

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Data Science in the
Cloud with Microsoft

Azure Machine
Learning and R

Stephen F. Elston

Data Science in the Cloud with Microsoft Azure Machine

Learning and R by Stephen F. Elston

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

www.allitebooks.com

http://www.allitebooks.org

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,

CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.

Online editions are also available for most tit les (http://safaribooksonline.com). For

more information, contact our corporate/institutional sales department: 800-998-9938

or corporate@oreilly.com.

Editor: Shannon Cutt Interior Designer: David Futato

Production Editor: Melanie Yarbrough Cover Designer: Karen Montgomery

Copyeditor: Charles Roumeliotis Illustrator: Rebecca Demarest

Proofreader: Melanie Yarbrough

February 2015: First Edition

Revision History for the First Edition
2015-01-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491919590 for release details.

While the publisher and the author have used good faith efforts to ensure that the

information and instructions contained in this work are accurate, the publish er and the

author disclaim all responsibility for errors or omissions, including without limitation

responsibility for damages resulting from the use of or reliance on this work. Use of

the information and instructions contained in this work is at your own risk. If any

code samples or other technology this work contains or describes is subject to open

source licenses or the intellectual property rights of others, it is your responsibility to

ensure that your use thereof complies with such licenses and/or rights.

978-1-491-91959-0

[LSI]

Table of Contents

www.allitebooks.com

http://safaribooksonline.com/
http://oreilly.com/catalog/errata.csp?isbn=9781491919590
http://oreilly.com/catalog/errata.csp?isbn=9781491919590
http://www.allitebooks.org

Microsoft Azure Machine

Learning. iii
Introduction 1

Overview of Azure ML 2

A Regression Example 7

Improving the Model and Transformations 33

Another Azure ML Model 38

Using an R Model in Azure ML 42

Some Possible Next Steps 48

Publishing a Model as a Web Service 49

Summary 52

vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

1

Data Science in the
Cloud with Microsoft

Azure Machine
Learning and R

Introduction
Recently, Microsoft launched the Azure Machine Learning cloud

platform—Azure ML. Azure ML provides an easy-to-use and

powerful set of cloud-based data transformation and machine

learning tools. This report covers the basics of manipulating data, as

well as constructing and evaluating models in Azure ML, illustrated

with a data science example.

Before we get started, here are a few of the benefits Azure ML

provides for machine learning solutions:

• Solutions can be quickly deployed as web services.

• Models run in a highly scalable cloud environment.

• Code and data are maintained in a secure cloud environment.

• Available algorithms and data transformations are extendable

using the R language for solution-specific functionality.

Throughout this report, we’ll perform the required data manipulation

then construct and evaluate a regression model for a bicycle sharing

demand dataset. You can follow along by downloading the code and

data provided below. Afterwards, we’ll review how to publish your

trained models as web services in the Azure cloud.

www.allitebooks.com

http://www.allitebooks.org

2 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Downloads
For our example, we will be using the Bike Rental UCI dataset

available in Azure ML. This data is also preloaded in the Azure ML

Studio environment, or you can download this data as a .csv file from

the UCI website. The reference for this data is Fanaee-T, Hadi, and

Gama, Joao, “Event labeling combining ensemble detectors and

background knowledge,” Progress in Artificial Intelligence (2013):

pp. 1-15, Springer Berlin Heidelberg.

The R code for our example can be found at GitHub.

Working Between Azure ML and RStudio
When you are working between AzureML and RStudio, it is helpful

to do your preliminary editing, testing, and debugging in RStudio.

This report assumes the reader is familiar with the basics of R. If you

are not familiar with using R in Azure ML you should check out the

following resources:

• Quick Start Guide to R in AzureML

• Video introduction to R with Azure Machine Learning

• Video tutorial of another simple data science example

The R source code for the data science example in this report can be

run in either Azure ML or RStudio. Read the comments in the source

files to see the changes required to work between these two

environments.

Overview of Azure ML
This section provides a short overview of Azure Machine Learning.

You can find more detail and specifics, including tutorials, at the

Microsoft Azure web page.

In subsequent sections, we include specific examples of the concepts

presented here, as we work through our data science example.

Azure ML Studio

Azure ML models are built and tested in the web-based Azure ML

Studio using a workflow paradigm. Figure 1 shows the Azure ML

Studio.

www.allitebooks.com

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://github.com/Quantia-Analytics/AzureML-Regression-Example
http://bit.ly/1BG7bia
https://www.youtube.com/watch?v=G0r6v2k49ys
https://www.youtube.com/watch?v=q-PJ3p5C0kY
http://azure.microsoft.com/en-us/documentation/services/machine-learning/
http://www.allitebooks.org

 | 3

Figure 1. Azure ML Studio

In Figure 1, the canvas showing the workflow of the model is in the

center, with a dataset and an Execute R Script module on the canvas.

On the left side of the Studio display, you can see datasets, and a

series of tabs containing various types of modules. Properties of

whichever dataset or module has been clicked on can be seen in the

right panel. In this case, you can also see the R code contained in the

Execute R Script module.

Modules and Datasets
Mixing native modules and R in Azure ML

Azure ML provides a wide range of modules for data I/O, data

transformation, predictive modeling, and model evaluation. Most

native Azure ML modules are computationally efficient and scalable.

The deep and powerful R language and its packages can be used to

meet the requirements of specific data science problems. For example,

solution-specific data transformation and cleaning can be coded in R.

R language scripts contained in Execute R Script modules can be run

in-line with native Azure ML modules. Additionally, the R language

gives Azure ML powerful data visualization capabilities. In other

cases, data science problems that require specific models available in

R can be integrated with Azure ML.

www.allitebooks.com

http://www.allitebooks.org

4 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Overview of Azure ML

As we work through the examples in subsequent sections, you will

see how to mix native Azure ML modules with Execute R Script

modules.

Module I/O

In the AzureML Studio, input ports are located above module icons,

and output ports are located below module icons.

If you move your mouse over any of the ports on a

module, you will see a “tool tip” showing the type of the

port.

For example, the Execute R Script module has five ports:

• The Dataset1 and Dataset2 ports are inputs for rectangular Azure

data tables.

• The Script Bundle port accepts a zipped R script file (.R file) or

R dataset file.

• The Result Dataset output port produces an Azure rectangular

data table from a data frame.

• The R Device port produces output of text or graphics from R.

Workflows are created by connecting the appropriate ports between

modules—output port to input port. Connections are made by

dragging your mouse from the output port of one module to the input

port of another module.

