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Data quality is one of the most important problems in data management, 
since dirty data often leads to inaccurate data analytics results and 
incorrect business decisions. Poor data across businesses and the U.S. 
government are reported to cost trillions of dollars a year. Multiple surveys 
show that dirty data is the most common barrier faced by data scientists. 
Not surprisingly, developing effective and efficient data cleaning solutions 
is challenging and is rife with deep theoretical and engineering problems.
 This book is about data cleaning, which is used to refer to all kinds 
of tasks and activities to detect and repair errors in the data. Rather than 
focus on a particular data cleaning task, we give an overview of the end-
to-end data cleaning process, describing various error detection and repair 
methods, and attempt to anchor these proposals with multiple taxonomies 
and views. Specifically, we cover four of the most common and important 
data cleaning tasks, namely, outlier detection, data transformation, 
error repair (including imputing missing values), and data deduplication. 
Furthermore, due to the increasing popularity and applicability of machine 
learning techniques, we include a chapter that specifically explores how 
machine learning techniques are used for data cleaning, and how data 
cleaning is used to improve machine learning models.
 This book is intended to serve as a useful reference for researchers 
and practitioners who are interested in the area of data quality and data 
cleaning. It can also be used as a textbook for a graduate course. Although 
we aim at covering state-of-the-art algorithms and techniques, we 
recognize that data cleaning is still an active field of research and therefore 
provide future directions of research whenever appropriate.
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Editor in Chief: M. Tamer Özsu, University of Waterloo

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTEX.
Cover photo: Jason Dorfman MIT / CSAIL

First Edition

10 9 8 7 6 5 4 3 2 1

http://books.acm.org
http://dx.doi.org/10.1145/3310205
http://dx.doi.org/10.1145/3310205.3310211
http://dx.doi.org/10.1145/3310205.3310206
http://dx.doi.org/10.1145/3310205.3310212
http://dx.doi.org/10.1145/3310205.3310207
http://dx.doi.org/10.1145/3310205.3310213
http://dx.doi.org/10.1145/3310205.3310208
http://dx.doi.org/10.1145/3310205.3310214
http://dx.doi.org/10.1145/3310205.3310209
http://dx.doi.org/10.1145/3310205.3310215
http://dx.doi.org/10.1145/3310205.3310210


To my family: Francis, Aida, Mirette, Andrew and Marina

To my wife Jianmei and my daughter Hannah





Contents

Preface xiii

Figure and Table Credits xv

Chapter 1 Introduction 1

1.1 Data Cleaning Workflow 3
1.2 Book Scope 4

Chapter 2 Outlier Detection 11

2.1 A Taxonomy of Outlier Detection Methods 12
2.2 Statistics-Based Outlier Detection 15
2.3 Distance-Based Outlier Detection 26
2.4 Model-Based Outlier Detection 30
2.5 Outlier Detection in High-Dimensional Data 32
2.6 Conclusion 44

Chapter 3 Data Deduplication 47

3.1 Similarity Metrics 49
3.2 Predicting Duplicate Pairs 54
3.3 Clustering 57
3.4 Blocking for Deduplication 60
3.5 Distributed Data Deduplication 66
3.6 Record Fusion and Entity Consolidation 73
3.7 Human-Involved Data Deduplication 81
3.8 Data Deduplication Tools 85
3.9 Conclusion 88

Chapter 4 Data Transformation 91

4.1 Syntactic Data Transformations 93



xii Contents

4.2 Semantic Data Transformations 107
4.3 ETL Tools 117
4.4 Conclusion 118

Chapter 5 Data Quality Rule Definition and Discovery 121

5.1 Functional Dependencies 124
5.2 Conditional Functional Dependencies 130
5.3 Denial Constraints 133
5.4 Other Types of Constraints 138
5.5 Conclusion 147

Chapter 6 Rule-Based Data Cleaning 149

6.1 Violation Detection 149
6.2 Error Repair 161
6.3 Conclusion 193

Chapter 7 Machine Learning and Probabilistic Data Cleaning 195

7.1 Machine Learning for Data Deduplication 196
7.2 Machine Learning for Data Repair 203
7.3 Data Cleaning for Analytics and Machine Learning 214

Chapter 8 Conclusion and Future Thoughts 223

References 227

Index 247

Author Biographies 259



Preface

Data quality is one of the most important problems in data management, since
dirty data often leads to inaccurate data analytics results and incorrect business
decisions. Poor data across businesses and the U.S. government are reported to
cost trillions of dollars a year. Multiple surveys show that dirty data is the most
common barrier faced by data scientists. Not surprisingly, developing effective and
efficient data cleaning solutions is challenging and is rife with deep theoretical and
engineering problems.

Data cleaning is used to refer to all kinds of tasks and activities to detect and
repair errors in the data. Rather than focus on a particular data cleaning task, in
this book, we give an overview of the end-to-end data cleaning process, describing
various error detection and repair methods, and attempt to anchor these propos-
als with multiple taxonomies and views. Specifically, we cover four of the most
common and important data cleaning tasks, namely, outlier detection, data trans-
formation, error repair (including imputing missing values), and data deduplica-
tion. Furthermore, due to the increasing popularity and applicability of machine
learning techniques, we include a chapter that specifically explores how machine
learning techniques are used for data cleaning, and how data cleaning is used to
improve machine learning models.

This book is intended to serve as a useful reference for researchers and practi-
tioners who are interested in the area of data quality and data cleaning. It can also
be used as a textbook for a graduate course. Although we aim at covering state-of-
the-art algorithms and techniques, we recognize that data cleaning is still an active
field of research and therefore provide future directions of research whenever ap-
propriate.

Ihab Ilyas
Xu Chu
March 2019
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1Introduction
Enterprises have been acquiring large amounts of data from a variety of sources in
order to build large data repositories that power their applications, with the goal of
enabling richer and more informed analytics. Data collection and acquisition often
introduce errors in data, e.g., missing values, typos, mixed formats, replicated en-
tries for the same real-world entity, and violations of business and data integrity
rules. A survey about the state of data science and machine learning (ML) reveals
that dirty data is the most common barrier faced by workers dealing with data.1

With the popularity of data science, it has become increasingly evident that data
curation, unification, preparation, and cleaning are key enablers in unleashing the
value of data.2 According to another survey of about 80 data scientists conducted
by CrowdFlower and published in Forbes,3 data scientists spend more than 60% of
their time in cleaning and organizing data, and 57% of data scientists regard clean-
ing and organizing data as the least enjoyable part of their work. Not surprisingly,
developing effective and efficient data cleaning solutions is challenging and is rife
with deep theoretical and engineering problems.

Regardless of the type of data errors to be fixed, data cleaning activities usually
consist of two phases: (1) error detection, where various errors and violations are
identified and possibly validated by experts; and (2) error repair, where updates to
the database are applied (or suggested to human experts) to bring the data to a
cleaner state suitable for downstream applications and analytics. Error detection
techniques can be either quantitative or qualitative. Specifically, quantitative error
detection techniques often involve statistical methods to identify abnormal behav-
iors and errors [Hellerstein 2008] (e.g., “a salary that is three standard deviations

1. https://www.kaggle.com/surveys/2017

2. https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-
janitor-work.html

3. https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-
least-enjoyable-data-science-task-survey-says/
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away from the mean salary is an error”), and hence have been mostly studied in the
context of outlier detection [Aggarwal 2013]. On the other hand, qualitative error de-
tection techniques rely on descriptive approaches to specify patterns or constraints
of a consistent data instance, and for that reason these techniques identify those
data that violate such patterns or constraints as errors. For example, in a descrip-
tive statement about a company HR database, “for two employees working at the same
branch of the company, the senior employee cannot earn less salary than the junior em-
ployee,” if we find two employees with a violation of the rule, it is likely that there
is an error in at least one of them.

Various surveys and books detail specific aspects of data quality and data clean-
ing. For example, Rahm and Do [2000] classify different types of errors occurring in
an Extract-Transform-Load (ETL) process, and survey the tools available for clean-
ing data in an ETL process. Some work focuses on the effect of incompleteness data
on query answering [Grahne 1991] and the use of a Chase procedure [Maier et al.
1979] for dealing with incomplete data [Greco et al. 2012]. Hellerstein [2008] fo-
cuses on cleaning quantitative numerical data using mainly statistical techniques.
Bertossi [2011] provides complexity results for repairing inconsistent data and per-
forming consistent query answering on inconsistent data. Fan and Geerts [2012]
discuss the use of data quality rules in data consistency, data currency, and data
completeness, and their interactions. Dasu and Johnson [2003] summarize how
techniques in exploratory data mining can be integrated with data quality manage-
ment. Ganti and Sarma [2013] focus on an operator-centric approach for developing
a data cleaning solution, involving the development of customizable operators that
can be used as building blocks for developing common solutions. Ilyas and Chu
[2015] provide taxonomies and example algorithms for qualitative error detection
and repairing techniques. Multiple surveys and tutorials have been published to
summarize different definitions of outliers and the algorithms for detecting them
[Hodge and Austin 2004, Chandola et al. 2009, Aggarwal 2013]. Data deduplica-
tion, a long-standing problem that has been studied for decades [Fellegi and Sunter
1969], has also been extensively surveyed [Koudas et al. 2006, Elmagarmid et al.
2007, Herzog et al. 2007, Dong and Naumann 2009, Naumann and Herschel 2010,
Getoor and Machanavajjhala 2012].

This book, however, focuses on the end-to-end data cleaning process, describing
various error detection and repair methods, and attempts to anchor these proposals
with multiple taxonomies and views. Our goals are (1) to allow researchers and
general readers to understand the scope of current techniques and highlight gaps
and possible new directions of research; and (2) to give practitioners and system
implementers a variety of choices and solutions for their data cleaning activities.



1.1 Data Cleaning Workflow 3

External sources

ErrorsDiscovery
Error
repair

Error
detection

PDFs, rules,
patterns, etc.

Knowledge
bases

Data

Figure 1.1 A typical data cleaning workflow with an optional discovery step, error detection step, and
error repair step.

In what follows, we give a brief overview of the book’s scope as well as a chapter
outline.

1.1 Data Cleaning Workflow
Figure 1.1 shows a typical data cleaning workflow, consisting of an optional discov-
ery and profiling step, an error detection step, and an error repair step. To clean
a dirty dataset, we often need to model various aspects of this data, e.g., schema,
patterns, probability distributions, and other metadata. One way to obtain such
metadata is by consulting domain experts, typically a costly and time-consuming
process. The discovery and profiling step is used to discover these metadata auto-
matically. Given a dirty dataset and the associated metadata, the error detection
step finds part of the data that does not conform to the metadata, and declares this
subset to contain errors. The errors surfaced by the error detection step can be in
various forms, such as outliers, violations, and duplicates. Finally, given the errors
detected and the metadata that generate those errors, the error repair step produces
data updates that are applied to the dirty dataset. Since there are many uncertainties
in the data cleaning process, external sources such as knowledge bases and human
experts are consulted whenever possible and feasible to ensure the accuracy of the
cleaning workflow.

Example 1.1 Consider Table 1.1 containing employee records for a U.S. company. Every tuple
specifies a person in a company with her id (GID), name (FN, LN), level (LVL),
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Table 1.1 An example employee table

TID FN LN LVL ZIP ST SAL

t1 Anne Nash 5 10001 NM 110,000

t2 Mark White 6 87101 NM 80,000

t3 Jane Lee 4 10001 NY 75,000

zip code (ZIP), state (ST), and salary (SAL). Suppose a domain expert supplies two
data quality rules for this table. The first rule states that if two employees have the
same zip code, they must be in the same state. The second rule states that among
employees working in the same state, a senior employee cannot earn a smaller
salary than a junior employee.

Given these two data quality rules, the error detection step detects two viola-
tions. The first violation consists of four cells {t1[ZIP], t1[ST], t3[ZIP], t3[ST]}, which
together violate the first data quality rule. The second violation consists of six cells
{t1[ROLE], t1[ST], t1[SAL], t2[ROLE], t2[ST], t2[SAL]}, which together violate the sec-
ond data quality rule. The data repair step takes the violations and produces an
update that changes t1[ST] from “NM” to “NY”, and the new data now has no vio-
lation with respect to the two rules.

1.2 Book Scope
The aforementioned data cleaning workflow describes a general purpose data
cleaning process, but there are different data cleaning topics that address one or
multiple steps in the workflow. We cover some of the most common and practical
cleaning topics in this book: outlier detection, data deduplication, data transfor-
mation, rule-based data cleaning, ML guided cleaning, and human involved data
cleaning. We briefly explain these topics in the following subsections; we also high-
light the book structure in Section 1.2.7.

1.2.1 Outlier Detection
Outlier detection refers to detecting “outlying” values. While an exact definition of
an outlier depends on the application, there are some commonly used definitions,
such as “an outlier is an observation which deviates so much from other observations
as to arouse suspicions that it was generated by a different mechanism” [Hawkins
1980] and “an outlier observation is one that appears to deviate markedly from other
members of the sample in which it occurs” [Barnett and Lewis 1994]. For example,
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for a company whose employees’ salaries are around $100,000, an employee with
a salary of $10,000 can be considered to be an outlier.

Applications of outlier detection include network intrusion detection, financial
fraud detection, and abnormal medical condition detection. As a concrete example,
imagine a company that is interested in improving road safety by making drivers
more aware of their driving habits. To achieve this, data is collected from many
hundreds of thousands of vehicles equipped with sensors connected with smart-
phones. The collected data includes phone model, trip length, battery drain, and
so on. Outlier detection and explanation engines such as Macrobase [Bailis et al.
2017] can be used to analyze the collected data. For example, Macrobase can find
that some trips showed abnormally short lengths, common in smartphones with
Apple iOS 9.0 beta 1. This reason was reported to the engineers, who discovered
that a buggy Bluetooth stack was introduced in OS 9.0 beta 1, preventing iOS de-
vices from connecting to in-car sensors.

Outlier detection faces two main challenges. First, defining what is a normal
data pattern and what is an outlier can be difficult as different data and applications
differ in what is considered normal. Many different detection techniques have been
proposed to define normal behavior. Second, many outlier detection techniques
lose their effectiveness when the number of dimensions (attributes) of the dataset
is large; this effect is commonly known as the curse of dimensionality.

1.2.2 Data Deduplication
Duplicate records occur for many reasons. Data deduplication, also known as
duplicate detection, record linkage, record matching, or entity resolution, refers
to the process of identifying tuples in one or more relations that refer to the same
real-world entity. For example, a customer might be recorded multiple times in
a customer database if the customer used different names when purchasing; a
single item might be represented multiple times in an online shopping site; and
duplicate records might appear after a data integration project because that record
had different representations in original data sources. A data deduplication process
usually involves many steps and choices, including designing similarity metrics
to evaluate the similarity for a pair of records, training classifiers to determine
whether a pair of records are duplicates, clustering all records to obtain clusters of
records that represent the same real-world entity, consolidating clusters of records
to unique representations, designing blocking or distributed strategies to scale up
the deduplication process, and involving humans to decide whether a record pair
are duplicates when machines are uncertain.
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To address this, many open-source and commercial data deduplication tools
have been built, such as Magellan [Konda et al. 2016] and Data Tamer [Stonebraker
et al. 2013] (later commercialized as Tamr4). Fortune 500 companies use these
tools to make sense of their large procurement data. Large companies often have
multiple business units, and each unit buys many parts and products from many
suppliers. These units might be buying the same part and product from the same
supplier without each other’s knowledge, and therefore cannot get the best pricing.
Furthermore, the same part and product might be named differently across differ-
ent units, which complicates the deduplication process. A great deal of money can
saved by identifying multiple records from the same supplier.

Achieving good precision and recall at the same time is difficult in data dedupli-
cation—declaring all pairs are duplicates achieves perfect recall but poor precision
while declaring no pairs as duplicates achieves perfect precision, but poor recall.
The problem is especially challenging given the myriad of design choices in design-
ing a data deduplication workflow. Furthermore, data deduplication is inherently a
combinatorial task that has quadratic complexity. For example, when done naively,
comparing all pairs of only 1000 records requires 499,500 comparisons. In addition,
grouping records that refer to the same real-world entity can be even harder. For
example, correlation clustering used for grouping tuples that represent the same
real-world entity is an NP-hard problem [Elsner and Schudy 2009].

1.2.3 Data Transformation
Data transformation refers to the task of transforming data from one format to
another, for example, transforming phone numbers to a standard format by adding
“-” in between digits. Data transformations can be seen as error repair activities
and are used at various stages of data analytics. For example, before running a data
integration project, transformations are often used to standardize data formats,
enforce standard patterns, or trim long strings. Transformations are also used at
the end of the ETL process, for example, to merge clusters of duplicate records.

Transform-Data-by-Example is an Excel add-in that finds the desired transfor-
mation easily for a given transformation task.5 Only a few examples of the desired
output are needed, and Transform-Data-by-Example automatically finds relevant
data transformation functions from a large collection that it has already indexed.
This collection is acquired from a variety of sources, including Github source codes,
Stackoverflow code snippets, and .Net libraries. Users can also extend the collec-

4. https://www.tamr.com

5. https://www.microsoft.com/en-us/research/project/transform-data-by-example/
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tion to cover domain-specific transformation capabilities by providing their own
transformation functions.

Often, no ground truth is available to train or create accurate transformation
solutions, so there might be an infinite number of applicable transformation pro-
grams. Although the desired transformation might be clear to a human expert,
running all of these possibilities is expensive. Thus, practical data transformation
tools must effectively prune the space interactively to minimize cost.

1.2.4 Rule-Based Data Cleaning
Another common way to detect and rectify errors in databases is through the
enforcement of data quality rules, often expressed as integrity constraints (ICs)
[Chu et al. 2013b, Kolahi and Lakshmanan 2009, Fan and Geerts 2012]. An example
data quality is “For two employees working at the same branch of a company, the
senior employee cannot have less vacation time than the junior employee.” Given a
dataset, data quality rules can either be manually designed by domain experts
who understand the semantics of the data, or be automatically mined from the
data [Chu et al. 2013a, Chiang and Miller 2008]. In this context, (qualitative) error
detection is the process of identifying violations of ICs, namely, subsets of records
that cannot co-exist, and error repair is the exercise of modifying the database, such
that the violations are resolved and the new data conforms to the given ICs.

Rule-based data cleaning techniques using denial constraints [Chu et al. 2013a,
Chu et al. 2013b] have been proven to be extremely valuable in detecting and
repairing errors in real data in consultation with animal scientists at UC Berkeley
studying the effects of firewood cutting on small terrestrial vertebrates (birds,
amphibians, reptiles, and small mammals) [Tietje et al. 2018]. Each record in the
dataset contains information about capturing an animal, including the time and
the location of the capture, the tag ID of the animal captured, and the properties
of the animal at the time of the capture, such as weight, species type, gender, and
age group. The dataset was collected over the past 20 years. Since every capture was
first recorded in a log book and then later transcribed into Excel sheets, there are
missing values, typos, and transcribing errors in the dataset. A dozen discovered
data quality rules, expressed in the form of denial constraints [Baudinet et al. 1999],
are used to detect and repair data errors. This helped the animal data scientists to
correct hundreds of errors that would otherwise be very difficult to spot by humans.

Deriving a comprehensive set of integrity constraints that accurately reflects an
organization’s policies and domain semantics is a difficult task. Data is often scat-
tered across silos; for example, different departments may keep their personnel
records separate and may have different policies to determine an employee’s salary.
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Furthermore, data quality rules of varying expressiveness can be found in an orga-
nization, ranging from ad-hoc program scripts to simple sanity checks. Rather than
consulting domain experts, techniques to automatically discover ICs can be used,
which need to balance the trade-off between the expressiveness of the ICs and the
efficiency of discovery. Given a set of defined ICs and their violations in a dirty data
set, the number of possible ways to update the data to solve the violations is often
too large for humans to examine exhaustively. Thus, data cleaning algorithms must
be able to search through the huge space of possible updates efficiently to suggest
the most plausible updates.

1.2.5 ML-Guided Cleaning
One can easily recognize, from the discussion so far, that ML is a natural tool to
use in several tasks: classifying duplicate pairs in deduplication, estimating the
most likely value for a missing value, predicting a transformation, or classifying
values as normal or outliers. Indeed, several of the proposals that we discuss in
this book use ML as a component in the proposed cleaning pipeline. We describe
these in the corresponding chapters, and in Chapter 7 detail the use of ML for
cleaning. However, with the rapid advancement in scaling inference and deploying
large-scale ML models, new opportunities arise, namely, treating data cleaning as
an ML task (mainly statistical inference), and dealing with all the aforementioned
problems holistically. HoloClean [Rekatsinas et al. 2017a] is one of the first ML-
based holistic cleaning frameworks, built on a probabilistic model of unclean
databases [De Sa et al. 2019]. We discuss this direction in detail in Chapter 7.

1.2.6 Human-Involved Cleaning
It is usually impossible for machines to clean data errors with 100% confidence;
therefore, human experts are often consulted in a data cleaning workflow to re-
solve various kinds of uncertainties whenever possible and feasible. For example,
the metadata (e.g., keys and integrity constraints) generated by the discovery and
profiling step need to be verified by humans before they can be used for detecting
and repairing errors, since the metadata is discovered based on one instance of the
data set and may not necessarily hold on any data instance of the same schema
(e.g., future data). Another example of “judicious” human involvement is in the er-
ror detection step: to build a high-quality classifier to determine whether a pair of
records are duplicates, we need enough training data, namely, labeled records (as
duplicates or as non-duplicates). However, there are far more non-duplicate record
pairs than duplicate record pairs in a data set; asking humans to label a random
set of record pairs would lead to a set of unbalanced training examples. Therefore,
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humans need to consulted in an intelligent way to solicit training examples that
are most beneficial to the classifier.

Humans are also needed in the error repair step: data updates generated by
automatic data repair techniques are mostly based on heuristics and/or statistics,
such as minimal repair distance or maximum likelihood estimation, and thus are
not necessarily correct repairs. Therefore, they must be verified by humans before
they can be applied to a data set. We highlight when and how humans need to be
involved when we discuss various cleaning proposals in this book.

1.2.7 Structure of the Book
We present the details of current proposals addressing the topics discussed earlier
in multiple chapters organized along two main axes, as shown in Figure 1.2: (1) task:
detection vs. repair; and (2) approach: qualitative vs. quantitative. For example, out-
lier detection is a quantitative error detection task (Chapter 2); data deduplication is
a qualitative data cleaning task (Chapter 3), which has both detection of duplicates
and repair (also known as record consolidation); data transformation is consid-
ered a repair task (Chapter 4) that can be used to fix many types of errors, including
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Figure 1.2 Structure of the book organized along two dimensions: task and approach.
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outliers and duplicates; and rule-based data cleaning is a qualitative cleaning task
(Chapter 6). In addition, a discovery step is usually necessary to obtain data quality
rules necessary for rule-based cleaning (Chapter 5). Finally, we include a chapter
that discusses the recent advances in ML and data cleaning (Chapter 7) spanning
both dimensions.

Due to the diverse challenges of data cleaning tasks, different cleaning solu-
tions draw principles and tools from many fields, including statistics, formal logic
systems such as first-order logic, distributed data processing, data mining, and
ML. Although a basic familiarity with these areas should facilitate understand-
ing of this book, we try to include necessary background and references whenever
appropriate.



2Outlier Detection
Quantitative error detection often targets data anomalies with respect to some
definition of “normal” data values. While an exact definition of an outlier depends
on the application, there are some commonly used definitions, such as “an outlier is
an observation which deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism” [Hawkins 1980] and “an outlier
observation is one that appears to deviate markedly from other members of the sample
in which it occurs” [Barnett and Lewis 1994]. Different outlier detection methods
will generate different “candidate” outliers, possibly along with some confidence
scores.

Many applications of outlier detection exist. In the context of computer net-
works, different kinds of data, such as operating system calls and network traffic,
are collected in large volumes. Outlier detection can help with detecting possible
intrusions and malicious activities in the collected data. In the context of credit
card fraud, unauthorized users often exhibit unusual spending patterns, such as
a buying spree from a distant location. Fraud detection refers to the detection of
criminal activities in such financial transactions. Last, in the case of medical data
records, such as MRI scans, PET scans, and ECG time series, automatic identifica-
tion of abnormal patterns or records in these data often signals the presence of a
disease and can help with early diagnosis.

There are many challenges in detecting outliers. First, defining normal data pat-
terns for a normative standard is challenging. For example, when data is generated
from wearable devices, spikes in recorded readings might be considered normal if
they are within a specific range dictated by the sensors used. On the other hand,
spikes in salary values are probably interesting outliers when analyzing employee
data. Therefore, understanding the assumptions and limitations of each outlier
detection method is essential for choosing the right tool for a given application do-
main. Second, many outlier detection techniques lose their effectiveness when the
number of dimensions (attributes) of the dataset is large; this effect is commonly
known as the “curse of dimensionality.” As the number of dimensions increases, it
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becomes increasingly difficult to accurately estimate the multidimensional distri-
bution of the data points [Scott 2008], and the distances between points approach
zero and become meaningless [Beyer et al. 1999]. We give some concrete examples
and more details on these challenges in the next section.

In Section 2.1, we present a taxonomy of outlier detection techniques. We dis-
cuss in detail each of these categories in Sections 2.2, 2.3, and 2.4, respectively. In
Section 2.5, we discuss outlier detection techniques for high-dimensional data that
address the “curse of dimensionality.”

2.1 A Taxonomy of Outlier Detection Methods
Outlier detection techniques mainly differ in how they define normal behavior.
Figure 2.1 depicts the taxonomy we adopt to classify outlier detection techniques,
which can be divided into three main categories: statistics-based outlier detection
techniques, distance-based outlier detection techniques, and model-based outlier
detection techniques [Aggarwal 2013, Chandola et al. 2009, Hodge and Austin
2004]. In this section, we give an overview of each category and their pros and cons,
which we discuss in detail.

Statistics-Based Outlier Detection Methods. Statistics-based outlier detection tech-
niques assume that the normal data points would appear in high probability re-
gions of a stochastic model, while outliers would occur in the low probability re-
gions of a stochastic model [Chandola et al. 2009]. There are two commonly used
categories of approaches for statistics-based outlier detection. The first category is
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Figure 2.1 A taxonomy of outlier detection techniques.
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based on hypothesis testing methods, such as the Grubbs Test [Grubbs 1969] and the
Tietjen-Moore Test [Tietjen and Moore 1972]; they usually calculate a test statistic,
based on observed data points, which is used to determine whether the null hy-
pothesis (there is no outlier in the dataset) should be rejected. The second category
of statistics-based outlier detection techniques aims at fitting a distribution or infer-
ring a probability density function (pdf) based on the observed data. Data points that
have low probability according to the pdf are declared to be outliers. Techniques for
fitting a distribution can be further divided into parametric approaches and non-
parametric approaches. Parametric approaches for fitting a distribution assume
that the data follows an underlying distribution and aim at finding the parameters
of the distribution from the observed data. For example, assuming the data follows
a normal distribution, parametric approaches would need to learn the mean and
variance for the normal distribution. In contrast, nonparametric approaches make
no assumption about the distribution that generates the data; instead, they infer
the distribution from the data itself.

There are advantages of statistics-based techniques.

1. If the underlying data follows a specific distribution, then the statistical
outlier detection techniques can provide a statistical interpretation for dis-
covered outliers.

2. Statistical techniques usually provide a score or a confidence interval for
every data point, rather than making a binary decision. The score can be used
as additional information while making a decision for a test data point.

3. Statistical techniques usually operate in an unsupervised fashion without
any need for labeled training data.

There are also some disadvantages of statistics-based techniques.

1. Statistical techniques usually rely on the assumption that the data is gen-
erated from a particular distribution. This assumption often does not hold
true, especially for high-dimensional real datasets.

2. Even when the statistical assumption can be reasonably justified, there are
several hypothesis test statistics that can be applied to detect anomalies;
choosing the best statistic is often not a straightforward task. In particular,
constructing hypothesis tests for complex distributions that are required to
fit high-dimensional datasets is nontrivial.

Distance-Based Outlier Detection Methods. Distance-based outlier detection tech-
niques often define a distance between data points that is used for defining a
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normal behavior. For example, a normal data point should be close to many other
data points, and data points that deviate from such normal behavior are declared
outliers [Knorr and Ng 1998, 1999, Breunig et al. 2000]. Distance-based outlier de-
tection methods can be further divided into global or local methods depending on
the reference population used when determining whether a point is an outlier. A
global distance-based outlier detection method determines whether a point is an out-
lier based on the distance between that data point and all other data points in the
dataset. On the other hand, a local method considers the distance between a point
and its neighborhood points when determining outliers.

There are advantages of distance-based techniques.

1. A major advantage of distance-based techniques is that they are unsuper-
vised in nature and do not make any assumptions regarding the generative
distribution for the data. Instead, they are purely data driven.

2. Adapting distance-based techniques to different data types is straightfor-
ward, and primarily requires defining an appropriate distance measure for
the given data.

There are disadvantages of distance-based techniques.

1. If the data has normal instances that do not have enough close neighbors, or
if the data has anomalies that have enough close data points, distance-based
techniques will fail to label them correctly.

2. The computational complexity of the testing phase is also a significant chal-
lenge since it involves computing the distance of every pair of data points.

3. Performance of a nearest neighbor-based technique greatly relies on a dis-
tance measure, defined between a pair of data instances, which can effec-
tively distinguish between normal and anomalous instances. Defining dis-
tance measures between instances can be challenging when the data is com-
plex, for example, graphs, sequences, and so on.

Model-Based Outlier Detection Methods. Model-based outlier detection techniques
first learn a classifier model from a set of labeled data points, and then apply
the trained classifier to a test data point to determine whether it is an outlier.
Model-based approaches assume that a classifier can be trained to distinguish
between the normal data points and the anomalous data points using the given
feature space. They label data points as outliers if none of the learned models
classify them as normal points. Based on the labels available to train the classifier,
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model-based approaches can be further divided into two subcategories: multi-class
model-based techniques and one-class model-based techniques. Multi-class model-
based techniques assume that the training data points contain labeled instances
belonging to multiple normal classes. On the other hand, one-class model-based
techniques assume that all the training data points belong to one normal class.

The advantages of model-based techniques include:

1. Model-based techniques, especially the multi-class techniques, can make
use of powerful algorithms that can distinguish between instances belonging
to different classes.

2. The testing phase of model-based techniques is fast, since each test instance
needs to be compared against the precomputed model.

The major disadvantages of model-based techniques is that they must rely on
the availability of accurate labels for various normal classes, which is often not
possible.

2.2 Statistics-Based Outlier Detection
In this section, we discuss statistics-based outlier detection methods. First, we re-
view some basics about data distributions in Section 2.2.1. Section 2.2.2 then shows
how hypothesis testings, such as Grubbs’ Test, are used for detecting outliers. In
Section 2.2.3, we present parametric approaches for fitting a distribution to the
data, and also introduce the notion of robust statistics, which can capture impor-
tant properties of the underlying distribution in the presence of outliers in the data.
In Section 2.2.4, we introduce nonparametric approaches for fitting a distribution
to the data by using histograms and kernel density estimations (KDEs).

2.2.1 A Note on Data Distribution
Database practitioners usually think of data as a collection of records. They are
interested in descriptive statistics about the data (e.g., “what is the min, max, and
average salary for all the employees?”), and they usually do not care much about
how the data is generated. On the other hand, statisticians usually treat data as a
sample of some data-generating process. In many cases, they try to find a model or
a distribution of that process that best describes the available sample data.

The most commonly used distribution is the Gaussian or normal distribution,
which is characterized by a mean μ and a standard variance σ [Barnett and Lewis
1994]. While the normal distribution might not be the exact distribution of a given
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dataset, it is the cornerstone of modern statistics, and it accurately models the sum
of many independently identically distributed variables according to the central
limit theorem. The following equation shows the pdf of the normal distribution
N(μ, σ 2):

p(x)= 1

σ
√

2π
e−(x−μ)2/2σ 2

.

Multivariate Gaussian distribution or multivariate normal distribution is a gen-
eralization of the univariate normal distribution to higher dimensions. A random
vector consisting of d random variables Xi, where i ∈ [1, d], is said to be d-variate
normally distributed if every linear combination of its d components has a uni-
variate normal distribution. The mean of the d variables is a d-dimensional vec-
tor μ= (μ1, μ2, . . . , μd)T , where μi is the mean of the random variable Xi. The
covariance matrix � of these d random variables (also known as dispersion ma-
trix or variance–covariance matrix) is a matrix, where �i , j (Row i and Column
j of �) is the covariance between the two random variables Xi and Xj, namely,
�i , j = cov(Xi , Xj) = E[(Xi − μi)(Xj − μj)]. Intuitively, the covariance matrix gener-
alizes the notion of variance of a single random variable or the covariance of two
random variables to d dimensions.

2.2.2 Hypothesis Testing for Outlier Detection
A statistical hypothesis is an assumption about a population that may or may not
be true. Hypothesis testing refers to the formal procedures used by statisticians to
accept or reject statistical hypotheses, which usually consists of the following steps
[Lehmann and Romano 2006]: (1) formulate the null and the alternative hypothesis;
(2) decide which test is appropriate and state the relevant test statistic T ; (3) choose a
significance level α, namely, a probability threshold below which the null hypothesis
will be rejected; (4) determine the critical region for the test statistic T , namely, the
range of values of the test statistic for which the null hypothesis is rejected; (5)
compute from the current data the observed value tobs of the test statistic T ; and
(6) reject the null hypothesis if tobs falls under the critical region. Different known
test statistics exist for testing different properties of a population. For example, the
chi-square test for independence is used to determine whether there is a significant
relationship between two categorical variables, the one-sample t-test is commonly
used to determine whether the hypothesized mean differs significantly from the
observed sample mean, and the two-sample t-test is used to determine whether the
difference between two means found in two samples is significantly different from
the hypothesized difference between two means.
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A number of formal hypothesis tests for detecting outliers have been proposed in
the literature. These tests usually differ according to the following characteristics.

. What is the underlying distribution model for the data?

. Is the test designed for testing a single outlier or multiple outliers?

. If the test is for detecting multiple outliers, does the number of outliers need
to be specified exactly in the test?

For example, the Grubbs Test [Grubbs 1969] is used to detect a single outlier in a
univariate dataset that follows an approximately normal distribution. The Tietjen-
Moore Test [Tietjen and Moore 1972] is a generalization of the Grubbs test to the
case of more than one outlier; however, it requires the number of outliers to be
specified exactly. The Generalized Extreme Studentized Deviate (ESD) Test [Rosner
1983] requires only an upper bound on the suspected number of outliers and is
often used when the exact number of outliers is unknown.

We use Grubbs’ test as an example to show how hypothesis testing is used for
detecting outliers, as it is a standard test when testing for a single outlier. This
outlier is expunged from the dataset and the test is repeated until no outliers are
detected. However, multiple iterations change the probabilities of detection, and
the test is not to be used for a small sample size. Grubbs’ test is defined for the
following hypothesis, where H0 is the null hypothesis and Ha is the alternative
hypothesis:

H0 : there are no outliers in the dataset
Ha : there is exactly one outlier in the dataset.

Grubbs’ test statistic is defined as G = maxi=1, . . . , N |Yi−Y |
s , with Y and s denoting

the sample mean and standard deviation, respectively. Grubbs’ test statistic is the
largest absolute deviation from the sample mean in units of the sample standard
deviation. The above test statistic is the two-sided version of the test. Grubbs’ test
can also be used as a one-sided test for determining whether the minimum value
is an outlier or the maximum value is an outlier. To test whether the minimum
value Ymin is an outlier, the test statistic is defined as G = Y−Ymin

s ; similarly, to
test whether the maximum value Ymax is an outlier, the test statistic is defined as

G= Ymax−Y
s . For the two-sided test, the null hypothesis of no outliers is rejected if

G > N−1√
N

√
t2
α/(2N), N−2

N−2+t2
α/(2N), N−2

with t2
α/(2N), N−2 denoting the upper critical value of the t-

distribution with N − 2 degrees of freedom and a significance level of α/2N. For a
one-sided test, replace α/2N with α/N.
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Table 2.1 Employee records, including name, age, income, and tax

Name Age Income Tax

t1 Vivian Baskette 1 70 7

t2 Jamison Marney 25 110 11

t3 Marie Mulero 27 80 8

t4 Trudi Kimmell 30 130 13

t5 Stephanie Lindemann 32 120 7

t6 Dia Werley 35 80 8

t7 Abbie Lama 40 90 9

t8 Misti Luce 41 100 10

t9 Wilda Byerly 1000 120 12

Example 2.1 Consider Table 2.1, including the name, age, income, and tax of employees. Do-
main knowledge suggests that the first value t1[age] and the last value t9[age] are
outlying age values. We use Grubbs’ test with a significance level α = 0.05 to identify
outliers in the age column.

The mean of the 9 age values is 136.78, and the standard deviation of the 9 age

values is 323.92. Grubbs’ test statistic G= maxi=1, . . . , 9 |ti[age]−136.78|
323.92 = 2.66, which is

obtained at t9. With a significance level α = 0.05, the critical value is computed as
Gcritical = 2.21. Since G > Gcritical, the null hypothesis is rejected. Therefore, t9[age]
is reported as an outlier.

Removing t9[age], we are left with 8 age values. The mean of the 8 age values is
28.88, and the standard deviation of the 8 age values is 12.62. Grubbs’ test statistic

is G= maxi=1, . . . , 8 |ti[age]−28.88|
12.62 = 2.21, which is obtained at t1. With a significance level

α = 0.05, the critical value is computed to Gcritical = 2.12. Since G > Gcritical, the null
hypothesis is rejected. Therefore, t1[age] is reported as an outlier.

Removing t1[age], we are left with 7 age values. The mean of the 7 age values is
32.86, and the standard deviation of the 7 age values is 6.15. Grubbs’ test statistic

G= maxi=2, . . . , 8 |ti[age]−32.86|
6.15 = 1.32, which is obtained at t8. With a significance level

α = 0.05, the critical value is computed as Gcritical = 2.01. Since G < Gcritical, the null
hypothesis is accepted.

Previous discussion assumes that the data follows an approximately normal
distribution. To assess this, several graphical techniques can be used, including
the Normal Probability Plot, the Run Sequence Plot, the Histogram, the Box Plot,
and the Lag Plot.
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Iglewicz and Hoaglin provide an extensive discussion of the outlier tests previ-
ously given [Iglewicz and Hoaglin 1993]. Barnett and Lewis [1994] provide a book
length treatment of the subject. They provide additional tests when data is not nor-
mally distributed.

2.2.3 Fitting Distribution: Parametric Approaches
The other type of statistics-based approach first fits a statistical distribution to
describe the normal behavior of the given data points, and then applies a statistical
inference procedure to determine if a certain data point belongs to the learned
model. Data points that have a low probability according to the learned statistical
model are declared as anomalous outliers. In this section, we discuss parametric
approaches for fitting a distribution to the data.

Univariate
We first consider univariate outlier detection, for example, for a set of values
x1, x2, . . . , xn that appear in one column of a relational table. Assuming the data
follows a normal distribution, fitting the values under a normal distribution essen-
tially means computing the mean μ and the standard deviation σ from the current
data points x1, x2, . . . , xn. Given μ and σ , a simple way to identify outliers is to com-
pute a z-score for every xi, which is defined as the number of standard deviations
away xi is from the mean, namely z-score(xi)= |xi−μ|

σ
. Data values that have a z-score

greater than a threshold, for example, of three, are declared to be outliers.
Since there might be outliers among x1, x2, . . . xn, the estimated μ and σ might

be far off from their actual values, resulting in missing outliers in the data, as we
show in Example 2.2.

Example 2.2 Consider again the age column in Table 2.1. The mean of the 9 age values is
136.78, and the standard deviation of the 9 age values is 323.92. The procedure
that identifies values that are more than 2 standard deviations away from the
mean as outliers would mark values that are not in the range of [136.78− 2 ∗
323.92, 136.78+ 2 ∗ 323.92]= [−511.06, 784.62]. The last value t9[age] is not in the
range, and thus is correctly marked as an outlier. The first value t1[age], however, is
in the range and is thus missed.

This effect is called masking [Hellerstein 2008]; that is, a single data point has
severely shifted the mean and standard deviation so much as to mask other outliers.
To mitigate the effect of masking, robust statistics are often employed, which can
correctly capture important properties of the underlying distribution even in the
face of many outliers in the data values. Intuitively, the breakdown point of an
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estimator is the proportion of incorrect data values (e.g., arbitrarily large or small
values) an estimator can tolerate before giving an incorrect estimate. The mean and
standard deviation have the lowest breakdown point: a single bad value can distort
the mean completely.

Robust Univariate Statistics. We now introduce two robust statistics: the median
and the median absolute deviation (MAD) that can replace mean and standard
deviation, respectively. The median of a set of n data points is the data point for
which half of the data points are smaller, and half are larger; in the case of an even
number of data points, the median is the average of the middle two data points.
The median, also known as the 50th percentile, is of critical importance in robust
statistics with a breakdown point of 50%; as long as no more than half the data are
outliers, the median will not give an arbitrarily bad result. The median absolute
deviation (MAD) is defined as the median of the absolute deviations from the
data’s median, namely, MAD=mediani(|xi −medianj(xj)|). Similar to the median,
MAD is a more robust statistic than the standard deviation. In the calculation of
the standard deviation, the distances from xi to the mean are squared, so large
deviations, which often are caused by outliers, are weighted heavily, while in the
calculation of MAD, the deviations of a small number of outliers are irrelevant
because MAD is using the median of the absolute deviations.

The median and MAD lead to a robust outlier detection technique known as
Hampel X84 [Hampel et al. 2011] that is quite reliable in the face of outliers since
it has a breakdown point of 50%. Hampel X84 marks outliers as those data points
that are more than 1.4826θ MADs away from the median, where θ is the number
of standard deviations away from the mean one would have used if there were no
outliers in the dataset. The constant 1.4826 is derived under a normal distribution,
where one standard deviation away from the mean is about 1.4826 MADs.

Example 2.3 For detecting outliers in the ages column in Table 2.1, we used 2 standard deviations
away from the mean in Example 2.2. Therefore, we would like to flag points that
are 1.4826 ∗ 2= 2.9652 away from the median as outliers.

The median of the set of values in Example 2.2 is 32 and the MAD is 7. The normal
value range would be [32− 7 ∗ 2.9652, 32+ 7 ∗ 2.9652]= [11.2436, 52.7564], which
is a much more reasonable range than [−511.06, 784.62] derived using mean and
standard deviation. Under the new normal range, the first value and the last value
are now correctly flagged as outliers.
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Multivariate
So far, we have considered detecting univariate outliers in one dimension by fitting
the data to a normal distribution. However, some outliers can only be revealed when
considering multiple dimensions; we call these multivariate outliers.

Example 2.4 Consider the income and tax columns in Table 2.1. In general, income varies for
different persons, and so do tax rates. However, one would expect a positive corre-
lation between income and tax rate, namely, a higher income is usually associated
with a higher tax rate. Therefore, a tax record that has a high income but low tax
rate should be flagged as an outlier, even though the tax income or the tax rate in
that record might not be an outlier when considered separately in their respective
columns. Consider t5 in Table 2.1. t5[income] is not an outlier compared with the
values in the income column, and t5[tax] is also not an outlier compared with the
values in the tax column. However, taking the income and tax columns into account
simultaneously, t5 is an outlier, since it has a relatively low tax for a relatively high
income value.

Suppose we have a table that has n rows and d columns; we model each col-
umn as a random variable Xi , ∀i ∈ [1, d]. Let the mean of the d variables be a d-
dimensional vector μ= (μ1, μ2, . . . , μd)T and the covariance matrix be �, where
�i , jis the covariance between the two random variables Xi and Xj. Given the mean
and the covariance matrix, the questions are how to measure the distance between
a particular data point to the mean using the covariance matrix, and how much dis-
tance should qualify a point as an outlier. The Mahalanobis distance [Mahalanobis
1936] is the multidimensional generalization of measuring how many standard
deviations away a point is from the mean of the population. Specifically, the Maha-
lanobis distance of a point x to the mean vector μ is defined as Mahalanobis(x)=√

(x − μ)T�−1(x − μ). Notice that if � is the identity matrix, then the Mahalanobis
distance reduces to the standard Euclidean distance between x and μ. If every di-
mension is a normal distribution, then the square of the Mahalanobis distance fol-
lows a χ2

d distribution with d degrees of freedom. Using the probability cumulative
distribution function of χ2

d , we define the threshold of the Mahalanobis distance
to be a number where most of the Mahalanobis distance (e.g., 95%) is smaller than
that threshold distance.

Robust Multivariate Statistics. Similar to the univariate mean and variance, the
multivariate mean and covariance matrix are not robust, i.e., a single bad data
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Algorithm 2.1 FASTMCD

Input: One relational instance I, schema R
Output: Mean μ and the covariance matrix �

H1← a random subset of I, of size h
H0 ←∅
while H0 �= H1 do

H0 ← H1

compute μ and � of H0

calculate the Mahalanobis distance for all points in I using μ and �

H1← choose h points with the smallest distance
end while
repeat the above procedure many times (e.g., 500),
and choose the H whose � has the smallest determinant

point might severely distort the mean and the covariance matrix, and thus ro-
bust estimators must be used. The most famous method for the robustification
of multivariate mean and covariance matrix is called the Minimum Covariance De-
terminant (MCD) by Rousseeuw and Driessen [1999]. MCD chooses a subset of h
points that minimizes the determinant of the covariance matrix over all possible
subsets of size h (h is usually chosen to reflect the belief about how many points in
the dataset are outliers). For example, assume 10% of n points are outliers, then h
is chosen to be 0.9n. The multivariate mean and covariance matrix of the h points
are used to compute the Mahalanobis distance for all n points. A brute force way to
find the covariance matrix with the smallest determinant is to enumerate all pos-
sible subsets of size h from the n data points, which is obviously very expensive as
one has to evaluate all the possible subsets. A greedy algorithm called FASTMCD
[Rousseeuw and Driessen 1999] tries to solve the efficiency problem. Algorithm 2.1
describes FASTMCD. It starts by randomly selecting a subset of h data points, and
the mean μ and the covariance matrix � are computed using the random sample.
Then, the Mahalanobis distances for all points in I are computed using the μ and
�. The random sample is updated using h points with the smallest Mahalanobis
distances. The sample is updated in iterations until it remains unchanged between
two iterations. The above process is repeated by using a different random sample
as the initial seed, and the best result is used.

The correctness of the algorithm can be proven by showing that det(H1) ≤
det(H0) in the iterative portion. The mean and the covariance matrix computed
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using FASTMCD can be shown to have a 50% breakdown point [Rousseeuw and
Driessen 1999].

Most of our discussions of parametric approaches have been based on nor-
mal distributions. In practice, not all datasets are normally distributed. Two other
distributions are frequently observed: multimodal distributions and Zipfian dis-
tributions. In some cases, data appears to have many “peaks,” such distributions
are typically referred as being multimodal. Oftentimes, these multimodal distribu-
tions can be seen as a superimposed normal distributions, known as a mixture of
Gaussians. In some other cases, a large fraction of the data is condensed into a
small fraction of values, while the remainder of the data values are spread across
a long tail of rare values. The Zipfian distribution exhibits such a phenomenon. It
is important to choose the right distribution to detect outliers using parametric
approaches.

2.2.4 Fitting Distribution: Nonparametric Approaches
An obvious drawback of using parametric approaches for fitting a distribution is
that they assume the data to follow an underlying distribution. In contrast, non-
parametric approaches make no assumption about the distribution that generates
the data; instead, they infer the distribution from the data itself. There are mainly
two types of techniques in this category: histogram-based techniques and kernel
density-based techniques.

Histograms
A histogram [Pearson 1894] is a graphical representation of the distribution of
numerical data values, and is often used to estimate the probability distribution
of a continuous random variable. The first step toward creating a histogram is to
discretize or bin the range of values by dividing the range of the random variable
into a series of intervals, which are usually consecutive and non-overlapping. The
second step is to count how many values fall under each bin. If the bins are of
equal size, a bin is created with height proportional to the frequency of each bin,
i.e., the number of values a bin contains; this type of histogram is called an equi-
width histogram. In general, however, bins can be of varying width. If the width of
bins are chosen such that every bin has the same frequency, the histogram is called
an equi-depth histogram.

Equi-width histograms can be used to detect outliers; data points that belong
to bins that have very low frequency are reported as outliers. A major challenge
with histogram-based outlier detection approaches is that it is often very difficult
to come up with the “right” width of the interval. If the width of the bins is too
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Figure 2.2 Equi-width histograms for outlier detection.

narrow, the frequency of some bins might be low, and normal data points belong
to those bins are reported as outliers, and if the width of the bins is too wide, outlier
data points might get absorbed in bins that have normal data points, and thus
fail to report the real outliers. The problem is further exacerbated when adapting
histograms to multivariate data, since the frequency of every division diminishes
as the number of dimensions increases, as we mentioned earlier as a curse of
dimensionality.

Example 2.5 Figure 2.2 shows two equi-width histograms we built for the age column in Table 2.1
using free statistics software [Wessa 2012]. We report data points residing in bins
that contain less than three data points as outliers.

In Figure 2.2(a), the age values are split into 10 equal-width bins, namely (0, 100],
(100, 200], . . . , (900, 1000]. Only the first bin and the last bin contain data points.
Specifically, bin (0, 100] contains 8 points and bin (900, 1000] contains 1 point.
Therefore, we report t9[age]∈ (900, 1000] as an outlier.

In Figure 2.2(b), the age values are split into 50 equal-width bins, namely (0, 20],
(20, 40], . . . , (980, 1000]. Only the first three bins and the last bin contain data
points. Specifically, bin (0, 20] contains 1 point, bin (20, 40] contains 6 points, bin
(40, 60] contains 6 points, and bin (980, 1000] contains 1 point. Therefore, we report
t1[age]∈ (0, 20], t8[age]∈ (40, 60], and t9[age]∈ (980, 1000] as outliers.

There are usually two ways to generalize a histogram to deal with multivariate
data: (1) computing an outlier score for each dimension using the one-dimensional
histogram, and then combining the score to obtain an overall outlier score for
every data point; and (2) binning every dimension to divide multiple dimensions
together; the number of data points belonging to each division is counted, and the
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data points that belong to divisions with very low frequency counts are reported as
outliers. The performance of histogram methods usually deteriorates with increas-
ing number of dimensions due to the sparsity of the grid structure with increasing
dimensionality [Aggarwal 2013]. For example, given a 10-dimensional space with
each dimension being split into 10 bins, the grid will contain 1010 grid cells. It
would require 1010 available data points to allow every grid cell to have one data
point in expectation.

Kernel Density Estimation
KDE [Rosenblatt 1956, Parzen 1962, Gan and Bailis 2017] is a nonparametric way
to estimate the pdf f (x) of a random variable X based on a sample of n data points,
which is the same as histograms, but can be endowed with properties such as
smoothness or continuity by using a suitable kernel.

Let x1, x2, . . . , xn be an independent and identically distributed sample drawn
from some distribution with unknown pdf f (x). KDE estimates f (x) using f̂ (x)

defined as follows:

f̂h(x)= 1
n

n∑
i=1

Kh(x − xi)= 1
nh

n∑
i=1

K(
x − xi

h
),

where K(•) is the kernel, and h is a smoothing parameter called the bandwidth. A
kernel has to be a non-negative function that integrates to one and has mean zero,
namely,

∫∞
−∞ K(x)dx = 1 and K(x)= K(−x). A kernel with a subscript h is a scaled

kernel that satisfies Kh(x) = 1/hK(x/h). Some commonly used kernel functions
include the normal, uniform, triangular, biweight, triweight, and Epanechnikov
kernels. Just as the choice of the width of the bin influences the result of histograms,
the bandwidth of the kernel is a free parameter strongly influencing the KDE as well.

Example 2.6 To compare KDEs with histograms, consider 9 data points x1 = 1, x2 = 1, x3 =
2, x4 = 2, x5 = 2, x6 = 4, x7 = 6, x8 = 9, and x9 = 10. Figure 2.3 compares the pdf
derived using both the equi-width histogram with a bin width equal to 2 and three
KDEs using different kernel functions and bandwidths. As we can see, KDEs in
general produce much smoother estimates than the histogram. Comparing Fig-
ures 2.3(b), 2.3(c), and 2.3(d), we can see that bandwidth clearly controls the
smoothness of the pdf produced. Given the estimated pdf, any points that have
low probability are flagged as outliers.

The generalization of multivariate KDE from univariate KDE is similar to the
generalization of multivariate histograms from univariate histograms, and is dis-
cussed in detail in Simonoff [2012].
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Figure 2.3 Compare histograms with KDEs. Graphs were produced using Wessa [2012].

2.3 Distance-Based Outlier Detection
In contrast to statistics-based outlier detection techniques, distance-based out-
lier techniques do not assume an underlying model that generates the data and
are often nonparametric. These approaches often define a distance between data
points, which is used for defining a normal behavior, such as normal data points
should be close to many other data points, and any data point that deviates from
such normal behavior is declared an outlier [Knorr and Ng 1998, 1999, Breunig
et al. 2000].

Distance-based outlier detection methods can be further divided into global
or local methods depending on the reference population used when determining
whether a point is an outlier. A global distance-based outlier detection method de-
termines whether a point is an outlier based on the distance between that data point
and all other data points in the dataset. On the other hand, a local method consid-
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ers the distance between a point and its neighborhood points when determining
outliers.

2.3.1 Global Distance-Based Outlier Detection
Distance-based methods were first introduced by Knorr and Ng [Knorr and Ng
1998, 1999]. An object O in a dataset I is a distance-based outlier, i.e., DB(p, D)

outlier, if at least fraction p of the objects in I lies greater than distance D from O.
DB(p, D) can be seen as a generalization of some existing statistics-based outlier
detection definitions. For example, let I be observations from an univariate normal
distribution N(μ, δ) and O be a point from I, then the z-score of O is greater than
3 if and only if O is a DB(0.9988, 0.13δ) outlier [Knorr and Ng 1998]. Knorr and Ng
proved that statistics-based outlier detection definitions based on other underlying
distributions, such as Student t-distribution and Poisson distribution, are also
equivalent to DB(p, D) outliers with suitable choice of p and D.

