removes downside outliers 

from the ## training sample of the bike 

rental data.  
## The value of Quantile variable can be changed  
## to change the trim level. This code is s 

intended ## to run in an Azure ML Execute R 

Script module. ## By changing some comments 

you can test the code ## in RStudio. 

## Read in the dataset.  
BikeShare <- maml.mapInputPort(1) 

## Build a dataframe with the quantile by 

month and ## hour. Parameter Quantile 

determines the trim point.  
Quantile <- 0.10 

library(dplyr) 



 

40 | Data Science in the Cloud with Microsoft Azure Machine Learning and R  

BikeShare$dteday <- as.character(BikeShare$dteday) 
quantByPer <- 

(   BikeShare %>%     

group_by(workTime, 

monthCount) %>%     

summarise(Quant = 

quantile(cnt,                                

probs = Quantile,                                

na.rm = TRUE))  ) 

## Create a data frame to hold the logical vector 
## indexed by monthCount and 

hr. indFrame <- 

data.frame(   workTime = 

BikeShare$workTime,   

monthCount = 

BikeShare$monthCount,   ind = 

rep(TRUE, nrow(BikeShare))   ) 

## Need to loop through all months and hours since 
## these are now randomized by the sample. Memory 

for  
## the data frame is allocated so this in-place  
## operation should not be too 

slow. for(month in 

1:48){   for(hour in 0:47){ 
    indFrame$ind[indFrame$workTime == hour &                    

indFrame$monthCount == month] <-       

BikeShare$cnt[BikeShare$workTime == hour &  
                      BikeShare$monthCount == month] 

>       quantByPer$Quant[quantByPer$workTime == hour 

&                          quantByPer$monthCount == 

month] 

  } 
} 

BikeShare$dteday <- as.POSIXct(strptime(paste( 
    BikeShare$dteday, "00:00:00", sep = ""),  
  

"%Y-%m-%d %H:%M:%S")) 

## Filter the rows we 

want. 
BikeShare <- BikeShare[indFrame$ind, ]  

## Output the transformed data frame. 

maml.mapOutputPort('BikeShare') 

This code is a bit complicated, partly because the order of the data is 

randomized by the Split module. There are three steps in this filter: 
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1. Using the dplyr package, we compute the quantiles of bike 

demand (cnt) by workTime and monthCount. The workTime 

variable distinguishes between time on working and nonworking 

days. Since bike demand is clearly different for working and non-

working days, this stratification is necessary for the trimming 

operation. In this case, we use a 10% quantile. 

2. Compute a data frame containing a logical vector, indicating if 

the bike demand (cnt) value is an outlier. This operation 

requires a fairly complicated mapping between a single value 

from the quantByPer data frame and multiple values in the 

vector BikeShare$cnt. We use nested for loops, since the 

order of the data in time is randomized by the Split module. Even 

if you are fairly new to R, you may notice this is a decidedly “un-

Rlike” practice. To ensure efficiency, we pre-allocate the 

memory for this data frame to ensure that the assignment of 

values in the inner loop is performed in place. 

3. Finally, use the logical vector to remove rows with outlier values 

from the data frame. 

Evaluating the Improved Model 
Let’s look at the results of using this filter. As a first step, the 

summary statistics produced by the Evaluate module are shown in 

Figure 25. 

 

Figure 25. Performance statistics for the model with outliers trimmed 

in the training data 

When compared with Figure 19, all of these statistics are a bit worse 

than before. However, keep in mind that our goal is to limit the 

number of times we underestimate bike demand. This process will 

cause some degradation in the aggregate statistics as bias is 

introduced. 

Let’s look in depth and see if we can make sense of these results. 

Figure 26 shows box plots of the residuals by hour of the day. 



 

42 | Data Science in the Cloud with Microsoft Azure Machine Learning and R  

 

Figure 26. Residuals by hour with outliers trimmed in the training 

data 

If you compare these results with Figure 22 you will notice that the 

residuals are now biased to the positive—this is exactly what we 

hoped for. It is better for users if the bike share system has a slight 

excess of inventory rather than a shortage. In comparing Figures 22 

and 26, notice the vertical scales are different, effectively shifted up 

by 100. 