In Figure 1, you can see that the output of the data is connected to the

Dataset1 input port of the Execute R Script module.

Azure ML Workflows
Model training workflow

Figure 2 shows a generalized workflow for training, scoring, and

evaluating a model in Azure ML. This general workflow is the same

for most regression and classification algorithms.

www.allitebooks.com

http://www.allitebooks.org

 | 5

Figure 2. A generalized model training workflow for Azure ML

models.

Key points on the model training workflow:

• Data input can come from a variety of data interfaces, including

HTTP connections, SQLAzure, and Hive Query.

• For training and testing models, you will use a saved dataset.

• Transformations of the data can be performed using a

combination of native Azure ML modules and the R language.

• A Model Definition module defines the model type and

properties. On the lefthand pane of the Studio you will see

numerous choices for models. The parameters of the model are

set in the properties pane.

• The Training module trains the model. Training of the model is

scored in the Score module and performance summary statistics

are computed in the Evaluate module.

The following sections include specific examples of each of the steps

illustrated in Figure 2.

Workflow for R model training

The Azure ML workflow changes slightly if you are using an R model.

The generalized workflow for this case is shown in Figure 3.

6 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Overview of Azure ML

7 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 3. Workflow for an R model in Azure ML

In the R model workflow shown in Figure 3, the computation and

prediction steps are in separate Execute R Script modules. The R

model object is serialized, passed to the Prediction module, and

unserialized. The model object is used to make predictions, and the

Evaluate module measures the performance of the model.

Two advantages of separating the model computation step from the

prediction step are:

• Predictions can be made rapidly on any number of new data,

without recomputing the model.

• The Prediction module can be published as a web service.

Publishing a model as a web service

Once you have developed a satisfactory model you can publish it as

a web service. You will need to create streamlined workflow for

promotion to production. A generalized example is shown in Figure

4.

8 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 4. Workflow for an Azure ML model published as a web

service

Key points on the workflow for publishing a web service:

• Data transformations are typically the same as those used to

create the trained model.

• The product of the training processes (discussed above) is the

trained model.

• You can apply transformations to results produced by the model.

Examples of transformations include deleting unneeded columns,

and converting units of numerical results.

A Regression Example

Problem and Data Overview
Demand and inventory forecasting are fundamental business

processes. Forecasting is used for supply chain management, staff

level management, production management, and many other

applications.

In this example, we will construct and test models to forecast hourly

demand for a bicycle rental system. The ability to forecast demand is

important for the effective operation of this system. If insufficient

bikes are available, users will be inconvenienced and can become

 A Regression Example |

 9

reluctant to use the system. If too many bikes are available, operating

costs increase unnecessarily.

For this example, we’ll use a dataset containing a time series of

demand information for the bicycle rental system. This data contains

hourly information over a two-year period on bike demand, for both

registered and casual users, along with nine predictor, or independent,

variables. There are a total of 17,379 rows in the dataset.

The first, and possibly most important, task in any predictive

analytics project is to determine the feature set for the predictive

model. Feature selection is usually more important than the specific

choice of model. Feature candidates include variables in the dataset,

transformed or filtered values of these variables, or new variables

computed using several of the variables in the dataset. The process of

creating the feature set is sometimes known as feature selection or

feature engineering.

In addition to feature engineering, data cleaning and editing are

critical in most situations. Filters can be applied to both the predictor

and response variables.

See “Downloads” on page 2 for details on how to access the dataset

for this example.

A first set of transformations

For our first step, we’ll perform some transformations on the raw

input data using the code shown below in an Azure ML Execute R

Script module:

This file contains the code for the

transformation
of the raw bike rental data. It is intended to

run in an
Azure ML Execute R Script module. By changing
some comments you can test the code in

RStudio ## reading data from a .csv file.

The next lines are used for testing in RStudio

only.
These lines should be commented out and the

following ## line should be uncommented when

running in Azure ML.
#BikeShare <- read.csv("BikeSharing.csv", sep = ",",

10 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

header = T, stringsAsFactors

= F)
#BikeShare$dteday <- as.POSIXct(strptime(
paste(BikeShare$dteday, "

",
"00:00:00",
sep = ""),
"%Y-%m-%d %H:%M:%S"))
BikeShare <- maml.mapInputPort(1)

 A Regression Example |

 11

Select the columns we need
BikeShare <- BikeShare[, c(2, 5, 6, 7, 9, 10,
 11, 13, 14, 15, 16, 17)]

Normalize the numeric perdictors
BikeShare[, 6:9] <- scale(BikeShare[, 6:9])

Take the log of response variables. First we
must ensure there are no zero values. The

difference ## between 0 and 1 is

inconsequential.
BikeShare[, 10:12] <- lapply(BikeShare[, 10:12],

function(x){ifelse(x == 0,

1,x)})
BikeShare[, 10:12] <- lapply(BikeShare[, 10:12],

function(x){log(x)})

Create a new variable to indicate workday
BikeShare$isWorking <- ifelse(BikeShare$workingday &
 !BikeShare$holiday,

1, 0) ##

Create a new variable to indicate workday

Add a column of the count of months which

could ## help model trend. Next line is only

needed running
in Azure ML
Dteday <- strftime(BikeShare$dteday,

format = "%Y-%m-%dT%H:%M:%S") yearCount

<-

as.numeric(unlist(lapply(strsplit(

 Dteday, "-"),

function(x){x[1]}))) - 2011 BikeShare$monthCount <-

12 * yearCount + BikeShare$mnth

Create an ordered factor for the day of the week
starting with Monday. Note this factor is then
converted to an "ordered" numerical

value to be ## compatible with Azure ML

table data types.
BikeShare$dayWeek <-

as.factor(weekdays(BikeShare$dteday))
BikeShare$dayWeek <-

as.numeric(ordered(BikeShare$dayWeek,

levels = c("Monday",

"Tuesday",

"Wednesday",

12 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

"Thursday",

"Friday",

"Saturday",

"Sunday")))

Output the transformed data frame.

maml.mapOutputPort('BikeShare')

In this case, five basic types of transformations are being performed:

• A filter, to remove columns we will not be using.

• Transforming the values in some columns. The numeric

predictor variables are being centered and scaled and we are

taking the log of the response variables. Taking a log of a

response variable is commonly done to transform variables with

non-negative values to a more symmetric distribution.

• Creating a column indicating whether it’s a workday or not.

• Counting the months from the start of the series. This variable is

used to model trend.

• Creating a variable indicating the day of the week.

In most cases, Azure ML will treat date-time formatted

character columns as having a date-time type. R will

interpret the Azure ML date-time type as POSIXct. To

be consistent, a type conversion is required when reading

data from a .csv file. You can see a commented out line

of code to do just this.

