
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning IPython for Interactive
Computing and Data
Visualization
Second Edition

Get started with Python for data analysis and numerical
computing in the Jupyter notebook

Cyrille Rossant

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning IPython for Interactive Computing
and Data Visualization
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Second edition: October 2015

Production reference: 1151015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-698-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Cyrille Rossant

Reviewers
Damián Avila

Nicola Rainiero

G Scott Stukey

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Kartikey Pandey

Richard Brookes-Bland

Content Development Editor
Arun Nadar

Technical Editor
Pranil Pathare

Copy Editor
Stephen Copestake

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Cyrille Rossant is a researcher in neuroinformatics, and is a graduate of Ecole
Normale Superieure, Paris, where he studied mathematics and computer science.
He has worked at Princeton University, University College London, and College
de France. As part of his data science and software engineering projects, he gained
experience in machine learning, high-performance computing, parallel computing,
and big data visualization.

He is one of the main developers of VisPy, a high-performance visualization package
in Python. He is the author of the IPython Interactive Computing and Visualization
Cookbook, Packt Publishing, an advanced-level guide to data science and numerical
computing with Python, and the sequel of this book.

I am grateful to Nick Fiorentini for his help during the revision of
the book. I would also like to thank my family and notably my wife
Claire for their support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Damián Avila is a software developer and data scientist (formerly a biochemist)
from Córdoba, Argentina.

His main focus of interest is data science, visualization, finance, and
IPython/Jupyter-related projects.

In the open source area, he is a core developer for several interesting and popular
projects, such as IPython/Jupyter, Bokeh, and Nikola. He has also started his own
projects, being RISE, an extension to enable amazing live slides in the Jupyter
notebook, the most popular one. He has also written several tutorials about
the Scientific Python tools (available at Github) and presented several talks
at international conferences.

Currently, he is working at Continuum Analytics.

Nicola Rainiero is a civil geotechnical engineer with a background in the
construction industry as a self-employed designer engineer. He is also specialized
in the renewable energy field and has collaborated with the Sant'Anna University
of Pisa for two European projects, REGEOCITIES and PRISCA, using qualitative
and quantitative data analysis techniques.

He has an ambition to simplify his work with open software and use and develop
new ones; sometimes obtaining good results, at other times, negative. You can reach
Nicola on his website at http://rainnic.altervista.org.

A special thanks to Packt Publishing for this opportunity to
participate in the reviewing of this book. I thank my family,
especially my parents, for their physical and moral support.

www.allitebooks.com

http://rainnic.altervista.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with IPython 1

What are Python, IPython, and Jupyter? 1
Jupyter and IPython 2
What this book covers 4
References 5

Installing Python with Anaconda 5
Downloading Anaconda 6
Installing Anaconda 6
Before you get started... 7

Opening a terminal 7
Finding your home directory 8
Manipulating your system path 8

Testing your installation 9
Managing environments 9
Common conda commands 10
References 11
Downloading the notebooks 12

Introducing the Notebook 13
Launching the IPython console 13
Launching the Jupyter Notebook 14
The Notebook dashboard 15
The Notebook user interface 16
Structure of a notebook cell 16

Markdown cells 17
Code cells 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The Notebook modal interface 19
Keyboard shortcuts available in both modes 19
Keyboard shortcuts available in the edit mode 19
Keyboard shortcuts available in the command mode 20

References 20
A crash course on Python 20

Hello world 21
Variables 21
String escaping 23
Lists 24
Loops 26
Indentation 27
Conditional branches 27
Functions 28
Positional and keyword arguments 29
Passage by assignment 30
Errors 31
Object-oriented programming 32
Functional programming 34
Python 2 and 3 35
Going beyond the basics 36

Ten Jupyter/IPython essentials 37
Using IPython as an extended shell 37
Learning magic commands 42
Mastering tab completion 45
Writing interactive documents in the Notebook with Markdown 47
Creating interactive widgets in the Notebook 49
Running Python scripts from IPython 51
Introspecting Python objects 53
Debugging Python code 54
Benchmarking Python code 55
Profiling Python code 56

Summary 58
Chapter 2: Interactive Data Analysis with pandas 59

Exploring a dataset in the Notebook 59
Provenance of the data 60
Downloading and loading a dataset 61
Making plots with matplotlib 63
Descriptive statistics with pandas and seaborn 67

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Manipulating data 69
Selecting data 69

Selecting columns 70
Selecting rows 70
Filtering with boolean indexing 72

Computing with numbers 73
Working with text 75
Working with dates and times 76
Handling missing data 77

Complex operations 78
Group-by 78
Joins 80

Summary 83
Chapter 3: Numerical Computing with NumPy 85

A primer to vector computing 85
Multidimensional arrays 86
The ndarray 86
Vector operations on ndarrays 87
How fast are vector computations in NumPy? 88
How an ndarray is stored in memory 89
Why operations on ndarrays are fast 91

Creating and loading arrays 91
Creating arrays 91
Loading arrays from files 93

Basic array manipulations 94
Computing with NumPy arrays 97

Selection and indexing 98
Boolean operations on arrays 99
Mathematical operations on arrays 100
A density map with NumPy 103
Other topics 107

Summary 108
Chapter 4: Interactive Plotting and Graphical Interfaces 109

Choosing a plotting backend 109
Inline plots 109
Exported figures 111
GUI toolkits 111
Dynamic inline plots 113
Web-based visualization 114

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

matplotlib and seaborn essentials 115
Common plots with matplotlib 116
Customizing matplotlib figures 120
Interacting with matplotlib figures in the Notebook 122
High-level plotting with seaborn 124

Image processing 126
Further plotting and visualization libraries 129

High-level plotting 129
Bokeh 130
Vincent and Vega 130
Plotly 131

Maps and geometry 132
The matplotlib Basemap toolkit 132
GeoPandas 133
Leaflet wrappers: folium and mplleaflet 134

3D visualization 134
Mayavi 134
VisPy 135

Summary 135
Chapter 5: High-Performance and Parallel Computing 137

Accelerating Python code with Numba 138
Random walk 138
Universal functions 141

Writing C in Python with Cython 143
Installing Cython and a C compiler for Python 143
Implementing the Eratosthenes Sieve in Python and Cython 144

Distributing tasks on several cores with IPython.parallel 148
Direct interface 149
Load-balanced interface 150

Further high-performance computing techniques 153
MPI 153
Distributed computing 153
C/C++ with Python 154
GPU computing 154
PyPy 155
Julia 155

Summary 155

Table of Contents

[v]

Chapter 6: Customizing IPython 157
Creating a custom magic command in an IPython extension 157
Writing a new Jupyter kernel 160
Displaying rich HTML elements in the Notebook 165

Displaying SVG in the Notebook 165
JavaScript and D3 in the Notebook 167

Customizing the Notebook interface with JavaScript 170
Summary 172

Index 173

[vii]

Preface
Data analysis skills are now essential in scientific research, engineering, finance,
economics, journalism, and many other domains. With its high accessibility and
vibrant ecosystem, Python is one of the most appreciated open source languages for
data science.

This book is a beginner-friendly introduction to the Python data analysis platform,
focusing on IPython (Interactive Python) and its Notebook. While IPython is an
enhanced interactive Python terminal specifically designed for scientific computing
and data analysis, the Notebook is a graphical interface that combines code, text,
equations, and plots in a unified interactive environment.

The first edition of Learning IPython for Interactive Computing and Data Visualization
was published in April 2013, several months before the release of IPython 1.0. This
new edition targets IPython 4.0, released in August 2015. In addition to reflecting the
novelties of this new version of IPython, the present book is also more accessible to
non-programmer beginners. The first chapter contains a brand new crash course on
Python programming, as well as detailed installation instructions.

Since the first edition of this book, IPython's popularity has grown significantly,
with an estimated user base of several millions of people and ongoing collaborations
with large companies like Microsoft, Google, IBM, and others. The project itself has
been subject to important changes, with a refactoring into a language-independent
interface called the Jupyter Notebook, and a set of backend kernels in various
languages. The Notebook is no longer reserved to Python; it can now also be used
with R, Julia, Ruby, Haskell, and many more languages (50 at the time of this
writing!).

Preface

[viii]

The Jupyter project has received significant funding in 2015 from the Leona M. and
Harry B. Helmsley Charitable Trust, the Gordon and Betty Moore Foundation, and
the Alfred P. Sloan Foundation, which will allow the developers to focus on the
growth and maturity of the project in the years to come.

Here are a few references:

• Home page for the Jupyter project at http://jupyter.org/
• Announcement of the funding for Jupyter at https://blog.jupyter.

org/2015/07/07/jupyter-funding-2015/

• Detail of the project's grant at https://blog.jupyter.org/2015/07/07/
project-jupyter-computational-narratives-as-the-engine-of-
collaborative-data-science/

What this book covers
Chapter 1, Getting Started with IPython, is a thorough and beginner-friendly
introduction to Anaconda (a popular Python distribution), the Python language, the
Jupyter Notebook, and IPython.

Chapter 2, Interactive Data Analysis with pandas, is a hands-on introduction to
interactive data analysis and visualization in the Notebook with pandas, matplotlib,
and seaborn.

Chapter 3, Numerical Computing with NumPy, details how to use NumPy for efficient
computing on multidimensional numerical arrays.

Chapter 4, Interactive Plotting and Graphical Interfaces, explores many capabilities of
Python for interactive plotting, graphics, image processing, and interactive graphical
interfaces in the Jupyter Notebook.

Chapter 5, High-Performance and Parallel Computing, introduces the various techniques
you can employ to accelerate your numerical computing code, namely parallel
computing and compilation of Python code.

Chapter 6, Customizing IPython, shows how IPython and the Jupyter Notebook can be
extended for customized use-cases.

http://jupyter.org/
https://blog.jupyter.org/2015/07/07/jupyter-funding-2015/
https://blog.jupyter.org/2015/07/07/jupyter-funding-2015/
https://blog.jupyter.org/2015/07/07/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science/
https://blog.jupyter.org/2015/07/07/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science/
https://blog.jupyter.org/2015/07/07/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science/

Preface

[ix]

What you need for this book
The following software is required for the book:

• Anaconda with Python 3
• Windows, Linux, or OS X can be used as a platform

Who this book is for
This book targets anyone who wants to analyze data or perform numerical
simulations of mathematical models.

Since our world is becoming more and more data-driven, knowing how to analyze
data effectively is an essential skill to learn. If you're used to spreadsheet programs
like Microsoft Excel, you will appreciate Python for its much larger range of analysis
and visualization possibilities. Knowing this general-purpose language will also let
you share your data and analysis with other programs and libraries.

In conclusion, this book will be useful to students, scientists, engineers, analysts,
journalists, statisticians, economists, hobbyists, and all data enthusiasts.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Run it with a command like bash Anaconda3-2.3.0-Linux-x86_64.sh (if
necessary, replace the filename by the one you downloaded)."

A block of code is set as follows:

def load_ipython_extension(ipython):
 """This function is called when the extension is loaded.
 It accepts an IPython InteractiveShell instance.
 We can register the magic with the `register_magic_function`
 method of the shell instance."""
 ipython.register_magic_function(cpp, 'cell')

Preface

[x]

Any command-line input or output is written as follows:

$ python

Python 3.4.3 |Anaconda 2.3.0 (64-bit)| (default, Jun 4 2015, 15:29:08)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To create
a new notebook, click on the New button, and select Notebook (Python 3)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.
You can also report any issues at https://github.com/ipython-books/minibook-
2nd-code/issues.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you. You will also find the book's
code on this GitHub repository: https://github.com/ipython-books/minibook-
2nd-code.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6989OS_ColouredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6989OS_ColouredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6989OS_ColouredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with IPython
In this chapter, we will cover the following topics:

• What are Python, IPython, and Jupyter?
• Installing Python with Anaconda
• Introducing the Notebook
• A crash course on Python
• Ten Jupyter/IPython essentials

What are Python, IPython, and Jupyter?
Python is an open source general-purpose language created by Guido van Rossum
in the late 1980s. It is widely-used by system administrators and developers for many
purposes: for example, automating routine tasks or creating a web server. Python is
a flexible and powerful language, yet it is sufficiently simple to be taught to school
children with great success.

In the past few years, Python has also emerged as one of the leading open
platforms for data science and high-performance numerical computing. This might
seem surprising as Python was not originally designed for scientific computing.
Python's interpreted nature makes it much slower than lower-level languages like
C or Fortran, which are more amenable to number crunching and the efficient
implementation of complex mathematical algorithms.

However, the performance of these low-level languages comes at a cost: they are
hard to use and they require advanced knowledge of how computers work. In the
late 1990s, several scientists began investigating the possibility of using Python for
numerical computing by interoperating it with mainstream C/Fortran scientific
libraries. This would bring together the ease-of-use of Python with the performance
of C/Fortran: the dream of any scientist!

Getting Started with IPython

[2]

Consequently, the past 15 years have seen the development of widely-used libraries
such as NumPy (providing a practical array data structure), SciPy (scientific
computing), matplotlib (graphical plotting), pandas (data analysis and statistics),
scikit-learn (machine learning), SymPy (symbolic computing), and Jupyter/IPython
(efficient interfaces for interactive computing). Python, along with this set of
libraries, is sometimes referred to as the SciPy stack or PyData platform.

Competing platforms
Python has several competitors. For example, MATLAB (by Mathworks)
is a commercial software focusing on numerical computing that is
widely-used in scientific research and engineering. SPSS (by IBM) is a
commercial software for statistical analysis. Python, however, is free and
open source, and that's one of its greatest strengths. Alternative open
source platforms include R (specialized in statistics) and Julia (a young
language for high-performance numerical computing).

More recently, this platform has gained popularity in other non-academic
communities such as finance, engineering, statistics, data science, and others.

This book provides a solid introduction to the whole platform by focusing on one
of its main components: Jupyter/IPython.

Jupyter and IPython
IPython was created in 2001 by Fernando Perez (the I in IPython stands for
"interactive"). It was originally meant to be a convenient command-line interface
to the scientific Python platform. In scientific computing, trial and error is the rule
rather than the exception, and this requires an efficient interface that allows for
interactive exploration of algorithms, data, and graphs.

In 2011, IPython introduced the interactive Notebook. Inspired by commercial
software such as Maple (by Maplesoft) or Mathematica (by Wolfram Research), the
Notebook runs in a browser and provides a unified web interface where code, text,
mathematical equations, plots, graphics, and interactive graphical controls can be
combined into a single document. This is an ideal interface for scientific computing.
Here is a screenshot of a notebook:

Chapter 1

[3]

Example of a notebook

It quickly became clear that this interface could be used with languages other than
Python such as R, Julia, Lua, Ruby, and many others. Further, the Notebook is not
restricted to scientific computing: it can be used for academic courses, software
documentation, or book writing thanks to conversion tools targeting Markdown,
HTML, PDF, ODT, and many other formats. Therefore, the IPython developers
decided in 2014 to acknowledge the general-purpose nature of the Notebook by
giving a new name to the project: Jupyter.

Jupyter features a language-independent Notebook platform that can work with
a variety of kernels. Implemented in any language, a kernel is the backend of the
Notebook interface. It manages the interactive session, the variables, the data, and so
on. By contrast, the Notebook interface is the frontend of the system. It manages the
user interface, the text editor, the plots, and so on. IPython is henceforth the name
of the Python kernel for the Jupyter Notebook. Other kernels include IR, IJulia,
ILua, IRuby, and many others (50 at the time of this writing).

Getting Started with IPython

[4]

In August 2015, the IPython/Jupyter developers achieved the "Big Split" by splitting
the previous monolithic IPython codebase into a set of smaller projects, including
the language-independent Jupyter Notebook (see https://blog.jupyter.
org/2015/08/12/first-release-of-jupyter/). For example, the parallel
computing features of IPython are now implemented in a standalone Python
package named ipyparallel, the IPython widgets are implemented in ipywidgets,
and so on. This separation makes the code of the project more modular and facilitates
third-party contributions. IPython itself is now a much smaller project than before
since it only features the interactive Python terminal and the Python kernel for the
Jupyter Notebook.

You will find the list of changes in IPython 4.0 at http://ipython.
readthedocs.org/en/latest/whatsnew/version4.html.
Many internal IPython imports have been deprecated due to the
code reorganization. Warnings are raised if you attempt to perform
a deprecated import. Also, the profiles have been removed and
replaced with a unique default profile. However, you can simulate
this functionality with environment variables. You will find more
information at http://jupyter.readthedocs.org.

What this book covers
This book covers the Jupyter Notebook 1.0 and focuses on its Python kernel,
IPython 4.0. In this chapter, we will introduce the platform, the Python language,
the Jupyter Notebook interface, and IPython. In the remaining chapters, we will
cover data analysis and scientific computing in Jupyter/IPython with the help of
mainstream scientific libraries such as NumPy, pandas, and matplotlib.

This book gives you a solid introduction to Jupyter and the SciPy
platform. The IPython Interactive Computing and Visualization Cookbook
(http://ipython-books.github.io/cookbook/) is the sequel of
this introductory-level book. In 15 chapters and more than 500 pages,
it contains a hundred recipes covering a wide range of interactive
numerical computing techniques and data science topics. The IPython
Cookbook is an excellent addition to the present IPython minibook if
you're interested in delving into the platform in much greater detail.

https://blog.jupyter.org/2015/08/12/first-release-of-jupyter/
https://blog.jupyter.org/2015/08/12/first-release-of-jupyter/
http://ipython.readthedocs.org/en/latest/whatsnew/version4.html
http://ipython.readthedocs.org/en/latest/whatsnew/version4.html
http://jupyter.readthedocs.org
http://ipython-books.github.io/cookbook/

Chapter 1

[5]

References
Here are a few references about IPython and the Notebook:

• The main Jupyter page at: http://jupyter.org/
• The main Jupyter documentation at: https://jupyter.readthedocs.org/

en/latest/

• The main IPython page at: http://ipython.org/
• Jupyter on GitHub at: https://github.com/jupyter
• Try Jupyter online at: https://try.jupyter.org/
• The IPython Notebook in research, a Nature note at http://www.nature.

com/news/interactive-notebooks-sharing-the-code-1.16261

Installing Python with Anaconda
Although Python is an open-source, cross-platform language, installing it with the
usual scientific packages used to be overly complicated. Fortunately, there is now
an all-in-one scientific Python distribution, Anaconda (by Continuum Analytics),
that is free, cross-platform, and easy to install. Anaconda comes with Jupyter and all
of the scientific packages we will use in this book. There are other distributions and
installation options (like Canopy, WinPython, Python(x, y), and others), but for the
purpose of this book we will use Anaconda throughout.

Running Jupyter in the cloud
You can also use Jupyter directly from your web browser, without
installing anything on your local computer: go to http://try.
jupyter.org. Note that the notebooks created there are not saved.
Let's also mention a similar service, Wakari (https://wakari.io),
by Continuum Analytics.

Anaconda comes with a package manager named conda, which lets you manage
your Python distribution and install new packages.

Miniconda
Miniconda (http://conda.pydata.org/miniconda.html) is
a light version of Anaconda that gives you the ability to only install
the packages you need.

http://jupyter.org/
https://jupyter.readthedocs.org/en/latest/
https://jupyter.readthedocs.org/en/latest/
http://ipython.org/
https://github.com/jupyter
https://try.jupyter.org/
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
http://try.jupyter.org
http://try.jupyter.org
https://wakari.io
http://conda.pydata.org/miniconda.html

Getting Started with IPython

[6]

Downloading Anaconda
The first step is to download Anaconda from Continuum Analytics' website
(http://continuum.io/downloads). This is actually not the easiest part since
several versions are available. Three properties define a particular version:

• The operating system (OS): Linux, Mac OS X, or Windows. This will depend
on the computer you want to install Python on.

• 32-bit or 64-bit: You want the 64-bit version, unless you're on an old or low-
end computer. The 64-bit version will allow you to manipulate large datasets.

• The version of Python: 2.7, or 3.4 (or later). In this book, we will use
Python 3.4. You can also use Python 3.5 (released in September 2015)
which introduces many features, including a new @ operator for matrix
multiplication. However, it is easy to temporarily switch to a Python 2.7
environment with Anaconda if necessary (see the next section).

Python 3 brought a few backward-incompatible changes over Python 2 (also
known as Legacy Python). This is why many people are still using Python
2.7 at this time, even though Python 3 was released in 2008. We will use
Python 3 in this book, and we recommend that newcomers learn Python
3. If you need to use legacy Python code that hasn't yet been updated to
Python 3, you can use conda to temporarily switch to a Python 2 interpreter.

Once you have found the right link for your OS and Python 3 64-bit, you can
download the package. You should then find it in your downloads directory
(depending on your OS and your browser's settings).

Installing Anaconda
The Anaconda installer comes in different flavors depending on your OS, as follows:

• Linux: The Linux installer is a bash .sh script. Run it with a command
like bash Anaconda3-2.3.0-Linux-x86_64.sh (if necessary, replace the
filename by the one you downloaded).

• Mac: The Mac graphical installer is a .pkg file that you can run with a
double-click.

• Windows: The Windows graphical installer is an .exe file that you can run
with a double-click.

http://continuum.io/downloads

Chapter 1

[7]

Then, follow the instructions to install Anaconda on your computer. Here are a few
remarks:

• You don't need administrator rights to install Anaconda. In most cases, you
can choose to install it in your personal user account.

• Choose to put Anaconda in your system path, so that Anaconda's Python is
the system default.

Anaconda comes with a graphical launcher that you can use to start
IPython, manage environments, and so on. You will find more details
at http://docs.continuum.io/anaconda-launcher/

Before you get started...
Before you get started with Anaconda, there are a few things you need to know:

• Opening a terminal
• Finding your home directory
• Manipulating your system path

You can skip this section if you already know how to do these things.

Opening a terminal
A terminal is a command-line application that lets you interact with your computer
by typing commands with the keyboard, instead of clicking on windows with the
mouse. While most computer users only know Graphical User Interfaces, developers
and scientists generally need to know how to use the command-line interface for
advanced usage. To use the command-line interface, follow the instructions that are
specific to your OS:

• On Windows, you can use Powershell. Press the Windows + R keys, type
powershell in the Run box, and press Enter. You will find more information
about Powershell at https://blog.udemy.com/powershell-tutorial/.
Alternatively, you can use the older Windows terminal by typing cmd in the
Run box.

• On OS X, you can open the Terminal application, for example by pressing
Cmd + Space, typing terminal, and pressing Enter.

• On Linux, you can open the Terminal from your application manager.

In a terminal, use the cd /path/to/directory command to move to a given
directory. For example, cd ~ moves to your home directory, which is introduced in
the next section.

http://docs.continuum.io/anaconda-launcher/
https://blog.udemy.com/powershell-tutorial/

Getting Started with IPython

[8]

Finding your home directory
Your home directory is specific to your user account on your computer. It generally
contains your applications' settings. It is often referred to as ~.Depending on the OS,
the location of the home directory is as follows:

• On Windows, its location is C:\Users\YourName\ where YourName is the
name of your account.

• On OS X, its location is /Users/YourName/ where YourName is the name of
your account.

• On Linux, its location is generally /home/yourname/ where yourname is the
name of your account.

For example, the directory ~/anaconda3 refers to C:\Users\YourName\anaconda3\
on Windows and /home/yourname/anaconda3/ on Linux.

Manipulating your system path
The system path is a global variable (also called an environment variable) defined
by your operating system with the list of directories where executable programs are
located. If you type a command like python in your terminal, you generally need
to have a python (or python.exe on Windows) executable in one of the directories
listed in the system path. If that's not the case, an error may be raised.

You can manually add directories to your system path as follows:

• On Windows, press the Windows + R keys, type rundll32.exe sysdm.
cpl,EditEnvironmentVariables, and press Enter. You can then edit the
PATH variable and append ;C:\path\to\directory if you want to add
that directory. You will find more detailed instructions at http://www.
computerhope.com/issues/ch000549.htm.

• On OS X, edit or create the file ~/.bash_profile and add export
PATH="$PATH:/path/to/directory" at the end of the file.

• On Linux, edit or create the file ~/.bashrc and add export PATH="$PATH:/
path/to/directory" at the end of the file.

http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm

Chapter 1

[9]

Testing your installation
To test Anaconda once it has been installed, open a terminal and type python. This
opens a Python console, not to be confused with the OS terminal. The Python
console is identified with a >>> prompt string, whereas the OS terminal is identified
with a $ (Linux/OS X) or > (Windows) prompt string. These strings are displayed
in the terminal, often preceded by your computer's name, your login, and the
current directory (for example, yourname@computer:~$ on Linux or PS C:\Users\
YourName> on Windows). You can type commands after the prompt string. After
typing python, you should see something like the following:

$ python

Python 3.4.3 |Anaconda 2.3.0 (64-bit)| (default, Jun 4 2015, 15:29:08)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

What matters is that Anaconda or Continuum Analytics is mentioned here.
Otherwise, typing python might have launched your system's default Python, which
is not the one you want to use in this book.

If you have this problem, you may need to add the path to the Anaconda executables
to your system path. For example, this path will be ~/anaconda3/bin if you chose to
install Anaconda in ~/anaconda3. The bin directory contains Anaconda executables
including python.

If you have any problem installing and testing Anaconda, you can ask for help on
the mailing list (see the link in the References section under the Installing Python with
Anaconda section of this chapter).

Next, exit the Python prompt by typing exit() and pressing Enter.

Managing environments
Anaconda lets you create different isolated Python environments. For example, you
can have a Python 2 distribution for the rare cases where you need to temporarily
switch to Python 2.

Getting Started with IPython

[10]

To create a new environment for Python 2, type the following command in an OS
terminal:

$ conda create -n py2 anaconda python=2.7

This will create a new isolated environment named py2 based on the original
Anaconda distribution, but with Python 2.7. You could also use the command conda
env: type conda env -h to see the details.

You can now activate your py2 environment by typing the following command in a
terminal:

• Windows: activate py2 (note that you might have problems with
Powershell, see https://github.com/conda/conda/issues/626, or use the
old cmd terminal)

• Linux and Mac OS X: source activate py2

Now, you should see a (py2) prefix in front of your terminal prompt. Typing
python in your terminal with the py2 environment activated will open a Python 2
interpreter.

Type deactivate on Windows or source deactivate on Linux/OS X to deactivate
the environment in the terminal.

Common conda commands
Here is a list of common commands:

• conda help: Displays the list of conda commands.
• conda list: Lists all packages installed in the current environment.
• conda info: Displays system information.
• conda env list: Displays the list of environments installed. The currently

active one is marked by a star *.
• conda install somepackage: Installs a Python package (replace

somepackage by the name of the package you want to install).
• conda install somepackage=0.7: Installs a specific version of a package.
• conda update somepackage: Updates a Python package to the latest

available version.
• conda update anaconda: Updates all packages.
• conda update conda: Updates conda itself.

https://github.com/conda/conda/issues/626

Chapter 1

[11]

• conda update --all: Updates all packages.
• conda remove somepackage: Uninstalls a Python package.
• conda remove -n myenv --all: Removes the environment named myenv

(replace this by the name of the environment you want to uninstall).
• conda clean -t: Removes the old tarballs that are left over after installation

and updates.

Some commands ask for confirmation (you need to press y to confirm). You can also
use the -y option to avoid the confirmation prompt.

If conda install somepackage fails, you can try pip install somepackage
instead. This will use the Python Package Index (PyPI) instead of Anaconda. Many
scientific Anaconda packages are easier to install than the corresponding PyPI
packages because they are precompiled for your platform. However, many packages
are available on PyPI but not on Anaconda.