Figure 27 shows the median residuals by both hour and month count. 
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Figure 27. Median residuals by hour of the day and month count with 

outliers trimmed in the training data 

Comparing Figure 27 to Figure 23, we immediately see that Figure 

27 shows a positive bias in the residuals, whereas Figure 23 had an 

often strong, negative bias in the residuals. Again, this is the result 

we were hoping to see. 

Despite some success, our model is still not ideal. Figure 26 still 

shows some large residuals, sometimes in the hundreds. These large 

outliers could cause managers of the bike share system to lose 

confidence in the model. 

By now you probably realize that careful study of 

residuals is absolutely essential to understanding and 

improving model performance. It is also essential to 

understand the business requirements when interpreting 

and improving predictive models. 

Another Azure ML Model 
Perhaps another model type will provide better performance—

fortunately, Azure ML makes it quick and easy to test other model 

types. 
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We have added a neural network regression model to our project. 

Figure 28 shows the updated canvas in the Azure ML Studio. 

 

Figure 28. Experiment with neural network regression model added 

Given that you can cut and paste modules in Azure ML 

Studio, it took only minutes to add this additional model 

to the experiment. 

We also added a second Project Columns module, so the features used 

by the two models can be selected independently. Heeding the 

Warning on page 14, we selected the following features for the neural 

network model: 

• hr 

• xformHr 

• temp 

• hum 

• dteday 
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Another Azure ML Model  

• monthCount 

• workTime 

• mnth 

The parameters of the Neural Network Regression module are: 

• Hidden layer specification: Fully connected case 

• Number of hidden nodes: 100 

• Initial learning weights diameter: 0.05 

• Learning rate: 0.005 

• Momentum: 0 

• Type of normalizer: Gaussian normalizer 

• Number of learning iterations: 500 

• Random seed: 5467 

Figure 29 presents a comparison of the summary statistics of the tree 

model and the new neural network model (second line). 

 

Figure 29. Comparison of evaluation summary statistics for two 

models 

The summary statistics for the new model are at least a bit better, 

overall; this is an encouraging result, but we need to look further.  

Let’s look at the residuals in more detail. Figure 30 shows a box plot 

of the residuals by the hour of the day. 
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Figure 30. Box plot of the residuals for the neural network regression 

model by hour 

The box plot shows that the residuals of the neural network model 

exhibit some significant outliers, both on the positive and negative 

side. Comparing these residuals to Figure 26, the outliers are not as 

extreme. 

The details of the mean residual by hour and by month can be seen 

below in Figure 31. 
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Figure 31. Median residuals by hour of the day and month count for 

the neural network regression model 

The results in Figure 31 confirm the presence of some negative 

residuals at certain hours of the day; compared to Figure 27, these 

figures look quite similar. 

In summary, there may be a tradeoff between bias in the results and 

dispersion of the residuals; such phenomena are common. More 

investigation is required to fully understand this problem. 

Using an R Model in Azure ML 
In this section, you will learn how to incorporate an R language model 

into your Azure ML workflow. For a schematic view of an R 

language model in an Azure ML workflow, see Figure 3. 

We’ve added two new Execute R Script modules to our experiment.  

We also use the copy and paste feature to add another Execute R 

Script module with the evaluation code. The resulting workflow is 

shown in Figure 32. 
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Figure 32. Experiment workflow with R model, with predict and 

evaluate modules added on the right. 

In this example, we’ll try a support vector machine (SVM) regression 

model, using the ksvm() function from the kernlab package. 

The first Execute R Script module computes the model from the 

training data, using the following code: 

## This code computes a random forest model. 
## This code is s intended to run in an Azure ML  
## Execute R Script module. It can be tested 

in ## RStudio by now executing the Azure ML 

specific code. 

## Source the zipped utility file 

source("src/utilities.R") 

## Read in the dataset.  
BikeShare <- maml.mapInputPort(1) 

library(randomForest) 
rf.bike <- randomForest(cnt ~ xformHr + temp +                           

monthCount + hum + dayWeek +                           

mnth + isWorking + workTime,                         

data = BikeShare, ntree = 500,                         

importance = TRUE, nodesize = 25) 
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importance(rf.bike) outFrame <- 

serList(list(bike.model = rf.bike)) 

## Output the serialized model data frame. 

maml.mapOutputPort('outFrame') 

This code is rather straightforward, but here are a few key points: 

• The utilities are read from the ZIP file using the source() 

function. 