If you encounter errors with date-time fields when

working with R in Azure ML, check that the type

conversions are working as expected.

Exploring the data

Let’s have a first look at the data by walking through a series of

exploratory plots.

 A Regression Example |

 13

At this point, our Azure ML experiment looks like Figure 5. The first

Execute R Script module, titled “Transform Data,” contains the code

shown here.

Figure 5. The Azure ML experiment as it now looks

The Execute R Script module shown at the bottom of Figure 5 runs

code for exploring the data, using output from the Execute R Script

module that transforms the data.

Our first step is to read the transformed data and create a correlation

matrix using the following code:

This code will create a series of data

visualizations
to explore the bike rental dataset. This code is
intended to run in an Azure ML Execute

R ## Script module. By changing some

comments you can ## test the code in

RStudio.

Source the zipped utility file

source("src/utilities.R")

Read in the dataset.
BikeShare <- maml.mapInputPort(1)

Extract the date in character format
BikeShare$dteday <- get.date(BikeShare$dteday)

Look at the correlation between the predictors

and
between predictors and quality. Use a

linear ## time series regression to

detrend the demand.

14 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Time <- POSIX.date(BikeShare$dteday, BikeShare$hr)
BikeShare$count <- BikeShare$cnt -

fitted(lm(BikeShare$cnt ~ Time, data =

BikeShare)) cor.BikeShare.all <-

cor(BikeShare[, c("mnth",

"hr",
 "weathersit",
 "temp",
 "hum",
 "windspeed",
 "isWorking",
 "monthCount",
 "dayWeek",
 "count")])

diag(cor.BikeShare.all) <- 0.0
cor.BikeShare.all

library(lattice)
plot(levelplot(cor.BikeShare.all,
 main ="Correlation matrix for all bike

users", scales=list(x=list(rot=90),

cex=1.0)))

We’ll use lm() to compute a linear model used for de-trending the

response variable column in the data frame. De-trending removes a

source of bias in the correlation estimates. We are particularly

interested in the correlation of the predictor variables with this

detrended response.

The levelplot() function from the lattice package is

wrapped by a call to plot(). This is required since, in

some cases, Azure ML suppresses automatic printing,

and hence plotting. Suppressing printing is desirable in

a production environment as automatically produced

output will not clutter the result. As a result, you may

need to wrap expressions you intend to produce as

printed or plotted output with the print() or plot()

functions.

You can suppress unwanted output from R functions

with the capture.output() function. The output file

can be set equal to NUL. You will see some examples of

this as we proceed.

www.allitebooks.com

http://www.allitebooks.org

 A Regression Example |

 15

This code requires a few functions, which are defined in the utilities.R

file. This file is zipped and used as an input to the Execute R Script

module on the Script Bundle port. The zipped file is read with the

familiar source() function.

fact.conv <- function(inVec){ ##

Function gives the day variable

meaningful
 ## level names.

outVec <-

as.factor(inVec)
 levels(outVec) <- c("Monday", "Tuesday",

"Wednesday", "Thursday",

"Friday", "Saturday",
 "Sunday")

outVec

}

get.date <- function(Date){ ##

Funciton returns the data as a

character
 ## string from a POSIXct datatime

object. strftime(Date, format =

"%Y-%m-%d %H:%M:%S") }

POSIX.date <- function(Date,Hour){
 ## Function returns POSIXct time series object
 ## from date and hour arguments.

as.POSIXct(strptime(paste(Date, " ",

as.character(Hour),
 ":00:00", sep = ""),
 "%Y-%m-%d %H:%M:%S"))
}

Using the cor() function, we’ll compute the correlation matrix. This

correlation matrix is displayed using the levelplot() function in

the lattice package.

A plot of the correlation matrix showing the relationship between the

predictors, and the predictors and the response variable, can be seen

in Figure 6. If you run this code in an Azure ML Execute R Script,

you can see the plots at the R Device port.

16 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 6. Plot of correlation matrix

This plot is dominated by the strong correlation between dayWeek

and isWorking—this is hardly surprising. It’s clear that we don’t

need to include both of these variables in any model, as they are

proxies for each other.

To get a better look at the correlations between other variables, see

the second plot, in Figure 7, without the dayWeek variable.

Figure 7. Plot of correlation matrix without dayWeek variable

 A Regression Example |

 17

In this plot we can see that a few of the predictor variables exhibit

fairly strong correlation with the response. The hour (hr), temp, and

month (mnth) are positively correlated, whereas humidity (hum) and

the overall weather (weathersit) are negatively correlated. The

variable windspeed is nearly uncorrelated. For this plot, the

correlation of a variable with itself has been set to 0.0. Note that the

scale is asymmetric.

We can also see that several of the predictor variables are highly

correlated—for example, hum and weathersit or hr and hum.

These correlated variables could cause problems for some types of

predictive models.

You should always keep in mind the pitfalls in the

interpretation of correlation. First, and most importantly,

correlation should never be confused with causation. A

highly correlated variable may or may not imply

causation. Second, a highly correlated or nearly

uncorrelated variable may, or may not, be a good

predictor. The variable may be nearly collinear with

some other predictor or the relationship with the

response may be nonlinear.

Next, time series plots for selected hours of the day are created, using

the following code:

Make time series plots for certain hours of the

day
times <- c(7, 9, 12, 15, 18, 20, 22)

lapply(times,

function(x){ plot(Time[BikeShare$

hr == x],
 BikeShare$cnt[BikeShare$hr == x],

type = "l", xlab = "Date", ylab = "Number of

bikes used", main = paste("Bike demand at ",

as.character(x), ":00", spe ="")) }) Two examples of the

time series plots for two specific hours of the day are shown in

Figures 8 and 9.

18 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 8. Time series plot of bike demand for the 0700 hour

 A Regression Example |

 19

Figure 9. Time series plot of bike demand for the 1800 hour

Notice the differences in the shape of these curves at the two different

hours. Also, note the outliers at the low side of demand. Next, we’ll

create a number of box plots for some of the factor variables using

the following code:

Convert dayWeek back to an ordered factor so the

plot is in ## time order.
BikeShare$dayWeek <- fact.conv(BikeShare$dayWeek)

This code gives a first look at the predictor

values vs the demand for bikes. library(ggplot2)
labels <- list("Box plots of hourly bike

demand", "Box plots of monthly

bike demand",
 "Box plots of bike demand by weather

factor",

 "Box plots of bike demand by workday vs.

holiday",

 "Box plots of bike demand by day of the

week")

xAxis <- list("hr", "mnth", "weathersit",
 "isWorking", "dayWeek")

capture.output(Map(function(X,

label){ ggplot(BikeShare,

20 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

aes_string(x = X,

y = "cnt",

group = X)) + geom_boxplot() +

ggtitle(label) +

theme(text =

element_text(size=18)) },
 xAxis, labels),

file = "NUL")

If you are not familiar with using Map() this code may look a bit

intimidating. When faced with functional code like this, always read

from the inside out. On the inside, you can see the ggplot2 package

functions. This code is wrapped in an anonymous function with two

arguments. Map() iterates over the two argument lists to produce the

series of plots.