The definition of DB(p, D) does not provide a ranking or a score of outliers and
requires specifying a distance parameter D, which could be difficult to determine
and may involve a trial and error process. There are other distance-based outlier
definitions that look at the k nearest neighborhood of a data point. Kollios et al.
[2003] defines an object O as outlier in a dataset I if at most k objects in I lie at
distance at most D from O. Ramaswamy et al. [2000] defines outliers as the top few
data elements whose distance to the kth nearest neighbor is greatest.

The simplest category of algorithms [Knorr and Ng 1998, 1999, Ramaswamy
et al. 2000] for finding distance-based outliers are those using nested loops to find
the distance between every point and every other point, which has a quadratic
complexity. Another category of algorithms uses spatial index structures such as
KD-trees, R-trees, or X-trees to find the nearest neighbors of each point [Knorr
and Ng 1998, 1999, Ramaswamy et al. 2000]. This category of algorithms works
well for low-dimensional datasets, and has a complexity of O(n log n) if the index
tree can allow a O(log n) lookup for finding a point’s nearest neighbor. However,
the index structures become increasingly complex as the dimensionality increases.
For example, Breunig et al. [2000] used an X-tree variant to do a nearest neighbor
search; they found that the index performed well for fewer than 5 dimensions, and
the performance dropped dramatically for just 10–20 dimensions. A third category
of algorithms partitions the space into regions to enable a faster search of near-
est neighbors. For each region, certain summary statistics such as the minimum
bounding rectangle are stored. During the search procedure for finding nearest
neighbors of a point, the point is compared with the summary statistics of a re-
gion to determine if it is possible to skip all the points in that region. Knorr and
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Ng [1998] found out that the partitioning-based approach has a complexity linear
in O(n), but exponential in the number of dimensions.

An efficient algorithm for finding distance-based outliers was devised by Bay
and Schwabacher [2003]; it is an adaptation of the simple nested loop algorithm
and has an expected running time of O(n). Algorithm 2.2 describes the procedure.
The distance function between two points x and y is denoted as distance(x, y), such
as Euclidean distance for numerical values and Hamming distance for categorical
values. The function score(x, Y) denotes the nearest neighbor distances between x
and its neighbors Y and is monotonically decreasing.

Algorithm 2.2 partitions all the points I into a set of blocks I1, . . . , Ib, and
compares each point in every block to every point in I. It keeps track of the top
m outliers and the weakest outlier of the m outliers, namely, the point with the
smallest score. The main idea in the nested loop is to keep track of the closest k
neighbors found so far for each point x. When a point x achieves a score lower than
the cutoff c, we can safely remove the point x since x can no longer be an outlier.
As the loop continues, the algorithm finds more outliers, and the cutoff threshold
c increases along with the pruning power. In the worst case, the algorithm still has
a complexity of O(n2); however, the average case analysis reveals the algorithm has
an expected complexity of O(n) [Bay and Schwabacher 2003].

2.3.2 Local Distance-Based Outlier Detection
Distance-based outlier detection methods such as DB(p, D) and its variants may
miss certain kinds of outliers because every point is compared with every other
point in the dataset.

Example 2.7 Consider a two-dimensional dataset with data points shown in Figure 2.4. There
are two clusters of points, C1 and C2, and points in C1 are sparse, whereas points
in C2 are quite dense. Obviously, points o1 and o2 should be reported as outliers.
However, distance-based methods would not flag o2 as an outlier before flagging
any points in C1, since the distances between o2 are much closer to the majority of
the data points, i.e., C2, than those points in C1.

The local outlier factor (LOF) method [Breunig et al. 2000] scores data points
based on the density of their neighboring data points, and can capture outlier
points such as o2 in Figure 2.4.

Given a positive integer k, the k-distance of an object p, denoted as k-distance(p),
is defined as the distance distance(p, o) between p and another object o, such that:
(1) there exist at least k objects other than p in the dataset whose distance to p is
less than or equal to distance(p, o); and (2) there exist at most k − 1 objects other
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Algorithm 2.2 Randomized algorithm for finding distance-based outliers

Input: One relational instance I, schema R
Output: ALLO, namely, a list of top m outliers
Let distance(x, y) return the distance between x and y
Let score(x, Y) be any function returning the outlier score of x given its neighbor Y
Let maxDist(x, Y) return the maximum distance between x and points in Y
Let closest(x, Y , k) return the k closest points in Y to x
c← 0 � set the cutoff distance to be 0
ALLO←∅
partition I into several blocks I1, . . . Ib

for all Ii ∈ {I1, . . . Ib} do
Neighbors(x)←∅ for all x in Ii

for all y ∈ I do
if |Neighbors(x)|< k or distance(y, x) < maxDist(x, Neighbors(x)) then

Neighbors(x)← closest(x, Neighbors(x) ∪ y, k)

if score(Neighbors(x), x) < c then
remove x from Ii

end if
end if

end for
ALLO← the top m outliers from B ∪ ALLO based on score(Neighbors(x), x)

c← the minimum score for O ∈ ALLO
end for

than p in the dataset whose distance to p is strictly less than distance(p, o). Given
k-distance(p), the k-distance neighborhood of p, denoted as Nk(p), contains all
objects other than p whose distance to p is less than or equal to k-distance(p).
The reachability distance of an object p with respect to object o is defined as
reach-distk(p, o) =max{k-distance(o), d(p, o)}. Intuitively, if an object p is too far
away from o, then reach-distk(p, o) is the actual distance between p and o. On the
other hand, if p and o are sufficiently close, then reach-distk(p, o) is replaced by the
k-distance of o. In this way, the distance fluctuations of all objects close to o are
reduced; the higher the k, the greater the smoothing effect.

Definition 2.1 The local reachability density of p is defined as:

lrdk(p)= 1/

(∑
o∈Nk(p) reach-distk(p, o)

|Nk(p)|

)
.
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C1

C2 o2

o1

Figure 2.4 An example showing distance-based outlier detection failure [Breunig et al. 2000].

The local outlier factor of p is defined as:

LOFk(p)=
∑

o∈Nk(p)
lrdk(o)

lrdk(p)

|Nk(p)| .

Intuitively, the local reachability density of an object p is the inverse of the
average reachability distance based on the k nearest neighbors of p. The local outlier
factor of p is the average of the ratio of the local reachability density of p and those
points in the k-distance neighborhood of p. It has been shown [Breunig et al. 2000]
that the LOF definition has many desirable properties; for example, LOFk(p) is
approximately equal to 1 in a cluster (a region with homogeneous density around
the point and its neighbors), LOFk(p) 1 if p is an outlier.

There are many proposed variants of LOF. Jin et al. [2001] only mine for the top
outliers, and thus do not need to compute the LOF scores for all data points by
deriving bounds for the LOF scores. Tang et al. [2002] consider connectivity based
outlier factors (COF) since LOF may make it hard to detect outliers in low density
regions. Jin et al. [2006] take symmetric neighborhood into account by consider-
ing both the k-nearest neighborhood of p and its reverse k-nearest neighborhood.
Papadimitriou et al. [2003] aim at getting rid of choosing the parameter k by con-
sidering all the possible ks.

2.4 Model-Based Outlier Detection
Model-based outlier detection techniques first learn a classifier model from a set
of labeled data points, and then apply the trained classifier to a test data point to
determine whether it is an outlier. Model-based approaches assume that a classifier
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can be trained to distinguish between the normal data points and the anomalous
data points using the given feature space.

Based on the labels available to train the classifier, model-based approaches can
be further divided into two subcategories: multi-class model-based techniques and
one-class model-based techniques. Multi-class model-based techniques assume
that the training data points contain labeled instances belonging to multiple nor-
mal classes [De Stefano et al. 2000]. Multiple classifiers are trained, where each
classifier is supposed to distinguish between one of the normal classes and the rest
of the classes. A test data point is declared as an outlier if it is not classified as be-
longing to any of the normal classes by any of the classifiers. In contrast, one-class
model-based techniques assume that all the training data points belong to one nor-
mal class. Such techniques learn a discriminative boundary to distinguish between
all the normal data points and the abnormal data points using a one-class classi-
fication algorithm, such as one-class support vector machines (SVMs) [Schölkopf
et al. 2001, Ratsch et al. 2002]. Any test data point that does not fall within the
learned boundary is declared an outlier.

Example 2.8 Figure 2.5(a) shows an example of a multi-class anomaly detection case where there
are three normal classes. Three data points that do not belong to any of the three
normal classes are flagged as outliers.

Figure 2.5(b) shows an example case of one-class anomaly detection. The clas-
sifier learns a boundary for the normal data points. Data points that lie outside the
boundary are flagged as outliers.
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Figure 2.5 Model-based outlier detection techniques [Chandola et al. 2009].
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Given that there are many different classification algorithms, such as neural
networks, Bayesian networks, SVMs, and decision trees, a variety of model-based
outlier detection techniques have been developed. Basic neural networks have been
used as a multi-class model-based outlier detection method [Taylor and Addison
2000, De Stefano et al. 2000]. Variants of the basic neural networks have been
proposed that use different types of neural networks, such as replicator neural
networks [Hawkins et al. 2002]. SVMs have been used as one-class model-based
outlier detection techniques. Such techniques learn a region that contains the
training data points [Ratsch et al. 2002]. Different kernels, such as Gaussian kernels
and radial basis function kernels, can be used to learn complex regions. A test data
point is declared as an outlier if it falls outside the boundary. Different variants of
the basic SVMs have been proposed for outlier detection in audio signal data [Davy
and Godsill 2002] and in temporal data [Ma and Perkins 2003]. Robust support
vector machines have also been proposed to detect the boundary in the presence of
outliers in the training data [Song et al. 2002]. Rule-based models such as decision
trees have also been used for outlier detection [Joshi et al. 2001, Fan et al. 2004].
Each learned rule has an associated confidence value that is based on the number
of training normal data points correctly classified by the rule and the total number
of training normal data points covered by the rule. If a test point is not captured by
any of the learned rules, it is declared an outlier.

2.5 Outlier Detection in High-Dimensional Data
Real datasets can be high dimensional; some may contain hundreds or even thou-
sands of attributes (e.g., the large number of sensor readings in an airplane). Many
outlier detection techniques lose their effectiveness when the number of dimen-
sions (attributes) of the dataset is large; this effect is commonly known as the “curse
of dimensionality.” For statistics-based outlier detection approaches, it becomes
increasingly difficult to accurately estimate the multidimensional distribution of
the data points [Scott 2008] as the number of dimensions increases. For distance-
based approaches, the distances between data points approach zero and become
meaningless [Beyer et al. 1999] with increasing dimensionality.

One popular category of techniques to deal with high-dimensional data is
by using dimensionality reduction, which refers to the process of finding a low-
dimensional representation of a high-dimensional dataset that preserves certain
properties of the dataset, such as distances or similarities between data points.
This topic has been well studied and surveyed in statistics, ML, and data mining
[Cunningham and Ghahramani 2015, Fodor 2002, Ding et al. 2008]. Consider a set
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of m real-valued d-dimensional data points represented as an m× d matrix X, where
each row corresponds to a data point xi ∈R

d. The goal of dimensionality reduction
is to devise a transformation function T : R

d → R
k that maps each data point xi to

a new data point in a k-dimensional space (k < d), such that the transformed data
preserves some properties of interest. We denote by x̃i the transformed data point
of xi and by X̃ the transformed dataset. One of the simplest methods to perform
dimensionality reduction is through random projections [Achlioptas 2001]. To form
a new data point x̃i from xi, k random d-dimensional vectors are generated to form
a matrix T ∈ R

k×d. The new dataset X̃ can be computed as X̃ = XT T . It is shown
that random projections preserve pairwise distances between vectors [Achlioptas
2001].

Principal Component Analysis (PCA) [Pearson 1901, Hotelling 1933] is perhaps
the most popular statistical procedure to perform dimensionality reduction. PCA
uses orthogonal transformation to convert a set of data points of possibly corre-
lated dimensions into a set of data points of linearly uncorrelated dimensions,
called principal components. The transformation is done in such a way that the
first component accounts for the largest possible variance in the data, and each
succeeding component has the largest variance possible given that it is orthogonal
to all preceding components. PCA can be done by eigenvalue decomposition of the
covariance matrix or singular value decomposition (SVD) [Shlens 2014]. To reduce
the complexity of computing PCA via SVD, progressive sampling strategies are used
[Suri and Bailis 2017].

Dimensionality reduction techniques use all of the available dimensions of the
original dataset and aim to find new datasets that preserve certain properties. In
what follows, we focus on two additional categories of approaches that discover
outliers using a subset of dimensions from the original dataset: subspace outlier
detection techniques and contextual outlier detection techniques. Subspace outlier
detection techniques select one or more subsets of attributes from all attributes
and find outliers with respect to every selected subset of attributes, namely, a
subspace [Aggarwal and Yu 2001, Zhang et al. 2004, Muller et al. 2008, Kriegel
et al. 2009]. Contextual outlier detection techniques select from all attributes one or
more pairs of subsets of attributes, where each pair of subsets consists of a subset
of environmental attributes (also referred to as contextual attributes) and a subset
of behavioral attributes (also referred to as indicator attributes or metric attributes).
The environmental attributes are used to select subsets of tuples from all tuples,
where each subset of tuples is referred to as a context. Outliers are detected within
each context with respect to the behavioral attributes [Wei et al. 2003, Zhu et al.
2004, Angiulli et al. 2009, Tang et al. 2013, Liang and Parthasarathy 2016].
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Example 2.9 Consider again the employee records in Table 2.1. We know from Example 2.4 that
t5 is a multivariate outlier with respect to the income and tax attributes. Example 2.4
assumes that the income and tax attributes are given as input. However, in reality,
we are often only given a table with many attributes, and we have no knowledge of
which subsets of attributes would reveal interesting outliers.

Given Table 2.1, a subspace outlier detection algorithm would first identify the
income and the tax attributes as a subspace, and then discover t5 as an outlier in
that subspace.

A contextual outlier detection algorithm would identify income to be the envi-
ronmental attributes and tax to be the behavioral attributes. t5 is then reported as a
contextual outlier with respect to the tax attribute within the context income > 100;
in other words, among the tuples with income > 1000, t5 has an abnormal tax.

In Example 2.9, the same outlier could be detected by both subspace outlier de-
tection techniques and contextual outlier detection techniques. Subspace outlier
detection techniques usually need to enumerate all potentially interesting sub-
spaces. Contextual outlier detection techniques not only need to enumerate possi-
ble environmental attributes and behavioral attributes, but also need to enumerate
contexts based on the environmental attributes. Contextual outliers are generally
more interpretable than subspace outliers (e.g., t5 in Example 2.9).

We first lay out two commonly found use cases for high-dimensional outlier
detections in Section 2.5.1. We then discuss in detail subspace outlier detection
techniques in Section 2.5.2 and contextual outlier detection techniques in Sec-
tion 2.5.3.

2.5.1 Two Use Cases for High-Dimensional Outlier Detection
Techniques for detecting outliers in high-dimensional data often find two general
use cases, regardless of whether they are looking for subspace outliers or contextual
outliers.

Use Case 1: High-dimensional outlier detection for data exploration: One of the
main characteristics of big data exploration tasks, in contrast to querying, is the
fact that analysts do not necessarily know what they are looking for. Traditional
outlier detection techniques are limited since they require users to specify the
interesting attributes. Consider an analyst performing market research who wishes
to determine which companies are unusually profitable. Since companies from
different sectors may not be comparable in profits, the analyst might answer this
query by running traditional outlier detection queries multiple times, each time on
a subset of companies belonging to a specific sector (e.g., technology and media) to
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identify the most profitable companies within each sector. There are potentially a
large number of interesting subgroups of which technology and media companies
are only two possible subgroups. In addition, other grouping criteria (e.g., based
on location) might also reveal outliers. Instead of relying on analysts to come
up with subspaces and contexts, analysts need tools that can discover subspaces
and contexts which contain outliers. In the previous example, while Company X
might have “normal” reported profit compared to all technology companies—with
normal defined, for example, as being within two standard deviations from the
mean—it may have very unusual (outlying) profit when compared to companies
with less than 10,000 employees. In this case, if a tool could produce [Business=
“technology” ∧ EmployeeCount < 1000], this may be an automatically discovered
context of interest to the analyst.

Use Case 2: High-dimensional outlier detection for targeted explanation and
diagnosis: Analysts often would like to answer the question “What is so special about
this entity or record?,” a key question in explaining analytics results or diagnosing
reported errors or anomalies. For example, an analyst performing troubleshooting
at a call center may wish to understand why an important customer in industrial
manufacturing is calling the troubleshooting hotline. Using conventional tools, the
analyst might check whether a few of the customer’s key performance metrics (e.g.,
quality of service) are abnormal. However, this approach is brittle; for example,
high-value clients may naturally exhibit deviations from the overall population.
Instead, high-dimensional outlier analysis can take into account other dimensions
with the performance metric dimensions to reveal the subspaces or the contexts in
which the client is meaningfully outlying. For example, a tool might discover that
the client is experiencing an unusually high rate of poor-quality service compared
to users in his location using his hardware make and model.

Problem formulations for high-dimensional outlier detection generally fall into
one of the two use cases, as we show in the following when we discuss in detail
subspace outlier detection techniques and contextual outlier detection techniques.

2.5.2 Subspace Outliers
To better appreciate the challenges in detecting subspace outliers, consider the
four different two-dimensional views of a hypothetical dataset in Figure 2.6 as an
example [Aggarwal 2013]. We see that Point A is considered an outlier in View 1 and
Point B is considered an outlier in View 4, whereas neither point is considered an
outlier in View 2 and View 3. The example shows that different data points may be
considered outliers in different subspaces. For datasets with high dimensionality, it
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Figure 2.6 The outliers may be present or be lost in different subspaces of the full dimensions
[Aggarwal 2013].

is very likely that only a small fraction of all possible subspaces contains interesting
outliers.

Detecting outliers in subspaces is a challenging problem mainly due to the fact
that the number of possible subspaces is exponential with respect to the number of
dimensions in the data. It is worth noting that there have been many proposals for
finding clusters in subspaces [Parsons et al. 2004], and many techniques exploit the
downward closure properties (a cluster is dense is subspace AB only if it is dense in
subspace A and subspace B). Finding outliers in subspaces is even more challenging
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than finding clusters in subspaces. This is because outliers, by definition, are
rare events in contrast to clusters, which are dense regions; hence, the downward
closure property is usually not applicable to detecting outliers in subspaces. An
effective outlier detection method needs to search the subspaces in such a way
that the outliers are revealed as quickly as possible. In what follows, we present in
detail a first algorithm [Aggarwal and Yu 2001] that achieves this goal, and we briefly
discuss other proposals [Zhang et al. 2004, Muller et al. 2008, Kriegel et al. 2009].

Aggarwal and Yu [2001] discover outliers in subspaces by finding localized re-
gions of the data in subspaces with abnormally low density. Data points contained
in low density regions are identified as outliers. To determine abnormally low den-
sity regions in subspaces, a grid-based approach is used to perform a discretization
of the data. Each dimension of the data is divided into φ ranges of equi-depth, and
hence each range contains f = 1

φ
of the records. These ranges from one dimension

form the localized regions in subspaces. Consider a k-dimensional region that is
created by picking grid ranges from k different dimensions. The expected fraction
of records in that region is f k, assuming that the attributes are statistically indepen-
dent of each other. Of course, the attributes are far from statistically independent
of each other, and thus the distribution of points in that region would differ sig-
nificantly from the expected behavior. It is precisely those regions with abnormally
low density that are useful for identifying outliers.

Formally, under the independence assumption, the presence of any data point
in a k-dimensional region is a Bernoulli random variable with probability f k.
Therefore, the expected fraction and standard deviation of data points in the k-
dimensional region are N . f k and

√
N . f k . (1− f k), respectively, where N is the

total number of data points. Let n(D) be the actual number of data points in a
k-dimensional region D. The sparsity coefficient S(D) of D is defined as follows:

S(D)= n(D)− N . f k√
N . f k . (1− f k)

.

Assuming n(D) fits a normal distribution, the normal distribution tables can be
used to quantify the probabilistic level of significance of its deviation. Aggarwal
and Yu [2001] aim to find regions with low S(D).

To avoid searching the exponentially large number of regions and computing
S(D) for each region in a brute-force manner, evolutionary algorithms are used
[Aggarwal and Yu 2001] to select regions with low S(D). In evolutionary methods,
every solution or candidate to an optimization is treated as an individual in an evo-
lutionary system. The “fitness” of an individual is exactly the objective function
value of the corresponding solution. An evolutionary algorithm uses mechanisms
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Algorithm 2.3 Evolutionary algorithm for finding outliers in high-dimensional data

Input: One relational instance I, schema R of d dimensions,
k denoting the number of dimensions of interest in a subspace
Output: ALLO, namely, a list of outliers
S ← initial seed population of p strings
BestSet ← null
while termination condition not met do

S ← Selection(S)

S ← CrossOver(S)

S ←Mutation(S)

update BestSet to be the m solutions in BestSet ∪ S with most negative
sparsity coefficients

end while
ALLO← set of data points represented by BestSet
return ALLO

inspired by biological evolution, including mutation, recombination, and selec-
tion. Accordingly, the candidate solutions to an optimization problem are mutated,
recombined, and selected according to the objective function until a convergence
criterion is met. Every candidate solution is usually encoded as a string. Algo-
rithm 2.3 describes the procedure for detecting outliers in a high-dimensional
dataset using the evolutionary method. For a d-dimensional dataset, the encod-
ing string will be of length d and contain k specified positions, where k is a user
provided input specifying the number of dimensions of interest. The fitness for
the corresponding solution is computed using the sparsity coefficient S(D). The
evolutionary search procedure starts with a population of p randomly selected so-
lutions and iteratively uses the process of selection, crossover, and mutation until
a convergence criterion is met (e.g., after a maximum number of iterations). The
selection process works by ranking current solutions according to the S(D), and
select higher ranked solution with a higher probability; the crossover process uses
a two-point crossover procedure. At the end of the evolutionary algorithm, all data
points contained in the final solutions are reported as outliers.

Example 2.10 Consider a dataset with d = 5 dimensions in total and φ = 10 ranges for each dimen-
sion, and we are interested in subspaces with k = 3 dimensions. Every candidate
solution will be encoded using a string of length 5, and every position in a string
represents which range is selected for every dimension. For instance, a candidate
solution, encoded as 3∗2∗1, represents a region with three dimensions, where the
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first dimension takes the third range, the third dimension takes the second range,
and the fifth dimension takes the first range.

Performing a two-point crossover between two solutions 3∗2∗1 and 1∗33∗ after
the third position will result in two new solutions 3∗23∗ and 1∗3∗1; and the mutation
process randomly flips a position to a number between 1 to φ with a predefined
mutation probability.

Algorithm 2.3 is an example of the first use case (cf. Section 2.5.1). OutRank
[Muller et al. 2008] is another example of the first use case, which relies on subspace
clustering approaches to find dense clusters in subspaces [Assent et al. 2007, Assent
et al. 2008] and treats data points that are not in those dense clusters as outliers.
Clusters are frequent objects (as opposed to outliers), and hence are amenable to
the downward closure property. The outlyingness of an object is calculated based
on how often the object is part of dense clusters, the dimensionality of the dense
clusters, and the size of the dense clusters. In OutRank, outliers are side-products
of a subspace clustering algorithm, which may not be satisfactory. For example, in
a dataset where no subspace clusters are present, all objects may be reported as
subspace outliers.

Instead of searching for relevant subspaces first and then finding outliers within
those subspaces, HOS-Miner [Zhang et al. 2004] and SOD [Kriegel et al. 2009] are
designed to find subspaces in which a given data point is an outlier. For a data
point x, HOS-Miner aims at finding all subspaces such that the sum of its k-nearest
neighbor distances in that subspace is at least δ. This approach does not normalize
the distances with the number of dimensions, and hence a subspace with more
dimensions is more likely to be in the output. One advantage of HOS-Miner is
that the outlier definition it adopts exhibits the downward closure property—any
subspace of a non-outlying subspace is also not outlying and every superset of an
outlying subspace is also outlying. Only minimal subspaces, in which the given
data point x is an outlier, are interesting. HOS-Miner users an X-Tree to perform k-
nearest neighbor searches efficiently. HOS-Miner also uses the fixed threshold δ to
discern outliers in all subspaces, which could be problematic since these scores are
rather incomparable in different subspaces. SOD [Kriegel et al. 2009] also aims at
finding subspaces in which a given data point x is an outlier. Given the data point x,
a set of reference data points S(x) are determined, which represent the proximity of
the current data point x. Based on S(x), the relevant subspace for S(x) is determined
as the set of dimensions in which the variance is small among points in S(x). If the
query point x deviates considerably from the S(x) in the relevant subspace, then x
is said to be an outlier in that subspace.
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While subspace outlier detection seems a viable approach for detecting out-
liers in high-dimensional data, it still faces many challenges: (1) In spite of recent
advances, the combinatorial nature of the problem requires more efficient search
procedures of possible subspaces. (2) Almost all the current techniques adopt their
own definitions of outliers in subspaces mainly for the purpose of effective enu-
meration or search of potential subspaces. For example, the sparsity coefficient is
used as the fitness function in the evolutionary algorithm [Aggarwal and Yu 2001],
and HOS-Miner [Zhang et al. 2004] is able to exploit the downward closure prop-
erty based on its unique definition of subspace outliers. How to efficiently search
possible subspaces under a general definition of multivariate outliers remains an
open question. (3) A point might be considered an outlier in different subspaces.
Therefore, one may combine results from these (incomparable) subspaces and rank
subspace outliers effectively. This can also be seen as an opportunity since results
from multiple subspaces may indicate more robust outliers.

2.5.3 Contextual Outlier Detection
The notion of contextual outliers was first studied in the context of time-series data
[Weigend et al. 1995, Salvador et al. 2004] and spatial data [Shekhar et al. 2001,
Kou et al. 2006], where the contextual attribute is the time dimension or the spa-
tial dimension. For example, a certain temperature might not be considered high
through the year, but is considered high for the winter months. Recently, many
proposals have been made on discovering contextual outliers with general envi-
ronmental attributes; some target the data exploration use case [Wei et al. 2003,
Song et al. 2007, Tang et al. 2013, Liang and Parthasarathy 2016] (cf. Section 2.5.1),
whereas some target the explanation and diagnosis use case [Angiulli et al. 2009,
Zhu et al. 2004]. For proposals targeting the data exploration case, some assume
that the environmental attributes and the behavioral attributes are given as input
[Song et al. 2007, Liang and Parthasarathy 2016], while others explore the space
of possible environmental and behavioral attributes to identify contextual outliers
[Wei et al. 2003, Tang et al. 2013]. The goal of the proposals targeting the expla-
nation and diagnosis use case is to discover the environmental attributes and the
behavioral attributes in which a given object is an outlier. In what follows, we give
an example algorithm for when the environmental attributes and the behavioral
attributes are given [Song et al. 2007], and an example algorithm for when they are
not [Wei et al. 2003].

Song et al. [2007] learn a correlation between the provided environmental at-
tributes and the provided behavioral attributes, and define contextual outliers as
those data points that deviate from the learned correlation. The correlation is
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Figure 2.7 Conditional anomaly detection given the environmental attribute max daily temp and
the behavioral attribute num fever [Song et al. 2007].

modeled using a Gaussian mixture model, and the parameters of the model are
learned using expectation-maximization methods. Example 2.11 shows an applica-
tion where the correlation between the environmental attributes and the behavioral
attributes can be used to detect interesting contextual outliers.

Example 2.11 Consider the application of detecting a disease outbreak using a dataset with two
dimensions: max daily temp, which denotes the maximum outside temperature
on a given day, and num fever, which denotes how many people are admitted to an
emergency room due to high fever on a given day. Clearly, max daily temp is not a
direct indicator of disease outbreak; however, it should be taken into account as an
environmental attribute when detecting outliers, as max daily temp directly affects
num fever.

A dataset is shown in Figure 2.7. Point A is considered as an outlier by most out-
lier detection methods if we consider num fever alone, since it has an abnormally
high number for num fever. However, Point A is not interesting for monitoring dis-
ease outbreaks, since it is expected that the num fever will be high on a cold day, as
is Point A.

Point B will not usually be considered as an outlier if we consider num fever
alone. However, it is an interesting outlier for monitoring disease outbreak, since
it has abnormally high num fever for the max daily temp it has.

The HOT algorithm proposed by Wei et al. [2003] and the COD algorithm pro-
posed by Tang et al. [2013] have explored contextual outliers on categorical data-
sets, where the environmental attributes and the behavioral attributes are not
given. Both approaches consist of two steps: context enumeration and detecting
contextual outliers within each enumerated context. Contexts in both approaches
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Algorithm 2.4 The HOT algorithm for discovering contextual outliers

Input: One relational instance I, schema R of d dimensions,
k denoting the number of dimensions of interest in a subspace
Output: A list of 〈t, C〉, denoting t is an outlier in context C.
ResultSet ← emptyset
enumerate all attribute-value pairs from I and R
FrequentContexts← frequent contexts using a frequent itemset mining approach
for all Context C in FrequentContexts do

behavioralAttributes← all attributes in R, but not in C
for all Each attribute A in behavioralAttributes do

compute the histogram of frequencies associated with each value attribute
A takes
for all each tuple t in the context C do

add 〈t, C〉 to ResultSet if t[A] has an abnormally low frequency according to
a user defined threshold

end for
end for

end for
return ResultSet

are essentially conjunctions of predicates, namely, attribute-value pairs, and they
are enumerated using a lattice data structure. An example candidate context is
A= a1 ∧ B= b1, which contains all the tuples that have value a1 for attribute A and
have value b1 for attribute B. The differences between these two approaches lie in
the space of contexts they are interested in and how outliers are defined in a certain
context. Algorithm 2.4 gives the details of the HOT algorithm as a concrete exam-
ple. First, all contexts are enumerated and frequent contexts are mined using the
Apriori algorithm [Agrawal and Srikant 1994]. For each frequent context C, the his-
togram of frequencies associated with each attribute A not in C is stored, which is
then used to compute the deviation of each value taken by A in the database. Finally,
the objects assuming a value on the attribute A whose deviation is smaller than a
user-provided threshold are returned as outliers. Example 2.12 shows an example
contextual outlier detected by Algorithm 2.4.

Example 2.12 Consider Table 2.2 with four attributes, Name, AgeRange, CarType, and SalaryLevel,
and ten tuples. An example frequent context is C : AgeRange= ‘Young ′ with five tu-
ples, namely, t3, t5, t6, t8, t10. The attribute CarAttribute is not in C, and is therefore
a potential behavioral attribute. There are two values for CarAttribute in the five tu-
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Table 2.2 A example table for contextual outlier detection with categorical attributes

Name AgeRange CarType SalaryLevel

t1 Mike Middle Sedan Low

t2 Jack Middle Sedan High

t3 Mary Yong Sedan High

t4 Alice Middle Sedan Low

t5 Frank Yong Sports High

t6 Linda Yong Sports Low

t7 Bob Middle Sedan High

t8 Sam Yong Sports Low

t9 Helen Middle Sedan High

t10 Gary Young Sports Low

ples; the value “Sedan” has a frequency of 1, and the value “Sports” has a frequency
of 4. Therefore, the value “Sedan” in tuple t3 is considered as an outlying value in
context C : AgeRange= ‘Young ′.

Despite recent advances of contextual outlier detection, it still faces many
challenges. (1) Most current contextual outlier detection techniques assume the
attributes in the data to be either entirely categorical [Wei et al. 2003, Angiulli
et al. 2009, Tang et al. 2013] or entirely numerical [Song et al. 2007, Liang and
Parthasarathy 2016]. It remains an open question how to handle mixed types of
attributes for contextual outlier detection. (2) Context enumeration is usually ex-
pensive to process, and is exponential with respect to the number of environmental
attributes. Current techniques treat context enumeration and detecting outliers in
every context as two separate processes with little interaction [Wei et al. 2003, Tang
et al. 2013]. One future direction is to interleave the two processes to avoid enu-
merating contexts that do not have outliers without actually running an outlier
detection method in them. (3) A data point might be considered to be a contextual
outlier by treating different subsets of attributes as environmental attributes or
behavioral attributes. In most scenarios, users must investigate outliers reported
by an automatic technique. Therefore, we need techniques to filter, rank, and re-
port different contextual outliers discovered so most interesting outliers will be
examined first.
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2.6 Conclusion
Outlier detection is a rich topic that has been studied within several communities
and application domains, and there exist several surveys and books on this topic
[Barnett and Lewis 1994, Hellerstein 2008, Chandola et al. 2009, Aggarwal 2013].
This chapter is complementary to those surveys. Our goal is: (1) to provide a clas-
sification of major types of outlier detection techniques, namely, statistics-based
methods, distance-based methods, and model-based methods; and (2) to discuss
outlier detection in high dimensional data.

Statistics-based outlier detection techniques assume that normal data points
would appear in high probability regions of a stochastic model, while outliers would
occur in low probability regions of a stochastic model. We distinguish between two
different types of statistics-based approaches: the hypothesis testing approach and
the distribution fitting approach. The hypothesis testing approach usually calcu-
lates a test statistic based on observed data points to determine whether the null
hypothesis (there is no outlier in the dataset) should be rejected. The distribu-
tion fitting approach, as the name suggests, fits a pdf to the observed data and
marks as outliers those points with low probability according to the pdf. Distance-
based outlier detection techniques are based on a definition of distances between
data points. In general, normal points should be close to each other, and outly-
ing points should be distant from normal points. Distance-based methods can be
further divided into global methods and local methods depending on the refer-
ence population used when determining whether a point is an outlier. Model-based
approaches follow the classic ML paradigm to learn one or more classifiers to distin-
guish between normal points and outliers. Model-based approaches are dependent
on the availability of labeled training data. We further discuss techniques for han-
dling high dimensional data, including dimensionality reduction, subspace outlier
detection, and contextual outlier detection.

As discussed, outlier detection techniques define “normal” differently and also
make different assumptions about the underlying data set. It is important for prac-
titioners to choose the outlier detection methods that best match their use case. If
probabilistic interpretations of results are needed, then statistics-based techniques
provide a formal framework for statistical reasoning. If the underlying data fol-
lows a known distribution, such as normal distribution, then techniques such as
Grubbs’ test or z-score are applicable, as shown in Section 2.2.2; otherwise, KDE,
as shown in Section 2.2.4, provides a nonparametric way for estimating the proba-
bility distribution, which can then be used for outlier detection. If probabilistic
interpretations of results are not needed or hard to know, then distance-based
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(cf. Section 2.3) and model-based techniques (cf. Section 2.4) provide alternative ap-
proaches. Distance-based approaches usually require the user to specify a distance
parameter or threshold, which may involve a trial and error process. Model-based
approaches usually require labeled training data to train supervised ML models.
Unfortunately, there is no gold standard or dominant outlier detection method.
Our taxonomy provides a good reference for navigating the vast literature of outlier
detection.





3Data Deduplication

In this chapter, we discuss a specific data cleaning task, namely, data deduplica-
tion. Duplicate records can occur for many reasons. For example, a customer might
be recorded multiple times in a customer database if the customer used different
names at the time of purchase; a single item might be represented multiple times
in an online shopping site; or a record might appear multiple times after a data in-
tegration project because that record had different representations in the original
data sources. Data deduplication, also known as duplicate detection, record link-
age, record matching, or entity resolution, refers to the process of identifying tuples
in one or more relations that refer to the same real-world entity. It is often followed
by an entity consolidation or fusion process to find the unified representation for
duplicate records that best represents the real-world entity.

Example 3.1 Figure 3.1 illustrates a simple example of data deduplication. The similarities
between pairs of records are computed, and are shown in the similarity graph
(upper-right graph in Figure 3.1). The missing edges between any two records
indicate that they are non-duplicates. An edge between two entities indicate a
similarity measure, e.g., the similarity score between P1 and P2 in the figure is 0.9.
We assume in this example that the score is between 0 and 1, and the higher the
score between two entities, the more similar those two entities are.

Records are then clustered together based on the similarity graph. Suppose the
user sets the threshold to be 0.5, i.e., any record pairs having similarity greater than
0.5 are considered duplicates. Although P1 and P5 have a similarity score less than
0.5, they are clustered together due to transitivity; that is, they are both considered
duplicates to P2.

Finally, all records in the same cluster are consolidated into one record in the
final clean relation. Many different strategies can be used to consolidate multiple
records. For instance, in consolidating P1, P2, and P5 into one record C1, majority
voting is used to obtain the name and the ZIP attributes, and numerical averaging
is used to obtain the income attribute.
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Figure 3.1 A typical deduplication task.

The above simple example uses one similarity function to give a score. Often-
times, multiple similarity functions are used to produce a similarity score between
a pair of entities. Machine learning classifiers or other aggregation methods are
used to combine these similarity functions into one score, as shown in Section 3.2.

The topic has been extensively covered in many surveys [Koudas et al. 2006,
Elmagarmid et al. 2007, Herzog et al. 2007, Dong and Naumann 2009, Naumann
and Herschel 2010, Getoor and Machanavajjhala 2012]: some of the surveys provide
an extensive overview of all the steps involved in data deduplication [Elmagarmid
et al. 2007, Herzog et al. 2007, Getoor and Machanavajjhala 2012]; some focus on
the design of similarity metrics [Koudas et al. 2006, Naumann and Herschel 2010];
some discuss the efficiency aspect of data deduplication [Naumann and Herschel
2010]; and some focus on how to consolidate multiple records [Dong and Naumann
2009].

We cover the various aspects of designing a data deduplication workflow and
the different choices available in each aspect. Section 3.1 describes multiple simi-
larity metrics and classifies them into three categories: character-based similarity
metrics, token-based similarity metrics, and phonetics-based similarity metrics.
Section 3.2 discusses different classifiers used to predict whether a pair of en-
tities are duplicates, including Bayes classifiers and active learning approaches.
Section 3.3 surveys different clustering algorithms used to group identified pairs
into clusters that represent the same real-world entities as shown in the previous ex-
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ample. Section 3.4 discusses different optimization strategies to reduce the number
of comparisons by avoiding comparing record pairs that are unlikely to be matches.
Section 3.5 presents different distribution strategies to scale out the data dedupli-
cation process in a distributed shared-nothing environment. Section 3.6 provides
a classification of different fusion strategies to consolidate multiple records that
refer to the same entity into one representation. Section 3.7 explores how humans
can be involved in the deduplication system/workflow. Finally, Section 3.8 high-
lights some open-source and commercial tools for data deduplication.

3.1 Similarity Metrics
Measuring the similarity between two values in the same column is an essential
component in determining whether two records are duplicates, and a variety of
similarity metrics have been proposed to handle different types of errors and dif-
ferent data types (e.g., numerical data and string data). Obviously, the similarity
between two numerical values should be directly dependent on the distance be-
tween those two values; for example, one way to define the similarity between
two numerical values v1 and v2 in attribute A can be defined as the following:
NumSim(v1, v2) = 1.0− |v1−v2|

max(A)−min(A)
, where max(A) and min(A) denote the maxi-

mum value and the minimum value in A, respectively. In contrast to numerical
values, there are many choices in defining similarities between two string values.
As follows, we describe three categories of similarity metrics that deal with three
different common errors, namely, character-based similarity metrics, token-based
similarity metrics, and phonetics-based similarity metrics.

3.1.1 Character-based
Typographical errors are common and multiple character-based similarity metrics
can be used to handle them. The edit distance between two strings s1 and s2 is
defined as the minimum cost of a sequence of edit operations needed to transform
s1 to s2. Three types of edit operations are usually considered: inserting a character,
deleting a character, and replacing one character with another. Generally, the term
“edit distance” is used to refer to the Levenshtein distance [Levenshtein 1966],
where the cost of each operation is assumed to be a unit cost.

Definition 3.1 The three types of basic edit operations allowed by edit distance are formally
defined as follows:

Insertion. Inserting a character x into string uv generates a new string uxv,
where u and v denotes two substrings.
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Deletion. Deleting a character x from string uxv generates a new string uv.

Substitution. Substituting a character x with y in string uxv generates a new
string uyv.

Given two string s1 and s2, the Levenshtein distance for them is defined as the
smallest number of operations that can transform s1 to s2.

The edit distance between s1 and s2 can be normalized to give a similarity value
by 1.0− EditDistance(s1, s2)

max(|s1|, |s2|) . The most common algorithm to compute the Levenshtein
distance between two strings uses dynamic programming, assuming that s1 has m
characters and s2 has n characters. We use s1[i] (1≤ i ≤m) to denote the ith character
of s1 and s2[j] (1≤ j ≤ n) to denote the jth character of s2. Let d(i, j) denote the
distance between s1[1 . . . i] and s2[1 . . . j]. The recursive structure of the dynamic
programming is as follows:

d(i, j)=min

⎧⎪⎨
⎪⎩

d(i − 1, j − 1)+ δ(s1[i], s2[j])

d(i − 1, j)+ 1

d(i, j − 1)+ 1

where δ(s1[i], s2[j])=
{

0 if s1[i]= s2[j]

1 otherwise.

Example 3.2 The edit distance between two strings “iPhone 6s”and “iPhone 6” is 1 since it only
requires one deletion operation to transform “iPhone 6s” to “iPhone 6”, indicating
that these two strings are similar.

The edit distance between two strings “Kim” and “Jack” is 4 since it requires
three substitutions and one insertion to transform “Kim” to “Jack”.

There are many different variants of the basic edit distances. For example, the
Hamming distance can be seen as a form of edit distance where only the substi-
tution operation is allowed; hence, it can only be defined for two strings of the
same length. Specifically, the Hamming distance for two strings of the same length
is defined as the number of positions at which the corresponding characters are
different. The Damerau–Levenshtein distance [Bard 2007] adds an edit operation
to the basic three types of operations, namely, the transposition operation that
swaps two adjacent characters in a string. The Damerau–Levenshtein distance of
two strings is defined as the minimum number of operations (insertions, deletions,
substitutions, and transpositions) required to transform one string to another. The
affine gap distance [Waterman et al. 1976] allows the three basic types of opera-
tions, but differentiates between two types of insertions and deletions: opening a



3.1 Similarity Metrics 51

new gap or extending an existing gap. The cost of opening a new gap is bigger than
the cost of extending an existing gap. The Jaro distance [Jaro 1976] and its exten-
sion, the Jaro–Winkler distance [Winkler 1990], are also variants of edit distances
where only transpositions are allowed; they are specifically designed to match per-
sonal names. In the following, we use the affine gap distance and the Jaro distance
as two example extensions of the basic edit distance to describe in more detail.

The edit distance falls short when comparing strings that have been truncated
or expanded. For example, the two names “Chris R Lang” and “Christopher Richard
Lang” should be deemed similar. However, according to the Levenshtein distance,
they have a large distance of 126 insertions (or deletions) for aligning “Chris” with
“Christopher” and 6 insertions (or deletions) for aligning “R” with “Richard”. The
affine gap distance [Waterman et al. 1976] addresses this problem by introducing
two additional edit operations: opening a gap and extending a gap. The cost of
opening a gap is usually larger than the cost of extending a gap, which results in a
smaller cost for gap mismatches than the cost under the edit distance.

Example 3.3 While the two strings “Chris R Lang” and “Christopher Richard Lang” have a large
distance of 12 using Levenshtein distance, they have a much smaller distance under
affine gap distance, and thus are deemed much more similar.

Assume that the affine gap distance has a gap opening cost 1 and gap extending
cost 0.5. The two strings would have an affine gap distance of 7. This is because
aligning “Chris” with “Christopher” requires opening a gap and extending that gap
by 5 characters, which has a cost of 1+ 5 ∗ 0.5= 3.5. Similarly, aligning “R” with
“Richard” also requires opening a gap and extending that gap by 5 characters, which
also has a cost of 3.5.

The Jaro distance [Jaro 1976] is usually used for comparing personal names.
There are three steps in computing Jaro distance between two strings s1 and s2.

1. Compute the length of two strings, denoted as |s1| and |s2|, respectively.

2. Find the number of matching characters m in s1 and s2, where two characters
s1[i] and s2[j] from s1 and s2, respectively, are considered matching if s1[i] is
the same as s2[j], and they are no more than half the length of the longer
string in distance, namely, |i − j| ≤ 1

2 max{|s1|, |s2|} − 1.

3. Find the number of transpositions t as follows: the lth matching character in
s1 is compared with the lth matching character in s2. If they are not the same,
the number of transpositions is increased by one. The number of transposi-
tions t is then divided by 2 to get the actual number of transpositions.
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Definition 3.2 Given two strings s1 and s2, the number of matching characters m, and the number
of transpositions t, the Jaro distance of s1 and s2 is computed as Jaro(s1, s2) =
1
3( m
|s1| +

m
|s2| +

m−t
m ).

Example 3.4 Consider two strings s1= “Paul” and s2 = “Pual.” The number of matching char-
acters m is equal to 4. Obviously, s1[1] is matching s2[1], and s1[4] is matching
s2[4]. s1[2] is considered to match with s2[3] since they are one position apart,
which is no more than frac12 max{|s1|, |s2|} − 1= 1 apart; similarly, s1[3] is also
considered to match s2[2]. The number of transpositions is 2/2= 1. Therefore
Jaro(s1, s2)= 1

3( 4
4 + 4

4 + 4−1
4 )≈ 0.92.

The Jaro–Winkler distance [Winkler 1990] uses a prefix scale p to favor two
strings that share a common prefix of length l since matching prefixes are generally
more important for matching personal family names.

Definition 3.3 The Jaro–Winkler distance of s1 and s2 is computed as Jaro Winkler(s1, s2) =
Jaro(s1, s2)+ (lp(1− Jaro(s1, s2))), where l is the length of the prefix up to a maxi-
mum of four characters and p is a constant scaling factor that does not exceed 0.25.
A standard value for p is 0.1.

3.1.2 Token-based
While character-based similarity metrics are suitable for handling typographical
errors, they often fail to capture the similarity between two strings that use the
same set of tokens, but with different ordering (e.g., “James Smith” vs. “Smith
James”). Multiple token-based similarity metrics can be used to handle such errors,
including the overlap coefficient, the Jaccard coefficient, and Dice’s coefficient.

Given a string s, we use tok(s) to denote the tokens of s. Different tokenization
strategies exist. One type forms tokens from s by separating s using some separa-
tors, such as space and hyphen. This type of strategy is insensitive to the location of
words, and thus allows for natural word swaps, such as swapping first names with
last names. Unfortunately, it does not tolerate spelling errors. For example, “James
Smith” and “Smyth Jamas” would have zero similarity.

Another type of popular tokenization strategy using q-grams, that is, splitting
a string into shorter substrings of length q using a sliding window, can be used
to solve this problem, since spelling errors minimally affect the set of common q-
grams of two strings. When q= 2, q-grams is commonly referred to as bigrams;
when q= 3, q-grams is commonly referred to as trigrams. For example, the trigram
of the string “Apple” is {“app”, “ppl”, “ple”}. Given two strings s1 and s2 and their to-
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kens tok(s1) and tok(s2), three different token-based similarity metrics are formally
defined as follows.

Definition 3.4 The overlap coefficient is defined as:

simoverlap(s1, s2)= |tok(s1) ∩ tok(s2)|
min(|tok(s1)|, |tok(s2)|)

.

The Jaccard coefficient is defined as:

simjaccard(s1, s2)= |tok(s1) ∩ tok(s2)|
|tok(s1) ∪ tok(s2)|

.

Dice’s coefficient is defined as:

simdice(s1, s2)= 2× |tok(s1) ∩ tok(s2)|
|tok(s1)| + |tok(s2)|

.

Example 3.5 Consider two strings s1= “iPhone 6s” and s2 = “iPhone 6s Plus”. Using space as
a separator, we have tok(s1) = {“iPhone”, “6s”}, and tok(s2) = {“iPhone”, “6s”,
“Plus”}. We can calculate the three different similarities:

simoverlap(s1, s2)= 2
2
= 1.0

simjaccard(s1, s2)= 2
3
= 0.67

simdice(s1, s2)= 4
5
= 0.8.

3.1.3 Phonetics-based
Phonetics-based similarity metrics are used to detect the similarity of two strings
that are phonetically similar, even if they are not similar according to character-
based or token-based similarity metrics (e.g., “Clair” versus “Clare”). Soundex
[Russell 1918] is the best known phonetic encoding algorithm and was developed
to encode surnames in English for use in censuses. It operates with the following
steps: (1) it keeps the first letter in a string and converts the rest of the letters into
numbers according to Table 3.1; (2) all zeros (the first line in Table 3.1) are then
removed and sequences of the same number are reduced to one number only (e.g.,
“222” is replaced with ‘2’); and (3) the final encoding string is the original first letter
and the subsequent three numbers. If the sequence of the number is longer than
three, it is cut off; if it is less than three, it is padded with zeros.

Example 3.6 “Peter” is encoded using Soundex as follows: (1) letter “P” is kept, and the rest of the
letters are converted to numbers “0306” according to Table 3.1; (2) removing 0s in
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Table 3.1 Soundex conversion table

a,e,h,i,o,u,w,y 0

b,f,p,v 1

c,g,j,k,q,s,x,z 2

d,t 3

l 4

m,n 5

r 6

“0360” gets us “36”; and (3) we obtain the final encoding “P360” by concatenating
the first letter P with “36” and padding an additional 0.

According to Soundex, both “Paul” and “Pual” have the same Soundex encoding
“P400,” and thus are considered to be the same name.

There are several variants of the Soundex encoding scheme. Phonix [Gadd 1990]
is a variant of the Soundex that tries to improve the quality of the encoding by pre-
processing names according to more than 100 rules; for example, “kn” is replaced
with “n” and “wr” is replaced with “r.” The transformed string is then encoded
using the Soundex encoding procedure. Daitch-Mokotoff Soundex (D-M Soundex)
[Steuart and Staff 1994] is a refinement of Soundex to better match surnames of
Slavic and Germanic origin.

The New York State Identification and Intelligence System Phonetic Code, com-
monly known as NYSIIS [Taft 1970], differs from Soundex in that it does not use
numerical digits to replace letters; rather, it replaces consonants with other pho-
netically similar letters.

Metaphone [Philips 1990] uses 16 consonant sounds that can describe a large
number of sounds used in many English and non-English words. Double-
Metaphone [Philips 2000] recognizes that one string may have multiple different
pronunciations, and thus allows for multiple encodings for one string.

3.2 Predicting Duplicate Pairs
In Section 3.1, we described different similarity metrics that can be used to match
individual attributes of two records. In real settings, most data records consist of
multiple attributes, complicating the data deduplication process. In this section,
we discuss how to predict whether or not a pair of tuples are duplicates based on
one or multiple similarity scores. The result of the prediction can either be a binary
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variable, which indicates whether a tuple pair is a duplicate or not, or a real number
between 0 and 1, which gives a likelihood of a tuple pair being duplicates.

Techniques for predicting duplicate pairs can be classified as unsupervised
techniques and supervised techniques; we discuss the latter here. We further dis-
cuss how active learning techniques can be beneficial in reducing the number of
required labeled examples for data deduplication in Section 7.1.1 when we sum-
marize the use of machine learning techniques in data cleaning.

Unsupervised techniques decide on matching pairs without the need for a train-
ing dataset. Examples include using a pre-specified threshold on a distance func-
tion [Monge and Elkan 1996, Chaudhuri et al. 2005] and employing domain specific
rules [Hernández and Stolfo 1998, Doan et al. 2003, Weis et al. 2008], such as: If
the first name and last name of two persons are similar, then the two records are du-
plicates. A rule for records in Table 6.1 could be “if Jaro(t1[FN], t2[FN]) > 0.8 and
Jaccard(t1[CT], t2[CT]) > 0.5, then t1 and t2 are duplicates.”

Supervised learning techniques rely on a training dataset in the form of record
pairs labeled as matching or non-matching. The similarity scores between record
pairs serve as features for training a classifier to be applied to the rest of the data.
Examples of classifier models include Näıve Bayes [Winkler 1999], decision tree
[Chaudhuri et al. 2007], and support vector machine (SVM) [Bilenko and Mooney
2003]. In the following, we describe the first supervised probabilistic approach for
data deduplication. Newcombe et al. [1959] first recognized detecting duplicate
record as a Bayesian inference problem. Fellegi and Sunter [1969] later formalized
the intuition.

Let A and B denote the tables we would like to match (A and B could be the same
table). We would like to assign every record pair 〈α , β〉(α ∈ A, β ∈ B) into one of two
classes M and U, where the class M contains record pairs that represent same real-
world entities (“matching”) and the class U contains record pairs that represents
different real-world entities (“unmatch”). A comparison vector γ = [γ1, γ2, . . . , γk]
that represents the similarity between a record pair 〈α , β〉 in different dimensions
is computed; the decision whether 〈α , β〉 is matched or unmatched is made based
on the comparison vector. The most straightforward decision rule based on simple
probability is as follows:

〈α , β〉 =
{

M if p(M|γ )≥ p(U|γ )

U otherwise.

This decision rules states that, given the comparison vector γ for a record pair
〈α , β〉, if the probability of the class M is larger or equal to the probability of the
class U, then classify 〈α , β〉 as a matched pair. Using Bayes’ theorem, the above
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decision rules can be rewritten as:

〈α , β〉 =
{

M if p(γ |M)

p(γ |U)
≥ p(U)

p(M)

U otherwise.

The ratio p(γ |M)

p(γ |U)
is called the likelihood ratio, and the ratio p(U)

p(M)
is the threshold

value of the likelihood ratio for the decision rule. The above decision rule can be
shown to result in the minimum error if the distributions of p(γ |M) and p(γ |U) and
the prior p(U) and p(M) are known [Friedman et al. 2001], which is rarely the case
in practice.