• In this model formula, we have reduced the number of facets 

because SVM models are known to be sensitive to 

overparameterization. 

• The cost (C) is set to a value of 1000. The higher the cost, the 

greater the complexity of the model and the greater the likelihood 

of overfitting. 

• Since we are running on a hefty cloud server, we increased the 

cache size to 1000 MB. 

• The completed model is serialized for output using the ser 

List() function from the utilities. 

There is additional information available on serialization 

and unserialization of R model objects in Azure ML: 

• A tutorial along with example code 

• A video tutorial 

Note: According to Microsoft, an R object interface 

between Execute R Script modules will become 

available in the future. Once this feature is in place, the 

need to serialize R objects is obviated. 

The second Execute R Script module computes predictions from test 

data using the model. The code for this module is shown below: 

## This code will compute predictions from test data  
## for R models of various types. This code is 

## intended to run in an Azure ML Execute R 

Script module. ## By changing some comments you 

can test the code ## in RStudio. 

https://github.com/Quantia-Analytics/AzureML-R-Serialization
https://www.youtube.com/watch?v=vk9Ic1F9YTk&feature=youtu.be
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## Source the zipped utility file 

source("src/utilities.R") 
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## Get the data frame with the model from 

port 1 ## and the data set from port 2. 

These two lines  
## will only work in Azure ML. 

modelFrame  <- 

maml.mapInputPort(1) 

BikeShare <- 

maml.mapInputPort(2) 

## comment out the following line if running in 

Azure ML. 
#modelFrame <- outFrame 

## Extract the model from the serialized input and 

assign  
## to a convenient name. 

modelList <- 

unserList(modelFrame) 

bike.model <- 

modelList$bike.model 

## Output a data frame with actual and values 

predicted  
## by the model. 

library(gam) 

library(randomForest) 

library(kernlab) 

library(nnet) 
outFrame <- data.frame( actual = BikeShare$cnt, 
                       predicted =                          

predict(bike.model,                                  

newdata = BikeShare)) 

## The following line should be executed only when 

running in 
## Azure ML Studio to output the serialized model. 

maml.mapOutputPort('outFrame')  

Here are a few key points on this code: 

• Data frames containing the test data and the 

serialized model are read in. The model object 

is extracted by the unserList() function. 

Note that we are using both table input ports 

here. 
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• A number of packages are loaded—you can 

make predictions for any model object class in 

these packages, with a predict method. 

There are some alternatives to serializing R model 

objects that you should keep in mind. 

In some cases, it may be desirable to re-compute an R 

model each time it is used. For example, if the size of the 

data sets you receive through a web service is relatively 

small and includes training data, you can recompute the 

model on each use. Or, if the training data is changing 

fairly rapidly it might be best to recompute your model. 

Alternatively, you may wish to use an R model object 

you have computed outside of Azure ML. For example, 

you may wish to use a model you have created 

interactively in RStudio. In this case: 

• Save the model object into a zip file. 

• Upload the zip file to Azure ML. 

• Connect the zip file to the script bundle port of an 

Execute R Script module. 

• Load the model object into your R script with load 

(“src/your.model.rdata”). 

Running this model and the evaluation code will produce a box plot 

of residuals by hour, as shown in Figure 33. 
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Figure 33. Box plot of the residuals for the SVM model by hour 

The table of median residuals by hour and by month is shown in 

Figure 34. 
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Figure 34. Median residuals by hour of the day and month count for 

the SVM model 

The box plots in Figure 33 and the median residuals displayed in 

Figure 34 show that the SVM model has inferior performance to the 

neural network and decision tree models. Regardless of this 

performance, we hope you find this example of integrating R models 

into an Azure M workflow useful. 

Some Possible Next Steps 
It is always possible to do more when refining a predictive model. 

The question must always be: is it worth the effort for the possible 

improvement? The median performance of the decision forest 

regression model and the neural network regression model are both 

fairly good. However, there are some significant outliers in the 

residuals; thus, some additional effort is probably justified before 

either model is put into production. 