Three of the resulting box plots are shown in Figures 10, 11, and 12.

Figure 10. Box plots showing the relationship between bike demand

and hour of the day

 A Regression Example |

 21

Figure 11. Box plots showing the relationship between bike demand

and weather situation

Figure 12. Box plots showing the relationship between bike demand

and day of the week.

From these plots you can see a significant difference in the likely

predictive power of these three variables. Significant and complex

variation in hourly bike demand can be seen in Figure 10. In contrast,

it looks doubtful that weathersit is going to be very helpful in

22 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

predicting bike demand, despite the relatively high (negative)

correlation value observed.

The result shown in Figure 12 is surprising—we expected bike

demand to depend on the day of the week.

Once again, the outliers at the low end of bike demand can be seen in

the box plots.

In our example, we are making heavy use of the ggplot2

package. If you would like to learn more about ggplot2,

we recommend R Graphics Cookbook: Practical

Recipes for Visualizing Data by Winston Chang

(O’Reilly).

Finally, we’ll create some plots to explore the continuous variables,

using the following code:

Look at the relationship between predictors and

bike demand
labels <- c("Bike demand vs

temperature", "Bike demand

vs humidity",
 "Bike demand vs windspeed",
 "Bike demand vs hr") xAxis <-

c("temp", "hum", "windspeed", "hr")

capture.output(Map(function(X,

label){ ggplot(BikeShare, aes_string(x = X,

y = "cnt")) + geom_point(aes_string(colour

= "cnt"), alpha = 0.1) +

scale_colour_gradient(low = "green", high =

"blue") +
 geom_smooth(method = "loess") +
 ggtitle(label) +
 theme(text = element_text(size=20)) },
 xAxis, labels),

file = "NUL")

This code is quite similar to the code used for the box plots. We have

included a “loess” smoothed line on each of these plots. Also, note

that we have added a color scale so we can get a feel for the number

of overlapping data points. Examples of the resulting scatter plots are

shown in Figures 13 and 14.

http://shop.oreilly.com/product/0636920023135.do
http://shop.oreilly.com/product/0636920023135.do
http://shop.oreilly.com/product/0636920023135.do

 A Regression Example |

 23

Figure 13. Scatter plot of bike demand versus humidity

Figure 13 shows a clear trend of generally decreasing bike demand

with increased humidity. However, at the low end of humidity, the

data are sparse and the trend is less certain. We will need to proceed

with care.

Figure 14. Scatter plot of bike demand versus hour of the day

24 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 14 shows the scatter plot of bike demand by hour. Note that

the “loess” smoother does not fit parts of these data very well. This is

a warning that we may have trouble modeling this complex behavior.

Once again, in both scatter plots we can see the prevalence of outliers

at the low end of bike demand.

Exploring a potential interaction

Perhaps there is an interaction between time of day and day of the

week. A day of week effect is not apparent from Figure 12, but we

may need to look in more detail. This idea is easy to explore. Adding

the following code to the visualization Execute R Script module

creates box plots for working and non-working days for peak demand

hours:

Explore the interaction between time of day
and working or non-working days.
labels <- list("Box plots of bike demand at 0900 for

\n working and non-working days",
 "Box plots of bike demand at 1800 for

\n
working and non-working days")
Times <- list(8, 17)
capture.output(Map(function(time,

label){ ggplot(BikeShare[BikeShare$hr ==

time,], aes(x = isWorking, y = cnt,

group = isWorking)) +
 geom_boxplot() + ggtitle(label) +

theme(text = element_text(size=18)) },
 Times, labels),

file = "NUL")

The result of running this code can be seen in Figures 15 and 16.

www.allitebooks.com

http://www.allitebooks.org

 A Regression Example |

 25

Figure 15. Box plots of bike demand at 0900 for working and

nonworking days

Figure 16. Box plots of bike demand at 1800 for working and

nonworking days

Now we can clearly see that we are missing something important in

the initial set of features. There is clearly a different demand between

working and non-working days at peak demand hours.

26 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Creating a new variable

We need a new variable that differentiates the time of the day by

working and non-working days; to do this, we will add the following

code to the transform Execute R Script module:

Add a variable with unique values for time of day

for working and non-working days.
BikeShare$workTime <- ifelse(BikeShare$isWorking,
 BikeShare$hr,
 BikeShare$hr + 24)

We have created the new variable using working versus

non-working days. This leads to 48 levels (2 × 24) in this

variable. We could have used the day of the week, but

this approach would have created 168 levels (7 × 24).

Reducing the number of levels reduces complexity and

the chance of overfitting—generally leading to a better

model.

Transformed time: Another new variable

As noted earlier, the complex hour-to-hour variation bike demand

shown in Figures 10 and 14 may be difficult for some models to deal

with. Perhaps, if we shift the time axis we will create a new variable

where demand is closer to a simple hump shape. The following code

shifts the time axis by five hours:

Shift the order of the hour variable so that it

is smoothly ## "humped over 24 hours.
BikeShare$xformHr <- ifelse(BikeShare$hr > 4,
 BikeShare$hr - 5,
 BikeShare$hr + 19)

We can add one more plot type to the scatter plots we created in the

visualization model, with the following code:

Look at the relationship between predictors and

bike demand
labels <- c("Bike demand vs

temperature", "Bike demand

vs humidity",
 "Bike demand vs windspeed",
 "Bike demand vs hr",
 "Bike demand vs xformHr")

 A Regression Example |

 27

xAxis <- c("temp", "hum", "windspeed", "hr",

"xformHr")
capture.output(Map(function(X,

label){ ggplot(BikeShare, aes_string(x =

X, y = "cnt")) +

28 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

 geom_point(aes_string(colour = "cnt"), alpha =

0.1) + scale_colour_gradient(low = "green", high =

"blue") +
 geom_smooth(method = "loess") +
 ggtitle(label) +
 theme(text = element_text(size=20)) },
 xAxis, labels),

file = "NUL")

The resulting plot is shown in Figure 17.