Here are some references:

• pip documentation at https://pip.pypa.io/en/stable/
• PyPI repository at https://pypi.python.org/pypi

References
Here are a few references about Anaconda:

• Continuum Analytics' website: http://continuum.io/
• Anaconda main page: https://store.continuum.io/cshop/anaconda/
• Anaconda downloads: http://continuum.io/downloads
• List of Anaconda packages: http://docs.continuum.io/anaconda/pkg-

docs

• Conda main page: http://conda.io/
• Anaconda mailing list: https://groups.google.com/a/continuum.io/

forum/#!forum/anaconda

• Continuum Analytics Twitter account at https://twitter.com/
ContinuumIO

• Conda FAQ: http://conda.pydata.org/docs/faq.html
• Curated list of Python packages at http://awesome-python.com/

www.allitebooks.com

https://pip.pypa.io/en/stable/
https://pypi.python.org/pypi
http://continuum.io/
https://store.continuum.io/cshop/anaconda/
http://continuum.io/downloads
http://docs.continuum.io/anaconda/pkg-docs
http://docs.continuum.io/anaconda/pkg-docs
http://conda.io/
https://groups.google.com/a/continuum.io/forum/#!forum/anaconda
https://groups.google.com/a/continuum.io/forum/#!forum/anaconda
https://twitter.com/ContinuumIO
https://twitter.com/ContinuumIO
http://conda.pydata.org/docs/faq.html
http://awesome-python.com/
http://www.allitebooks.org

Getting Started with IPython

[12]

Downloading the notebooks
All of this book's code is available on GitHub as notebooks. We recommend that you
download the notebooks and experiment with them as you're working through the
book.

GitHub is a popular online service that hosts open source projects. It is
based on the Git Distributed Version Control System (DVCS). Git keeps
track of file changes and enables collaborative work on a given project.
Learning a version control system like Git is highly recommended for all
programmers. Not using a version control system when working with
code or even text documents is now considered as bad practice. You will
find several references at https://help.github.com/articles/
good-resources-for-learning-git-and-github/. The IPython
Cookbook also contains several recipes about Git and best interactive
programming practices.

Here is how to download the book's notebooks:

• Install git: http://git-scm.com/downloads.
• Check your git installation: Open a new OS terminal and type git version.

You should see the version of git and not an error message.
• Type the following command (this is a single line):

$ git clone https://github.com/ipython-books/
 minibook-2nd-code.git "$HOME/minibook"

This will download the very latest version of the code into a minibook subdirectory
in your home directory. You can also choose another directory.

From this directory, you can update to the latest version at any time by typing git
pull.

Notebooks on GitHub
Notebook documents stored on GitHub (with the file extension .ipynb)
are automatically rendered on the GitHub website.

https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
http://git-scm.com/downloads

Chapter 1

[13]

Introducing the Notebook
Originally, IPython provided an enhanced command-line console to run Python
code interactively. The Jupyter Notebook is a more recent and more sophisticated
alternative to the console. Today, both tools are available, and we recommend that
you learn to use both.

Launching the IPython console
To run the IPython console, type ipython in an OS terminal. There, you can write
Python commands and see the results instantly. Here is a screenshot:

IPython console

The IPython console is most convenient when you have a command-line-based
workflow and you want to execute some quick Python commands.

You can exit the IPython console by typing exit.

Let's mention the Qt console, which is similar to the IPython console
but offers additional features such as multiline editing, enhanced tab
completion, image support, and so on. The Qt console can also be
integrated within a graphical application written with Python and
Qt. See http://jupyter.org/qtconsole/stable/ for more
information.

http://jupyter.org/qtconsole/stable/

Getting Started with IPython

[14]

Launching the Jupyter Notebook
To run the Jupyter Notebook, open an OS terminal, go to ~/minibook/ (or into
the directory where you've downloaded the book's notebooks), and type jupyter
notebook. This will start the Jupyter server and open a new window in your browser
(if that's not the case, go to the following URL: http://localhost:8888). Here is a
screenshot of Jupyter's entry point, the Notebook dashboard:

The Notebook dashboard

At the time of writing, the following browsers are officially supported:
Chrome 13 and greater; Safari 5 and greater; and Firefox 6 or greater.
Other browsers may work also. Your mileage may vary.

The Notebook is most convenient when you start a complex analysis project that
will involve a substantial amount of interactive experimentation with your code.
Other common use-cases include keeping track of your interactive session (like a lab
notebook), or writing technical documents that involve code, equations, and figures.

In the rest of this section, we will focus on the Notebook interface.

Closing the Notebook server
To close the Notebook server, go to the OS terminal where you launched
the server from, and press Ctrl + C. You may need to confirm with y.

Chapter 1

[15]

The Notebook dashboard
The dashboard contains several tabs:

• Files: shows all files and notebooks in the current directory
• Running: shows all kernels currently running on your computer
• Clusters: lets you launch kernels for parallel computing (covered in

Chapter 5, High-Performance and Parallel Computing)

A notebook is an interactive document containing code, text, and other elements.
A notebook is saved in a file with the .ipynb extension. This file is a plain text file
storing a JSON data structure.

A kernel is a process running an interactive session. When using IPython, this kernel
is a Python process. There are kernels in many languages other than Python.

We follow the convention to use the term notebook for a file, and
Notebook for the application and the web interface.

In Jupyter, notebooks and kernels are strongly separated. A notebook is a file,
whereas a kernel is a process. The kernel receives snippets of code from the
Notebook interface, executes them, and sends the outputs and possible errors back
to the Notebook interface. Thus, in general, the kernel has no notion of a Notebook.
A notebook is persistent (it's a file), whereas a kernel may be closed at the end of an
interactive session and it is therefore not persistent. When a notebook is re-opened,
it needs to be re-executed.

In general, no more than one Notebook interface can be connected to a given kernel.
However, several IPython consoles can be connected to a given kernel.

Getting Started with IPython

[16]

The Notebook user interface
To create a new notebook, click on the New button, and select Notebook (Python 3).
A new browser tab opens and shows the Notebook interface as follows:

A new notebook

Here are the main components of the interface, from top to bottom:

• The notebook name, which you can change by clicking on it. This is also the
name of the .ipynb file.

• The Menu bar gives you access to several actions pertaining to either the
notebook or the kernel.

• To the right of the menu bar is the Kernel name. You can change the kernel
language of your notebook from the Kernel menu. We will see in Chapter 6,
Customizing IPython how to manage different kernel languages.

• The Toolbar contains icons for common actions. In particular, the dropdown
menu showing Code lets you change the type of a cell.

• Following is the main component of the UI: the actual Notebook. It consists
of a linear list of cells. We will detail the structure of a cell in the following
sections.

Structure of a notebook cell
There are two main types of cells: Markdown cells and code cells, and they are
described as follows:

• A Markdown cell contains rich text. In addition to classic formatting options
like bold or italics, we can add links, images, HTML elements, LaTeX
mathematical equations, and more. We will cover Markdown in more detail
in the Ten Jupyter/IPython essentials section of this chapter.

Chapter 1

[17]

• A code cell contains code to be executed by the kernel. The programming
language corresponds to the kernel's language. We will only use Python in
this book, but you can use many other languages.

You can change the type of a cell by first clicking on a cell to select it, and then
choosing the cell's type in the toolbar's dropdown menu showing Markdown
or Code.

Markdown cells
Here is a screenshot of a Markdown cell:

A Markdown cell

The top panel shows the cell in edit mode, while the bottom one shows it in render
mode. The edit mode lets you edit the text, while the render mode lets you display
the rendered cell. We will explain the differences between these modes in greater
detail in the following section.

Getting Started with IPython

[18]

Code cells
Here is a screenshot of a complex code cell:

Structure of a code cell

This code cell contains several parts, as follows:

• The Prompt number shows the cell's number. This number increases every
time you run the cell. Since you can run cells of a notebook out of order,
nothing guarantees that code numbers are linearly increasing in a given
notebook.

• The Input area contains a multiline text editor that lets you write one or
several lines of code with syntax highlighting.

• The Widget area may contain graphical controls; here, it displays a slider.
• The Output area can contain multiple outputs, here:

 ° Standard output (text in black)
 ° Error output (text with a red background)
 ° Rich output (an HTML table and an image here)

Chapter 1

[19]

The Notebook modal interface
The Notebook implements a modal interface similar to some text editors such
as vim. Mastering this interface may represent a small learning curve for some
users.

• Use the edit mode to write code (the selected cell has a green border,
and a pen icon appears at the top right of the interface). Click inside
a cell to enable the edit mode for this cell (you need to double-click with
Markdown cells).

• Use the command mode to operate on cells (the selected cell has a gray
border, and there is no pen icon). Click outside the text area of a cell to
enable the command mode (you can also press the Esc key).

Keyboard shortcuts are available in the Notebook interface. Type h to show them.
We review here the most common ones (for Windows and Linux; shortcuts for
OS X may be slightly different).

Keyboard shortcuts available in both modes
Here are a few keyboard shortcuts that are always available when a cell is selected:

• Ctrl + Enter: run the cell
• Shift + Enter: run the cell and select the cell below
• Alt + Enter: run the cell and insert a new cell below
• Ctrl + S: save the notebook

Keyboard shortcuts available in the edit mode
In the edit mode, you can type code as usual, and you have access to the following
keyboard shortcuts:

• Esc: switch to command mode
• Ctrl + Shift + -: split the cell

Getting Started with IPython

[20]

Keyboard shortcuts available in the command
mode
In the command mode, keystrokes are bound to cell operations. Don't write code
in command mode or unexpected things will happen! For example, typing dd in
command mode will delete the selected cell! Here are some keyboard shortcuts
available in command mode:

• Enter: switch to edit mode
• ↑ or k: select the previous cell
• ↓ or j: select the next cell
• y / m: change the cell type to code cell/Markdown cell
• a / b: insert a new cell above/below the current cell
• x / c / v: cut/copy/paste the current cell
• dd: delete the current cell
• z: undo the last delete operation
• Shift + =: merge the cell below
• h: display the help menu with the list of keyboard shortcuts

Spending some time learning these shortcuts is highly recommended.

References
Here are a few references:

• Main documentation of Jupyter at http://jupyter.readthedocs.org/en/
latest/

• Jupyter Notebook interface explained at http://jupyter-notebook.
readthedocs.org/en/latest/notebook.html

A crash course on Python
If you don't know Python, read this section to learn the fundamentals. Python is a
very accessible language and, if you have ever programmed, it will only take you a
few minutes to learn the basics.

http://jupyter.readthedocs.org/en/latest/
http://jupyter.readthedocs.org/en/latest/
http://jupyter-notebook.readthedocs.org/en/latest/notebook.html
http://jupyter-notebook.readthedocs.org/en/latest/notebook.html

Chapter 1

[21]

Hello world
Open a new notebook and type the following in the first cell:

In [1]: print("Hello world!")

Out[1]: Hello world!

Here is a screenshot:

"Hello world" in the Notebook

Prompt string
Note that the convention chosen in this book is to show Python code
(also called the input) prefixed with In [x]: (which shouldn't be
typed). This is the standard IPython prompt. Here, you should just type
print("Hello world!") and then press Shift + Enter.

Congratulations! You are now a Python programmer.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you. You will also find the book's code on
this GitHub repository: https://github.com/ipython-books/
minibook-2nd-code.

Variables
Let's use Python as a calculator.

In [2]: 2 * 2

Out[2]: 4

Here, 2 * 2 is an expression statement. This operation is performed, the result is
returned, and IPython displays it in the notebook cell's output.

http://www.packtpub.com/support
https://github.com/ipython-books/minibook-2nd-code
https://github.com/ipython-books/minibook-2nd-code

Getting Started with IPython

[22]

Division
In Python 3, 3 / 2 returns 1.5 (floating-point division), whereas it returns
1 in Python 2 (integer division). This can be source of errors when
porting Python 2 code to Python 3. It is recommended to always use
the explicit 3.0 / 2.0 for floating-point division (by using floating-point
numbers) and 3 // 2 for integer division. Both syntaxes work in Python
2 and Python 3. See http://python3porting.com/differences.
html#integer-division for more details.

Other built-in mathematical operators include +, -, ** for the exponentiation, and
others. You will find more details at https://docs.python.org/3/reference/
expressions.html#the-power-operator.

Variables form a fundamental concept of any programming language. A variable
has a name and a value. Here is how to create a new variable in Python:

In [3]: a = 2

And here is how to use an existing variable:

In [4]: a * 3

Out[4]: 6

Several variables can be defined at once (this is called unpacking):

In [5]: a, b = 2, 6

There are different types of variables. Here, we have used a number (more precisely,
an integer). Other important types include floating-point numbers to represent real
numbers, strings to represent text, and booleans to represent True/False values.
Here are a few examples:

In [6]: somefloat = 3.1415

 sometext = 'pi is about' # You can also use double quotes.

 print(sometext, somefloat) # Display several variables.

Out[6]: pi is about 3.1415

Note how we used the # character to write comments. Whereas Python discards the
comments completely, adding comments in the code is important when the code is
to be read by other humans (including yourself in the future).

http://python3porting.com/differences.html#integer-division
http://python3porting.com/differences.html#integer-division
https://docs.python.org/3/reference/expressions.html#the-power-operator
https://docs.python.org/3/reference/expressions.html#the-power-operator

Chapter 1

[23]

String escaping
String escaping refers to the ability to insert special characters in a string. For
example, how can you insert ' and ", given that these characters are used to delimit
a string in Python code? The backslash \ is the go-to escape character in Python (and
in many other languages too). Here are a few examples:

In [7]: print("Hello \"world\"")

 print("A list:\n* item 1\n* item 2")

 print("C:\\path\\on\\windows")

 print(r"C:\path\on\windows")

Out[7]: Hello "world"

 A list:

 * item 1

 * item 2

 C:\path\on\windows

 C:\path\on\windows

The special character \n is the new line (or line feed) character. To insert a backslash,
you need to escape it, which explains why it needs to be doubled as \\.

You can also disable escaping by using raw literals with a r prefix before the string,
like in the last example above. In this case, backslashes are considered as normal
characters.

This is convenient when writing Windows paths, since Windows uses backslash
separators instead of forward slashes like on Unix systems. A very common error on
Windows is forgetting to escape backslashes in paths: writing "C:\path" may lead
to subtle errors.

You will find the list of special characters in Python at https://docs.python.
org/3.4/reference/lexical_analysis.html#string-and-bytes-literals.

https://docs.python.org/3.4/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.4/reference/lexical_analysis.html#string-and-bytes-literals

Getting Started with IPython

[24]

Lists
A list contains a sequence of items. You can concisely instruct Python to perform
repeated actions on the elements of a list. Let's first create a list of numbers as
follows:

In [8]: items = [1, 3, 0, 4, 1]

Note the syntax we used to create the list: square brackets [], and commas , to
separate the items.

The built-in function len() returns the number of elements in a list:

In [9]: len(items)

Out[9]: 5

Python comes with a set of built-in functions, including print(),
len(), max(), functional routines like filter() and map(), and
container-related routines like all(), any(), range(), and sorted().
You will find the full list of built-in functions at https://docs.
python.org/3.4/library/functions.html.

Now, let's compute the sum of all elements in the list. Python provides a built-in
function for this:

In [10]: sum(items)

Out[10]: 9

We can also access individual elements in the list, using the following syntax:

In [11]: items[0]

Out[11]: 1

In [12]: items[-1]

Out[12]: 1

Note that indexing starts at 0 in Python: the first element of the list is indexed by 0,
the second by 1, and so on. Also, -1 refers to the last element, -2 to the penultimate
element, and so on.

The same syntax can be used to alter elements in the list:

In [13]: items[1] = 9

 items

Out[13]: [1, 9, 0, 4, 1]

https://docs.python.org/3.4/library/functions.html
https://docs.python.org/3.4/library/functions.html

Chapter 1

[25]

We can access sublists with the following syntax:

In [14]: items[1:3]

Out[14]: [9, 0]

Here, 1:3 represents a slice going from element 1 included (this is the second element
of the list) to element 3 excluded. Thus, we get a sublist with the second and third
element of the original list. The first-included/last-excluded asymmetry leads to an
intuitive treatment of overlaps between consecutive slices. Also, note that a sublist
refers to a dynamic view of the original list, not a copy; changing elements in the
sublist automatically changes them in the original list.

Python provides several other types of containers:

• Tuples are immutable and contain a fixed number of elements:
In [15]: my_tuple = (1, 2, 3)

 my_tuple[1]

Out[15]: 2

• Dictionaries contain key-value pairs. They are extremely useful and common:
In [16]: my_dict = {'a': 1, 'b': 2, 'c': 3}

 print('a:', my_dict['a'])

Out[16]: a: 1

In [17]: print(my_dict.keys())

Out[17]: dict_keys(['c', 'a', 'b'])

There is no notion of order in a dictionary. However, the native collections
module provides an OrderedDict structure that keeps the insertion order
(see https://docs.python.org/3.4/library/collections.html).

• Sets, like mathematical sets, contain distinct elements:

In [18]: my_set = set([1, 2, 3, 2, 1])

 my_set

Out[18]: {1, 2, 3}

A Python object is mutable if its value can change after it has been
created. Otherwise, it is immutable. For example, a string is immutable;
to change it, a new string needs to be created. A list, a dictionary, or a
set is mutable; elements can be added or removed. By contrast, a tuple
is immutable, and it is not possible to change the elements it contains
without recreating the tuple. See https://docs.python.org/3.4/
reference/datamodel.html for more details.

https://docs.python.org/3.4/library/collections.html
https://docs.python.org/3.4/reference/datamodel.html
https://docs.python.org/3.4/reference/datamodel.html

Getting Started with IPython

[26]

Loops
We can run through all elements of a list using a for loop:

In [19]: for item in items:

 print(item)

Out[19]: 1

 9

 0

 4

 1

There are several things to note here:

• The for item in items syntax means that a temporary variable named
item is created at every iteration. This variable contains the value of every
item in the list, one at a time.

• Note the colon : at the end of the for statement. Forgetting it will lead to a
syntax error!

• The statement print(item) will be executed for all items in the list.
• Note the four spaces before print: this is called the indentation. You will

find more details about indentation in the next subsection.

Python supports a concise syntax to perform a given operation on all elements of a
list, as follows:

In [20]: squares = [item * item for item in items]

 squares

Out[20]: [1, 81, 0, 16, 1]

This is called a list comprehension. A new list is created here; it contains the squares
of all numbers in the list. This concise syntax leads to highly readable and Pythonic
code.

Chapter 1

[27]

Indentation
Indentation refers to the spaces that may appear at the beginning of some lines of
code. This is a particular aspect of Python's syntax.

In most programming languages, indentation is optional and is generally used
to make the code visually clearer. But in Python, indentation also has a syntactic
meaning. Particular indentation rules need to be followed for Python code to be
correct.

In general, there are two ways to indent some text: by inserting a tab character
(also referred to as \t), or by inserting a number of spaces (typically, four). It is
recommended to use spaces instead of tab characters. Your text editor should be
configured such that the Tab key on the keyboard inserts four spaces instead of a tab
character.

In the Notebook, indentation is automatically configured properly; so you shouldn't
worry about this issue. The question only arises if you use another text editor for
your Python code.

Finally, what is the meaning of indentation? In Python, indentation delimits coherent
blocks of code, for example, the contents of a loop, a conditional branch, a function,
and other objects. Where other languages such as C or JavaScript use curly braces to
delimit such blocks, Python uses indentation.

Conditional branches
Sometimes, you need to perform different operations on your data depending on
some condition. For example, let's display all even numbers in our list:

In [21]: for item in items:

 if item % 2 == 0:

 print(item)

Out[21]: 0

 4

Getting Started with IPython

[28]

Again, here are several things to note:

• An if statement is followed by a boolean expression.
• If a and b are two integers, the modulo operand a % b returns the remainder

from the division of a by b. Here, item % 2 is 0 for even numbers, and 1 for
odd numbers.

• The equality is represented by a double equal sign == to avoid confusion
with the assignment operator = that we use when we create variables.

• Like with the for loop, the if statement ends with a colon :.
• The part of the code that is executed when the condition is satisfied follows

the if statement. It is indented. Indentation is cumulative: since this if is
inside a for loop, there are eight spaces before the print(item) statement.

Python supports a concise syntax to select all elements in a list that satisfy certain
properties. Here is how to create a sublist with only even numbers:

In [22]: even = [item for item in items if item % 2 == 0]

 even

Out[22]: [0, 4]

This is also a form of list comprehension.

Functions
Code is typically organized into functions. A function encapsulates part of your
code. Functions allow you to reuse bits of functionality without copy-pasting the
code. Here is a function that tells whether an integer number is even or not:

In [23]: def is_even(number):

 """Return whether an integer is even or not."""

 return number % 2 == 0

There are several things to note here:

• A function is defined with the def keyword.
• After def comes the function name. A general convention in Python is to

only use lowercase characters, and separate words with an underscore _. A
function name generally starts with a verb.

Chapter 1

[29]

• The function name is followed by parentheses, with one or several variable
names called the arguments. These are the inputs of the function. There is a
single argument here, named number.

• No type is specified for the argument. This is because Python is dynamically
typed; you could pass a variable of any type. This function would work fine
with floating point numbers, for example (the modulo operation works with
floating point numbers in addition to integers).

• The body of the function is indented (and note the colon : at the end of the
def statement).

• There is a docstring wrapped by triple quotes """. This is a particular form
of comment that explains what the function does. It is not mandatory, but it
is strongly recommended to write docstrings for the functions exposed to the
user.

• The return keyword in the body of the function specifies the output of the
function. Here, the output is a Boolean, obtained from the expression number
% 2 == 0. It is possible to return several values; just use a comma to separate
them (in this case, a tuple of Booleans would be returned).

Once a function is defined, it can be called like this:

In [24]: is_even(3)

Out[24]: False

In [25]: is_even(4)

Out[25]: True

Here, 3 and 4 are successively passed as arguments to the function.

Positional and keyword arguments
A Python function can accept an arbitrary number of arguments, called positional
arguments. It can also accept optional named arguments, called keyword
arguments. Here is an example:

In [26]: def remainder(number, divisor=2):

 return number % divisor

The second argument of this function, divisor, is optional. If it is not provided by
the caller, it will default to the number 2, as shown here:

In [27]: remainder(5)

Out[27]: 1

Getting Started with IPython

[30]

There are two equivalent ways of specifying a keyword argument when calling a
function. They are as follows:

In [28]: remainder(5, 3)

Out[28]: 2

In [29]: remainder(5, divisor=3)

Out[29]: 2

In the first case, 3 is understood as the second argument, divisor. In the second
case, the name of the argument is given explicitly by the caller. This second syntax is
clearer and less error-prone than the first one.

Functions can also accept arbitrary sets of positional and keyword arguments, using
the following syntax:

In [30]: def f(*args, **kwargs):

 print("Positional arguments:", args)

 print("Keyword arguments:", kwargs)

In [31]: f(1, 2, c=3, d=4)

Out[31]: Positional arguments: (1, 2)

 Keyword arguments: {'c': 3, 'd': 4}

Inside the function, args is a tuple containing positional arguments, and kwargs is a
dictionary containing keyword arguments.

Passage by assignment
When passing a parameter to a Python function, a reference to the object is actually
passed (passage by assignment):

• If the passed object is mutable, it can be modified by the function
• If the passed object is immutable, it cannot be modified by the function

Here is an example:

In [32]: my_list = [1, 2]

 def add(some_list, value):

 some_list.append(value)

 add(my_list, 3)

 my_list

Out[32]: [1, 2, 3]

Chapter 1

[31]

The add() function modifies an object defined outside it (in this case, the object
my_list); we say this function has side-effects. A function with no side-effects
is called a pure function: it doesn't modify anything in the outer context, and it
deterministically returns the same result for any given set of inputs. Pure functions
are to be preferred over functions with side-effects.

Knowing this can help you spot out subtle bugs. There are further related concepts
that are useful to know, including function scopes, naming, binding, and more. Here
are a couple of links:

• Passage by reference at https://docs.python.org/3/faq/programming.
html#how-do-i-write-a-function-with-output-parameters-call-by-
reference

• Naming, binding, and scope at https://docs.python.org/3.4/
reference/executionmodel.html

Errors
Let's talk about errors in Python. As you learn, you will inevitably come across
errors and exceptions. The Python interpreter will most of the time tell you what the
problem is, and where it occurred. It is important to understand the vocabulary used
by Python so that you can more quickly find and correct your errors.

Let's see the following example:

In [33]: def divide(a, b):

 return a / b

In [34]: divide(1, 0)

Out[34]: ---

 ZeroDivisionError Traceback (most recent call last)

 <ipython-input-2-b77ebb6ac6f6> in <module>()

 ----> 1 divide(1, 0)

 <ipython-input-1-5c74f9fd7706> in divide(a, b)

 1 def divide(a, b):

 ----> 2 return a / b

 ZeroDivisionError: division by zero

www.allitebooks.com

https://docs.python.org/3/faq/programming.html#how-do-i-write-a-function-with-output-parameters-call-by-reference
https://docs.python.org/3/faq/programming.html#how-do-i-write-a-function-with-output-parameters-call-by-reference
https://docs.python.org/3/faq/programming.html#how-do-i-write-a-function-with-output-parameters-call-by-reference
https://docs.python.org/3.4/reference/executionmodel.html
https://docs.python.org/3.4/reference/executionmodel.html
http://www.allitebooks.org

Getting Started with IPython

[32]

Here, we defined a divide() function, and called it to divide 1 by 0. Dividing a
number by 0 is an error in Python. Here, a ZeroDivisionError exception was
raised. An exception is a particular type of error that can be raised at any point in
a program. It is propagated from the innards of the code up to the command that
launched the code. It can be caught and processed at any point. You will find more
details about exceptions at https://docs.python.org/3/tutorial/errors.
html, and common exception types at https://docs.python.org/3/library/
exceptions.html#bltin-exceptions.

The error message you see contains the stack trace, the exception type, and the
exception message. The stack trace shows all function calls between the raised
exception and the script calling point.

The top frame, indicated by the first arrow ---->, shows the entry point of the code
execution. Here, it is divide(1, 0), which was called directly in the Notebook. The
error occurred while this function was called.

The next and last frame is indicated by the second arrow. It corresponds to line 2 in
our function divide(a, b). It is the last frame in the stack trace: this means that the
error occurred there.

We will see later in this chapter how to debug such errors interactively in IPython
and in the Jupyter Notebook. Knowing how to navigate up and down in the stack
trace is critical when debugging complex Python code.

Object-oriented programming
Object-oriented programming (OOP) is a relatively advanced topic. Although we
won't use it much in this book, it is useful to know the basics. Also, mastering OOP is
often essential when you start to have a large code base.

In Python, everything is an object. A number, a string, or a function is an object. An
object is an instance of a type (also known as class). An object has attributes and
methods, as specified by its type. An attribute is a variable bound to an object, giving
some information about it. A method is a function that applies to the object.

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/exceptions.html#bltin-exceptions
https://docs.python.org/3/library/exceptions.html#bltin-exceptions

Chapter 1

[33]

For example, the object 'hello' is an instance of the built-in str type (string). The
type() function returns the type of an object, as shown here:

In [35]: type('hello')

Out[35]: str

There are native types, like str or int (integer), and custom types, also called
classes, that can be created by the user.

In IPython, you can discover the attributes and methods of any object with the
dot syntax and tab completion. For example, typing 'hello'.u and pressing Tab
automatically shows us the existence of the upper() method:

In [36]: 'hello'.upper()

Out[36]: 'HELLO'

Here, upper() is a method available to all str objects; it returns an uppercase copy
of a string.

A useful string method is format(). This simple and convenient templating system
lets you generate strings dynamically, as shown in the following example:

In [37]: 'Hello {0:s}!'.format('Python')

Out[37]: Hello Python!