One commonly used approach to simplify the computation of the two dis-
tributions p(γ |M) and p(γ |U) is to make a conditional independence assump-
tion between the dimensions in the comparison vector; namely, the probabili-
ties p(γi|M) and p(γj|M) are independent if i �= j, and, similarly, the probabilities
p(γi|U) and p(γj|U) are independent if i �= j. This approach is usually called Naive
Bayes. Based on the Naive Bayes assumption, we have p(γ |M)=�k

i=1p(γi|M) and
p(γ |U)=�k

i=1p(γi|U).
If there are training data available, namely, record pairs labeled M or U, we can

estimate p(U), p(M), p(γi|M), and p(γi|U) easily. We can estimate p(U) (resp. p(M))
by counting the percentage of record pairs in the training data with U (resp. M) la-
bels. We can estimate p(γi|M) and p(γi|U) by assuming a Gaussian distribution. For
example, let μM and δ2

M be the mean and the variance of the values in dimension i of
the comparison vectors of record pairs in the training data with M Then p(γi|M) can
be computed by plugging γi into the equation for a Gaussian distribution parame-

terized by μM and δ2
M. That is, p(γi|M)= 1√

2πδ2
M

e
− (γi−μM)2

2δ2
M . If there are small amounts

of training data or no training data available, expectation maximization algorithms
are usually used to estimate the parameters of the Bayes model [Dempster et al.
1977, Winkler 1993].

The Bayes decision rules lead to optimal results only when the distribution
parameters are known. However, in practice, the estimated parameters are often
not ideal, and thus classification errors are prevalent, especially when p(γ |M)

p(γ |U)
is

close to p(U)

p(M)
. Fellegi and Sunter [1969] suggested adding another reject class J in

addition to classes M and U. The J class contains record pairs for which it is not
possible to make a definite inference according to the model and a clerical review
is necessary. Record pairs in J are therefore examined by experts to decide whether
they are M or U. By setting thresholds for the allowed errors on M and U, a rejection
region can be defined.
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3.3 Clustering
So far, we have discussed methods for predicting whether a pair of tuples are
duplicates. However, detecting duplicate pairs is not the goal of data deduplication.
Indeed, data deduplication needs to find groups or clusters of records that refer to
the same real-world entity. In this section, we discuss clustering techniques that
achieve this goal.

The result of pairwise comparison process, which takes O(n2) comparisons for
a database of n records, can be represented as a graph, where nodes represent
records and edges between nodes exist if they are considered duplicates by the
classifiers. Each edge may also have a weight, reflecting the confidence of the two
nodes connected by the edge being duplicates; it could be the similarity between
the two records, or it could be the probability returned by the classifier. The graph is
thus referred to as similarity graph. The goal of clustering is to partition all records
into disjoint clusters of records, where each cluster corresponds to one real-world
entity and records in a cluster are different representations of the same entity
[Verykios et al. 2000, Gruenheid et al. 2014]. The clustering algorithms used for
data deduplication usually do not require the number of clusters as input, as the
number of unique records in a dataset is often unknown. There is no one single
perfect clustering algorithm for every dataset. Hassanzadeh et al. [2009] provides a
framework for evaluating different clustering algorithms in data deduplication, in
terms of scalability, ability to find the correct number of clusters, and robustness
of the clustering algorithm. Their findings suggest that none of the clustering
algorithms produce perfect results; quantitative information needs to be compared
for a specific deduplication task. In the following, we give details about three most
commonly used clustering algorithms for data deduplication, namely, transitivity-
based clustering, hierarchical clustering, and correlation clustering.

One simple way to obtain such clustering of records is to leverage the transitivity
of duplicate records: that is, if Record A is a duplicate of Record B, and Record
B is a duplicate of Record C, then Record A is a duplicate of Record C. Then the
clustering problem becomes the problem of finding all connected components
in the similarity graph. Each connected component is one cluster that represents
one real-world entity [Hernández and Stolfo 1995]. It is straightforward to compute
the connected components of a graph in linear time (in terms of the numbers of
the vertices and edges of the graph) using either breadth-first search or depth-first
search. One major drawback of such an approach is that it may mistakenly consider
two records as duplicates because they are in the same connected component, even
though they are very dissimilar. An example of such a clustering algorithm was
shown in Example 3.1.
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Hierarchical clustering is a type of clustering algorithm that seeks to build a
hierarchy of clusters. Hierarchical clustering algorithms are either top-down or
bottom-up. Bottom-up algorithms treat each object as a singleton cluster at the be-
ginning, and then successively merge pairs of clusters until all clusters have been
merged into a single cluster that contains all objects, or a predefined stopping crite-
rion is met. Bottom-up hierarchical clustering is therefore also called hierarchical
agglomerative clustering or HAC. Top-down clustering requires a method for split-
ting a cluster. It proceeds by splitting clusters recursively until individual objects are
placed into singleton clusters, or a predefined stopping criteria is met. Since HAC
is more frequently used than top-down clustering, we give the outline of the HAC in
Algorithm 3.1. HAC takes as input a distance function dist(c1, c2) that measures the
distance between two clusters c1 and c2. At every iteration, it chooses clusters that
have the smallest distance as determined by the dist(c1, c2) function, and merges
those two clusters into one cluster. If c1 and c2 are singleton clusters, the dist(c1, c2)

simply uses the similarity score as the distance between those two clusters. If c1 and
c2 are non-singleton clusters, there are multiple ways to define dist(c1, c2). (1) The
distance dist(c1, c2) is defined as the shortest distance between any two points in
each cluster. In this case, the HAC algorithm is called the single linkage clustering
algorithm. (2) The distance dist(c1, c2) is defined as the longest distance between
any two points in each cluster. In this case, the HAC algorithm is called the complete
linkage clustering algorithm. (3) The distance dist(c1, c2) is defined as the average
distance between any two points in each cluster. In this case, the HAC algorithm is
called the average linkage clustering algorithm. In its most general form, the HAC
algorithm has a time complexity of O(n3). The time complexity can be reduced to
O(n2 log n) by using a heap data structure to quickly identify the next two clusters
to merge.

Example 3.7 Figure 3.2 shows a scenario of using HAC to cluster five records with different stop-
ping criteria. In the first iteration, clusters {r4} and {r5} have the smallest distance,
and thus are merged first. In the second iteration, clusters {r1} and {r2} have the
smallest distance, and thus are merged next. In the third iteration, clusters {r3}
and {r4, r5} have the smallest distance, and thus are merged next. Choosing differ-
ent thresholds τ will lead to different clustering results, as shown in Figure 3.2.

Correlation clustering provides a method for clustering all records into the
optimum number of clusters without specifying that number in advance [Elsner
and Schudy 2009]. The objective of correlation clustering is to minimize the sum
of distances/cost between nodes within the same cluster, and the distances/cost
between nodes in different clusters. Correlation clustering can be viewed as an
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Algorithm 3.1 Hierarchical agglomerative clustering or HAC

Input: A set of records r1, r2, . . . rn, the similarity graph G, a distance function
between two clusters dist(c1, c2), distance threshold τ .

Output: A set of clusters C
for all i from 1 to n do

create a new cluster ci with record ri

end for
C = {c1, c2, . . . , cn}
dist(ci , cj)← the distance in the similarity graph G
mindist ←∞
while C.size > 1 or mindist > τ do

mindist ←minimum distance between any two clusters cmin1 and cmin2 in C
remove cmin1 and cmin2 from C
cmerge = cmin1 ∪ cmin2

add cmerge to C
end while
return C

integer linear programming (ILP) problem. Let exy ∈ {0, 1} denote if two records x
and y are in the same cluster; then w+xy ∈ [0, 1] denote the cost of clustering x and y
together, and w−xy ∈ [0, 1] denote the cost of placing x and y in two different clusters.
Thus, correlation clustering can be formalized as follows:

minimize
∑

xy

(exyw+xy + (1− exy)w−xy) subject to ∀x, y, z, exy + exz + eyz �= 2.

The objective function in the above formulation is exactly the sum of the cost
between every pair of records in the dataset, whether they are in the same cluster
(w+xy) or in different clusters (w−xy). As an example cost function, w+xy can be defined
as the similarity between x and y, and w−xy can be defined as 1.0 minus the similarity.
The constraint ∀x, y, z, exy + exz + eyz �= 2 states that for every three records, it
cannot be the case that two record pairs end up in the same cluster while the third
record pair are in a different cluster; this ensures that the transitivity property holds
in the final result of the clustering output.

Since solving the ILP problem is NP-hard [Ailon et al. 2008], a number of greedy
approaches have been proposed [Ailon et al. 2008, Elsner and Schudy 2009] that
generally work in the following steps.

1. All records are randomly permuted.
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Figure 3.2 An illustration of hierarchical agglomerative clustering or HAC with different stopping
criteria.

2. Each record x is either assigned to an existing cluster or a new cluster, ac-
cording to a certain criterion, such as assigning x to a cluster that contains
the closest match to x [Ng and Cardie 2002], assigning x to a cluster that con-
tains the most recent record y with w+xy > 0 [Soon et al. 2001], and assigning
x to a cluster that minimizes the objective function [Elsner and Charniak
2008].

3. Run the greedy approach for multiple times, and choose the run that results
in the best objective value.

Both hierarchical clustering and correlation clustering do not require the num-
ber of clusters to be specified in advance, which is a big advantage. Compared with
hierarchical clustering, correlation clustering techniques usually produce relatively
high accuracy results, but at the cost of scalability.

3.4 Blocking for Deduplication
The number of tuple pairwise comparisons required for a dataset of n records is
O(n2), which is expensive for large n. Blocking techniques or blocking functions
aim at reducing the number of comparisons by avoiding comparing tuple pairs that
are unlikely to be matches. Given an input dataset instance I, blocking techniques
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or blocking functions produce a set of blocks {C1, C2, . . . , Ck}, where Ci ⊂ I and
∪k

i=1Ci = I. Tuple pairs within the same block get compared, while tuple pairs across
different blocks are skipped. Depending on the blocking techniques, the set of
blocks may be disjoint or overlapping. Sometimes, after a set of blocks is produced,
they are further consolidated via a meta-blocking process to further reduce the
number of comparisons [Papadakis et al. 2014], which retains tuple pairs that
appear in multiple blocks and discards tuple pairs that appear in few blocks.

Example 3.8 Consider a dataset that has 1 million records, where each record stores the name
of a restaurant and the city of the restaurant. Assume there are 1,000 unique cities
and each city has 1,000 restaurants; hence, there are 1 million records in total.
This dataset would require about 106×106

2 tuple pair comparisons. Assuming each
comparison takes 1 μs, it would take about 5.78 days.

Since domain knowledge suggests that restaurants from different cities are
unlikely to be matches, the records can be partitioned into 1000 blocks, where
each block contains 1000 restaurants from one city. The number of comparisons
required after blocking is 1000× 103×103

2 , which would only take 20.8 min.

Although blocking techniques can significantly reduce the number of tuple pair
comparisons, it might also miss true matches if they never appear together in a
block. Therefore, there is a natural trade-off between the number of reduced com-
parisons and the number of missed matches when designing blocking techniques.
Multiple metrics can be used to quantify this trade-off. The reduction ratio of a
blocking function is defined as the number of tuple pair comparisons induced
by the set of blocks divided by the total number of tuple pair comparisons be-
fore blocking. The recall of a blocking function is defined as the number of true
matches compared in the set of blocks divided by the total number of true matches
in the dataset. The precision of a blocking function is defined as the number of
true matches compared divided by the total number of matches compared. Since
computing the precision and the recall of a blocking function requires the ground
truth of true matches in a dataset, which is often not available, they are computed
by involving humans to verify matches in a sample of the dataset.

There are multiple surveys and studies summarizing existing blocking tech-
nique [Christen 2012, Papadakis et al. 2016], which are mainly built using two types:
hash-based and similarity-based. Hash-based techniques involve judicious use of
hash functions to place records into blocks, where each block is associated with a
unique hash key; they usually produce disjoint blocks. Similarity-based techniques
cluster nearby records together according to a similarity metric; they usually pro-
duce overlapping clusters. We discuss them in detail as follows.
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3.4.1 Hash-Based Blocking
We discuss two types of different hash-based blocking techniques. The first is based
on the equality of hash values, and the second is based on locality sensitive hashing,
which hashes input records such that similar records are mapped into the same
block with high probability.

Equality-based
A simple way to perform blocking is to scan all the records and compute the hash
value of a hash function for each record based on some attributes, commonly
referred to as blocking keys. Those records with the same hash value are placed
within the same block. Examples of blocking keys are the first three characters
of the last name, and the concatenation of city, state, and zip attribute. Although
blocking can substantially increase the comparison efficiency, it can result in many
false negatives when two duplicate records do not agree on the blocking key, and
thus reside in two different blocks. One way to alleviate such a problem is to perform
the deduplication algorithm in multiple passes, using a different blocking criterion
for each pass; another approach is to build a complex blocking function that is a
combination of multiple blocking criteria [Michelson and Knoblock 2006, Sarma
et al. 2012].

Locality Sensitive Hashing
Given a specific similarity function Sim : U × U → [0, 1], a locality sensitive hashing
(LSH) scheme is a probability distribution over a set H of hash functions such
that Prh∈H[h(A)= h(B)]= Sim(A, B) for two objects A, B ∈ U [Charikar 2002]. LSHs
represent similarities between records using probability distributions over hash
functions. For a particular similarity function, there may or may not exist an LSH
scheme.

One of the most popular LSH schemes is the MinHash scheme (or min-wise
independent LSH scheme) [Broder 1997], which is a technique for estimating how
similar two sets A and B are in terms of their Jaccard similarity J(A, B) = |A∩B|

|A∪B| .
Let h be a hash function that maps the members of A and B to distinct integers,
and for any set S, let hmin(S) be the member x of S with the minimum value of
h(x). Applying hmin to both A and B, and assuming no hash collisions, we will get
the same value exactly when the element with the minimum hash value in A∪ B
is also in the intersection A∩ B, namely Pr[hmin(A)= hmin(B)]= J(A, B). If we use
k independent hash functions, and let y be the number of hash functions for
which hmin(A)= hmin(B), then we can use y

k as an unbiased estimator for J(A, B). In
what follows, we introduce how to design blocking strategies based on MinHash
[Leskovec et al. 2014].
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Step 1. Since Jaccard similarity is based on sets, the first step is to map every
record into a set of elements, a process also known as “shingling.” There are two
main ways to shingle a string record into a set: word-level shingling and letter-level
shingling. For example, a string “John Computer Science PhD” is mapped into a
set {John Computer, Computer Science, Science PhD} using word-level shingling
with shingle size (i.e., number of words in an element) 2; and a string “science” is
mapped into a set {sci, cie, ien, enc, nce} with shingle size 3.

Step 2. The second step is to create a MinHash signature for every record t using k
independent hash functions h1, h2, . . . , hk. The MinHash signature for a record t is
a vector 〈h1

min(t), h2
min(t), . . . hk

min(t)〉, where hi
min(t) denotes the minimum hashing

value any element in t has applying the hashing function hi. If the final goal is to
compute the Jaccard similarity for every record pair, we need to count how many
elements two MinHash signatures have in common for every record pair (although
parallel computation can reduce computation time). However, often, we only would
like to compare most similar records, or records whose similarities are above a
certain threshold.

Step 3. The final step is to create blocks such that similar records are more likely
to be placed in the same block based on the MinHash signatures. A straightforward
approach is to directly use the MinHash signatures to create blocks: two records are
in the same block if there is at least one common element in their MinHash sig-
natures. This approach can create many false positives, many non-similar records
will end up in the same block. A better approach is to put two records in the same
block if they have multiple elements in common in their MinHash signatures. To
achieve this, the k-length signature is divided into b bands, where each band con-
tains k

b elements [Leskovec et al. 2014]. Two records are placed in the same block if
there is at least one common band of elements. Given b bands for a signature and
two records with a Jaccard similarity s, we can calculate the probability that these
two records end up in the same block as follows.

1. The probability that two signatures agree in all elements of one band is s
k
b .

2. The probability that two signatures disagree in at least one element of a

particular band is 1− s
k
b .

3. The probability that two signatures disagree in at least one element of all

bands is (1− s
k
b )b, which is the probability two records will not be placed in

the same block.

4. The probability that two records end up in the same block is 1− (1− s
k
b )b.

With a reasonable choice of the parameters s, k, and b, users can place similar
records into the same block with high probability. For example, with s = 0.8, k =
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100, and b= 20, the probability that two records end up in the same block is as high
as 0.9996.

3.4.2 Similarity-based Blocking
Similarity-based blocking techniques place records into different blocks based on
the desired notion of similarity between two records. We discuss two approaches
in this category: windowing methods and prefix-filtering methods.

Windowing Methods
Windowing methods, also known as sorted neighborhood approaches [Hernández
and Stolfo 1995, Hernández and Stolfo 1998], aim at grouping similar records
together according to some sorting key, where a sorting key for a record is extracted
from fields or portions of fields of that record. The records in a dataset are then
sorted according to the sorting keys. A fixed size window is moved through the
sorted list of records, and every window constitutes a cluster. Given a window size
of w records, then every new record that enters that window is compared with the
previous w − 1 records. For a dataset of n(> w) records, there will be n− w + 1
clusters and there will be (w− 1)× (n− w+ 1) total number of comparisons. The
windowing methods rely on the assumption that duplicate records are close to
each other in the sorted list according to the sorting key. It can be seen that the
effectiveness of the windowing methods is highly dependent on the sorting keys.
Often, a single key is not sufficient to place all duplicate record pairs in the same
window. Thus, similar to blocking methods, multiple passes based on different
ordering keys can be employed.

Prefix Filtering
Prefix-filtering methods [Chaudhuri et al. 2006, Bayardo et al. 2007, Wang et al.
2012b] use an efficient prefix-filter to filter out record pairs that cannot be similar
given a similarity metric and a threshold, and verify the rest of the record pairs by
computing their real similarities. They consist of three steps:.

Step 1. Each record is treated as or transformed into a set of elements, and the
given similarity threshold is mapped to how many elements two sets need to have in
common, called the overlap similarity. Given two records r , s, a similarity function
sim, and a threshold θ , if sim(r , s)≥ θ , then the overlap similarity must be at least
τ . For Jaccard similarity, given |r∩s|

|r|+|s|−|r∩s| ≥ θ , we have |r ∩ s| ≥ θ(|r| + |s| − |r ∩ s|).
Since |s| ≥ |r ∩ s|, we have |r ∩ s| ≥ θ |r|. Hence, τ = θ |r|. Note that the prefix filtering
techniques work only when all the records have the same number of elements, i.e.,
|r| is a constant value.
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Step 2. The elements of every record are sorted according to a fixed global
ordering of all elements from all records, and a prefix set of elements is selected
for every record based on the overlap similarity so that two records are similar only
if their prefixes overlap. Let Prefix(r) be the prefix set of |r| − τ + 1 elements in the
ordered set of elements of r.

Theorem 3.1 If |r ∩ s| ≥ τ , then their prefixes must overlap: Prefix (r) ∩ Prefix (s) �= ∅.

Proof This can be proven by contradiction. Let Rest(r) be all the elements in r excluding
the Prefix(r), and let Rest(s) be defined similarly; we have |Rest(r)| = |Rest(s)| =
τ − 1. Assume that Prefix(r)∩ Prefix(s)=∅; then the overlap can only happen either
between Prefix(r) and Rest(s), between Prefix(s) and Prefix(r), or between Rest(r)
and Rest(s). We analyze two cases.

Case 1. If Prefix(r) ∩ Rest(s)= ∅, then Prefix(r) does not have any overlap with
elements in s. Since Rest(r)= τ − 1, then there is at most τ − 1 overlap between
elements in r and s, which contradicts |r ∩ s| ≥ τ .

Case 2. If Prefix(r) ∩ Rest(s) �= ∅, let the largest element in Prefix(r) ∩ Rest(s) be
x; then Rest(r) ∩ Prefix(s) must be empty, since elements in Rest(r) are greater than
x and elements in Prefix(s) are less than x. Now we know that Rest(r) ∩ Prefix(s) and
Prefix(r) ∩ Prefix(s), then Prefix(s) does not have any overlap with elements in r.
Thus, all overlap involving elements of s must be in Rest(s). Since Rest(s)= τ − 1,
then there is at most τ − 1 overlap between elements in s and r, which contradicts
|r ∩ s| ≥ τ .

Step 3. Inverted indexes are built to quickly filter out those record pairs whose
prefix sets of elements do not overlap, instead of enumerating all record pairs.
An inverted index maps an element to a list of records containing that element.
The inverted indexes only need to be built for all elements appearing in prefix sets
of elements. The inverted indexes can then be used to directly emit record pairs
whose prefix sets overlap as follows. If the task is to perform data deduplication
on one collection of records R, then we can impose an ordering of records in R;
only records ranked higher need to be compared with record ranked lower to avoid
enumerating every record pair twice. For each r ∈ R, to obtain other objects s ∈ R
such that Prefix (r)∩ Prefix (s) �= ∅, we only need to merge the records in the inverted
indexes of elements in Prefix(r), and then filter out those records whose rank is
lower than r. If the task is to perform record linkage between two collections of
records R and S, then the inverted indexes are built for records in S only. For every
r ∈ R, to obtain other objects s ∈ S such that Prefix (r) ∩ Prefix (s) �= ∅, we only need
to merge the records in the inverted indexes of elements in Prefix (r).
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Figure 3.3 A prefix filtering example [Wang et al. 2012b].

Example 3.9 Consider a data deduplication task on the input table R in Figure 3.3(a). Each record
in R has a set of five elements. Suppose we consider a record pair as duplicates if
their Jaccard similarity is greater than θ = 0.8.

In Step 1, we obtain the threshold τ = θ × 5= 4. In other words, 2 records need
to have at least 4 elements in common for their Jaccard similarity to exceed 0.8.

In Step 2, we build prefixes for every record in R. We impose a global ordering
of all elements; in this case, we choose the ordering e1 < e2 < e3 < e4 < e5 < e6.
For every record in R, we sort all elements according to the ordering, and we
select a prefix of 5− 4+ 1= 2 elements. The prefixes for all records are shown in
Figure 3.3(b).

In Step 3, we build inverted indexes for all elements appearing in prefixes,
as shown in Figure 3.3(c). For every record ri, to obtain records rj such that j >

i and Prefix(ri) ∩ Prefix(rj) �= ∅, we merge all records in the inverted indexes of
elements in Prefix(ri). For r1, we merge the inverted indexes of e2 and e3, which
gives {r1, r2, r3}. Since we only need to consider record rj where j > 1, r1 only needs
to be compared with r2 and r3. In the end, we obtain all the record pairs that need
to be compared using this approach: 〈r1, r2〉, 〈r1, r3〉, 〈r3, r4〉, 〈r4, r5〉. This gives only
four record pairs for which we need to calculate the Jaccard similarity, which is
significantly less than the original ten record pairs.

3.5 Distributed Data Deduplication
Despite the use of blocking techniques, data deduplication remains a costly pro-
cess that can take hours to days to finish for real-world datasets on a single machine
[Köpcke et al. 2010]. Most of the work on data deduplication is situated in a cen-
tralized setting [Ananthakrishna et al. 2002, Bilenko et al. 2006, Christen 2012]
and does not leverage the capabilities of a distributed environment to scale out
computation; hence, it does not scale to large distributed data.
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This section describes distributed techniques that parallelize data deduplica-
tion. Multiple challenges need to be addressed to achieve this goal. First, unlike
centralized settings, where the dominating cost is almost always computing the
similarity scores of all tuple pairs, multiple factors contribute to the elapsed time
in a distributed computing environment, including network transfer time, local
disk I/O time, and CPU time for pairwise comparisons. These costs also vary across
different deployments. Second, as it is typical in a distributed setting, any algo-
rithm has to be aware of data skew, and achieve load-balancing [Beame et al. 2014,
DeWitt et al. 1992]. Every machine must perform a roughly equal amount of work
in order to avoid situations where some machines take much longer than others
to finish, a scenario that greatly affects the overall running time. Third, the distri-
bution strategy must be able to handle effectively multiple blocking functions; the
use of multiple blocking functions impacts the number of times each tuple is sent
across nodes, and also induces redundant comparisons when a tuple pair belongs
to the same block according to multiple blocking functions.

Dedoop [Kolb et al. 2012a, Kolb et al. 2012b] uses MapReduce [Dean and Ghe-
mawat 2008] for data deduplication. It optimizes for computation cost and requires
a large memory footprint to keep the necessary statistics for its distribution strat-
egy, thus limiting its performance and applicability. DisDedup [Chu et al. 2016]
considers both the communication cost and the computation cost, and aims at
minimizing elapsed time by minimizing the maximum cost across all machines.
We describe in detail the DisDedup strategy.

3.5.1 Parallel Computation Model
Since all workers or machines are running in parallel, to minimize the overall
elapsed time, DisDedup focuses on minimizing the largest cost across all workers.
For worker i, let Xi be the communication cost and Yi be the computation cost.
Assume that there are k workers available. DisDedup defines X (resp. Y) to be the
maximum Xi (resp. Yi) at any worker:

X = max
i∈[1, k]

Xi Y = max
i∈[1, k]

Yi. (3.1)

Example 3.10 Consider a scenario where a single blocking function produces few large blocks and
many smaller blocks. To keep the example simple, suppose that a blocking function
partitions a relation of n= 100 tuples into 5 blocks of size 10 and 25 blocks of size
2. The total number of comparisons W in this case is W = 5 .

(10
2

)+ 25 .
(2

2

)= 250
comparisons.
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Assume k = 10 workers. Consider first a strategy that sends all tuples to every
worker. In this case, Xi = 100 for every worker i, which results in X = 100 according
to Equation (3.1). We then assign Yi = W

k = 25 comparisons to worker i (for example
by assigning to worker i tuple pairs numbered [(i − 1) W

k , i W
k ]). Therefore, Y = 25

according to Equation (3.1). This strategy achieves the optimal Y , since W is evenly
distributed to all workers. However, it has a poor X, since every tuple is replicated
10 times.

Consider a second strategy that assigns one block entirely to one worker. For
example, we could assign each of the 5 blocks of size 10 to the first 5 workers,
and to each of the remaining 5 workers we assign 5 blocks of size 2. In this case,
X = 10, since each worker receives exactly the same number of tuples; moreover,
each tuple is replicated exactly once. However, even though the input is evenly
distributed across workers, the number of comparisons is not. Indeed, the first
5 workers perform

(10
2

)= 45 comparisons, while the last 5 workers perform only
5 .

(2
2

)= 5 comparisons. Therefore, Y = 45 according to Equation (3.1).

The above example demonstrates that the distribution strategy has significant
impact on both X and Y , even in the case of a single blocking function. Consider a
blocking function h that produces m blocks B1, B2, . . . , Bm. A distribution strategy
would have to assign, for every block Bi, a subset of the k workers of size ki ≤ k to
handle Bi.

A straightforward strategy assigns one block entirely to one worker, i.e., ki =
1, ∀i ∈ [1, m]; hence, parallelism happens only across blocks. Another straightfor-
ward strategy uses all the available workers to handle every block, i.e., ki = k, ∀i ∈
[1, m], so that parallelism is maximized for every block. Any existing parallel join
algorithm [Afrati and Ullman 2010, Okcan and Riedewald 2011] can be used to
handle every block. However, both strategies are not optimal.

In light of these two straightforward strategies, DisDedup first studies how
to distribute the workload of one block Bi to ki workers to minimize X and Y
(Section 3.5.2). Given the distribution strategy for a single block, DisDedup then
shows how to assign workers to blocks B1, . . . , Bm generated by a single blocking
function h, so as to minimize both X and Y across all blocks (Section 3.5.3). Given
the distribution strategy for a single blocking function h, DisDedup finally presents
how to assign workers given multiple blocking functions h1, . . . , hs, so that the
overall X and Y are minimized (Section 3.5.4).

3.5.2 Self-Join
For any distribution strategy that performs data deduplication on a block of size
n using k reducers, DisDedup derives the lower bounds for the maximum input
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X > Xlow = n√
k

and the lower bound for the maximum number of comparisons Y ≥
Ylow = n(n−1)

2k . DisDedup adopts a distribution strategy, called triangle distribution,
which guarantees with high probability a small constant-factor approximation of
the lower bounds.

The name of the distribution strategy comes from the fact that DisDedup ar-
ranges the k reducers in a triangle whose two sides have size l (thus k = l(l + 1)/2
for some integer l). To explain why DisDedup organizes the reducers in such a
fashion, consider the scenario studied in Afrati and Ullman [2010], Beame et al.
[2014] that computes the Cartesian product R× S of two relations of size n: in this
case, the reducers are organized in a

√
k×√k square, as shown in Figure 3.4(a) for

k = 36. Each tuple from R is sent to the reducers of a random row, and each tuple
from S is sent to all the reducers of a random column; the reducer function then
computes all pairs it receives. However, if we apply this idea directly to a self-join
(where R= S), the comparison of each pair would be repeated twice, since if a tuple
pair ends up together in the reducer (i, j), it will also be in the reducer (j , i). For
example, in Figure 3.4(b) tuple t1 is sent to all reducers in row 2 and column 2, and
tuple t2 is sent to all reducers in row 4 and column 4. Therefore, the joining of t1

and t2 is duplicated at reducers (2, 4) and (4, 2). Because of symmetry, the lower
left half of the reducers in the square are doing redundant work. Arranging the
reducers in a triangle circumvents this problem and allows us to use all available
reducers. Figure 3.4(b) gives an example of such an arrangement for k = 21 reduc-
ers with l = 6. Every reducer is identified by a two-dimensional index (p, q), where
p is the row index and q is the column index, and 1≤ p≤ q≤ l. Each reducer (p, q)

has a unique reducer ID, which is calculated as (2l − p+ 2)(p− 1)/2+ (q− p+ 1).
For example, Reducer (2, 4) marked purple in Figure 3.4(b) is Reducer 9.
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Figure 3.4 Reducer arrangement. (The number in the upper left corner of each cell is the reducer
ID.)
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For any tuple t, the mapper randomly chooses an integer a, called an anchor,
between [1, l], and distributes t to all reducers whose row or column index = a.
By replicating each tuple l times, for every tuple pair, there must exist at least one
reducer that receives both tuples. In fact, if two tuples have different anchor points,
there is exactly one reducer that receives both tuples, while if two tuples have the
same anchor point a, both tuples will be replicated on the same set of reducers, but
DisDedup only compares the tuple pair on the reducer (a, a). The key of the key-
value pair of the mapper output is the reducer ID, and the value of the key-value
pair of the mapper output is the tuple augmented with a flag L, S, or R to avoid
comparing tuple pairs that have the same anchor points a in reducers other than
(a, a). Within each reducer, tuples with flag L are compared with tuples with flag R,
and tuples with flag S are compared only with each other.

Example 3.11 Figure 3.5 gives an example for three tuples t1, t2, t3 given the arrangement of the
reducers in Figure 3.4(b). Suppose that tuple t1 has anchor point a= 2, and tuples
t2, t3 have the same anchor point a= 4. The mapping function takes t1 and gener-
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ates the key-value pairs (2, L#t1), (7, S#t1),(8, R#t1),(9, R#t1),(10, R#t1),(11, R#t1).
Note the different tags L, S, R for different key-value pairs. Reducer 9 receives a list
of values R#t1, L#t2, L#t3 associated with key 9, and compares tuples marked with
R with tuples marked with L, but not tuples marked with the same tag. Reducer
16 receives a list of values S#t2, S#t3, and performs comparisons among all tuples
marked with S.

The triangle distribution strategy achieves with high probability1 maximum in-
put X ≤ (1+ o(1))

√
2Xlow and maximum number of comparisons Y ≤ (1+ o(1))Ylow.

3.5.3 Handling a Single Blocking Function
This section describes the distribution strategy to handle a set of disjoint blocks
{B1, . . . , Bm} produced by a single blocking function h. Let m denote the number
of blocks, and for each block Bi, where i ∈ [1, m], let Wi =

(|Bi|
2

)
denote the number

of comparisons needed. Thus, the total number of comparisons across all blocks
is W =∑m

i=1 Wi. For any distribution strategy that performs data deduplication for
n tuples and W total comparisons resulting from a set of disjoint blocks using k

reducers, DisDedup derives that X ≥ Xlow ≥max( n
k ,

√
2W√

k
) and Y ≥ Ylow = W

k [Chu

et al. 2016]. DisDedup adopts a distribution strategy which guarantees that both X
and Y are always within a constant factor from Xlow and Ylow, by assigning reducers
to blocks in proportion to the workload of every block.

Intuitively, since the goal is to balance computation, a block of a larger size
needs more reducers than a block of a smaller size. Since the blocks are indepen-
dent, DisDedup allocates the reducers to blocks in proportion to their workload,
namely, block Bi will be assigned to ki = Wi

W k reducers. However, ki might not be
an integer, and it is meaningless to allocate a fraction of reducers. Thus, ki needs
to be rounded to an integer. If ki > 1, DisDedup assigns �ki� ≥ 1 reducers to Bi. If
ki ≤ 1, which means �ki� = 0, DisDedup must still assign at least one reducer to Bi.
The total number of reducers after rounding might be greater than k, in which case
reducers have to be responsible for more than one block. Therefore, there needs
to be an effective way of assigning reducers to blocks such that both X and Y are
minimized.

If ki ≤ 1, DisDedup calls Bi a single-reducer block; otherwise, Bi is a multi-reducer
block. Let Bs and Bl be the set of single-reducer blocks and multi-reducer blocks,
respectively. Next, we show how DisDedup handles single-reducer blocks and

1. The term “with high probability” means that the probability of success is of the form 1− 1/f (n),
where f (n) is some polynomial function of the size of the dataset n.
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multi-reducer blocks separately, such that X and Y are bounded by a constant
factor:

Bs = {Bi |Wi ≤ W
k
}, Bl = {Bi |Wi >

W
k
}.

Every block Bi ∈ Bl has ki ≥ 1 reducers assigned to it, and DisDedup will use ki

reducers to distribute Bi via the triangle distribution strategy in Section 3.5.2. If ki

is fractional, such as ki = 3.1, DisDedup will simply use �ki� reducers to handle Bi.
Since

∑m
i=c+1 ki ≤ k, every reducer will exclusively handle at most one multi-reducer

block.
For every block Bi ∈ Bs, since DisDedup assigns ki ≤ 1 reducers to it, DisDedup

can use one reducer to handle every single-reducer block. However, DisDedup must
assign single-reducer blocks to reducers to ensure that every reducer has about the
same amount of workload.

Given the strategies to handle the single-reducer blocks and the multi-reducer
blocks, respectively, DisDedup achieves with high probability X ≤ cxXlow, and Y ≤
cyYlow, where cx = 5+ o(1) and cy = 5+ o(1) [Chu et al. 2016].

3.5.4 Handling Multiple Blocking Functions
Since a single blocking function might result in false negatives by failing to assign
duplicate tuples to the same block, multiple blocking functions are often used to
decrease the likelihood of a false negative. In this section, we show how DisDedup
distributes the blocks produced by s different blocking functions h1, h2, . . . , hs.

A straightforward strategy to handle s blocking functions would be to apply the
same strategy for handling a single blocking function s times (possibly simulta-
neously). However, this straightforward strategy has two problems: (1) it fails to
leverage the independence of the blocking functions, and the tuples from blocks
generated by different blocking functions might be sent to same reducer, where
they will not be compared; and (2) a tuple pair might be compared multiple times if
that tuple pair belongs to multiple blocks, each from a different blocking function.
DisDedup addresses these two problems by two principles: (1) allocating reducers
to blocking functions proportional to their workload; and (2) imposing an ordering
of the blocking functions.

Reducer Allocation. DisDedup allocates one or more reducers to a blocking func-
tion in proportion to the workload of that blocking function. Let mj denote the

number of blocks generated by a blocking function hj, Bj
i denote the ith block gen-

erated by hj, and W j
i =

(|Bj
i
|

2

)
denote the workload of Bj

i. Let W j =∑mj

i=1 W j
i be the
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total workload generated by hj, and W =∑t
j=1 W j be the total workload generated

by all t blocking functions. Therefore, the number of reducers Bj
i gets assigned is

W j
i

W j
. W j

W k, where W j

W k is the number of reducers for handling the blocking function

hj. Thus, the number of reducers assigned to Bj
i is

W j
i

W , regardless of which blocking
function it originates from.

This means that DisDedup views the blocks from multiple blocking functions
as a set of (possibly overlapping) blocks produced by one blocking function, and
apply DisDedup as is. For s blocking functions, it achieves X < (5s+ o(1))Xlow, and
Y = (5+ o(1))Ylow.

The above analysis tells us that the number of comparisons will be optimal, but
the input may have to be replicated as many as s times. The reason for this increase
is that the blocks may overlap, in which case tuples that belong in multiple blocks
may be replicated.

Blocking Function Ordering. Since a tuple pair can have the same blocking key
values according to multiple blocking functions, a tuple pair can occur in multiple
blocks. To avoid producing the same tuple pair more than once, DisDedup imposes
an ordering of the blocking functions, from h1 to hs. Every reducer has knowledge
of all s blocking functions and their fixed ordering. Inside every reducer, before a
tuple pair t1, t2 is compared according to the jth blocking function hj, it applies all
the lower-numbered blocking function hz , ∀z ∈ [1, j − 1], to see if hz(t1)= hz(t2).
If such hz exists, then the tuple pair comparison according to hj is skipped in
that reducer, since there must exist a reducer that can see the same tuple pair
according to hz. In this way, every tuple pair is only compared according to the
lowest numbered blocking function that puts them in the same block. The blocking
function ordering technique assumes that applying blocking functions is much
cheaper than applying the comparison function. If this is not true (e.g., the pairs
comparison is cheap) the ordering benefit will not be obvious.

Example 3.12 Suppose two tuples t1 and t2 are in the same block according to the blocking
functions h2, h3, h5, namely, h2(t1) = h2(t2), h3(t1) = h3(t2) and h5(t1) = h5(t2). In
this case, DisDedup only compares t1 and t2 in the block generated by h2, and
omit the comparison of those two tuples in the blocks generated by h3 and h5.

3.6 Record Fusion and Entity Consolidation
Record fusion refers to the process of consolidating multiple records representing
the same real world entity into a single representation. Records referring to the
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same entity could come from a single data source or multiple data sources, and
there are usually conflicts in different representations. There are two types of data
conflicts: uncertainty and contradiction [Dong and Naumann 2009]. Uncertainty is
a conflict between a non-null value and one or more null values that are used to
describe the same property of a real world entity. Uncertainty is caused by missing
information, usually represented by null values in a source. Contradiction is a
conflict between two or more different non-null values that represent different
values of the same property of a real world entity. Contradiction is caused by
different sources providing different values for the same attribute.

The key issue in record fusion is thus to find the best value among conflicting val-
ues caused by the aforementioned two types of conflicts. In Section 3.6.1, we present
a classification of different conflict resolution strategies. In Section 3.6.2, we dis-
cuss a unique probabilistic fusion approach, which models possible resolutions
in a probabilistic manner. In Section 3.6.3, we show more advanced fusion ap-
proaches, which take into account the accuracies of sources, freshness of sources,
and dependencies between sources when making resolution decisions.

3.6.1 A Classification of Conflict Resolution Strategies
Figure 3.6 shows the classification of different record fusing strategies [Bleiholder
and Naumann 2008], and Table 3.2 gives some example strategies according to
the classification. Conflict ignorance strategies ignore the conflicts between mul-
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Deciding Mediating
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Figure 3.6 Classification of strategies to fuse records [Bleiholder and Naumann 2008].
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Table 3.2 Example of conflict resolution strategies [Bleiholder and Naumann 2008, Dong and
Naumann 2009]

Strategy Classification Short Description

pass it on ignoring escalates conflicts to user
or application

consider all possibilities ignoring creates all possible value
combinations

take the information avoiding, instance based prefers values over nulls

no gossiping avoiding, instance based returns only “consistent”
tuples

trust your friends avoiding, metadata based takes the value of a
preferred source

cry with the wolves resolution, instance based,
deciding

takes the most often
occurring value

roll the dice resolution, instance based,
deciding

takes a random value

meet in the middle resolution, instance based,
mediating

takes an average value

keep up to date resolution, metadata
based, deciding

takes the most recent value

tiple records that refer to the same entity, and pass the conflicts to the users or
applications. There are two major options in this category: one is to escalate the
conflicts to user or application, while the other is to consider all possible resolu-
tion strategies. We discuss probabilistic deduplication that assigns a probability
to each possible resolution in Section 3.6.2. Conflict avoidance strategies acknowl-
edge the existence of conflicting records, and apply a simple rule to take a unique
decision based on either the data instance or the metadata. An example of instance-
based conflict avoidance strategy is to prefer non-null values over null values. An
example of metadata-based conflict avoidance strategy is to prefer values from one
relation over values from another. Conflict resolution strategies resolve the conflicts,
by picking a value from the already present values (deciding) or by choosing a value
that does not necessarily exist among present values (mediating). An example of
instance-based, deciding conflict resolution strategy is to take the most frequent
value. An example of instance-based, mediating conflict resolution strategy is to
take the average of all present values. For instance, to resolve the SAL attribute of
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duplicate tuples t4 and t9 in Table 5.1, the average value of t4[SAL] and t9[SAL]
can be taken.

These basic conflict resolution strategies mostly rely on participating values to
resolve conflicts. More advanced strategies leverage external information and de-
pendencies, such as accuracies of sources, freshness of sources, and dependencies
between sources, which we discuss in Section 3.6.3.

3.6.2 Probabilistic Resolution
Rather than coming up with a “golden” record for multiple records referring to the
same entity, Beskales et al. [2009] study the problem of modeling and querying
possible repairs in the context of duplicate detection. Figure 3.7 shows an input
relation representing sample census data that possibly contains duplicate records.
Duplicate detection algorithms generate a clustering of records (represented as
sets of record IDs in Figure 3.7), where each cluster is a set of duplicates that are
eventually merged into one representative record per cluster. A one-shot duplicate
detection approach identifies records as either duplicates or non-duplicates based
on the given cleaning specifications (e.g., a single threshold on record similarity).
Hence, the result is a single clustering (repair) of the input relation (e.g., any of the
three possible repairs shown in Figure 3.7). However, in the probabilistic duplicate
detection approach, this restriction is relaxed to allow for uncertainty in deciding
on the true duplicates (e.g., based on multiple similarity thresholds). The result is
a set of multiple possible clusterings (repairs), as shown in Figure 3.7.

Beskales et al. [2009] constrain the space of all possible repairs to repairs gen-
erated by parameterized hierarchical clustering algorithms for two reasons: (1) the
size of the space of possible repairs is linear in the number of records in the un-
clean relation; and (2) a probability distribution on the space of possible repairs

Uncertain
clustering

ID

P1

P2

P3

P4

P5

P6

Name

Green

Green

Peter

Peter

Gree

Chuck

ZIP

51519

51518

30528

30528

51519

51519

Income

30k

32k

40k

40k

55k

30k

X1

{P1}

{P2}

{P3,P4}

{P5}

{P6}

X2

{P1,P2}

{P3,P4}

{P5}

{P6}

X3

{P1,P2, P5}

{P3,P4}

{P6}

Person Possible repairs

Figure 3.7 Probabilistic duplicate detection [Beskales et al. 2009].
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can be induced based on the probability distribution on the values of the param-
eters of the algorithm. Specifically, let τ represent possible parameter values of a
duplicate detection algorithm A (e.g., τ could be the threshold value of deciding
whether two clusters should be merged in a hierarchical clustering algorithm), let
[τ l , τ u] represent the possible values of τ , and let fτ represent the probability den-
sity function of τ defined over [τ l , τ u]. The set of possible repairs X is defined as
{A(R, t) : t ∈ [τ l , τ u]}. The set X defines a probability space created by drawing ran-
dom parameter values from [τ l , τ u], based on the density function fτ , and using the
algorithm A to generate the possible repairs corresponding to these values. The
probability of a specific repair X ∈ X , denoted Pr(X), is equal to the probability of
the parameter range that generates such repair.

Uncertain clean relation (U-clean relation for short) is used to encode the pos-
sible repairs X of an unclean relation R generated by a parameterized clustering
algorithm A. A U-clean relation, denoted Rc, is a set of c-records where each c-
record is a representative record of a cluster of records in R. Attributes of Rc are
all attributes of Relation R, in addition to two special attributes: C and P. Attribute
C of a c-record is the set of record identifiers in R that are clustered together to
form this c-record. Attribute P of a c-record represents the parameter settings of
the clustering algorithm A that lead to generating the cluster represented by this
c-record. Figure 3.8 illustrates the model of possible repairs for the unclean rela-
tion Person. U-clean relation Personc is created by clustering algorithms A using
parameters τ that are defined on the real interval [0, 10] with uniform distribu-
tions. Relation Personc captures all repairs of the base relations corresponding
to possible parameter values. For example, if τ ∈ [1, 3], the resulting repair of Re-
lation Person is equal to {{P1, P2}, {P3, P4}, {P5}, {P6}}, which is obtained using
c-records inPersonc whose parameter settings contain the interval [1, 3]. Moreover,
the U-clean relation allows identifying the parameter settings of the clustering algo-
rithm that lead to generating a specific cluster of records. For example, the cluster
{P1, P2, P5} is generated by algorithm A if the value of parameter τ belongs to the
range [3, 10).

Relational queries over U-clean relations are defined using the concept of pos-
sible worlds semantics, as shown in Figure 3.9. More specifically, queries are se-
mantically answered against individual clean instances of the dirty database that
are encoded in input U-clean relations, and the resulting answers are weighted
by the probabilities of their originating repairs. For example, consider a selection
query that reports persons with Income greater than 35k, considering all repairs
encoded by Relation Personc in Figure 3.8. One qualified record is CP3. However,
such a record is valid only for repairs generated at the parameter settings τ ∈ [0, 3).
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Figure 3.8 An example of U-clean relation [Beskales et al. 2009].
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Figure 3.9 U-clean relation query model.

Therefore, the probability that record CP3 belongs to the query result is equivalent
to the probability that τ is within [0, 3), which is 0.3.

3.6.3 Advanced Techniques for Conflict Resolution
The basic resolution strategies discussed in Section 3.6.1 mostly use conflicting
values for resolution, and they often fall short in some or in all of the following
three aspects. First, data sources have different qualities; data values provided by
more accurate data sources are usually more accurate. However, more accurate data
sources can also provide incorrect values, and therefore an advanced resolution
strategy is often needed to take source quality into consideration when predicting
the correct value. Second, data sources can copy from each other, and ignoring
these kinds of dependencies between data sources can cause wrong resolution
decisions. For example, the majority vote strategy to resolve conflicts would be
affected if some data items in a source are copied. Third, the correct value for a data
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item may evolve over time as well (e.g., a person’s affiliation); hence, it is crucial
to distinguish between incorrect value and outdated value when evaluating source
accuracies and making resolution decisions.

The building block of advanced data fusion strategies is to evaluate the trust-
worthiness or quality of a source. In this section, we discuss how the accuracy of
a data source is modeled by Dong et al. [2009a], and we mention how that model
is extended to handle source dependencies [Dong et al. 2009a] and source fresh-
ness [Dong et al. 2009b]. For a more comprehensive treatment on the subject of
advanced data fusion, we refer readers to the tutorial of Dong and Naumann [2009]
and the book of Dong and Srivastava [2015].

Source Accuracy
Dong et al. [2009a] measure the accuracy of a source as the fraction of true values
provided by a source. The accuracy of a source S is denoted by A(S), which can be
considered as the probability that a value provided by S is the true value. Let V(S)

denote the values provided by S. For each v ∈ V(S), let Pr(v) denote the probability
that v is the true value. Then A(S) is computed as follows:

A(S)= Avgv∈V(S)Pr(v).

Consider a data item D. Let Dom(D) be the domain of D, including one true value
and n false values. Let SD be the set of sources that provide a value for D, and let
SD(v)⊆ SD be the set of sources that provide the value v for D. Let �(D) denote the
observation of which value each S ∈ SD provides for D. The probability Pr(v) can be
computed as follows:

Pr(v)= Pr(v is true value|�(D))∝ Pr(�(D)|v is true value).

Assume that sources are independent and that the n false values are equally likely
to happen; Pr(�(D)|v is true value) can be computed as follows:

Pr(�(D)|v is true value)=
∏

S∈SD(v)

A(S)
∏

S∈SD\SD(v)

1− A(S)

n

which can be rewritten as

Pr(�(D)|v is true value)=
∏

S∈SD(v)

nA(S)

1− A(S)

∏
S∈SD

1− A(S)

n
.

Since
∏

S∈SD

1−A(S)
n is the same for all values, we have

Pr(�(D)|v is true value)∝
∏

S∈SD(v)

nA(S)

1− A(S)
.



80 Chapter 3 Data Deduplication

Accordingly, the vote count of a data source S is defined as:

C(S)= ln
nA(S)

1− A(S)
.

The vote count of a value v is defined as:

C(v)=
∑

S inSD(v)

C(S).

Intuitively, a source with a higher vote count is more accurate and a value with
a higher vote count is more likely to be true. Combining the above analysis, the
probability of each value v can be computed as follows:

Pr(v)= exp(C(v))∑
v0 inDom(v) exp(C(v0))

.

Obviously, for a data item D, the value v ∈ Dom(D) with the highest probability
Pr(v) would be selected as the true value. As we can see, the computation of the
source accuracy A(S) depends on the probability Pr(v), and the computation of
the probability Pr(v) depends on the source accuracy A(S). Dong et al. [Dong et al.
2009a] proposes an algorithm that starts with the same accuracy for every source
and the same probability for every value, and then iteratively computes probabilities
for all sources and probabilities for all values until convergence. The convergence
criterion is set to be when there is no change in source accuracies and no oscillation
in decided true values.

Source Dependency
The above computation for source accuracy assumes that sources are independent.
In reality, sources copy from each other, which creates dependencies. Dong et al.
[2009a] rely on two intuitions for copy detection between sources. First, for a
particular data item, there is only one true value, but there are usually multiple
false values. Two sources sharing the same true value does not necessarily imply
dependency; however, two sources sharing the same false value is typically a rare
event, and thus would more likely imply source dependency. Second, a random
subset of values provided by a data source would typically have accuracies similar to
the full set of values provided by the data source. However, for a copier data source,
the subset of values it copies may have different accuracies than the rest of the
values it provides independently. Thus, between two dependent sources where one
copies another, the source whose own data values’ accuracies differ significantly
from the values shared with the other source is more likely to be the copier. Based
on these intuitions, Dong et al. [2009a] then use a Bayesian model to compute the
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probability of copying between two sources S1 and S2 given the observations � on
all data items; this probability is then used to adjust the computation of the vote
count for a value C(v) to account for source dependencies.

Source Freshness
We have so far assumed that data fusion is done on a static snapshot of the data.
However, in reality, data evolves over time and the true value for an item might
change as well. For example, the scheduled departure time for a flight might change
in different months; a person’s affiliation might change over time; and the CEO of
a company could also change. To capture such changes, data sources will need
to update their data. In this dynamic setting, data errors occur for these several
reasons: (1) the sources may provide wrong values, similar to the static setting;
(2) the sources may fail to update their data at all; and (3) some sources may not
update their data in time. Data fusion, in this context, aims at finding all correct
values and their valid periods in the history, when the true values evolve over time.
While the source quality can be captured by accuracy in the static case, the metrics
for evaluating source quality are more complicated in the dynamic setting—a high
quality source should provide a new value for a data item if and only if and right after
the value becomes the true value. Dong et al. [2009b] use three metrics to capture
this intuition: the coverage of a source measures the transitions of different data
items that it captures; the exactness measures the percentage of transitions a source
mis-captures (by providing a wrong value); and the freshness measures how quickly a
value change is captured by a source. As before, Dong et al. [2009b] rely on Bayesian
analysis to decide both the time and the value of each transition for a data item.

3.7 Human-Involved Data Deduplication
Automatic data deduplication techniques sometimes may not be able to recognize
certain duplicate records that may be easily identified by humans. In this section,
we study how humans are involved in the data deduplication process to improve
the accuracy.

3.7.1 CrowdER
CrowdER [Wang et al. 2012a] uses crowd workers to aid in the data deduplica-
tion task. The motivation for CrowdER is that while automatic techniques for data
deduplication have been improving, the quality remains far from perfect; mean-
while, crowdsourcing platforms offer a more accurate, if expensive (and slow), way
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Figure 3.10 HITs for data deduplication.

to bring human insight into the process. Crowdsourcing platforms, such as Ama-
zon Mechanic Turk, support crowdsourced execution of “microtasks” or Human
Intelligence Tasks (HITs), where people do simple jobs requiring little or no do-
main expertise, and are paid per job. Figure 3.10 shows two types for HITs used by
CrowdER. The pair-based HIT in Figure 3.10(a) asks a human to check each pair
of records individually; the cluster-based HIT in Figure 3.10(b) asks a human to
cluster multiple records at the same time.

CrowdER proposes a human-machine workflow as shown in Figure 3.11. The
workflow first uses machine-based techniques to compute, for each pair, the like-
lihood that they refer to the same entity. For example, the likelihood could be the
similarity value given by a similarity-based technique. Then, only those pairs whose
likelihood exceeds a specified threshold are sent to the crowd. It is shown that
by specifying a relatively low threshold, the number of pairs that need to be ver-
ified can be dramatically reduced with only a minor loss of quality. Given the set
of pairs to be sent to the crowd, the next step is to generate HITs so that people
can check them for matches. HIT generation is a key component of the workflow.
Finally, generated HITs are sent to the crowd for processing and the answers are
collected.

Example 3.13 Figure 3.12 shows a workflow of CrowdER for deduplicating a table consisting
of nine records r1, . . . , r9 by using pair-based HIT. Instead of asking humans to
check all pairs of records, that is 9∗8

2 = 36 pairs, CrowdER first employs a machine
based approach to calculate the similarities between pairs of records. Those record
pairs whose similarities are lower than a threshold are pruned, such as (r3, r6). The
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Figure 3.13 The Corleone architecture [Gokhale et al. 2014].

remaining ten pairs can fit into five pair-based HITS, where each HIT contains two
questions. The final matching pairs are collected based on user answers.