Figure 17. Bike demand by hour with a time-shifted axis

The bike demand by transformed hour is definitely more of a hump

shape. However, there is still a bit of residual structure at the lower

end of the horizontal axis. The question is, will this new variable

improve the performance of any of the models? A First Model
Now that we have some basic data transformations, and had a first

look at the data, it’s time to create a first model. Given the complex

relationships we see in the data, we will use a nonlinear regression

model. In particular, we will try the Decision Forest Regression

module. Figure 18 shows our Azure ML Studio canvas once we have

all the modules in place.

 A Regression Example |

 29

Figure 18. Azure ML Studio with first bike demand model

There are quite a few new modules on the canvas at this point.

We added a Split module after the Transform Data Execute R Script

module. The subselected data are then sampled into training and test

(evaluation) sets with a 70%/30% split. Ideally, we should introduce

another split to make separate test and evaluation datasets. The test

dataset is used for performing model parameter tuning and feature

selection. The evaluation dataset is used for final performance

evaluation. For the sake of simplifying our discussion here, we will

not perform this additional split.

Note that we have placed the Project Columns module after the Split

module so we can prune the features we’re using without affecting

the model evaluation. We use the Project Columns module to select

the following columns of transformed data for the model:

• dteday

• mnth

30 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

• hr

• weathersit

• temp

• hum

• cnt

• monthCount

• isWorking

• workTime

For the Decision Forest Regression module, we have set the

following parameters:

• Resampling method = Bagging

• Number of decision trees = 100

• Maximum depth = 32

• Number of random splits = 128

• Minimum number of samples per leaf = 10

The model is scored with the Score Model module, which provides

predicted values for the module from the evaluation data. These

results are used in the Evaluate Model module to compute the

summary statistics shown in Figure 19.

Figure 19. Performance statistics for the model

These results are interesting, but a bit abstract. We have included

another Execute R Script module, which provides some performance

evaluations specific to our use case.

The second Project Columns module selects two columns from the

Scoring module: cnt and Scored Labels. This data is then used in an

Execute R Script module.

 A Regression Example |

 31

For the first step of this evaluation we’ll create some time series plots

to compare the actual bike demand to the demand predicted by the

model using the following code:

Please replace this entire listing with the

following to ensure proper indentation:

This code will produce various measures of model
performance using the actual and predicted values
from the Bike rental data. This code is

intended ## to run in an Azure ML Execute R

Script module.
By changing some comments you can test

the code ## in RStudio.

Source the zipped utility file

source("src/utilities.R")

Read in the dataset if in Azure ML.
The second and third line are for test in RStudio
and should be commented out if running in Azure

ML. inFrame <- maml.mapInputPort(1)
#inFrame <- outFrame[, c("actual", "predicted")]
#refFrame <- BikeShare

Another data frame is created from the data

produced
by the Azure Split module. The columns we need

are
added to inFrame
Comment out the next line when running in

RStudio. refFrame <- maml.mapInputPort(2)

inFrame[, c("dteday", "monthCount", "hr")]

<- refFrame[, c("dteday", "monthCount",

"hr")]

Assign names to the data frame for easy reference

names(inFrame) <- c("cnt", "predicted", "dteday",

"monthCount", "hr")

Since the model was computed using the log of

bike
demand transform the results to actual

counts. inFrame[, 1:2] <- lapply(inFrame[,

1:2], exp)

If running in Azure ML uncomment the following

line
to create a character representation of the

POSIXct

32 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Datetime object. This is required since
R will interpret the Azure DateTime type as

POSIXct. inFrame$dteday <- get.date(inFrame$dteday)

A POSIXct time series object for the x axis of

the
time series plots. inFrame$Time <-

POSIX.date(inFrame$dteday, inFrame$hr)

Since the sampling process randomized the order

of
the rows sort the data by the Time

object. inFrame <-

inFrame[order(inFrame$Time),]
Time series plots showing actual and predicted

values;
columns 3 and 4. times <- c(7, 9, 12,

15, 18, 20, 22) lapply(times,

function(x){ plot(inFrame$Time[inFrame$

hr == x], inFrame$cnt[inFrame$hr ==

x], type = "l", xlab = "Date", ylab

= "Number of bikes used",
 main = paste("Bike demand at ",

as.character(x), ":00", spe =""));
 lines(inFrame$Time[inFrame$hr == x],
 inFrame$predicted[inFrame$hr == x], type

= "l", col = "red")})

Please note the following key steps in this code:

• A second data frame is read using a second maml.mapInput

Port() function. The second data frame contains columns used

to compute the evaluation summaries. Reading these columns

independently allows you to prune any columns used in the

model without breaking the evaluation code.

• The actual and predicted bike demand are transformed to actual

counts from the logarithmic scale used for the modeling.

• A POSIXct time series object including both date and hours is

created.

• The rows of the data frame are sorted in time series order. The

Split module randomly samples the rows in the data table. To

plot these data properly, they must be in time order.

• Time series plots are created for the actual and predicted values

using lapply(). Note that we use the plot() and line()

 A Regression Example |

 33

functions in the same iteration of lapply so that the two sets of

lines will be on the correct plot.

Some results of running this code are shown in Figures 20 and 21.

Figure 20. Time series plot of actual and predicted bike demand at

0900

34 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 21. Time series plot of actual and predicted bike demand at

1800

By examining these time series plots, you can see that the model is a

reasonably good fit. However, there are quite a few cases where the

actual demand exceeds the predicted demand.

Let’s have a look at the residuals. The following code creates box

plots of the residuals, by hour:

Box plots of the residuals by hour
library(ggplot2)
inFrame$resids <- inFrame$predicted - inFrame$cnt

capture.output(plot(ggplot(inFrame, aes(x =

as.factor(hr),

y = resids)) +

 geom_boxplot() +

ggtitle("Residual of actual versus
predicted bike demand by

hour")), file

= "NUL")

The results can be seen in Figure 22.

www.allitebooks.com

http://www.allitebooks.org

 A Regression Example |

 35

Figure 22. Box plots of residuals between actual and predicted values

by hour

Studying this plot, we see that there are significant residuals at certain

hours. The model consistently underestimates demand at 0800, 1700,

and 1800—peak commuting hours. Further, the dispersion of the

residuals appears to be greater at the peak hours. Clearly, to be useful,

a bike sharing system should meet demand at these peak hours.