The {0:s} syntax means "replace this with the first argument of format(), which
should be a string". The variable type after the colon is especially useful for numbers,
where you can specify how to display the number (for example, .3f to display
three decimals). The 0 makes it possible to replace a given value several times in a
given string. You can also use a name instead of a position—for example 'Hello
{name}!'.format(name='Python').

Some methods are prefixed with an underscore _; they are private and are generally
not meant to be used directly. IPython's tab completion won't show you these private
attributes and methods unless you explicitly type _ before pressing Tab.

In practice, the most important thing to remember is that appending a dot . to
any Python object and pressing Tab in IPython will show you a lot of functionality
pertaining to that object.

Getting Started with IPython

[34]

Functional programming
Python is a multi-paradigm language; it notably supports imperative, object-
oriented, and functional programming models. Python functions are objects and
can be handled like other objects. In particular, they can be passed as arguments to
other functions (also called higher-order functions). This is the essence of functional
programming.

Decorators provide a convenient syntax construct to define higher-order functions.
Here is an example using the is_even() function from the previous Functions
section:

In [38]: def show_output(func):

 def wrapped(*args, **kwargs):

 output = func(*args, **kwargs)

 print("The result is:", output)

 return wrapped

The show_output() function transforms an arbitrary function func() to a new
function, named wrapped(), that displays the result of the function, as follows:

In [39]: f = show_output(is_even)

 f(3)

Out[39]: The result is: False

Equivalently, this higher-order function can also be used with a decorator, as
follows:

In [40]: @show_output

 def square(x):

 return x * x

In [41]: square(3)

Out[41]: The result is: 9

You can find more information about Python decorators at https://en.wikipedia.
org/wiki/Python_syntax_and_semantics#Decorators and at http://www.
thecodeship.com/patterns/guide-to-python-function-decorators/.

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
http://www.thecodeship.com/patterns/guide-to-python-function-decorators/
http://www.thecodeship.com/patterns/guide-to-python-function-decorators/

Chapter 1

[35]

Python 2 and 3
Let's finish this section with a few notes about Python 2 and Python 3 compatibility
issues.

There are still some Python 2 code and libraries that are not compatible with Python
3. Therefore, it is sometimes useful to be aware of the differences between the
two versions. One of the most obvious differences is that print is a statement in
Python 2, whereas it is a function in Python 3. Therefore, print "Hello" (without
parentheses) works in Python 2 but not in Python 3, while print("Hello") works in
both Python 2 and Python 3.

There are several non-mutually exclusive options to write portable code that works
with both versions:

• futures: A built-in module supporting backward-incompatible Python syntax
• 2to3: A built-in Python module to port Python 2 code to Python 3
• six: An external lightweight library for writing compatible code

Here are a few references:

• Official Python 2/3 wiki page at https://wiki.python.org/moin/
Python2orPython3

• The Porting to Python 3 book, by CreateSpace Independent Publishing Platform at
http://www.python3porting.com/bookindex.html

• 2to3 at https://docs.python.org/3.4/library/2to3.html
• six at https://pythonhosted.org/six/
• futures at https://docs.python.org/3.4/library/__future__.html
• The IPython Cookbook contains an in-depth recipe about choosing between

Python 2 and 3, and how to support both.

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
http://www.python3porting.com/bookindex.html
https://docs.python.org/3.4/library/2to3.html
https://pythonhosted.org/six/
https://docs.python.org/3.4/library/__future__.html

Getting Started with IPython

[36]

Going beyond the basics
You now know the fundamentals of Python, the bare minimum that you will need in
this book. As you can imagine, there is much more to say about Python.

Following are a few further basic concepts that are often useful and that we cannot
cover here, unfortunately. You are highly encouraged to have a look at them in the
references given at the end of this section:

• range and enumerate
• pass, break, and, continue, to be used in loops
• Working with files
• Creating and importing modules
• The Python standard library provides a wide range of functionality (OS,

network, file systems, compression, mathematics, and more)

Here are some slightly more advanced concepts that you might find useful if you
want to strengthen your Python skills:

• Regular expressions for advanced string processing
• Lambda functions for defining small anonymous functions
• Generators for controlling custom loops
• Exceptions for handling errors
• with statements for safely handling contexts
• Advanced object-oriented programming
• Metaprogramming for modifying Python code dynamically
• The pickle module for persisting Python objects on disk and exchanging

them across a network

Finally, here are a few references:

• Getting started with Python: https://www.python.org/about/
gettingstarted/

• A Python tutorial: https://docs.python.org/3/tutorial/index.html
• The Python Standard Library: https://docs.python.org/3/library/

index.html

• Interactive tutorial: http://www.learnpython.org/

https://www.python.org/about/gettingstarted/
https://www.python.org/about/gettingstarted/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://www.learnpython.org/

Chapter 1

[37]

• Codecademy Python course: http://www.codecademy.com/tracks/python
• Language reference (expert level): https://docs.python.org/3/

reference/index.html

• Python Cookbook, by David Beazley and Brian K. Jones, O'Reilly Media (advanced
level, highly recommended if you want to become a Python expert)

Ten Jupyter/IPython essentials
In this section, we will cover ten essential features of Jupyter and IPython that make
them so useful for interactive computing.

Using IPython as an extended shell

Unfortunately, this subsection will not work well on Windows. The
goal here is to demonstrate accessing the operating system's shell from
IPython. We could say that, by design, the Windows shell is much more
limited than those provided by Linux and OS X. Windows favors user
interactions from the graphical interface, whereas Linux and OS X inherit
Unix's flexible command-line capabilities. If you want to share and
distribute your notebooks, you shouldn't rely on the techniques exposed
in this subsection. Rather, you should use the Python equivalents, which
are more verbose but also more powerful. Using the shell from IPython
is only useful during interactive sessions of users already familiar with
the Unix shell.

Open a terminal and type the following commands to go to the minibook's chapter1
directory and launch the Notebook server:

$ cd ~/minibook/chapter1/

$ jupyter notebook

In the Notebook dashboard, open the 15-ten.ipynb notebook. You can also create a
new notebook if you prefer not to use the book's code.

Let's illustrate how to use IPython as an extended shell. We will download an
example dataset, navigate through the filesystem, and open text files, all from
the Notebook. The dataset contains social network data of hundreds of volunteer
Facebook users. This BSD-licensed dataset is provided freely by Stanford's SNAP
project (http://snap.stanford.edu/data/).

http://www.codecademy.com/tracks/python
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html
http://snap.stanford.edu/data/

Getting Started with IPython

[38]

IPython provides several magic commands that let you interact with your filesystem.
These commands are prefixed with a %. For example here is how to display the
current working directory:

In [1]: %pwd

Out[1]: '/home/cyrille/minibook/chapter1'

Like most other magic commands, this magic command works on all
operating systems, including Windows. IPython implements several
cross-platform Python equivalents of common Unix commands like
pwd. For other commands not implemented by IPython, we need
to call shell commands directly with the ! prefix (as shown in the
following examples). This doesn't work well on Windows since many
of these commands are Unix-specific. In brief, %-prefixed commands
should work on all operating systems while !-prefixed commands will
generally only work on Linux and OS X, not Windows.

Let's download the dataset from the book's data repository (https://github.
com/ipython-books/minibook-2nd-data). IPython doesn't yet provide a magic
command for downloading data, but we can use another IPython trick: we can run
any system or terminal command from IPython by prefixing it with an exclamation
mark (!). For example, here is how to use the wget download utility only available
on Unix systems:

In [2]: !wget https://raw.githubusercontent.com/ipython-books/minibook-
2nd-data/master/facebook.zip

If wget is not installed, you can install it with your OS package
manager. For example, on Ubuntu: sudo apt-get install
wget; on OS X: brew install wget. On OS X, brew is available
at http://brew.sh/. On Windows, you should download the file
manually from the data repository, as explained later.

This wget command downloads a file from a URL and saves it to a file in the local
filesystem. Let's display the list of files in the current directory using the %ls magic
command (available on all systems, even on Windows, since it is a magic command
provided by IPython), as follows:

In [3]: %ls

Out[3]: facebook.zip [...]

We see a new facebook.zip file.

https://github.com/ipython-books/minibook-2nd-data
https://github.com/ipython-books/minibook-2nd-data
http://brew.sh/

Chapter 1

[39]

If you are on Windows, or if downloading the file from IPython didn't
work, you can always download this file manually via your web
browser at the following URL: https://github.com/ipython-
books/minibook-2nd-data/. Then save the Facebook dataset in the
current directory (the one containing this notebook, which should be ~/
minibook/chapter1/).

The next step is to unzip this file in the current directory. The first way of doing it
is to use your operating system, generally with a right-click on the icon. On Linux
and OS X, we can also use the unzip command-line tool (you may need to install it
first, for example with a command like sudo apt-get install unzip on Ubuntu).
Finally, it is also possible to do it in pure Python with the zipfile module (see
https://docs.python.org/3.4/library/zipfile.html).

Here, we'll call the unzip tool, which will only work on Linux and OS X, not
Windows:

In [4]: !unzip facebook.zip

Once the archive has been extracted, a new subdirectory named facebook appears,
as shown here:

In [5]: %ls

Out[5]: facebook facebook.zip [...]

Let's enter into this subdirectory with the %cd magic command (all operating
systems), as follows:

In [6]: %cd facebook

Out[6]: /home/cyrille/minibook/chapter1/facebook

IPython provides a %bookmark magic to create an alias to the current directory. Let's
type the following:

In [7]: %bookmark fbdata

Now, in any future session, we'll be able to just type %cd fbdata to enter into this
directory. Type %bookmark? to see all options. This magic command is helpful when
dealing with many directories.

https://github.com/ipython-books/minibook-2nd-data/
https://github.com/ipython-books/minibook-2nd-data/
https://docs.python.org/3.4/library/zipfile.html

Getting Started with IPython

[40]

Let's display the contents of the directory:

In [8]: %ls

Out[8]: 0.circles 1684.circles 3437.circles 3980.circles 686.
circles

 0.edges 1684.edges 3437.edges 3980.edges 686.edges

 107.circles 1912.circles 348.circles 414.circles 698.
circles

 107.edges 1912.edges 348.edges 414.edges 698.edges

Here, every number identifies a Facebook user (called the ego user). The .edges file
contains its social graph. In this graph, nodes represent other Facebook users, and
edges represent friendship links between them. The .circles file contains lists of
friends.

Let's retrieve the list of .edges files with the following command (which won't work
on Windows):

In [9]: files = !ls -1 -S | grep .edges

The Unix command ls -1 -S lists all files in the current directory, sorted by
decreasing size. The pipe | grep edges filters only those files that contain .edges.
Then, this list is assigned to a new Python variable named files, as follows:

In [10]: files

Out[10]: ['1912.edges',

 '107.edges',

 '1684.edges',

 '3437.edges',

 '348.edges',

 '0.edges',

 '414.edges',

 '686.edges',

 '698.edges',

 '3980.edges']

Chapter 1

[41]

On Windows, you can use the following Python code to obtain the same list (if
you're not on Windows, you can skip this code listing):

In [11]: import os

 from operator import itemgetter

 # Get the name and file size of all .edges files.

 files = [(file, os.stat(file).st_size)

 for file in os.listdir('.')

 if file.endswith('.edges')]

 # Sort the list with the second item (file size),

 # in decreasing order.

 files = sorted(files,

 key=itemgetter(1),

 reverse=True)

 # Only keep the first item (file name), in the same order.

 files = [file for (file, size) in files]

Let's display the first few lines of the first file in the list (Unix-specific command):

In [12]: !head -n5 {files[0]}

Out[12]: 2290 2363

 2346 2025

 2140 2428

 2201 2506

 2425 2557

The curly braces {} let us insert a Python variable within a system command (here,
the head Unix command which displays the first lines of a text file).

In an .edges file, every line contains the two nodes forming every edge. The
.circles file contains lists of friends. Every line contains a space-separated list of
the users forming every circle.

Alias commands
If you use a complex command regularly, you can create an alias with
the %alias magic command. Type %alias? for more information. See
also the related %store magic command.

Getting Started with IPython

[42]

Learning magic commands
Besides the filesystem commands we have seen in the previous section, IPython
provides many other magic commands. You can display the list of all magic
commands with the %lsmagic magic command, as follows:

In [13]: %lsmagic

Out[13]: Available line magics:

 %alias %alias_magic %autocall %automagic %autosave
%bookmark %cat %cd %clear %colors %config %connect_info %cp
%debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist
%history %install_default_config %install_ext %install_profiles
%killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy
%logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx
%macro %magic %man %matplotlib %mkdir %more %mv %notebook %page
%pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint
%precision %profile %prun %psearch %psource %pushd %pwd %pycat
%pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep
%rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env
%store %sx %system %tb %time %timeit %unalias %unload_ext %who
%who_ls %whos %xdel %xmode

 Available cell magics:

 %%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html
%%javascript %%latex %%perl %%prun %%pypy %%python %%python2
%%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time
%%timeit %%writefile

 Automagic is ON, % prefix IS NOT needed for line magics.

To obtain information about a magic command, append a question mark (?) after the
command, as shown in the following example:

In [14]: %history?

The %history magic command lets you display and manipulate your command
history in IPython. For example, the following command shows your last five
commands:

In [15]: %history -l 5

Out[15]: files = !ls -1 -S | grep .edges

 files

 !head -n5 {files[0]}

 %lsmagic

 %history?

Chapter 1

[43]

Let's also mention the %dhist magic command that shows you a history of all visited
directories.

Another useful magic command is %paste, which lets you copy-paste Python code
from anywhere into the IPython console (it is not available in the Notebook, where
you can copy-paste as usual).

In IPython, the underscore (_) character always contains the last output. This is
useful if you ran some command and forgot to assign the output to a variable.

In [16]: # how many minutes in a day?

 24 * 60

Out[16]: 1440

In [17]: # and in a year?

 _ * 365

Out[17]: 525600

We will now see several cell magics, which are magic commands that apply to
a whole code cell rather than just a line of code. They are prefixed by two percent
signs (%%).

The %%capture cell magic lets you capture the standard output and error output of
some code into a Python variable. Here is an example (the outputs are captured in
the output Python variable):

In [18]: %%capture output

 %ls

In [19]: output.stdout

Out[19]: 0.circles 1684.circles 3437.circles 3980.circles 686.
circles

 0.edges 1684.edges 3437.edges 3980.edges 686.edges

 107.circles 1912.circles 348.circles 414.circles 698.
circles

 107.edges 1912.edges 348.edges 414.edges 698.edges

Getting Started with IPython

[44]

The %%bash cell magic is an extension of the ! shell prefix. It lets you run multiline
bash code in the Notebook, as shown here:

In [20]: %%bash

 cd ..

 touch _HEY

 ls

 rm _HEY

 cd facebook

Out[20]: _HEY

 facebook

 facebook.zip

 [...]

More generally, the %%script cell magic lets you execute code with any program
installed on your system. For example, assuming Haskell is installed (see https://
www.haskell.org/downloads), you can easily execute Haskell code from the
Notebook, as follows:

In [21]: %%script ghci

 putStrLn "Hello world!"

Out[21]: GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

 Loading package ghc-prim ... linking ... done.

 Loading package integer-gmp ... linking ... done.

 Loading package base ... linking ... done.

 Prelude> Hello world!

 Prelude> Leaving GHCi.

The ghci executable runs in a separate process, and the contents of the cell are
passed to the executable's input. You can also put a full path after %%script, for
example, on Linux: %%script /usr/bin/ghci.

IHaskell kernel
This way of calling external scripts is only useful for quick interactive
experiments. If you want to run Haskell notebooks, you can use the
IHaskell notebook for Jupyter, available at https://github.com/
gibiansky/IHaskell.

https://www.haskell.org/downloads
https://www.haskell.org/downloads
https://github.com/gibiansky/IHaskell
https://github.com/gibiansky/IHaskell

Chapter 1

[45]

Finally, the %%writefile cell magic lets you write some text in a new file, as shown
here:

In [22]: %%writefile myfile.txt

 Hello world!

Out[22]: Writing myfile.txt

In [23]: !more myfile.txt

Out[23]: Hello world!

Now, let's delete the file, as follows:

In [24]: !rm myfile.txt

On Windows, you need to type !del myfile.txt instead.

There are many other magic commands available. We will see several of them later
in this book. Also, in Chapter 6, Customizing IPython, we will see how to create new
magic commands. This is much easier than it sounds!

Refer to the following page for up-to-date documentation about all magic commands:
http://www.ipython.org/ipython-doc/dev/interactive/magics.html.

Mastering tab completion
Tab completion is an incredibly useful feature in Jupyter and IPython. When you start
to write something and press the Tab key on your keyboard, IPython can guess what
you're trying to do, and propose a list of options that match what you have typed so
far. This works for Python functions, variables, magic commands, files, and more.

Let's first make sure we are in the facebook directory (using the directory alias
created previously):

In [25]: %cd fbdata

 %ls

Out[25]: (bookmark:fbdata) -> /home/cyrille/minibook/chapter1/facebook

 /home/cyrille/minibook/chapter1/facebook

 0.circles 1684.circles 3437.circles 3980.circles 686.
circles

 0.edges 1684.edges 3437.edges 3980.edges 686.edges

 107.circles 1912.circles 348.circles 414.circles 698.
circles

 107.edges 1912.edges 348.edges 414.edges 698.edges

http://www.ipython.org/ipython-doc/dev/interactive/magics.html

Getting Started with IPython

[46]

Now, start typing a command and press Tab before finishing it (here, press the Tab
key on your keyboard right after typing e), as follows:

!head -n5 107.e<TAB>

IPython automatically completes the command and adds the four remaining
characters (dges). IPython recognized the beginning of a file name and completed
the command. If there are several completion possibilities, IPython doesn't complete
anything, but instead shows a list of all options. You can then choose the appropriate
solution by pressing the Up or Down keys on the keyboard, and pressing Tab again.
The following screenshot shows an example:

Tab completion in the Notebook

Tab completion is extremely useful when you're getting acquainted with a new
Python package. For example, to quickly see all functions provided by the NetworkX
package, you can type import networkx; networkx.<TAB>.

Customizing tab completion
If you're writing a Python library, you probably want to write
tab-completion-aware code. Your users who work with IPython
will thank you! In most cases, you have nothing to do, and tab
completion will just work. In the rare cases where you use advanced
dynamic techniques in a class, you can customize tab completion
by implementing a __dir__(self) method that returns all
attributes available in the current class instance. See this reference
for more details: https://docs.python.org/3.4/library/
functions.html#dir.

https://docs.python.org/3.4/library/functions.html#dir
https://docs.python.org/3.4/library/functions.html#dir

Chapter 1

[47]

Writing interactive documents in the
Notebook with Markdown
You can write code and text in the Notebook. Every cell is either a Markdown cell
or a code cell. The Markdown cell lets you write text. Markdown is a text formatting
syntax that supports headers, bold, italics, hypertext links, images, and code. In the
Notebook, you can also write mathematical equations in a Markdown cell using
LaTeX, a markup language widely used for equations. Finally, you can also write
some HTML in a Markdown cell, and it will be interpreted correctly.

Here is an example of a paragraph in Markdown:

New paragraph

This is *rich* **text** with [links](http://ipython.org), equations:

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x)\, \mathrm{e}^{-i \xi x}
dx$$

code with syntax highlighting:

    ```python

    print("Hello world!")

    ```

and images:

![This is an image](http://ipython.org/_static/IPy_header.png)

Getting Started with IPython

[48]

If you write this in a Markdown cell, and "play" the cell (for example, by pressing
Ctrl + Enter), you will see the rendered text. The following screenshot shows the two
modes of the cell:

A Markdown cell in the Notebook

By using both Markdown cells and code cells in a notebook, you can write an
interactive document about any technical topic. Hence, the Notebook is not only an
interface to code, it is also a platform to write documents or even books. In fact, this
very book is entirely written in the Notebook!

Here are a few references about Markdown and LaTeX:

• Markdown on Wikipedia at http://en.wikipedia.org/wiki/Markdown
• The original specification, at http://daringfireball.net/projects/

markdown/

• A Markdown tutorial by GitHub, at https://help.github.com/articles/
markdown-basics/

• CommonMark, a standardized version of Markdown, at http://
commonmark.org/

• LaTeX on Wikipedia at http://en.wikipedia.org/wiki/LaTeX

http://en.wikipedia.org/wiki/Markdown
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
https://help.github.com/articles/markdown-basics/
https://help.github.com/articles/markdown-basics/
http://commonmark.org/
http://commonmark.org/
http://en.wikipedia.org/wiki/LaTeX

Chapter 1

[49]

Creating interactive widgets in the Notebook
You can add interactive graphical elements called widgets in a notebook. Examples
of rich graphical widgets include buttons, sliders, dropdown menus, interactive
plots, as well as videos, audio files, and complete Graphical User Interfaces (GUIs).
Widget support in Jupyter is still relatively experimental at this point, but we will
use them at several occasions in this book. This section shows a few basic examples.

First, let's add a YouTube video in a notebook, as follows:

In [26]: from IPython.display import YouTubeVideo

 YouTubeVideo('j9YpkSX7NNM')

Following is a screenshot of a YouTube video in a notebook:

Youtube in the Notebook

The YoutubeVideo constructor accepts a YouTube identifier as input.

Next, let's show how to create a graphical control to manipulate the inputs to a
Python function:

In [27]: from ipywidgets import interact

 # IPython.html.widgets before

 # IPython 4.0

 @interact(x=(0, 10))

 def square(x):

 print("The square of %d is %d." % (x, x**2))

Out[27]: 'The square of 7 is 49.'

Getting Started with IPython

[50]

Here is a screenshot:

Interactive widget in the Notebook

The square(x) function just prints a sentence like The square of 7 is 49. By
adding the @interact decorator above the function's definition, we tell IPython
to create a widget to control the function's input x. The argument x=(0, 10) is a
convention to indicate that we want a slider to control an integer between 0 and 10.

This method supports other common controls like checkboxes, dropdown menus,
radio buttons, push buttons, and others.

Finally, entirely customizable widgets can be created, but this requires some
knowledge of web technologies such as HTML, CSS, and JavaScript. The IPython
Cookbook (http://ipython-books.github.io/cookbook/) contains many
examples. You can also refer to the following links for more information:

• IPython widgets tutorial at https://github.com/ipython/ipywidgets/
blob/master/examples/Index.ipynb

• Introducing the interactive features of the IPython Notebook, at https://
github.com/rossant/euroscipy2014

• A piano in the Notebook, at http://nbviewer.ipython.org/github/
ipython-books/cookbook-code/blob/master/notebooks/chapter03_
notebook/05_basic_widgets.ipynb

Most of these references describe APIs that were introduced in IPython
3.0, but are still experimental at this point. They may not work with
future versions of Jupyter and IPython.

http://ipython-books.github.io/cookbook/
https://github.com/ipython/ipywidgets/blob/master/examples/Index.ipynb
https://github.com/ipython/ipywidgets/blob/master/examples/Index.ipynb
https://github.com/rossant/euroscipy2014
https://github.com/rossant/euroscipy2014
http://nbviewer.ipython.org/github/ipython-books/cookbook-code/blob/master/notebooks/chapter03_notebook/05_basic_widgets.ipynb
http://nbviewer.ipython.org/github/ipython-books/cookbook-code/blob/master/notebooks/chapter03_notebook/05_basic_widgets.ipynb
http://nbviewer.ipython.org/github/ipython-books/cookbook-code/blob/master/notebooks/chapter03_notebook/05_basic_widgets.ipynb

Chapter 1

[51]

Running Python scripts from IPython
Notebooks are mainly designed for interactive exploration, not for reusability. It is
currently difficult to reuse parts of a notebook in another script or notebook. Many
users just copy-paste their code, which goes against the Don't Repeat Yourself
(DRY) principle.

A common practice is to put frequently used code into a Python script, for example
myscript.py. Such a script can be called from the system terminal like this: python
myscript.py. Python will execute the script and quit at the end. If you use the -i
option, Python will start the interactive prompt when the script ends.

IPython also supports this technique; just replace python by ipython. For example:
ipython -i script.py to run script.py interactively with IPython.

You can also run a script from within IPython by using the %run magic command.
The script runs in an empty namespace, meaning that any variable defined in the
interactive namespace is not available within the executed script. However, at the
end of the execution, the control returns to IPython, and the variables defined in
the script are imported into the interactive namespace. This lets you inspect the
intermediate variables used in the script. If you use the -i option, the script will run
in the interactive namespace. Any variable defined in the interactive session will be
available in the script.

Let's also mention the similar %load magic command.

A namespace is a dictionary mapping variable names to Python objects.
The global namespace contains global variables, whereas the local
namespace of a function contains the local variables defined in the
function. In IPython, the interactive namespace contains all objects
defined and imported within the current interactive session. The %who,
%whos, and %who_ls magic commands give you some information
about the interactive variables.

Getting Started with IPython

[52]

For example, let's write a script egos.py that lists all ego identifiers in the Facebook
data folder. Since each filename is of the form <egoid>.<extension>, we list all files,
remove the extensions, and take the sorted list of all unique identifiers. We can create
this file from the Notebook, using the %%writefile cell magic as follows:

In [28]: %cd fbdata

 %cd ..

Out[28]: (bookmark:fbdata) -> /home/cyrille/minibook/chapter1/facebook

 /home/cyrille/minibook/chapter1/facebook

In [29]: %%writefile egos.py

 import sys

 import os

 # We retrieve the folder as the first positional argument

 # to the command-line call

 if len(sys.argv) > 1:

 folder = sys.argv[1]

 # We list all files in the specified folder

 files = os.listdir(folder)

 # ids contains the list of idenfitiers

 identifiers = [int(file.split('.')[0]) for file in files]

 # Finally, we remove duplicates with set(), and sort the list

 # with sorted().

 ids = sorted(set(identifiers))

Out[29]: Overwriting egos.py

This script accepts an argument folder as an input. It is retrieved from the Python
script via the sys.argv list, which contains the list of arguments passed to the script
via the command-line interface.

Let's execute this script in IPython using the %run magic command, as follows:

In [30]: %run egos.py facebook

If you get an error when running this script, make sure that the
facebook directory only contains <number>.xxx files (like
0.circles or 1684.edges).

In [31]: ids

Out[31]: [0, 107, 348, 414, 686, 698, 1684, 1912, 3437, 3980]

The ids variable created in the script is now available in the interactive namespace.

Chapter 1

[53]

Let's see what happens if we do not specify the folder name to the script, as follows:

In [32]: folder = 'facebook'

In [33]: %run egos.py

We get an error: NameError: name 'folder' is not defined. This is because the
variable folder is defined in the interactive namespace, but is not available within
the script by default. We can change this behavior with the -i option, as follows:

In [34]: %run -i egos.py

In [35]: ids

Out[35]: [0, 107, 348, 414, 686, 698, 1684, 1912, 3437, 3980]

This time, the script correctly used the folder variable.

Introspecting Python objects
IPython can display detailed information about any Python object.

First, type ? after a variable name to get some information about it. For example, let's
inspect NetworkX's Graph class, as follows:

In [36]: import networkx

In [37]: networkx.Graph?

This shows the docstring and other information in the Notebook pager, as shown in
the following screenshot:

Getting Started with IPython

[54]

Typing ?? instead of ? shows even more information, including the whole source
code of the Python object when it is available.

There are also several magic commands for inspecting Python objects:

• %pdef: Displays a function definition
• %pdoc: Displays the docstring of a Python object
• %psource: Displays the source code of an object (function, class, or method)
• %pfile: Displays the source code of the Python script where an object is

defined

Debugging Python code
IPython makes it convenient to debug a script or an entire application. It provides
interactive access to an enhanced version of the Python debugger.

First, when you encounter an exception, you can immediately use the %debug magic
command to launch the IPython debugger at the exact point where the exception was
raised.

If you activate the %pdb magic command, the debugger will automatically start at the
very next exception. You can also start IPython with ipython --pdb.