3.7.2 Corleone
In contrast to CrowdER, which is a hybrid human-machine approach for data dedu-
plication, Corleone [Gokhale et al. 2014] is a data deduplication system that is com-
pletely crowdsourced, i.e., no developers need to be involved. Corleone is desirable
because enterprises routinely need to solve tens to hundreds of data deduplication
tasks. To involve a developer to write the blocking rules and matching function
for every deduplication task is time consuming and costly. Figure 3.13 shows the
Corleone architecture, which consists of four main components: Blocker, Matcher,
Accuracy Estimator, and Difficult Pairs Locator. Blocking often uses heuristic rules,
e.g., “if the prices of two products differ by more than $100, then they do not match,”
to reduce the number of pairs of records to be matched. Corleone takes a small sam-
ple from all pairs of records and asks the crowd to label a small set of informative
pairs to learn a random forest, from which potential blocking rules are extracted.
The crowd is involved again to validate the quality of obtained blocking rules. After
blocking, the next step is to build and apply a matcher to match surviving pairs of
records. Corleone employs active learning to minimize crowdsourcing costs, taking
into account possible noisy crowd input. The next step, i.e., estimating the match-
ing accuracy, is vital for real world data deduplication tasks. To do this, Corleone
considers constructing a minimal labeled set, given a maximum allowable error
bound. The difficult pairs locator finds pairs that the current matcher has matched
incorrectly according to the accuracy estimator. The entire process is iterated until
the estimated matching accuracy no longer improves.
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3.8 Data Deduplication Tools
In this section, we discuss some representative data deduplication tools, including
two academic open-source data deduplication tools, AJAX [Galhardas et al. 2001]
and Febrl [Christen 2008], as well as a commercial tool, Data Tamer [Stonebraker
et al. 2013].

3.8.1 AJAX
AJAX [Galhardas et al. 2001] is a data deduplication framework that separates the
logic and physical levels of data cleaning. The logic level supports the design of the
data flow graph that models the data operations needed to clean the data, while
the physical level supports the implementations and optimizations of the data
operations. AJAX models the data deduplication workflow using four types of oper-
ations: mapping, which standardizes data formats (e.g., dates) whenever possible,
matching, which applies similarity functions to one or more attributes to produce a
similarity value for every pair of compared records, clustering, which groups records
together based on the similarity values, and merging, which produces a canonical
record for every cluster of records.

AJAX provides a declarative language, which is SQL enriched with a set of specific
primitives, to express the four data operations. AJAX raises an exception, imple-
mented via the Java exception mechanism, whenever the process fails, and the users
are expected to manually examine and resolve the exceptions. AJAX was the first
open-source tool to be explicit about the work flow of data deduplication by map-
ping it into a sequence of four operations of mapping, matching, clustering, and
merging. AJAX was later extended with the notion of quality constraints [Galhardas
et al. 2011] imposed on relations within the directed graph of data transforma-
tion, and the violations of the quality constraints can be inspected by manual data
repairs.

3.8.2 Febrl
A data deduplication project has many components, such as blocking and classi-
fication, and significant advances have been made in each of these components.
However, many new techniques are difficult for researchers and practitioners to
experiment with and compare because they are either implemented as research
prototypes or hidden inside expensive commercial software. The Freely Extensible
Biomedical Record Linkage system (Febrl) [Christen 2008] aims at bridging this
gap by providing a graphical user interface that allows users to easily select which
techniques to use for a component. In addition, since Febrl is written in Python and
open-sourced, it is also easy to include new techniques in it. Therefore, Febrl can
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be used by researchers and practitioners to compare existing data deduplication
techniques, to include their own techniques, and to ultimately compose a suitable
data deduplication workflow for their own projects.

The Febrl interface contains many tabs, including Data, Explore, Index, Com-
pare, Classify, and Log. Inside every tab, users are given many options to choose
from. The Data tab allows users to choose the input data source, and whether the
task is to perform data deduplication on one dataset or to perform record linkage
between two datasets; the Explore tab allows users to get a better understanding of
the dataset by showing, for every attribute, the number of unique values, the small-
est and the largest value, the quantile distribution of values, the number of missing
values, and an inferred type of the attribute; the Index tab allows users to select
one or more blocking functions, such as the ones discussed in Section 3.4; and the
Compare tab allows users to select which similarity functions to use for which at-
tributes. Febrl contains 26 similarity functions as well as functions for specialized
data types such as dates and times; the Classify tab allows users to select classifiers
to use for deciding whether a tuple pair are duplicates, including both supervised
and unsupervised techniques; and the Log tab contains the Febrl Python code gen-
erated through the project, allowing users to verify the correctness of the code and
to export the code to run outside of Febrl.

3.8.3 Magellan
Magellan [Konda et al. 2016] is an entity matching management system that focuses
on enabling users to build entity matching workflows effectively and efficiently.
Magellan has some important features. It provides how-to guides to tell users what
to do in each scenario step by step. It provides tools to help users to perform
these steps. These tools cover all the steps in an entire workflow. The tools are
built on top of known Python data processing libraries, which allows Magellan to
borrow a rich set of capabilities found in Python libraries, such as data cleaning
and visualization. It also provides a powerful scripting environment to facilitate
interactive experimentation and allows users to quickly “patch” the workflow if
needed.

Figure 3.14 shows the architecture of Magellan. The system includes a set of
entity matching scenarios. For each scenario, it provides a how-to guide, which
solves the scenario in two stages: development and production. In the development
stage, the guide leads the user step by step. For each step such as blocking and
matching, the user can choose a set of supporting tools, each of which is a set of
Python commands. The development stage is typically done on a data sample for
fast experimentation. In the production stage, the guide also tells the user how to
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Figure 3.14 The Magellan architecture [Konda et al. 2016].

implement and execute the workflow on the entire dataset, using a set of supporting
tools. Both stages rely on the Python and its interactive environment (e.g., iPython).
The tools used by Magellan are built on top of known Python data processing
libraries, which come with many useful functionalities. Magellan targets power
users who can program, but intends to develop a GUI on top to allow lay users
to build entity matching workflows easily.

3.8.4 Data Tamer
Data Tamer [Stonebraker et al. 2013] is a data curation system that cleans and trans-
forms large scale data sources at the enterprise level. Data Tamer integrates the
schema, and instances of these sources, through a series of mapping, deduplica-
tion, and linking exercises. The core technological innovation of Data Tamer is the
automation of the data curation process while involving various roles of data ex-
perts, including data owners, data stewards, data scientists, and data curators. This
closely coupled design of machine and human enables practical, end-to-end cura-
tion at the scale of hundreds to thousands of disparate datasets. Human experts and
owners are involved in multiple tasks, including: (1) answering pairwise compari-
son questions for training machine learning models (e.g., classifiers); (2) validating
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the machine decision on matching attributes or records from data sources; and
(3) providing explicit business rules for deduplication or cleaning data sources. A
task-expertise matching system is used to dispatch human tasks to solve curation
tasks at different granularities (e.g., comparing pairs of columns, comparing pairs
of values, or validating a cluster of related entities). Data Tamer is an example of
involving users in the cleaning process at multiple levels in the curation stack and
at multiple granularities.

3.9 Conclusion
Duplicate records appear in many different datasets, such as duplicated customer
records, duplicated publication records, and duplicated Wikipedia entries. While
the problem definition of data deduplication—finding and merging records that
represent the same real world entity—is concise and clear, designing an end-to-
end solution presents many challenges. In this chapter, we covered various aspects
of designing a data deduplication workflow.

To determine whether a pair of records are duplicates, we introduced several
similarity metrics and various classifier-based approaches based on those simi-
larity metrics. We classified string similarity metrics into character-based metrics,
token-based metrics, and phonetics-based metrics. We discussed both unsuper-
vised techniques and supervised techniques to predict duplicates based on simi-
larity metrics.

Given the computed similarity graph, where each node represents a record and
each edge represents the likelihood of two records being duplicates, a clustering
step is used to partition all records into disjoint clusters of records, where each
cluster corresponds to one real-world entity. We discussed several commonly used
clustering algorithms, including clustering using connected-component, hierar-
chical agglomerative clustering, and correlation clustering algorithms. We also
presented different choices available to find a canonical representation for records
in the same cluster.

To improve the running time of data deduplication for large datasets, we dis-
cussed two approaches: blocking and distributed computation. Blocking tech-
niques or blocking functions aim at reducing the number of comparisons by
avoiding comparing tuple pairs that are unlikely to be matches. We classified block-
ing techniques into two types: hash-based blocking and similarity-based blocking.
Hash-based techniques, such as locality sensitive hashing, use one or multiple hash
functions to place records into blocks, where each block is associated with a unique
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hash key. Similarity-based techniques, such as prefix filtering, group nearby records
according to a similarity metric. Distributed data deduplication techniques have
also been proposed to parallelize the task with the main objective of minimizing
computation and communication costs in a shared-nothing parallel computing
environment.

We also discussed how humans can be involved in the data deduplication pro-
cess to determine record pairs that machines cannot predict confidently. The main
optimization problem in human-involved data deduplication is to minimize hu-
man involvement as much as possible since humans are usually much more ex-
pensive than machines.

After years of research and development that have produced open-source tools
as well as commercial products, data deduplication remains an active field of re-
search. Designing better similarity metrics, classifiers, and clustering algorithms
to improve data deduplication accuracy is needed. Another possible research direc-
tion is performing data deduplication in streaming scenarios. As new data comes in
and new evidence becomes available, previously declared non-duplicates records
may suddenly become duplicates and previously declared duplicates may need to
be revoked. Deduplicate detection in other data formats, such as texts, videos, and
images, also deserves more attention.





4Data Transformation
Both outlier detection (Chapter 2) and duplicate detection (Chapter 3) expect the
input data to be in the “right” format. For example, a list of temperatures in
different units (e.g., Celsius or Fahrenheit) needs to be converted into the same
unit for outlier detection, and attributes of different records need to be aligned
properly for detecting duplicates. Data transformation refers to the data preparation
activity of running user-defined programs, rules, or scripts to convert data from one
format or structure into another format or structure. Besides outlier detection and
data deduplication, transformations are used in a variety of tasks, and at different
stages of the ETL life cycle. For example, before running a data integration project,
transformations are often used to standardize data formats, to enforce standard
patterns, or to trim long strings. Transformations are also used at the end of the
ETL process, for example, to merge clusters of duplicate records, to find a unique
representation for a cluster of records (also known as golden record), or to prepare
data to be consumed by analytics tools. Data transformation can also be seen as a
tool for data repair (Section 6.2), since it can be used to “transform” erroneous data.

Data transformation tasks can be classified into two types: syntactic data trans-
formations [Raman and Hellerstein 2001, Kandel et al. 2011, Gulwani 2011, Jin et al.
2017] and semantic transformations [Singh and Gulwani 2012, Abedjan et al. 2016b].
Syntactic transformations aim at transforming a table from one syntactic format
to another, often without requiring external knowledge or reference data. Example
syntactic transformations include transforming phone numbers to a standard for-
mat, concatenating two columns containing first name and last name into a name
column, or altering the layout of a table to make it easier to read (cf. Figure 4.1(a)).
Semantic transformations usually involve understanding the meaning/semantics,
or the typical use of the data; hence, they usually require referencing external data
sources. For example, transforming conference name abbreviations to full confer-
ence names (e.g., “SIGMOD” to “Special Interest Group on Management of Data”)
would require an external data source that contains both the abbreviations and the
full names of conferences.
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Figure 4.1 Example transformations.

Example 4.1 Figure 4.1(a) shows a syntactic transformation, where tabular data containing per-
son names, telephone numbers, and fax numbers, originally arranged in a tabular
format with phone and fax numbers stored in the same column as a complex data
type, are flattened into a normal relational table representation for efficiently query-
ing of this data. In addition, the telephone numbers and the fax numbers are also
transformed by adding two dashes between the nine digits. Both cases do not re-
quire external knowledge to perform these transformations.

Figure 4.1(b) shows a semantic transformation, where country codes are trans-
formed into country names, requiring external knowledge, such as an external
knowledge base that contains both full and abbreviated country names.

In this chapter, we discuss techniques for performing both syntactic and seman-
tic data transformations in Sections 4.1 and 4.2, respectively. Since data transfor-
mation is usually part of commercial Extract-Transform-Load (ETL) tools, we give
an overview of some current main ETL tools and their data transformation and
cleaning capabilities in Section 4.3. We limit our discussion to data transforma-
tions that accept as input a tabular data form and output another tabular data form.
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Other types of data manipulation tasks, such as information extraction, which aims
at extracting structured data from unstructured or semi-structured data [Sarawagi
2008], are outside the scope of this text.

4.1 Syntactic Data Transformations
There are three major components/dimensions of a syntactic data transformation
system: language, authoring, and execution, as shown in Figure 4.2. Since there are
many ways to transform a dataset, syntactic data transformation solutions usually
adopt a transformation language that limits the space of possible transformations.
The language could consist of a finite set of operations allowed on a table [Raman
and Hellerstein 2001, Kandel et al. 2011], such as splitting a column and merg-
ing two columns, or it could consist of a set of functions for string manipulations
[Gulwani 2011], such as extracting a substring and concatenating two substrings. A
language needs to be expressive enough so that it captures many real-world trans-
formation tasks, and at the same time, restricted enough to allow for effective and
easy authoring of the transformations. For a specific transformation task, syntactic
transformation tools have different interaction models with the users to author a
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Figure 4.2 The three components/dimensions of a syntactic transformation system.
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transformation program using the adopted language. The interaction models can be
generally classified as declarative, example-driven, or proactive. In the declarative
model, users specify the transformations directly, usually through a visual inter-
face. In the example-driven model, users are required to give a few input-output
examples, based on which the tool automatically infers likely transformations that
match the examples. In the proactive interaction model, the transformation tool
hints at which data needs transformation, and sometimes even suggests possible
transformations. Finally, transformation execution applies the specified transfor-
mations to the dataset. Since there might be multiple specified transformations
from the previous step, transformation tools usually offer assistance in selecting
the desired transformation, for example, by displaying the effect of the specified
transformation immediately on sample data, or by providing interpretations of the
specified transformations.

Different transformation tools offer different capabilities along these three di-
mensions. In this section, we use example syntactic transformation systems to
illustrate these three components in detail: Data Wrangler [Kandel et al. 2011, Guo
et al. 2011, Heer et al. 2015] is based on Potter’s Wheel [Raman and Hellerstein
2001] and is designed for transforming tabular data; QuickCode [Gulwani 2011]
is designed for string manipulations; and KNIME1 is an open source workflow au-
thoring tool that can compose data transformation programs declaratively.

4.1.1 Transformation Language
A transformation language defines the set of allowed operators a syntactic trans-
formation tool allows. In what follows, we discuss the languages adopted by Data
Wrangler and QuickCode.

Data Wrangler [Kandel et al. 2011, Guo et al. 2011, Heer et al. 2015] adopts a
language that consists of a sequence of individual operators to support common
data manipulation tasks, such as splitting or extracting values from strings, delet-
ing or merging columns, interpolating values, and reshaping tables by folding and
unfolding. Table 4.1 shows the most common operators used and their descrip-
tions in Data Wrangler. A critical feature of the Data Wrangler’s language design is
its compactness: with only a dozen operators, analysts can complete a wide variety
of data transformation tasks. The language is based on SchemaSQL [Lakshmanan
et al. 2001], and it has been proven that the language can express any one-to-one
or one-to-many transformations of cell values [Raman and Hellerstein 2001]. The
declarative nature of the data transformation language facilitates the implemen-

1. https://www.knime.com/
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Table 4.1 The Data Wrangler transformation language [Kandel et al. 2011]

Operations Description

Cut Remove selected text from cells in specified columns

Delete Remove rows that match given indexes or predicates

Divide Conditionally split a column into two, sending values into one of
the two new columns based on a predicate

Drop Remove specified columns from table

Edit Edit the text in each cell of the specified columns

Extract Copy text from cells in a column into a new column

Fill Fill empty cells using values from adjacent cells

Format Apply a function to every value in a column

Fold Reshape a table into columns of key-value sets: selected rows map
to keys, selected columns to values

Merge Concatenate multiple columns into a single column

Promote Promote row values to be the column names

Split Split a column into multiple columns by delimiters

Translate Shift the position of cell values by a given offset

Transpose Transpose the rows and columns of the table

Unfold Reshape a table by mapping key-value sets to a collection of new
columns, one per unique key

tation across multiple platforms, for example, by generating executable code for
multiple runtimes, including Python and JavaScript. Oftentimes, users “wrangle”
a subset of the data using the interface and then export a resulting Python script to
transform the much larger dataset on a server.

Example 4.2 When integrating data from different sources, values of the same type might exist
in different formats. Figure 4.3(a) shows an example of using the Format, Split, and
Merge operators to clean name format discrepancies. Figure 4.3(b) shows an exam-
ple of using the Divide operator to separate various name formats; the tabular data
after applying the Divide operator can then be transformed similar to Figure 4.3(a).

Many-to-many row mappings, such as Fold and Unfold, are useful for resolving
higher-order schematic heterogeneity where information is stored partially in the
schema and partially as data values. The Fold operator flattens the table by con-
verting one row into multiple rows, folding a set of columns into one column, and
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Figure 4.3 Example transformations in Data Wrangler [Raman and Hellerstein 2001].

replicating the rest of the columns. Figure 4.3(c) shows an example of the Folding
operator, where the subject names are demoted into rows using the Format oper-
ator, then the last two columns are folded together while the first column is being
replicated. Lastly, the Split operator is used to split the subject from the grade. The
Unfold operator, on the other hand, unflattens the table by taking two columns,
collecting rows that have the same values for all the other columns, and unfolding
the two chosen columns. Values in one of the chosen columns are used as col-
umn names to align the values in the other chosen column. Figure 4.3(d) shows an
example of unfolding the second and third column.

While Data Wrangler aims at providing a set of transformation operators to
manipulate tabular data, QuickCode [Gulwani 2011] defines a transformation lan-
guage that is focused on transforming strings. The domain-specific string process-
ing language QuickCode adopts supports limited conditionals and loops, syntactic
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Table 4.2 The QuickCode syntactic transformation language

String program P := Switch((b1, e1), . . . , (bn, en)) | e

Boolean condition b := d1 ∨ . . .∨ dn

Conjunction d := π1 ∧ . . .∧ πn

Predicate π := Match(vi , r , k) | ¬Match(vi , r , k)

Trace expression e := Concatenate(f1, . . . , fn) | f

Atomic expression f := ConstStr(s) | SubStr(vi , p1, p2) | Loop(λw : e)

Position p := CPos(k) | Pos(r1, r2, c)

Regular expression r := TokenSeq(T1, . . . , Tn) | T | ε

string operations, such as substring and concatenation, and matching based on
regular expressions. Table 4.2 shows the string transformation language adopted
by QuickCode. A string program P in QuickCode is an expression that maps the
input string values v1, . . . , vm to an output string value s. To better explain Quick-
Code’s language, we start by introducing the basic constructs, including regular
expression r, position p, trace expression e, and Boolean expression b. Then we in-
troduce the program P. Readers who are familiar with manipulating strings with
regular expressions may jump directly to Example 4.4.

QuickCode limits regular expression r to an empty string ε, a token T , or a se-
quence of tokens TokenSeq(T1, . . . , Tn). QuickCode also adopts the following finite
set of tokens: (i) StartTok, which matches the begining of a string; (ii) EndTok,
which matches the end of a string; (iii) a token for each special character, such
as dot, semicolon, hyphen; and (iv) two tokens for each character class C, one that
matches a sequence of one or more characters in C, and one that matches a se-
quence of one or more characters that are not in C. Character classes of C include
numerical digits, alphabetic characters, uppercase alphabetic characters, lower-
case alphabetic characters, alphanumeric characters, and whitespace characters.
For example, UpperTok represents a sequence of one or more uppercase characters.

A positional expression p is either a constant integer CPos(k) that denotes the kth

position in an input string vi, or another expression Pos(r1, r2, c), where r1 and r2 are
two regular expressions and c is an integer. We use vi[t1, t2) to denote the substring
of vi between positions t1 and t2. Pos(r1, r2, c) refers to a position t in vi, such that
r1 matches some suffix of vi[0 : t) and r2 matches some prefix of vi[t : length(vi)).
Pos(r1, r2, c) returns the cth such position.

A trace expression e is the concatenation of atomic expressions f1, . . . , fn, where
each atomic expression f is either a constant-string ConstStr, a substring expression
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SubStr, or a loop expression constructed from Loop. The substring expression
SubStr(vi , p1, p2) relies on two positional expressions p1 and p2, which evaluate to
a position within vi.

A Boolean expression b is a propositional formula in disjunctive normal form.
A propositional formula has a unique truth value if all values of all variables in the
formula are given. A predicate Match(vi , r , k) in the formula is evaluated to be true
if vi contains at least k non-overlapping matches of regular expression r.

The top-level string expression P is a Switch constructor whose arguments are
pairs of Boolean expression bi that return True or False based on the input values,
and a trace expression ei, which returns an output string s. The set of Boolean
expressions are disjoint; for any set of input values, there is at most one Boolean
expression evaluated to be true. The return value of P is the value of the trace
expression ei that corresponds to the Boolean expression bi satisfied by the input
set of values. If none of the Boolean expressions are unsatisfied, then the trace
expression e is returned.

Example 4.3 Consider an example string vi to be “Very Large Data Bases”, which has 21 charac-
ters indexed from 0–20.

The positional expression Pos(ε , UpperTok, 1) evaluates to position 0, since ε

matches the suffix vi[0, 0), which is an empty string, and UpperTok matches the
prefix of vi[0, 21), which is “Very Large Data Bases.” The position 0 is the first
position that satisfies such a condition.

The positional expression Pos(ε , UpperTok, 2) evaluates to position 5, since ε

matches the suffix vi[0, 5), which is “Very,” and UpperTok matches the prefix of
vi[5, 21), which is “Large Data Bases.” The position 5 is the second position that
satisfies such a condition.

Similarly, the positional expression Pos(UpperTok, ε , 1) evaluates to position 1,
and positional expression Pos(UpperTok, ε , 2) evaluates to position 6.

The expression SubStr(vi , Pos(ε , UpperTok, 1), Pos(UpperTok, ε , 1)) is thus
SubStr(vi , 0, 1), which returns the first uppercase token “V”.

The expression SubStr(vi , Pos(ε , UpperTok, 2), Pos(UpperTok, ε , 2)) is thus
SubStr(vi , 5, 6), which returns the second uppercase token “L”.

There are two additional expressions that QuickCode allows for convenience.
A commonly used expression is SubStr(vi , Pos(ε , r , c), Pos(r , ε , c)), which evalu-
ates to the cth occurrence of regular expression r in vi; this is abbreviated to
SubStr2(vi , r , c). The loop expression Loop(λw : e) is the concatenation of e1, e2, . . . ,
en, where ei is obtained from e by replacing all occurrences of integer w in e by i,
and n is the smallest integer such that en+1 is undefined.
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Example 4.4 The following transformation task aims at extracting conference name abbre-
viations from conference names by concatenating the CAPITAL letter of every
word, and can be expressed in QuickCode’s domain specific language as: Loop(λw :
SubStr2(v1, UpperTok, w)).

Input v1 Output s

Very Large Data Bases VLDB

International Conference on Data Engineering ICDE

International Conference on Machine Learning ICML

4.1.2 Transformation Authoring
Syntactic transformation tools must allow for easy and effective authoring of trans-
formation programs. We classify the interaction models for transformation au-
thoring into declarative transformations, transformation by example, and proactive
transformations. Most modern tools offer one or more of these authoring capabili-
ties to solicit desired transformations.

Declarative authoring allows users to specify transformation directly, usually
through a visual interface that contains a table view as well as a set of menu-
accessible transformation operators. Users specify desired transformations by se-
lecting appropriate transformations using drop-down menus, or by highlighting
certain data for the tool to infer potential transformations. Both Potter’s Wheel
and Data Wrangler provide a menu-based interface, and KNIME provides a drag-
and-drop graphical interface. Declarative authoring allows skilled practitioners to
transform data rapidly; however, they usually have a learning curve as users need
to be familiar with the transformation task as well as the set of available operators.

Example-driven authoring requires uses to give a few input-output examples,
based on which the tools automatically infer plausible transformations. Transfor-
mation by example can significantly reduce the users’ burden in authoring trans-
formations; however, they might limit the set of allowed transformations, either
because learning transformations in a large space is expensive or because some
transformations, such as table reshaping in Figure 4.1(a), lack intuitive interfaces
to provide examples.

Proactive authoring automatically suggests potential transformations, without
requiring (or with minimal) user input. These tools often assume a “goodness”
criterion about the data, for example, depending on how the data is consumed by
downstream analytics. Candidate transformations are then suggested to bring the
data to a desired state with respect to the “goodness” criterion.
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Figure 4.4 The Data Wrangler interface [Kandel et al. 2011, Guo et al. 2011, Heer et al. 2015]. Panel
descriptions: (a) tool bar for operator specification; (b) data table display; (c) history of data
transformations, which can be exported into a script; and (d) suggested transformation
operators. The effect of the selected Fold operator is previewed in the data table display
(b) before and after the transformation.

Use Case 1: Declarative Authoring in Data Wrangler
The Data Wrangler user interface, shown in Figure 4.4, allows users to specify trans-
formations in the underlying language. The interface has four main components:
the top of the screen shows a tool bar for the set of operators; the right panel shows
an interactive data table, displaying the current state of the table as well as a pre-
view of the table after applying the selected operator; and the left panel contains
both automated operator suggestions and the history of transformations. Users can
specify transforms in multiple ways. A transformation can be specified manually by
selecting a operator type from the tool bar and then entering the desired parameter
values.

Data Wrangler can also reactively infer transformations though user interaction
with the interface, including selecting rows and columns by clicking their headers,
or selecting and manipulating texts within cells. While these actions can be used to
specify parameters for a transformation type selected from the tool bar, manually
choosing the transform type can be tedious and requires the user to be familiar with
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the available transforms. Data Wrangler automatically infers applicable transforms
directly from the user selection on the table display in three steps.

1. Data Wrangler infers a set of possible parameter values. Example parame-
ters include regular expressions matching selected text substrings, and row
predicates matching selected rows, such as “row is empty” or “row [equals |
contains | starts with | ends with ] selected values”.

2. Data Wrangler enumerates a list of transforms that accepts the inferred pa-
rameters. For example, a split transform can accept a parameter set contain-
ing a text selection, but an unfold transform cannot accept such a parameter
set.

3. The list of transforms is filtered and ranked according to historical usage
statistics and heuristics to improve result quality. For example, one of the
ranking criteria is diversity, namely, the top suggested transforms should
contain multiple types of transforms rather than one type of transform.

Use Case 2: Declarative Authoring in KNIME
KNIME is a general purpose open source data analytics tool allowing users to visu-
ally create a workflow by assembling data processing nodes, selectively executing
some or all analysis steps, and later inspecting the results. Figure 4.5 shows the
graphical interface of KNIME. The space of all possible data processing nodes,
shown as the node repository in Figure 4.5, are grouped into categories. For exam-
ple, the IO category includes data processing nodes for reading data from various
sources, such as CSV files and relational database engines; the Manipulation cat-
egory includes data processing nodes for manipulating data, such as splitting a
column based on regular expressions and filling in missing values based on pro-
vided rules; the View category includes nodes for different ways of visualizing the
data, such as Pie charts and histograms; and the Analytics category includes nodes
for common data mining and machine learning algorithms, such as decision trees
and neural networks, and common statistical analytics, such as hypothesis testing
and regression analysis. Every node has a configuration window for the parameter
settings. For example, a CSV file reader node has parameters to set for which file
to read and which character should be used as a separator. Users can compose a
data analytics workflow by selecting desired nodes from the node repository and
connecting them into a workflow.

Users can easily use KNIME to perform data transformation tasks. The node
repository is essentially the transformation language. Users can compose a trans-
formation program by building a workflow using the data processing nodes.
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Figure 4.5 KNIME graphical interface. The right panel shows the current workflow composed. The
top-left panel shows different workspaces for different workflows. The bottom-left panel
shows the node repository, grouped into categories. The middle-left panel shows favorite
and recently used nodes.

Use Case 3: Example-Driven Authoring in QuickCode
Programming by example (also known as programming by demonstration and in-
ductive synthesis) refers to a methodology that infers a generalized program based
on user-provided examples that describe the expected behavior of the program
[Cypher and Halbert 1993]. It has been used in a variety of settings, such as building
regular expressions from example texts [Blackwell 2001], creating mashups from
multiple web sources by providing examples on how to extract and transform web
sources [Tuchinda 2008], and integrating data automatically based on a program
learned from example copy-and-paste actions performed by users [Ives et al. 2009].
Unsurprisingly, programming by example is also useful in expressing transforma-
tion tasks [Gulwani et al. 2012].

QuickCode [Gulwani 2011] is an Excel plug-in that automatically synthesizes
a program for manipulating string transformation tasks based on a few user-
provided input-output examples. Table 4.3 shows a syntactic transformation task
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Table 4.3 Programming by example with five user-
provided input-output examples

Input Output

323-708-7700 323-708-7700

(425)-706-7709 425-706-7709

510.220.5586 510-220-5586

235 7654 425-235-7654

745-8139 425-745-8139

(519)-781-8816

. . .

781-0987

with five input-output examples, where the user would like to transform phone
numbers to a consistent format, adding a default area code “425” if the area code
is missing. For each input-output example, QuickCode first computes the set of all
expressions that map the input to the output. It then intersects these sets for simi-
lar examples and learns conditionals to handle different cases. It finally ranks the
set of synthesized programs mainly according to one principle: a simpler program is
more likely to be correct than a more complicated one. Figure 4.6 shows a synthesized
program that QuickCode synthesizes using its domain-specific language for the
transformation task in Table 4.3. It checks if the first three letters of an input v1 are
numbers. If they are numbers, it applies expression e1, which concatenates the first
sequence of number tokens in the input, a constant token “-”, the second sequence
of number tokens, a constant “-”, and the third sequence of number tokens; other-
wise, it concatenates a constant prefix “425-”, the first sequence of number tokens,
a constant token “-”, and the second sequence of number tokens.

Use Case 4: Proactive Authoring in Data Wrangler
Proactive transformations suggest possible transformations automatically without
(or with minimal) user input. They are intended to facilitate the specification of
complex wrangling tasks, such as table reshaping operations, that are difficult for
users to specify. The intuition is that users find it easier to deal with “recognition”
tasks, such as confirming suggested transformations, than to come up with com-
plex transformations. The suggested transformations aim at converting the input
data to a more “suitable” state for downstream analytics.
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Switch ((b1, e1), (b2, e2)), where

b1 = Match(ν1,NumTok, 3)

b1 = ¬Match(ν1,NumTok, 3)

e1 = Concatenate(SubStr2(ν1,NumTok, 1),ConstStr("-"),

SubStr2(ν1,NumTok, 2),ConstStr("-"),

SubStr2(ν1,NumTok, 3))

e2 = Concatenate(ConstStr("425-"),SubStr2(ν1,NumTok, 1),

ConstStr("-"),SubStr2(ν1,NumTok, 2))

Figure 4.6 A synthesized program [Gulwani 2011].

Data Wrangler defines the suitability score of table to indicate the degree to
which a table adheres to a relational format usably by downstream analytics tools,
such as Tableau.2 These tools often expect the data to be in a relational format,
where every column has atomic/simple data type and each row describes a single
entity. The suitability score considered in Data Wrangler rewards column type
homogeneity (H), fewer empty values (E), and smaller number of delimiters (D),
including comma, colon, pipe, or tab characters. Poor column type homogeneity of
a column can cause that column to be interpreted only as strings when imported by
downstream tools. A table with many empty values may indicate there are replicated
values in adjacent columns, and a column with many delimiters may also be treated
as strings, rather than composite values of more specific types. For a table T with
rows R and columns C, the suitability score is defined as follows:

S(T)=
(

1−
∑

c∈C Hc(T)

|C|
)
+ E(T)+ D(T)

|R||C| .

The number of rows and number of columns are denoted as |R| and |C|, respec-
tively. Hc is the homogeneity of Column c, and is defined as the sum of squares
of the proportions of each type present in that column. Data Wrangler parses each
cell into the most specific type, including default built-in types, such as integer, dou-
ble, or date, and user-defined domains, such as zip or country code. If a cell does
not match any specific type, then the most generic string type is assigned to that
cell. For example, if 75% of the values in a column are integers and 25% are dates,
the column homogeneity score is 0.752 + 0.252 = 0.625. A column of only one type
has the maximum homogeneity score of 1.0. E(T) is the number of empty cells in
the table, and D(T) is the number of cells that contain delimiters in the table. The
suitability score is invariant of the size of the table, since it is normalized.

2. https://www.tableau.com
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Data Wrangler makes proactive suggestions that improve a table’s suitability
score by first generating suggestions and then ranking these candidates before
presenting them to the user. Data Wrangler considers the following operators as
candidate proactive suggestions: (1) Delete all empty columns; (2) Delete all empty
rows; (3) Delete all mostly empty rows (more than 75% empty cells); (4) Fill all empty
cells of column C with values from the above; (4) Fill all empty cells of row R with
values from the left; (5) Split column C into multiple columns using a delimiter;
(6) Fold columns C1, . . . Cn using rows R1, . . . , Rn as keys; and (7) Unfold column
C1 on column C2. Since most of these operators take row and/or column indices
as parameters, enumerating all possibilities for every type of operator is expensive.
For example, there are O(|R|) possible row fills, O(|C|) possible column fills, O(2|R| ×
2|C|) possible folds, and O(|C|2) possible unfolds. Data Wrangler adopts a set of
heuristics inspired by real-world use cases from a corpus of public datasets to
reduce the set of proactive transformations considered.

1. Data Wrangler only suggests Fill candidates if the majority of the cells in a
given row or column are empty. This type of transform is useful for filling in
sparse rows or columns before performing a fold or unfold operation.

2. Data Wrangler only generates Fold candidates using all columns except for
the leftmost one, and using at most the first three rows as keys, limiting
the number of possible folds to three. In addition, fold candidates are only
generated if the leftmost column contains all unique and non-null values in
rows other than the key rows; otherwise, there is conflict in the result table.

3. Data Wrangler also only generates Unfold candidates of the form “Unfold C1

on C2” if all columns except C2 are completely homogeneous and non-empty;
otherwise, the header of the resulting table will not be well typed. Also, unfold
candidates are generated if the table has exactly 3, 4, or 5 columns, which
corresponds to 1, 2, or 3 key columns, respectively.

Example 4.5 To see how proactive authoring in Data Wrangler alleviates the burden of users,
Figure 4.7 illustrates an end-to-end scenario, where a user transforms a table,
imported from an Excel file (Table 1 in Figure 4.7), into a dense relational table
suitable for analytics (Table 6 in Figure 4.7). Table 1 in Figure 4.7 is unsuitable for
analytics since it contains unusable header rows, empty rows, and it also mixes
telephone and FAX number in a complex data type. In contrast, Table 6 is much
more suitable for downstream analytics, as it lacks these anomalies.

First, Data Wrangler analyzes the input table and generates three suggestions,
as shown under Table 1 in Figure 4.7. The user ignores the suggestions and instead
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Bureau of I.A.

Regional Director

Niles C.

Jean H.

Frank K.

1.

Manually select and delete the first two rows

Proactive suggestions (none chosen):
1. Fill column 1 from above
2. Split column on ‘:’
3. Delete empty rows

Numbers

Tel: (800)645-8397

Fax: (907)586-7252

Tel: (918)781-4600

Fax: (918)781-4604

Tel: (615)564-6500

Fax: (615)564-6701

Niles C.

Jean H.

Frank K.

2.

Proactive suggestions:
1. Fill column 1 from above
2. Split column on ‘:’
3. Delete empty rows

Tel: (800)645-8397

Fax: (907)586-7252

Tel: (918)781-4600

Fax: (918)781-4604

Tel: (615)564-6500

Fax: (615)564-6701

Niles C.

Jean H.

Frank K.

3.

Proactive suggestions:
1. Delete empty rows
2. Fill column 1 from above

Tel

Fax

Tel

Fax

Tel

Fax

(800)645-8397

(907)586-7252

(918)781-4600

(918)781-4604

(615)564-6500

(615)564-6701

Niles C.

Jean H.

Frank K.

4.

Proactive suggestions:
1. Fill column 1 from above

Tel

Fax

Tel

Fax

Tel

Fax

(800)645-8397

(907)586-7252

(918)781-4600

(918)781-4604

(615)564-6500

(615)564-6701

Niles C.

Niles C.

Jean H.

Jean H.

Frank K.

Frank K.

5.

Proactive suggestions:
1. Unfold column 1 on column 3
2. Unfold column 2 on column 3

Tel

Fax

Tel

Fax

Tel

Fax

(800)645-8397

(907)586-7252

(918)781-4600

(918)781-4604

(615)564-6500

(615)564-6701

Niles C.

Jean H.

Frank K.

6.

Result: cleaned table ready for DB import

Tel

(800)645-8397

(918)781-4600

(615)564-6500

Fax

(907)586-7252

(918)781-4604

(615)564-6701

Figure 4.7 Proactive data wrangling example. The proactive suggestion chosen at each step is marked
in bold [Guo et al. 2011].

chooses to manually delete the first two rows of the table, turning Table 1 into
Table 2. The user then chooses the second proactive suggestion for Table 2 (shown
in bold), which transforms Table 2 into Table 3. Data Wrangler makes two proactive
suggestions based on Table 3, as shown under Table 3, and asks the user to pick
one. The process goes on until the data is transformed into Table 6, which is now
suitable for downstream analytics.

4.1.3 Transformation Execution
There might be multiple-authored transformation programs, declared by users or
inferred by the tool as we discussed in Section 4.1.2. Transformation tools usually
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offer assistance to the users in selecting the correct transformation, for example,
by displaying the effect of the specified transformation immediately on sample
data, or by providing natural language descriptions of the expected outcomes of
the specified transformations, to guide the execution of these transformations.

For example, Data Wrangler executes the set of proactively suggested transfor-
mations on the current table and calculates the suitability score for each resulting
table. All the suggested transformations are sorted by the improvements on the suit-
ability score of the tables before and after applying the suggestions. As shown in
Figure 4.4, Data Wrangler displays the current state of the table as well as a preview
of the table after applying the selected transformations. The user can preview and
execute one of these suggestions, or choose to ignore them and make a selection
on the data table to surface reactive transform suggestions.

Another example is QuickCode, which may produce multiple programs that
match the examples. QuickCode offers two ways to interact with users to deter-
mine which synthesized program best fits the transformation task [Gulwani et al.
2012]: the first interaction model requires users to examine the results of apply-
ing a transformation program on the data. If any output is deemed incorrect,
the user can fix it and reapply the synthesizer using the fix as an additional ex-
ample; and the second interaction model requires users to examine the actual
programs generated by the synthesizer and to pick a program. The programs can
be shown using programming language syntax, or they can be described in natu-
ral languages. The differences between different programs can be highlighted by
showing users different output values for an input on which the programs behave
differently.

4.2 Semantic Data Transformations
Semantic transformations usually involve understanding the meaning/semantics
or the typical use of the data, instead of simply as a sequence of characters. In
contrast to syntactic transformations, semantic transformations cannot be com-
puted by solely looking at input values; rather, they usually require external data
sources to look up the values that need to be transformed. Example-driven tech-
niques have been mostly used for semantic transformations [Arasu et al. 2009,
Singh and Gulwani 2012, Abedjan et al. 2016b, Jin et al. 2017]. We discuss seman-
tic transformations by example in Section 4.2.1 using DataXFormer [Abedjan et al.
2016b], which uses external web tables and web forms to match user-provided ex-
amples.
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Figure 4.8 DataXFormer architecture [Abedjan et al. 2016b].

Data exchange [Fagin et al. 2005a], a process that transforms structured data un-
der a source schema to structured data under a target schema based on semantic
mappings between the two schemas, can also be considered as a semantic transfor-
mation. We briefly discuss data exchange and refer interested readers to relevant
surveys in Section 4.2.2.

4.2.1 Semantic Transformations by Example
DataXFormer [Abedjan et al. 2016b] is an example-driven technique for semantic
data transformation based on two external data sources: locally stored static web
tables and dynamically discovered web forms. The architecture of DataXFormer is
illustrated in Figure 4.8. The user starts by submitting a transformation query that
includes a few input-output examples, such as the query that transforms airport
codes to city names. DataXFormer converts the user query into an internal form
to retrieve candidate web tables and candidate web forms, respectively. While the
table retrieval component works on top of a local repository, the form retrieval
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component uses the entire web to find relevant web forms. DataXFormer assumes
that the user provides as input a set X of n values and a set E of m example pairs,
E = {(xi , yi) | xi ∈ X , 1≤ i ≤m}. The goal is to discover the missing Y values and
output a solution F, F = {(xi , yi) | xi ∈ X , 1≤ i ≤ n}.

Using an inverted index, the table retrieval algorithm retrieves a set of relevant
candidate tables for the given user query. Candidate results are further analyzed by
the refinement component, which verifies the coverage of the candidate tables with
respect to the query examples. If the coverage is above the user-defined threshold,
DataXFormer extracts the rest of the required transformation values. In the case
of web forms, DataXFormer uses a web search engine to retrieve relevant URLs.
By examining the results of the web search, DataXFormer identifies candidate web
forms. Then, for each candidate form, DataXFormer generates a “wrapper” that
will allow it to query the form and to obtain the transformation values. Candidate
web forms are then queried using the examples present in the user query. Those
with sufficient coverage are then invoked with the remaining input values. In a
final step, the solution integration component consolidates and ranks multiple
transformation solutions for a given query, as obtained from the two subsystems,
and outputs the desired transformation.

Web Tables for Transformation
A table T is relevant to a transformation query if it contains at least τ of the examples
provided in that query, where τ is a predefined threshold. Based on the number of
contained examples, DataXFormer assigns scores to the tables. These scores weigh
in when reconciling conflicting transformations of different tables to ensure high
quality results.

Scanning every table in the corpus for the given examples can be prohibitively
expensive. To mitigate such a cost, DataXFormer uses a filter-refine approach illus-
trated by multiple steps in Figure 4.9. In Step 1, a query is submitted to the web
table repository, which maintains millions of n-ary relations. Step 2 corresponds to
the filter phase. Here, DataXFormer locates a candidate set of relevant tables.

In Figure 4.9, Tables 1, 2, and 4 cover τ = 2 examples and are therefore candidate
tables. The filter phase significantly affects the recall of the results. For example, a
coarse-grained index will return many false positives, while a very restrictive query
can result in low recall because it misses relevant tables.

In the refine phase (Step 3 in Figure 4.9), DataXFormer validates the row corre-
spondences of found examples and compute scores of found transformations and
tables that contain them. DataXFormer follows an iterative and inductive approach.
An iteration refers to one pass of filter and refine. Since the initial examples might
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Figure 4.9 Workflow of DataXFormer’s filter-refine approach [Abedjan et al. 2016b].

not be representative or might have a low recall, newly discovered mappings are
used as examples in subsequent iterations. When the iterations converge, the final
transformation results are presented to the user (Step 4 in Figure 4.9). Furthermore,
if users are satisfied with the result or any subset of the results, they can trigger the
system to store the results as a new table with a higher initial confidence score in
the database.

The simplest way to identify the tables that support a transformation is to use
an inverted index that maps cell values in web tables to the indexed tables and col-
umns. DataXFormer stores the tables within a universal main table (relation Cells in
Figure 4.10), where every cell of a web table is represented by a tuple that records the
table, column, and row IDs, along with the tokenized, stemmed form of its value.
The relation is ordered by tableid, columnid, and rowid, simultaneously achiev-
ing two advantages: (i) every column from a web table is stored contiguously, and
(ii) the space requirement of this schema can be alleviated by compression, which
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Figure 4.10 Schema for storing web tables in a column-store [Abedjan et al. 2016b].

is provided by most modern column-stores. DataXFormer stores web tables in a
multi-node Vertica instance. Vertica employs projections on tables in place of an
inverted index. A projection is a specialized materialized view that is efficient to
maintain and load.

Besides table content, DataXFormer also stores other metadata such as the num-
ber of rows in a table to easily prune tables with fewer rows than the required
number of covered examples. Additional dimension tables are maintained (Fig-
ure 4.10). Relation Tables stores metadata of tables, such as the URL where the
table came from, the table title, and an initial table weight that may vary depending
on the authoritativeness of the table. The initial weight influences the confidence
score that is computed later to rate transformation results. Relation Columns stores
column metadata, such as column headers.

Given the index built for the web tables, DataXFormer looks for column pairs
that contain at least τ of the given examples. To maximize coverage, DataXFormer
tokenizes and stems every value x and y from the input. Using the Cells relation
described earlier, DataXFormer filters all relevant column pairs with a single SQL
query:
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SELECT col1.tableid, col1.colid, col2.colid

FROM

(SELECT tableid, colid

FROM Cells

WHERE term_tokenized IN (<x1>,<x2>,..., <xm>)

GROUP BY tableid, colid

HAVING COUNT(DISTINCT term_tokenized) >= tau)

AS col1,

(SELECT tableid, colid

FROM Cells

WHERE term_tokenized IN (<y1>,<y2>,..., <ym>)

GROUP BY tableid, colid

HAVING COUNT(DISTINCT term_tokenized) >= tau)

AS col2

WHERE col1.tableid = col2.tableid

AND col1.colid <> col2.colid

The query joins two subqueries, one to find the columns that contain the X
values and another to identify the columns that contain the Y values, where a
column is uniquely identified using the table and the column IDs.

In the refine phase, DataXFormer loads the content of each candidate column
pair and checks the row correspondence between the values. Note that the candi-
date generation does not ensure the transformation examples are aligned in the
corresponding rows. If τ examples still match after considering the row correspon-
dence, DataXFormer collects all transformation results that are provided by the
corresponding table.

The retrieved tables might provide conflicting answers, i.e., returning different
Y values for the same X value. For example, in Figure 4.9, the airport code “FRA” has
been assigned to two different values. A näıve approach to resolve such conflicts
is to apply a majority vote. However, the authoritativeness of tables should also
be considered. For example, while (JFK, New York) might appear in more tables
of the database, a table from a more reliable source might provide (JFK, New York
City), which is more accurate. Therefore, it is necessary to score tables according
to their authoritativeness as well as their coverage of examples with a confidence
score. DataXFormer adopts an iterative expectation-maximization (EM) approach
that incorporates confidence scores. The confidence score of each table (i.e., the
probability that an answer it provides is correct) is estimated based on the current
belief about the probability of the answers. Initially each table is assigned with a
confidence score based on the number of user examples it covers. The score of the
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table is weighted with its initial weight assigned by experts and stored in relation
Tables. The answer scores are updated based on the newly computed scores, and the
process is repeated until convergence is reached (i.e., the sum of all score changes is
below a very small value ε). In the end, for each x ∈ X, the scores of possible answers
form a probability distribution, and DataXFormer reports the highest scoring value
as the answer.

Web Forms for Transformation
As with web tables, a web form is relevant to a query if it covers at least τ of the
example transformations. As there is no common repository of web forms, DataX-
Former needs to dynamically search for relevant forms from the web. In addition,
a new web form appears as a black box, and an invocation strategy (i.e., wrapper)
has to be developed to use the form to produce the desired transformations.

DataXFormer dynamically searches for relevant forms from the web by issuing
search queries (on existing engines) with the attribute names IX and IY , and it
also maintains a repository of web forms that have been successfully wrapped and
previously used to answer transformation queries. Each web form is stored as a
document that contains the attribute names IX and IY , frequent terms from the
form’s webpage, and examples from previous transformation tasks. In addition to
querying the web, DataXFormer also queries this repository for candidate matches
along with their corresponding wrappers.

Since the number of web forms is far less than the number of regular pages
retrieved by a search, DataXFormer issues multiple keyword queries and filters
the results coming from the underlying search engine to find web forms. Example
keyword queries include terms such as “convert,” “detect,” or “lookup,” in addition
to using column names as keyword queries.

To be able to wrap web forms, DataXFormer simulates a web browser and probes
the forms by using the given example values (x, y) ∈ E to identify the relevant input
field to fill in the x values, the output field that contains the desired transformation
result y, and the request method for invoking the form.

Figure 4.11 shows a candidate web form that has been retrieved for transforming
stock names to companies, e.g., AMZN to AMAZON.COM INC. The screenshot on the
left shows the form’s input fields that comprise various radio buttons, a selection
field, an input field, and a button. By analyzing the HTML code, DataXFormer
discovers that the form can be invoked by a GET request URI with the relevant
parameter ?symbol that has to be set to our input value AMZN. Submitting the GET
request returns the page that is illustrated on the right of Figure 4.11. The desired
output AMAZON.COM INC appears on the page. DataXFormer discovers the XPath of
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Discovered output path:
/html/body/div[1]/ol[2]/li[1]/h2

Discovered GET request:
http://investing.money.msn.com/investments/stock-price/?symbol=AMZN

Figure 4.11 The wrapper for this web form consists of a GET URI, the request parameter ?symbol,
and the output path [Abedjan et al. 2016b].

the output field. Given the path, DataXFormer can identify the transformation for
any subsequent stock symbol.

4.2.2 Data Exchange
Data exchange [Fagin et al. 2005a, Libkin 2006, Arenas et al. 2014] is the process
of taking data under a source schema and transforming it into data under a tar-
get schema, and thus can be seen as a form of semantic data transformation. In
a data exchange setting, there is a source schema S and a target schema T . The
relationship between S and T is captured by source-to-target dependencies �st that
specify how and which source data should be translated into the target. The source-
to-target dependencies are of the form ∀x φ(x)→∃y ψ(x, y), where φ(x) and ψ(x, y)

are atoms defined over S and T , respectively. An atom in mathematical logic is an
atomic formula with no deeper propositional structure. In addition, since T may
be an independently created schema, it may have some additional constraints �t.
Given a data exchange scenario determined by S, T , �st, and �t, the data exchange
problem is as follows: given a source instance I over the source schema S, materialize
a target instance J over the target schema T , such that the source-to-target depen-
dencies �st are satisfied by I and J and the target dependencies �t are satisfied by J.
The target instance J is called a solution for the data exchange problem. For a data
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Figure 4.12 A data exchange example.

exchange problem, there might exist multiple solutions. Hence, several technical
problems arise: When does a solution exist? If there are multiple solutions, which
one is a “good” solution? How to compute a good solution efficiently?

Example 4.6 Figure 4.12 shows a data exchange scenario where the source schema S contains
an employee table with EID, company, and salary columns, and the target schema
T contains an HRInfo table with ID, employer, wage, and phone columns. The
correspondences between the two schemas are marked in dash lines, which can
either be manually annotated by users or detected automatically using schema
matching techniques. The mapping is then expressed using source-to-target tuple-
generating dependencies �st as: ∀e, c, s Employee(e, c, s)→∃p HRInfo(e, c, s, p).

Note that �st may not completely specify the target instance. In this example, the
Phone column of T is not specified. Figure 4.12 shows four different solutions for
the input I, all of which satisfy �st, where NULL, NULL1, NULL2, and NULL3 represent
“unknown” values, or labeled nulls. Solution J2 does not use labeled nulls; instead,
it uses concrete values (“123-456-0000” and “123-456-1111”) for the Phone column,
and hence is less general than Solution J1. While Solution J3 uses labeled nulls, it
is also less general than J1 since it assumes that the Phone values of two tuples are
the same, which was not specified by �st. Similarly, Solution J4 has an additional
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tuple that was not specified �st. In contrast, Solution J1 is a “good” solution, since
it contains no more and no less than what �st specifies.

The “good” solution that contains no more and no less information than what
�st specifies is called a universal solution [Fagin et al. 2005a]. To introduce the
formal definition of a universal solution, we first need to introduce the notion of
homomorphism. Let K1 and K2 be two database instances over the same schema R
with values being a set of constant values and labeled nulls. Let h be a function that
maps from the set of constant values and labeled nulls to the set of constant values
and labeled nulls. h is a homomorphism from K1 to K2 if: (1) h(c)= c, for every con-
stant value; and (2) if R(a1, a2, . . . , an) is a fact in K1, then R(h(a1), h(a2), . . . , h(an))

is also a fact in K2. Given a data exchange problem, a solution J is a universal solution
if, for every possible solution K, there exists a homomorphism from J to K.

Example 4.7 In Figure 4.12, Solution J1 is a universal solution. It has a homomorphism to J2, J3,
and J4. For instance, the homomorphism h from J1 to J2 is as follows: h(c)= c, for c ∈
{1001, 1002, Corp1, Corp2, 110,000, 120,000}, h(NULL1) = 123− 456− 0000, and
h(NULL2)= 123− 456− 1111.

The classical chase procedure [Maier et al. 1979] can be used to compute a uni-
versal solution if one exists. If the chase procedure succeeds, the result is a universal
solution. If the chase fails, then no solution exists. However, for an arbitrary set of
dependencies, there may not exist a finite chase. Fagin et al. [2005a] showed that
if �st and �t satisfy certain conditions (�st is a set of tuple-generating dependen-
cies and �t is the union of a weakly acyclic set of tuple-generating dependencies
with a set of equality-generating dependencies), then a universal solution exists if
and only if a solution exists. They also gave a polynomial-time chase algorithm that
determines whether a solution exists and gives a universal solution.

Another important problem in a data exchange setting is query answering,
specifically how to answer a query Q against the target schema T , given a source
instance I. The answer to Q over the target schema is ambiguous since, as we
discussed earlier, there might be multiple solutions J, and each solution might
produce a different answer. This difficulty was also present in the context of query
answering over incomplete databases [van der Meyden 1998], where the query can
be answered over many possible instances of the database. The “certain answer”
semantics was adopted to resolve this problem; namely, a tuple appears in the final
answer of the query if that tuple appears as an answer of the query against every
possible instance of the database. This “certain answer” semantics was also used
in the context of data exchange [Fagin et al. 2005a], where every possible solution
J is a possible database instance. Given the semantics of query answering in data
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exchange, the question naturally becomes: What is the complexity of answering
a query against the target schema? Can we compute the certain answers directly
using the “good” solution we choose to materialize? Fagin et al. [2005a] showed
that if the target query Q is a union of conjunctive queries, then certain answers of
Q can be obtained by directly evaluating Q on a universal solution; they also showed
multiple intractability results when Q contains inequalities.

The aforementioned basic data exchange framework is exemplified in the Clio
system [Fagin et al. 2009], and it has much follow-up research, including design-
ing more efficient algorithms for computing universal solutions [Gottlob and Nash
2008], answering different types of queries against the target schema [Libkin 2006,
Afrati and Kolaitis 2008], studying how target dependencies affect data exchange
complexity [Kolaitis et al. 2006, Hernich and Schweikardt 2007], creating schema
mappings to generate the source-to-target dependencies [Rahm and Bernstein
2001], using more expressive mapping languages [Fagin et al. 2005b], and develop-
ing data exchange solutions in other data models such as XML [Fagin et al. 2009].
A detailed discussion about those topics is outside the scope of this book, and we
refer interested readers to a recent survey on data exchange [Arenas et al. 2014].