Using the following code, we’ll compute the median residuals by

both hour and month count:

library(dplyr)
First compute and display the median residual by

hour
evalFrame <- inFrame %>%

group_by(hr) %>%
 summarise(medResidByHr =

format(round(median(predic

ted - cnt), 2), nsmall = 2))

Next compute and display the median residual by

month

36 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

tempFrame <- inFrame %>%

group_by(monthCount) %>%
 summarise(medResid = median(predicted - cnt))

evalFrame$monthCount <- tempFrame$monthCount

evalFrame$medResidByMcnt <- format(round(
 tempFrame$medResid, 2),

nsmall = 2)

print("Breakdown of residuals")

print(evalFrame)

Output the evaluation results

outFrame <- data.frame(evalFrame)

maml.mapOutputPort('outFrame')

The median residuals by hour and by month are shown in Figure 23.

Figure 23. Median residuals by hour of the day and month count

The results in Figure 23 show that residuals are consistently biased to

the negative side, both by hour and by month. This confirms that our

model consistently underestimates bike demand.

The danger of over-parameterizing or overfitting a

model is always present. While decision forest

algorithms are known to be fairly insensitive to this

problem, we ignore this problem at our peril. Dropping

 A Regression Example |

 37

features that do little to improve a model is always a

good idea.

In the course of this model investigation, I pruned the features one at

a time to determine which ones contributed little to the reduction of

the residuals. I found that while wind speed improved the aggregate

error statistics, it caused residuals for some times of the day to

increase quite a lot. This behavior is a sign of overfitting, so I dropped

this feature from the model.

As we try other models, we’ll continue to prune features, so that the

remaining features are those best suited to each model.

38 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

In our example, we’ve made use of the dplyr package.

This package is both powerful and deep with

functionality. If you would like to know more about

dplyr, read the vignettes in CRAN.

Improving the Model and

Transformations
The question now is, how can we improve these model results? It is

possible that improvements in the choice of model parameters or an

alternative model might give better results. However, it is typically

the case that improved feature engineering and data cleaning leads to

greater improvements in results than small model improvements.

Another Data Transformation

Looking at Figures 10, 13, and 14, as well as differences in the time

series plots in Figures 8 and 9, you can see outliers in demand on the

low side. These outliers may well be a source of bias leading to the

model underestimating demand.

Let’s try another data transformation—filtering out the low end

outliers. To wit, we’ve added another Execute R Script module as

shown in Figure 24. The code in this module will filter out down-

side outliers in the training data.

We only want to apply this filter to the training data, not the

evaluation data. When using the predictive module in production, we

are computing an estimate of the response, and will not have the

actual response values to trim. Consequently, the new Execute R

Script module is placed after the Split module.

http://cran.r-project.org/web/packages/dplyr/index.html

 Improving the Model and Transformations |

 39

Figure 24. Updated experiment with new Execute R Script to trim

outliers

The code for this new Execute R Script module is shown here:

This code removes downside outliers

from the ## training sample of the bike

rental data.
The value of Quantile variable can be changed
to change the trim level. This code is s

intended ## to run in an Azure ML Execute R

Script module. ## By changing some comments

you can test the code ## in RStudio.

Read in the dataset.
BikeShare <- maml.mapInputPort(1)

Build a dataframe with the quantile by

month and ## hour. Parameter Quantile

determines the trim point.
Quantile <- 0.10

library(dplyr)

40 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

BikeShare$dteday <- as.character(BikeShare$dteday)
quantByPer <-

(BikeShare %>%

group_by(workTime,

monthCount) %>%

summarise(Quant =

quantile(cnt,

probs = Quantile,

na.rm = TRUE)))

Create a data frame to hold the logical vector
indexed by monthCount and

hr. indFrame <-

data.frame(workTime =

BikeShare$workTime,

monthCount =

BikeShare$monthCount, ind =

rep(TRUE, nrow(BikeShare)))

Need to loop through all months and hours since
these are now randomized by the sample. Memory

for
the data frame is allocated so this in-place
operation should not be too

slow. for(month in

1:48){ for(hour in 0:47){
 indFrame$ind[indFrame$workTime == hour &

indFrame$monthCount == month] <-

BikeShare$cnt[BikeShare$workTime == hour &
 BikeShare$monthCount == month]

> quantByPer$Quant[quantByPer$workTime == hour

& quantByPer$monthCount ==

month]

 }
}

BikeShare$dteday <- as.POSIXct(strptime(paste(
 BikeShare$dteday, "00:00:00", sep = ""),

"%Y-%m-%d %H:%M:%S"))

Filter the rows we

want.
BikeShare <- BikeShare[indFrame$ind,]

Output the transformed data frame.

maml.mapOutputPort('BikeShare')

This code is a bit complicated, partly because the order of the data is

randomized by the Split module. There are three steps in this filter:

 Improving the Model and Transformations |

 41

1. Using the dplyr package, we compute the quantiles of bike

demand (cnt) by workTime and monthCount. The workTime

variable distinguishes between time on working and nonworking

days. Since bike demand is clearly different for working and non-

working days, this stratification is necessary for the trimming

operation. In this case, we use a 10% quantile.

2. Compute a data frame containing a logical vector, indicating if

the bike demand (cnt) value is an outlier. This operation

requires a fairly complicated mapping between a single value

from the quantByPer data frame and multiple values in the

vector BikeShare$cnt. We use nested for loops, since the

order of the data in time is randomized by the Split module. Even

if you are fairly new to R, you may notice this is a decidedly “un-

Rlike” practice. To ensure efficiency, we pre-allocate the

memory for this data frame to ensure that the assignment of

values in the inner loop is performed in place.

3. Finally, use the logical vector to remove rows with outlier values

from the data frame.

Evaluating the Improved Model
Let’s look at the results of using this filter. As a first step, the

summary statistics produced by the Evaluate module are shown in

Figure 25.

Figure 25. Performance statistics for the model with outliers trimmed

in the training data

When compared with Figure 19, all of these statistics are a bit worse

than before. However, keep in mind that our goal is to limit the

number of times we underestimate bike demand. This process will

cause some degradation in the aggregate statistics as bias is

introduced.

Let’s look in depth and see if we can make sense of these results.

Figure 26 shows box plots of the residuals by hour of the day.

42 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 26. Residuals by hour with outliers trimmed in the training

data

If you compare these results with Figure 22 you will notice that the

residuals are now biased to the positive—this is exactly what we

hoped for. It is better for users if the bike share system has a slight

excess of inventory rather than a shortage. In comparing Figures 22

and 26, notice the vertical scales are different, effectively shifted up

by 100.

Figure 27 shows the median residuals by both hour and month count.