Finally, you can run a whole script under the control of the debugger with the %run
-d command. This command executes the specified script with a break point at the
first line so that you can precisely control the execution flow of the script. You can
also specify explicitly where to put the first breakpoint; type %run -d -b29 script.
py to pause the program execution on line 29 of script.py. In all cases, you first
need to type c to start the script execution.

When the debugger starts, you enter into a special prompt, as indicated by ipdb>.
The program execution is then paused at a given point in the code. You can type w
to display the line and stack location where the debugger has paused. At this point,
you have access to all local variables and you can precisely control how you want
to resume the execution. Within the debugger, several commands are available to
navigate into the traceback; they are as follows:

• u/d for going up/down into the call stack
• s to step into the next statement
• n to continue execution until the next line in the current function
• r to continue execution until the current function returns
• c to continue execution until the next breakpoint or exception

Chapter 1

[55]

Other useful commands include:

• p to evaluate and print any expression
• a to obtain the arguments of the current functions
• The ! prefix to execute any Python command within the debugger

The entire list of commands can be found in the documentation of the pdb module in
Python at https://docs.python.org/3.4/library/pdb.html.

Let's also mention the IPython.embed() function that you can call anywhere in
a Python script. This stops the script execution and starts IPython for debugging
purposes. Leaving the embedded IPython terminal resumes the normal execution of
the script.

Benchmarking Python code
The %timeit magic function lets us estimate the execution time of any Python
statement. Under the hood, it uses Python's native timeit module.

In the following example, we first load an ego graph from our Facebook dataset
using the NetworkX package. Then we evaluate how much time it takes to tell
whether the graph is connected or not:

Let's go to the data directory, as follows:

In [38]: %cd fbdata

Out[38]: (bookmark:fbdata) -> /home/cyrille/minibook/chapter1/facebook

 /home/cyrille/minibook/chapter1/facebook

We load NetworkX, as follows:

In [39]: import networkx

We can load a graph using the read_edgelist() function, as follows:

In [40]: graph = networkx.read_edgelist('107.edges')

How big is our graph?

In [41]: len(graph.nodes()), len(graph.edges())

Out[41]: (1034, 26749)

Now let's find out whether the graph is connected or not:

In [42]: networkx.is_connected(graph)

Out[42]: True

https://docs.python.org/3.4/library/pdb.html

Getting Started with IPython

[56]

How long did this call take?

In [43]: %timeit networkx.is_connected(graph)

Out[43]: 100 loops, best of 3: 5.92 ms per loop

Multiple calls are done in order to get more reliable time estimates. The number of
calls is determined automatically, but you can use the -r and -n options to specify
them directly. Type %timeit? to get more information.

Profiling Python code
The %timeit magic command gives you precious information about the total time
taken by a function or a statement. This can help you find the fastest among several
implementations of an algorithm, for example.

When you're finding that some code is too slow, you need to profile it before you can
make it faster. Profiling gives you more than the total time taken by a function; it tells
you exactly what is taking too long in your code.

The %prun magic command lets you easily profile your code. It provides a
convenient interface to Python's native profile module.

Let's see a simple example. We first create a function returning the number of
connected components in a file, as follows:

In [44]: import networkx

In [45]: def ncomponents(file):

 graph = networkx.read_edgelist(file)

 return networkx.number_connected_components(graph)

Now we write a function that returns the number of connected components in all
graphs defined in the directory, as follows:

In [46]: import glob

 def ncomponents_files():

 return [(file, ncomponents(file))

 for file in sorted(glob.glob('*.edges'))]

The glob module (https://docs.python.org/3.4/library/glob.html) lets us
find all files matching a given pattern (here, all files with the .edges file extension).

In [47]: for file, n in ncomponents_files():

 print(file.ljust(12), n, 'component(s)')

https://docs.python.org/3.4/library/glob.html

Chapter 1

[57]

Out[47]: 0.edges 5 component(s)

 107.edges 1 component(s)

 1684.edges 4 component(s)

 1912.edges 2 component(s)

 3437.edges 2 component(s)

 348.edges 1 component(s)

 3980.edges 4 component(s)

 414.edges 2 component(s)

 686.edges 1 component(s)

 698.edges 3 component(s)

Let's first evaluate the time taken by this function:

In [48]: %timeit ncomponents_files()

Out[48]: 1 loops, best of 3: 634 ms per loop

Now, to run the profiler, we use the %prun magic function, as follows:

In [49]: %prun -s cumtime ncomponents_files()

Out[49]: 2391070 function calls in 1.038 seconds

 Ordered by: cumulative time

 ncalls tottime percall cumtime percall
filename:lineno(function)

 1 0.000 0.000 1.038 1.038 {built-in method
exec}

 1 0.000 0.000 1.038 1.038 <string>:1(<module>)

 10 0.000 0.000 0.995 0.100 <string>:1(read_
edgelist)

 10 0.000 0.000 0.995 0.100 decorators.py:155(_
open_file)

 10 0.376 0.038 0.995 0.099 edgelist.
py:174(parse_edgelist)

 170174 0.279 0.000 0.350 0.000 graph.py:648(add_
edge)

 170184 0.059 0.000 0.095 0.000 edgelist.
py:366(<genexpr>)

 10 0.000 0.000 0.021 0.002 connected.
py:98(number_connected_components)

 35 0.001 0.000 0.021 0.001 connected.
py:22(connected_components)

Getting Started with IPython

[58]

Let's explain what happened here. The profiler kept track of all function calls
(including functions internal to NetworkX and Python) performed while our
ncomponents_files() function was running. There were 2,391,070 function calls.
That's a lot! Opening a file, reading and parsing every line, creating the graphs,
finding the number of connected components, and so on, are operations that involve
many function calls.

The profiler shows the list of all function calls (we just showed a subset here). There
are many ways to sort the functions. Here, we chose to sort them by cumulative time,
which is the total time spent within every function (-s cumtime option).

For every function, the profiler shows the total number of calls, and several time
statistics, described here (copied verbatim from the profiler documentation):

• tottime: the total time spent in the given function (and excluding time made
in calls to sub-functions)

• percall: the quotient of tottime divided by ncalls
• cumtime: the cumulative time spent in this and all subfunctions
• percall: the quotient of cumtime divided by the number of non-recursive

function calls

You will find more information by typing %prun? or by looking here: https://
docs.python.org/3.4/library/profile.html

Here, we see that computing the number of connected components took considerably
less time than loading the graphs from the text files. Depending on the use-case, this
might suggest using a more efficient file format.

There is of course much more to say about profiling and optimization. For example,
it is possible to profile a function line by line, which provides an even more fine-
grained profiling report. The IPython Cookbook contains many more details.

Summary
In this chapter, we covered everything you need to get started with Python, IPython,
and the Jupyter Notebook. We detailed how to install the software, we reviewed
the basics of the Python language, and we demonstrated ten of the most essential
features of IPython and the Jupyter Notebook.

In the next chapter, we will use these tools to analyze real-world datasets.

https://docs.python.org/3.4/library/profile.html
https://docs.python.org/3.4/library/profile.html

[59]

Interactive Data Analysis
with pandas

In this chapter, we will cover the following topics:

• Exploring a dataset in the Notebook
• Manipulating data
• Complex operations

We'll see how to load, explore, and visualize a real-world dataset with pandas,
matplotlib, and seaborn, all in the Notebook. We will also perform data
manipulations efficiently.

Exploring a dataset in the Notebook
Here, we will explore a dataset containing the taxi trips made in New York City in
2013. Maintained by the New York City Taxi and Limousine Commission, this 50GB
dataset contains the date, time, geographical coordinates of pickup and dropoff
locations, fare, and other information for 170 million taxi trips.

To keep the analysis times reasonable, we will analyze a subset of this dataset
containing 0.5% of all trips (about 850,000 rides). Compressed, this subset data
represents a little less than 100MB. You are free to download and analyze the full
dataset (or a larger subset), as explained below.

Interactive Data Analysis with pandas

[60]

Provenance of the data
You will find the data subset we will be using in this chapter at https://github.
com/ipython-books/minibook-2nd-data.

If you are interested in the original dataset containing all trips, you can refer to
https://github.com/ipython-books/minibook-2nd-code/tree/master/
chapter2/cleaning. This page contains the code to download the original dataset
and create the data subset we'll be using in this chapter. It is recommended to have
100GB of free space on your hard drive before you proceed with the full dataset
(this requirement doesn't apply to the data subset we will be using in this chapter, of
course).

The original 50GB dataset contained 24 zipped CSV files (a data and a fare file
for every month). We created a Python script going through all of these files and
extracting one row out of 200 rows.

Then, we ordered the rows by chronological order (using the pickup time).

Next, we removed all rows with inconsistent coordinates. We defined the
coordinates of a rectangle surrounding Manhattan (to restrict ourselves to this area)
and we only kept the rows where both pickup and dropoff locations were within this
rectangle.

Finally, we ended up with two cleaned nyc_data.csv and nyc_fare.csv files.

We used some features of pandas to perform these steps efficiently. We will cover
them later in this chapter.

Here are a few references:

• History of the dataset at http://chriswhong.com/open-data/foil_nyc_
taxi/

• More recent data at http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml

• An interactive web application based on this dataset at http://hubcab.org
• pandas documentation at http://pandas.pydata.org/pandas-docs/

stable/

• Python for Data Analysis, O'Reilly Media, by Wes McKinney, the creator of
pandas, at http://shop.oreilly.com/product/0636920023784.do

https://github.com/ipython-books/minibook-2nd-data
https://github.com/ipython-books/minibook-2nd-data
https://github.com/ipython-books/minibook-2nd-code/tree/master/chapter2/cleaning
https://github.com/ipython-books/minibook-2nd-code/tree/master/chapter2/cleaning
http://chriswhong.com/open-data/foil_nyc_taxi/
http://chriswhong.com/open-data/foil_nyc_taxi/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://hubcab.org
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://shop.oreilly.com/product/0636920023784.do

Chapter 2

[61]

Public datasets
There is now a large variety of public datasets available online as part of
the open data movement. Here are a few references:

• Open data on Wikipedia at https://en.wikipedia.org/
wiki/Open_data

• Curated list of public datasets at https://github.com/
caesar0301/awesome-public-datasets

• The home of the U.S. Government's open data at http://www.
data.gov

• The open platform for French public data at https://www.
data.gouv.fr/en/

Downloading and loading a dataset
Let's import a few packages we will need here.

In [1]: import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 %matplotlib inline

It is a common practice to import NumPy and assign it the np alias. Same for
pandas with pd, and matplotlib's high-level interface named pyplot with plt. The
%matplotlib inline magic command tells matplotlib to render figures as static
images in the Notebook.

We now move to the chapter2 subdirectory in the minibook's directory:

In [2]: %cd ~/minibook/chapter2/

Next, let's download the data subset, available on the book's data repository
at https://github.com/ipython-books/minibook-2nd-data. If you are on
Windows, the following two commands won't work. Instead, you can download
the NYC Taxi dataset from the URL above and extract it in the current directory with
a right-click.

In [3]: !wget https://raw.githubusercontent.com/ipython-books/minibook-
2nd-data/master/nyc_taxi.zip

 !unzip nyc_taxi.zip

In [4]: %ls data

Out[4]: nyc_data.csv nyc_fare.csv [...]

https://en.wikipedia.org/wiki/Open_data
https://en.wikipedia.org/wiki/Open_data
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets
http://www.data.gov
http://www.data.gov
https://www.data.gouv.fr/en/
https://www.data.gouv.fr/en/
https://github.com/ipython-books/minibook-2nd-data

Interactive Data Analysis with pandas

[62]

We are now in ~/minibook/chapter2/, and we should have a data/ subdirectory
containing two CSV files. The nyc_data.csv file contains information about the
rides, whereas nyc_fare.csv contains information about the fares.

In [5]: data_filename = 'data/nyc_data.csv'

 fare_filename = 'data/nyc_fare.csv'

Now, let's load the data. pandas provides a powerful read_csv() function that
can read virtually any CSV file. This function accepts many options, as you can see
in pandas' documentation page at http://pandas.pydata.org/pandas-docs/
stable/generated/pandas.io.parsers.read_csv.html. Here, we just need to
specify which columns contain the dates, so that pandas can parse them correctly.

Trial and error
Typically, you should first try to open a dataset with read_
csv(filename) with no special argument. If an error occurs, or
if some columns are parsed incorrectly, you can fix the problem by
passing extra parameters to the function, like we did here with parse_
dates. You will find more information in pandas' documentation.

In [6]: data = pd.read_csv(data_filename,

 parse_dates=['pickup_datetime',

 'dropoff_datetime'])

 fare = pd.read_csv(fare_filename,

 parse_dates=['pickup_datetime'])

The data and fare variables are DataFrame objects. A DataFrame is a table
containing rows (observations or samples) and columns (features or variables).
DataFrames can contain text, numbers, dates, and other types of data. pandas
provides Notebook-friendly display facilities for DataFrames, as we can see here:

In [7]: data.head(3)

The head() method of DataFrames displays the first few lines (here, three) of the
table. Here is a screenshot:

A DataFrame in the Notebook

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html

Chapter 2

[63]

Similarly, the tail() method displays the last few lines of a DataFrame.

The describe() method shows basic statistics of all columns, as shown in the
following screenshot:

Describing a dataset

Making plots with matplotlib
Visualizing raw data, as opposed to aggregated statistics, often allows us to get a
general idea about a dataset. Here, we will display the pickup and dropoff locations
of all trips.

The first step is to get the actual coordinates from the DataFrame. We can find the list
of columns as follows:

In [8]: data.columns

Out[8]: Index(['medallion',

 ...

 'pickup_datetime',

 'dropoff_datetime',

 'passenger_count',

 'trip_time_in_secs',

 'trip_distance',

 'pickup_longitude',

 'pickup_latitude',

 'dropoff_longitude',

 'dropoff_latitude'], dtype='object')

Interactive Data Analysis with pandas

[64]

Four columns mention latitude and longitude. Let's load these columns:

In [9]: p_lng = data.pickup_longitude

 p_lat = data.pickup_latitude

 d_lng = data.dropoff_longitude

 d_lat = data.dropoff_latitude

With pandas, every column of a DataFrame can be obtained with the mydataframe.
columnname syntax. An alternative syntax is mydataframe['columnname'].

Here, we created four variables with the coordinates of the pickup and dropoff
locations. These variables are all Series objects:

In [10]: p_lng

Out[10]: 0 -73.955925

 1 -74.005501

 ...

 846943 -73.978477

 846944 -73.987206

 Name: pickup_longitude, Length: 846945, dtype: float64

A Series is an indexed list of values. Therefore, a DataFrame is simply a collection of
Series columns.

Before we can make a plot, we need to get the coordinates of points in pixels instead
of geographical coordinates. We can use the following function that performs a
Mercator projection:

In [11]: def lat_lng_to_pixels(lat, lng):

 lat_rad = lat * np.pi / 180.0

 lat_rad = np.log(np.tan((lat_rad + np.pi / 2.0) / 2.0))

 x = 100 * (lng + 180.0) / 360.0

 y = 100 * (lat_rad - np.pi) / (2.0 * np.pi)

 return (x, y)

NumPy implements many mathematical functions like np.log() and np.tan().
These functions work on scalar numbers and also on pandas objects such as Series.
Here, the following function call returns two new Series px and py:

In [12]: px, py = lat_lng_to_pixels(p_lat, p_lng)

In [13]: px

Chapter 2

[65]

Out[13]: 0 29.456688

 1 29.442916

 ...

 846943 29.450423

 846944 29.447998

 Name: pickup_longitude, dtype: float64

We will give more details about mathematical operations on pandas objects later in
this chapter.

The matplotlib scatter() function takes two arrays with x and y coordinates as
inputs. A scatter plot is a common 2D figure showing points with various positions,
sizes, colors, and marker shapes. The following command displays all pickup
locations:

In [14]: plt.scatter(px, py)

A scatter plot

Congratulations! You've made your first matplotlib plot. But it is not particularly
appealing. First, the markers are too big. Second, there are too many points; we could
make them a bit transparent to have a better idea of the distribution of the points.
Third, we may want to zoom a bit more around Manhattan. Fourth, could we make
this figure bigger? And finally, we don't necessarily need the axes here.

Interactive Data Analysis with pandas

[66]

Fortunately, matplotlib is highly customizable, and all aspects of the plot can be
changed, as shown here:

In [15]: plt.figure(figsize=(8, 6))

 plt.scatter(px, py, s=.1, alpha=.03)

 plt.axis('equal')

 plt.xlim(29.40, 29.55)

 plt.ylim(-37.63, -37.54)

 plt.axis('off')

A better scatter plot

That's already better! Let's explain these commands in more detail:

• The figure() function lets us specify the figure size (in inches).
• The scatter() function accepts many keyword arguments to customize

the aspect of the scatter plot. Here:
 ° We use a small marker size with the s keyword argument.
 ° We use a small alpha opacity value: the points become nearly

transparent, which emphasizes the regions with high density.

• We use an equal aspect ratio with axis('equal').
• We zoom in by specifying the limits of the x and y axes with xlim()

and ylim().
• We remove the axes with axes('off').

You will find the full list of options of scatter() in matplotlib's documentation at
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter.

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter

Chapter 2

[67]

Descriptive statistics with pandas and
seaborn
Common statistical quantities are one function call away in pandas. Here are a few
examples:

In [16]: px.count(), px.min(), px.max()

Out[16]: (846945, 29.4171, 29.7143)

In [17]: px.mean(), px.median(), px.std()

Out[17]: (29.451345, 29.44941, 0.00976)

pandas also provides facilities for common statistical plots. These facilities leverage
the matplotlib and seaborn libraries.

matplotlib is the main plotting package in Python. Although highly powerful and
flexible, it sometimes requires a significant amount of manual tuning in order to
generate clean, high-quality, publication-ready figures. Several projects aim to offer
higher-level, simpler user interfaces for high-quality plotting. Seaborn is one of them,
and we will use it in this subsection.

First, we need to install seaborn, as it is not currently installed by default in the
Anaconda distribution. Fortunately, installing it is easy with conda. We can even
perform the installation from the Notebook, as shown here:

In [18]: !conda install seaborn -q -y

Conda optional arguments
The optional arguments -q -y tell conda not to display the progress
bar and not to ask for confirmation, respectively. More information
is available at http://conda.pydata.org/docs/commands/
conda-install.html.

This command may take a while to complete, depending on your network
connection. Let's check that seaborn has been correctly installed:

In [19]: import seaborn as sns

 sns.__version__

Out[19]: '0.6.0'

Importing seaborn automatically improves the aesthetics and color palettes of
matplotlib figures. It also provides several easy-to-use statistical plotting functions.

http://conda.pydata.org/docs/commands/conda-install.html
http://conda.pydata.org/docs/commands/conda-install.html

Interactive Data Analysis with pandas

[68]

Let's display a histogram of the trip distances. pandas provides a few simple
plotting methods for DataFrame and Series objects. These methods are based
on matplotlib, and benefit from the seaborn styling if seaborn has been imported.
The hist() method displays a histogram of the values of a Series object. We can
specify the histogram bins with the bins keyword argument. Here, we use NumPy's
linspace() function to generate 100 linearly-spaced bins between 0 and 10:

In [20]: data.trip_distance.hist(bins=np.linspace(0., 10., 100))

A histogram with pandas, matplotlib, and seaborn

Here are a few references:

• Plotting with pandas at http://pandas.pydata.org/pandas-docs/
stable/visualization.html

• Seaborn documentation at http://stanford.edu/~mwaskom/software/
seaborn/

• Visualizing distributions with seaborn, at http://stanford.edu/~mwaskom/
software/seaborn/tutorial/distributions.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://stanford.edu/~mwaskom/software/seaborn/
http://stanford.edu/~mwaskom/software/seaborn/
http://stanford.edu/~mwaskom/software/seaborn/tutorial/distributions.html
http://stanford.edu/~mwaskom/software/seaborn/tutorial/distributions.html

Chapter 2

[69]

Manipulating data
Visualizing raw data and computing basic statistics is particularly easy with pandas.
All we have to do is choose a couple of columns in a DataFrame and use built-in
statistical or visualization functions.

However, more sophisticated data manipulations methods quickly become necessary
as we explore a dataset. In this section, we will first see how to make selections
of a DataFrame. Then, we will see how to efficiently make transformations and
computations on columns.

We first import the NYC taxi dataset, as in the previous section.

In [1]: import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 %matplotlib inline

 data = pd.read_csv('data/nyc_data.csv',

 parse_dates=['pickup_datetime',

 'dropoff_datetime'])

 fare = pd.read_csv('data/nyc_fare.csv',

 parse_dates=['pickup_datetime'])

The data and fare DataFrames are now loaded in the notebook.

Selecting data
Our dataset contains almost one million rows. Only limited analyses can be done
by using the whole dataset. More interesting discoveries can be made by looking at
carefully-chosen subsets of the data. For example, what can we say about the taxi
rides done on a particular day, a particular month, or a particular day of week? What
about those starting or ending at a particular location? A significant part of real-
world data analysis involves such fine-grained selections.

pandas offers many facilities for selecting a subset of columns or rows.

Interactive Data Analysis with pandas

[70]

Selecting columns
First, let's select a few columns:

In [2]: data[['trip_distance', 'trip_time_in_secs']].head(3)

Out[2]: trip_distance trip_time_in_secs

 0 0.61 300

 1 3.28 960

 2 1.50 386

In Python, the square brackets [] are used for selecting elements in a list. The same
notation is used by pandas to select columns. We need two pairs of brackets because
pandas expects a list of columns to select, here ['trip_distance', 'trip_time_
in_secs']. The end-result is a new DataFrame containing just two columns instead
of 14.

This is about all you need to know about selecting columns. There is much more to
say about selecting rows.

Selecting rows
Rows of a DataFrame are indexed: every row comes with a unique label (or index).
Often, this label is just an integer between 0 and n_rows-1. In some situations, this
label can be something else, like a string. If we had a DataFrame giving information
about each taxi, the label could be the taxi's medallion (a unique identifier for NYC's
taxicabs), or an anonymized version of it.

The loc attribute of a DataFrame is used to select row(s) from their labels. Here, we
select the first row:

In [3]: data.loc[0]

Out[3]: medallion 76942C3205E17D7E7FE5A9F709D16434

 hack_license 25BA06A87905667AA1FE5990E33F0E2E

 vendor_id VTS

 rate_code 1

 store_and_fwd_flag NaN

 pickup_datetime 2013-01-01 00:00:00

 dropoff_datetime 2013-01-01 00:05:00

 passenger_count 3

Chapter 2

[71]

 trip_time_in_secs 300

 trip_distance 0.61

 pickup_longitude -73.95592

 pickup_latitude 40.78189

 dropoff_longitude -73.96318

 dropoff_latitude 40.77783

 Name: 0, dtype: object

Multiple rows can be selected by providing a list of labels:

In [4]: data.loc[[0, 100000]]

Selecting multiple rows

We can also select regularly spaced rows using slices. For example, here is how to
select one row out of 10 between rows 1000 and 2000:

In [5]: data.loc[1000:2000:10,

 ['trip_distance', 'trip_time_in_secs']]

Out[5]: trip_distance trip_time_in_secs

 1000 1.00 441

 1010 3.80 691

 1990 0.13 60

 2000 9.60 963

Note how we combined column and row selection here. Two expressions can be
passed to loc: the row selection first, and the column selection second (the two
expressions are separated by a comma).

loc expects actual labels and, unlike normal Python slices, the start and end points
are both inclusive! Also, we could have used iloc instead of loc to specify index
positions rather than labels.

Interactive Data Analysis with pandas

[72]

Filtering with boolean indexing
Instead of selecting rows by labels, we can also select rows satisfying specific
properties. This is a more common use-case in data analysis.

For example, let's select the longest rides:

In [6]: data.loc[data.trip_distance>50]

Long taxi rides

Here, data.trip_distance>50 is a Series object containing boolean values for all
rows, depending on whether the trip distance is higher or lower than 50. The loc
attribute also works with booleans instead of explicit labels: it will return all rows
represented by a True boolean value.

We might want to choose the distance threshold depending on certain conditions.
For example, we might want to keep the 1% longest trips. Here, let's show how the
IPython widgets can help us do that (this isn't the only method, of course).

We create a slider displaying the number of rows with a distance larger than the
threshold:

In [7]: from ipywidgets import interact

In [8]: @interact

 def show_nrows(distance_threshold=(0, 200)):

 return len(data.loc[data.trip_distance >

 distance_threshold])

A slider to select long rides

Chapter 2

[73]

More selection, indexing, and filtering facilities are described in pandas'
documentation. Here are a few references:

• http://pandas.pydata.org/pandas-docs/stable/dsintro.html

• http://pandas.pydata.org/pandas-docs/stable/indexing.html

Computing with numbers
The trip_time_in_secs column contains the trip durations in seconds. How can we
convert these values to minutes? More generally, how can we make computations on
DataFrames?

A first approach would be to use a for loop, iterating over all rows and making
numerical computations successively inside that loop. This is what people with a
background in the C programming language tend to do when they start to learn
Python. However, this isn't the best way to do things in Python.

Whereas Python loops are possible in this situation, they would be extremely slow.
For this reason, they should be avoided as much as possible. We will discuss this
issue in the next chapter. In the meantime, there are much better, faster, and actually
simpler alternatives.

pandas allows you to perform vector operations on DataFrame and Series objects.
These operations are quite natural, because they follow standard mathematical
notations. For example, let's add a new column containing the trip durations in
minutes:

In [9]: data['trip_time_in_mins'] = data.trip_time_in_secs / 60.0

In [10]: data[['trip_time_in_secs', 'trip_time_in_mins']].head(3)

Out[10]: trip_time_in_secs trip_time_in_mins

 0 300 5.000000

 1 960 16.000000

 2 386 6.433333

Let's explain this in more detail. The data.trip_time_in_secs notation represents
a Series object. The / symbol represents floating-point division in Python 3. It
normally works with numbers only. However, pandas extends this operator to work
with Series and DataFrames as well, in which case it automatically operates on all
elements. Here, all elements of data.trip_time_in_secs are divided by 60.

http://pandas.pydata.org/pandas-docs/stable/dsintro.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html

Interactive Data Analysis with pandas

[74]

The same notation would also work if we had another Series object of the same size
in the second term. In that case, the division would occur on an element-wise basis
(the first item in the Series on the left divided by the first in the right, the second by
the second, and so on).

A Series object is a vector with indices (or labels). The indices determine which
values are used when operating Series objects together. Here is an example:

In [11]: a = data.trip_distance[:5]

 a

Out[11]: 0 0.61

 1 3.28

 2 1.50

 3 0.00

 4 1.31

 Name: trip_distance, dtype: float64

In [12]: b = data.trip_distance[2:6]

 b

Out[12]: 2 1.50

 3 0.00

 4 1.31

 5 5.81

 Name: trip_distance, dtype: float64

These two Series objects have different but overlapping sets of indices. Although
they don't have the same size, we can add them together:

In [13]: a + b

Out[13]: 0 NaN

 1 NaN

 2 3.00

 3 0.00

 4 2.62

 5 NaN

 Name: trip_distance, dtype: float64

Chapter 2

[75]

The result is a new Series object containing the aligned sum of a and b. The set of
indices of a + b is the union of the indices of a and b. When one value is missing, we
get an operation with an undefined value, which is NaN (Not a Number). When the
indices overlap, the sum is correctly computed. This feature - alignment - makes it
quite convenient to operate on labeled data. You'll find more information at http://
pandas.pydata.org/pandas-docs/stable/basics.html.

Other mathematical operations (+, *, etc.) work similarly. Further, NumPy
implements many mathematical functions like np.log() and np.sin(); they not
only work on scalar numbers but also on Series and DataFrames. This is called
vectorization, because this concept relates to mathematical operations performed
on vectors. We will discuss this concept in greater details in Chapter 3, Numerical
Computing with NumPy.