4.3 ETL Tools
Extract, Transform, and Load (ETL) refers to a three-step data processing pipeline
commonly used to extract data from data sources, transform and clean data to a
proper format, and load the data in a target environment. ETL tools enable orga-
nizations to make their data accessible, meaningful, and usable across disparate
data systems. The data transformation functionalities discussed in this chapter are
usually offered as part of the ETL tools. Different ETL tools have many different fea-
tures and functionalities with ever changing new versions and releases, and there
are many dimensions for comparing different ETL tools, such as interface usability,
batch processing capability, streaming processing capability, available connectors
to different data sources, and so on. It is beyond the scope of this book to provide
a detailed comparison of features of all existing tools. Rather, we provide promi-
nent examples of current ETL tools with a focus on their data cleaning capabilities
according to their respective product documentations at the time of writing.

IBM InfoSphere Information Server3 is advertised to enable users to clean data
and monitor data quality on an ongoing basis, helping to turn data into trusted
information. The data cleaning solution offers end-to-end data quality tools to

3. https://www.ibm.com/analytics/information-server
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help users understand data and its relationships, analyze and monitor data quality
continuously, clean, standardize and match data, and maintain data lineage.

Informatica Data Quality4 is advertised to achieve holistic data stewardship
for data, regardless of size, format, or platform. Its key data cleaning features
include enterprise discovery, search, and profiling that understands the nature of
the data and identifies relationships between various data objects, a rich set of data
quality transformations, including data standardization, validation, enrichment,
and deduplication, a rules builder for business analysts that allows users to build
and test logical business rules without relying on IT, and an exception handling that
incorporates humans into the workflow, allowing business users to review, correct,
and approve exceptions throughout the process.

Microsoft SQL Server Integration Services5 is a platform for building enterprise-
level data integration and data transformations solutions; it has a component
called data quality services (DQS).6 The DQS provides the following features to
resolve data quality issues: (1) data cleaning, which is described as the modification,
removal, or enrichment of data that is incorrect or incomplete; (2) data matching,
the identification of duplicate records; (3) data profiling, the analysis of a data
source to provide insights into the quality of data; and (4) data quality monitoring.

Oracle Enterprise Data Quality7 offers a family of products to help organiza-
tions achieve maximum value from their business-critical applications by deliver-
ing fit-for-purpose data. Instead of targeting any data domain, it mainly focuses
on customer (or more generally party data including suppliers, employees, and so
on) and product data. The major features of Oracle Enterprise Data Quality include
data profiling, data parsing and standardization, data matching and merging, case
management facility for manual cleaning, address verification, and specific rules
to handle different product data categories such as resistors, switches, fasteners,
and so on.

4.4 Conclusion
Data transformation is a very important data cleaning task that can be applied at
various stages of a data analytics pipeline. It can be used to standardize data formats

4. https://www.informatica.com/products/data-quality/informatica-data-quality.html

5. https://docs.microsoft.com/en-us/sql/integration-services/

6. https://docs.microsoft.com/en-us/sql/data-quality-services/introduction-to-data-quality-
services

7. http://www.oracle.com/us/products/middleware/data-integration/enterprise-data-quality/
overview/index.html

http://www.oracle.com/us/products/middleware/data-integration/enterprise-data-quality/overview/index.html
http://www.oracle.com/us/products/middleware/data-integration/enterprise-data-quality/overview/index.html
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(e.g., to convert dates expressed in various conventions to a uniform representa-
tion), to extract patterns from long strings (e.g., to extract time and codes from
system logs), and even to fill in missing values (e.g., to fill in the state values based on
the ZIP codes by looking up a external dictionary that maps ZIP to state). This chap-
ter classifies the space of data transformations into syntactic transformations and
semantic transformations. Syntactic transformations aim at transforming a table
from one syntactic format to another, often without requiring external knowledge
or reference data. In contrast, semantic transformations usually involve under-
standing the meaning/semantics of the data, usually by referencing external data
sources, to perform the desired transformations.

We discuss syntactic data transformation systems based on three essential com-
ponents: language, authoring, and execution. The language component defines the
space of allowed syntactic transformations, which could consist of either a finite
set of operations allowed or a set of functions for string manipulations. Practical
syntactic transformation systems need to achieve a balance between the expressive-
ness of the language and the efficiency of searching for the right transformation
program using a given language. The authoring component defines how the user
can author a transformation program using the language. We showed three models
for authoring: (1) users specify the transformations directly through a visual inter-
face; (2) users provide a few transformation examples; and (3) the transformation
tool proactively suggests potential transformations for users to confirm. The exe-
cution component applies the authored transformation programs to the dataset.
Practical transformation tools usually offer certain ways to assist users in verify-
ing the correctness of the program, for example, by displaying the results of the
transformation on sample data.

For semantic data transformations, example-driven techniques have mostly
been used, where users provide several example transformations and then the
transformation tool searches for the external data sources that match the provided
examples. Those identified data sources are then used to perform the rest of the
data transformations. Semantic transformation tools differ mostly on the kind
of external data sources used, such as web tables, web forms, and knowledge
bases. We also discussed a relevant topic of data exchange, which is a process that
transforms structured data under a source schema to structured data under a target
schema based on semantic mappings between the two schemas, and can also be
considered as semantic transformation.





5Data Quality Rule
Definition and Discovery

So far, we have covered some of the most conventional data cleaning tasks, includ-
ing outlier detection, data deduplication, and data transformation. While these
techniques can detect and repair many common errors, they can fall short at clean-
ing logic errors (e.g., impossible ZIP code and state combination in an address, or
when an employee’s salary is greater than their manager’s, contradicting a pre-
defined business rule). These logic errors are captured by data quality rules, which
state certain logics that the data must conform to. Integrity constraints (ICs) pro-
vide formal languages to describe various data quality rules. In this chapter, we
survey the formal definitions of the integrity constraints proposed to express data
quality rules, as well as techniques proposed to discover them automatically. In
Chapter 6, we discuss how to use the ICs to clean the data, detecting and repairing
errors in a dataset with respect to a set of declared integrity constraints.

Historically, ICs were not proposed to specifically address data quality issues,
but rather to study database schema design, including key constraints, functional
dependencies, and foreign key constraints [Abiteboul et al. 1995]. Recently, ICs
have been increasingly used for data cleaning purposes. To make practical use of
dependencies in data quality management, classical dependency theory has to be
extended, as traditional types of ICs are often insufficient in capture real-world data
errors. The following example illustrates a real-world tax record database that has
various data quality problems due to the violations of different data quality rules,
some of which cannot be expressed by traditional ICs.

Example 5.1 Consider the U.S. tax records in Table 5.1. Each record describes an individual’s
address and tax information with 15 attributes: first and last name (FN, LN),
gender (GD), area code (AC), mobile phone number (PH), city (CT), state (ST),
zip code (ZIP), marital status (MS), has children (CH), salary (SAL), tax rate (TR),
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tax exemption amount if single (STX), tax exemption amount if married (MTX),
and tax exemption amount if having children (CTX).

The following data quality rules can be defined:

1. area code and phone identify a person;

2. two persons with the same zip code live in the same state;

3. a person who lives in Los Angeles lives in California;

4. if two persons live in the same state, the one with lower salary has a lower tax
rate; and

5. single tax exemption is less than the salary.

While Constraints (1) and (2) can be expressed as a key constraint Key{AC, PH}
and an FD ZIP → ST , respectively, the other three constraints cannot be expressed
by traditional ICs. We see that Constraint (3) involves a constant value, Constraints
(4) and (5) involve order predicates (>, <), and (5) compares values from different
attributes. We introduce more advanced types of ICs, specifically proposed for
capturing data quality issues, which can capture these data quality rules.

Deriving a comprehensive set of integrity constraints that accurately reflects
an organization’s policies and domain semantics is a primary task in using rules
for data cleaning. To address this task, many organizations employ consultants
and experts who have specific knowledge of business policies to identify integrity
constraints. This effort can take a considerable amount of time and cost a lot of
money. Furthermore, there may exist domain specific rules in the data that users
are not aware of, but that can be useful towards enforcing semantic data consis-
tency. Therefore, developing automatic or semi-automatic techniques to mine for
integrity constraints has attracted attention.

There is a natural trade-off between the expressiveness of an IC language and
the complexity of an algorithm to mine rules expressed using an IC language. The
more expressive an IC language is, the more data quality rules can be captured.
With increasing expressiveness of an IC language, it also becomes more complex
to discover data quality rules due to the larger search space. For example, domain
constraints are a well known type of constraints in databases; they state the pos-
sible values a particular column can take (e.g., “salary of any employee should be
within 10K to 100K”). Domain constraints have limited expressiveness; for example,
they cannot capture correlations between two different attributes and they cannot
capture conflicts among two different records. However, discovering domain con-
straints is fairly easy; one can iterate over every column and summarize the values
that appear in that column. On the end of the spectrum, programming languages
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such as Python scripts can be used to capture any data quality rules. However, it is
extremely difficult to mine for Python scripts.

It is worth noting that the discovery algorithms discussed in this chapter assume
the input database is clean. In practice, this can be achieved by asking users to
clean a sample of the entire database and using the cleaned sample for discovery.
In cases where a sufficiently large clean sample cannot be obtained, the discovery
algorithms discussed here can be easily extended or modified into algorithms to
discover “approximate” ICs; we discuss one such example using denial constraints
[Chu et al. 2013a], the most expressive IC discussed in this chapter. Whether the
input dataset is clean or dirty, the discovered ICs may still not be correct as they
can be overfitting on the input dataset—they happen to be correct on the input
instance, but do not hold on any instance of the same schema. Therefore, it is
important to verify any discovered ICs by domain experts before they can be used
for data cleaning.

5.1 Functional Dependencies
Consider a relational schema R with attributes attr(R).

Definition 5.1 A functional dependency (FD) ϕ is defined as X → Y , where X ⊆ attr(R) and Y ⊆
attr(R). An instance I of R satisfies FD ϕ, denoted as I |= ϕ if for any two tuples tα , tβ
in I, such that tα[X]= tβ[X], then tα[Y]= tβ[Y].

In other words, if there exist any two tuples, tα , tβ, in any instance I that have
the same value for attributes X but different values for Y , then there must be some
errors present in tα or tβ. We call X the left-hand side (LHS) and Y the right-hand
side (RHS). In Example 5.1, the second data quality rule is an FD ZIP → ST .

Example 5.2 Consider two tuples t1 and t8 in Table 5.1; they have the same value “25813” for
ZIP, but t1 has “WA” for ST and t8 has “WV” for ST . At least one of the four cells
{t1[ZIP], t8[ZIP], t1[ST], t8[ST]} has to be incorrect. To limit the space of possible
repairs, certain data cleaning algorithms only allow changes on the RHS. In this
case, changing t1[ST] to “WV” or changing t8[ST] to “WA” would fix the violation of
the FD. If changes on the LHS are allowed, changing t1[ZIP] or t8[ZIP] to any value
other than “25813” would also resolve the violation.

5.1.1 FD Discovery
An FD ϕ : X → A is valid with respect to a database instance I if there is no violation
of ϕ on I. FD ϕ is said to be minimal if removing any attribute from X would make
it invalid. Moreover, an FD is trivial if its RHS is a subset of its LHS. Since FDs
with multiple attributes in the RHS can be equivalently decomposed into multiple
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FDs with one attribute in the RHS, only FDs with one attribute in the RHS need
to be considered. Thus, given a database instance I of schema R, the FD discovery
problem is to find all valid minimal nontrivial FDs with one attribute in the RHS
that hold on I.

Current FD discovery approaches can be divided into schema-driven and
instance-driven approaches. Schema-driven approaches usually have a systematic
way of enumerating all the candidate FDs, and also have a way to efficiently check
whether a candidate FD is valid or not based on the enumeration procedure. Data-
driven approaches start by building a summary of the datasets, and then search
for valid FDs directly based on the summary. We present an example technique
for each category: TANE [Huhtala et al. 1999], an example of a schema-driven ap-
proach, and FASTFD [Wyss et al. 2001], an example of an instance-driven approach.
TANE adopts a level-wise candidate generation and pruning strategy and relies on
a linear algorithm for checking the validity of FDs. FASTFD first computes differ-
ence sets from data, then adopts a heuristic-driven depth-first search algorithm to
search for covers of difference sets. TANE is sensitive to the size of the schema,
while FASTFD is sensitive to the size of the instance. Papenbrock et al. [2015a] pre-
sented an experimental comparison of different functional dependency discovery
algorithms.

TANE. Assume the relational schema R has m attributes; |R| =m. Selecting an
attribute as the RHS of an FD, any subset of the remaining m− 1 attributes could
serve as the LHS. Thus, the space to be explored for FD discovery is m× 2m−1.
Figure 5.1(a) shows the space of candidate FDs organized in a lattice for a table with
four columns, A, B, C, and D, where every edge in the lattice represents a candidate
FD. For example, edge A to AC represents the FD A→ C.

Algorithm 5.1 describes TANE [Huhtala et al. 1999]. TANE searches the lattice
level by level. The level-by-level traversal ensures that only minimal FDs are in the
output. There are three types of pruning employed by TANE: (1) if X → A∈�, then
all FDs of the form XY → A are implied, and hence they can be pruned; (2) if
X → A ∈ �, then all FDs of the form XAY → B can be pruned. The reason is that
if XY → B is a valid FD, then XAY → B is implied by XY → B, which would be
discovered earlier due to level-by-level traversal, and if XY → B is not a valid FD,
then XAY → B is also not valid due to X → A; and (3) if X is a key, then any node
containing X can be pruned.

Partitioning I by X produces a set of nonempty disjoint subsets denoted as �X,
and each subset contains identifiers of all tuple in I sharing the same value for
attributes X. An FD X → A is valid if and only if |�X| = |�X∪A|, where |�X| denotes
the number of disjoint subsets in �X. The partitions need not be computed from
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Figure 5.1 TANE.

Algorithm 5.1 TANE

Input: One relational instance I, schema R
Output: All minimal FDs �

L1← {{A}|A ∈ attr(R)}
l ← 1
while Ll �= ∅ do

for all Node Y ∈ Ll do
for all Parent node X of Y do

if X → Y − X is valid then
add X → Y − X to �

end if
end for

end for
pruning Ll based on the three pruning rules
Ll+1← generate next level based on Ll

l ← l + 1
end while

scratch for every set of attributes; rather, TANE computes �XY from two previously
computed partitions, �X and �Y . Note that �XY contains all subsets of tuples,
where each subset is in both �X and �Y . For example, if �X = {{t1}, {t2, t3}, {t4}}
and �Y = {{t1, t2, t3}, {t4}}, then �XY = {{t1}, {t2, t3}, {t4}}. Therefore, TANE needs
only to compute partitions for every single attribute A ∈ R; partitions for every set
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Algorithm 5.2 FASTFD

Input: One relational instance I, schema R
Output: All minimal FDs �

for all A ∈ attr(R) do
calculate DA

I

end for
for all A ∈ attr(R) do

Finding all minimal set covers of DA
I using a depth-first search

For every cover X, add X → A to �

end for

of attributes X can be computed from a previous level following the level-by-level
traversal.

FASTFD. FASTFD [Wyss et al. 2001] is an instance-based FD discovery algorithm.
We start by defining the difference set of two tuples t1, t2 as D(t1, t2)= {A∈ attr(R) |
t1[A] �= t2[A]}. The difference sets of I are DI = {D(t1, t2) | t1, t2 ∈ I , D(t1, t2) �= ∅}.
Given a fixed A ∈ attr(R), the difference sets of I modulo A are DA

I = {D− {A} | D ∈
DI , and A∈ D}. An FD X → A is a valid FD if and only if X covers DA

I , i.e., X intersects
with every element in DA

I . The intuition is that if X intersects with every element in
DA

I , then X distinguishes any two tuples that disagree on A.

Example 5.3 Consider a table I of R with four attributes as follows:

A B C D

t1 a1 b1 c1 d1

t2 a2 b1 c1 d2

t3 a1 b2 c2 d1

We have D(t1, t2) = {AD}, D(t1, t3) = {BC}, and D(t2, t3) = {ABCD}. Thus, DI =
{AD, BC, ABCD} and DA

I = {D, BCD}. Since {D} is a minimal cover of DA
I , we have

D→ A.

Therefore, the problem of finding all valid FDs is transformed to the prob-
lem of finding all minimal set covers of DA

I for every attribute A ∈ attr(R). Every
subset of attr(R)− A is a potential candidate minimal cover of DA

I . Algorithm 5.2
describes FASTFD. In the following, we describe the depth-first search (Line 4) of
Algorithm 5.2 using the table in Example 5.3.
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Figure 5.2 FASTFD.

To generate all possible minimal set covers for DA
I , that is, all subsets of {BCD},

without repetition, the attributes are lexically ordered, i.e., B > C > D, and arranged
in a depth-first search tree, as shown in Figure 5.2(a). An improved version of
the search orders the remaining attributes dynamically according to how many
difference sets they cover. Ties are broken lexically. For example, to search for
minimal covers of DA

I using {BCD}, the attributes are ordered D > B > C, since D
covers two difference sets while B and C cover one difference set, as shown in
Figure 5.2(b). If the algorithm reaches at a node where there are no remaining
difference sets left, we have reached a cover X, which may not be minimal. If every
immediate subset of X is not a cover, then X is minimal. If a node is reached where
there are still remaining difference sets but no attributes left, the depth-first search
procedure terminates.

HYFD. As discussed before, schema-based approaches such as TANE scale well
with respect to the number of records (row-efficient), but are sensitive to the size
of the schema; instance-based approaches such as FASTFD scale well with respect
to the number of columns (column-efficient), but are sensitive to the size of the in-
stance. HYFD [Papenbrock and Naumann 2016] is a hybrid FD discovery algorithm
that combines the best of both worlds. HYFD proceeds in two phases. In the first
phase, HYFD samples a set of records from the entire database and calculates FDs
based on this sample using a column-efficient algorithm. Since a small sample is
used, the first phase is also efficient with respect to the number of records. The FDs
derived from the sample are either valid or almost valid on the entire dataset. In the
second phase, HYFD validates the FDs derived in the first phase based on the entire
dataset and refines those FDs that do not hold on the entire dataset using a row-
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efficient algorithm. Since only the FDs derived from the first phase are validated,
in contrast to schema-based approaches, which need to validate all candidate FDs,
the second phase is also efficient with respect to the number of columns.

For Phase 1, HYFD tracks the sampling efficiency, which measures the number
of new observations made per sample tuple pair. If the sampling efficiency falls
under a certain threshold, the algorithms switches to the second phase. For Phase
2, HYFD tracks validation efficiency, which measures the number of discovered
valid FDs per validation. If the validation efficiency falls under a certain threshold,
HYFD switches back to the first phase with a relaxed sampling efficiency threshold.
In this way, HYFD ensures that both phases are both row-efficient and column-
efficient.

The goal of Phase 1 is to derive candidate FDs by eliminating all non-FDs. An FD
X → Y can be invalidated by only one violation, that is, two records with the same
X but different Y . Therefore, the sampling strategy in Phase 1 is to sample record
pairs rather than individual records, and it aims to select record pairs that can reveal
new violations. The sampling strategy will yield a set of non-FDs, which are then
converted into a set of FDs represented via a prefix tree called FDTree, introduced
by Flach and Savnik [1999]. A node in the FDTree represents multiple FDs with the
same LHS, which is denoted by the node’s path in the FDTree; the RHS attributes
that can form FDs with the current LHS are marked in the bitset vector attached
to the node. Figure 5.3 shows the resulting FDTree with four attributes and a set
of non-FDs {D �→ B, A �→ D, B �→ D, C �→ D}. Initially, all FDs are considered valid,
that is, ∅→ A, B, C, D, as shown in Figure 5.3(0). To eliminate an FD X → Y from the
tree, all generalizations of the FDs that are of the form X′ → Y with X′ ⊂ X must be
eliminated as well, since all the generalizations must also be invalid FDs. Once
all the generalizations are removed, the non-FD X → Y is specialized, meaning
that the LHS of the FD is extended to generate still valid FDs. Figure 5.3(1) shows
the FDTree after processing the non-FD D �→ B. In this case, ∅→ B is the only
generalization and thus is eliminated; specializations including A→ B and C → B
are added to the FDTree. Figure 5.3(1) shows the FDTree after processing all the
non-FDs.

The goal of Phase 2 is to validate all the FDs stored in the FDTree produced
at Phase 1 following a level-wise traversing strategy. Usually, schema-based ap-
proaches such as TANE need to traverse a huge lattice containing all candidate
FDs. HYFD, however, simply needs to validate a much smaller set of FDs, which
are stored in the FDTree. HYFD traverses the FDTree level by level, and stops and
switches back to Phase 1 if the validation efficiency goes below a threshold.
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Figure 5.3 Converting non-FDs to FDTree [Papenbrock and Naumann 2016].

5.2 Conditional Functional Dependencies
FDs are not sufficient to capture certain semantics of data. Conditional functional
dependencies (CFDs), an extension of FDs, are capable of capturing FDs that hold
partially on the data [Bohannon et al. 2007].

Definition 5.2 A CFD ϕ on R is a pair (R : X → Y , Tp), where:

. X , Y ⊂ R;

. X → Y is an FD, called embedded FD in the context of CFD; and

. Tp is called a pattern tableau of ϕ, where for every attribute A∈ X ∪ Y and each
pattern tuple tp ∈ Tp, either tp[A] is a constant in the domain Dom(A) of A, or
tp[A] is a wild card ‘-’.

A tuple tα ∈ I is said to match a pattern tuple tp ∈ Tp, denoted as tα ≈ tp, if for
every attribute A∈ X ∪ Y , tα[A]= tp[A], in case tp[A] is a constant. A relation instance
I of R is said to satisfy a CFD ϕ, denoted as I |= ϕ, if for every tuple tα , tβ ∈ I, and for
each tuple tp ∈ Tp, if tα[X]= tβ[X]≈ tp[X], then tα[Y]= tβ[Y]≈ tp[Y].

Intuitively, a CFD is a traditional FD with an added constraint of the pattern
tableau. If, for two tuples tα , tβ ∈ I, tα[X], and tβ[X] are equal and they both match
tp[X], then tα[Y] and tβ[Y] must also be equal and must both match the pattern
tp[Y].

Example 5.4 Consider a table of sales records in Table 5.2 and an FD {name, type, country} →
{price, tax}. The FD does not hold on the entire relation (e.g., t6 and t7 are violating
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Table 5.2 Sales data records [Golab et al. 2008]

TID Name Type Country Price Tax

t1 Harry Potter book France 10 0

t2 Harry Potter book France 10 0

t3 Harry Potter book France 10 0.05

t4 The Lord of the Rings book France 25 0

t5 The Lord of the Rings book France 25 0

t6 Algorithms book USA 30 0.04

t7 Algorithms book USA 40 0.04

t8 Armani suit clothing UK 500 0.05

t9 Armani suit clothing UK 500 0.05

t10 Armani slacks clothing UK 250 0.05

t11 Armani slacks clothing UK 250 0.05

t12 Prada shoes clothing USA 200 0.05

t13 Prada shoes clothing USA 200 0.05

t14 Prada shoes clothing France 500 0.05

t15 Spiderman DVD UK 19 0

t16 Star Wars DVD UK 29 0

t17 Star Wars DVD UK 25 0

t18 Terminator DVD France 25 0.08

t19 Terminator DVD France 25 0

t20 Terminator DVD France 20 0

this FD), but it holds if (1) type is “clothing”; (2) country is “France” and type is
“book”; or (3) country is “UK”.

The constraints, however, can be expressed by the CFD ({name, type, country}
→ {price, tax}, Tp), with Tp, as shown in Figure 5.4.

While it requires two tuples to have a violation of an FD, one tuple may also
violate a CFD. A single tuple t violates a CFD if t matches the LHS of a tuple tp in
the pattern tableau but not the RHS, where tp consists of all constants, i.e., no wild
cards, traditionally referred to as “tuple check constraint.”
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Name Type Country Price Tax

— clothing — — —

— book France — 0

— — UK — —

Figure 5.4 Tp for the CFD ({name, type, country} → {price, tax}, Tp).

5.2.1 CFD Discovery
Similar to FD discovery, we discover nontrivial, minimal CFDs with only one at-
tribute in the RHS that hold on a given database instance. The CFD discovery
problem is challenging for two reasons: (1) the number of all possible embedded
FDs is exponential in the number of attributes in the schema, which is shared by
the problem of FD discovery; and (2) the number of all possible constants in the
pattern tableau is huge, a challenge unique to CFD discovery.

Candidate CFDs can be generated according to the same lattice used in FD
discovery (cf. Figure 5.1) [Chiang and Miller 2008]. Unlike FD discovery, where each
edge in the lattice corresponds to one candidate FD, in CFD discovery, each edge
corresponds to multiple candidate CFDs. Specifically, an edge (X , XA) generates
CFDs of the form [Q, P]→ A consisting of variable attributes P and conditional
attributes Q, where X = P ∪ Q. The conditional attributes are those attributes that
appear as constants in Tp. The same strategy used in TANE is employed to traverse
the lattice level by level, and to reduce the computation at each level by using
the results from previous levels [Chiang and Miller 2008]. Several interestingness
measures, e.g., support, χ2 test, and conviction, are proposed for discovered CFDs
to avoid returning an unnecessarily large number of CFDs.

Three CFD discovery methods that require that the number of tuples matching
the pattern tableau should be above a minimum threshold were proposed [Fan et al.
2011a]. The first method, CFDMiner, aims at discovering constant CFDs, i.e., CFDs
with pattern tableau containing only constants. CFDMiner leverages the similarity
between the problem of discovering constant CFDs and the problem of mining
free and closed itemsets: constant CFDs correspond to association rules with 100%
confidence. The second method, CTANE, extends TANE for FD discovery and uses
a level-wise search strategy, which is similar to the search strategy used in Chiang
and Miller [2008]. The third method, FASTCFD, extending FASTFD for FD discovery,
employs a depth-first search strategy. A novel pruning strategy used in FASTCFD is
to use constant CFDs already discovered by CFDMiner. CTANE is sensitive to the
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number of attributes in the schema, while FASTCFD is sensitive to the number of
tuples in the database.

If the embedded FD is given, the CFD discovery problem becomes that of gen-
erating a near-optimal pattern tableau [Golab et al. 2008]. The “goodness” of the
pattern tableau is defined by the support and the confidence, where the support of
a pattern tableau is defined as the fraction of tuples in the database that match the
LHS of the pattern tuples in the pattern tableau, and the confidence of a pattern
tableau is defined as the maximum fraction of tuples in the database that do not
violate the pattern tableau. The optimal pattern tableau generation problem will
be further discussed in Section 6.2.3 under the context of repairing existing data
quality rules such that data conforms to the newly modified rules.

5.3 Denial Constraints
As powerful as CFDs are, they are still not capable of capturing many real-life data
quality rules, such as the fourth rule, that is “if two persons live in the same state,
the one with lower salary has a lower tax rate,” and the fifth rule, that is “single
tax exemption is less than salary,” in Example 5.1. Denial constraints (DCs), a
universally quantified first order logic formalism, which subsume FDs and CFDs,
describe all data quality rules in Example 5.1. The formal definition of DCs is given
as follows.

Definition 5.3 A denial constraint (DC) ϕ on R is defined as: ∀tα , tβ , tγ , . . . ∈ R, ¬(P1 ∧ . . . ∧
Pm), where each predicate Pi is of the form v1θv2 or v1θc with v1, v2 ∈ tx.A, x ∈
{α , β , γ , . . .}, A ∈ R, c is a constant in the domain of A, and θ ∈ {=, <, >, �=, ≤, ≥}.

A relation instance I of R is said to satisfy a DC ϕ, denoted as I |= ϕ, if for every
ordered list of tuples ∀tα , tβ , tγ , . . . ∈ I, at least one of Pi is false.

For a DC ϕ according to the definition, if ∀Pi , i ∈ [1, m] is of the form v1φv2, then
we call such DC a variable denial constraint (VDC); otherwise, ϕ is a constant denial
constraint (CDC).

A DC states that all the predicates cannot be true at the same time, otherwise
we have a violation. Single-tuple constraints (such as check constraints), FDs, and
CFDs are special cases of unary and binary denial constraints with equality and
inequality predicates.

Example 5.5 DCs are expressive enough to capture all data quality rules in Example 5.1:

1. area code and phone identify a person

c1 : ∀tα , tβ ∈ R, ¬(tα.AC = tβ .AC ∧ tα.PH = tβ .PH);
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2. two persons with the same zip code live in the same state

c2 : ∀tα , tβ ∈ R, ¬(tα.ZIP = tβ .ZIP ∧ tα.ST �= tβ .ST);

3. a person who lives in Los Angeles lives in California

c3 : ∀tα ∈ R, ¬(tα.CT = ‘Los Angeles’ ∧ tα.ST �= ‘CA’);

4. if two persons live in the same state, the one with lower salary has a lower tax
rate

c4 : ∀tα , tβ ∈ R, ¬(tα.ST = tβ .ST ∧ tα.SAL < tβ .SAL ∧ tα.TR > tβ .TR); and

5. single tax exemption is less than salary

c5 : ∀tα ∈ R, ¬(tα.SAL < tα.STX).

5.3.1 DC Discovery
A DC ϕ is valid with respect to a database instance I if there is no violation of ϕ

on I. A DC ϕ is said to be minimal if removing any predicate from ϕ would make
it invalid. Moreover, an DC is trivial if it is satisfied by any instance I. Thus, given
a database instance I of schema R, the DC discovery problem is to find all valid
minimal nontrivial DCs that hold on I.

While there are both schema-driven and instance-driven approaches for FD
discovery, pure schema-driven approaches for DC discovery are less applicable. The
main reason is that the structure of DCs is more complicated than that of FDs;
FDs only involve equality, while DCs involve predicates “greater than” and “less
than”. Therefore, it is difficult to design an efficient way to systematically check
the validities of the space of all DCs. There are currently two main algorithms for
DC discovery: FASTDC [Chu et al. 2013a] and Hydra [Bleifuß et al. 2017]. FASTDC
is an instance-driven algorithm, similar to FASTFD for FD discovery, while Hydra is
a hybrid algorithm, similar to HYFD for FD discovery.

FASTDC. FASTDC [Chu et al. 2013a, Chu et al. 2014] is proposed as an extension
of FASTFD for DC discovery. To define the space of DCs, we first need to define the
space of predicates P, since DCs are composed of predicates. Then, the evidence set
EviI is built. The evidence set EviI is a set where each element in EviI is a subset of
predicates in P that are satisfied by a tuple pair in I. The evidence set has a similar
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functionality to the difference set in FASTFD in that each minimal set cover for EviI

corresponds to a valid minimal DC.

Example 5.6 Consider the following employee table with three attributes: Employee ID (I), Man-
ager ID (M), and Salary (S)

TID I(String) M(String) S(Double)

t9 A1 A1 50

t10 A2 A1 40

t11 A3 A1 40

For each attribute in the schema, we add two equality predicates (=, �=) between
two tuples on it. In the same way, for each numerical attribute, we add order predi-
cates (>, ≤, <, ≥). For every pair of attributes in R, they are joinable (comparable) if
equality (order) predicates hold across them, and we add cross column predicates
accordingly. We build the following predicate space P for it:

P1 : tα.I = tβ .I P5 : tα.S = tβ .S P9 : tα.S < tβ .S

P2 : tα.I �= tβ .I P6 : tα.S �= tβ .S P10 : tα.S ≥ tβ .S

P3 : tα.M = tβ .M P7 : tα.S > tβ .S P11 : tα.I = tα.M

P4 : tα.M �= tβ .M P8 : tα.S ≤ tβ .S P12 : tα.I �= tα.M

P13 : tα.I = tβ .M P14 : tα.I �= tβ .M

Given a pair of tuples 〈tx , ty〉 ∈ I, the satisfied predicate set for 〈tx , ty〉 is SAT
(〈tx , ty〉) = {P|P ∈ P, 〈tx , ty〉 |= P}, where P is the predicate space and 〈tx , ty〉 |= P
means 〈tx , ty〉 satisfies P. The evidence set of I is EviI = {SAT(〈tx , ty〉)|∀〈tx , ty〉 ∈ I}.
A set of predicates X ⊆ P is a minimal set cover for EviI if ∀E ∈ EviI , X ∩ E �= ∅, and
� ∃Y ⊂ X, such that ∀E ∈ EviI , Y ∩ E �= ∅.

Example 5.7 EviEmp = {{P2, P3, P5, P8, P10, P12, P14}, {P2, P3, P6, P8, P9, P12, P14}, {P2, P3, P6, P7,
P10, P11, P13}}. Every element in EviEmp has at least one pair of tuples in I such
that every predicate in it is satisfied by that pair of tuples.

X1= {P2} is a minimal cover; thus ¬(P2), i.e., ¬(tα.I = tβ .I) is a valid DC, which
states I is a key.

X2 = {P10, P14} is another minimal cover; thus ¬(P10 ∧ P14), i.e., ¬(tα.S < tβ .S ∧
tα.I = tβ .M) is another valid DC, which states that a manager’s salary cannot be less
than their employee’s.

Algorithm 5.3 describes FASTDC, which first builds the space of predicates and
the evidence set, then searches for all minimal set covers for the evidence set.
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Algorithm 5.3 FASTDC

Input: One relational instance I, schema R
Output: All minimal DCs �

P← building the predicate space based on R and I
EviI ← building the evidence set based on I and P
MC← search for all minimal covers of EviI

for all X ∈MC do
�←� +¬(X)

end for
rank DCs in � based on their interestingness

Every minimal set cover corresponds to a minimal DC. FASTDC follows a depth-
first search procedure to exhaustively search for all minimal set covers. It includes
multiple optimizations and pruning opportunities based on the properties of DCs
to speed up the search procedure.

Although FASTDC is able to prune the search space effectively, the number of
DCs returned can still be too large. To address this problem, FASTDC proposes a
scoring function to rank DCs based on their size and their support from the data.
Given a DC ϕ, we denote by Inter(ϕ) its interestingness score. FASTDC recognizes two
different dimensions that influence Inter(ϕ): succinctness and coverage of ϕ, which
are both defined on a scale between 0 and 1. Each of the two scores represents a
different yet important intuitive dimension that should be taken into account when
ranking discovered DCs. Given a DC ϕ, FASTDC defines the interestingness score
as a linear weighted combination of the two dimensions. Succinctness is motivated
by the Occam’s razor principle, which suggests that among competing hypotheses,
the one that makes fewer assumptions is preferred. Minimum description length
(MDL), which measures the code length needed to compress the data [Bishop
2006], is a formalism to realize the Occam’s razor principle. Inspired by MDL, we
measure the length of a DC Len(ϕ), and we define the succinctness of a DC ϕ, i.e.,
Succ(ϕ), as the minimal possible length of a DC divided by Len(ϕ), thus ensuring
the scale of Succ(ϕ) is between 0 and 1. Coverage or support measures the statistical
significance of discovered DCs. For example, in frequent itemset mining [Agrawal
et al. 1993], the support of an itemset is defined as the proportion of transactions
in the data that contain the itemset. Only if the support of an itemset is above a
threshold is it considered to be frequent. The coverage of DCs is different from that
of frequent itemsets—counting the number of tuple pairs that do not violate a DC is
a meaningless measure for coverage. Therefore, we need a different way of defining
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coverage. Intuitively, for every tuple pair, not all the predicates in a DC should be
satisfied. Depending on the number of satisfied predicates, different tuple pairs
give different support to the statistical significance score of a DC. The larger the
number of satisfied predicates in a DC ϕ given a tuple pair, the more support that
tuple pair gives to ϕ. The coverage of ϕ is thus defined as the average support it gets
from all the tuple pairs.

Algorithm FASTDC consumes the entire input dataset and requires no violations
for a DC to be declared valid. However, in real world settings, the input data might
be dirty, and thus a potentially valid DC might contain violations in the input
data. The main assumption used to deal with dirty input data is that although the
input data is dirty, most of it should be clean. Therefore, a candidate DC can still
be considered to be a valid DC if most of the data conforms to it. Based on this
assumption, besides looking for exact covers for the evidence set, FASTDC also
looks for approximate covers, which correspond to approximately valid DCs.

Hydra. Hydra [Bleifuß et al. 2017] is a hybrid DC discovery algorithm that over-
comes the quadratic runtime complexity in the number of tuples in the FASTDC
algorithm by avoiding comparing all tuple pairs. This is possible because if a tuple
pair already violates a candidate DC, then any other tuple pairs are redundant in
checking the validity of that DC. Furthermore, a tuple pair is also redundant if all
predicates that are fulfilled by that pair are also fulfilled by another pair. While in
theory it is possible that no tuple pair is redundant in a dataset, Hydra empirically
shows that the vast majority of tuple pairs is in fact redundant. To avoid considering
all tuple pairs, the general idea of Hydra is to determine a preliminary set of DCs
on a sample of tuple pairs. Hydra discovers all tuple pairs that are in violation of
the preliminary DCs. Eventually, the combination of the sampled tuple pairs and
the violating tuple pairs will determine all valid DCs.

Figure 5.5 shows the basic steps in Hydra. Hydra takes as input a relational table
and a predicate space. Hydra first samples tuple pairs from the relational table ((1)
in Figure 5.5). For each sampled tuple pair, evidence is computed, namely, the set
of predicates in the predicate space that are evaluated to be true for the sampled
tuple pair. Since duplicate evidence does not provide new information for discover-
ing DCs, the sampling stage attempts to maximize the number of non-redundant
tuple pairs sampled. At the end of the sampling stage, Hydra obtains a “close-to-
complete” evidence set, called preliminary evidences, from only a fraction of all
tuple pairs in the dataset ((2) in Figure 5.5). The preliminary evidence is then used to
compute a set of preliminary DCs ((3) in Figure 5.5) using an evidence inversion pro-
cess, which is an iterative process similar to the depth-first search procedure used
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Figure 5.5 Overview of Hydra [Bleifuß et al. 2017].

in FASTDC to discover minimum set covers. This preliminary set of DCs, of course,
could be violated by tuple pairs that are not included in the sample. Therefore,
Hydra employs an efficient scheme to discover tuple pairs that violate preliminary
DCs using the violation detection procedure in Figure 5.5. Instead of naively enu-
merating all tuple pairs to find violating tuple pairs for the preliminary DCs, Hydra
employs specific data structures and dedicated evaluation algorithms for various
predicate types. For example, Hydra uses clusters of tuples to efficiently evaluate
equality predicates involving some attribute A, where each cluster represents tuples
that have the same value for A, and uses cluster pair (c1, c2) to efficiently evaluate
inequality predicates involving some attribute A, where t[A] < t′[A] for t ∈ c1 and
t′ ∈ c2. Finally, the preliminary set of evidences combined with the violating tuple
pairs found with respect to the preliminary DCs forms the complete evidence set
((4) in Figure 5.5). The complete set of evidences is then used to compute the final
DCs ((5) in Figure 5.5)) using again the evidence inversion procedure.

5.4 Other Types of Constraints
Multiple types of constraints have been proposed for different purposes. Inclusion
dependencies (INDs) [Abiteboul et al. 1995] can be used for detecting inconsis-
tencies or information incompleteness and schema matching. Matching depen-
dencies (MDs) [Fan et al. 2009] use similarity measures to generalize the equality
condition used in FDs, to support record linkage across two tables. Metric func-
tional dependencies (MFDs) [Koudas et al. 2009] can be considered as special MDs
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defined on one table, to capture small variations in the data. Numeric functional
dependencies (NFDs) [Fan et al. 2014a] can capture interesting constraints involv-
ing numeric attributes, since NFDs allow arithmetic operations; editing rules (eRs)
[Fan et al. 2010] not only provides a way to detect errors, but also tells how to fix
errors by referencing a master table. Fixing rules [Wang and Tang 2014] precisely
capture which attribute is wrong and how to correct the error when enough evidence
is present. Sherlock rules [Interlandi and Tang 2015] annotate the correct and er-
roneous attributes, and precisely tell how to fix the errors by referencing master
tables.

5.4.1 Inclusion Dependency
Inclusion dependencies (INDs) [Abiteboul et al. 1995], which are a generalization
of referential constraints, can be used for detecting inconsistencies or information
incompleteness [Bohannon et al. 2005] and in schema matching systems (e.g., Haas
et al. [2005]).

Definition 5.4 An inclusion dependency ϕ for two relations (R1, R2) is defined as R1[X]⊆ R2[Y],
where (X1, X2) are lists of attributes in (R1, R2), and |X| = |Y |. An instance pair
(I1, I2) satisfies IND ϕ if for any tuple tα ∈ I1, there exists a tuple tβ ∈ I2, such that
tα[X]= tβ[Y].

For any tα ∈ I1, if there is no tuple tβ ∈ I2 that satisfies tα[X]= tβ[Y], then either
tα ∈ I1 is incorrect or there is a tuple missing in R2. Inclusion dependencies may
also refer to only one relation, i.e., R1 is the same as R2.

Example 5.8 Denote the relation about tax records in Example 5.1 as Relation R1, and a second
employee relation R2(EID, FirstName, LastName) that keeps all the employee IDs
and their first and last names. A valid IND would be R1[FN,LN] ⊆ R2[FirstName,

LastName], which means that if there is a tax record about a person, then that
person must appear in the employee table.

De Marchi et al. [2009] discover unary INDs, that is, INDs with one attribute in
X and Y , using a two-step process by first building an inverted index pointing ev-
ery value in the database to the set of all attributes containing the value, and then
retrieving valid INDs using set intersections. N-ary INDs are discovered following a
level-wise approach similar to TANE. BINDER [Papenbrock et al. 2015b] does not
assume that the dataset fits into main memory, and discovers INDs in a scalable
manner based on a divide and conquer strategy. INDs are later extended to condi-
tional inclusion dependencies (CINDs) [Ma et al. 2014], which are INDs that hold
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on subset of the tuples. Just like the extension of CFDs to FDs, CINDs have more
expressive power than INDs.

5.4.2 Matching Dependency
MDs [Fan et al. 2009] use similarity measures to generalize the equality condition
used in FDs. While FDs are defined on a single relation, MDs are defined on two
relations.

Definition 5.5 A matching dependency ϕ for two relations (R1, R2) is defined as follows:

∧j∈[1, k](R1[X1[j]]≈j R2[X2[j]])→ R1[Z1] ⇀↽ R2[Z2],

where

. (X1, X2) are lists of attributes in (R1, R2), X1[j], X2[j] denotes the jth attribute
in X1, X2;

. for every j ∈ [1, k], X1[j] and X2[j] are comparable, i.e., they belong to the same
domain;

. for every j ∈ [1, k], ≈j is a similarity operator, which can be any similarity
metric used in record matching, e.g., q-grams or edit distance; and

. ⇀↽ is a matching operator. For any two values x, y, x ⇀↽ y indicates that x and
y are changed to be identical.

Intuitively, an MD ϕ states that if R1[X1] and R2[X2] are similar with respect to
some similarity metrics, then R1[Z1] and R2[Z2] should be changed to be identical.

Example 5.9 Consider two relational tables from a bank in the U.K.: card(FN, LN, St, city, AC, zip,

tel, dob, gd) maintains customer information collected when credit cards are issued;
tran(FN, LN, St, city, AC, post, phn, gd, item, when, where) consists of transaction
records of credit cards, which may be dirty. Here a card tuple specifies a U.K. credit
card holder identified by first name (FN), last name (LN), address (street (St), city,
zip code), area code (AC), phone (tel), date of birth (dob), and gender (gd). A tran

tuple is a record of a purchased item paid by a credit card at place where and time
when, by a U.K. customer who is identified by name (FN, LN), address (St, city, post

code), AC, phone (phn), and gender (gd).
A possible matching rule is that for any tuple in card and any tuple in tran, if they

have the same last name and address and, moreover, if their first names are similar,
then their phone and FN attributes can be identified. This rule can be expressed
by an MD ψ : tran[LN, city, St, post] = card[LN, city, St, zip] ∧ tran[FN]≈ card[FN] →
tran[FN, phn] ⇀↽ card[FN, tel].
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Table 5.3 Movie data records integrated from multiple data
sources

Source Title Duration

movies.aol.com Aliens 110

finnguide.fi Aliens 112

amazon.com Clockwork Orange 137

The MD discovery problem also discovers interesting MDs with high support
and confidence [Song and Chen 2009], which is similar to CFD discovery [Chiang
and Miller 2008]. Only interested MDs are selected as output.

5.4.3 Metric Functional Dependency
While MDs are for capturing small variations on string attributes, metric functional
dependencies (MFDs) [Koudas et al. 2009] are usually used to capture small varia-
tions on numerical data.

Definition 5.6 A metric functional dependency (MFD) ϕ is defined as X
δ→ Y , where X and Y denote

subsets of attributes of attr(R). An instance I of R satisfies this FD ϕ, denoted as
I |= ϕ if for any two tuples tα , tβ in I such that tα[X]= tβ[X], then d(tα[Y], tβ[Y])≤ δ,
where d is a metric function defined on the domain of Y .

An MFD can be seen as a special case of MD where R1 and R2 are the same relation
and the LHS is exactly matching.

Example 5.10 Consider a table of movies in Table 5.3, resulting from integrating movies from
multiple websites. A plausible constraint is that the same movie should have the
same duration. However, different websites may have different ways of calculating
the duration, for example, depending on whether extra materials, such as the

advertisement, are included. An MFD Title
5→ Duration would be more suitable

than the FD Title→ Duration to capture such a constraint.

5.4.4 Numeric Functional Dependency
NFDs [Fan et al. 2014a] are another type of constraint for capturing constraints
involving numeric attributes. They are able to capture errors in numeric attributes
that FDs, CFDs, and DCs cannot capture.

Definition 5.7 A numeric functional dependency (NFD) ϕ defined on a relational table R(A1, . . . ,
Am) is a pair of tables:
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Figure 5.6 NFDs examples [Fan et al. 2014a].

. a pattern table Tp of schema R that has two tuples p1 and p2; for i ∈ [1, 2] and
j ∈ [1, m], pi[Aj] is a constant in dom(Aj), a variable x, or a wildcard ‘ ’; and

. a condition table Tc with a single condition tuple of the form eopz, where e is
either a variable in Tp or a linear arithmetic expression of variables in Tp, op
is one of the operations in {=, �=, <, ≤, >, ≥}, and z is either a constant or a
variable in Tp.

We see that NFDs are defined on at most two tuples and can express more
constraints involving numeric attributes than FDs, CFDs, and DCs because NFDs
allow arithmetic operations.

Example 5.11 Figure 5.6 shows three NFDs on three different tables. (1) The first table specifies
a person with his name, year of birth (YoB), year of death (YoD), and origin (country,

town). The first NFD with TP1 in Figure 5.6(a) and TC1 in Figure 5.6(b) says that no
one can live more than 120 years. (2) The second table specifies the academic report
of courses of a student, with the distribution of the score into homework (hw),
tests, lab, and projects (proj). The second NFD with TP2 in Figure 5.6(c) and TC2

in Figure 5.6(d) says that the total percentage has to be equal to 100. (3) The third
table is about credit card transactions with each tuple specifying the card number
(CC#), the card holder information (name, street, city, zip), when and where the card
was used, and the amount charged to the card (amnt). The third NFD, with TP3 in
Figure 5.6(e) and TC3 in Figure 5.6(f), asserts that two transactions involving the
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same credit card, one happening in Edinburgh (Edi) and one happening in New
York (NYC), have to be at least two hours apart.

Editing Rules
eRs [Fan et al. 2010] not only provide a way to detect errors but also tell how to fix
errors by referencing a master table.

Definition 5.8 An editing rule (eR) ϕ defined on a relation R and a master relation Rm is a pair(
(X , Xm)→ (B, Bm), tp[Xp]

)
, where:

. X and Xm are two lists of distinct attributes, in R and Rm respectively, with
the same number of attributes;

. B is an attribute in attr(R)− X, and Bm is an attribute in attr(Rm)− Xm; and

. tp is a pattern tuple over a set of distinct attributes Xp in R, such that for each
A ∈ Xp, tp[A] is one of , a or a, where a is a constant from the domain of A, a
is any constant other than a, and is an unnamed variable.

An eR ϕ is said to be applicable to a tuple t ∈ I and a tuple tm ∈ Im to update t to
t′, denoted as t → t′, if:

. t and tm matche on the LHS of ϕ, i.e., t[X]= tm[Xm];

. t matches tp, i.e., t[Xp]≈ tp[Xp]; and

. t′ is obtained from t by updating t[B] to be tm[Bm].

CFDs and eRs are both based on pattern tuples. CFDs are defined on a single
relation, while eRs are defined on an input tuple and a master relation. In addition,
while CFDs have static semantics, i.e., they only tell whether two tuples are in
violation or not, eRs have dynamic semantics, i.e., they update t to t′ if an eR is
applicable.

eRs are also similar to MDs in that they both share dynamic semantics. Although
both MDs and eRs are defined on two relations, MDs neither have pattern tuples nor
master data relation. For two tuples t1 and t2, an MD∧j∈[1, k](R1[X1[j]]≈j R2[X2[j]])→
R1[Z1] ⇀↽ R2[Z2] only states that t1[Z1] and t2[Z2] should be identified but does not
tell what values are to be taken; however, eRs directly dictate that values from the
master relation should be taken.

Example 5.12 Consider the two relational tables defined in Example 5.9, namely, card(FN, LN,

St, city, AC, zip, tel, dob, gd) and tran(FN, LN, St, city, AC, post, phn, gd, item, when,

where). Assume that card is a clean master relation, that is, tuples in card are correct.
A plausible eR ϕ is that for any tuple t in tran, if there exists a master tuple s in card

with t[LN, FN, city, St, post]= s[LN, FN, city, St, zip], the t[phn] should be updated to
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be s[phn], which can be written as ϕ:
(
(X , Xm)→ (phn, phn), tp[Xp]= ()

)
, where X

ranges over LN, FN, city, St, post, and Xm ranges over LN, FN, city, St, zip.

Editing rule discovery is studied in Diallo et al. [2012] and adapts techniques
from CFD discovery.

5.4.5 Fixing Rules
Similar to eRs, fixing rules [Wang and Tang 2014] not only precisely capture which
attribute is wrong but also indicate how to correct the error, when enough evidence
is present.

Definition 5.9 A fixing rule ϕ defined on a schema R is formalized as ((X , tp[X]), (B, T−p [B]))→
t+p [B], where:

. X is a set of attributes in attr(R) and B is an attribute in attr(R) \ X (i.e., B is
not in X);

. tp[X] is a pattern with attributes in X, referred to as the evidence pattern on
X, and for each A ∈ X, tp[A] is a constant value in dom(A);

. T−p [B] is a finite set of constants in dom(B), referred to as the negative patterns
of B; and

. t+p [B] is a constant value in dom(B) \ T−p [B], referred to as the fact of B.

Intuitively, the evidence pattern tp[X] of X, together with the negative patterns
T−p [B], imposes the condition to determine whether a tuple contains an error on
B. The fact t+p [B] in turn indicates how to correct this error. The last condition in
the definition enforces that the correct value (i.e., the fact) is different from known
wrong values (i.e., negative patterns) relative to a specific evidence pattern.

A tuple t of R matches a rule ϕ : ((X , tp[X]), (B, T−p [B]))→ t+p [B] if (i) t[X]= tp[X]
and (ii) t[B]∈ T−p [B]. Tuple t matches rule ϕ indicates that ϕ can identify errors in t.

Example 5.13 Consider a table of travel records, shown in Figure 5.7, for a research institute
specified by the following schema: Travel (name, country, capital, city, conf). A Travel

tuple specifies a person, identified by name, who has traveled to conference (conf),
held at the city of the country with capital. All errors are highlighted and their correct
values are given between brackets. For instance, r2[capital]=Shanghai is wrong and
its correct value is Beijing.

Consider the following two fixing rules defined on Travel: ϕ1 : (([country],
[China]), (capital, {Shanghai,Hongkong})) → Beijing, and ϕ2 : (([country],
[Canada]), (capital, {Toronto}))→ Ottawa.
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Name Country Capital City Conf

r1: George China Beijing Beijing SIGMOD

r2: Ian China Shanghai Hongkong ICDE

(Beijing) (Shanghai)

r3: Peter China Tokyo Tokyo ICDE

(Japan)

r4: Mike Canada Toronto Toronto VLDB

Figure 5.7 Database D: an instance of schema Travel [Wang and Tang 2014].

In both ϕ1 and ϕ2, X consists of country and B is capital. Here, ϕ1 states that, if
the country of a tuple is China and its capital value is in {Shanghai, Hongkong},
its capital value is wrong and should be updated to Beijing. Similarly for ϕ2, Tuple
r1 does not match rule ϕ1, since r1[country]= China but r1[capital] �∈ {Shanghai,
Hongkong}. As another example, tuple r2 matches rule ϕ1, since r2[country]=China,
and r2[capital] ∈{Shanghai, Hongkong}. Similarly, we have r4 matches ϕ2. After
applying ϕ1 and ϕ2, two errors, r2[capital] and r4[capital], can be repaired.

To the best of our knowledge, automatic discovery for fixing rules has not been
studied.

5.4.6 Sherlock Rules
Sherlock rules [Interlandi and Tang 2015] annotate the correct and erroneous
attributes and precisely tell how to fix the errors by referencing master tables. Let
I be a table over schema R and M a reference table with schema Rm. The relational
schema R is often different from Rm.

Definition 5.10 A Sherlock rule (sR) ϕ defined on schemas (R, Rm) is formalized as ϕ : ((X , Xm),
(B, B−m, B+m), �≈), where:

. X and Xm are lists of distinct attributes in schemas R and Rm, respectively,
where |X| = |Xm|;

. B is an attribute such that B ∈ R \ X, and B−m, B+m are two distinct attributes in
Rm \ Xm; and

. �≈ is a vector of similarity operators over comparable attributes, (A, Am),
(B, B−m), and (B, B+m), where A∈ X, and Am is the corresponding attribute in Xm.
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Name Dept Nation Capital Bornat OfficePhn

t1 Si DA China Beijing CRChenYang 28098001

t2 Yan DA China Shanghai Chengdu 24038698

t3 Ian ALT Chine Beijing Hangzhou 33668323

Figure 5.8 IEMP: An instance of the schema EMP [Interlandi and Tang 2015].