 Improving the Model and Transformations |

 43

Figure 27. Median residuals by hour of the day and month count with

outliers trimmed in the training data

Comparing Figure 27 to Figure 23, we immediately see that Figure

27 shows a positive bias in the residuals, whereas Figure 23 had an

often strong, negative bias in the residuals. Again, this is the result

we were hoping to see.

Despite some success, our model is still not ideal. Figure 26 still

shows some large residuals, sometimes in the hundreds. These large

outliers could cause managers of the bike share system to lose

confidence in the model.

By now you probably realize that careful study of

residuals is absolutely essential to understanding and

improving model performance. It is also essential to

understand the business requirements when interpreting

and improving predictive models.

Another Azure ML Model
Perhaps another model type will provide better performance—

fortunately, Azure ML makes it quick and easy to test other model

types.

 | 44

We have added a neural network regression model to our project.

Figure 28 shows the updated canvas in the Azure ML Studio.

Figure 28. Experiment with neural network regression model added

Given that you can cut and paste modules in Azure ML

Studio, it took only minutes to add this additional model

to the experiment.

We also added a second Project Columns module, so the features used

by the two models can be selected independently. Heeding the

Warning on page 14, we selected the following features for the neural

network model:

• hr

• xformHr

• temp

• hum

• dteday

www.allitebooks.com

http://www.allitebooks.org

 | 45

Another Azure ML Model

• monthCount

• workTime

• mnth

The parameters of the Neural Network Regression module are:

• Hidden layer specification: Fully connected case

• Number of hidden nodes: 100

• Initial learning weights diameter: 0.05

• Learning rate: 0.005

• Momentum: 0

• Type of normalizer: Gaussian normalizer

• Number of learning iterations: 500

• Random seed: 5467

Figure 29 presents a comparison of the summary statistics of the tree

model and the new neural network model (second line).

Figure 29. Comparison of evaluation summary statistics for two

models

The summary statistics for the new model are at least a bit better,

overall; this is an encouraging result, but we need to look further.

Let’s look at the residuals in more detail. Figure 30 shows a box plot

of the residuals by the hour of the day.

46 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 30. Box plot of the residuals for the neural network regression

model by hour

The box plot shows that the residuals of the neural network model

exhibit some significant outliers, both on the positive and negative

side. Comparing these residuals to Figure 26, the outliers are not as

extreme.

The details of the mean residual by hour and by month can be seen

below in Figure 31.

 | 47

Another Azure ML Model

48 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 31. Median residuals by hour of the day and month count for

the neural network regression model

The results in Figure 31 confirm the presence of some negative

residuals at certain hours of the day; compared to Figure 27, these

figures look quite similar.

In summary, there may be a tradeoff between bias in the results and

dispersion of the residuals; such phenomena are common. More

investigation is required to fully understand this problem.

Using an R Model in Azure ML
In this section, you will learn how to incorporate an R language model

into your Azure ML workflow. For a schematic view of an R

language model in an Azure ML workflow, see Figure 3.

We’ve added two new Execute R Script modules to our experiment.

We also use the copy and paste feature to add another Execute R

Script module with the evaluation code. The resulting workflow is

shown in Figure 32.

 Using an R Model in Azure ML |

 49

Figure 32. Experiment workflow with R model, with predict and

evaluate modules added on the right.

In this example, we’ll try a support vector machine (SVM) regression

model, using the ksvm() function from the kernlab package.

The first Execute R Script module computes the model from the

training data, using the following code:

This code computes a random forest model.
This code is s intended to run in an Azure ML
Execute R Script module. It can be tested

in ## RStudio by now executing the Azure ML

specific code.

Source the zipped utility file

source("src/utilities.R")

Read in the dataset.
BikeShare <- maml.mapInputPort(1)

library(randomForest)
rf.bike <- randomForest(cnt ~ xformHr + temp +

monthCount + hum + dayWeek +

mnth + isWorking + workTime,

data = BikeShare, ntree = 500,

importance = TRUE, nodesize = 25)

50 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

importance(rf.bike) outFrame <-

serList(list(bike.model = rf.bike))

Output the serialized model data frame.

maml.mapOutputPort('outFrame')

This code is rather straightforward, but here are a few key points:

• The utilities are read from the ZIP file using the source()

function.

• In this model formula, we have reduced the number of facets

because SVM models are known to be sensitive to

overparameterization.

• The cost (C) is set to a value of 1000. The higher the cost, the

greater the complexity of the model and the greater the likelihood

of overfitting.

• Since we are running on a hefty cloud server, we increased the

cache size to 1000 MB.

• The completed model is serialized for output using the ser

List() function from the utilities.

There is additional information available on serialization

and unserialization of R model objects in Azure ML:

• A tutorial along with example code

• A video tutorial

Note: According to Microsoft, an R object interface

between Execute R Script modules will become

available in the future. Once this feature is in place, the

need to serialize R objects is obviated.

The second Execute R Script module computes predictions from test

data using the model. The code for this module is shown below:

This code will compute predictions from test data
for R models of various types. This code is

intended to run in an Azure ML Execute R

Script module. ## By changing some comments you

can test the code ## in RStudio.

https://github.com/Quantia-Analytics/AzureML-R-Serialization
https://www.youtube.com/watch?v=vk9Ic1F9YTk&feature=youtu.be

 Using an R Model in Azure ML |

 51

Source the zipped utility file

source("src/utilities.R")

52 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Get the data frame with the model from

port 1 ## and the data set from port 2.

These two lines
will only work in Azure ML.

modelFrame <-

maml.mapInputPort(1)

BikeShare <-

maml.mapInputPort(2)

comment out the following line if running in

Azure ML.
#modelFrame <- outFrame

Extract the model from the serialized input and

assign
to a convenient name.

modelList <-

unserList(modelFrame)

bike.model <-

modelList$bike.model

Output a data frame with actual and values

predicted
by the model.

library(gam)

library(randomForest)

library(kernlab)

library(nnet)
outFrame <- data.frame(actual = BikeShare$cnt,
 predicted =

predict(bike.model,

newdata = BikeShare))

The following line should be executed only when

running in
Azure ML Studio to output the serialized model.

maml.mapOutputPort('outFrame')

Here are a few key points on this code:

• Data frames containing the test data and the

serialized model are read in. The model object

is extracted by the unserList() function.

Note that we are using both table input ports

here.

 Using an R Model in Azure ML |

 53

• A number of packages are loaded—you can

make predictions for any model object class in

these packages, with a predict method.

There are some alternatives to serializing R model

objects that you should keep in mind.