Working with text
Efficient vectorized operations can also be done on text. Let's have a look at data.
medallion:

In [14]: data.medallion.head(3)

Out[14]: 0 76942C3205E17D7E7FE5A9F709D16434

 1 517C6B330DBB3F055D007B07512628B3

 2 ED15611F168E41B33619C83D900FE266

 Name: medallion, dtype: object

This column contains anonymized versions of the taxis' medallions. The str attribute
gives us access to many vectorized string processing functions. Here, for example,
we extract the first four characters of every medallion:

In [15]: data.medallion.str.slice(0, 4).head(3)

Out[15]: 0 7694

 1 517C

 2 ED15

 Name: medallion, dtype: object

There are many other functions, including ones that apply regular expressions on
all rows. Together, these functions are essential when you're working with text data,
particularly when you have datasets so large that for loops would be too slow. You
will find the full list of string methods at http://pandas.pydata.org/pandas-
docs/stable/text.html.

http://pandas.pydata.org/pandas-docs/stable/basics.html
http://pandas.pydata.org/pandas-docs/stable/basics.html
http://pandas.pydata.org/pandas-docs/stable/text.html
http://pandas.pydata.org/pandas-docs/stable/text.html

Interactive Data Analysis with pandas

[76]

Working with dates and times
pandas provides many methods to operate on dates and times. Common operations
include:

• getting the day, day of week, hour, or any other quantity from dates
• selecting ranges of dates
• computing time ranges
• dealing with different time zones

These operations only work on Series with a datetime64 data type, or with
DatetimeIndex objects (used to index values with dates or times). In practice, there
are many ways to get such objects from raw data like CSV files. Here, we used the
parse_dates keyword arguments in the pd.read_csv() function. Among the other
methods, let's mention the pd.to_datetime() function. You will find more details in
the references below.

The dt attribute of datetime objects gives us access to datetime components. For
example, here is how to get the day of the week of the taxi trips (Monday=0,
Sunday=6):

In [16]: data.pickup_datetime.dt.dayofweek[::200000]

Out[16]: 0 1

 200000 6

 400000 5

 600000 0

 800000 1

 dtype: int64

Here is a more complex example. Let's select all night trips that finished the next day:

In [17]: day_p = data.pickup_datetime.dt.day

 day_d = data.dropoff_datetime.dt.day

 selection = (day_p != day_d)

 print(len(data.loc[selection]))

 data.loc[selection].head(3)

Out[17]: 7716

Chapter 2

[77]

Night trips

Like in the Computing with numbers subsection, the (day_p != day_d) expression
is a Series of booleans for selecting the rows that have different pickup and dropoff
days. Python's inequality symbol != is understood by pandas as a vectorized
operator working on a row-by-row basis.

Here are a few references about date and time operations:

• http://pandas.pydata.org/pandas-docs/stable/timeseries.html

• http://pandas.pydata.org/pandas-docs/stable/timedeltas.html

Handling missing data
We finish this part with a short discussion about missing data. Real-world datasets
are rarely perfect, and having missing values in a dataset is the rule rather than the
exception. Fortunately, pandas perfectly handles missing data.

In practice, you can consider letting pandas deal seamlessly with missing data while
you manipulate and operate on data. However, there are times when you want
control over these missing values. For example, you may want to discard missing
data from some analysis. Or, you may want to replace missing data with a default
value.

In pandas, missing data is represented by NaN (Not a Number) or None. pandas
provides several Series and DataFrame methods to deal with missing data, notably:

• isnull() indicates whether values are null or not
• notnull() indicates the opposite
• dropna() removes missing data
• fillna(some_default_value) replaces missing data with a default value

You will find more details at http://pandas.pydata.org/pandas-docs/stable/
missing_data.html.

http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html

Interactive Data Analysis with pandas

[78]

Complex operations
We've seen how to load, select, filter, and operate on data with pandas. In this
section, we will show more complex manipulations that are typically done on full-
blown databases based on SQL.

SQL
Structured Query Language is a domain-specific language widely
used to manage data in relational database management systems
(RDBMS). pandas is somewhat inspired by SQL, which is familiar to
many data analysts. Additionally, pandas can connect to SQL databases.
You will find more information about the links between pandas and
SQL at http://pandas.pydata.org/pandas-docs/stable/
comparison_with_sql.html.

Let's first import our NYC taxi dataset as in the previous sections.

In [1]: import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 import seaborn

 %matplotlib inline

 data = pd.read_csv('data/nyc_data.csv',

 parse_dates=['pickup_datetime',

 'dropoff_datetime'])

 fare = pd.read_csv('data/nyc_fare.csv',

 parse_dates=['pickup_datetime'])

Group-by
A group-by operation typically consists of one or several of the following steps:

• splitting the data into groups that share common attributes
• applying a function to every group
• recombining the results

Many operations that seem particularly complex are actually group-by operations.
pandas provides user-friendly facilities to perform these manipulations. We will
illustrate them here.

http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

Chapter 2

[79]

Let's have a look at the weekly statistics in our dataset. We first need to split the data
into weekly groups. pandas provides the groupby() method for this purpose, as
shown here:

In [2]: weekly = data.groupby(data.pickup_datetime.dt.weekofyear)

In [3]: len(weekly)

Out[3]: 52

Here, data.pickup_datetime.dt.weekofyear is a Series instance with the week
number of every ride. The groupby() method returns an object with one group per
value of weekofyear. Since there are 52 different weeks in the year, weekly contains
52 different groups.

The size() method returns the number of rows in each group, as shown here:

In [4]: y = weekly.size()

 y.head(3)

Out[4]: 1 17042

 2 15941

 3 17017

 dtype: int64

We'll now plot the number of rides per week. To create a meaningful plot, we first
need to specify the appropriate x-axis with the dates of all 52 weeks:

In [5]: x = weekly.pickup_datetime.first()

 x.head(3)

Out[5]: 1 2013-01-01 00:00:00

 2 2013-01-07 00:03:00

 3 2013-01-14 00:00:51

 Name: pickup_datetime, dtype: datetime64[ns]

This Series contains the date of the first item in every row.

Finally, we create a new Series with the values in our y object, and indexed by the
dates x (we need to use .values in order to discard y's indices, since we use x's
indices instead). The plot() method of this new Series creates the plot we want:

In [6]: pd.Series(y.values, index=x).plot()

 plt.ylim(0) # Set the lower y value to 0.

 plt.xlabel('Week') # Label of the x axis.

 plt.ylabel('Taxi rides') # Label of the y axis.

Interactive Data Analysis with pandas

[80]

Here is the result (let's not forget that our dataset only contains a small fraction
of all rides):

Number of taxi rides per week

We'll see more examples in the next subsection.

More information about the powerful group-by operation in pandas can be found at
http://pandas.pydata.org/pandas-docs/stable/groupby.html.

Joins
Joins are common operations in relational databases. The idea is to combine several
tables together, based on common values shared between the tables.

In the current example, we have two DataFrames, data and fare, both with the
same number of rows (one row per trip). First, from the fare DataFrame, we will get
the average tip obtained by each taxi. Then, we'll inject this information into the data
DataFrame.

http://pandas.pydata.org/pandas-docs/stable/groupby.html

Chapter 2

[81]

For the first step, we use groupby() again:

In [7]: tip = fare[['medallion', 'tip_amount']] \

 .loc[fare.tip_amount>0].groupby('medallion').mean()

 print(len(tip))

 tip.head(3)

Out[7]: 13407

 tip_amount

 medallion

 00005007A9F30E289E760362F69E4EAD 1.815854

 000318C2E3E6381580E5C99910A60668 2.857222

 000351EDC735C079246435340A54C7C1 2.099111

Here, we considered a reduced DataFrame with just the medallion and tip_amount
columns, removed the trips where the passenger did not tip, grouped by taxi's
medallion (a unique identifier for the taxis), and took the mean of this grouped
DataFrame. This new DataFrame contains one column tip_amount and is indexed
by the medallion. It contains 13407 rows: this corresponds to the number of different
taxis in our dataset.

Chaining syntax
Note how we used the chaining syntax here to perform several
operations successively on the fare DataFrame (the obj.fun1().
fun2().fun3() pattern). Each of these operations in pandas
returns a new DataFrame. The dot . character applies the next
operation to the previous operation's result and forms a concise and
readable syntax for chained operations. See also the pipe() function
at http://pandas.pydata.org/pandas-docs/stable/
generated/pandas.DataFrame.pipe.html.

www.allitebooks.com

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pipe.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pipe.html
http://www.allitebooks.org

Interactive Data Analysis with pandas

[82]

Let's plot a histogram of these average tips:

In [8]: tip.hist(bins=np.linspace(0., 6., 100))

 plt.xlabel('Average tip')

 plt.ylabel('Number of taxis')

Average tips earned by taxis

The next step is to reinject this tip DataFrame into the data DataFrame. The
medallion column appears in both of our datasets; by identifying this special field
(also called the key) in both datasets, we can associate every row in tip to a row in
data. This operation is called a join in SQL.

We can use the merge() function here:

In [9]: data_merged = pd.merge(data, tip, how='left',

 left_on='medallion', right_index=True)

 data_merged.head(3)

Result of a merge operation

Chapter 2

[83]

Let's explain how this works:

• We specify the left and right DataFrames to perform the join on.
• There are several types of joins; we choose a left join here because we want to

keep the keys from the left DataFrame data.
• We then specify where to find this key in the left and right DataFrames.

 ° On the left, we use the medallion column.
 ° On the right, we use the index, because the tip DataFrame is indexed

by the medallion.

The end product is a new DataFrame similar to our original data DataFrame, but
with an additional column containing the average tip received by the taxi.

Joins and merges form a rich and complex topic. You will find more information at
http://pandas.pydata.org/pandas-docs/stable/merging.html.

Finally, here are a few more advanced topics in pandas that are worth exploring:

• Features for time series data at http://pandas.pydata.org/pandas-docs/
stable/timeseries.html

• Support for categorical variables at http://pandas.pydata.org/pandas-
docs/stable/categorical.html

• Pivot tables (particularly useful when dealing with high-dimensional data) at
http://pandas.pydata.org/pandas-docs/stable/reshaping.html

Summary
In this chapter, we covered the basics of data analysis with pandas: loading a dataset,
selecting rows and columns, grouping and aggregating quantities, and performing
complex operations efficiently.

The next natural step is to conduct statistical analyses: hypothesis testing, modeling,
predictions, and so on. Several Python libraries provide such functionality beyond
pandas: SciPy, statsmodels, PyMC, and more. The IPython Cookbook contains many
advanced examples of such analyses.

In the next chapter, we will introduce NumPy, the library underlying the entire SciPy
ecosystem.

http://pandas.pydata.org/pandas-docs/stable/merging.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/categorical.html
http://pandas.pydata.org/pandas-docs/stable/categorical.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html

[85]

Numerical Computing
with NumPy

NumPy is the library that underlies the entire SciPy/PyData ecosystem. NumPy
provides a multidimensional array data type that is widely used in numerical
computing.

In this chapter, we will use NumPy on data analysis and scientific modeling
examples, covering the following topics:

• A primer to vector computing
• Creating and loading arrays
• Basic array manipulations
• Computing with NumPy arrays

A primer to vector computing
Vector computing is about efficiently performing mathematical operations on
numerical arrays. Many problems in science and engineering actually consist of a
sequence of such operations.

This section introduces and demonstrates the multidimensional array data type for
numerical computing.

Numerical Computing with NumPy

[86]

Multidimensional arrays
What is a multidimensional array? Consider a vector containing 1000 real numbers.
It has one dimension, since numbers are stored along a single axis. Now, consider
a matrix with 1000 rows and 1000 columns. It contains 1,000,000 numbers. Because
it has two dimensions, you need to specify both the row and column to refer to a
specific number.

More generally, an n-dimensional array, also called ndarray, is an n-dimensional
matrix (or tensor). Every number is identified by n indices (i_1, ... i_n).

Many types of real-world data can be represented as ndarrays:

• The evolution of a stock exchange price is a 1D array (vector) with one value
per day (or per hour, per week, etc.).

• A grayscale image is a (height, width) 2D array, with one light intensity
per pixel.

• The evolution of a Partial Differential Equation (PDE) on a 2D grid can be
represented as a (n, m, duration) 3D array.

• A video is a (height, width, n_channels, duration) 4D array,
where typically n_channels=3 for the three RGB (red, green, blue) color
components.

It is quite rare to work on arrays with more than 4 dimensions.

Originally, Python didn't provide an adequate structure for representing an ndarray.
This is the main goal of a scientific Python library created in the early 2000s called
NumPy, which traces its roots back to several years before.

The ndarray
An ndarray is essentially defined by:

• a number of dimensions
• a shape
• strides
• a data type, or dtype
• the actual data

We already explained the notion of dimension for a numerical array. The shape
is the length of every axis. For example, the shape of a video would be (height,
width, n_channels, duration). There are four elements in this tuple because
there are four dimensions in the array. Strides will be explained later in this chapter.

Chapter 3

[87]

Here is a schematic representation of the structure of a 3D ndarray:

Structure of an ndarray

In an array, all elements must have the same data type. The most common data types
are integers, floating-point numbers, booleans, and strings.

You can also define custom data types for structured arrays (also called record
arrays). These are arrays of structs (meant as C structs). A typical use-case occurs
when you want to load a flat binary file in a complex format. You will find more
information at http://docs.scipy.org/doc/numpy/user/basics.rec.html.

Vector operations on ndarrays
NumPy not only provides an ndarray structure for storing numerical data, but it also
implements fast mathematical operations on ndarrays. The ability to perform highly-
efficient operations on ndarrays is one of the major advantages of this structure.

Many operations on arrays follow the same pattern where an elementary
mathematical operation is performed on an element-wise basis on two arrays. For
example, the sum C=A+B of two matrices contains the sums of all corresponding pairs
of elements in A and B: C_ij = A_ij + B_ij. Mathematically, this corresponds
to operations on vectors and matrices. These are called vector (or vectorized)
operations. NumPy offers fast implementations of many vector operations.

Another advantage of NumPy is the brevity of the syntax for array operations.
Whereas a language like C or Java would require us to write a loop for a matrix
operation as simple as C=A+B, NumPy allows us to simply write C=A+B. More
generally, many complex operations can be concisely written in a few lines of
NumPy, whereas they would involve tens of lines in another language.

http://docs.scipy.org/doc/numpy/user/basics.rec.html

Numerical Computing with NumPy

[88]

How fast are vector computations in NumPy?
One of the most important take-home messages of this chapter is that vector operations
on ndarrays are much faster than Python loops. Most numerical computations should
be done with vector operations in NumPy instead of Python loops.

Let's illustrate this particularly important point by showing two ways of computing
the sum of two vectors: in pure Python, and with NumPy.

Let's first create two vectors containing 1,000,000 random numbers each. We use the
native random module in a list comprehension:

In [1]: from random import random

 list_1 = [random() for _ in range(1000000)]

 list_2 = [random() for _ in range(1000000)]

We compute the sum of these vectors with another list comprehension. The zip()
built-in function allows us to loop over the two vectors simultaneously, as shown here:

In [2]: out = [x + y for (x, y) in zip(list_1, list_2)]

 out[:3]

Out[2]: [0.843375384328939, 1.507485612134079, 1.4119777108063973]

How long does this operation take? Let's use IPython's %timeit magic command to
find it out:

In [3]: %timeit [x + y for (x, y) in zip(list_1, list_2)]

Out[3]: 10 loops, best of 3: 69.7 ms per loop

Now, we perform the same operation with NumPy:

In [4]: import numpy as np

 arr_1 = np.array(list_1)

 arr_2 = np.array(list_2)

The np.array() function can convert a Python list into an ndarray (we'll cover this
in more detail in the next section). Although list_1 and arr_1 contain the same
data, they don't have the same data type:

In [5]: type(list_1), type(arr_1)

Out[5]: (list, numpy.ndarray)

In [6]: arr_1.shape

Out[6]: (1000000,)

In [7]: arr_1.dtype

Out[7]: dtype('float64')

Chapter 3

[89]

Computing the sum of the two arrays is particularly easy with NumPy; the +
character directly works with ndarrays of the same shape:

In [8]: sum_arr = arr_1 + arr_2

 sum_arr[:3]

Out[8]: array([0.84337538, 1.50748561, 1.41197771])

How much faster is NumPy over pure Python here?

In [9]: %timeit arr_1 + arr_2

Out[9]: 1000 loops, best of 3: 1.57 ms per loop

This is about 45 times faster.

Generally speaking, getting one or several orders of magnitude of speed
improvements between pure Python and NumPy is not uncommon. We'll explain
the technical reasons of this below. In the meantime, just remember that vectorized
operations with NumPy are much faster than Python loops. Every time you are
tempted to write a Python loop, see if you can use NumPy instead.

How an ndarray is stored in memory
Let's briefly discuss the internals of NumPy. Although beginners can probably skip
this, knowing these details can help you write more efficient code with NumPy.

Internally, an ndarray consists of some metadata about the array's structure, and the
actual binary data. The data is stored in a contiguous block of memory. For example,
the data of a vector containing 10 elements of double-precision floating-point
numbers (float64 dtype, where each number is encoded in 8 bytes) is stored in a
contiguous block of 80 bytes.

With this information, you can calculate the memory requirements for an ndarray.
For example, a (10,000, 10,000) float64 array requires 10,000*10,000*8 bytes,
which is about 763 MB of memory. When working with large arrays, check your
available memory to avoid running out of RAM and crashing your computer.

Numerical Computing with NumPy

[90]

When there is more than one dimension, there are several ways of storing the
elements in the memory block. With a matrix, the elements can be stored in
row-major order (also known as C-order) or column-major order (also known
as Fortran-order). The distinction pertains to which axis among the row or the
column moves the fastest as one goes along all elements in the data buffer. The
default order in NumPy is the C-order, although this can be configured differently.

C-major and Fortran-order layout

This notion generalizes to multidimensional arrays with the notion of strides. Strides
describe how the elements of a multidimensional array are organized within the
data buffer. NumPy implements a strided indexing scheme, where the position of any
element is a linear combination of the element's indices, the coefficients being the
strides. In other words, strides describe, in any axis, how many bytes to jump over in
the data buffer to go from one item to the next along that axis.

Here are a few references:

• Documentation on strides at http://docs.scipy.org/doc/numpy/
reference/arrays.ndarray.html#internal-memory-layout-of-an-
ndarray

• Advanced NumPy in the SciPy lectures notes at http://www.scipy-
lectures.org/advanced/advanced_numpy/

• Getting the best performance out of NumPy, an IPython Cookbook recipe,
at http://ipython-books.github.io/featured-01/

• Blog post by Eli Bendersky at http://eli.thegreenplace.net/2015/
memory-layout-of-multi-dimensional-arrays/

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#internal-memory-layout-of-an-ndarray
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#internal-memory-layout-of-an-ndarray
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#internal-memory-layout-of-an-ndarray
http://www.scipy-lectures.org/advanced/advanced_numpy/
http://www.scipy-lectures.org/advanced/advanced_numpy/
http://ipython-books.github.io/featured-01/
http://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/
http://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

Chapter 3

[91]

Why operations on ndarrays are fast
Let's compare the additions on the lists and arrays in the previous example.

Python being a dynamic interpreted language, a for loop involves many low-level
operations of the CPython interpreter. When there are many iterations, this overhead
takes significantly more time than the actual addition.

By contrast, in NumPy, vector operations are implemented in C, which is a more
lower-level language than Python. This implementation leads to far fewer CPU
instructions than the Python loop. Knowing the address of the memory block and
the data type, it is just simple arithmetic to loop over all items.

In a Python list, elements are stored at arbitrary locations in memory, whereas in
an array, elements are stored within a contiguous block of memory. CPUs are more
efficient at loading consecutive bytes from memory. This is called sequential locality.

Further, NumPy can take advantage of the vectorized instructions of modern
CPUs, such as Intel's SSE and AVX, AMD's XOP, and so on. For example, multiple
consecutive floating-point numbers can be loaded in 128, 256, or 512-bit registers for
vectorized arithmetical computations implemented as CPU instructions.

NumPy can also be linked to highly-optimized linear algebra libraries such as BLAS
and LAPACK through ATLAS or the Intel Math Kernel Library (MKL). Finally, a
few specific matrix computations, including the matrix product np.dot(), may be
multithreaded to take advantage of multicore processors.

All of these reasons explain why NumPy is so much faster than Python loops on
vector operations.

Creating and loading arrays
In this section, we will see how to create and load NumPy arrays.

Creating arrays
First, there are several NumPy functions for creating common types of arrays. For
example, np.zeros(shape) creates an array containing only zeros. The shape
argument is a tuple giving the size of every axis. Hence, np.zeros((3, 4)) creates
an array of size (3, 4) (note the double parentheses, because we pass a tuple to the
function).

Numerical Computing with NumPy

[92]

Here are some further examples:

In [1]: import numpy as np

 print("ones", np.ones(5))

 print("arange", np.arange(5))

 print("linspace", np.linspace(0., 1., 5))

 print("random", np.random.uniform(size=3))

 print("custom", np.array([2, 3, 5]))

Out[1]: ones [1. 1. 1. 1. 1.]

 arange [0 1 2 3 4]

 linspace [0. 0.25 0.5 0.75 1.]

 random [0.68361911 0.33585308 0.70733934]

 custom [2 3 5]

The np.arange() and np.linspace() functions create arrays with regularly spaced
numbers. The np.random module contains many functions for generating arrays
containing independent (pseudo)-random values following various distributions
(uniform, exponential, Gaussian, and many others).

The versatile np.array() function converts Python objects like lists or tuples into
NumPy arrays. It is also used to create small arrays by specifying their values
directly, as shown here:

In [2]: np.array([[1, 2], [3, 4]])

Out[2]: array([[1, 2],

 [3, 4]])

Every array has a fixed data type. You can specify the data type explicitly, or you can
let NumPy figure out the data type automatically. For example, np.ones() generates
an array of floating-point numbers by default, whereas np.arange() returns an
array of integers. You can specify the data type explicitly as shown here:

In [3]: np.ones(5, dtype=np.int64)

Out[3]: array([1, 1, 1, 1, 1])

In [4]: np.arange(5).astype(np.float64)

Out[4]: array([0., 1., 2., 3., 4.])

The astype() method converts an array to any other type.

Chapter 3

[93]

Here are a few references:

• Array creation routines at http://docs.scipy.org/doc/numpy/
reference/routines.array-creation.html

• NumPy random functions at http://docs.scipy.org/doc/numpy/
reference/routines.random.html

• Data type objects at http://docs.scipy.org/doc/numpy/reference/
arrays.dtypes.html

• Data types at http://docs.scipy.org/doc/numpy/user/basics.types.
html

Loading arrays from files
The np.load() and np.save() functions allow you to import and export NumPy
arrays from/to binary files in a custom format.

Text and binary files can be imported into NumPy arrays. The np.fromfile()
and np.fromstring() functions load arrays from binary/text files or strings. The
np.loadtxt() and np.genfromtxt() functions load arrays from text files, including
CSV files. For loading CSV files, text, or some other heterogeneous data, pandas
is generally more effective than NumPy. Internally, pandas is based on NumPy.
Therefore, data can be easily exchanged between pandas and NumPy structures.
Here is an example:

In [5]: import pandas as pd

Let's load the NYC taxi dataset from Chapter 2, Interactive Data Analysis with pandas:

In [6]: data = pd.read_csv('../chapter2/data/nyc_data.csv')

Going from pandas to NumPy is particularly easy: just use the .values attribute,
available on all DataFrame and Series objects. More specifically:

• A Series corresponds to a 1D NumPy array.
• A DataFrame corresponds to a 2D NumPy array.
• A Panel corresponds to a 3D NumPy array (we won't cover this pandas

structure here).

http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
http://docs.scipy.org/doc/numpy/user/basics.types.html
http://docs.scipy.org/doc/numpy/user/basics.types.html

Numerical Computing with NumPy

[94]

Here, we obtain a (N, 2) NumPy array with the pickup coordinates of all trips:

In [7]: pickup = data[['pickup_longitude', 'pickup_latitude']].values

 pickup

Out[7]: array([[-73.955925, 40.781887],

 [-74.005501, 40.745735],

 ...,

 [-73.978477, 40.772945],

 [-73.987206, 40.750568]])

In [8]: pickup.shape

Out[8]: (846945, 2)

Here are a few references:

• Links between NumPy and pandas data structures at http://pandas.
pydata.org/pandas-docs/stable/dsintro.html#dataframe-
interoperability-with-numpy-functions

• Input/output routines at http://docs.scipy.org/doc/numpy/reference/
routines.io.html

Basic array manipulations
Let's see some basic array manipulations around multiplication tables.

In [1]: import numpy as np

We first create an array of integers between 1 and 10, as shown here:

In [2]: x = np.arange(1, 11)

In [3]: x

Out[3]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Note that in np.arange(start, end), start is included while end is excluded.

To create our multiplication table, we first need to transform x into a row and
column vector. Our vector x is a 1D array, whereas row and column vectors are 2D
arrays (also known as matrices). There are many ways to transform a 1D array to a
2D array. We will see the two most common methods here.

http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe-interoperability-with-numpy-functions
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe-interoperability-with-numpy-functions
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe-interoperability-with-numpy-functions
http://docs.scipy.org/doc/numpy/reference/routines.io.html
http://docs.scipy.org/doc/numpy/reference/routines.io.html

Chapter 3

[95]

The first method is to use reshape():

In [4]: x_row = x.reshape((1, -1))

 x_row

Out[4]: array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])

The reshape() method takes the new shape as parameter. The total number of
elements must be unchanged. For example, reshaping a (2, 3) array to a (5,)
array would raise an error. The number -1 can be used to tell NumPy to figure out
automatically the size of that axis.

Here, note the double square brackets, indicating that x_row is a 2D array with just
one row, while x was a 1D array.

In NumPy, the first axis is vertical, while the second axis is horizontal. However, 1D
arrays are displayed horizontally, which is slightly confusing.

Another reshaping method is to use a special indexing syntax in NumPy:

In [5]: x_col = x[:, np.newaxis]

 x_col

Out[5]: array([[1],

 [2],

 [3],

 [4],

 [5],

 [6],

 [7],

 [8],

 [9],

 [10]])

Here, the colon : is used to select the entire first axis (vertical), whereas np.newaxis
is used to create a new second axis (horizontal) with just one item.

We can now create our multiplication table. A first possibility would be to create an
empty (10, 10) array and fill it with two for loops. However, doing it with NumPy
leads to faster and much more concise code.

Numerical Computing with NumPy

[96]

We can use np.dot() to compute a matrix product between two vectors:

In [6]: np.dot(x_col, x_row)

Out[6]: array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20],

 [3, 6, 9, 12, 15, 18, 21, 24, 27, 30],

 [4, 8, 12, 16, 20, 24, 28, 32, 36, 40],

 [5, 10, 15, 20, 25, 30, 35, 40, 45, 50],

 [6, 12, 18, 24, 30, 36, 42, 48, 54, 60],

 [7, 14, 21, 28, 35, 42, 49, 56, 63, 70],

 [8, 16, 24, 32, 40, 48, 56, 64, 72, 80],

 [9, 18, 27, 36, 45, 54, 63, 72, 81, 90],

 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]])

Since x_col is a (10, 1) array (column vector) and x_row is a (1, 10) array
(row vector), their matrix product is a (10, 10) array. Each element (i, j)
(ith row, jth column) is the product of x[i] and x[j], which is what we want
for our multiplication table.