Country Capital

s1 China Beijing

s2 Japan Tokyo

s3 Chile Santiago

Figure 5.9 Mcap: An instance of the schema CAP [Interlandi and Tang 2015].

Name OfficePhn Mobile

r1 Si 28098001 66700541

r2 Yan 24038698 66706563

r3 Ian 27364928 33668323

Figure 5.10 Mphn: An instance of the schema PHN [Interlandi and Tang 2015].

Rule ϕ says that for a pair of tuples t in I and tm in M, if both (t[X], tm[Xm]) and
(t[B], tm[B−m]) are similar with respect to some similarity metrics, ϕ validates that t[X]
is correct, t[B] is wrong, and, moreover, the correct value of t[B] is tm[B+m]. Intuitively,
given that t[X] and tm[Xm] are similar, t[B] should take its value from t[B+m] rather
than t[B−m]. In other words, the rule explicitly captures the possible errors t[B] can
make; for example, attributes B and B+m might be an office phone number, and B−m
might be a mobile phone number.

Example 5.14 Consider the employee table in Figure 5.8 and two reference tables: the capital table
in Figure 5.9 and the phone table in Figure 5.10. Three sRs are defined as follows,
where ϕ1 and ϕ2 are defined on (emp, phn), and ϕ3 is defined on (emp, cap):
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ϕ1 : ((name, name), (officePhn, mobile, officePhn), (=, =, =))

ϕ2 : ((name, name), (officePhn, mobile, ⊥), (=, =, �≈))

ϕ3 : ((nation, country), (capital, ⊥, capital), (=, �≈, =)),

where “⊥” indicates that a field is missing and “�≈” that the two corresponding
attributes are not comparable, e.g., when some attribute is missing from reference
tables.

(1) Rule ϕ1 states that for a tuple t in Iemp, if its name matches the name of a r
tuple in Mphn and t[officePhn] matches r[mobile], then ϕ1 validates that t[name] is
correct and t[officePhn] is wrong. Moreover, it will rectify t[officePhn] to r[officePhn].
Consider t3 in Iemp and r3 in Mphn; ϕ1 works as follows. Firstly, t3[name] is matched
with r3[name] and t3[officePhn] with r3[mobile]. It then detects that t3 is about Ian,
but someone confused his office number with his mobile number. Consequently,
t3[name] is marked as correct and t3[officePhn] as wrong. Since the office number
of Ian is available in r3[officePhn], ϕ1 will update t3[officePhn] to r3[officePhn], which
is 27364928.

(2) Often, not all evidence is available. Assume that the column officePhn is
missing in phn, and consider a revised schema phn′ (name, mobile). Rule ϕ2 states
that given a tuple t in Iemp, if its name matches the name of a tuple r in Mphn′,
and t[officePhn] matches r[mobile], then ϕ2 validates that t[name] is correct and
t[officePhn] is wrong. Again, consider t3 in Iemp and r3 in Mphn′; ϕ2 works similarly
to ϕ1, which validates that t3[name] is correct and t3[officePhn] is wrong. However,
due to the missing column officePhn in phn′, ϕ2 cannot update t3[officePhn].

(3) Rule ϕ3 states that for a tuple t in IEMP, if t[country, capital] matches s[country,
capital] of an s tuple in MCAP, it will mark t[country, capital] as correct. Consider t1 in
IEMP and s1 in MCAP. Since both country (i.e., China) and capital (i.e., Beijing) match,
ϕ3 will mark t1[country, capital] as correct.

5.5 Conclusion
Data quality rules provide a declarative way to specify what is not allowed in correct
data instances. Enforcing data quality rules can be done either through checking
the validity of the data with respect to the defined rules upon data addition or
update, or by detecting and repairing violations in the dirty data at various data
analytics stages. Since designing data quality rules through consultation with do-
main experts is an expensive and time-consuming process, automatically mining
data quality rules is an appealing alternative. To mine data quality rules, we need
a formal language to capture the space of rules. ICs, while originally designed to
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guide database schema normalization [Abiteboul et al. 1995], have been increas-
ingly used to capture data inconsistencies because they provide formal languages
to capture data quality rules. The more expressive the language is, the more rules
we can potentially capture. However, with increasing expressiveness, it usually be-
comes harder to mine for rules due to a larger search space. In this chapter, we
discussed commonly used integrity constraint languages, including FDs, CFDs,
and DCs, and algorithms for discovering rules expressed in those languages.

We classify IC discovery algorithms into schema-driven approaches and data-
driven approaches. Schema-driven approaches are sensitive to the size of the
schema, namely, number of attributes, since they need to enumerate the space
of all possible ICs based on the schema, which is usually exponential with respect
to the size of the schema. Schema-driven approaches are only appealing if there
exist efficient procedures to check the validities of candidate ICs. For instance, in-
stead of checking the validity of each candidate FD by looking up the data I, the
schema-driven algorithm TANE [Huhtala et al. 1999] partitions I by X to produce a
set of nonempty disjoint subsets denoted as �X, where each subset contains iden-
tifiers of all tuples in I sharing the same value for attributes X. To check whether an
FD X → A is valid, TANE simply needs to check |�X| = |�X∪A|. Furthermore, �XY

can be efficiently computed from two previously computed partitions, �X and �Y .
However, to the best of our knowledge, no schema-driven algorithms exist for dis-
covering DCs, mainly because it is unclear whether there exists an efficient way to
check the validities of candidate DCs. Data-driven approaches are sensitive to the
size of the instance and less sensitive to the size of the schema, since they avoid
enumerating all ICs by building a data structure that captures all the information
needed to discover ICs. FASTFD [Wyss et al. 2001] and FASTDC [Chu et al. 2013a]
are examples of instance-driven algorithms. Hybrid IC discovery algorithms com-
bine the best of both schema-driven approaches and instance-driven approaches
by first discovering ICs on a sample dataset and then verify the discovered ICs using
the entire dataset. HYFD [Papenbrock and Naumann 2016] for FD discovery and
Hydra [Bleifuß et al. 2017] for DC discovery are examples of hybrid algorithms.
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In this chapter, we discuss rule-based techniques to clean a dirty database I of
schema R. We assume that a set of data quality rules � has been specified for R.
This can be achieved either by asking domain experts to manually curate a set of
rules, or by employing the automatic discovery algorithms discussed in Chapter 5.
Since I is assumed to be dirty, the discovery algorithms should aim at discovering
“approximate” ICs that hold on most parts of the data (cf. Section 5.3). As discovered
ICs can overfit I and thus are not correct ICs for R in general, to verify the correctness
of any discovered ICs by domain experts before using them for data cleaning is
required.

Given a dirty database instance I of schema R and a set of ICs �, rule-based
techniques clean I in two main steps: violation detection, where errors in I are
detected by identifying violations in the dataset with respect to the specified data
quality rules, and error repair, where the input data is updated to resolve the
violations. In what follows, we discuss various challenges and design choices in
performing these two steps.

6.1 Violation Detection
Detecting errors is an essential first step in any data cleaning activity. Errors found
by using data quality rules are commonly referred to as violations. A commonly
used definition of a violation with respect to data quality rules with no existential
quantifiers is as follows: “A violation is a minimal set of cells that cannot coexist
together.” We can infer from this definition the following facts. First, not all the cells
in a violation are actually wrong. However, at least one of them is wrong. Second,
the set of cells that form the violation has to be minimal—removing any cells from
the set would result in a smaller set of cells that can coexist together. Third, at least
one of the cells from the set of cells that form a violation has to be changed to
resolve the violation.
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Table 6.1 Employee data records [Chu et al. 2013b]

TID FN LN LVL ZIP ST SAL

t1 Anne Nash 5 10001 NM 90K

t2 Mark White 6 87101 NM 80K

t3 Mark Lee 4 10001 NY 80K

Example 6.1 Consider Table 6.1: every tuple specifies an employee in a company with his or her
identification (TID), name (FN, LN), role (ROLE), ZIP (ZIP), state (ST), and salary
(SAL).

Consider two data quality rules. The first is a functional dependency (FD) stat-
ing that ZIP determines ST. We can see that a set e1 of four cells {t1[ZIP], t1[ST],
t3[ZIP], t3[ST]} in t1 and t3 presents a violation for this FD: they have the same value
for the city, but different states.

The second rule states that for two employees in the same state, the employee
with a higher level cannot earn less than the other employee. In this case, a set e2 of
six cells {t1[LVL], t1[ST], t1[SAL], t2[LVL], t2[ST], t2[SAL]} in t1 and t2 is violating the
rule, since employee t1, who is a level-5 employee, is earning more than t2, who is
a level-6 employee.

Given a dataset and a set of data quality rules, we need to detect all the violations
with respect to the provided rules. Violation detection is a fairly straightforward
procedure given the formalism of the data quality rules. For example, detecting vi-
olations in a dataset with respect to the functional dependency ZIP→ ST essentially
requires enumerating all pairs of tuples in the dataset and checking whether two
tuples have the same ZIP and different ST for every tuple pair.

There are multiple challenges associated with violation detection: (1) a violation
only states that a set of cells cannot co-exist together—some cells in that set might
be correct and some might be wrong. Treating each violation individually in a
piecemeal manner will not pinpoint exactly which cells are erroneous; (2) data
usually needs to go through multiple stages of processing in order to derive value.
While data errors originate in the source data, violations are usually discovered
much later in the data processing pipeline, where more business logic becomes
available. Therefore, violations detected in later stages need to be traced back to
identify errors in the data source; and (3) detecting violation with respect to a data
quality rule involving k tuples will require enumerating all k-tuple combinations
from n input tuples, a polynomial cost that could become very high when n is large.
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We discuss the literature of violation detection that addresses the three afore-
mentioned challenges.

1. We introduce holistic data cleaning [Chu et al. 2013b], which compiles all
violation detections, regardless of which data quality rules they violate, into
one homogeneous representation, called the conflict hypergraph. Based on
the conflict hypergraph, we can then identify which cells are more likely to
be wrong.

2. We survey techniques that aim at propagating errors detected in transfor-
mation results to the data sources. Those techniques differ mainly because
of the type of data transformations assumed, such as Boolean expressions
[Meliou et al. 2011], aggregation on numerical attributes [Wu et al. 2012, Wu
and Madden 2013], and general select-project-join-aggregate (SPJA) queries
[Chalamalla et al. 2014].

3. We discuss the BigDansing [Khayyat et al. 2015] system, which detects viola-
tions in a distributed manner, leveraging a common shared-nothing parallel
computing environment such as Hadoop or Spark.

6.1.1 Holistic Error Detection
Given a dirty dataset, a variety of data quality rules expressed in different IC lan-
guages could be used for detecting errors in that dataset. One naive way to use all
the data quality rules would be to cascade them in a pipeline where different algo-
rithms are used as black boxes to be executed sequentially or in an interleaved way.
However, this piecemeal approach would compromise the quality in data cleaning.

Consider the two violations detected with respect to two different data quality
rules in Example 6.1. We can see that violation e1 consists of four cells, {t1[ZIP],
t1[ST], t3[ZIP], t3[ST]}. However, we are not sure which cells out of the four are
actually erroneous. Similarly, the violation e2 consists of six cells, {t1[LVL], t1[ST],
t1[SAL], t2[LVL], t2[ST], t2[SAL]}, and we are not sure which cells out of the six are
actually erroneous.

Holistic data cleaning [Chu et al. 2013b] aims at pinpointing which cells are
more likely to be wrong by compiling all violations detection regardless of which
data quality rules they violate into one homogeneous representation, called the con-
flict hypergraph. Every cell in the original database corresponds to a vertex in the
conflict hypergraph, and every violation detected corresponds to a hyperedge, con-
sisting of a set of cells forming the violation. Figure 6.1 shows the two hyperedges
corresponding to the two violations e1 and e2, as well as the conflict hypergraph by
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e1

t1.ZIP t1.ST

t3.ZIP t3.ST

e1

t1.ZIP t1.ST

t3.ZIP t3.ST

e2

t1.SAL

t2.ST

t1.LVL

t2.LVL t2.SAL

t1.ST

e2

t1.SAL

t2.ST

t1.LVL

t2.LVL t2.SAL

Figure 6.1 Holistic error detection.

putting the two hyperedges together. The conflict hypergraph contains all the vio-
lations and gives a holistic overview of how different violations interact with each
other. The main intuition holistic data cleaning uses to identify erroneous cells is
as follows: a cell involved in multiple violations is more likely to be wrong than
another cell involved in fewer violations. In Figure 6.1, only cell t1[ST] is involved
in both violations; therefore, t1[ST] is considered more likely to be the actual er-
roneous cell. In general, holistic data cleaning finds a minimal vertex cover of the
conflict hypergraph and considers the cells in the minimal vertex cover as more
likely to be wrong; those cells are passed on to the data repair step, as discussed in
Section 6.2.

6.1.2 Error Propagation
The problem of error detection is further complicated by the fact that errors are
usually discovered much later in the data processing pipeline, where more business
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EmployeesShops

S1 S2

T

S3

Transformation

(1) In the same shop, the average salary
for the managers (Grd = 2) should be
higher than that for the staff (Grd = 1)
(2) A bigger shop cannot have a smaller
number of staff 

Transformation

Extraction

Wordpdfwww

(3) Phone number must have country
code and local number

(4) S1.NAME is NOT NULL
(5) length(S3.NAME) < 30

:(tα.Shop = tβ.Shop^
tα.Avgsal > tβ.Avgsal
^tα.Grd < tβ.Grd)
:(tα.Size > tβ.Size^

tα.#Emps > tβ.#Emps)

Figure 6.2 The ETL stack [Chalamalla et al. 2014].

logic becomes available. Consider a simple example of employee and department
source tables. Detecting that the sum of employee salaries in a department exceeds
the budget allocated for that department cannot be done before joining the two
tables and aggregating the salaries of each group of employees.

In many applications, errors are detected in a target database (or a report) that
is the result of data transformations applied on a source database. Figure 6.2 shows
a typical data Extract-Transform-Load (ETL) processing stack. In each of the layers,
various integrity constraints are defined as more semantics are added to the data.
For example, while Constraint (4) (S1.NAME is NOT NULL) can be defined directly
on the sources, Constraints (1) and (2) can only be defined at the application and
reporting layer after the necessary aggregation and joins have been performed.

Propagating errors detected in transformation results to the data sources is es-
sential for both repairing these errors and preventing them from recurring in the
future. Techniques for error propagation vary according to the type of data trans-
formations assumed, such as Boolean expressions [Meliou et al. 2011], aggregation
on numerical attributes [Wu et al. 2012, Wu and Madden 2013], and more general
SPJA queries [Chalamalla et al. 2014].
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Causality Analysis
Causality analysis that tries to reason about the responsibility of a source in causing
errors in query results is an intuitive way to handle the aforementioned problem.
Work in this area [Meliou et al. 2011] models the source database as a set of
variables X = {X1, X2, . . . , Xn} and the target database as another set of variables
Z = {Z1, Z2, . . . , Zm}. X can be seen as columns of an input database, and Z can be
seen as columns of an output database. Each input variable Xi takes value from a
discrete or continuous domain. Each output variable Zj is a Boolean variable. The
data transformation �j for Zj is a Boolean expression over threshold predicates of
the form Xi op c, where Xi ∈ X, op ∈ {<, ≤,=, �=, ≥, >}, and c is a constant value in
the domain of Xi. For example, a simple transformation �1 is Z1= (X1 > 10)∧ (X2 <

3). Let �= {�1, . . . , �m} denote the m transformations for m output variables. See
that � takes input vector x of values for X and computes the output vector z of values
for Z. x can be seen as a tuple of the input database, and z can be seen as a tuple of
the output database. Let ẑ be the ground truth values for Z. Given X, Z, �, x , z, ẑ, we
would like to identify sources of errors by ranking the input variables X according
to how much each variable contributes to the error in z, also referred to as the
responsibility of Xi.

Meliou et al. [2011] propose using a view-conditioned counterfactual cause to
quantify the responsibility of Xi. As a first attempt, one might try to say that Xi is
a view-conditioned counterfactual cause of z|̂z if a change in the value xi “corrects”
the output z to the ground truth ẑ. The problem is that this requirement is hard to
meet—a change in Xi alone can correct simultaneously all erroneous output values.
Instead, a more relaxed definition is proposed: a view-conditioned counterfactual
cause (VCC cause) of z|̂z is a minimal subset of input variables for which there exists
a changed assignment that can change the output from z to ẑ. Based on this more
relaxed definition, the variable Xi is a view-conditioned cause (VC cause) of z|̂z if
there exists a set � ⊂ X, called the contingency set of Xi, such that Xi ∪ � is a VCC
cause of z|̂z. The responsibility of Xi is then defined as ρXi

= 1
1+min� |�| , where � is

a contingency for Xi. Intuitively, the responsibility of Xi is the minimal number of
input variables that need to be changed together with Xi to change the output from
z to ẑ.

Example 6.2 Consider � given in Figure 6.3. Assume the ground truth is ẑ = {F , T , T}, which
indicates that Z1 and Z3 are errors in the output. {X1, X3} is a VCC cause of z|̂z,
since changing X1 from 5 to 11 and X3 from 2 to 4 will change the output values
from z to ẑ and changing only X1 or X3 will not flip both Z1 and Z3. The minimal
sized contingency sets for X1, X2, and X3 are {X3}, {X1, X3}, and {X1}, respectively.
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(a) (b)

Figure 6.3 (a) Value assignment x for X. (b) The transformations � and values z for Z [Meliou et al.
2011].

Therefore, the responsibilities of X1, X2, and X3 are ρX1
= 1

2 , ρX2
= 1

3 , and ρX3
= 1

2 ,
which show that X1 and X3 contribute more than X2 to the errors in the output
variables.

Since computing the causality and responsibility are NP-hard [Meliou et al.
2011], the problem of computing causality is reduced to the SAT problem, and
the problem of computing responsibility is reduced to a partial weighted MaxSAT
problem. There exist several highly optimized tools to solve both SAT and weighted
MaxSAT, which allow for efficient execution.

Scorpion
Another approach for computing the responsibility of sources in target errors is
the Scorpion system [Wu and Madden 2013, Wu et al. 2012]. Scorpion assumes a
single relational table as the source database and an SQL aggregate query as the
data transformation. The target database is then a group of aggregate values, one
for each group according to the aggregate query. The errors in the target database
are those aggregate values that are considered outliers by users. Scorpion finds
common properties of the set of tuples in the source database that cause the outliers
in the target database. The common properties of a set of tuples are described by
predicates over the attributes of the source database.

Scorpion uses sensitivity analysis to identify predicates that are most influential
over the aggregate values. For example, given a function y = f (x1, . . . , xn), the
influence of xi is defined by the partial derivative, �y

�xi
. Similarly, the influence of

a predicate p on one group α, denoted as inf (p, α), is defined as the ratio between
the change in the output if the tuples satisfying the predicates are deleted from
the input and the number of tuples satisfying the predicate. Thus, the influence of
predicate p, denoted as inf (p), is the average influence of p on all groups.

Example 6.3 Figure 6.4(a) shows some readings from an Intel sensor dataset, with each row
corresponding to readings from a certain sensor at a given time. Figure 6.4(b) is



156 Chapter 6 Rule-Based Data Cleaning

(a) Example reading from sensors

TIDs Time SensorID Voltage Humidity Temperature

t1 11AM 1 2.64 0.4 34

t2 11AM 2 2.65 0.5 35

t3 11AM 3 2.65 0.4 35

t4 12AM 1 2.7 0.3 35

t5 12AM 2 2.7 0.5 35

t6 12AM 3 2.3 0.4 100

t7 1PM 1 2.7 0.3 35

t8 1PM 2 2.7 0.5 35

t9 1PM 3 2.3 0.5 80

(b) Query results (left three columns) and user annotations (right column)

ResultIDs Time AVG(temp) Label

α1 11AM 34.6 Normal

α2 12AM 56.6 Outlier

α3 1PM 50 Outlier

Figure 6.4 Explaining errors in a sensor dataset [Wu and Madden 2013].

generated by the following aggregate query, which groups the readings by the hour
and computes the mean temperature.

Q: SELECT AVE(temp), time

FROM sensors

GROUP BY time

The rightmost column in Figure 6.4(b) represents user annotations. The user thinks
two groups α2 and α3 have unusual results and group α1 is a normal result.

Consider a predicate p : Voltage < 2.4. The average temperature of group α2 after
deleting tuples satisfying the predicate, that is, t6 is 35. Thus, inf (p, α2)= 56.6−35

1 =
21.6. Similarly, inf (p, α3)= 50−35

1 = 15. Therefore, inf (p)= 18.3. Scorpion searches
all possible predicates over attributes that are not involved in the query, e.g., Voltage
and Humidity in this example, and returns the predicate with the largest influence.

To efficiently compute the influence of a predicate and to avoid testing the
exponential number of all possible predicates, Scorpion identifies several proper-
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Figure 6.5 DBRx architecture [Chalamalla et al. 2014].

ties of aggregate operators, i.e., incrementally removable, independent, and anti-
monotonic influence, that enables the algorithms to find the most influential pred-
icate efficiently.

DBRx
To handle a more general class of transformations, the DBRx system [Chalamalla
et al. 2014] considers SPJA (select, project, join, and aggregate) queries as the
reporting and transformation language. Figure 6.5 shows the architecture of DBRx
that takes quality rules defined over the output of a transformation and computes
explanations of the errors. Given a transformation scenario (sources Si, 1 < i < n,
and query Q) and a set of quality rules �, DBRx computes a violation table VT of
tuples not complying with �. VT is mined to discover a descriptive explanation
of the violations (1). The description explanation should cover the most likely
erroneous tuples, while minimizing the clean tuples being covered. The lineage
of the violation table over the sources enables the computation of a prescriptive
explanation on the source tables (4). When applicable, a repair is computed over
the target, thus allowing the possibility of a more precise description (2) and a more
precise prescriptive explanation (3), based on propagating errors to the sources.

Example 6.4 Consider a target database T in Figure 6.6 which lists shops in an international
franchise and information about employees working in those shops. T is generated
by the following query.

Q: SELECT SId as Shop, Size, Grd, AVG(Sal) as

AvgSal, COUNT(EId) as #Emps,‘US’ as Region

FROM US.Emps JOIN US.Shops ON SId

GROUP BY SId, Size, Grd
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(a) Target database T (Dirty)

T Shop Size Grd AvgSal #Emps Region

ta NY1 46 ft2 2 99 $ 1 US

tb NY1 46 ft2 111 100 $ 3 US

tc NY2 62 ft2 2 96 $ 2 US

td NY2 62 ft2 1 90 $ 2 US

te LA1 35 ft2 2 105 $ 2 US

tf LND 38 ft2 1 65 £ 2 EU

(b) Source Relation Emps

Emps EId Name Dept Sal Grd SId JoinYr

t1 e4 John S 91 1 NY1 2012

t2 e5 Anne D 99 2 NY1 2012

t3 e7 Mark S 93 1 NY1 2012

t4 e8 Claire S 116 1 NY1 2012

t5 e11 Ian R 89 1 NY2 2012

t6 e13 Laure R 94 2 NY2 2012

t7 e14 Mary E 91 1 NY2 2012

t8 e18 Bill D 98 2 NY2 2012

t9 e14 Mike R 94 2 LA1 2011

t10 e18 Claire E 116 2 LA1 2011

(c) Source Relation Shops

Shops SId City State Size Started

t11 NY1 New York NY 46 2011

t12 NY2 New York NY 62 2012

t13 LA1 Los Angeles CA 35 2011

Figure 6.6 A view T on data sources Emps & Shops [Chalamalla et al. 2014].
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Explanation Coverage Preciseness Conciseness

Dept = s ? No Yes Yes

eid = e4 ∨ eid = e7 ∨ eid = e8 ∨ eid = e14 ? Yes Yes No

Grd = 1 ? Yes No Yes

Figure 6.7 Explanation discovery [Chalamalla et al. 2014].

The HR department has a set of policies (ICs) pertaining to the franchise work-
force and these ICs are enforced on T . The first rule states that, in the same shop,
the average salary of the managers (Grd=2) should be higher than that of the staff
(Grd=1). Cells Shop, Grd , AvgSal of tuples ta and tb, labeled in bold, violate this rule.
The second rule states that a bigger shop cannot have a smaller staff (Grd=1), which
induces a violation between cells of tb and td, labeled in italic.

Tuples ta and tb are in violation and their lineage is {t1− t4} and {t11} in sources
Emps and Shops, respectively. Similarly, another violation between tb and td has the
combined lineage {t5− t8} and {t12}. For each cell and tuple in the lineage, the
cell contribution score (CSV) and tuple removal score (RSV) is computed. The CSV
(resp. RSV) is a m-length vector to represent the contribution (resp. removal) scores
of a cell (resp. tuple), where m is the number of violations in T . For instance, the
RSV of t4 is [1,1] since the removal of t4 would resolve both violations.

Based on the CSV and RSV, DBRx identifies t1, t3, t4, t7 to be the most likely
erroneous tuples. To explain these tuples, DBRx summarizes the tuples in terms
of source attribute predicates with three desirable properties, namely, coverage,
preciseness, and conciseness. Coverage requires an explanation to cover erroneous
tuples; preciseness requires an explanation to cover mostly erroneous tuples, not
correct tuples; and conciseness requires an explanation to have a small number of
predicates. Figure 6.7 lists three different explanations. The first explanation lacks
coverage, since t7 is not covered; the second lacks conciseness, since it required four
predicates to describe the four tuples; and the third lacks preciseness, since it also
incorrectly covers the correct tuple t5. These explanations can then be inspected by
users, and similar errors can be prevented from happening.

6.1.3 Scalable Violation Detection
Violation detection can be expensive for large datasets as it often requires costly
computations such as enumerating pairs of tuples, handling inequality joins, and
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dealing with user-defined functions. BigDansing [Khayyat et al. 2015] is a dis-
tributed data cleaning system that runs on top of common data processing plat-
forms, such as DBMS or MapReduce frameworks. BigDansing receives a data qual-
ity rule either in a user-defined function form or in a declarative form such as FDs
or DCs. BigDansing architecture consists of three layers: logical, physical, and exe-
cution layers.

Logical layer. One major goal of BigDansing is to allow users to express a variety
of data quality rules without having to worry about how to make data cleaning
with respect to the rules scalable. To this end, BigDansing provides five logical
operators, namely, Scope, Block, Iterate, Detect, and GenFix, to express a data
quality rule. Scope operator defines the relevant data for the rule; Block operator
defines the group of data units among which a violation may occur; Iterate operator
enumerates all the candidate violations; Detect operator determines whether a
candidate violation is indeed a violation; GenFix operator generates a set of possible
fixes for each violation. GenFix operator is used to actually change the data so that
new data is no longer in violation of the provided data quality rules, which is a topic
discussed in Section 6.2. Users define these logical operators as well as the sequence
in which BigDansing has to run them. Alternatively, users provide a declarative rule
and BigDansing translates it into a job with these five operators automatically.

Example 6.5 We illustrate the five logical operators automatically generated when the user spec-
ifies an FD ZIP → ST in Table 6.1. The Scope operator generated would remove
irrelevant data units from a dataset; in this case, it would project on attributes ZIP
and ST. The Block operator generated automatically would partition the dataset
to a disjoin set of tuples, with each partition having the same values for the ZIP
attribute. The Iterate operator generated would iterate over all the partitions, and
emit all the tuple pairs within each partition. The Detect operator would take ev-
ery tuple pair emitted by the Iterate operator and check whether that tuple pair has
different values for the ST attribute.

Physical layer. In this layer, BigDansing receives a logical plan and transforms it
into an optimized plan of physical operators, which specifies how logic operators
should be implemented. For example, Block operator could be implemented by
either hash-based or range-based methods. BigDansing processes a logical plan
through two main optimization steps. First, BigDansing consolidates redundant
logical operators into a single logical operator. Hence, by applying the same logical
operator several times on the same set of data units using shared scans, BigDansing
is able to increase data locality and reduce I/O overhead. For example, if there
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are two FDs X → Y and X → Z, instead of scanning the input dataset twice to
check for violations of these two FDs, BigDansing would only scan the dataset
once, apply the Block operator once, and check for violations for both FDs in a
single job. Second, BigDansing also provides specialized physical join operators
that are commonly used in detecting violations with respect to data quality rules.
For example, a specialized self-join operator is provided to perform tuple pairwise
comparisons that involve greater than or less than.

Execution layer. In this layer, BigDansing determines how a physical plan will be
actually executed on the underlying parallel data processing framework. It trans-
forms a physical plan into an execution plan, which consists of a set of system-
dependent operations, e.g., a Spark or MapReduce job. BigDansing runs the gen-
erated execution plan on the underlying system.

This three-layer architecture allows BigDansing to: (i) support a large variety of
data quality rules by abstracting the rule specification process; (ii) achieve high effi-
ciency when cleaning datasets by performing a number of physical optimizations;
and (iii) scale to big datasets by fully leveraging the scalability of existing parallel
data processing frameworks.

6.2 Error Repair
Given a relational database instance I of schema R which is in violation of a certain
set of data quality rules, error repair refers to the process of finding another data-
base instance I ′ that conforms to that set of data quality rules. Many error repair
techniques have been proposed. Figure 6.8 depicts the classification we adopt to
categorize the proposed error repair techniques. Below we discuss our classification
dimensions and their impact on the design of underlying error repair techniques.
The three adopted dimensions address the three main questions when repairing
an erroneous databases.

Repair Target (What to Repair?). Business logic is not static; it often evolves
over time. Previously correct integrity constraints may become obsolete
quickly. Practical data repair techniques must consider possible errors in
the data as well as possible errors in the specified constraints. Repairing al-
gorithms make different assumptions about the data and the quality rules:
(1) trusting the declared integrity constraints, and only allowing data to be
updated to remove errors; (2) trusting the data completely and allowing the
relaxation of the constraints, for example, to address schema evolution and
obsolete business rules; and finally (3) exploring the possibility of changing
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Data

Repair target
(What to repair?)

Automation
(How to repair?)

Error repair techniques

Update model
(Where to repair?)

BothRules Automatic Human
guided

In place Model
based

One at
a time

Holistic

Figure 6.8 Classification of error repair techniques.

both the data and the constraints. For techniques that trust the rules and
change only the data, they can be further divided according to the driver of
the repairing exercise, that is, what types of errors they are targeting. A ma-
jority of techniques repair the data with respect to one type of error only (one
at a time), while other emerging techniques consider the interactions among
multiple types of errors and provide a holistic repair of the data (holistic).

Automation (How to Repair?). We classify proposed approaches with respect to
the tools used in the repairing process. More specifically, we classify current
repairing approaches according to whether and how humans are involved.
Some techniques are fully automatic, for example, by modifying the database
such that the distance between the original database I and the modified
database I ′ is minimized according to some cost function. Other techniques
involve humans in the repairing process to verify the fixes, to suggest fixes,
or to train ML models to carry out automatic repairing decisions.

Repair Model (Where to Repair?). We classify proposed approaches based on
whether they change the database in situ or build a model to describe the
repair. Most proposed techniques repair the database in place, thus destruc-
ting the original database. For non-in-situ repairs, a model is often built to
describe the different ways to repair the underlying database. Queries are
answered against these repairing models using, for example, sampling from
all possible repairs and other probabilistic query answering mechanisms.
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Table 6.2 shows a sample of error repair techniques using the taxonomy. In
the following, we discuss one-at-a-time data-only repairing techniques in Sec-
tion 6.2.1, holistic data-only repairing techniques in Section 6.2.2, rule-only re-
pairing techniques in Section 6.2.3, and both data and rule repairing techniques in
Section 6.2.4. We introduce different cost functions adopted by automatic repairing
techniques in Section 6.2.5, and we explore how humans can be involved to resolve
ambiguities in the automatic repairing and to improve repairing accuracy in Sec-
tion 6.2.6. Finally, we present model-based repairing techniques in Section 6.2.7
where original databases are not destroyed and a space of possible repairs is used
to answer queries.

6.2.1 What to Repair: One-at-a-Time Data Repair
Data repair techniques in this category assume there is a set of ICs � defined on
the database schema R, and any database instance I of R should conform to these
constraints. Multiple proposed approaches aim at changing a minimum number
of cells in the database such that a set of FDs are satisfied, either by changing the
data directly [Bohannon et al. 2005, Kolahi and Lakshmanan 2009] or by generating
samples from the space of all possible minimal repairs [Beskales et al. 2010].
We give multiple definitions of minimal repairs in Section 6.2.5 when we discuss
automatic data repair techniques. Other approaches that generate minimal repairs
have also been proposed to address other types of ICs, such as CFDs [Cong et al.
2007] and the more general denial constraints (DCs) [Chu et al. 2013b]. Approaches
that avoid the minimal repair heuristic generate verified fixes, for example, by using
reference master data and editing rules [Fan et al. 2010] or by heavily involving
human experts [Yakout et al. 2011, Stonebraker et al. 2013]. In this section, we give
one example data repair algorithm with respect to a given set of FDs.

Algorithm 6.1 gives the details of a data repair algorithm with respect to a given
set of FDs [Bohannon et al. 2005] as an example. The details of other examples
will be described in other sections when we discuss other dimensions and design
options. Algorithm 6.1 takes as input a set of FDs and a dirty database instance I
and produces a repaired database instance I ′. At a high level, Algorithm 6.1 initially
puts every database cell in its own equivalence class. An equivalence class is a set
of cells that should have the same value. Then it greedily merges the equivalence
classes in E until all FDs in � are satisfied. The unResolved sets keeps tracks of all
tuples that participate in violations of FDs in �. At each step, a tuple t and an FD
X → A are picked; the chosen FD has the lowest cost of merging all equivalence
classes that should have the same value according to the FD. The termination of
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Algorithm 6.1 GenFDsRepair

Input: Database instance I, a set of FDs �

Output: Another instance I ′ such that I ′ |=�

E ← {t[A] : t ∈ I , A ∈ R}
Initialize unResolved sets for �

while unResolved is not empty do
pick the next tuple t and next FD X → A to repair with the lowest repair cost
resolve tuple t and update E
update unResolved sets affected by E

end while
return I ′ obtained by picking a value that results in the lowest cost of cost(eq)

for each eq ∈ E

Algorithm 6.1 is based on the fact that the number of equivalence class merges is
bounded by the total number of equivalence classes.

Similar to other data repair algorithms, the key difficulty addressed in Algo-
rithm 6.1 is that repairing one constraint might introduce violations for other
constraints. To capture and track the effect of changing one database cell on the
possible values other cells can take, equivalence classes of database cells are used.
An equivalence class eq is a set of database cells (e.g., {t1[A], t2[A], t3[A]} (where ti is
a tuple identifier and A is an attribute in R) that should have the same value. The
algorithm maintains a global set of equivalence classes E. For a given cell ti[A], let
eq(ti[A]) denote the current equivalence class containing ti[A] in E. The cost of updat-
ing an equivalence class with respect to a value v, cost(eq, v), is the cost of changing
the values of all cells in eq to v. The cost of an equivalence class cost(eq) is the mini-
mal cost for all possible values v. The cost of merging a set E of equivalence classes
is mgcost(E)= cost(∪eq∈Eeq)−∑

eq∈E cost(eq).

Example 6.6 Consider an equivalence class eq1= {t1[A], t2[A], t3[A]}, and assume t1[A], t2[A], t3[A]
have values a1, a2, and a2, respectively. Assuming that the cost of changing any
cell is 1, we have cost(eq1, a1) = 2 and cost(eq1, a2) = 1, and thus cost(eq1) = 1.
Consider another equivalence class eq2= {t4[A]}with t4[A]= a3. The cost of merging
eq1 with eq2 to form eq3= {t1[A], t2[A], t3[A], t4[A]} is given by mgcost({eq1, eq2})=
cost(eq3)− (cost(eq1)+ cost(eq2))= 2− (1+ 0)= 1.

The costs of updating and merging equivalence classes become the main build-
ing blocks in finding a minimal-cost repair while capturing the dependency among
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cells when assigning a new value. Algorithm 6.1 was later extended to handle vio-
lations of CFDs based on the concept of equivalence classes [Cong et al. 2007].

6.2.2 What to Repair: Holistic Data Repair
Data-only repairing techniques make different assumptions about the driver of
the repairing process. We discussed one technique in Section 6.2.1, addressing
violations of FD constraints. Similarly, violations of CFD constraints have been
addressed in multiple proposals, either automatically [Cong et al. 2007] or by
involving humans in the loop [Yakout et al. 2011]. We describe these techniques as
one-at-a-time techniques. Most available data repair solutions are in this category.
They address one type of error, either to allow for theoretical quality guarantees or
to allow for a scalable system.

However, data anomalies are rarely due to a single type of error; multiple data
quality problems, such as missing values, typos, the presence of duplicate records,
and business rule violations, are often observed in a single dataset. These heteroge-
neous types of errors interplay and conflict on the same dataset, and treating them
independently would miss the opportunity to correctly identify the actual errors in
the data. We call the proposals that take a more holistic view of the data cleaning
process holistic cleaning approaches [Fan et al. 2011b, Chu et al. 2013b, Dallachiesa
et al. 2013, Geerts et al. 2013, Fan et al. 2014b, Rekatsinas et al. 2017a].

Holistic repairing algorithms consider violations coming from different types
of ICs simultaneously, while suggesting updates to repair the underlying data. For
example, Chu et al. [2013b] consider a wide range of ICs, including FDs, CFDs, and
DCs, as long as the violations of ICs can be encoded as a hyperedge in the con-
flict hypergraph. NADEEF [Dallachiesa et al. 2013], an open-source data cleaning
system which provides an interface for the users to define their own data quality
rules, also uses techniques from Chu et al. [2013b] to holistically resolve violations.
LLUNATIC [Geerts et al. 2013] considers all constraints that can be expressed as
equality-generating dependencies. Fan et al. [2011b] integrate data repair based on
CFDs and record matching based on MDs, and show that these two tasks benefit
from each other when coupled together. HoloClean [Rekatsinas et al. 2017a] uses
probabilistic graphical models to accumulate all signals to reason about possible
repairs.

As holistic cleaning approaches usually generate more accurate repairs than
piecemean approaches, we describe multiple proposals on this topic, including
the holistic data cleaning algorithm [Chu et al. 2013b], the LLUNATIC data clean-
ing framework [Geerts et al. 2013], and how to integrate CFDs with MDs [Fan
et al. 2011b]. HoloClean [Rekatsinas et al. 2017a] can also be considered a holis-
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Algorithm 6.2 Holistic data cleaning

Input: Database instance I, a set of ICs �

Output: Repaired database instance I ′

build the conflict hypergraph for I w.r.t. �

loop
find the minimum vertex cover for the conflict hypergraph
using a recursive procedure to recursively collect repair requirements,

starting from the minimum vertex cover:
using a determination procedure for finding updates to satisfy the repair

requirement according to a cost function:
update the database I ′

build the conflict hypergraph again for I ′ w.r.t. �

until the conflict hypergraph is null

tic data cleaning approach that leverages multiple signals, which we describe in
detail in Chapter 7 when we discuss how ML techniques can be used for data
cleaning.

Holistic Data Cleaning
The holistic data cleaning algorithm is shown in Algorithm 6.2. The system takes as
input a relational database I and a set of ICs �, which express the data quality rules
that have to be enforced over the input database. It first projects the violations com-
ing from different types of ICs into one homogeneous representation, i.e., a conflict
hypergraph. Each node in the conflict hypergraph is a cell in the database; each
edge is a set of cells participating in a violation of an IC. A minimum vertex cover
for the conflict hypergraph is found. The minimum vertex cover contains the cells
that are mostly likely to be wrong, i.e., those participating in multiple violations of
different ICs. Anchoring on the cells in the minimum vertex cover, a set of repair
requirements is collected, such that if they are satisfied all the violations will be re-
solved. The set of repair requirements is fed into a determination procedure, which
computes a set of cell updates to the database such that all repair requirements are
satisfied. Depending on the repair requirements, different determination proce-
dures can be devised to suit different cost functions (cf. Section 6.2.5). For example,
if there are >, ≥, <, ≤ operators in the repair requirements, a quadratic or linear
programming solver may be used as the determination procedure. The database is
then updated accordingly. The process is repeated until there are no violations of
any ICs.
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Example 6.7 Figure 6.1 shows the two hyperedges corresponding to the two violations e1 and e2

in Example 6.1, as well as the conflict hypergraph by putting the two hyperedges
together. The conflict hypergraph contains all the violations and gives a holistic
overview of how different violations interact with each other.

A minimum vertex cover of this graph is {t1[ST]}. Anchoring on t1[ST], we collect
repair requirements for fixing e1 and e2. To fix e1 by changing t1[ST], t1[ST] has to be
changed to not equal t3[ST]. To fix e2 by changing t1[ST], t1[ST] has to be changed to
not equal t2[ST]. Thus, the two repair requirements are: t1[ST]= t3[ST] and t1[ST] �=
t2[ST]. Given these two repair requirements, and supposing the cost function is to
change the minimum number of cells, a determination procedure is invoked to
change the minimum number of cells out of these three cells, t1[ST], t2[ST], t3[ST],
such that two requirements are satisfied. In this case, changing only one cell, i.e.,
updating t1[ST] from “NY” to “AZ,” would satisfy the two requirements.

As stated before, different determination procedures can be used for different
cost functions.

Example 6.8 Consider an instance of I of a relational schema R(A, B, C), where I has only one
tuple t1 with t1[A]= 0, t1[B]= 3, and t1[C]= 2. Suppose there are two repair require-
ments: t1[A] < t1[B] and t1[B] < t1[C].

If one would like to minimize the squared distance between a repaired instance
I ′ and I, a quadratic programming problem can be used with the objective function
(t1[A]− 0)2+ (t1[B]− 3)2+ (t1[C]− 2)2 and the two repair requirements as two con-
straints. The optimal solution to the quadratic is t1[A]= 1, t1[B]= 2, and t1[C]= 3.

However, if one would like to minimize the number of changed cells, only one
cell needs to be changed (change t1[B] to 1) to satisfy the two repair requirements.

LLUNATIC
LLUNATIC [Geerts et al. 2013] is a data cleaning framework that considers differ-
ent kinds of integrity constraints, as well as different strategies, to repair conflicting
values. In particular, it specifies constraints based on equality-generating depen-
dencies, which can express FDs, CFDs, MDs, and eRs. To specify different repair
strategies it introduces the notion of cell group, which is a set of cells that should
take on the same value along with the lineage of the value to take, e.g., coming
from a master relation. A cell group is similar to the notion of an equivalence class,
as discussed in Section 6.2.1. A partial order is introduced to cell groups; the par-
tial order specifies the typical strategies to select a value for a cell group, including
master data, certainty, accuracy, freshness, and currency, as well as user specified
preferences. A parallel chase engine is developed to compute the repair. The chase
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procedure includes a cost manager, which decides which repair to retain or discard
based on different repairing objectives, e.g., cost minimal or cardinality minimal.
Example 6.9 shows several cases where one value is preferred to another in resolv-
ing a violation. LLUNATIC has been extended to include user input into the chase
procedure by allowing users to resolve conflicting values for which there is no clear
preference, or by allowing users to discard unwanted repairs [Geerts et al. 2014a,
Geerts et al. 2014b].

Example 6.9 Consider the database shown in Figure 6.9, containing customer data (CUSTOM-
ERS) with addresses and credit card numbers of customers, and medical treatments
paid by insurance plans (TREATMENTS). The following constraints are defined on
the database: an FD ϕ1 : SSN, NAME → PHONE defined on CUSTOMERS, an FD
ϕ2 : SSN, NAME → CC# defined on CUSTOMERS, and an FD ϕ3 : SSN → SALARY
defined on TREATMENTS.

Tuples t2 and t3 are violate ϕ1 and one may want to equate t2[PHONE] and
t3[PHONE] to fix the violation. However, ϕ1 does not tell which value (“122-1876”
or “000-0000”) t2[PHONE] and t3[PHONE] should take. If the PHONE attribute of
CUSTOMERS comes with a confidence CONF, shown in CUSTOMERS in Figure 6.9,
and the value with higher confidence is preferred, the violation is repaired by
changing t3[PHONE] to “122-1876”.

Tuples t4 and t5 are violate ϕ3 and if the more recent value for SALARY attribute
of a person is preferred, the violation can be repaired by changing t4[SALARY] to the

Customers
SSN Name Phone Conf Str City CC#

t1 111 M. White 408-3334 0.8 Red ave. NY 112321

t2 222 L. Lemon 122-1876 0.9 NULL SF 781658

t3 222 L. Lemon 000-0000 0.0 Fry Dr. SF 784659

Treatments
SSN Salary Insurance Treat Date

t4 111 10K Abx Dental 10/1/2-11

t5 111 25K Abx Cholest. 8/12/2012

t6 222 30K Med Eye Surg. 6/10/12

Figure 6.9 Customers and treatments [Geerts et al. 2013].
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value of t5[SALARY], which is more recent than the value of t4[SALARY], according
to Attribute DATE in TREATMENTS.

It is not always clear how to choose preferred values. For example, when repair-
ing t2[CC#] and t3[CC#] for ϕ2, there is no information available to resolve the
conflict. The best one can do is to mark the conflict and then, perhaps, ask for user
interaction to solve it.

Repairing CFDs and MDs
Fan et al. [2011b] integrate data repair based on CFDs and record matching based
on MDs and show that these two tasks benefit when they are considered together.
For a relation I of schema R, a master relation Im of schema Rm, a set � of CFDs
defined on R, and a set � of MDs defined on R and Rm, a repair I ′ of I is another
instance of R such that (1) I ′ satisfies �; (2) I ′ and Im satisfy �, and (3) cost(I , I ′)
(cf. Section 6.2.5) is minimal. Example 6.10 gives a scenario where these two tasks
interplay and benefit from each other.

Example 6.10 Consider two relational tables card and tran defined in Example 5.9, that is: card(FN,

LN, St, city, AC, zip, tel, dob, gd), and tran(FN, LN, St, city, AC, post, phn, gd, item,

when, where). Table 6.3 shows an instance Dm of card and an instance D of tran.
The following constraints are defined on tran and card: a CFD ϕ1 tran([AC = 020]
→ [city = Ldn]), an FD ϕ2 tran([city, phn] → [St, AC, post]), a CFD ϕ3 tran([FN =
Bob]→ [FN = Robert]), and an MD ψ tran[LN, city, St, post] = card[LN, city, St, zip]∧
tran[FN]≈ card[FN]→ tran[FN, phn] ⇀↽ card[FN, tel].

Consider Tuples t3 and t4 in D. The bank suspects that the two records refer to
the same person. If so, then these transaction records show that the same person
made purchases in the U.K. and in the U.S. at about the same time (taking into
account the five-hour time difference between the two countries). This indicates
that a fraud has likely been committed.

Tuples t3 and t4 are quite different in their FN, city, St, post, and Phn attributes.
No rules can identify the two directly. Nonetheless, they can indeed be matched
by a sequence of interleaved matching and repairing operations: (a) get a repair
t′3 of t3 such that t′3[city]= Ldn via CFD ϕ1, and t′3[FN]= Robert by normalization
with ϕ3; (b) match t′3 with s2 of Dm, to which ψ can be applied; (c) as a result of
the matching operation, get a repair t′′3 of t3 by correcting t′′3[phn] with the master
data s2[tel]; and (d) find a repair t′4 of t4 via the FD ϕ2: since t′′3 and t4 agree on their
city and phn attributes, ϕ2 can be applied to enrich t4[St] and fix t4[post] by taking
corresponding values from t′′3, which have been confirmed correct with the master
data in Step (c).
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At this point, t′′3 and t′4 agree on every attribute. It is now evident enough that they
indeed refer to the same person; hence, a fraud. Observe that not only repairing
helps matching, for example, from Step (a) to (b), but matching also helps to repair
the data; for example, Step (d) can be done only after the matching in (b).

6.2.3 What to Repair: Rules-Only Repair
The techniques in this category assume data is clean and ICs need to be changed
such that data conforms to the changed ICs. A particular example is the pattern
tableau problem discovery for CFDs (cf. Section 5.2), where an embedded FD is
given [Golab et al. 2008]. Recall that a CFD (R : X → Y , Tp) consists of an embedded
FD X → Y and a pattern tableau Tp, where for every attribute A ∈ X ∪ Y and each
pattern tuple tp ∈ Tp, either tp[A] is a constant in the domain Dom(A) of A, or tp[A] is
a wild card “-”.

Given a clean database instance I of schema R and an embedded FD for a CFD,
the pattern tableau discovery problem aims at discovering a “good” pattern tableau
for the CFD. A good pattern tableau should maximize the number tuples matching
the pattern tuples in the tableau while minimizing the number of violations. Fur-
thermore, a tableau should be concise to capture the semantics of the data in a
readable way. For example, if every tuple in the database is a pattern tuple in the
pattern tableau, then the pattern tableau would match all the database tuples; how-
ever, the large tableau size makes it almost unusable in practice.

The cover of a pattern tuple tp ∈ Tp is defined as all the tuples in I that match
tp, i.e., Cover(tp) = {t|t ∈ I and t ≈ tp}. The local support of tp is thus defined as

LS(tp)= |Cover(tp)|
|I| . Let Keepers(tp) be the subset of tuples in Covers(tp) after remov-

ing the fewest tuples to remove all violations of tp. The local confidence of tp is

thus defined as LC(tp)= |Keepers(tp)|
|Cover(tp)| . The global support of the pattern tableau Tp

is defined as the fraction of tuples in I matching any pattern tuple in Tp, i.e.,

GS(Tp)=
|∪tp∈TpCovers(tp)|

|I| . The global confidence of the pattern tableau Tp is defined

as GC(Tp)=
|∪tp∈TpKeepers(tp)|
|∪tp∈TpCovers(tp)| .

Example 6.11 Consider the CFD ({name, type, country} → {price, tax}, Tp) in Figure 5.4 for
Table 5.2. Consider the third pattern tuple (−, −, UK|−, −) in Figure 5.4; it covers
seven tuples t8, t9, t10, t11, t15, t16, and t17. Those seven tuples violate this pattern
tuple; removing either t16 or t17 will resolve the violation. Hence, the local support
of this pattern tuple is 7

20 and its local confidence is 6
7 . Similarly, the local support

of (−, clothing, −|−, −) is 7
20 and its local confidence is 1. The local support of

(−, book, France|−, 0) is 5
20 and its local confidence is 4

5 (t3 causes the violation).
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Algorithm 6.3 Tableau generation with GS and LC

Input: Database instance I of schema R, two thresholds (s, c),
and an embedded FD X → Y

Output: Pattern tableau Tp

Generate all possible pattern tuples from active domain of R,
and compute their local support and local confidence

remove pattern tuples whose local confidence is below c
iteratively choose the pattern tuple tp with the highest marginal support,

add tp to Tp

stop when the global support of Tp is greater than s
return Tp

The global support of all three pattern tuples is 15
20 with a global confidence of 13

15 .

Given the definition of GS, GC, LS, LC, two versions of the pattern tableau gen-
eration problem are defined: the first version is called pattern tableau generation
with GS and GC, i.e., given an embedded FD X → Y on R, an instance I of R, and two
thresholds (s, c), find the Tp of the smallest size such that GS(Tp)≥ s and GC(Tp)≥ c.
Not only is the problem NP-complete, but it is also provably hard to approximate
with |I|0.5−ε , ε > 0 [Golab et al. 2008]. The second version is called pattern tableau
generation with GS and LC, i.e., given an embedded FD X → Y on R, an instance I
of R, and two thresholds (s, c), find the Tp of the smallest size such that GS(Tp)≥ s
and LC(tp)≥ c, ∀tp ∈ Tp. The problem is reduced to a variant of the partial set cover
problem. Algorithm 6.3 gives a greedy approach to the problem.

Algorithm 6.3 computes the support and confidence of every possible candidate
pattern tuple and then iteratively chooses pattern tuples with the highest marginal
support (and those which are above the confidence threshold), adjusting the mar-
ginal supports for the remaining candidate patterns after each selection, until the
global support threshold is met or until all candidate patterns are exhausted.

6.2.4 What to Repair: Both Data and Rule Repair
Cleaning techniques in this category assume data and rules can be dirty simulta-
neously [Beskales et al. 2013, Chiang and Miller 2011, Volkovs et al. 2014]. Given a
database instance I and a set of FDs � such that I �|=�, we need to find another I ′

and �′ such that I ′ |=�′.

Example 6.12 Figure 6.10 shows a table with an FD stating that given name and surname deter-
mine income. There are three violations of the FD, i.e., the first and the second
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GivenName

Danielle

Danielle

Hong

Hong

Ning

Ning

BirthDate

9 Dec 1970

9 Dec 1970

27 Oct 1972

27 Oct 1972

3 Nov 1982

3 Nov 1982

Gender

Female

Female

Female

Female

Male

Male

Surname, GivenName → Income

Surname, GivenName →
Income

Surname

Blake

Blake

Li

Li

Wu

Wu

Phone

817-213-1211

817-988-9211

591-977-1244

498-214-5822

313-134-9241

323-456-3452

Income

120k

100k

90k

84k

90k

95k

GivenName

Danielle

Danielle

Hong

Hong

Ning

Ning

…

…

…

…

…

…

…

Income

120k

120k

90k

90k

95k

95k

Surname, GivenName,
BirthDate → Income

GivenName

Danielle

Danielle

Hong

Hong

Ning

Ning

…

…

…

…

…

…

…

Income

120k

120k

90k

84k

90k

95k

Surname, GivenName,
BirthDate, Phone →

Income

GivenName

Danielle

Danielle

Hong

Hong

Ning

Ning

…

…

…

…

…

…

…

Income

120k

100k

90k

84k

90k

95k

Equally trust FD and data
Trust FD

Tru
st D

ata

Figure 6.10 Relative trust of FDs and data.

tuple, the third and the fourth tuple, and the fifth and the sixth tuple. If the FD is
completely trusted, three cell changes are required, shown in the bottom left table
in Figure 6.10. If the data is completely trusted, two attributes are added to the
LHS of the FD, shown in the bottom middle table in Figure 6.10. If the FD and data
have equal trustworthiness, a repair is to only change one cell value and add one
attribute to the LHS of the FD, shown in the bottom right table in Figure 6.10.