There is a lot to think about when trying to improve the results. We 

could consider several possible next steps, including the following: 

• Understand the source of the residual outliers.  We have not 

investigated if there are systematic sources of these outliers. Are 
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there certain ranges of predictor variable values that give these 

erroneous results? Do the outliers correspond to exogenous 

events, such as parades and festivals, failures of other public 

transit, holidays that are not observed as non-working days, etc.? 

Such an investigation will require additional data. Or, are these 

outliers a sign of overfitting? 

• Perform additional feature engineering. We have tried a few 

obvious new features with some success, but there is no reason 

to think this process has run its course. Perhaps another time axis 

transformation that orders the hour-to-hour variation in demand 

would perform better. Some moving averages might reduce the 

effects of the outliers. 

• Prune features to prevent overfitting. Overfitting is a major 

source of poor model performance. As noted earlier, we have 

pruned some features; perhaps additional pruning is required. 

• Change the quantile of the outlier filter.  We arbitrarily chose 

the 0.10 quantile, but it could easily be the case that another value 

might give better performance; it is also possible that some other 

type of filter might help. 

• Try some other models. Azure ML has a Boosted Decision Tree 

Regression module. Further, we have tried only one of many 

possible R models and packages. 

• Optimize the parameters of the models. We are using our 

initial guesses on parameters for each of these models, and there 

is no reason to believe these are the best settings possible. The 

Azure ML Sweep module systematically steps over a grid of 

possible model parameters. In a similar way, the train() 

function in the caret package can be used to optimize the 

parameters of some R models. 

Publishing a Model as a Web Service 
Now that we have some reasonably good models, we can publish one 

of them as a web service. The workflow for a published model is 

shown in Figure 4. Complete documentation on publishing and 

testing an Azure ML model as a web service can be found at the 

Microsoft Azure web page. 

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/
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Publishing a Model as a Web Service  

Both the decision tree regression model and the neural network 

regression model produced reasonable results. We’ll select the neural 

network model because the residual outliers are not quite as extreme. 

Right-click on the output port of the Train Model module for the 

neural network and select “Save As Trained Model.” The form shown 

in Figure 35 pops up and you can enter an annotation for the trained 

model. 

 

Figure 35. Annotating the model 

Create and test the published web services model using the following 

steps: 

1. Drag the trained model from the “Trained Models” tab on the 

pallet onto the canvas. 

2. Connect the trained model to the Score Model module. 

3. Delete the unneeded modules from the canvas. 

4. Set the input by right-clicking on the input to the Transform Data 

Execute R Script module and selecting “Set and Published 

Input.” 
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5. Set the output by right-clicking on the output of the second 

Transform Output Execute R Script module and selecting “Set as 

Published Output.” 

6. Test the model. 

The second Execute R Script module transforms bike demand to 

actual numbers from the logarithmic scale used in the model. The 

code shown below also subselects the columns of interest: 

## Read in the dataset 

inFrame <- 

maml.mapInputPort(1) 

## Since the model was computed using the log of 

bike demand 
## transform the results to actual counts. 

inFrame[, 9] <- exp(inFrame[, 9]) 

## Select the columns and apply names for 

output. outFrame <- inFrame[, c(1, 2, 3, 9)] 
colnames(outFrame) <- c('Date', "Month", "Hour", 

"BikeDemand") 

## Output the transformed data frame. 

maml.mapOutputPort('outFrame') 

The completed model is shown in Figure 36. We need to remove the 

test dataset and promote the model to the Azure Live Server, and then 

it is ready for production. 

 

Figure 36. The pruned workflow with published input and output 
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Publishing a Model as a Web Service  

We can use an R model object in a web service. In the 

above example, we would substitute an Execute R Script 

module in place of the Score Module. This Execute R 

Script module uses the R model object’s predict method. 

The model object can be passed through one of the 

dataset ports in serialized form, or from a zip file via the 

script bundle port. 

Summary 
We hope this article has motivated you to try your own data science 

problems in Azure ML. Here are some final key points: 

• Azure ML is an easy-to-use and powerful environment for the 

creation and cloud deployment of predictive analytic solutions.  

• R code is readily integrated into the Azure ML workflow. 

• Careful development, selection, and filtering of features is the 

key to most data science problems. 

• Understanding business goals and requirements is essential to 

creating a successful data science solution. 

• A complete understanding of residuals is essential to the 

evaluation of predictive model performance. 
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