Another method is to use the regular NumPy multiplication with the * symbol.
On arrays, this operation is to be understood as the element-wise multiplication,
not the matrix multiplication. Here is an example:

In [7]: x_row * x_row

Out[7]: array([[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]])

This returns the squares of all numbers in x_row.

In our case, we can also use this operation to compute the multiplication table:

In [8]: x_row * x_col

Out[8]: array([[1, 2, 3, ..., 9, 10],

 [2, 4, 6, ..., 18, 20],

 ...

 [9, 18, 27, ..., 81, 90],

 [10, 20, 30, ..., 90, 100]])

Chapter 3

[97]

Why did multiplying a (1, 10) array by a (10, 1) array resulted in a (10, 10)
array? The reason is called broadcasting. Element-wise array operations like the
regular multiplication * normally requires arrays to have the same shape. However,
NumPy also accepts arrays with compatible but not identical dimensions. The
general rule is that two dimensions are compatible when they are equal, or when one of
them is 1. The dimension equal to one is transparently and silently stretched to match
the other dimension, and this operation does not involve any memory copy. Here,
broadcasting allows us to compute the multiplication table with an element-wise
multiplication operation.

You will find more information at the following pages:

• Array manipulation routines at http://docs.scipy.org/doc/numpy/
reference/routines.array-manipulation.html

• Broadcasting rules at http://docs.scipy.org/doc/numpy/user/basics.
broadcasting.html

Computing with NumPy arrays
We now get to the substance of array programming with NumPy. We will perform
manipulations and computations on ndarrays.

Let's first import NumPy, pandas, matplotlib, and seaborn:

In [1]: import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 import seaborn as sns

 %matplotlib inline

We load the NYC taxi dataset with pandas:

In [2]: data = pd.read_csv('../chapter2/data/nyc_data.csv',

 parse_dates=['pickup_datetime',

 'dropoff_datetime'])

http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Numerical Computing with NumPy

[98]

We get the pickup and dropoff locations of the taxi rides as ndarrays, using the
.values attribute of pandas DataFrames:

In [3]: pickup = data[['pickup_longitude', 'pickup_latitude']].values

 dropoff = data[['dropoff_longitude',

 'dropoff_latitude']].values

 pickup

Out[3]: array([[-73.955925, 40.781887],

 [-74.005501, 40.745735],

 [-73.969955, 40.79977],

 ...,

 [-73.993492, 40.729347],

 [-73.978477, 40.772945],

 [-73.987206, 40.750568]])

Selection and indexing
Let's illustrate selection and indexing with NumPy. These operations are similar
to those offered by pandas on DataFrame and Series objects.

In NumPy, a given element can be retrieved with pickup[i, j], where i is the
0-indexed row number, and j is the 0-indexed column number:

In [4]: print(pickup[3, 1])

Out[4]: 40.755081

A part of the array can be selected with the slicing syntax, which supports a start
position, an end position, and an optional step, as shown here:

In [5]: pickup[1:7:2, 1:]

Out[5]: array([[40.745735],

 [40.755081],

 [40.768978]])

Here, we've selected the elements at [1, 1], [3, 1], and [5, 1]. The slicing syntax
in Python is start:end:step where start is included and end is excluded. If start
or end are omitted, they default to 0 or the length of the dimension, respectively,
whereas step defaults to 1. For example, 1: is equivalent to 1:n:1 where n is the size
of the axis.

Chapter 3

[99]

Let's select the longitudes of all pickup locations, in other words, the first column:

In [6]: lon = pickup[:, 0]

 lon

Out[6]: array([-73.9559, -74.0055, ..., -73.9784, -73.9872])

The result is a 1D ndarray.

We also get the second column of pickup:

In [7]: lat = pickup[:, 1]

 lat

Out[7]: array([40.7818, 40.7457, ..., 40.7729, 40.7505])

Boolean operations on arrays
Let's now illustrate filtering operations in NumPy. Again, these are similar to
pandas. As an example, we're going to select all trips departing at a given location:

In [8]: lon_min, lon_max = (-73.98330, -73.98025)

 lat_min, lat_max = (40.76724, 40.76871)

In NumPy, symbols like arithmetic, inequality, and boolean operators work on
ndarrays on an element-wise basis. Here is how to select all trips where the longitude
is between lon_min and lon_max:

In [9]: in_lon = (lon_min <= lon) & (lon <= lon_max)

 in_lon

Out[9]: array([False, False, False, ..., False, False, False],

 dtype=bool)

The symbol & represents the AND boolean operator, while | represents the OR.

Here, the result is a Boolean vector containing as many elements as there are in the
lon vector.

How many True elements are there in this array? NumPy arrays provide a sum()
method that returns the sum of all elements in the array. When the array contains
boolean values, False elements are converted to 0 and True elements are converted
to 1. Therefore, the sum corresponds to the number of True elements:

In [10]: in_lon.sum()

Out[10]: 69163

Numerical Computing with NumPy

[100]

We can process the latitudes similarly:

In [11]: in_lat = (lat_min <= lat) & (lat <= lat_max)

Then, we get all trips where both the longitude and latitude belong to our rectangle:

In [12]: in_lonlat = in_lon & in_lat

 in_lonlat.sum()

Out[12]: 3998

The np.nonzero() function returns the indices corresponding to True in a boolean
array, as shown here:

In [13]: np.nonzero(in_lonlat)[0]

Out[13]: array([901, 1011, 1066, ..., 845749, 845903, 846080])

Finally, we'll need the dropoff coordinates:

In [14]: lon1, lat1 = dropoff.T

This is a more concise way of writing lon1 = dropoff[:, 0]; lat1 =
dropoff[:, 1]. The T attribute corresponds to the transpose of a matrix, which
simply means that a matrix's columns become the corresponding rows of a new
matrix, and the new columns are the original matrix's rows. Here, dropoff.T
is a (2, N) array where the first row contains the longitude and the second row
contains the latitude. In NumPy, an ndarray is iterable along the first dimension,
in other words, along the rows of the matrix. Therefore, the syntax unpacking
feature of Python allows us to concisely assign lon1 to the first row and lat1
to the second row.

Mathematical operations on arrays
We have the coordinates of all pickup and dropoff locations in NumPy arrays.
Let's compute the straight line distance between those two locations, for every
taxi trip.

There are several mathematical formulas giving the distance between two points
given by their longitudes and latitudes. Here, we will compute a great-circle
distance with a spherical Earth approximation.

Chapter 3

[101]

The following function implements this formula.

In [15]: EARTH_R = 6372.8

 def geo_distance(lon0, lat0, lon1, lat1):

 """Return the distance (in km) between two points in

 geographical coordinates."""

 # from: http://en.wikipedia.org/wiki/Great-circle_distance

 # and: http://stackoverflow.com/a/8859667/1595060

 lat0 = np.radians(lat0)

 lon0 = np.radians(lon0)

 lat1 = np.radians(lat1)

 lon1 = np.radians(lon1)

 dlon = lon0 - lon1

 y = np.sqrt(

 (np.cos(lat1) * np.sin(dlon)) ** 2

 + (np.cos(lat0) * np.sin(lat1)

 - np.sin(lat0) * np.cos(lat1) * np.cos(dlon)) ** 2)

 x = np.sin(lat0) * np.sin(lat1) + \

 np.cos(lat0) * np.cos(lat1) * np.cos(dlon)

 c = np.arctan2(y, x)

 return EARTH_R * c

We have made extensive use of trigonometric functions provided by NumPy:
np.radians() (converting numbers from degrees into radians), np.cos(),
np.sin(), np.arctan2(x, y) (returning the arctangent of x/y), and so on. These
mathematical functions are defined on real numbers, but NumPy provides vectorized
versions of them. These vectorized functions not only work on numbers but also
on arbitrary numerical ndarrays. As we have explained earlier, these functions are
orders of magnitude faster than Python loops. You will find the list of mathematical
functions in NumPy at http://docs.scipy.org/doc/numpy/reference/
routines.math.html.

All in all, NumPy makes it quite natural to implement mathematical formulas on
arrays of numbers. The syntax is exactly the same as with scalar operations.

http://docs.scipy.org/doc/numpy/reference/routines.math.html
http://docs.scipy.org/doc/numpy/reference/routines.math.html

Numerical Computing with NumPy

[102]

Now, let's compute the straight line distances of all taxi trips:

In [16]: distances = geo_distance(lon, lat, lon1, lat1)

Below is a histogram of these distances for the trips starting at Columbus Circle (the
location indicated by the geographical coordinates above). Those trips are indicated
by the in_lonlat boolean array obtained earlier in this section.

In [17]: plt.hist(distances[in_lonlat], np.linspace(0., 10., 50))

 plt.xlabel('Trip distance (km)')

 plt.ylabel('Number of trips')

Histogram of trip distances

matplotlib's plt.hist() function computes a histogram and plots it. It is a
convenient wrapper around NumPy's np.histogram() function that simply
computes a histogram. You will find more statistical functions in NumPy at
http://docs.scipy.org/doc/numpy/reference/routines.statistics.html.

http://docs.scipy.org/doc/numpy/reference/routines.statistics.html

Chapter 3

[103]

A density map with NumPy
We have reviewed the most common array operations in this section. We will now
see a more advanced example combining several techniques. We will compute and
display a 2D density map of the most common pickup and dropoff locations, at
specific times in the day.

First, let's select the evening taxi trips. This time, we use pandas, which offers
particularly rich date and time features. We eventually get a NumPy array with the
.values attribute:

In [18]: evening = (data.pickup_datetime.dt.hour >= 19).values

In [19]: n = np.sum(evening)

In [20]: n

Out[20]: 242818

Pandas and NumPy
Remember that pandas is based on NumPy, and that it is quite
common to leverage both libraries in complex data analysis tasks.
A natural workflow is to start loading and manipulating data with
pandas, and then switch to NumPy when complex mathematical
operations are to be performed on arrays. As a rule of thumb, pandas
excels at filtering, selecting, grouping, and other data manipulations,
whereas NumPy is particularly efficient at vector mathematical
operations on numerical arrays.

The n variable contains the number of evening trips in our dataset.

Here is how we are going to create our density map: We consider the set of all
pickup and dropoff locations for these n evening trips. There are 2n of such points.
Every point is associated with a weight of -1 for pickup locations and +1 for dropoff
locations. The algebraic density of points at a given location, taking into account the
weights, reflects whether people tend to leave or to arrive at this location.

To create the weights vector for our 2n points, we first create a vector containing
only zeros. Then, we set the first half of the array to -1 (pickup) and the last half to
+1 (dropoff):

In [21]: weights = np.zeros(2 * n)

In [22]: weights[:n] = -1

 weights[n:] = +1

Numerical Computing with NumPy

[104]

Indexing in Python and NumPy starts at 0, and excludes the
last element. The first half of weights is made of weights[0],
weights[1], up to weights[n-1]. There are n of such elements.
The slice weights[:n] is equivalent to weights[0:n]: it starts at
weights[0], and ends at weights[n] excluded, so the last element
is effectively weights[n-1].

We could also have used array manipulation routines provided by NumPy, such
as np.tile() to concatenate copies of an array along several dimensions, or
np.repeat() to make copies of every element along several dimensions. You will
find the list of manipulation functions at http://docs.scipy.org/doc/numpy/
reference/routines.array-manipulation.html.

Next, we create a (2n, 2) array defined by the vertical concatenation of the pickup
and dropoff locations for the evening trips:

In [23]: points = np.r_[pickup[evening],

 dropoff[evening]]

In [24]: points.shape

Out[24]: (485636, 2)

The concise np.r_[] syntax allows us to concatenate arrays along the first (vertical)
dimension. We could also have used more explicit manipulation functions such as
np.vstack() or np.concatenate().

Now, we convert these points from geographical coordinates to pixel coordinates,
using the same function as in the previous chapter:

In [25]: def lat_lon_to_pixels(lat, lon):

 lat_rad = lat * np.pi / 180.0

 lat_rad = np.log(np.tan((lat_rad + np.pi / 2.0) / 2.0))

 x = 100 * (lon + 180.0) / 360.0

 y = 100 * (lat_rad - np.pi) / (2.0 * np.pi)

 return (x, y)

In [26]: lon, lat = points.T

 x, y = lat_lon_to_pixels(lat, lon)

http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html

Chapter 3

[105]

We now define the bins for the 2D histogram in our density map. This defines a 2D
grid over which we compute the histogram.

In [27]: lon_min, lat_min = -74.0214, 40.6978

 lon_max, lat_max = -73.9524, 40.7982

In [28]: x_min, y_min = lat_lon_to_pixels(lat_min, lon_min)

 x_max, y_max = lat_lon_to_pixels(lat_max, lon_max)

In [29]: bin = .00003

 bins_x = np.arange(x_min, x_max, bin)

 bins_y = np.arange(y_min, y_max, bin)

These two arrays contain the horizontal and vertical bins.

Finally, we compute the histogram with the np.histogram2d() function. We pass
as arguments the y, x coordinates of the points (reversed because we want the
grid's first axis to represent the y coordinate), the weights, and the bins. This function
computes a weighted sum of the points, in every bin. It returns several objects, the
first of which is the density map we are interested in:

In [30]: grid, _, _ = np.histogram2d(y, x, weights=weights,

 bins=(bins_y, bins_x))

You will find the reference documentation of this function at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.histogram2d.html#numpy.
histogram2d.

Before displaying the density map, we will apply a logistic function to it in order to
smooth it:

In [31]: density = 1. / (1. + np.exp(-.5 * grid))

This logistic function is called the expit function. It can also be found in the SciPy
package at scipy.special.expit(). scipy.special provides many other special
functions such as Bessel functions, Gamma functions, hypergeometric functions, and
so on.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html#numpy.histogram2d
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html#numpy.histogram2d
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html#numpy.histogram2d

Numerical Computing with NumPy

[106]

Finally, we display the density map with plt.imshow():

In [32]: plt.imshow(density,

 origin='lower',

 interpolation='bicubic'

)

 plt.axis('off')

Sources and sinks in taxi trip data

Chapter 3

[107]

In this figure, white areas correspond to common dropoff locations whereas dark areas
correspond to common pickup locations.

matplotlib's plt.imshow() function displays a matrix as an image. It supports several
interpolation methods. Here, we used a bicubic interpolation. The origin argument
is necessary because in our density matrix, the top-left corner corresponds to the
smallest latitude, so it should correspond to the bottom-left corner in the image.

Other topics
We only scratched the surface of the possibilities offered by NumPy. Further
numerical computing topics covered by NumPy and the more specialized SciPy
library include:

• Search and sort in arrays
• Set operations
• Linear algebra
• Special mathematical functions
• Fourier transforms and signal processing
• Generation of pseudo-random numbers
• Statistics
• Numerical integration and numerical ODE solvers
• Function interpolation
• Basic image processing
• Numerical optimization

The IPython Cookbook covers many of these topics.

Here are a few references:

• NumPy reference at http://docs.scipy.org/doc/numpy/reference/
• SciPy reference at http://docs.scipy.org/doc/scipy/reference/
• IPython Cookbook at http://ipython-books.github.io/cookbook/

http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/scipy/reference/
http://ipython-books.github.io/cookbook/

Numerical Computing with NumPy

[108]

Summary
In this chapter, we introduced NumPy and the ndarray structure. We explained
the main concepts of array computing and the performance benefits it brings over
Python loops. We also showed how to use NumPy in conjunction with pandas for
advanced data analysis tasks.

In the next chapter, we will explore several options for plotting, visualization, and
graphical interfaces.

[109]

Interactive Plotting and
Graphical Interfaces

In the previous chapter, we created a few plots with matplotlib and seaborn. In this
chapter, we'll look at these libraries in more detail. We'll also discuss some of the
many other visualization libraries in Python, with a particular emphasis on those
that integrate with the Jupyter Notebook.

We will cover the following topics:

• Choosing a plotting backend
• matplotlib and seaborn essentials
• Image processing
• Further plotting and visualization libraries

Choosing a plotting backend
There are different ways to display a plot in the Jupyter Notebook.

Inline plots
So far, we have created plots within the Notebook using the matplotlib inline mode.
This is activated with the %matplotlib inline magic command in the Notebook.
Figures created in this mode are converted to PNG images stored within the
notebook .ipynb files. This is convenient when sharing notebooks because the plots
are viewable by other users. However, these plots are static, and they are therefore
not practical for interactive visualization.

Interactive Plotting and Graphical Interfaces

[110]

Here is an example:

In [1]: import numpy as np

 import matplotlib.pyplot as plt

In [2]: %matplotlib inline

In [3]: plt.imshow(np.random.rand(10, 10), interpolation='none')

Inline backend

Chapter 4

[111]

Exported figures
Matplotlib can export figures to bitmap (PNG, JPG, and others) or vector formats
(PDF, EPS, and others). Refer to the documentation of plt.savefig() for more
details: http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.
savefig.

GUI toolkits
You can also display a plot in a separate window on your desktop. This uses a
GUI backend toolkit that interacts with the operating system and the desktop
environment to create and manage windows. Examples of cross-platform backends
include Qt, wx, Tk, GTK, and others. Matplotlib can use any of these toolkits to
display a figure.

Qt is a popular and powerful choice for GUIs; it is well-supported by matplotlib
and Jupyter.

To enable this mode in the Jupyter Notebook, use the %matplotlib qt magic
command. This makes the Notebook responsive while the popup windows
are displayed, and it enables interactive modification of plots through the
Notebook.

A related command is %gui qt: it enables the creation of any interactive Qt window,
not just matplotlib figures, from IPython. Refer to the following link for more
information about GUI event loop support in IPython: http://ipython.org/
ipython-doc/dev/interactive/reference.html#gui-event-loop-support.

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig
http://ipython.org/ipython-doc/dev/interactive/reference.html#gui-event-loop-support
http://ipython.org/ipython-doc/dev/interactive/reference.html#gui-event-loop-support

Interactive Plotting and Graphical Interfaces

[112]

Matplotlib figures displayed with a GUI toolkit are interactive. They support
panning and zooming with the mouse. There is also a toolbar that gives you access to
several functions.

In [4]: %matplotlib qt

 plt.imshow(np.random.rand(10, 10), interpolation='none')

Qt backend

Chapter 4

[113]

Dynamic inline plots
Since matplotlib 1.4.3, inline plots can be made interactive in the Notebook through
the nbagg backend. To activate it, use %matplotlib notebook or the following
command (you may need to restart the kernel in order to deactivate the previous
backends):

In [5]: import matplotlib

 matplotlib.use('nbagg')

In [6]: plt.imshow(np.random.rand(10, 10), interpolation='none')

 plt.show()

matplotlib's nbagg backend in the Notebook

You can pan and zoom in the inline plot. However, this sort of interactivity requires
a Python server, so these plots remain static when displayed in nbviewer.

Interactive Plotting and Graphical Interfaces

[114]

Web-based visualization
The web platform has seen dramatic progress in data visualization technologies in
the past few years. Although this has nothing to do with Python in principle, the
fact that the Jupyter Notebook is a web application makes it theoretically possible to
leverage these technologies in the Jupyter Notebook.

For example, the mpld3 project automatically converts a matplotlib plot into a
JavaScript D3 interactive visualization (D3 is a Javascript visualization library that
runs in the browser; we'll see it again later in this chapter). It is very easy to use: once
it is installed with pip install mpld3, just import and enable it with (you may also
need to restart the kernel):

In [7]: import numpy as np

 import matplotlib.pyplot as plt

 %matplotlib inline

 import mpld3

 mpld3.enable_notebook()

In [8]: plt.imshow(np.random.rand(10, 10), interpolation='none')

mpld3 screenshot

Chapter 4

[115]

Then, matplotlib figures are rendered with D3 and support panning and zooming,
even in nbviewer.

Here are a few references:

• D3.js at http://d3js.org/
• mpld3 at http://mpld3.github.io/

matplotlib and seaborn essentials
matplotlib is the main plotting library in Python. While it is particularly rich and
powerful, it may be difficult to use sometimes. Further, its default styling could be
better. There is some work in progress to improve the default styling in matplotlib.
In the meantime, the seaborn library offers better styling for matplotlib as well as
easy-to-use high-level statistical plotting routines based on matplotlib.

In this section, we will detail some of the main plotting capabilities of matplotlib,
while using the seaborn styling.

We first import matplotlib and seaborn and we activate the inline mode in the
Notebook:

In [1]: import numpy as np

 import matplotlib.pyplot as plt

 import seaborn

 %matplotlib inline

There is a pylab mode that imports all NumPy and matplotlib variables
into the interactive namespace. This mode makes the transition easier
for users coming from MATLAB. However, using this mode is not
recommended. The standard practice is to import NumPy into the np
namespace and matplotlib's pyplot interface into the plt namespace.
Refer to this link for more details: http://nbviewer.ipython.org/
github/Carreau/posts/blob/master/10-No-PyLab-Thanks.
ipynb.

http://d3js.org/
http://mpld3.github.io/
http://nbviewer.ipython.org/github/Carreau/posts/blob/master/10-No-PyLab-Thanks.ipynb
http://nbviewer.ipython.org/github/Carreau/posts/blob/master/10-No-PyLab-Thanks.ipynb
http://nbviewer.ipython.org/github/Carreau/posts/blob/master/10-No-PyLab-Thanks.ipynb

Interactive Plotting and Graphical Interfaces

[116]

Common plots with matplotlib
Let's create a few simple plots with pyplot.

Pyplot is a MATLAB-like plotting interface built on top of the matplotlib
API. Using the matplotlib API is reserved to advanced users, and most
users make matplotlib figures with pyplot.

A line plot represents a mathematical curve or a digital signal as a continuous
succession of line segments. Let's generate and display a random signal with
matplotlib:

In [2]: y = np.random.randn(1000)

In [3]: plt.plot(y)

Here is the result:

A line plot with matplotlib

Chapter 4

[117]

By default, the x coordinates are successive integers. We can also specify these
coordinates directly. For example, let's plot the graph of a mathematical function:

In [4]: x = np.linspace(-10., 10., 1000)

 y = np.sin(3 * x) * np.exp(-.1 * x**2)

In [5]: plt.plot(x, y)

Here is the result:

Graph of a function with matplotlib

All aspects of the plot can be customized, as shown here:

In [6]: x = np.linspace(-5., 5., 100)

 y = np.sin(3 * x) * np.exp(-.1 * x ** 2)

In [7]: plt.plot(x, y, '--^',

 lw=3, color='#fdbb84',

 mfc='#2b8cbe', ms=8)

Interactive Plotting and Graphical Interfaces

[118]

Here is a screenshot:

A customized plot with matplotlib

Let's explain the different options we have used in plt.plot():

• The third argument is a format string specifying the aspect of the plot in a
compact form:

 ° The -- characters indicate a dashed line style.
 ° The ^ character indicates a upper triangle marker.

• The lw argument indicates the line width.
• The color can be specified in many ways, including as a hexadecimal RGB

value.
• The marker face color is indicated by mfc.
• The marker size is indicated by ms.

Chapter 4

[119]

You will find more details about the plot customization options at http://
matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot.

Another common type of plot is the scatter plot, which just displays points in two
dimensions. It offers a simple way to observe the relationship between two variables
in a dataset. Here is an example:

In [8]: x = np.random.randn(100)

 y = x + np.random.randn(100)

In [9]: plt.scatter(x, y)

Here is the result:

A scatter plot with matplotlib

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

Interactive Plotting and Graphical Interfaces

[120]

Customizing matplotlib figures
We've seen above how to customize plots. We can also customize the axes, legends,
titles, and everything else. Additionally, we can create multiple plots in the same
figure. Here is an example showing all of these aspects:

In [10]: # Left panel.

 plt.subplot(1, 2, 1)

 x = np.linspace(-10., 10., 1000)

 plt.plot(x, np.sin(x), '-r', label='sinus')

 plt.plot(x, np.cos(x), ':g', lw=1, label='cosinus')

 plt.xticks([-10, 0, 10])

 plt.yticks([-1, 0, 1])

 plt.ylim(-2, 2)

 plt.xlabel("x axis")

 plt.ylabel("y axis")

 plt.title("Two plots")

 plt.legend()

 # Right panel.

 plt.subplot(1, 2, 2, polar=True)

 x = np.linspace(0, 2 * np.pi, 1000)

 plt.plot(x, 1 + 2 * np.cos(6 * x))

 plt.yticks([])

 plt.xlim(-.1, 3.1)

 plt.ylim(-.1, 3.1)

 plt.xticks(np.linspace(0, 5 * np.pi / 3, 6))

 plt.title("A polar plot")

 plt.grid(color='k', linewidth=1, linestyle=':')

Chapter 4

[121]

Here is a screenshot:

Subplots with matplotlib

Let's explain all options:

• plt.subplot() is used to add several plots in the same figure. The three
arguments are:

 ° number of rows
 ° number of columns
 ° index of the subplot in the grid (from left to right, top to bottom,

starting at 1)

• A label can be passed to a component of a plot.
• In the left subplot, we create two line plots by calling plt.plot() twice.

Interactive Plotting and Graphical Interfaces

[122]

• plt.xticks() and plt.yticks() allow us to specify the ticks on the x
and y axes.

• plt.ylim() specifies the limits of the plot on the y axis.
• plt.xlabel() and plt.ylabel() indicate the legend of the x and y axes.
• The title of the subplot is given with plt.title().
• plt.legend() displays the legend for the different components in the

subplot (here, the two line plots).
• A subplot with a polar coordinate system is created with the polar=True

keyword argument.
• plt.grid() is used to display a grid.

You can also customize the defaults of matplotlib. Refer to the following link for
more information: http://matplotlib.org/users/customizing.html.

You will find hundreds of examples in the official matplotlib gallery at http://
matplotlib.org/gallery.html. Every example comes with a screenshot and the
code. It is a great way to get a sense of matplotlib's possibilities and to learn how to
use matplotlib by the example.

Interacting with matplotlib figures in the
Notebook
You can update matplotlib figures interactively in the Notebook using widgets. Here
is a simple example:

In [11]: from ipywidgets import interact

In [12]: x = np.linspace(-5., 5., 1000)

In [13]: @interact

 def plot_sin(a=(1, 10)):

 plt.plot(x, np.sin(a*x))

 plt.ylim(-1, 1)

http://matplotlib.org/users/customizing.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html

Chapter 4

[123]

Here is a screenshot:

An interactive matplotlib figure in the Notebook

The figure updates dynamically in the Notebook as you move the slider.

A similar technique can be used when using a GUI backend instead of the inline
mode. We can interactively update the figure from IPython while the figure is still
open. Here is an example. First, we activate the Qt backend with the following
command:

In [14]: %matplotlib qt

We create a blue line plot, as follows:

In [15]: lines = plt.plot([0, 1], [0, 1], 'b')

In [16]: lines

Out[16]: [<matplotlib.lines.Line2D at 0x7ffa434542e8>]

This opens a window with our plot. The variable lines contains the list of line plots
we've just created (there is just one here).

Interactive Plotting and Graphical Interfaces

[124]

Now, we interactively update the color of the plot:

In [17]: lines[0].set_color('r')

 plt.draw()

We explicitly set the color of the line plot, and we redraw the plot to update the
figure. The line becomes red.