In what follows, we discuss three approaches for repairing FDs and data, relying
on the notion of relative trust [Beskales et al. 2013], unified cost [Chiang and Miller
2011], and continuous cleaning [Volkovs et al. 2014].

Relative Trust Between Data and Constraints
Beskales et al. [2013] model the universe of all possible repairs of (I , �) to include
all pairs of (I ′, �′), such that I ′ |=�′. Let �(I , I ′) denote the distance between I and
I ′ (e.g., the number of different cells between I and I ′). Let �(� , �′) denote the
distance between � and �′ (e.g., the number of attributes added to the LHS of the
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Algorithm 6.4 Relative trust of FDs and data

Input: Database instance I, a set of FDs �, a threshold τ

Output: Another instance I ′ and �′, such that I ′ |=�′

obtain �′ such that δopt(�
′, I)≤ τ , and no other �′′ with δopt(�

′′, I)≤ τ has
�(� , �′) < �(� , �′′), where δopt(�

′, I) is the minimum number of cells that
need to be changed in I for I to satisfy �′

if �′ �= ∅ then
obtain I ′ that satisfies �′ with at most δopt(�

′, I) changes
return (I ′, �′)

else
no repair

end if

FDs in �). A repair (I ′, �′) is said to be minimal if there does not exist another repair
(I ′′, �′′), such that �(I , I ′′)≤�(I , I ′) and �(� , �′′) < �(� , �′), or �(I , I ′′) < �(I , I ′)
and �(� , �′′) ≤�(� , �′). In other words, a repair (I ′, �′) is minimal if and only
if no other repair (I ′′, �′′) dominates it in terms of the two distances. Minimal
repairs cover a wide spectrum of repairs, ranging from completely trusting I and
only changing � to completely trusting � and only changing I. The relative trust on I
is defined as the maximum number of allowed cell changes τ . A τ -constrained repair
is a repair that has the minimum distance to � across all repairs with distance to I
less than or equal to τ .

Algorithm 6.4 describes the procedure for computing a repair (I ′, �′) given a
relative trust level τ on I. It consists of two major steps: (1) find the closest �′ to
�, such that there exists a repair for I that at most changes τ cells; and (2) obtain
the actual repair I ′ given �. The space of possible repairs is modeled as a state
space, where each state represents extending the LHS of the FDs in the original �.
Figure 6.11 depicts an example search space for � = {A→ B, C→ D}. The root node
represents adding nothing to the LHS of the two FDs, while the child node (C, φ)

represents adding C to the LHS of the first FD and not adding anything to the LHS
of the second FD, representing the new �′ = {A→ BC, C → D}.

To perform Step (1), searching the space for optimal �′, the algorithm effectively
navigates the space of all possible repairs of �, while computing δopt(�

′, I), i.e.,
the minimum number of cells that need to be changed in I for I to satisfy �′,
without actually performing the cleaning. Since computing δopt(�

′, I) is an NP-
hard problem [Bohannon et al. 2005], a tuple-based conflict hypergraph is used to
approximate δopt(�

′, I) by a factor of 2×min {|R| − 1, |�|}. An A� based algorithm is
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CD,A C,AB

CD,AB

D,AB

C,ACD,φ D,A

φ,A

φ,φ

D,φC,φ φ,B

φ,AB C,B D,B

CD,B

Figure 6.11 A space for R= {A, B, C, D} and � = {A→ B, C → D}.

used to navigate the space of all possible repairs of �. Step (2), the actual repairing
of I with respect to �′ found in Step (1), is performed using any automatic FD
violation repairing algorithm, such as those described in Section 6.2.1.

Unified Cost of Changing Data and Constraints
In contrast to the aforementioned approach [Beskales et al. 2013], which treats the
cost of repairing constraints and data separately, Chiang and Miller [2011] propose
a unified cost model for repairing data and FDs on an equal footing based on the
minimum description length (MDL) principle. Based on the cost model, Chiang
and Miller [2011] associate a cost for a database instance I and a set of FDs �.
Given a database instance I and � such that I �|= �, the goal is to find another
database instance I ′ and �′ such that I ′ |= �′ and the cost associated with I ′ and
�′ is minimized.

We describe how the model is built and used if there a single FD in �. Assume
an FD ϕ : X → Y defined over relational schema R and an instance I of R; a model M
is built for ϕ. The model M consists of a set of signatures, where each signature s is
a single tuple in I projected on XY , i.e., s ∈�XY(I). M uses a unit cost for each cell
in a relation. The description length DL for M is defined as the length of the model
L(M) plus the length to encode the data values in the relation I, given the model
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L(I|M). See that L(M) is calculated as L(M)= |XY | × S, where |XY | is the number of
attributes in XY and S is the number of signatures in M, and L(I|M) is calculated as
L(I|M)= |XY | × E, where E is the number of tuples in I whose projection on XY is not
represented by any signature s in M. If the model is empty, namely, L(M)= 0, then
DL= L(I|M)= |XY | × |I|, where |I| is the number of tuples in I. As more signatures
are added to M that do not conflict with existing ones, L(M) increases while L(I|M)

decreases. The goal is to find an M, such that DL = L(M)+ L(I|M) is minimized.
Given an FD ϕ and an instance I of R, an initial model M is built by adding those
signatures into M whose support is more than a predefined threshold, where the
support of a signature s is the number of tuples having s as their values for XY
attributes. To resolve the violations of ϕ, either the data repair or the constraint
repair is chosen depending on which repair results in a larger reduction in DL.

If there are multiple FDs in �, they are processed in an order depending on (1)
the number of violations of an FD, and (2) the potential conflict an FD shares with
other FDs defined based on the number of overlapping attributes.

Continuous Data Cleaning
Rather than repairing data and constraints in a single snapshot of the database,
continuous data cleaning [Volkovs et al. 2014] considers repairing both FDs and the
data in a dynamic environment, where data may change frequently and constraints
may evolve. The continuous data cleaning framework is shown in Figure 6.12.

In the first stage, a probabilistic classifier that predicts the repair type (data,
FDs, or a hybrid of both) is trained using repairs that have been selected and
validated by a user (Figure 6.12(a)). These repairs provide a baseline to the classifier
representing the types of modifications that align with the user and the application
preferences. As the data and the constraints change, inconsistencies may arise that
need to be resolved. Once the classifier is trained, it predicts the types of repairs
needed to address the violations (Figure 6.12(b)). A set of statistics is calculated to
describe the properties of the violations, such as the number of violating tuples and
the number of violating FDs. The classifier generates predications and computes
the probability of each repair type (data, FD, or a hybrid of both). These repair
predictions are passed to the repair search algorithm, which narrows the search
space of repairs based on the classifier’s recommendation (Figure 6.12(c)). The
repair search algorithm includes a cost model that determines which repairs are
best to resolve the inconsistencies. The repair search algorithm recommends a
set of data and/or FD repairs to the user, who will decide which repairs to apply
(Figure 6.12(d)). The applied repairs are then used to re-train the classifier and
the process is repeated. Incremental changes to the data and to the constraints
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(a) Classifier
training

Learned
classifier

Repair type
predictions

Violating
patterns

Recommended
repairsSelected

repairs

Apply repairs

(c) Repair
search

(b) Repair
type classifier

(d) User

Cost
model

Statistics

Database

Figure 6.12 Continuous data cleaning [Volkovs et al. 2014].

are passed to the classifier (Figure 6.12(b)) and reflected via the statistics and the
patterns.

6.2.5 How to Repair: Automatic Repair
In this section, we focus on automatic date repairing techniques, where humans
are not involved. There exist multiple theoretical studies [Bohannon et al. 2005,
Chomicki and Marcinkowski 2005, Afrati and Kolaitis 2009] and surveys [Bertossi
2011, Fan and Geerts 2012] studying the complexity of data repairing parameterized
by different classes of ICs, such as FDs, CFDs, and DCs, and different repairing
operations, such as value updating and tuple deleting. We discuss data repairing
techniques that aim at updating the database in a way such that the distance
between the original database I and the modified database I ′ is minimized. With a
lack of ground truth, the main hypothesis behind the minimality objective function
is that a majority of the database is clean and, thus, only a relatively small number
of updates need to be performed compared to the database size.

Let �(I , I ′) denote the set of cells that have different values in I and I ′, i.e.,
�(I , I ′)= {C ∈ CIDs(I) : I(C) �= I ′(C)}.

Definition 6.1 Cardinality-Minimal Repair. A repair I ′ of I is cardinality-minimal if and only if
there is no repair I ′′ such that |�(I , I ′′)|< |�(I , I ′)|.
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A repair I ′ of I is cardinality-minimal if and only if the number of changed cells
in I ′ is minimum among all possible repairs of I. The automatic repairing algorithm
in Kolahi and Lakshmanan [2009] aims to find cardinality-minimal repairs for FD
violations.

A weighted version of the cardinality-minimal repair associates a weight with
each cell, reflecting the confidence in the correctness of the cell [Bohannon et al.
2005, Cong et al. 2007, Chu et al. 2013b]. In addition, the distance between cell
I(C) and I ′(C) is measured using a distance function dis(I(C), I ′(C)) instead of
binary 0 or 1 in cardinality-minimal repair. The cost of a repair I ′ of I is defined
as cost(I , I ′)=∑

C∈�(I , I ′) dis(I(C), I ′(C)).

Definition 6.2 Cost-Minimal Repair. A repair I ′ of I is cost-minimal if and only if there is no repair
I ′′ such that cost(I , I ′′) < cost(I , I ′).

In Section 6.2.1, we gave the details of an example cost-minimal repairing al-
gorithm (Algorithm 6.1 [Bohannon et al. 2005]) in the context of discussing data
repair while trusting the declared quality rules. It has been shown [Bohannon et al.
2005] that, even if the set of ICs � are FDs only, the problem of determining if there
exists a repair I ′ such as cost(I , I ′) < W , for a given constant W , is NP-complete. Ob-
viously, for constraints that are more expressive than FDs, such as DCs, the data
repair problem is even harder.

Definition 6.3 Set-Minimal Repair. A repair I ′ of I is set-minimal if and only if there is no repair
I ′′ such that �(I , I ′′)⊂�(I , I ′) and for each C ∈�(I , I ′′), I ′′(C)= I ′(C).

A repair I ′ of I is set-minimal if and only if no subset S of the changed cells
in I ′ can be reverted to their original values while keeping the current values of
other cells in Delta(I , I ′) \ S unchanged. Most existing literature on consistent query
answering assumes set-minimal repairs [Arenas et al. 1999, Lopatenko and Bertossi
2007, Bertossi 2011].

Definition 6.4 Cardinality-Set-Minimal Repair. A repair I ′ of I is cardinality-set-minimal if and
only if there is no repair I ′′ such that �(I , I ′′)⊂�(I , I ′).

A repair I ′ of I is cardinality-set-minimal if and only if no subset S of the changed
cells in I ′ can be reverted to their original values, even if the current values of cells
in �(I , I ′) \ S are allowed to be changed to other values.

Example 6.13 Figure 6.13 shows several examples of different notions of minimal repairs. Repair
I1 is cardinality-minimal because no other repair has fewer changed cells. By defi-
nition, Repair I1 is also cardinality-set-minimal and set-minimal. Repairs I2 and I3
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Figure 6.13 Examples of various types of repairs.

are set-minimal because reverting any subset of the changed cells to the values in
I will violate A→ B. On the other hand, I3 is not cardinality-set-minimal (hence not
cardinality-minimal) because reverting t2[B] and t3[B] to 3 and changing t1[B] to 3
instead of 5 gives a repair of I, which is the same as I1. I3, however, is set-minimal,
since reverting any subset of the changed cells to the values in I will still violate the
FD. Repair I4 is not set-minimal because I4 still satisfies A→ B after reverting t1[A]
to 1.

Figure 6.14 shows the relationships between different notions of minimality in
a graph [Beskales et al. 2014]. The set of cardinality-minimal repairs is a subset
of cardinality-set-minimal repairs. The set of cardinality-set-minimal repairs is a
subset of set-minimal repairs. Finally, the set of cost-minimal repairs is a subset of
set-minimal repairs if for each cell C ∈ CIDs(I), w(C) > 0. In general, cost-minimal
repairs are not necessarily cardinality-minimal or cardinality-set-minimal, and vice
versa. However, for a constant weighting function w (all cells are equally trusted)
and a constant distance function dis (the distance between any pair of values is the
same), the set of cost-minimal repairs and the set of cardinality-minimal repairs
coincide.
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Figure 6.14 The relationships among different notions of minimality [Beskales et al. 2010].

We give the details of an algorithm that produces cardinality-minimal repairs
[Kolahi and Lakshmanan 2009]. A technique that samples from the space of
cardinality-set-minimal repairs for FDs [Beskales et al. 2010] is discussed in Sec-
tion 6.2.7 in the context of creating repairing models, instead of cleaning data in
situ.

Generating Cardinality-Minimal Repairs
Algorithm 6.5 finds a repair I ′ whose distance to I (number of changed cells) is
within a constant factor of the optimum repair distance, where the constant factor
depends on the set of FDs [Kolahi and Lakshmanan 2009]. The algorithm captures
the interplay among the defined FDs in a hypergraph, where each node represents
a cell in the database, and a hyperedge comprises multiple cells that cannot coexist
together. We call this data structure a conflict hypergraph. The algorithm uses the
notion of core implicant to ensure the termination of the algorithm. A core implicant
of an attribute A w.r.t. a set of FDs � is a minimal set CA of attributes such that
CA has at least one common attribute with every implicant X of A, where X is an
implicant of A if � implies a nontrivial FD X → A. A minimal core implicant of an
attribute A is the core implicant with the smallest number of attributes. Intuitively,
by putting variables in Attribute A and all attributes in the core implicant of A, all
violations involving A are resolved and no more new violations can be introduced,
where a variable denotes an unknown value that is not in the active domain where
two different variables will have different values.

The algorithm works as follows. First, an initial conflict hypergraph GI is built
for I. Then, an approximate minimum vertex cover, VC, in GI is found. For each cell
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Algorithm 6.5 FindVRepairFDs

Input: Database instance I, a set of FDs �

Output: Another instance I ′ such that I ′ |=�

create an initial conflict hypergraph GI for I
find an approximation VC for minimum vertex cover in GI

change← VC
I ′ ← I
while there exist two tuples t1, t2 ∈ I ′ violating an FD X → A ∈� and t1[A] is the
only cell in VC do

t1[A]← t2[A]
change← change− t1[A]

end while
for all Cell t[B]∈ change do

I ′(t[B])← fresh variable
end for
if there are new violations then

let t[B]← a cell in VC with the largest number of violations involving t[B]
let CI be the set of attributes in the minimal core implicant of Attribute B w.r.t. �

for all Attribute C ∈ CI ∪ B do
I ′(t[C])← fresh variable

end for
end if

in VC, a value from the active domain (values that appear in the instance) is chosen
if it satisfies the set of defined FDs; otherwise, a new variable is chosen. After all
cells in VC have been changed, the resulting I ′ may contain new violations. A new
violation of an FD X → B is resolved by putting variables in one of the violating
tuple for Attributes B and the attributes in the minimal core implicant of B, which
ensures that no more violations are introduced [Kolahi and Lakshmanan 2009].

Example 6.14 Consider a relational schema R(A, B, C, D, E) with FDs � = {A→ C, B→ C, CD→
E}. An instance I is shown in Figure 6.15 with three hyperedges of three different
types (not all hyperedges are shown). The first type of hyperedge is due to violation
of a single FD, such as hyperedge e1 that consists of four cells: t1[B], t2[B], t1[C], and
t2[C], which together violate the FD B→ C. The second type of hyperedge is due to
the interaction of two FDs that share the same RHS attribute, such as hyperedge e2

that consists of six cells: t1[A], t1[B], t2[B], t2[C], t3[A], and t3[C], which cannot coexist
due to the two FDs A→ C and B→ C. The third type of hyperedge is due to the
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t1 a1 b1 c1 d1 e1

t2 a2 b1 c2 d2 e2

t3 a1 b3 c3 d3 e3

t4 a4 b4 c4 d4 e4

t5 a5 b4 c5 d5 e5

t6 a6 b6 c4 d6 e6

A B C D E

Figure 6.15 An initial conflict hypergraph [Kolahi and Lakshmanan 2009].

interaction of two FDs, where the RHS of one FD is part of the LHS of the other, such
as hyperedge e3 that consists of eight cells: t4[B], t4[C], t5[B], t5[D], t5[E], t6[C], t6[D],
and t6[E], which cannot coexist due to the two FDs B→ C and CD→ E.

There are two other hyperedges not shown in that consists of four cells: t1[A],
t1[C], t3[A], and t3[C], and hyperedge e5 that consists of four cells: t4[B], t4[C], t5[B],
and t5[C].

Suppose VC = {t2[C], t3[C], t4[B]}. Algorithm 6.5 enforces t2[C] to be the value
c1 of t1[C] because t2[C] is the only cell in VC among all cells in hyperedge e1.
Similarly, t3[C] is assigned the value c1 of t1[C]. t4[B] is changed to a fresh variable.
Algorithm 6.5 terminates after all cells in VC are changed, because there are no
more new violations introduced.

6.2.6 How to Repair: Human Guided Repair
Automatic data repair techniques use heuristics such as minimal repairs to auto-
matically repair the data in situ, and they often generate unverified fixes. Worse
still, they may even introduce new errors during the process. It is often difficult,
if not impossible, to guarantee the accuracy of any data repair techniques without
external verification via experts and trustworthy data sources.

Example 6.15 Consider two tuples, t1 and t8, in Table 5.1; they both have the same values “25813”
for ZIP attribute, but t1 has “WA” for ST attribute and t8 has “WV” for ST attribute.
Clearly, at least one of the four cells—t1[ZIP], t8[ZIP], t1[ST], t8[ST]—has to be incor-
rect. Lacking other evidence, existing automatic repairing techniques [Bohannon
et al. 2005, Chu et al. 2013b] often randomly choose one of the four cells to
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Figure 6.16 Guided data repair framework [Yakout et al. 2011].

update. Some of them [Bohannon et al. 2005] even limit the allowed changes to
be t1[ST], t8[ST], since it is unclear which values t1[ZIP], t8[ZIP] should take if they
are to be changed.

This shooting-in-the-dark approach, adopted by most automatic data cleaning
algorithms, motivated new approaches that effectively involve humans or experts in
the cleaning process to generate reliable fixes. We list a few examples: guided data
repair (GDR) [Yakout et al. 2011] shows how to effectively incorporate user feedback
into CFDs repairing algorithms; editing rules [Fan et al. 2010] uses tabular master
data and humans to generate verified fixes; and KATARA [Chu et al. 2015] combines
kbs (e.g., Yago and DBPedia), which is a collection of curated facts, such as China
hasCapital Beijing, and crowdsourcing to discover and verify table patterns, identify
errors, and suggests possible fixes.

Guided Data Repair
GDR [Yakout et al. 2011] incorporates user feedback in the data cleaning process
to enhance and accelerate automatic data repair techniques for CFDs while mini-
mizing user involvement. Figure 6.16 shows the GDR framework.

Given a database instance and a set � of CFDs, violations of � are considered
dirty tuples; they are identified and stored in a DirtyTuples list. For an attribute A
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in a dirty tuple t violating a CFD ϕ ∈ �, an on demand update discovery process
based on the mechanism described in Cong et al. [2007] for resolving CFDs viola-
tions and generating candidate updates is used to suggest an update for the cell
t[A]. Initially, the process is called for all dirty tuples and their attributes. Later,
during the phase of user interaction, a consistency manager triggers the repairing
process upon receiving user feedback. The generated updates are tuples in the form
rj = 〈t, A, v, sj〉 stored in the PossibleUpdates list, where v is the suggested value for
t[A] and sj is the update score assigned to each update rj to reflect the confidence
of the repairing technique in the suggested update. Once an update r = 〈t, A, v, s〉
is confirmed to be correct either by the user or by the learning component, it is im-
mediately applied to the database resulting into a new database instance. A set of
updates is grouped together if they are updating the same attribute to the same
value; grouping provides contextual information to make it easier for the user to
verify the suggested repairs. The groups are ranked according to the expected qual-
ity gain of each group. The quality gain is estimated by computing the difference
between the expected number of violations before and after processing the updates
in that group. The cost of acquiring user feedback for verifying each update is re-
duced by training an ML classifier (using an active learning technique) to replace
the user later in the process. The use of a learning component in GDR is motivated
by the correlation between the original data and the correct updates. If this corre-
lation can be identified and represented in a classification model, then the model
can be trained to predict the correctness of a suggested update and hence replace
the user for similar (future) situations.

Example 6.16 Consider the following example. Let Relation Customer(Name, SRC, STR, CT, STT,
ZIP) specify personal address information Street (STR), City (CT), State (STT), and
(ZIP), in addition to the source (SRC) of the data. An instance of this relation is
shown in Figure 6.17 along with a set of CFDs.

Assume that a cleaning algorithm gives two groups of updates: the first group
suggests assigning attribute CT to the value ‘Michigan City’ for t2, t3, and t4, and the
second group suggests assigning attribute ZIP with the value 46825 for t5 and t8.
Assume further that the user provides the correct values for these tuples; the user
has confirmed “Michigan City” as the correct CT for t2, t3 but an incorrect CT for t4,
and 46825 as the correctZIP for t5 but an incorrectZIP for t8. The hypothesis in GDR
is that consulting the user on the first group, which has more correct updates, is
better and would allow faster convergence to a cleaner database instance as desired
by the user.
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(a) Data

Name SRC STR CT STT ZIP

t1 Jim H1 Redwood Dr Michigan City MI 46360

t2 Tom H2 Redwood Dr Westville IN 46360

t3 Jeff H2 Birch Parkway Westville IN 46360

t4 Rick H2 Birch Parkway Westville IN 46360

t5 Joe H1 Bell Avenue Fort Wayne IN 46391

t6 Mark H1 Bell Avenue Fort Wayne IN 46825

t5 Cady H2 Bell Avenue Fort Wayne IN 46825

t5 Sindy H2 Sheriden Rd Fort Wayne IN 46774

(b) CFD Rules

φ1 ZIP→ CIT, STT, {46360 ‖Michigan City, IN}

φ2 ZIP→ CIT, STT, {46774 ‖ New Haven, IN}

φ3 ZIP→ CIT, STT, {46825 ‖ Fort Wayne, IN}

φ4 ZIP→ CIT, STT, {46391 ‖Westville, IN}

φ5 STR, CT→ ZIP, {- ,Fort Wayne ‖ -}

Figure 6.17 Guided data repair example [Yakout et al. 2011].

There could be a correlation between the attribute values in a tuple and the
correct updates. For example, when SRC = ‘H2’, CT is incorrect most of the time,
while ZIP is correct. This is an example of a recurrent mistake that exists in real
data. Patterns such as this with a correlation between the original tuple values and
the correct updates, if captured by an ML algorithm, can reduce user involvement.

Editing Rules
Another example of involving humans to generate verified fixes is to use editing
rules [Fan et al. 2010]. Given an input tuple t ∈ I of schema R to be fixed, a set of
eRs �, and a master data relation Im of schema Rm, a certain fix t′ of t needs to be
found by interacting with the users and t′ satisfies the following properties: (1) no
matter how � and tuples in Im are applied, � and Im will yield a unique t′, and (2)
all attributes of t′ are guaranteed to be correct. Figure 6.18 depicts the framework
for using � and Im to derive t′ for t. Specifically, the framework works as follows.
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Figure 6.18 Repairing framework for using editing rules and master data [Fan et al. 2010].

Initialization. Given t, it picks a precomputed certain region Z and recom-
mends Z to the user. A certain region is a set of attributes that are guaranteed
to be correct. Z′ denotes a set of attributes that have already been validated
by the user to be correct.

Generating Correct Fixes. In every interaction with the user, a set of attributes,
initially Z, is shown to the user, who chooses a subset S of asserted correct
attributes. If t[S ∪ Z′] leads to a unique fix, t is fixed and Z′ is extended;
otherwise, users are asked to provide new suggestions.

Generating New Suggestions. If Z′ covers all attributes, a certain fix has been
found; otherwise, a new set of suggestions are computed for the next round
of user interaction.

KATARA
KATARA [Chu et al. 2015] aims at producing accurate repairs by relying on two
authoritative data sources, namely, knowledge bases (kbs) and domain experts.
KATARA first discovers table patterns to map the table to a kb such as Yago or DB-
Pedia. With table patterns, KATARA annotates tuples as either correct or incorrect
by interleaving the kb and humans. For incorrect tuples, KATARA will extract top-k
mappings from the kb as possible repairs that are to be examined by humans.
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A B C D E F G

t1 Rossi Italy Rome Verona Italian Proto 1.78

t2 Klate S. Africa Pretoria Pirates Afrikaans P. Eliz. 1.69

t3 Pirlo Italy Madrid Juve Italian Flero 1.77

Figure 6.19 A table T for soccer players [Chu et al. 2015].
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Figure 6.20 KATARA patterns [Chu et al. 2015].

Consider a table T for soccer players (Figure 6.19). Table T has no table header,
thus its semantics are completely unknown. Assume that a kb K (e.g., Yago) con-
tains some information related to T . KATARA [Chu et al. 2015] works as follows:
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Pattern discovery. KATARA first discovers table patterns that contain the types
of the columns and the relationships between them. A table pattern is repre-
sented as a labeled graph (Figure 6.20a) where a node represents an attribute
and its associated type, e.g., “C (capital)” means that the type of attribute C in
kbK is capital. A directed edge between two nodes represents the relationship
between two attributes, e.g., “B hasCapital C” means that the relationship
from B to C in K is hasCapital. A column could have multiple candidate types,
e.g., C could also be of type city. However, knowing the relationship from B
to C is hasCapital indicates that capital is a better choice. Since kbs are often
incomplete, the discovered patterns may not cover all attributes of a table,
e.g., attribute G of table T is not described by the pattern in Figure 6.20a.

Pattern validation. Consider a case where pattern discovery finds two simi-
lar patterns: the one in Figure 6.20(a) and its variant with type location for
column C. To select the best table pattern, we send the crowd the question
“Which type (capital or location) is more accurate for values (Rome, Pretoria and
Madrid)?” Crowd answers will help choose the right pattern.

Data annotation. Given the pattern in Figure 6.20(a), KATARA annotates each
tuple with one of the following three labels:

(i) Validated by the KB. By mapping tuple t1 in table T to K, we found a
full match, shown in Figure 6.20(b), indicating that Rossi (resp. Italy)
is in K as a person (resp. country), and the relationship from Rossi

to Italy is nationality. Similarly, all other values in t1 with respect to
attributes A-F are found in K. We consider t1 to be correct with respect
to the pattern in Figure 6.20(a) and to attributes A-F.

(ii) Jointly validated by the KB and the crowd. Consider t2 about Klate,
whose explanation is depicted in Figure 6.20(c). In K, we find that
S. Africa is a country, Pretoria is a capital. However, the relationship
from S. Africa to Pretoria is missing. A positive answer from the crowd
to the question “Does S. Africa hasCapital Pretoria?” completes the
missing mapping. We consider t2 correct and generate a new fact
“S. Africa hasCapital Pretoria.”

(iii) Erroneous tuple. Similar to case (ii). For tuple t3, there is no link from
Italy to Madrid in K. A negative answer from the crowd to the question
“Does Italy hasCapital Madrid?” confirms that there is an error in t3.
At this point, however, we cannot decide which value in t3 is wrong,
Italy or Madrid. KATARA extracts evidence from K, e.g., Italy hasCapital
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Figure 6.21 One-shot vs. probabilistic cleaning.

Rome and Spain hasCapital Madrid, joins them, and generates a set
of possible repairs for this tuple.

6.2.7 Where to Repair: Model-Based Repair
Data repair techniques are classified based on whether the database will be changed
in place by the repairing techniques or by a model that describes the possible
changes that will be used to answer queries against the dirty data. Most of the
proposed data repair techniques (all discussed so far) identify errors in the data
and find a unique fix of the data either by minimally modifying the data according
to a cost function or by using human guidance (Figure 6.21(a)).

In what follows, we describe a different model-based approach for non-
destructive data cleaning. Data repair techniques in this category do not produce
a single repair for a database instance; instead, they produce a space of possi-
ble repairs (Figure 6.21(b)). The space of possible repairs is used either to answer
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queries against the dirty data probabilistically (e.g., using possible worlds seman-
tics) [Beskales et al. 2009] or to sample from the space of all possible clean instances
of the database [Beskales et al. 2010, Beskales et al. 2014].

We give details of one algorithm, which considers the space of possible repairs of
FD and CFD violations and provides a sampling technique to sample possible clean
instances with certain minimality guarantees, more specifically, with cardinality-
set-minimal repairs (cf. Section 6.2.5) [Beskales et al. 2010, Beskales et al. 2014].
Techniques from consistent query answering [Arenas et al. 1999, Lopatenko and
Bertossi 2007] also fall in this category, since they consider a tuple in the original
dirty database instance I to be in the answer of a query if that tuple is present
in every possible repair I ′ of I. We refer readers to a survey [Bertossi 2011] for a
comprehensive treatment of consistent query answering.

For any two tuples t1, t2 that violate an FD X → A, the violation can be repaired by
either changing t1[A] to be the value of t2[A] (or vice versa) or modifying an attribute
B ∈ X in either t1 or t2 so that t1[B] �= t2[B]. Generalizing this observation, if a set
of CleanCells does not violate any FD in �, the consistency of CleanCells ∪ C, for
any cell C, can always be ensured by modifying C if necessary. To systematically
determine whether a set of cells is clean, the equivalence classes E for that set of
cells are built. An equivalence eq ∈ E denotes a subset of cells that should be equal
according to �. Thus, to check if a set of cells is clean or not, it is sufficient to check
if any two cells in an equivalent class eq ∈ E indeed have the same value.

Example 6.17 For example, to determine if the set of six cells, t1[A], t1[C], t2[A], t2[B], t3[B], and
t3[C], in Figure 6.22 is clean or not, a set of equivalence classes E is built. Initially,
t1[A], t2[A] belong to the same equivalence class, since they have the same value.
Similarly t2[B]andt3[B] also belong to the same equivalence class. However, t1[C],
and t3[C] form two separate equivalence classes. According to the FD A→ C, t1[C]
and t2[C] should belong to the same equivalence class. According to the FD B→ C,
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Figure 6.22 An example of checking whether a set of cells is clean.
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Algorithm 6.6 Sampling FDs repairs

Input: Database instance I, a set of FDs �

Output: Possible repairs I ′

I ′ ← I
CleanCells←∅
while CleanCells �= CIDs(I ′) do

insert a random cell t[A]∈ CIDs(I ′) \ CleanCells to CleanCells,
where t ∈ I and A ∈ R
build the equivalence classes E of CleanCells according to �

if CleanCells is not clean w.r.t. E then
Build the equivalence classes Ep of CleanCellst[A] according to �

if t[A] belongs to a non-singleton equivalence class in Ep then
set I ′(t[A]) to the value of other cells that are in the same equivalence
class in Ep

else
randomly set I ′(t[A]) to one of the three alternatives: a randomly selected
constant from Dom(A), a randomly selected variable that appears in I ′,
or a new variable such that CleanCells is clean with respect to E

end if
end if

end while
return I ′

t2[C] and t3[C] should belong to the same equivalence class. Thus, t1[C] and t3[C]
end up in the same equivalence class. However, t1[C] and t3[C] have different values.
Therefore, the set of six cells is not clean.

Algorithm 6.6 describes the procedure for generating repairs. Cells are inserted
into CleanCells in random order. At each iteration, the algorithm checks whether
CleanCells is clean by building the equivalence classes E according to �. If Clean-

Cells is not clean, the last inserted Cell C is changed so that CleanCells is clean
again.

An example of executing Algorithm 6.6 is shown in Figure 6.23. At each step,
the cells that have been selected so far by the algorithm are shown. Equivalence
classes are shown as rectangles. The cells t1[A], t1[B], t2[A], and t3[B] are added to
CleanCells in step (a). They are all clean and do not need to change. The cell t2[B] is
added to CleanCells in step (b). Because the cells t1[B] and t2[B] belong to the same
equivalence class, the value of t2[B] must be changed to the value of t1[B], which is
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Figure 6.23 An example of executing Algorithm 6.6 [Beskales et al. 2010].

2. In step (c), the cell t3[A] is added to CleanCells. The value of t3[A] is changed to a
randomly selected constant, namely 6, to resolve the violation. We continue adding
the remaining cells and modifying them as needed to make sure that CleanCells is
clean after each insertion. Finally, the resulting instance I ′ represents a repair of I.
Algorithm 6.6 is extended to sampling from the space of all cardinality-set-minimal
repairs for CFDs [Beskales et al. 2014].

6.3 Conclusion
Given a database instance I and a set of data quality rules �, rule-based data
cleaning proceeds in two steps: detecting violations in I with respect to � and
updating I (and potentially also �) such that I conforms to �.

While violation detection is a fairly straightforward procedure algorithmically,
namely, enumerating tuple combinations to determine whether they violate rules
in �, we identified three practical challenges and discussed proposals addressing
those challenges. First, detecting a violation does not necessarily pinpoint the exact
erroneous cell since a violation may involve multiple cells. We introduced the idea
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of holistic data cleaning that leverages conflict hypergraphs to identify cells that are
more likely to be erroneous. Second, there can be decoupling between the space
and the time errors are detected; errors usually happen in the data source, but may
not be detected until after the data has gone through multiple stages of processing.
We discussed techniques that propagate errors detected in transformation results
to the data sources. Finally, to tackle the scalability challenges associated with vio-
lation detection, we presented a proposal that distributes the task in the common
shared-nothing parallel computing environment such as Hadoop.

We presented a classification of various data repair proposals using three di-
mensions: what to repair, how to repair, and where to repair. The “what to repair”
dimension captures the evolving nature of both the data and the business logic
(integrity constraints). It classifies repairing algorithms into those that update the
data only, those that update the rules only, and those that update both. The “how
to repair” dimension classifies error repair techniques into fully automatic tech-
niques and those that involve human experts. In real-world scenarios, automatic
techniques are rarely used and humans often need to either manually update the
data or approve the updates suggested by automatic tools. The “where to repair”
dimension classifies proposed approaches based on whether they change the data-
base in situ or build a model to describe the repair. While most techniques update
the data in place, some techniques recognize the fact that there may not exist a
“golden” repair and hence use a model to describe the space of repairs.
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and Probabilistic
Data Cleaning

In this chapter, we discuss how data cleaning can be viewed as a probabilistic
database problem, where statistical and probabilistic interpretation of data errors
can lead to more general and holistic error detection and repair solutions. Most
of the data repair techniques described in previous chapters view inconsistencies
in databases as violations of logical rules. These techniques resolve constraint
violations by taking actions to bring the data into conformance with these hard
integrity constraints, including, for example, heuristically changing an attribute
value of a tuple to eliminate a function dependency violation or entirely removing
a set of tuples.

While statistical and probabilistic solutions have been employed in data clean-
ing for decades, they have been limited to mostly numerical outlier detection tech-
niques [Barnett and Lewis 1994, Hawkins 1980, Hawkins et al. 2002], as we dis-
cussed in Chapter 2, and building binary classifiers for de-duplication [Fellegi and
Sunter 1969, Sarawagi and Bhamidipaty 2002], as we briefly discussed on Chapter 3.
With the popularity and the availability of resources to build large-scale machine
learning solutions, leveraging ML techniques for data cleaning is becoming a pop-
ular and a promising direction. Since these ML models are built on a probabilistic
view of the underlying data, a deeper understanding of the interaction between
cleaning and probabilistic modeling of data becomes a necessity.

One of the biggest advantages of adopting a probabilistic view of data clean-
ing is the fact that this view enables a holistic treatment of a variety of data errors
in one platform. We discussed in previous chapters many examples of data errors
and anomalies, including outliers, duplicates, violations of integrity constraints,
and misalignments. While it is easier to formulate and tackle these data problems
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in isolation, in reality, most dirty datasets suffer from most or all of these problems
combined. Furthermore, these different errors interact in non-trivial ways. For ex-
ample, we cannot find duplicates effectively without mapping schemas, wrangling
data sources, imputing missing values, and removing outliers. Studies have shown
that there does not exist a single best sequence of cleaning exercises due to their
dependencies; even when multiple tools are applied, the performance is often poor
because none has captured the holistic nature of the data cleaning process [Abedjan
et al. 2016a, Stonebraker and Ilyas 2018]. Treating the data cleaning problem as a
large-scale ML problem is a principled and promising way to address these issues.

Multiple ML concepts and techniques have been used or are currently proposed
as natural choices to build data cleaning solutions. For example, factor graphs (a
type of probabilistic graphical models; Koller and Friedman [2009]) are used to
capture the correlation among the various features and signals involved in predict-
ing the most likely value of an erroneous database cell (attribute value of a tuple)
[Rekatsinas et al. 2017a]. Probabilistic graphical models have been also used to
estimate the accuracy and fidelity of sources when integrating multiple data sets
[Rekatsinas et al. 2017b]. Active learning was used to effectively involve human ex-
perts to obtain labeled data to train ML models for the record linkage problem
[Sarawagi and Bhamidipaty 2002]. In this chapter, we explore how ML and sta-
tistical inference have been used for large-scale data cleaning problems through
concrete algorithms and examples. In Section 7.1, we focus on the deduplication
problem as a classical example of using ML in a data cleaning task, where we high-
light traditional active learning techniques and more recent proposals based on
deep learning (DL). In Section 7.2, we discuss in detail new advances in using ML
and statistical learning for general data repair. We also discuss in Section 7.3 how
cleaning can serve as an important data preparation step for downstream analytics,
including building effective ML models.

7.1 Machine Learning for Data Deduplication
ML solutions have been applied to data deduplication, as deciding whether two
records are duplicates or not is by definition a binary classification problem. In-
deed, we have seen how ML techniques are used in data deduplication to learn a
classifier to determine whether two records are duplicates using similarity scores as
features (cf. Section 3.2). In this section, we explore how active learning is used for
data deduplication when there are not enough labeled matches and non-matches to
build a good classifier, and how DL can also be useful for certain data deduplication
scenarios.
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7.1.1 Active Learning in Data Deduplication
As discussed in Section 3.2, data deduplication involves training a binary classifier
to predict whether a pair of records are duplicates or distinct. To train a binary
classifier with good prediction accuracy, we need a sufficiently large training set,
namely, a set of duplicate record pairs and non-duplicate record pairs. However,
obtaining such a large training set usually requires human labeling, which can be
an expensive process. Active learning techniques have been explored to judiciously
solicit training examples for training a classifier in the data deduplication problem
[Tejada et al. 2001, Sarawagi and Bhamidipaty 2002, Arasu et al. 2010, Stonebraker
et al. 2013, Konda et al. 2016]; the general idea is to solicit user feedback for
unlabeled record pairs which, when labeled, will provide the highest utility to the
training process.

There are certain difficulties that are specific to learning a classification model
for data deduplication. First, in a typical setting, the number of non-matches far
exceeds the number of matches; consider a record matching task involving two
different tables with 1000 records each, and on average, each record matches with
one or two records of the other table. The number of matches for this task is
about 2× 103, while the number of non-matches is about 106. This imbalance
between matches and non-matches makes it difficult to identify a suitable set
of training examples to learn a classifier with high accuracy. Second, even if we
manage to find an equal number of matches and non-matches, the success of
deriving a high accuracy classifier for data deduplication depends on the quality
of those training examples; for example, it would be more beneficial to include
non-matches that are likely to be confused as matches than those obvious non-
matches.

We discuss in detail one seminal solution, ALIAS [Sarawagi and Bhamidipaty
2002], to solicit training data. ALIAS demonstrates the core challenges of using
active learning in data deduplication. Algorithm 7.1 gives the procedure of the
ALIAS active learning procedure. It takes as input a database of records I, an initial
set of training data L arranged in pairs of matches and non-matches, and a set of
similarity functions F. The set of similarity functions, when applied to a record pair,
would generate a comparison vector γ . In the initialization step, ALIAS first creates
the pairs Lp and Ip from the labeled data L and the unlabeled data I by applying
the set of similarity functions F. The record pairs in Lp are then used as an initial
training set. In the active learning session, i.e., the loop in Algorithm 7.1, ALIAS
chooses from the set Ip a subset S, such that the learner would benefit the most if
S is labeled. The user is shown examples in S, along with the current predictions;
the user can then correct any predictions in S that are wrong. The newly labeled
examples in S are added to the training set T and the classifier is retrained. The
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Algorithm 7.1 ALIAS Active Learning Algorithm

Input: Database instance I, initial training data L, and similarity functions F
Output: A classifier C
create pairs Lp from the labeled data L and F
create pairs Ip from the unlabeled data I and F
initialize training set T = Lp

loop until user satisfaction do
train classifier C using T
use C to select a set S of instances from Ip for human labeling
exit if S is empty
collect user feedback on the labels of S
add S to T and remove S from Dp

end loop
output classifier C

Sure negatives Sure positives

Region of uncertainty

r s x

d

m b

0 0.5 1

Figure 7.1 Examples of active learning to reduce confusion region [Sarawagi and Bhamidipaty 2002].

loop goes on until the user is satisfied with the classifier, for example, by evaluating
its performance on a held-out test dataset.

The core step in ALIAS is to choose a subset S that would be most beneficial if
labeled. Based on the current training data T , the classifier will be certain about
some pairs in Ip and will be uncertain about other pairs in Ip. The active learner in
ALIAS picks those pairs the classifier is most unsure about, which can help reduce
a classifier’s confusion. The following example demonstrates the intuition using a
simple classification scenario [Sarawagi and Bhamidipaty 2002].

Example 7.1 Consider a simple learner for separating points from two different classes: positive
(P) and negative (N) on a straight line, as shown in Figure 7.1. Assume that the
points in the line are separable by a single point on the line. The hypothesis space
consists of all points on the line, and for a given point (hypothesis), all points to
the left of that point will be labeled negative and all points to the right of that point
will be labeled positive. The classification task is thus to learn that point on the line
that perfectly separates the positives and negatives.
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The initial training set consists of one positive point b (green star) and one
negative point r ( red circle) picked randomly from the line. The rest of the points
(squares) are unlabeled. At this point, the classifier is certain about the points to the
left of r and is also certain about the points to the right of b. The confusion region
includes the points between r and b, from which the active learner will select points
for human labeling.

For any point x in this confusion region, assume that the probability that it is
negative is inversely proportional to its distance from r. For simplicity, assume r
has a coordinate of 0 and b has a coordinate of 1. Thus, if x has a coordinate of d,
the probability that its class is negative (N) is Pr(N|x)= 1− d and the probability
that its class is positive (P) is Pr(P|x)= d. If x were negative, the size the confusion
region would reduce by d, and if it were positive, the size of the confusion region
would reduce by 1− d. Hence, the expected reduction in the size of the confusion
region when adding x to the training set is Pr(N|x)d + Pr(P|x)(1− d)= (1− d)d +
d(1− d)= 2d(1− d), which achieves the maximum value when d = 0.5 (point m in
Figure 7.1). By including m in the training set, the size of the uncertain region will
reduce by half no matter what its label.

If we were to choose another point (such as s in the figure) for human labeling,
which is close to the negative boundary but far from the positive boundary, the
confusion region could be reduced more if s turned out to be positive. However,
this is unlikely given the current training data. Therefore, the expected reduction
of the confusion region of choosing s is less than that of choosing m.

The above example shows a toy scenario of how to calculate the uncertainty of a
prediction of an extremely simple classifier (i.e., choosing a separating single point
on the line). For other more complicated classifiers, how do we quantify the uncer-
tainly of a prediction? There are generally two categories of approaches, namely,
classifier-specific approaches and classifier-independent approaches. Examples of
classifier-specific approaches include using posterior probabilities of predications
for Bayesian classifiers [Tong and Koller 2002] and using the inverse of the dis-
tance between an instance and the separator for SVM [Schohn and Cohn 2000]. A
classifier-independent approach to derive the uncertainty is done by measuring the
disagreement among the predications of a set of classifiers, also known as a com-
mittee [Freund et al. 1997]. The classifiers in the committee are different from each
other, but have similar accuracies on the training data. A certain record pair would
get the same predications from almost all committee members, while an uncer-
tain record pair would result in disagreement, which can be quantified in various
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ways, such as entropy on the fraction of committee members that predicate either
duplicates or non-duplicates.

The uncertainty score is not the only factor considered by ALIAS when picking
instances for human labeling, as the most uncertain point could be an outlier point
that is not representative of a larger number of unlabeled instances. Therefore,
ALIAS also considers how representative an instance is of the underlying data
distribution. The main challenge in incorporating the representativeness factor is
figuring out how to combine it with the uncertainty factor. Two different methods
have been proposed for this in ALIAS [Sarawagi and Bhamidipaty 2002]. The first
approach explicitly measures the representativeness of an instance by estimating
the density of unlabeled instances. The instances are then scored using a weighted
sum of their density and the uncertainty value. The top scoring instances are then
selected for human labeling. This method requires us to have an accuracy estimate
of the density of unlabeled instances, which itself could be a challenging task.
The second approach relies on weighted sampling to preserve the underlying data
distribution. Every unlabeled instance is weighted by its uncertainty score. Then a
set of instances are selected from all unlabeled instances using weighted sampling.
The premise is that outlying points are a small fraction of all unlabeled points and
thus will be filtered out by the sampling procedure.

7.1.2 Deep Learning for Data Deduplication
We introduce recent work that examines different design choices available when
designing a DL solution for matching (EM) [Mudgal et al. 2018], and when DL
becomes a favorable approach.

Figure 7.2 shows an architecture template for building DL solutions for EM.
While previously we have assumed that attribute similarities are obtained by simply
applying a similarity function over attribute values from two entities, Figure 7.2
details other possible choices for obtaining attribute similarities. In particular, the
template in Figure 7.2 consists of three main modules and each module has a set
of choices. The combination of these choices forms a design space of possible
DL solutions for EM. The template assumes as input a pair of entities (e1, e2),
which follow the same schema with attributes A1, A2, . . . , AN. Textual data can be
represented using a schema with a single attribute. The value of attribute Aj for an
entity e is a sequence of words we, j; the length of these sequences could be different
for different entities. Given this setup, we discuss the three modules as follows.

The Attribute Embedding Module.A word embedding maps words or phrases from
a vocabulary to vectors of real numbers. For every attribute Aj, this module takes two
sequences of words, we1, j and we2, j, and converts them into two sequences of word
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Figure 7.2 Template for DL solutions for EM [Mudgal et al. 2018].

embedding vectors ue1, j and ue2, j whose elements correspond to d-dimensional
embeddings of the corresponding words. For example, if there are m words in we1, j,
then we have ue1, j ∈ Rd×m.

The Attribute Similarity Representation Module. The goal of this module is to learn
a representation that captures the similarity of two entities (e1, e2) given as input.
For each attribute Aj and a pair of attribute embeddings ue1, j and ue2, j, this module
performs two operations: Attribute Summarization and Attribute Comparison. The
attribute summarization operation summarizes the information contained in the
attribute embeddings. More precisely, assume ue1, j ∈ Rd×m and ue2, j ∈ Rd×k; this
operation outputs two summary vectors of the same dimension se1, j ∈ Rh and se2, j ∈
Rh. The role of attribute summarization is to aggregate information across all
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Architecture Module Options

Attribute Granularity: Training:
embedding (1) Word-based (3) Pre-trained

(2) Character-based (4) Learned

Attribute (1) Attribute (1) Heuristic-based (2) RNN-based
similarity summarization (3) Attention-based (4) Hybrid
representation

(2) Attribute (1) Fixed distance (cosine, Euclidean)
comparison (2) Learnable distance (concatenation,

element-wise absolute difference,
element-wise multiplication)

Classifier NN (multi-layer perception)

Figure 7.3 The design space of DL solutions for EM [Mudgal et al. 2018].

tokens in the attribute value. The attribute comparison part takes the two summary
vectors se1, j ∈ Rh and se2, j ∈ Rh and applies a comparison function D to obtain a
similarity measure sj = D(se1, j , se2, j).

The Classifier Module. This module takes as input the similarity representations
{s1, s2, . . . , sN} and uses them as features to train a classifier M that determines if
two input entities e1 and e2 are duplicates.

Given the above architecture template, multiple choices exist for each of the
three modules. Figure 7.3 describes these choices, which are inspired by how
DL is used in other matching tasks in NLP such as entity linking and question
answering. We refer readers to the original study [Mudgal et al. 2018] for detailed
discussions of these choices. In summary, the study found that DL solutions do not
outperform traditional ML solutions on structured EM tasks, namely, when entities
to be matched follow the same schema and the attribute values are generally
clean. However, DL solutions significantly outperform traditional ML solutions on
textual EM tasks and dirty EM tasks, where textual EM tasks are those with input
entities containing only raw textual attributes, and dirty EM tasks are the same
as structured EM tasks, except that the input entities can have dirty values. These
results are not surprising, as it would be difficult for conventional ML to capture
textual similarity without embedding or to capture similarity correctly if the inputs
are dirty. DL approaches, especially attribute embeddings, are still able to capture
entity similarities well in textual EM and dirty EM tasks.
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7.2 Machine Learning for Data Repair
In this section we explore the use of ML models for performing general data re-
pair. Unlike data deduplication, most data repair methods focus on violations of
integrity constraints and, as we mentioned in the beginning of this chapter, adopt a
logical interpretation of the repairing process, as we extensively reviewed in Chap-
ter 6. We highlight a recent proposal of adopting a probabilistic dirty database
model for data repair in Section 7.2.1, and we demonstrate in Section 7.2.2 a re-
pair framework based on this model, which uses statistical inference to suggest
data repair to erroneous cells.

7.2.1 Probabilistic Data Cleaning Models
Before we discuss example ML and statistical solutions for data repair, we highlight
a formal framework for unclean databases [De Sa et al. 2019], which better explains
how to incorporate statistical reasoning to build effective real-world data cleaning
solutions. The model introduced in De Sa et al. [2019] represents two types of
statistical knowledge: the first represents a belief of how intended (clean) data is
generated, and the second represents a belief of how noise is introduced in the
actual observed database. Explicitly representing the clean data generation process
and the realization process that introduced errors before data was consumed allows
for a variety of cleaning tasks, including error detection, probabilistic repair and
even answering queries over dirty databases. The model is based on the concept
of probabilistic noisy databases, which consists of three main components: (1) a
probabilistic database called the intention (I); (2) a probabilistic process called
realization (R) that captures how noise is introduced; and (3) a dirty observed
database called the observation (J∗).

Cleaning the observed data instance (J∗) is to find the intended database I∗

(among all possible clean instances I) from which this observed instance J was
produced via the realization process. Adopting Bayesian inference, this intended in-
stance (I∗) is the one with the highest probability given J: I∗ = ArgmaxIPr(I).Pr(J∗|I).
Pr(I) captures the prior model for a clean database instance, and Pr(J∗|I) captures
the noisy channel that produces the observed instance. Hence, a probabilistic noisy
database D is a triple (I , R, J), where I is the intention model, which is the dis-
tribution that generates clean instances I describing the prior probability Pr(I); R
is the noisy realization model, which introduces errors and gives the probability
Pr(J∗|I) and maps each instance I generated by I to probabilistic database RI; and
J∗ is the observed instance.



204 Chapter 7 Machine Learning and Probabilistic Data Cleaning

t1

t2

t3

Porter

Graft

EVP Coffee

Tuple
probability

�

Madison

Madison

Madison

WI

WI

WI

53703

53703

53703

Business
ID

City State Zip
code

Business
ID

City State Zip
code

Tuple
identifiers

Tuple ID Business Listing
Tuple

indentifiers

Realizer
model �

Error
model �

Constraits
�

Intentional model � Sample of clean intended data �

t1

t2

t3

t4

Porter

Graft

EVP Coffee

Graft

Madison

Verona

Madison

Chicago

WI

WI

WI

IL

53703

53703

53703

60609

Business
ID

City State Zip
code

Dirty data instance J*

Integrity constraints

PK: Business ID
FD: Zip code → City, State

Figure 7.4 The probabilistic noisy database model.

To learn these models, the proposal in De Sa et al. [2019] adopts a parametric
model representation, where Model I is parametrized by a set of parameters � and
Model R is parametrized by a set of parameters �. The challenging task is to gener-
ate and use training data from the observed instance J∗ to estimate the parameters
�∗ and �∗ that maximize this training data. In a supervised learning approach,
both unclean data and their clean versions will be provided as training examples
(unclean data will be drawn from J∗), while in an unsupervised learning approach,
only J∗ will be used to generate training examples. In both cases, a large enough ob-
served instance J∗ will be decomposed to provide many training examples to learn
these parameters. Once these parameters are learned, data cleaning becomes an
inference exercise to estimate the most likely intention I∗, which is the maximum
a posteriori (MAP) assignment of I.

An example of parametrized model for I which generates the instances I is a
probabilistic database with two components.

. A tuple-independent probabilistic database assuming a discrete domain of
identifiers ids(I), where a tuple t in entry i (where i is an identifier) has a
probability K[i](t) (with K[i](⊥) denoting no tuple generated for identifier i)
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K(I)
def=

∏
i∈ids(I)

K[i](I[i]),
∏

i �∈ids(I)

K[i](⊥).

. Parametric factors [Sen et al. 2009], a special case of Markov Logic Networks
[Richardson and Domingos 2006], describe the (soft) integrity constraints
� defined on the data instance, where each constraints ϕ in � is assigned
a weight w(ϕ) > 0 and each violation of the constraints contributes a factor
exp(−w(φ)) to the probability of I.

Hence, the probability of an instance I in this model is defined as:

Pr(I)
def= 1

Z
×K(I)× exp

⎛
⎝−∑

ϕ∈�

w(ϕ)× |V(ϕ , I)|
⎞
⎠ .

|V(ϕ , I)| is the number of violations of constraint ϕ when applied to I and Z is a
normalization factor (also known as a partition function) that normalizes the sum
of probabilities to 1.