In some cases, it may be desirable to re-compute an R

model each time it is used. For example, if the size of the

data sets you receive through a web service is relatively

small and includes training data, you can recompute the

model on each use. Or, if the training data is changing

fairly rapidly it might be best to recompute your model.

Alternatively, you may wish to use an R model object

you have computed outside of Azure ML. For example,

you may wish to use a model you have created

interactively in RStudio. In this case:

• Save the model object into a zip file.

• Upload the zip file to Azure ML.

• Connect the zip file to the script bundle port of an

Execute R Script module.

• Load the model object into your R script with load

(“src/your.model.rdata”).

Running this model and the evaluation code will produce a box plot

of residuals by hour, as shown in Figure 33.

54 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

Figure 33. Box plot of the residuals for the SVM model by hour

The table of median residuals by hour and by month is shown in

Figure 34.

www.allitebooks.com

http://www.allitebooks.org

 Using an R Model in Azure ML |

 55

Figure 34. Median residuals by hour of the day and month count for

the SVM model

The box plots in Figure 33 and the median residuals displayed in

Figure 34 show that the SVM model has inferior performance to the

neural network and decision tree models. Regardless of this

performance, we hope you find this example of integrating R models

into an Azure M workflow useful.

Some Possible Next Steps
It is always possible to do more when refining a predictive model.

The question must always be: is it worth the effort for the possible

improvement? The median performance of the decision forest

regression model and the neural network regression model are both

fairly good. However, there are some significant outliers in the

residuals; thus, some additional effort is probably justified before

either model is put into production.

There is a lot to think about when trying to improve the results. We

could consider several possible next steps, including the following:

• Understand the source of the residual outliers. We have not

investigated if there are systematic sources of these outliers. Are

56 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

there certain ranges of predictor variable values that give these

erroneous results? Do the outliers correspond to exogenous

events, such as parades and festivals, failures of other public

transit, holidays that are not observed as non-working days, etc.?

Such an investigation will require additional data. Or, are these

outliers a sign of overfitting?

• Perform additional feature engineering. We have tried a few

obvious new features with some success, but there is no reason

to think this process has run its course. Perhaps another time axis

transformation that orders the hour-to-hour variation in demand

would perform better. Some moving averages might reduce the

effects of the outliers.

• Prune features to prevent overfitting. Overfitting is a major

source of poor model performance. As noted earlier, we have

pruned some features; perhaps additional pruning is required.

• Change the quantile of the outlier filter. We arbitrarily chose

the 0.10 quantile, but it could easily be the case that another value

might give better performance; it is also possible that some other

type of filter might help.

• Try some other models. Azure ML has a Boosted Decision Tree

Regression module. Further, we have tried only one of many

possible R models and packages.

• Optimize the parameters of the models. We are using our

initial guesses on parameters for each of these models, and there

is no reason to believe these are the best settings possible. The

Azure ML Sweep module systematically steps over a grid of

possible model parameters. In a similar way, the train()

function in the caret package can be used to optimize the

parameters of some R models.

Publishing a Model as a Web Service
Now that we have some reasonably good models, we can publish one

of them as a web service. The workflow for a published model is

shown in Figure 4. Complete documentation on publishing and

testing an Azure ML model as a web service can be found at the

Microsoft Azure web page.

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-walkthrough-5-publish-web-service/

 | 57

Publishing a Model as a Web Service

Both the decision tree regression model and the neural network

regression model produced reasonable results. We’ll select the neural

network model because the residual outliers are not quite as extreme.

Right-click on the output port of the Train Model module for the

neural network and select “Save As Trained Model.” The form shown

in Figure 35 pops up and you can enter an annotation for the trained

model.

Figure 35. Annotating the model

Create and test the published web services model using the following

steps:

1. Drag the trained model from the “Trained Models” tab on the

pallet onto the canvas.

2. Connect the trained model to the Score Model module.

3. Delete the unneeded modules from the canvas.

4. Set the input by right-clicking on the input to the Transform Data

Execute R Script module and selecting “Set and Published

Input.”

58 | Data Science in the Cloud with Microsoft Azure Machine Learning and R

5. Set the output by right-clicking on the output of the second

Transform Output Execute R Script module and selecting “Set as

Published Output.”

6. Test the model.

The second Execute R Script module transforms bike demand to

actual numbers from the logarithmic scale used in the model. The

code shown below also subselects the columns of interest:

Read in the dataset

inFrame <-

maml.mapInputPort(1)

Since the model was computed using the log of

bike demand
transform the results to actual counts.

inFrame[, 9] <- exp(inFrame[, 9])

Select the columns and apply names for

output. outFrame <- inFrame[, c(1, 2, 3, 9)]
colnames(outFrame) <- c('Date', "Month", "Hour",

"BikeDemand")

Output the transformed data frame.

maml.mapOutputPort('outFrame')

The completed model is shown in Figure 36. We need to remove the

test dataset and promote the model to the Azure Live Server, and then

it is ready for production.

Figure 36. The pruned workflow with published input and output

 | 59

Publishing a Model as a Web Service

We can use an R model object in a web service. In the

above example, we would substitute an Execute R Script

module in place of the Score Module. This Execute R

Script module uses the R model object’s predict method.

The model object can be passed through one of the

dataset ports in serialized form, or from a zip file via the

script bundle port.

Summary
We hope this article has motivated you to try your own data science

problems in Azure ML. Here are some final key points:

• Azure ML is an easy-to-use and powerful environment for the

creation and cloud deployment of predictive analytic solutions.

• R code is readily integrated into the Azure ML workflow.

• Careful development, selection, and filtering of features is the

key to most data science problems.

• Understanding business goals and requirements is essential to

creating a successful data science solution.

• A complete understanding of residuals is essential to the

evaluation of predictive model performance.

www.allitebooks.com

http://www.allitebooks.org

	Microsoft Azure Machine Learning. iii
	Introduction
	Downloads
	Working Between Azure ML and RStudio

	Overview of Azure ML
	Modules and Datasets
	Mixing native modules and R in Azure ML
	Module I/O

	Azure ML Workflows
	Model training workflow
	Workflow for R model training
	Publishing a model as a web service

	A Regression Example
	Problem and Data Overview
	A first set of transformations
	Exploring the data
	Exploring a potential interaction
	Creating a new variable
	Transformed time: Another new variable

	Improving the Model and Transformations
	Evaluating the Improved Model

	Another Azure ML Model
	Using an R Model in Azure ML
	Some Possible Next Steps
	Publishing a Model as a Web Service
	Summary