Qt figure updated from IPython

Here are a few references:

• User's guide at http://matplotlib.org/users/beginner.html
• The matplotlib gallery at http://matplotlib.org/gallery.html

High-level plotting with seaborn
seaborn provides several ready-to-use advanced plotting functions. For example,
displaying a set of two-dimensional scatter plots for a higher-dimensional
dataset just takes one line with seaborn (see the example at http://stanford.
edu/~mwaskom/software/seaborn/examples/scatterplot_matrix.html). Let's
first load a classic dataset:

http://matplotlib.org/users/beginner.html
http://matplotlib.org/gallery.html
http://stanford.edu/~mwaskom/software/seaborn/examples/scatterplot_matrix.html
http://stanford.edu/~mwaskom/software/seaborn/examples/scatterplot_matrix.html

Chapter 4

[125]

In [18]: df = seaborn.load_dataset("iris")

 df.head(3)

Out[18]: sepal_length sepal_width petal_length petal_width species

 0 5.1 3.5 1.4 0.2 setosa

 1 4.9 3.0 1.4 0.2 setosa

 2 4.7 3.2 1.3 0.2 setosa

This is a pandas DataFrame containing anatomical features of different types of
flowers. Now, let's display a pair plot of this dataset:

In [19]: seaborn.pairplot(df, hue="species", size=2.5)

A pair plot with seaborn

You will find many more examples in the gallery at http://stanford.
edu/~mwaskom/software/seaborn/examples/index.html.

http://stanford.edu/~mwaskom/software/seaborn/examples/index.html
http://stanford.edu/~mwaskom/software/seaborn/examples/index.html

Interactive Plotting and Graphical Interfaces

[126]

Image processing
Several libraries bring image processing capabilities to Python. SciPy, the main
scientific Python library, contains a few image processing routines. scikit-image
is another library dedicated to image processing. We will show an example in
this section, inspired by the one at http://scikit-image.org/docs/dev/auto_
examples/plot_equalize.html.

When using the Anaconda distribution, scikit-image can be installed with conda
install scikit-image.

Let's import some packages.

In [1]: import numpy as np

 import skimage

 from skimage import img_as_float

 import skimage.filters as skif

 from skimage.color import rgb2gray

 import skimage.data as skid

 import skimage.exposure as skie

 from ipywidgets import interact

 import matplotlib.pyplot as plt

 import seaborn

 %matplotlib inline

There are a few test images in scikit-image. Here is one:

In [2]: chelsea = skid.chelsea()

In [3]: chelsea.shape, chelsea.dtype

Out[3]: ((300, 451, 3), dtype('uint8'))

This is a NumPy array with 3 dimensions: height, width, and color channel. This is a
colored image, so there are three color channels: Red, Green, and Blue. The data type
is uint8; every value is between 0 and 255.

http://scikit-image.org/docs/dev/auto_examples/plot_equalize.html
http://scikit-image.org/docs/dev/auto_examples/plot_equalize.html

Chapter 4

[127]

We can display the image with matplotlib's imshow() function:

In [4]: plt.imshow(chelsea)

 plt.axis('off')

Chelsea

If you're reading a printed version of this book, the image will be in grayscale. You
will find the color version on the book's website.

We now convert this image to a grayscale image:

In [5]: img = rgb2gray(chelsea)

In [6]: img.shape, img.dtype

Out[6]: ((300, 451), dtype('float64'))

In [7]: img

Out[7]: array([[0.4852, 0.4852, ..., 0.1169, 0.1169],

 [0.4969, 0.4930, ..., 0.1225, 0.1272],

 ...,

 [0.4248, 0.3688, ..., 0.5544, 0.5583]])

This is now a 2D array with floating-point intensity values between 0 and 1.

Interactive Plotting and Graphical Interfaces

[128]

We are now going to analyze the histogram of these intensity values and tweak the
exposure of the image. We will use three different methods and then create a simple
GUI to observe the results.

First, we'll use the rescale_intensity() function to stretch the intensity range of
the image. This is a crude exposure adjustment method.

In [8]: p2, p98 = np.percentile(img, (2, 98))

In [9]: img_rescale = skie.rescale_intensity(img, in_range=(p2, p98))

Next, we use the equalize_hist() function to make the histogram approximately
constant:

In [10]: img_eq = skie.equalize_hist(img)

We now use the Contrast Limited Adaptive Histogram Equalization algorithm, a more
advanced histogram equalization method that enhances the image's contrast.

In [11]: img_adapteq = img_as_float(skie.equalize_adapthist(img, clip_
limit=0.03))

Finally, we create a GUI with IPython's @interact decorator. We will create a
dropdown menu with the results of the different exposure adjustment methods:

In [12]: hist_types = dict([('Contrast stretching', img_rescale),

 ('Histogram equalization', img_eq),

 ('Adaptive equalization', img_adapteq)])

This dictionary maps the text of the different dropdown menu options to the images.

To create the GUI, we define a function that accepts the method's name hist_type as
the argument and displays the corresponding plot. We decorate this function with @
interact, and we specify the list of options for the hist_type argument:

In [13]: @interact(hist_type=list(hist_types.keys()))

 def display_result(hist_type):

 result = hist_types[hist_type]

 # We display the processed grayscale image on the left.

 plt.subplot(121)

 plt.imshow(result, cmap='gray')

 plt.axis('off')

Chapter 4

[129]

 # We display the histogram on the right.

 plt.subplot(122)

 plt.hist(result.ravel(), bins=np.linspace(0., 1., 256),

 histtype='step', color='black')

 plt.show()

A GUI in the Notebook

You will find more image processing and GUI examples in the IPython Cookbook.
Here are also a few further references:

• scikit-image's main page at http://scikit-image.org/
• scikit-image's gallery at http://scikit-image.org/docs/dev/auto_

examples/

Further plotting and visualization
libraries
Beyond matplotlib and seaborn, there are many other plotting and visualization
libraries in the Python ecosystem. We give an overview in this section.

High-level plotting
Here are a few high-level plotting libraries in Python.

http://scikit-image.org/
http://scikit-image.org/docs/dev/auto_examples/
http://scikit-image.org/docs/dev/auto_examples/

Interactive Plotting and Graphical Interfaces

[130]

Bokeh
Bokeh is a web-based, general-purpose, and fast visualization toolkit. It integrates
well with the rest of the Python ecosystem and generates interactive plots that don't
necessarily require a live Python server.

Bokeh

Here are a few references:

• Main website at http://bokeh.pydata.org/en/latest/index.html
• Gallery at http://bokeh.pydata.org/en/latest/docs/gallery.html

Vincent and Vega
Vega is a language-agnostic visualization grammar. Vega figures can be converted
to interactive HTML visualizations. The Vincent library makes it easy to write Vega
figures from Python.

Vega and Vincent

http://bokeh.pydata.org/en/latest/index.html
http://bokeh.pydata.org/en/latest/docs/gallery.html

Chapter 4

[131]

Here are some references:

• https://github.com/trifacta/vega

• https://github.com/wrobstory/vincent

Plotly
Plotly (https://plot.ly/) is a commercial online service providing APIs and
libraries for creating and sharing plots on the web. There is a Python library for
creating and displaying interactive visualizations in the Notebook.

plotly

Let's also mention a few other young libraries:

• Lightning at http://lightning-viz.org/
• toyplot at https://toyplot.readthedocs.org/en/latest/
• bqplot at https://github.com/bloomberg/bqplot

https://github.com/trifacta/vega
https://github.com/wrobstory/vincent
https://plot.ly/
http://lightning-viz.org/
https://toyplot.readthedocs.org/en/latest/
https://github.com/bloomberg/bqplot

Interactive Plotting and Graphical Interfaces

[132]

Maps and geometry
There are many ways to create maps in Python.

The matplotlib Basemap toolkit
Basemap is a matplotlib plugin that allows you to plot data on maps. Several
projection methods are supported.

Basemap

Here are some links:

• Basemap main page at http://matplotlib.org/basemap/
• Gallery at http://matplotlib.org/basemap/users/examples.html

http://matplotlib.org/basemap/
http://matplotlib.org/basemap/users/examples.html

Chapter 4

[133]

GeoPandas
GeoPandas (https://github.com/geopandas/geopandas) adds support
for geographic data in pandas. It leverages the shapely library for geometric
manipulations.

GeoPandas

https://github.com/geopandas/geopandas

Interactive Plotting and Graphical Interfaces

[134]

Leaflet wrappers: folium and mplleaflet
Leaflet is a JavaScript library for creating interactive maps. Several Python projects
allow you to plot data on interactive Leaflet maps and to integrate them in the
Notebook. For example, folium integrates well with Vincent and pandas, while
mplleaflet lets us display matplotlib plots on a map.

folium and mplleaflet

Here are a few references:

• Leaflet library at http://leafletjs.com/
• Folium main page at http://folium.readthedocs.org/en/latest/
• mplleaflet at https://github.com/jwass/mplleaflet

3D visualization
Here are a couple of 3D visualization libraries.

Mayavi
Mayavi (http://docs.enthought.com/mayavi/mayavi/) is a 3D plotting library
based on VTK, a C++ visualization toolkit. Mayavi features a scriptable GUI for
exploring three-dimensional data interactively.

http://leafletjs.com/
http://folium.readthedocs.org/en/latest/
https://github.com/jwass/mplleaflet
http://docs.enthought.com/mayavi/mayavi/

Chapter 4

[135]

VisPy
VisPy is a pure Python 2D/3D plotting library designed for high-performance
interactive visualization. Based on OpenGL, it features a modular architecture that
lets advanced users access OpenGL features such as GLSL shaders with a Pythonic
interface.

VisPy
Here are a few links:

• Main page at http://vispy.org
• Gallery at http://vispy.org/gallery.html
• Tutorial at http://ipython-books.github.io/featured-06/

Summary
In this chapter, we reviewed several options in Python for plotting, visualization,
and graphical interfaces. There are many more details in the IPython Cookbook
(http://ipython-books.github.io/cookbook/).

In the next chapter, we will cover high-performance and parallel computing
in Python.

http://vispy.org
http://vispy.org/gallery.html
http://ipython-books.github.io/featured-06/
http://ipython-books.github.io/cookbook/

[137]

High-Performance and
Parallel Computing

As an interpreted and dynamic language, Python is slower than C, C++, or Fortran,
especially when using loops. Thus, numerical algorithms written in pure Python are
generally too slow to be useful. As we saw in Chapter 3, Numerical Computing with
NumPy, NumPy solves this problem by offering fast vector computations on array
structures.

Some algorithms cannot be easily vectorized with NumPy. Using Python loops is
then required. The two main solutions to make loops fast in a context of numerical
computing are the following: using a JIT compiler like Numba, or using Cython to
translate these loops to C.

Another general method for making computations faster is to distribute jobs across
the multiple processors on a multicore computer.

In this chapter, we will cover all of these topics:

• Accelerating Python code with Numba
• Writing C in Python with Cython
• Distributing tasks on several cores with IPython.parallel
• Further high-performance computing techniques

High-Performance and Parallel Computing

[138]

Accelerating Python code with Numba
When it is too difficult or impossible to vectorize an algorithm, you often need to
use Python loops. However, Python loops are slow. Fortunately, Numba provides a
Just-In-Time (JIT) compiler that can compile pure Python code straight to machine
code thanks to the LLVM compiler architecture. This can result in massive speedups.

In this section, we'll see how to use Numba to accelerate a mathematical modeling
simulation.

To install numba, just type conda install numba on the command-line.

Let's first import a few packages:

In [1]: import math

 import random

 import numpy as np

 from numba import jit, vectorize, float64

 import matplotlib.pyplot as plt

 import seaborn

 %matplotlib inline

Random walk
We will simulate a random walk with jumps. A particle is on the real line, starting at
0. At every time step, the particle makes a step to the right or to the left. If the particle
crosses a threshold, it is reset at its initial position. This type of stochastic model is
notably used in neuroscience. Without the threshold, this model is called a brownian
motion. Although a brownian motion can be efficiently simulated in NumPy with
np.cumsum(), a stochastic model with a threshold and jumps requires a loop.

The following random function returns a random -1 or +1 value.

In [2]: def step():

 return 1. if random.random() > .5 else -1.

Let's write the simulation in pure Python. The function walk() takes a number of
steps as input. At every time step, the function adds a random step to the previous
position in order to get the new position. An if statement implements the threshold
and jump.

In [3]: def walk(n):

 x = np.zeros(n)

Chapter 5

[139]

 dx = 1. / n

 for i in range(n - 1):

 x_new = x[i] + dx * step()

 if x_new > 5e-3:

 x[i + 1] = 0.

 else:

 x[i + 1] = x_new

 return x

Let's run this function:

In [4]: n = 100000

 x = walk(n)

Here is a screenshot of the trajectory:

In [5]: plt.plot(x)

A random walk with jumps

High-Performance and Parallel Computing

[140]

How long did it take to simulate this trajectory?

In [6]: %%timeit

 walk(n)

Out[6]: 10 loops, best of 3: 57.6 ms per loop

Now, let's JIT-compile this function with Numba.

In [7]: @jit(nopython=True)

 def step_numba():

 return 1. if random.random() > .5 else -1.

In [8]: @jit(nopython=True)

 def walk_numba(n):

 x = np.zeros(n)

 dx = 1. / n

 for i in range(n - 1):

 x_new = x[i] + dx * step_numba()

 if x_new > 5e-3:

 x[i + 1] = 0.

 else:

 x[i + 1] = x_new

 return x

All we had to do was to add a @jit decorator on top of the two functions. The body
of the functions remain the same between the pure Python and the numba versions
(except that we call step_numba() instead of step() in the main function). We'll
explain the nopython=True argument below.

Let's evaluate the performance of this compiled function:

In [9]: %%timeit

 walk_numba(n)

Out[9]: The slowest run took 81.94 times longer than the fastest.

 This could mean that an intermediate result is being cached

 1000 loops, best of 3: 1.89 ms per loop

This is a 30x speed improvement. IPython tells us that the first call was much slower.
This is because the function was compiled on-the-fly the first time we called it (there
are plans to support ahead-of-time compilation in future versions of Numba). Hence,
Numba is most effective when a given function needs to be called many times.

Chapter 5

[141]

The nopython=True argument is not strictly necessary. Numba can compile a
Python function in two modes: Python mode and nopython mode. In Python mode,
the compiled code relies on the CPython interpreter. In nopython mode however,
the code is compiled to standalone machine code that doesn't rely on CPython.
Although this leads to much faster code, the nopython mode is much more limited
than the Python mode. Many Python data structures such as lists and dictionaries
are not currently available in nopython mode. However, Numba is designed from
the ground up to support NumPy arrays in both modes. Trying to stick with the
Python subset supported in nopython mode is highly recommended when seeking
to achieve the best performance.

Numba needs to know the exact types of the function's parameters, return values,
and internal variables. It uses type inference to find out the types automatically when
possible, but you can also specify the input and output types explicitly. You will find
more details in the documentation:

• Numba main page at http://numba.pydata.org
• Numba documentation at http://numba.pydata.org/numba-doc/dev/

index.html

• Python features supported in nopython mode at http://numba.pydata.
org/numba-doc/dev/reference/pysupported.html

• NumPy features supported in nopython mode at http://numba.pydata.
org/numba-doc/dev/reference/numpysupported.html

Universal functions
Numba also supports the creation of NumPy universal functions (ufuncs) with the
@vectorize decorator. This feature lets you turn a Python function implementing
a mathematical scalar operation into a vectorized function that works on NumPy
arrays on an element-wise basis.

Here is an example. We want to compute a complex mathematical expression on a
NumPy array. The standard way of doing it with NumPy is inefficient because many
array copies are silently performed during the temporary steps.

In [10]: x = np.random.rand(10000000)

 %timeit np.cos(2*x**2 + 3*x + 4*np.exp(x**3))

Out[10]: 1 loops, best of 3: 689 ms per loop

http://numba.pydata.org
http://numba.pydata.org/numba-doc/dev/index.html
http://numba.pydata.org/numba-doc/dev/index.html
http://numba.pydata.org/numba-doc/dev/reference/pysupported.html
http://numba.pydata.org/numba-doc/dev/reference/pysupported.html
http://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
http://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

High-Performance and Parallel Computing

[142]

We can use the @vectorize decorator to define a new universal function:

In [11]: @vectorize

 def kernel(x):

 return np.cos(2*x**2 + 3*x + 4*np.exp(x**3))

In [12]: kernel(1.)

Out[12]: -0.98639139715432589

This function can now be applied on a NumPy array:

In [13]: %timeit kernel(x)

Out[13]: 1 loops, best of 3: 324 ms per loop

This function is about twice as fast as the standard NumPy version because
temporary array copies are avoided.

It is possible to make this computation even faster by taking advantage of multicore
processors and Graphics Processing Units (GPUs).

Let's illustrate this by using another package called numexpr (https://github.
com/pydata/numexpr), which is similar but older than Numba. It can be installed
with conda install numexpr.

In [14]: import numexpr

 %timeit numexpr.evaluate('cos(2*x**2 + 3*x + 4*exp(x**3))')

Out[14]: 10 loops, best of 3: 122 ms per loop

The evaluate() function takes a string as input, which is slightly less convenient
than Numba's decorators. However, it uses all available cores by default, which
explains why it is several times faster than Numba here.

We can check the number of detected cores as follows:

In [15]: numexpr.detect_number_of_cores()

Out[15]: 4

https://github.com/pydata/numexpr
https://github.com/pydata/numexpr

Chapter 5

[143]

Here are a few references:

• Universal functions with Numba at http://numba.pydata.org/numba-
doc/dev/user/vectorize.html

• Numexpr documentation at https://github.com/pydata/numexpr/wiki/
Numexpr-Users-Guide

Writing C in Python with Cython
Cython is a Python library that lets you combine C and Python in various ways.
There are two main use-cases:

• Wrapping a C/C++ library in Python
• Optimizing your Python code by statically compiling it to C

In this section, we will demonstrate the second use-case. You will find an example
of the first use-case in the IPython Cookbook and at http://docs.cython.org/src/
tutorial/index.html.

Installing Cython and a C compiler for Python
If you use Anaconda, you should already have Cython (you can always do conda
install cython to check).

For Cython to work, you need a C compiler compatible with your version of Python.
This is much easier on Unix systems. Here are the instructions given at http://
docs.cython.org/src/quickstart/install.html:

• On Linux, you can install the GNU C Compiler (gcc) via the OS package
manager. On Ubuntu or Debian, for example, type sudo apt-get install
build-essential.

• On Mac OS X, you can install Apple's Xcode from http://developer.
apple.com.

http://numba.pydata.org/numba-doc/dev/user/vectorize.html
http://numba.pydata.org/numba-doc/dev/user/vectorize.html
https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide
https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide
http://docs.cython.org/src/tutorial/index.html
http://docs.cython.org/src/tutorial/index.html
http://docs.cython.org/src/quickstart/install.html
http://docs.cython.org/src/quickstart/install.html
http://developer.apple.com
http://developer.apple.com

High-Performance and Parallel Computing

[144]

• On Windows, installing a C compiler compatible with your version of
Python and setting it up correctly is generally difficult. We'll mention two
methods:

 ° The easy way (recommended) requires Python 2.7, so you need to
switch to your Python 2 py2 conda environment. You just need to
install the Microsoft Visual C++ Compiler for Python 2.7 freely
available at http://www.microsoft.com/en-us/download/
details.aspx?id=44266.

 ° The hard way works with any (64-bit) version of Python. You will
find all instructions at https://github.com/cython/cython/wiki
/64BitCythonExtensionsOnWindows. Briefly, this method requires
you to install the free Windows SDK C/C++ compiler adapted to
your version of Python, and setting a few things up on the terminal
before launching Python or IPython.

Implementing the Eratosthenes Sieve in
Python and Cython
We'll implement the Eratosthenes Sieve algorithm (https://en.wikipedia.org/
wiki/Sieve_of_Eratosthenes) to find all prime numbers smaller than a given
number. The first version is coded in pure Python.

In [1]: def primes_python(n):

 primes = [False, False] + [True] * (n - 2)

 i = 2

 while i < n:

 # We do not deal with composite numbers.

 if not primes[i]:

 i += 1

 continue

 k = i * i

 # We mark multiples of i as composite numbers.

 while k < n:

 primes[k] = False

 k += i

 i += 1

 # We return all numbers marked with True.

 return [i for i in range(2, n) if primes[i]]

http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.microsoft.com/en-us/download/details.aspx?id=44266
https://github.com/cython/cython/wiki/64BitCythonExtensionsOnWindows
https://github.com/cython/cython/wiki/64BitCythonExtensionsOnWindows
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Chapter 5

[145]

Here is an example:

In [2]: primes_python(20)

Out[2]: [2, 3, 5, 7, 11, 13, 17, 19]

Let's evaluate the performance of this first version.

In [3]: n = 10000

In [4]: %timeit primes_python(n)

Out[4]: 100 loops, best of 3: 4 ms per loop

Now, we load the Cython extension to write Cython code right in the Notebook:

In [5]: %load_ext Cython

All we need to do is to add %%cython in the first line of the cell, as shown here:

In [6]: %%cython

 def primes_cython_1(n):

 primes = [False, False] + [True] * (n - 2)

 i = 2

 while i < n:

 # We do not deal with composite numbers.

 if not primes[i]:

 i += 1

 continue

 k = i * i

 # We mark multiples of i as composite numbers.

 while k < n:

 primes[k] = False

 k += i

 i += 1

 # We return all numbers marked with True.

 return [i for i in range(2, n) if primes[i]]

When we add %%cython at the beginning of the cell, the code gets compiled by
Cython into a C extension. Then, this extension is loaded, and the compiled function
is readily available in the interactive namespace.

In [7]: primes_cython_1(20)

Out[7]: [2, 3, 5, 7, 11, 13, 17, 19]

In [8]: %timeit primes_cython_1(n)

Out[8]: 100 loops, best of 3: 1.99 ms per loop

High-Performance and Parallel Computing

[146]

We achieve a twofold speed improvement.

Now, we will specify the type of each local variable so that Cython can optimize the
code more efficiently.

In [9]: %%cython -a

 def primes_cython_2(int n):

 # Note the type declarations below:

 cdef list primes = [False, False] + [True] * (n - 2)

 cdef int i = 2

 cdef int k = 0

 # The rest of the function is unchanged.

 while i < n:

 # We do not deal with composite numbers.

 if not primes[i]:

 i += 1

 continue

 k = i * i

 # We mark multiples of i as composite numbers.

 while k < n:

 primes[k] = False

 k += i

 i += 1

 # We return all numbers marked with True.

 return [i for i in range(2, n) if primes[i]]

In [10]: %timeit primes_cython_2(n)

Out[10]: 1000 loops, best of 3: 266 µs per loop

This time, we achieve a 15x speed improvement just by specifying the variable types
with cdef. This new keyword is one of the specific language constructs brought by
Cython. Cython is therefore a superset of the Python language, bringing new syntax
constructs to optimize the compilation process.

In general, Cython will be the most efficient when it can compile data structures and
operations directly to C by making as few CPython API calls as possible. Specifying
the types of the variables often leads to greater speed improvements.

Chapter 5

[147]

The -a option passed to the %%cython cell magic displays some annotations telling
you which lines are the least efficiently compiled to C. By clicking on a line, you
can see the generated C code corresponding to that line, as shown in the following
screenshot:

Cython annotations

There is much more to say about Cython, including:

• Support for NumPy arrays
• Support for multicore processors with OpenMP
• Wrapping C/C++ libraries and code from Python

The IPython Cookbook contains several recipes on Cython covering these topics.

Here are a few further references:

• Cython documentation at http://docs.cython.org/
• Cython user guide at http://docs.cython.org/src/userguide/index.

html

• Cython tutorials at http://docs.cython.org/src/tutorial/index.html

http://docs.cython.org/
http://docs.cython.org/src/userguide/index.html
http://docs.cython.org/src/userguide/index.html
http://docs.cython.org/src/tutorial/index.html

High-Performance and Parallel Computing

[148]

Distributing tasks on several cores with
IPython.parallel
In the previous sections, we covered a few methods to accelerate Python code. Here,
we will see how to run multiple tasks in parallel on a multicore computer. IPython
implements highly-powerful and user-friendly facilities for interactive parallel
computing in the Notebook.

We first need to install ipyparallel (also called IPython.parallel) with conda install
ipyparallel. Next, let's import NumPy and ipyparallel:

In [1]: import numpy as np

 # ipyparallel was IPython.parallel before IPython 4.0

 from ipyparallel import Client

To use IPython.parallel, we need to launch a few engines.

The first way to do it is to run ipcluster start in the terminal.

You can also launch engines from the Notebook dashboard. However, you first
need to add c.NotebookApp.server_extensions.append('ipyparallel.
nbextension') in the file ~/.jupyter/jupyter_notebook_config.py (you may
need to create this file). Then, from the Notebook dashboard (accessible at http://
localhost:8888 in your browser's address bar), click on the Clusters tab, select
the number of engines you want to launch, and click on the Start button. Here is a
screenshot:

Launching IPython.parallel engines from the Notebook dashboard

In general, you can launch as many engines as the number of CPUs you have on
your machine.

Once the engines have been launched, we create a Client instance. This object will
give us access to these engines:

In [2]: rc = Client()

Chapter 5

[149]

There are two ways to access the engines:

• With the direct interface, we have a direct access to every engine.
• With the load-balanced interface, we submit jobs to a scheduler which

dynamically assigns them to the engines depending on their current load.

Let's first demonstrate how to use the direct interface.

Direct interface
The ids attribute of the client shows us the identifiers of the engines that were
automatically detected by IPython:

In [3]: rc.ids

Out[3]: [0, 1, 2, 3]

There are several ways to run code in parallel on the engines. First, we can use the
%px magic command:

In [4]: %px import os, time

In [5]: %px print(os.getpid())

Out[5]: [stdout:0] 11173

 [stdout:1] 11174

 [stdout:2] 11175

 [stdout:3] 11176

The code passed to the %px magic command is executed on all engines. Here, we
display the OS process identifier (also called PID) of every engine. Every engine is
an independent Python process.

We can also specify the exact list of engines to run code on. The --targets option
accepts a list of engine identifiers. The Python slicing syntax is also supported, as
shown in the following example where we select all engines except the last one:

In [6]: %%px --targets :-1

 print(os.getpid())

Out[6]: [stdout:0] 11173

 [stdout:1] 11174

 [stdout:2] 11175

Note that we used the cell magic %%px this time instead of the line magic. The cell
magic allows us to execute several lines of code on the engines.

High-Performance and Parallel Computing

[150]

%pxconfig magic command
We can also use the %pxconfig magic command to configure the
parallel interface, specifying the list of engines and the blocking/
non-blocking execution mode (see the discussion about the synchronous
and asynchronous execution modes in the next subsection).

We can also create a direct view on some or all of the engines:

In [7]: view = rc[:-1]

 view

Out[7]: <DirectView [0, 1, 2]>

The direct view has a few useful methods like parallel versions of map() and
apply(). These routines are also available with the load-balanced interface. We will
show a few examples in the next subsection.

Load-balanced interface
The load-balanced interface gives us high-level parallel computing routines that are
dynamically executed on the engines. Here, we will estimate pi in parallel using a
Monte-Carlo method. Specifically, we will sample a large number of points uniformly
in a square, and estimate the proportion of those which are in a quarter disc. We'll then
get an estimation of pi since we know that this proportion should be pi/4:

Estimating pi with a Monte-Carlo method

Chapter 5

[151]

Let's first create a balanced view:

In [8]: v = rc.load_balanced_view()

The following function samples and counts the number of points in the quarter disc:

In [9]: def sample(n):

 import numpy as np

 # Random coordinates.

 x, y = np.random.rand(2, n)

 # Square distances to the origin.

 r_square = x ** 2 + y ** 2

 # Number of points in the quarter disc.

 return (r_square <= 1).sum()

Note that we import NumPy in the body of the function to make sure that NumPy
is imported on every node. We could also import the package once for all at the
beginning of the session with a direct or load-balanced view.

The second function below returns an estimation of pi based on the number of points
in the quarter disc, and the total number of points:

In [10]: def pi(n_in, n):

 return 4. * float(n_in) / n

Here is an example:

In [11]: n = 100000000

In [12]: pi(sample(n), n)

Out[12]: 3.14174968

Let's evaluate the time taken by this function on a single core:

In [13]: %timeit pi(sample(n), n)

Out[13]: 1 loops, best of 3: 2.65 s per loop

We will now run this simulation in parallel. First, we divide this task into 100 smaller
subtasks where the number of points is divided by 100:

In [14]: args = [n // 100] * 100

We use a parallel map() function to run these tasks in parallel. Our sample()
function is called 100 times, taking n // 100 as its argument every time. We will
combine the 100 results later.