A concrete example of the realization model R that generates J∗ can be a pol-
luter that picks cells at random in I and changes the value to another value randomly
picked from the domain of that attribute. Another realization model picks a tuple
at random from I and deletes it. De Sa et al. [2019] draw a connection to minimal re-
pairs discussed extensively in Chapter 6 and the most likely repair I∗, and shows that
minimal repaired data is the most likely repair only under very strict conditions on
the intention and realization models. Figure 7.4 summarizes the aforementioned
details of a probabilistic cleaning model.

7.2.2 Machine Learning Frameworks for Data Repair
ML and probabilistic models have been used in multiple data cleaning activities.
To recap, a graphical model or probabilistic graphical model (PGM) or structured
probabilistic model is a model for which a graph expresses the conditional depen-
dence structure between random variables [Koller and Friedman 2009]. Different
variants and extensions of PGMs have been used for different data cleaning prob-
lems: conditional random fields (CRF) and Markov logic networks (MLN), which
combine first-order logic and PGMs in a single representation, have been used for
entity resolution [McCallum and Wellner 2004, Singla and Domingos 2006, Poon
and Domingos 2008, Rastogi et al. 2011]; factor graphs have been used for fusing
conflicting records from multiple data sources [Rekatsinas et al. 2017b], which not
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only can reason about conflicted values from different sources but also can incor-
porate domain knowledge into the reasoning process (e.g., a particular data source
dated before the year 2000 is inaccurate).

Based on the probabilistic error model we described in Section 7.2.1, we give
an example of a statistical inference framework, the HoloClean system, that uses
the observed data set to build a probabilistic model capable of predicting the most
likely value for cells identified as (possibly) noisy. The HoloClean system also uses
factor graphs to encode various kinds of features and inputs to the repair process,
such as denial constraints, statistical properties, minimality, and external master
data [Rekatsinas et al. 2017a].

Example 7.2 [Rekatsinas et al. 2017a] Consider a dataset from the city of Chicago with infor-
mation on inspections of food establishments. A snippet is shown in Table 7.1(a).
The dataset is populated by transcribing forms filled out by city inspectors, and
as such contains multiple errors. Records can contain misspelled entries, report
contradicting ZIP codes, and use different names for the same establishment.

The dataset has a set of functional dependencies (see Table 7.1(b)) and an exter-
nal dictionary of address listings in Chicago (Table 7.1(d)). Co-occurrence statistics
can also be obtained by analyzing the original input dataset in Figure 7.1(a).

First, data repairing methods based on integrity constraints, such as Bohannon
et al. [2005], assume the majority of input data to be clean and use the principle
of minimality as an operational principle to perform repairs (cf. Section 6.2.5).
Nevertheless, minimal repairs do not necessarily correspond to correct repairs: an
example minimal repair is shown in Table 7.1(e). This repair chooses to update
the ZIP code of tuple t1 so that all functional dependencies in Table 7.1(b) are
satisfied. This particular repair introduces an error as the updated zip code is
wrong. This approach also fails to repair the ZIP code of tuples t2 and t3 as well
as the “DBAName” and “City” fields of tuple t4 since altering those leads to a non-
minimal repair.

Second, methods that rely on external data [Fan et al. 2009, Chu et al. 2015]
match records of the original dataset to records in the external dictionaries or
knowledge bases to detect and repair errors in the former. The matching process
is usually described via a collection of matching dependencies (see Table 7.1(c))
between the original dataset and external information. A repair using such meth-
ods is shown in Table 7.1(f). This repair fixes most errors, but fails to repair the
“DBAName” field of tuple t4 as no information for this field is provided in the exter-
nal data. In general, the quality of repairs performed by methods that use external
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data can be poor due to the limited coverage of external resources, or these methods
may not be applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical analysis [Mayfield
et al. 2010, Yakout et al. 2013] leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning. These tech-
niques overlook integrity constraints. Table 7.1(g) shows such a repair. As shown,
the “DBAName” and “City” fields of tuple t4 are updated as their original values
correspond to outliers with respect to other tuples in the dataset. However, this
repair does not have sufficient information to fix the zip code of tuples t2 and t3.

In this example, if the zip code and city repairs from Table 7.1(f) are combined
with the DBAName repair from Table 7.1(g), all errors can be repaired in the input
dataset. Nonetheless, combining heterogeneous signals can be challenging. This
is not only because each type of signal is associated with different operations over
the input data (e.g., integrity constraints require reasoning about the satisfiability of
constraints while external information requires efficient matching procedures) but
different signals may suggest conflicting repairs. For instance, naively combining
the repairs in Table 7.1 produces conflicts on the zip code of tuples t2 and t3. The
repairs in Table 7.1(e) and (g) assign value “60609” while the repair in Figure 7.1(f)
assigns value “60608”.

Instead of considering each signal in isolation, HoloClean uses all available sig-
nals to suggest data repairs. HoloClean considers the input dataset as a noisy version
of a hidden clean dataset and treats each signal as evidence on the correctness of
different records in that dataset. To combine different signals, HoloClean relies on
probability theory to reason about inconsistencies across those signals. HoloClean
consists of two main stages: Compilation and Repairing.

In the compilation stage, HoloClean automatically generates a probabilistic
model (a factor graph) [Koller and Friedman 2009] whose random variables capture
the uncertainty over cells in the input dataset. Signals are converted to factors and
are used to describe the distribution characterizing the input dataset D. Specifically,
HoloClean associates each cell c ∈ D with a random variable Tc that takes values
from a finite domain dom(c) and compiles a probabilistic graphical model that
describes the distribution of random variables Tc for cells in the dataset D.

A factor graph is a hypergraph (T , F , θ) in which T is a set of nodes that cor-
respond to random variables and F is a set of hyperedges. Each hyperedge φ ∈ F ,
where φ ⊆ T , is referred to as a factor. Each hyperedge φ is associated with a fac-
tor function and a real-valued weight θφ and takes an assignment of the random
variables in φ and returns a value in {−1, 1} (i.e., hφ : D

|f | → {−1, 1}). Hyperedges f ,
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Figure 7.5 Error detection methods are used in HoloClean to identify uncertain cells.

functions hφ, and weights θφ define a factorization of the probability distribution
P(T) as:

P(T)= 1
Z

exp

⎛
⎝∑

φ∈F

θφ
. hφ(φ)

⎞
⎠ , (7.1)

where Z is called the partition function and corresponds to a normalization constant
ensuring we have a valid distribution.

Any error detection methods can be used to identify the uncertain cells. Hence
the set of random variables Tc is split into T u

c and T k
c , where T u

c is the set of random
variables that correspond to uncertain cells (and hence their values need to be
inferred) and T k

c is the set of random variables that correspond to the correct cells
(whose observed value will be used for training). For example, in Figure 7.5, a
functional dependency and master data were used to identify that some cities and
zip codes in the table might be incorrect. Figure 7.6 shows an example subset of
the factors defined on four uncertain cells: t1.City, t4.City, t1.Zip, and t4.Zip. Two
example types of factors are shown:

Co-occurrence factors capture the importance of co-occurring with the specific
address value mentioned in the same tuple. For example, possible values for
the random variable t4.City that co-occur with the address “3465 S Morgan
St” in the whole relation will be more probable than other values. The factor
function (h1 in the figure) can be computed as the Pr(t4.City= x|t4.Address=
“3465 S Morgan St′′), where x is a possible value for a city in the domain of
t4.City.

Constraint factors capture the dependency among multiple random variables
involved in a violation of a given integrity constraint. In Figure 7.6, a factor
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Figure 7.6 HoloClean represent uncertain cells as random variables in a factor graph.

that connects the four random variables will make values that do not violate
the FD Zip→ City more probable than other values in the domain of these
variables. The factor function in this case (h2 in the figure) can be simply
a binary function that gives 1 if the four values violate the constraint and 0
otherwise.

Once the model is built, the model parameters (factor weights) are learned in a
weakly supervised fashion; HoloClean uses the set of cells identified as correct to
generate a large number of correct and incorrect example assignments of random
variables in T k

c , where the current observed values correspond to the “correct”
examples and multiple generated values from the domain correspond to a set of
“incorrect” examples. Let T be the set of all variables Tc. HoloClean uses empirical
risk minimization (ERM) over the likelihood log P(T) to compute the parameters
of its probabilistic model. Approximate inference via Gibbs sampling [Zhang and
Ré 2014] is used to estimate the value v̂c of the noisy uncertain cells T u

c , and each
of these cells is assigned to the MAP estimates of variables T u

c .
Each repair by HoloClean is associated with a calibrated marginal probability.

For example, if the proposed repair for a record in the initial dataset has a proba-
bility of 0.6, it means that HoloClean is 60% confident about this repair. As a result,
these marginal probabilities can be used to solicit user feedback to further improve
the repairing accuracy. For example, HoloClean can ask users to verify repairs with
low marginal probabilities and use those as labeled examples to retrain the pa-
rameters of HoloClean’s model using standard incremental learning and inference
techniques [Shin et al. 2015].

The HoloClean original paper [Rekatsinas et al. 2017a] describes multiple ways
to generate these factor graphs and suggest tools such as DeepDive [Shin et al. 2015]
to declaratively represent the random variables involved, and how to compile vari-
ous signals such as minimality, denial constraints, and co-occurrence statistics as
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factors. The paper also highlights that naively declaring all possible factors will gen-
erate a massive graph with exponential number of weights that need to be learned
to produce the final model. For example, the constraint factor in Figure 7.6 is the
only one of many that correspond to the quadratic number of tuple combinations
in the data. Moreover, the size of the weight vector associated with such a factor is
exponential in the size of the domains of the involved random variables. Hence,
HoloClean employs multiple techniques to allow learning such a model and to
achieve scalable inference for cleaning.

Domain Pruning. It is easy to see that many possible values for the random
variables in the model can be easily pruned as they have very little chance
of being picked as the most likely value. Pruning the domain of random
variables simplifies inference by limiting the possible grounding of these
variables.

Parameter tying. All factors from the same type are assigned the same weight
in the spirit of template-based graphical models [Kimmig et al. 2015], and as
discussed in De Sa et al. [2019] for learning the probabilistic noisy model.
This significantly reduces the number of model parameters that need to be
learned, which allows using the available observations to learn the repair
model.

Model relaxation. During the inference process, Gibbs sampling may require
exponential iterations to converge. However, if a factor graph has only in-
dependent random variables then Gibbs sampling requires a polynomial
number of samples to mix [Sa et al. 2015]. Motivated by this result, Holo-
Clean introduces an optimization that relaxes the factors used to encode
denial constraints to obtain a model with independent random variables.
Instead of enforcing denial constraints for any assignment of the random
variables corresponding to uncertain cells in D, HoloClean generates fea-
tures that provide evidence on random variable assignments that lead to
constraint violations. This builds upon two assumptions: (i) erroneous cells
in D are fewer than correct cells, i.e., there is sufficient redundancy to fix
errors in D; and (ii) each integrity constraint violation can be fixed by up-
dating a single cell in the participating tuples. Figure 7.7 shows an example
relaxation where a four-variable factor representing the given FD applied on
four cells is transformed into four single-variable factors, where in each of
the new factors the other three variables are replaced by their observed val-
ues.



212 Chapter 7 Machine Learning and Probabilistic Data Cleaning

t1.Cityt1.Zip t1.Zip
“FD conflicts with t1.City = Chicago and
 t4.City = Cicago and t4.Zip  = 60608”

“FD conflicts with t1.Zip = 60608 and
 t4.City = Cicago and t4.Zip  = 60608”

“FD conflicts with t1.City = Chicago and
 t4.City = Cicago and t4.Zip  = 60608”

“FD conflicts with t1.Zip = 60608 and
 t1.City = Chicago and t4.Zip  = 60608”

t1.Zip = t4.Zip → t1.City = t4.City t1.Zip = 60608 → Chicago = Cicago

60608 = t4.Zip → Chicago = Cicago

60608 = 60608 → t1.City = Cicago

60608 = 60608 → Chicago = t4.City 

w

w

t4.Cityt4.Zip

t1.City w

t4.Zip w

t4.City w

Figure 7.7 HoloClean relaxed model.

The relaxed model comes with two desired properties: (i) the factor graph
generated by relaxing the original DDlog rules contains only independent
random variables; hence, Gibbs sampling is guaranteed to mix in o(n log n)

steps; and (ii) since random variables are independent, learning the param-
eters of Equation 7.1 corresponds to a convex optimization problem, which
is efficient to solve. HoloClean shows empirically that this model not only
leads to more scalable data repairing methods, but achieves the same quality
repairs as the non-relaxed model.

7.2.3 Comments on Using Deep Learning in Data Cleaning
Conventional ML models, such as linear regression, decision trees, random forests,
and SVMs, are well understood and often require elaborate feature engineering ex-
ercise to provision. In the last few years, there has been dramatic interest in “deep
learning” (neural networks), which have shown great results in image understand-
ing and natural language processing problems [LeCun et al. 2015, Goodfellow et al.
2016]. However, applying DL in enterprise data cleaning applications remains chal-
lenged by the scarcity of training data, since most of these models require large
quantities of labeled data to learn the classification task, and is further complicated
by the lack of reasonable explanations of the output decisions.

Training Data. In general, generating training data in enterprise data integra-
tion tasks is a huge problem. Consider three plausible terms: IBM-SA, IBM
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Inc., and IBM. Intuitively, these three terms might represent the Spanish
subsidiary, the U.S. subsidiary, and the overall company, respectively. Decid-
ing whether these are duplicated entities or separate related entities can be
performed by a domain expert, and even then, the decision to consolidate or
not could be depend on the question being asked. However, automatically
“learning” these complex relationships among these entities and the right
merge/separate decision will probably require massive labeled data in a deep
neural network model.

Domain expert time is a scarce commodity that must be ruthlessly econ-
omized and cannot be simply used to label millions of training examples.
These experts are typically well-paid, busy business experts who view gen-
erating training data as a low priority task. Hence, it is easy to see why ML
models with fewer training data requirements are highly preferable to those
with large training data demands (e.g., DL). Advances in automating training
data collection, such as the Snorkel project [Ratner et al. 2017], might relax
this constraint. However, Snorkel still requires users to write many highly
overlapping and high-coverage “labeling functions” to produce high-quality
labeled data. Until we effectively solve the problem of generating large and
high-coverage training data, enterprise solutions will likely depend more on
conventional ML classifiers with modest training requirements.

Explainability. In many enterprise integration problems, one must be able to
explain why the ML model took a particular action. For example, a predictive
model that generates approvals for real estate loans must be explainable: a
loan was denied because of such and such reasons. If this explanation is not
forthcoming, then lawsuits are inevitable, and adoption of these models is
highly unlikely. Conventional ML models are at least marginally explainable,
while DL models are not. Again, this will be an impediment to the applica-
bility of DL in enterprise integration applications. It is conceivable that DL
models will become more explainable in the future, and there is indeed con-
siderable research effort in this area. However, until the explanability of DL
is truly solved, we do not foresee the adoption of these models on a wide scale
or as a primary classification method in enterprise data integration tasks.

However, DL outperforms conventional ML models or can be incorporated as
part of the cleaning solutions in certain data cleaning scenarios. We discussed in
Section 7.1.2 a promising example of using deep learning for the entity resolution
problem. It is also natural to use deep learning to capture latent data features (such
as language models for text and strings) during error detection and error repair
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ML models, for example as features in the HoloClean framework [Rekatsinas et al.
2017a] discussed in Section 7.2.2.

7.3 Data Cleaning for Analytics and Machine Learning
While ML techniques are useful for designing high-accuracy data cleaning solu-
tions, ensuring high-quality data is also important for downstream data analytics.
In this section, we discuss how dirty data and data cleaning affect both SQL analyt-
ics and machine learning models.

7.3.1 Cleaning for SQL Aggregate Queries
SampleClean [Wang et al. 2014] targets the problem of answering aggregate queries
when the input data is dirty. Since cleaning a large input dirty dataset is usually
time consuming and requires human expertise, SampleClean aims at answering a
query only by cleaning a sample of the dirty dataset, and at the same time, providing
confidence interval guarantees for the query results.

SampleClean addresses aggregate queries of the following form:

SELECT f(a) FROM R WHERE predicate GROUP BY gb_attrs

where f(a) is avg, sum, count on attribute a. SampleClean assumes that there are
two types of errors in the input R: attribute error and duplication error. A row r ∈ R is
said to have an attribute error if one of the attributes of r is incorrect or has a missing
value, and a row r ∈ R is said to have a duplication error if there exist other records
in R that refer to the same entity. For every dirty relation R, SampleClean assumes
there is a clean relation Rclean where attribute errors are corrected and duplicates are
merged into a canonical representation. Furthermore, SampleClean assumes an
oracle black-box data cleaning function C(.) which takes a input row r and returns
the cleaned version Correct(r), as well as the number of times Numdup(r) the record
is duplicated in the entire dataset.

Before we describe how SampleClean provides a confidence interval for aggre-
gate queries, consider a simple problem of estimating the mean value of a set of
real numbers R from a sample S. If S is randomly sampled from R, the central
limit theorem states that these estimates follow a normal distribution. Because
of this, the mean of R can be estimated by mean(S) with a confidence interval

mean(S)± λ

√
var(S)

k parameterized by λ (e.g., 95% indicates λ= 1.96), where k is
the number of rows in the sample S. To leverage the existing results, SampleClean
reformulates the aggregate function F(A) (sum, count, avg) on an attribute A of
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Figure 7.8 SampleClean Framework [Wang et al. 2014].

R as calculating a mean value with F(S)= 1
k

∑
r∈S φ(r), where φ(r) expresses the

necessary scaling to translate the query into the mean value calculation:

. count: φ(r)= predicate(r) . N

. sum: φ(r)= predicate(r) . N . r[A]

. avg: φ(r)= predicate(r) k
kpred

. r[A],

where predicate(r) returns 1 or 0 depending on whether r satisfies the predicate,
and kpred is the number of rows in the sample that satisfies the predicate.

Figure 7.8 illustrates the SampleClean framework. SampleClean first generates
a sample of dirty data, and then invokes the oracle data cleaning function to clean
the dirty sample. SampleClean then uses the cleaned sample to answer aggregate
queries and gives unbiased estimates with confidence intervals, meaning that in
expectation the estimates are equal to the query results if the entire dataset was
first cleaned and then used to answer the query. SampleClean provides two types of
estimates for a query, namely, RawSC and NormalizedSC. RawSC directly estimates
the true query result based on the cleaned sample, and NormalizedSC uses the
difference between the cleaned sample and the dirty sample to correct the error in
a query result over the entire dirty data. To obtain unbiased estimates, SampleClean
has to account for duplicates when sampling. For example, consider a query asking
for the average number of citations of all papers published every year, grouping by
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year. Assume that the table has duplicates and papers with higher citation counts
tend to have more duplicates. The more duplicates a paper has, the more likely that
paper is sampled, leading to over-estimated average citation count per year when
random sampling is used. Therefore, SampleClean samples a tuple that has more
duplicates with a smaller probability. Specifically, a tuple with no duplicates is c
times more likely to be included in the sample than a tuple with c duplicates. We
now describe RawSC and NormalizedSC in detail.

RawSC runs the query directly on a cleaned sample S drawn from R, which is
not equivalent to computing the query result on a sample directly drawn from the
clean data Rclean. Consider the case where data has duplication errors. Sampling
from the dirty data R leads to an overrepresentation of the duplicated rows in
the sample. Even if data cleaning is applied on the sample S, the sample S is not
uniform. RowRC, thus, defines a new function φclean(r), similar to φ(r), that corrects
attribute values and rescales to ensures that the estimate is unbiased. As discussed,
SampleClean considers two types of errors.

. Attribute errors only affect individual rows, and thus the probability a given
tuple is sampled is not changed by cleaning. Therefore, for attribute errors,
φclean(r) can be defined as φclean(r)= φ(Correct(r)).

. The duplication error, on the other hand, affects the uniform sampling since
duplicated rows are more likely to be sampled. This problem is addressed
by SampleClean with a weighting scheme. Specifically, if a tuple r is dupli-
cated m= Numdup(r) times, then the tuple should have a factor of 1

m weight
compared with other tuples in the sample. SampleClean derives the follow-
ing φclean(r) for duplication errors to achieve unbiased estimate: (1) for sum,
count queries, applying φclean(r)= φ(r)

m yields an unbiased estimate; and (2)
for avg query, the result needs to be scaled by the duplication rate d = k

k′ ,
where k′ =∑

i
1

mi
, with mi denoting the number of duplicates for row ri in the

sample. Applying φclean(r)= d . φ(r)
m yields an unbiased estimate (see Wang

et al. [2014] for proof).

Given φclean(r), RawSC estimates the aggregate query f in the following way given
a sample S of the input R.

1. Apply φclean(r) to every row r ∈ S in the sample and call the resulting set
φclean(S).

2. Calculate the mean μc and the variance δ2
c of the set φclean(S).

3. Return μc ± λ

√
δ2

c
k .
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While RawSC runs the aggregate directly on the sample, NormalizedSC uses the
difference between the cleaned sample and the dirty sample to correct the error
in a query result over the entire dirty data. The difference is defined as ε = f (R)−
f (Rclean)= 1

N

∑
r∈R(φ(r)− φclean(r)). In other words, the difference is the average of

how much φclean(r) changes φ(r) for every row r. To estimate the difference for a
sample S, SampleClean constructs the set of differences between φclean(r) and φ(r)
for every row r ∈ S: Q= {φ(r1)− φclean(r1), φ(r2)− φclean(r2), . . . , φ(rk)− φclean(rk)}.
The mean value of the set Q is an unbiased estimate of ε, the difference between f (R)

and f (Rclean). SampleClean subtracts this estimate from an existing aggregation of
data to get an estimate of f (Rclean) as follows.

1. Apply φclean(r) to every row r ∈ S in the sample and calculate the set of differ-
ences Q(S).

2. Calculate the mean μq and the variance δ2
q of the set Q(S).

3. Return (f (R)− μq)± λ

√
δ2

q
k .

Comparing RawSC with NormalizedSC shows that both achieve unbiased esti-
mates. However, we can see that RawSC gives an estimate that is proportional to
the variance of the cleaned sample δ2

c , while NormalizedSC gives an estimate that is
proportional to the variance of the differences before and after cleaning δ2

q. If there
are small errors in the sample, Sclean will be highly similar to S, and NormalizedSC
will give high accuracy estimate. If errors are large but the absolute variances of
values in the aggregate attribute are small, RawSC gives a more accurate estimate.

7.3.2 Cleaning for ML Analytics
We discuss the need of handling errors for ML analytics. While it is widely recog-
nized that errors in training data affect model accuracy, the study of how different
types of errors affect different ML models and how to handle errors in ML datasets
is in its infancy. The following example highlights the possible effects of dirty data
on ML models and the challenges of cleaning for ML.

Example 7.3 Consider training a linear regression model on a dataset that has systematic errors,
for example, due to measuring equipment malfunctioning. Figure 7.9(a) shows
a scenario where one variable (x-axis) is systematically corrupted, leading to a
shifted regression model. Training the model on a mix of dirty and clean data
is also problematic. Figure 7.9(b) shows a scenario where two of the dirty data
points are cleaned, leading to a learned model completely different from the cor-
rect model. This is a well-known phenomenon called Simpson’s Paradox [Simpson
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Result

(a) Systemic error

Clean
Dirty

True
Result

(b) Mixed dirty and clean

True
Result

(c) Samples clean data

True

Figure 7.9 Systematic biases in training data lead to inaccurate models [Krishnan et al. 2016].

1951]. Training the model only a sample of the cleaned data, similar to Sample-
Clean, can also result in incorrect models, as shown in Figure 7.9(c).

We classify existing approaches for dealing with errors in the training data
into three types and postulate that future approaches would also fit into these
categories: (1) by using an error-robust ML model; (2) by cleaning errors in the
training data; and (3) by modeling the errors in the model learning process.

Error-Robust ML Models. This type of approach relies on ML algorithms that are
naturally robust or not too sensitive to errors in the training data. Indeed, studies
have shown that different ML algorithms are influenced by errors in different ways
[Nettleton et al. 2010, Zhu and Wu 2004]. For example, AdaBoost [Freund and
Schapire 1997] is known to be very sensitive to erroneous labels, as it tries to fit
noisy instances by increasing their weights in training; decision trees are known
to be able to handle missing values natively, while linear models cannot; and least
square regression is highly sensitive to outliers. In essence, for approaches in this
category, error handling is by done by choosing the appropriate ML models that
are known to be more robust to the errors at hand.

Cleaning for Learning. This category of approaches detects and fixes errors be-
fore or during the learning process. Techniques in this category can further be
divided into model-agnostic cleaning and model-specific cleaning. All data clean-
ing algorithms discussed in previous chapters can be considered as model-agnostic
cleaning methods, as the cleaning solutions are not based on the downstream ML
models. The advantage of model-agnostic cleaning methods is that the cleaning is
done only once and can potentially benefit multiple ML models. However, as we
have shown, cleaning itself is an iterative and expensive process, and it is hard to
assess whether a dataset is 100% clean without ground truth. In contrast, model-
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specific cleaning methods save cleaning efforts by focusing on cleaning parts of the
data so as to maximize gains on specific models. The downside for model-specific
cleaning is that the cleaning efforts may not be reusable for a different ML model.
In the following, we describe ActiveClean [Krishnan et al. 2016], a model-specific
cleaning method.

ActiveClean [Krishnan et al. 2016] is an example of cleaning data intelligently
for convex models that are trained using gradient descent methods. Formally, the
class of predictive modeling problem ActiveClean addresses is as follows: Given a
set of labeled training examples {(xi , yi)}N

i=1, the training problem is to find a vector
of model parameters θ by minimizing a loss function φ over all training examples:

θ∗ = arg min
θ

N∑
i=1

φ(xi , yi , θ),

where φ is a convex function in θ . Convexity is a required property to ensure that the
iterative optimization converges to a true global optimum, and ActiveClean applies
convergence arguments from convex optimization theory to show that ActiveClean
converges. Without loss of generality, all regularizations are treated as part of the
loss function. Given a dirty relation R, where every record r ∈ R can be mapped into
a feature vector x and a label y, a convex loss function φ, and a black-box cleaner C(.)
which takes a dirty row r and returns a cleaned version C(r), ActiveClean returns a
reliable estimate θ̂ given a limit k on the number of invocations of C(.). A reliable
estimate, in this context, means that the expected error in the estimate θ̂ is bounded
by a monotonically decreasing function in k.

The key insight of ActiveClean is that convex loss models (e.g., linear regression)
can be trained and cleaned simultaneously. Mini-batch stochastic gradient descent
(SGD) is an algorithm for finding the optimal θ , which starts with an initial θ(0) and
iteratively θ(t+1) with θ(t) and gradient taken at θ(t). Specifically, in each iteration
of mini-batch SGD, a random subset of R is selected and the average gradient is
computed. θ(t+1) is then updated using θ(t+1) = θ(t) − λ∇φ(θ(t)), where λ is the
learning rate and ∇φ(θ(t))= 1

|S|
∑|S|

i=i ∇φ(xi , yi , θ t) is the average gradient for the
batch S with respect to the dirty data. ActiveClean modifies the mini-batch SGD
in the following way: instead of calculating average gradient with respect to the
dirty data, ActiveClean calculates the average gradient with respect to the cleaned
data in the batch, namely, ∇φ(θ(t)) = 1

|S|
∑|S|

i=i ∇φ(C(xi), C(yi), θ t). The iterative
process is guaranteed to converge if every record has a non-zero probability of being
sampled in a batch, which follows from the convergence properties of mini-batch
SGD algorithm.



220 Chapter 7 Machine Learning and Probabilistic Data Cleaning

Modeling Errors in the Learning Process. This category of techniques involves actu-
ally adjusting the learning algorithms to model the errors in the training data. The
difficulties in these approaches involve how to model the errors in the training data,
as they are often not known in advance. In the following, we use Snorkel [Ratner
et al. 2017] as an example of how the errors in the training data are modeled as
probabilistic training data, and how the learning algorithm takes the probabilistic
labels into training.

Snorkel is developed to generate labeled training data for learning a supervised
classification model hθ which, given a data point x ∈ X , predicates a label y ∈ Y.
Snorkel targets settings when there is not enough training data for learning a
good model and generates training labels by soliciting a set of labeling functions
from users. A labeling function λ : X → Y ∪ {∅} takes as input a unlabeled data
point and outputs a label, where ∅ denotes that the labeling function abstains (i.e.,
cannot provide a label for a data point). Users can write many labeling functions
according to their domain knowledge, and each labeling function provides a weak
signal to the true label of a data point. Given m unlabeled points and n labeling
functions, Snorkel applies all labeling functions to all points and produces a m×
n label matrix �, where �ij ∈ Y ∪ {∅}. Given �, Snorkel denoises these labeling
functions to produce probabilistic training labels Ỹ = (ỹ1, . . . , ỹm), where ỹi ∈ [0, 1].
The probabilistic training labels are then used to train a supervised classification
model. We now describe how � is used to obtain Ỹ and how Ỹ is used for model
training.

Given �, Snorkel aims at modeling and integrating the noisy signals provided
by n labeling functions and produces the probabilistic labels Ỹ . Essentially, Snorkel
uses the agreements and disagreements of the labeling functions on different data
points to learn the accuracy and dependencies of labeling functions via factor graph
models [Ratner et al. 2016]. There are three factors used: the labeling propensity,
accuracy, and pairwise correlations of labeling functions:

φLab
i , j = 11{�ij �= ∅}

φAcc
i , j = 11{�ij = yi}

φCorr
i , j , k = 11{�ij =�ik}, (j , k) ∈ C.

For a given point xi, let φi(�, yi) is used as the concatenated vector of these factors
for all labeling functions, and let w ∈ R2n+|C| be the vector of parameters. This
defines the probabilistic model used in Snorkel:
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pw(�, Y)= 1
Zw

exp

(
m∑

i=1

wTφi(�, yi)

)
.

To learn this model, i.e., w, Snorkel minimizes the negative log marginal likelihood
given the observed label matrix �:

ŵ= arg min
w

− log
∑

Y

pw(�, Y).

The probabilistic training labels are then defined as Ŷ = pŵ(Y |�).
Given Ỹ , Snorkel simply trains a supervised model hθ by minimizing a noise-

aware variant of the loss function l(hθ(xi), y), i.e., the expected loss with respect
to Ỹ :

θ̂ = arg min
θ

m∑
i=1

Ey∼Y [l(hθ(xi), y)].

Snorkel shows that as the amount of unlabeled data increases, the generalization
error of the supervised model will decrease at the same asymptotic rate as tradi-
tional supervised learning models do with additional hand-labeled data [Ratner
et al. 2016].

7.3.3 Conclusion
In this chapter, we explored the synergies between machine learning and data
cleaning, in terms of both how ML can help with data cleaning activities and how
data cleaning is important for data analytics, including ML.

ML techniques hold great promise for developing better data cleaning solutions.
We discussed how ML is used for data deduplication, a data cleaning problem that
is a natural fit for applying a binary classifier. We showed how to use leverage active
learning to judiciously solicit informative training examples, and also how recent
developments in deep learning (e.g., word embeddings) can increase classifier
accuracies in certain cases. We then introduced a probabilistic unclean database
model, and presented HoloClean as an example of using that model for data
repair. HoloClean [Rekatsinas et al. 2017a] uses probabilistic graphical models to
accumulate various signals to determine the most likely repair for an erroneous cell.

Ensuring high quality data, for example, through data cleaning is important
for downstream data analytics as well. We first discussed SampleClean [Wang
et al. 2014] which targets SQL aggregate queries. It shows how cleaning only a
sample of the dirty data is sufficient to provide confidence intervals on answers to
aggregate queries. We then surveyed different strategies for handling errors in ML
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analytics, including using error-robust ML models, cleaning errors before training,
and modeling errors in the learning process.

We believe that the recent rapid developments in both ML and data cleaning
will spark promising research at the intersection of these two fields. This chapter
provides a starting point for readers interested in this direction, and we hope to
see many more ML-inspired data cleaning solutions and model-specific cleaning
solutions in the near future.



8Conclusion and
Future Thoughts

Data cleaning is a complex process; we shed some light on some of the founda-
tional aspects of data cleaning efforts. In particular, we focus on some of the most
commonly encountered topics, namely, outlier detection, data dedupilcation, data
transformation, rule-based data cleaning, and ML-guided data cleaning.

Outlier detection. Outlier detection has many important applications, includ-
ing credit card fraud detection and network intrusion detection. We in-
troduced a taxonomy for outlier detection techniques that includes three
broad categories: statistics-based techniques, distance-based techniques,
and model-based techniques. We discussed example techniques in each cat-
egory and the pros and cons of each category of techniques. In addition, we
showed how contextual outlier detection techniques and subspace outlier
detection techniques can be used to address the “curse of dimensionality”
in high-dimensional outlier detection.

Data deduplication. Data deduplication is perhaps the most well-studied prob-
lem in data cleaning. Due to the amount of work in this area, we discussed
different aspects of designing a data deduplication workflow, including simi-
larity metrics, classifiers used to determine duplicates, clustering algorithms
used to identify clusters of records referring to the same real world entity,
different fusion strategies to consolidate multiple records into a canonical
representation, blocking strategies to reduce the number of comparisons by
avoiding comparing record pairs that are unlikely to be matches, distribution
strategies to scale out the data deduplication process, and human involve-
ment in the process. We also highlighted some open-source and commercial
data deduplication tools.
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Data transformation. Data transformation has many uses in different stages
of an ETL process. We categorized data transformation tasks into syntactic
transformations and semantic transformations; their main differences are
whether external data sources are needed to perform the transformation.
We identified three major components of a syntactic transformation tool:
language, authoring, and execution. We used different syntactic transforma-
tion tools to illustrate these three dimensions. For semantic transformation,
we discussed example-driven techniques as well as data exchange, which can
be seen as a form of semantic transformation.

Rule-based data cleaning. Rule-based data cleaning techniques detect and re-
pair errors based on data quality rules, which are often expressed as certain
forms of integrity constraints. Since manually designing data quality rules
requires human expertise and is often time consuming, we discussed tech-
niques for automatically discovering data quality rules expressed in a variety
of languages. We discussed three main challenges associated with detecting
violations with respect to a set of rules. We also presented a taxonomy to clas-
sify different error repair techniques based on what to repair, how to repair,
and where to repair.

ML-guided data cleaning. ML-guided data cleaning techniques leverage ML
to detect and repair errors. In particular, we discussed in detail how active
learning can be used to solicit training examples from users that are most
beneficial to train a classifier for predicting duplicate record pairs. We also
showed that probabilistic graphical models can be used to holistically reason
about various kinds of signals, which together determine the probabilities
of different fixes.

Despite the advances in data cleaning research, academic solutions are still
rarely adopted in practice. First, while holistic data cleaning proposals have started
to appear, most current data cleaning solutions still consider one type of error at
a time. They are generally not adequate to deal with real-world scenarios, where
errors interact with each other in complex ways. Second, most of the techniques do
not scale well. They either have quadratic complexity or require multiple passes on
the whole dataset. Third, most of the parameters of these tools are hard to configure
or are non-existent. For example, rule-based cleaning requires a rich set of ICs that
is expensive to obtain. Fourth, there is usually a space decoupling between where
errors are generated and where errors are detected. While errors are easily spotted
downstream near final reports, data sources actually need fixing, which means that
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practical solutions need to maintain and navigate complex provenance information
across heterogeneous systems. Finally, human involvement is expensive. However,
adding humans in the loop is still a necessary precondition for adopting data
cleaning solutions to tune, verify, and approve various automatic decisions.

These challenges—and many other pragmatic reasons—explain the dearth of
deployable and industry-strength data cleaning solutions. The gap between data
cleaning solutions used in large enterprises and what the scientific community
publishes in terms of assumptions, setup, and applicability expands daily. Based
on our experience with real data cleaning customers, the real competitor of aca-
demic proposals are millions of lines of code in scripts and case-specific wrangling
rules written by IT departments struggling to solve their business problems. The
good news is that enterprises are starting to appreciate the need for scalable and
principled cleaning solutions as opposed to their home-grown rule-based systems,
which are starting to be a major technical debt and a burden to maintain. The
scientific community is also getting better at understanding real data cleaning chal-
lenges (including the engineering and pragmatic ones) because of the recent work
of companies like Alation,1 Tamr,2 and Trifacta3 and open-source tools like Magel-
lan [Konda et al. 2016]. They are used by a number of businesses and enterprises.
We envision multiple lines of future research directions that both push the frontiers
of data cleaning research and make the solutions more practical in industry.

Error detection. While we have discussed several ways to detect errors in the
data, many data errors may still remain undetected. One possible line of
research in this direction is to devise more expressive integrity constraint
languages that allow data owners to easily specify data quality rules. Another
direction is to leverage many error detection techniques at the same time for
detecting errors (even non-deterministic errors) and reasoning about them
in a holistic way.

Master data curation. To perform reliable data repair, master data often needs
to be referenced, for example in performing semantic data transformations
and in performing trustworthy data repairing in rule-based data cleaning.
Relevant master data can also greatly reduce human involvement. However,
existing master data sources, such as knowledge bases, often cannot provide
a comprehensive coverage for the data to be repaired. Automatic creation and

1. https://alation.com

2. https://www.tamr.com

3. https://www.trifacta.com
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maintenance of relevant master and authoritative data catalogs are essential
tasks in enabling high-quality repairs.

Human-involved data repairing. Although much research has been done on
involving humans to perform data deduplication, involving humans intel-
ligently in other data cleaning tasks, such as repairing integrity constraint
violations, is yet to be explored.

Scalability. Large volumes of data render most current techniques unusable in
real settings. The obvious trade-off between accuracy and performance has
to be taken more seriously in designing the next generation cleaning algo-
rithms that take time and space budgets into account. Example tools include
sampling and approximate cleaning algorithms, with clear approximation
semantics that can be leveraged by analytics applications.

Privacy and anonymization. In the process of integrating and repairing data,
input from multiple parties often has to be combined or shared, which could
be problematic if data to be integrated or cleaned is private or sensitive, such
as medical history or private customer databases. The obvious research ques-
tion is: “How can existing data cleaning solutions be adapted or modified to
preserve privacy?”

Semi-structured and unstructured data. A significant portion of data is resid-
ing in semi-structured formats, such as JSON, and unstructured formats,
such as text documents. Data quality problems for semi-structured and un-
structured data largely remain unexplored. There are many possible routes
to take, given the variety of techniques already developed for cleaning struc-
tured data (e.g., can we design rules that enforce certain structures of a JSON
document or a graph dataset?).
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H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. 2009. Outlier detection in axis-parallel
subspaces of high dimensional data. In Advances in Knowledge Discovery and Data
Mining, 13th Pacific-Asia Conf., pp. 831–838. Springer. DOI: 10.1007/978-3-642-01307-
2_86. 33, 37, 39

S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. 2016. Activeclean: Interactive
data cleaning for statistical modeling. Proceedings of the VLDB Endowment, 9(12):
948–959. DOI: 10.14778/2994509.2994514. 218, 219

L. V.S. Lakshmanan, F. Sadri, and S. N. Subramanian. 2001. SchemaSQL: An extension to
SQL for multidatabase interoperability. ACM Transactions on Database Systems, 26(4):
476–519. DOI: 10.1145/503099.503102. 94

Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature, 521(7553): 436. 212

E. L. Lehmann and J. P Romano. 2006. Testing Statistical Hypotheses. Springer Sci-
ence+Business Media. 16

J. Leskovec, A. Rajaraman, and J. D. Ullman. 2014. Mining of Massive Datasets. Cambridge
University Press. 62, 63

V.I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions and reversals.
In Soviet Physics Doklady, volume 10, page 707. 49

J. Liang and S. Parthasarathy. 2016. Robust contextual outlier detection: Where context
meets sparsity. In Proceedings of the 25th ACM International Conference on Information
and Knowledge Management, pp. 2167–2172. ACM. DOI: 10.1145/2983323.2983660.
33, 40, 43

http://dx.doi.org/10.1109/TKDE.2003.1232271
http://dx.doi.org/10.1109/TKDE.2003.1232271
http://dx.doi.org/10.14778/3007263.3007314
http://dx.doi.org/10.14778/1920841.1920904
http://dx.doi.org/10.1137/1.9781611972764.71
http://dx.doi.org/10.1137/1.9781611972764.71
http://dx.doi.org/10.1145/1142473.1142599
http://dx.doi.org/10.1109/ICDE.2009.219
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.14778/2994509.2994514
http://dx.doi.org/10.1145/503099.503102
http://dx.doi.org/10.1145/2983323.2983660


References 239

L. Libkin. 2006. Data exchange and incomplete information. In Proceedings of the 25th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 60–69.
ACM. DOI: 10.1145/1142351.1142360. 114, 117

A. Lopatenko and L. E. Bertossi. 2007. Complexity of consistent query answering in databases
under cardinality-based and incremental repair semantics. In Proceedings of the 11th
International Conference on Database Theory, pp. 179–193. DOI: 10.1007/11965893_13.
179, 191

J. Ma and S. Perkins. 2003. Time-series novelty detection using one-class support vector
machines. In Neural Networks, 2003. Proceedings of the International Joint Conference
on, volume 3, pp. 1741–1745. IEEE. DOI: 10.1109/IJCNN.2003.1223670. 32

S. Ma, W. Fan, and L. Bravo. 2014. Extending inclusion dependencies with conditions.
Theoretical Computer Science, 515:64–95. DOI: 10.1016/j.tcs.2013.11.002 . 139

P. C. Mahalanobis. 1936. On the generalized distance in statistics. Proceedings of the National
Institute of Sciences (Calcutta), 2:49–55. 21

D. Maier, A. O. Mendelzon, and Y. Sagiv. 1979. Testing implications of data dependencies.
ACM Transactions on Database Systems, 4(4): 455–469. DOI: 10.1145/320107.320115.
2, 116

C. Mayfield, J. Neville, and S. Prabhakar. 2010. Eracer: A database approach for statistical
inference and data cleaning. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 75–86. DOI: 10.1145/1807167.1807178. 208

A. McCallum and B. Wellner. 2004. Conditional models of identity uncertainty with
application to noun coreference. In Advances in Neural Information Proc. Systems
17, Proc. Neural Information Proc. Systems, pp. 905–912. 205

A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. 2011. Tracing data errors with view-
conditioned causality. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 505–516. DOI: 10.1145/1989323.1989376. 151, 153, 154, 155

M. Michelson and C. A. Knoblock. 2006. Learning blocking schemes for record linkage.
In Proceedings of the 21st National Conf. on Artificial Intelligence and 18th Innovative
Applications of Artificial Intelligence Conf., volume 21, page 440. 62

A. E. Monge and C. Elkan. 1996. The field matching problem: Algorithms and applications.
In Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining, pp. 267–270. 55

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and V.
Raghavendra. 2018. Deep learning for entity matching: A design space exploration.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 19–34. ACM. DOI: 10.1145/3183713.3196926. 200, 201, 202

E. Muller, I. Assent, U. Steinhausen, and T. Seidl. 2008. Outrank: ranking outliers in high
dimensional data. In Proceedings of the Workshops of 24th International Conference on
Data Engineering, pp. 600–603. IEEE. DOI: 10.1109/ICDEW.2008.4498387. 33, 37, 39

F. Naumann and M. Herschel. 2010. An Introduction to Duplicate Detection. Synthesis Lectures
on Data Management. 2, 48

http://dx.doi.org/10.1145/1142351.1142360
http://dx.doi.org/10.1007/11965893_13
http://dx.doi.org/10.1109/IJCNN.2003.1223670
http://dx.doi.org/10.1016/j.tcs.2013.11.002 
http://dx.doi.org/10.1145/320107.320115
http://dx.doi.org/10.1145/1807167.1807178
http://dx.doi.org/10.1145/1989323.1989376
http://dx.doi.org/10.1145/3183713.3196926
http://dx.doi.org/10.1109/ICDEW.2008.4498387


240 References

D. F. Nettleton, A. Orriols-Puig, and A. Fornells. 2010. A study of the effect of different types
of noise on the precision of supervised learning techniques. Artificial Intelligence
Review, 33(4): 275–306. DOI: 10.1007/s10462-010-9156-z. 218

H. B. Newcombe, J. M. Kennedy, S.J. Axford, and A. P. James. 1959. Automatic linkage of
vital records. Science, 130(3381): 954–959. 55

V. Ng and C. Cardie. 2002. Improving machine learning approaches to coreference
resolution. In Proceedings of the 40th Annual Meeting Assoc. for Computational
Linguistics, pp. 104–111. DOI: 10.3115/1073083.1073102. 60

A. Okcan and M. Riedewald. 2011. Processing theta-joins using mapReduce. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pp. 949–960.
ACM. DOI: 10.1145/1989323.1989423. 68

G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. 2014. Meta-blocking: Taking entity
resolutionto the next level. IEEE Transactions on Knowledge and Data Engineering,
26(8): 1946–1960. DOI: 10.1109/TKDE.2013.54. 61

G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. 2016. Comparative analysis of approximate
blocking techniques for entity resolution. Proceedings of the VLDB Endowment, 9(9):
684–695. DOI: 10.14778/2947618.2947624. 61

S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. 2003. LOCI: fast outlier
detection using the local correlation integral. In Proceedings of the 19th International
Conference on Data Engineering, pp. 315–326. DOI: 10.1109/ICDE.2003.1260802. 30

T. Papenbrock and F. Naumann. 2016. A hybrid approach to functional dependency
discovery. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 821–833. ACM. DOI: 10.1145/2882903.2915203. 128, 130, 148

T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. 2015a. Functional dependency discovery: An experimental evaluation
of seven algorithms. Proceedings of the VLDB Endowment, 8(10): 1082–1093. DOI:
10.14778/2794367.2794377. 125
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Nested loop algorithms in outlier detection,
27–28

New York State Identification and
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(NYSIIS), 54
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141–144

Noisy dataset versions in HoloClean,
208

Nonparametric approaches in outlier
detection, 23–26

Normal distribution, 15–16
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NormalizedSC estimates in SampleClean,
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Null hypotheses, 16
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141–144
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One-sided version of Grubbs’ test, 17
Oracle Enterprise Data Quality, 118
Outlier detection, 2

applications, 5, 11
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conclusion, 44–45, 223
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high-dimensional data. See High-

dimensional data, outlier detection
in

model-based, 14–15, 30–32
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Outlier detection (continued)
statistics-based. See Statistics-based

outlier detection methods
taxonomy, 12–15

OutRank method in outlier detection, 39
Overlap coefficient in token-based similarity

metrics, 52–53
Overlap similarity in similarity-based

blocking, 64–65

Parallel computation model for data
deduplication, 67–68

Parameter tying in HoloClean, 211
Parametric approach and factors

outlier detection, 19–23
probabilistic data cleaning models, 205

Partition function in HoloClean, 209
Pattern discovery in KATARA, 189
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conditional functional dependencies,
130

rules-only repair, 173
Pattern tables for numeric functional

dependencies, 142
Pattern validation in KATARA, 189
PCA (Principal Component Analysis), 33
pdf (probability density function) in outlier

detection, 13
PGM (probabilistic graphical model),

205
Phonetics-based similarity metrics, 53–54
Phonix system, 54
Physical layer in BigDansing system, 160–

161
Poisson distribution in outlier detection, 27
Possible worlds semantics, 77–78
Potter’s Wheel

syntactic data transformations, 94
transformation authoring, 99

Preciseness in DBRx system, 159
Precision of blocking functions, 61
Predicates

denial constraints, 133, 137
FASTDC, 134–135

Hydra, 138
Scorpion system, 155–157
SQL queries, 214–215

Predicting duplicate pairs, 54–56
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64–66
Preliminary evidences in Hydra, 137–138
Principal Component Analysis (PCA), 33
Principle of minimality in data cleaning

models, 206
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Proactive authoring in Data Wrangler

system, 103–106
Proactive transformations, 99
Probabilistic classifiers, 177–178
Probabilistic data cleaning, 203–205
Probabilistic graphical model (PGM), 205
Probabilistic training labels in Snorkel, 220
Probability density function (pdf) in outlier

detection, 13
Programming by example, 102–103

Q-grams, 52–53
Queries

data exchange, 116–117
error repair, 162–163, 190–191
probabilistic resolution, 77–78
Scorpion, 141–143
SQL, 214–217
transformations, 108–113

QuickCode system
syntactic data transformations, 94, 96–97
transformation authoring, 102–103
transformation execution, 107

R-trees in outlier detection, 27
Random projections in high-dimensional

data, 33
RawSC estimates in SampleClean, 215–217
Reachability distance in outlier detection,

29
Realization process in probabilistic data

cleaning models, 203–205
Recall of blocking functions, 61
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Record fusion and entity consolidation in
data deduplication

conflict resolution advanced techniques,
78–81

conflict resolution strategies, 74–76
overview, 73–74
probabilistic resolution, 76–78

Reducer allocation in distributed data
deduplication, 72–73

Reduction ratio in blocking for deduplica-
tion, 61–62

Refine phase in DataXFormer, 109–110,
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Refinement component in DataXFormer,
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Region algorithms in outlier detection, 27
Relative trust between data and constraints,

174–176
Relevant subspace in outlier detection, 39
Relevant tables in DataXFormer, 109
Reliable estimate in ActiveClean, 219
Repair

error. See Error repair; Repair targets
machine learning, 203–214

Repair targets
data and rule repair, 173–178
holistic data repair, 166–172
one-at-a-time data repair, 163–166
overview, 161–162
rules-only repair, 172–173

Repairing stage in HoloClean, 208
Responsibility in causality analysis, 154
Robust statistics

description, 15
statistics-based outlier detection

methods, 19–23
Rule-based data cleaning

conclusion, 193–194, 224
description, 7–8
error repair. See Error repair
overview, 149
violation detection, 149–161

Rules-only repair, 172–173
Run Sequence Plot technique, 18

SampleClean, 214–217
Sampling FDs repairs algorithm, 192–193
Scalability

clustering, 57, 60
conclusion, 226

Scalable violation detection, 159–161
Schema-driven FD discovery, 125
SchemaSQL, 94
Scope operator in BigDansing system, 160
Scorpion system, 155–157
Self-joins in data deduplication, 68–71
Semantic data transformations

data exchange, 116–117
description, 91
by example, 108–113
overview, 107–108

Semi-structured data
conclusion, 226
data transformations, 93

Sensitivity analysis in Scorpion system, 155
Set-minimal repairs, 179
SGD (stochastic gradient descent)

algorithm, 219
Sherlock rules, 145–147
Shingling, 63
Signatures in unified cost model, 176–177
Significance level in hypothesis testing, 16
Similarity-based blocking for deduplication,

64–66
Similarity graphs, 47, 57
Similarity metrics

character-based, 49–52
overview, 49
phonetics-based, 53–54
token-based, 52–53

Single blocking functions, 71–72
Single-reducer blocks, 71–72
Singular value decomposition (SVD), 33
Smoothness property in KDE, 25–26
Snorkel project, 213, 220–221
SOD method for outlier detection, 39
Solution integration component in

DataXFormer, 109
Solutions in data exchange, 116
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Sorting keys in similarity-based blocking,
64

Soundex algorithm, 53–54
Source-to-target dependencies in data

exchange, 114
Sources in conflict resolution
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Space of predicates in FASTDC, 134–
135

Sparsity coefficient in subspace outliers,
37–38

Spatial index structures algorithms in
outlier detection, 27

Split operation in Data Wrangler, 95–96,
105

Splitting clusters, 58
SQL aggregate queries, 214–217
SQL Server Integration Services, 118
Standard variance, 15–16
Statistics-based outlier detection methods,
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data distribution, 15–16
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approaches, 23–26
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approaches, 19–23
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overview, 12–13

Stochastic gradient descent (SGD)
algorithm, 219
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metrics, 50
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Suitability scores in Data Wrangler system,
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Supervised techniques in predicting
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model-based outlier detection methods,
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predicting duplicate pairs, 55

SVD (singular value decomposition), 33
Syntactic data transformations
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overview, 93–94
transformation authoring, 99–106
transformation execution, 106–107
transformation languages, 93–99

Tableaus
conditional functional dependencies,
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rules-only repair, 173

TANE FD discovery, 125–127
Template-based graphical models, 211
Test statistic T, 16
Tietjen-Moore Test, 13, 17
Token-based similarity metrics, 52–53
Top-down clustering, 58
Training data in deep learning, 212–213
Transform-Data-by-Example, 6–7
Transformation. See Data transformation
Transformation authoring

Data Wrangler system, 100–101, 103–106
KNIME system, 101–102
overview, 99–100
QuickCode system, 102–103

Transformation by example, 99
Transformation languages, 93–99
Transitivity-based clustering, 57
Triangle data distribution, 69–71
Tuple check constraints in conditional

functional dependencies, 131
Tuple-independent probabilistic database,

204–205
Two-sample t-tests, 16
Two-sided version of Grubbs’ test, 17
Typographical errors in data deduplication,
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show that dirty data is the most common barrier faced by data scientists. 
Not surprisingly, developing effective and efficient data cleaning solutions 
is challenging and is rife with deep theoretical and engineering problems.
 This book is about data cleaning, which is used to refer to all kinds 
of tasks and activities to detect and repair errors in the data. Rather than 
focus on a particular data cleaning task, we give an overview of the end-
to-end data cleaning process, describing various error detection and repair 
methods, and attempt to anchor these proposals with multiple taxonomies 
and views. Specifically, we cover four of the most common and important 
data cleaning tasks, namely, outlier detection, data transformation, 
error repair (including imputing missing values), and data deduplication. 
Furthermore, due to the increasing popularity and applicability of machine 
learning techniques, we include a chapter that specifically explores how 
machine learning techniques are used for data cleaning, and how data 
cleaning is used to improve machine learning models.
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cleaning. It can also be used as a textbook for a graduate course. Although 
we aim at covering state-of-the-art algorithms and techniques, we 
recognize that data cleaning is still an active field of research and therefore 
provide future directions of research whenever appropriate.


	Contents
	Preface
	Figure and Table Credits
	1. Introduction
	2. Outlier Detection
	3. Data Deduplication
	4. Data Transformation
	5. Data Quality Rule Definition and Discovery
	6. Rule-Based Data Cleaning
	7. Machine Learning and Probabilistic Data Cleaning
	8. Conclusion and Future Thoughts
	References
	Index
	Author Biographies
	Blank Page