In [15]: ar = v.map(sample, args)

High-Performance and Parallel Computing

[152]

This function doesn't return the results. Instead, it launches the 100 tasks in parallel
and returns an AsyncResult object. We say that this function is asynchronous. The
AsyncResult object can be used to interactively poll the tasks status and eventually
retrieve the results. There's also a synchronous version of map() called map_sync()
which blocks until the tasks have completed, and directly returns the results.

Here is an example:

In [16]: ar.ready(), ar.progress

Out[16]: (False, 12)

This tells us that the tasks are still running at this point, and that 12 tasks have
completed so far.

Blocking call
We can use ar.wait() to block the interactive session until all tasks
have been completed.

Once all tasks have completed, we can get some information about the elapsed time:

In [17]: ar.elapsed, ar.serial_time

Out[17]: (1.428284, 4.042367000000002)

The first number represents the actual elapsed time for the entire job, while the
second number represents the cumulative time spent on all engines. In other words,
it is approximately the time that would have taken our job if we had run it on a
single core.

Finally, we combine all results with the ar.result property. This is the list of
all results returned by the 100 tasks. We use the pi() function to get the final
estimation:

In [18]: pi(np.sum(ar.result), n)

Out[18]: 3.141666

Note that this method of estimating pi is not particularly efficient to say the least!
You'll find an overview of other approximation methods at http://en.wikipedia.
org/wiki/Approximations_of_%CF%80.

http://en.wikipedia.org/wiki/Approximations_of_%CF%80
http://en.wikipedia.org/wiki/Approximations_of_%CF%80

Chapter 5

[153]

There is much more to say about IPython.parallel. You'll find more details in the
following references:

• Documentation of IPython.parallel at http://ipyparallel.readthedocs.
org/en/latest/

• IPython Cookbook, Chapter 5, High-Performance and Parallel Computing

Further high-performance computing
techniques
There are many other high-performance computing techniques than those covered
in this chapter. The IPython Cookbook contains many more details. Here is an
overview of some of these other techniques:

MPI
The Message Passing Interface, or MPI, defines communication protocols for
high-performance distributed systems. IPython.parallel has native support
for MPI. Here are some other references:

• MPI tutorial at http://mpitutorial.com/
• MPI with IPython at http://ipython.org/ipython-doc/dev/parallel/

parallel_mpi.html

Distributed computing
There are many frameworks for distributed computing and big data analysis in
Python.

• Apache Spark is a big data framework that can run on Hadoop and has
a Python API: http://spark.apache.org/.

• Dask is a generic and modular parallel computing framework:
http://dask.pydata.org/en/latest/.

• Let's also mention xray, which provides a labeled array data structure that
can work with Dask: http://xray.readthedocs.org/en/stable/.

• Bolt is an experimental project providing a uniform interface to local or
distributed ndarrays: http://bolt-project.org/.

http://ipyparallel.readthedocs.org/en/latest/
http://ipyparallel.readthedocs.org/en/latest/
http://mpitutorial.com/
http://ipython.org/ipython-doc/dev/parallel/parallel_mpi.html
http://ipython.org/ipython-doc/dev/parallel/parallel_mpi.html
http://spark.apache.org/
http://dask.pydata.org/en/latest/
http://xray.readthedocs.org/en/stable/
http://bolt-project.org/

High-Performance and Parallel Computing

[154]

C/C++ with Python
There are many ways to interoperate Python and C code together:

• Cython can be used to access C (http://docs.cython.org/src/
userguide/external_C_code.html) and C++ (http://docs.cython.
org/src/userguide/wrapping_CPlusPlus.html) code from Python. It is
currently the recommended choice over the older methods below.

• SWIG (http://www.swig.org/) can connect C/C++ libraries to several
high-level languages like Python.

• weave (https://github.com/scipy/weave) is a SciPy-based library for
integrating C code in Python. It is deprecated and remains available for
legacy code.

• The Python C API gives low-level access to the CPython interpreter. It can be
used to combine Python and C code.

Here are two libraries that give access to compiled C libraries:

• ctypes is a native Python library that allows calling functions in DLLs or
shared libraries.

• cffi (https://cffi.readthedocs.org/en/latest/) is a more recent
alternative to ctypes.

GPU computing
Graphics Processing Units (GPUs) are powerful devices found in all recent
computers and mobile devices. They are primarily used for video games. However,
they can also be used for general-purpose high-performance numerical computing,
also called GPGPU for General-Purpose GPU computing. The massively parallel
architecture of GPUs makes them suitable to a large class of scientific problems.

CUDA (by NVIDIA Corporation) and OpenCL (by the Khronos Group) are two sets
of libraries and APIs that offer a C-like syntax for GPGPU programming. There are
Python libraries that give access to the CUDA and OpenCL libraries:

• PyCUDA at http://mathema.tician.de/software/pycuda/
• PyOpenCL at http://mathema.tician.de/software/pyopencl/

http://docs.cython.org/src/userguide/external_C_code.html
http://docs.cython.org/src/userguide/external_C_code.html
http://docs.cython.org/src/userguide/wrapping_CPlusPlus.html
http://docs.cython.org/src/userguide/wrapping_CPlusPlus.html
http://www.swig.org/
https://github.com/scipy/weave
https://cffi.readthedocs.org/en/latest/
http://mathema.tician.de/software/pycuda/
http://mathema.tician.de/software/pyopencl/

Chapter 5

[155]

Let's also mention another library from Continuum Analytics that gives high-level
access to GPGPU programming:

• libdynd (https://github.com/libdynd/libdynd) is a C++ dynamic
ndarray library with GPU support. It can also be used from Python.

PyPy
CPython is the main Python implementation. It is written in C. PyPy (http://pypy.
org) is another implementation of Python. It is generally much faster than CPython.
However, it is less easily compatible with Python C extensions like NumPy, although
there is currently some work in progress in this direction.

Julia
Julia (http://julialang.org/) is a young high-level language designed for high-
performance numerical computing. Julia supports vectorized array operations like
NumPy. Contrary to Python, for loops in Julia can be as fast as array operations. This
is due to Julia code being JIT compiled to machine code through the LLVM compiler
architecture. This is the same approach followed by Numba on Python code.

There are ways to call Julia code from Python and to call Python code from Julia.
There is also an IJulia kernel (https://github.com/JuliaLang/IJulia.jl) that
works with the Jupyter Notebook.

Summary
In this chapter, we covered some of the main high-performance computing methods
in Python. Numba is one of the easiest and most efficient options. Cython is useful
with more complex use-cases and when it is necessary to leverage C/C++ code.
Also, IPython.parallel allows us to leverage multicore CPUs or multiple computers
for independent tasks. Finally, we discussed further high-performance computing
techniques.

In the next chapter, we will explore a few customization options in IPython and the
Notebook.

https://github.com/libdynd/libdynd
http://pypy.org
http://pypy.org
http://julialang.org/
https://github.com/JuliaLang/IJulia.jl

[157]

Customizing IPython
The Jupyter Notebook is a highly-customizable platform. You can configure many
aspects of the software in your configuration files. You can also extend the backend
(kernels) and the frontend (HTML-based Notebook). This allows you to create
highly-personalized user experiences based on the Notebook.

In this chapter, we will cover the following topics:

• Creating a custom magic command in an IPython extension
• Writing a new Jupyter kernel
• Displaying rich HTML elements in the Notebook
• Customizing the Notebook interface with JavaScript

Creating a custom magic command in an
IPython extension
IPython comes with a rich set of magic commands. You can get the complete list
with the %lsmagic command. IPython also allows you to create your own magic
commands. In this section, we will create a new cell magic that compiles and
executes C++ code in the Notebook.

We first import the register_cell_magic function:

In [1]: from IPython.core.magic import register_cell_magic

Customizing IPython

[158]

To create a new cell magic, we create a function that takes a line (containing possible
options) and a cell's contents as its arguments, and we decorate it with @register_
cell_magic, as shown here:

In [2]: @register_cell_magic

 def cpp(line, cell):

 """Compile, execute C++ code, and return the

 standard output."""

 # We first retrieve the current IPython interpreter

 # instance.

 ip = get_ipython()

 # We define the source and executable filenames.

 source_filename = '_temp.cpp'

 program_filename = '_temp'

 # We write the code to the C++ file.

 with open(source_filename, 'w') as f:

 f.write(cell)

 # We compile the C++ code into an executable.

 compile = ip.getoutput("g++ {0:s} -o {1:s}".format(

 source_filename, program_filename))

 # We execute the executable and return the output.

 output = ip.getoutput('./{0:s}'.format(program_filename))

 print('\n'.join(output))

C++ compiler
This recipe requires the gcc C++ compiler. On Ubuntu, type sudo
apt-get install build-essential in a terminal. On OS X,
install Xcode. On Windows, install MinGW (http://www.mingw.
org) and make sure that g++ is in your system path.

http://www.mingw.org
http://www.mingw.org

Chapter 6

[159]

This magic command uses the getoutput() method of the IPython InteractiveShell
instance. This object represents the current interactive session. It defines many
methods for interacting with the session. You will find the comprehensive list
at http://ipython.org/ipython-doc/dev/api/generated/IPython.core.
interactiveshell.html#IPython.core.interactiveshell.InteractiveShell.

Let's now try this new cell magic.

In [3]: %%cpp

 #include<iostream>

 int main()

 {

 std::cout << "Hello world!";

 }

Out[3]: Hello world!

This cell magic is currently only available in your interactive session. To distribute
it, you need to create an IPython extension. This is a regular Python module or
package that extends IPython.

To create an IPython extension, copy the definition of the cpp() function (without
the decorator) to a Python module, named cpp_ext.py for example. Then, add the
following at the end of the file:

def load_ipython_extension(ipython):
 """This function is called when the extension is loaded.
 It accepts an IPython InteractiveShell instance.
 We can register the magic with the `register_magic_function`
 method of the shell instance."""
 ipython.register_magic_function(cpp, 'cell')

Then, you can load the extension with %load_ext cpp_ext. The cpp_ext.py file
needs to be in the PYTHONPATH, for example in the current directory.

http://ipython.org/ipython-doc/dev/api/generated/IPython.core.interactiveshell.html#IPython.core.interactiveshell.InteractiveShell
http://ipython.org/ipython-doc/dev/api/generated/IPython.core.interactiveshell.html#IPython.core.interactiveshell.InteractiveShell

Customizing IPython

[160]

Writing a new Jupyter kernel
Jupyter supports a wide variety of kernels written in many languages, including the
most-frequently used IPython. The Notebook interface lets you choose the kernel for
every notebook. This information is stored within each notebook file.

The jupyter kernelspec command allows you to get information about the
kernels. For example, jupyter kernelspec list lists the installed kernels. Type
jupyter kernelspec --help for more information.

At the end of this section, you will find references with instructions to install various
kernels such as IR, IJulia, or IHaskell. Here, we will detail how to create a custom
kernel.

There are two methods to create a new kernel:

• Writing a kernel from scratch for a new language by reimplementing the
whole Jupyter messaging protocol.

• Writing a wrapper kernel for a language that can be accessed from Python.

We will use the second, easier method in this section. Specifically, we will reuse the
example from the last section to write a C++ wrapper kernel.

We need to slightly refactor last section's code because we won't have access to the
InteractiveShell instance. Since we're creating a kernel, we need to put the code
in a Python script in a new folder named cpp:

In [1]: %mkdir cpp

The %%writefile cell magic lets us create a cpp_kernel.py Python script from the
Notebook:

In [2]: %%writefile cpp/cpp_kernel.py

 import os

 import os.path as op

 import tempfile

 # We import the `getoutput()` function provided by IPython.

 # It allows us to do system calls from Python.

 from IPython.utils.process import getoutput

Chapter 6

[161]

 def exec_cpp(code):

 """Compile, execute C++ code, and return the standard

 output."""

 # We create a temporary directory. This directory will

 # be deleted at the end of the 'with' context.

 # All created files will be in this directory.

 with tempfile.TemporaryDirectory() as tmpdir:

 # We define the source and executable filenames.

 source_path = op.join(tmpdir, 'temp.cpp')

 program_path = op.join(tmpdir, 'temp')

 # We write the code to the C++ file.

 with open(source_path, 'w') as f:

 f.write(code)

 # We compile the C++ code into an executable.

 os.system("g++ {0:s} -o {1:s}".format(

 source_path, program_path))

 # We execute the program and return the output.

 return getoutput(program_path)

Out[2]: Writing cpp/cpp_kernel.py

Now we create our wrapper kernel by appending some code to the cpp_kernel.py
file created above (that's what the -a option in the %%writefile cell magic is for):

In [3]: %%writefile -a cpp/cpp_kernel.py

 """C++ wrapper kernel."""

 from ipykernel.kernelbase import Kernel

 class CppKernel(Kernel):

 # Kernel information.

 implementation = 'C++'

Customizing IPython

[162]

 implementation_version = '1.0'

 language = 'c++'

 language_version = '1.0'

 language_info = {'name': 'c++',

 'mimetype': 'text/plain'}

 banner = "C++ kernel"

 def do_execute(self, code, silent,

 store_history=True,

 user_expressions=None,

 allow_stdin=False):

 """This function is called when a code cell is

 executed."""

 if not silent:

 # We run the C++ code and get the output.

 output = exec_cpp(code)

 # We send back the result to the frontend.

 stream_content = {'name': 'stdout',

 'text': output}

 self.send_response(self.iopub_socket,

 'stream', stream_content)

 return {'status': 'ok',

 # The base class increments the execution

 # count

 'execution_count': self.execution_count,

 'payload': [],

 'user_expressions': {},

 }

 if __name__ == '__main__':

 from ipykernel.kernelapp import IPKernelApp

 IPKernelApp.launch_instance(kernel_class=CppKernel)

Out[3]: Appending to cpp/cpp_kernel.py

Chapter 6

[163]

In production code, it would be best to test the compilation and
execution, and to fail gracefully by showing an error. See the
references at the end of this section for more information.

Our wrapper kernel is now implemented in cpp/cpp_kernel.py. The next step is to
create a cpp/kernel.json file describing our kernel:

In [4]: %%writefile cpp/kernel.json

 {

 "argv": ["python",

 "cpp/cpp_kernel.py",

 "-f",

 "{connection_file}"

],

 "display_name": "C++"

 }

Out[4]: Writing cpp/kernel.json

The argv field describes the command that is used to launch a C++ kernel. More
information can be found in the references below.

Finally, let's install this kernel with the following command:

In [5]: !jupyter kernelspec install --replace --user cpp

Out[5]: [InstallKernelSpec] Installed kernelspec cpp in /Users/cyrille/
Library/Jupyter/kernels/cpp

The --replace option forces the installation even if the kernel already exists. The
--user option serves to install the kernel in the user directory. We can test the
installation of the kernel with the following command:

In [6]: !jupyter kernelspec list

Out[6]: Available kernels:

 cpp

 python3

Customizing IPython

[164]

Now, C++ notebooks can be created in the Notebook, as shown in the following
screenshot:

Creating a C++ notebook

C++ code can be written directly in code cells, as shown below:

C++ kernel in the Notebook

Finally, wrapper kernels can also be used in the IPython terminal or the Qt console,
using the --kernel option, for example ipython console --kernel cpp.

Here are a few references:

• Kernel documentation at http://jupyter-client.readthedocs.org/en/
latest/kernels.html

• Wrapper kernels at http://jupyter-client.readthedocs.org/en/
latest/wrapperkernels.html

http://jupyter-client.readthedocs.org/en/latest/kernels.html
http://jupyter-client.readthedocs.org/en/latest/kernels.html
http://jupyter-client.readthedocs.org/en/latest/wrapperkernels.html
http://jupyter-client.readthedocs.org/en/latest/wrapperkernels.html

Chapter 6

[165]

• List of kernels at https://github.com/ipython/ipython/wiki/
IPython%20kernels%20for%20other%20languages

• bash kernel at https://github.com/takluyver/bash_kernel
• R kernel at https://github.com/takluyver/IRkernel
• Julia kernel at https://github.com/JuliaLang/IJulia.jl
• Haskell kernel at https://github.com/gibiansky/IHaskell

Displaying rich HTML elements in the
Notebook
The Jupyter Notebook application is based on HTML and runs in a web browser.
This platform supports many kinds of rich content such as images, mathematical
equations, interactive widgets, videos, and much more. Jupyter proposes several
methods to leverage these capabilities.

In this section, we'll show how to display HTML, SVG, and JavaScript elements,
notably with the Data-Driven Documents (D3) JavaScript visualization library.

Displaying SVG in the Notebook
Scalable Vector Graphics (SVG) is an open XML-based file format describing vector
graphics. Most modern web browsers support this format.

For displaying objects, IPython provides a simple API for representing rich content
like SVG. In the following example, we'll define a Disc class with a customizable
radius and a color. When displaying a Disc instance in the Notebook, an SVG
representation of the disc will be shown.

Let's first define a function generating the SVG code for a disc:

In [1]: def svg_disc(radius, color):

 return """<svg xmlns="http://www.w3.org/2000/svg"

 version="1.1">

 <circle cx="{0:d}" cy="{0:d}"

 r="{0:d}" fill="{1:s}" />

 </svg>""".format(radius, color)

https://github.com/ipython/ipython/wiki/IPython%20kernels%20for%20other%20languages
https://github.com/ipython/ipython/wiki/IPython%20kernels%20for%20other%20languages
https://github.com/takluyver/bash_kernel
https://github.com/takluyver/IRkernel
https://github.com/JuliaLang/IJulia.jl
https://github.com/gibiansky/IHaskell

Customizing IPython

[166]

We now define the Disc class and implement a special _repr_svg_() method that
returns the SVG code for that disc.

In [2]: class Disc(object):

 def __init__(self, radius, color='red'):

 self.radius = radius

 self.color = color

 def _repr_svg_(self):

 return svg_disc(self.radius, self.color)

To display the disc in the Notebook, we create an instance of the Disc class.

In [3]: Disc(60, 'purple')

Here is a screenshot:

SVG in the Notebook

When IPython displays an object, IPython inspects the object to find _repr_*()
methods. The formats currently supported by IPython are:

• svg (Notebook and Qt console)
• png (Notebook and Qt console)
• jpeg (Notebook and Qt console)
• html (Notebook only)
• javascript (Notebook only)
• latex (Notebook only)

You will find more information about the rich display system in IPython at
http://ipython.org/ipython-doc/dev/config/integrating.html.

http://ipython.org/ipython-doc/dev/config/integrating.html

Chapter 6

[167]

JavaScript and D3 in the Notebook
There are many JavaScript libraries and frameworks for a wide variety of
applications, particularly in the domain of data visualization. They can all potentially
be used in the Notebook.

In this subsection, we'll display some data with the popular D3 JavaScript
visualization library. We'll dynamically generate the JavaScript code with IPython.

Let's first import a display function in IPython:

In [4]: from IPython.display import display_javascript

Here is the JavaScript code for our chart:

In [5]: JS_TEMPLATE = """

 // We load the d3.js library from the Web.

 require.config({paths: {d3: "http://d3js.org/d3.v3.min"}});

 require(["d3"], function(d3) {

 // Example from http://bost.ocks.org/mike/bar/

 // Define the data.

 var data = %s;

 // We normalize the data.

 var x = d3.scale.linear()

 .domain([0, d3.max(data)])

 .range([0, 420]);

 // We define a categorical color map.

 var color = d3.scale.category10();

 // We create the chart.

 d3.select(".chart")

 .selectAll("div")

 .data(data)

 .enter().append("div")

 .style("width", function(d) { return x(d) + "px"; })

 .text(function(d) { return d; });

 });

 """

Customizing IPython

[168]

A course on D3 is beyond the scope of this book. Let's just mention that D3's main
idea is to bind data to HTML elements. Here, we create one <div> element per
item, and set its CSS width to the associated data value. More precisely, this value is
converted into a number of pixels via the x() D3 scale object.

Let's create some data:

In [6]: my_list = [2, 3, 5, 7, 11, 13]

We now generate the final JavaScript code by injecting a string representation of the
list into the JavaScript template:

In [7]: JS = JS_TEMPLATE % str(my_list)

Don't try this at home
We're lucky here that the syntax for lists and arrays in Python and
JavaScript are basically the same. This explains why we can just inject
the Python list into the JavaScript code. In production code, it would be
better to use a more robust method to send Python data to JavaScript.
For example, we could generate a JSON structure with the data.

The next step is to generate the HTML code for our chart. We can use the %%HTML
cell magic to inject HTML code into the output area of a cell. Here, we just create
the <div> container with some CSS styles:

In [8]: %%HTML

 <style>

 .chart div {

 font: 18px sans-serif;

 background-color: steelblue;

 text-align: right;

 padding: 5px;

 margin: 3px;

 color: white;

 }

 </style>

 <div class="chart"></div>

Finally, we inject the JavaScript code into the notebook with the
display_javascript() function:

In [9]: display_javascript(JS, raw=True)

Chapter 6

[169]

This displays the chart in the output area of the previous cell because the injected
JavaScript code updates the existing HTML code. Here is a screenshot:

A D3 chart in the Notebook

Visualization libraries
There are much easier interactive data visualization technologies in the
Notebook, as we have seen in Chapter 4, Interactive Plotting and Graphical
Interfaces. The example in this section only illustrates at a lower level
how to integrate web technologies such as HTML, JavaScript, and
D3 in the Notebook. In practice, you don't have to learn these web
technologies if you don't want to, and you can almost always find
visualization libraries that do what you want.

Here are some references about D3:

• D3 tutorials at https://github.com/mbostock/d3/wiki/Tutorials
• D3 gallery at https://github.com/mbostock/d3/wiki/Gallery
• D3 scales at https://github.com/mbostock/d3/wiki/Quantitative-

Scales

Finally, there are many references and tutorials on web technologies. Here are a few
of them:

• HTML, JavaScript, CSS tutorials at http://www.w3schools.com
• A course on HTML and CSS at http://www.codecademy.com/en/tracks/

web

https://github.com/mbostock/d3/wiki/Tutorials
https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki/Quantitative-Scales
https://github.com/mbostock/d3/wiki/Quantitative-Scales
http://www.w3schools.com
http://www.codecademy.com/en/tracks/web
http://www.codecademy.com/en/tracks/web

Customizing IPython

[170]

Customizing the Notebook interface with
JavaScript
The Notebook application exposes a JavaScript API that allows for a high level of
customization. In this section, we will create a new button in the Notebook toolbar
to renumber the cells.

The JavaScript API is not stable and not well-documented.
Although the example in this section has been tested with IPython
4.0, nothing guarantees that it will work in future versions without
changes.

The commented JavaScript code belows adds a new Renumber button.

In [1]: %%javascript

 // This function allows us to add buttons

 // to the Notebook toolbar.

 IPython.toolbar.add_buttons_group([

 {

 // The button's label.

 'label': 'Renumber all code cells',

 // The button's icon.

 // See a list of Font-Awesome icons here:

 // http://fortawesome.github.io/Font-Awesome/icons/

 'icon': 'fa-list-ol',

 // The callback function called when the button is

 // pressed.

 'callback': function () {

Chapter 6

[171]

 // We retrieve the lists of all cells.

 var cells = IPython.notebook.get_cells();

 // We only keep the code cells.

 cells = cells.filter(function(c)

 {

 return c instanceof IPython.CodeCell;

 })

 // We set the input prompt of all code cells.

 for (var i = 0; i < cells.length; i++) {

 cells[i].set_input_prompt(i + 1);

 }

 }

 }]);

Executing this cell displays a new button in the Notebook toolbar, as shown in the
following screenshot:

Adding a new button in the Notebook toolbar

You can use the jupyter nbextension command to install notebook extensions (use
the --help option to see the list of possible commands).

Here are a few repositories with custom JavaScript extensions contributed by the
community:

• https://github.com/minrk/ipython_extensions

• https://github.com/ipython-contrib/IPython-notebook-extensions

https://github.com/minrk/ipython_extensions
https://github.com/ipython-contrib/IPython-notebook-extensions

Customizing IPython

[172]

Summary
In this chapter, we covered several customization options of IPython and the Jupyter
Notebook. The IPython Cookbook contains more details, notably on how to create
entirely custom widgets in the Notebook.

With this book, you've learned the fundamentals of the platform: Python, IPython,
and the Jupyter Notebook. You've seen how to analyze real-world datasets with
pandas and NumPy, and how to create plots with matplotlib and seaborn. Finally,
you've sampled a wide-range of the scientific Python ecosystem, including high-
performance computing, interactive visualization, and interactive data analysis.

The IPython Cookbook, Packt Publishing, is the sequel of this book. In more than 500
pages and 100 recipes, it explores the topics addressed in this book in much greater
detail. Also, it contains a wide range of examples illustrating advanced analyses in
applied mathematics, statistics, machine learning, signal processing, networks, and
many other domains.

[173]

Index
Symbols
3D visualization libraries

about 134
Mayavi 134
VisPy 135

A
Anaconda

conda commands 10
downloading 6
environments, managing 9, 10
home directory, finding 8
installation, testing 9
installing 6, 7
notebooks, downloading 12
Python, installing with 5
references 11
system's PATH, manipulating 8
terminal, opening 7

arguments 29
array manipulation routines

references 97
arrays

basic array manipulations 94-97
boolean operations 99
computing 97
creating 91, 92
density map, with NumPy 103-107
indexing 98
loading, from files 93
mathematical operations 100-102
references 93
selection 98

B
Basemap

about 132
references 132

Bokeh
about 130
references 130

boolean operations
on arrays 99

brew
URL 38

broadcasting 97
brownian motion 138

C
C compiler

installing 143, 144
C/C++, with Python

about 154
cffi 154
ctypes 154
Cython 154
SWIG 154
URL 154
weave 154
writing in Python, Cython used 143

chaining syntax 81
code cell, Notebook 17, 18
column-major order (Fortran-order) 90

[174]

computing, techniques
about 153
C/C++, with Python 154
distributed computing 153
Graphics Processing Units (GPUs) 154
Julia 155
Message Passing Interface (MPI) 153
PyPy 155

conda
about 5
commands 10

conditional branches 27, 28
ctypes 154
Cython

Eratosthenes Sieve, implementing 144-147
installing 143, 144
tutorials, URL 147
URL 147, 154
used, for writing C in Python 143
user guide, URL 147

D
data

boolean indexing, filtering with 72, 73
columns, selecting 70
dates and times, working with 76
manipulating 69
missing data, handling 77
numbers, computing with 73-75
rows, selecting 70, 71
selecting 69
text, working with 75

Data-Driven Documents (D3)
about 165
references 169

dataset, in Notebook
data subset 60
descriptive statistics, with pandas

and seaborn 67, 68
downloading 61
exploring 59
loading 61, 62
plots creating, matplotlib used 63-66
public datasets 61
references 60
URL 60

decorators
about 34
URL 34

density map
computing 103-107

distributed computing
Apache Spark 153
Bolt 153
Dask 153
xray 153

E
Eratosthenes Sieve

implementing, in Cython 144-147
implementing, in Python 144-147

expit function 105

F
functional programming 34
functions 28, 29

G
General-Purpose GPU

computing (GPUGPU) 154
GeoPandas 133
Git Distributed Version Control

System (DVCS) 12
GitHub 12
GNU C Compiler (gcc) 143
Graphics Processing Units (GPUs) 154
group-by operation 78, 80
GUI event loop support

URL 111

H
high-level plotting libraries

about 129
Bokeh 130
Plotly 131
Vincent and Vega 130

HTML elements
displaying, in Notebook 165

[175]

I
IJulia kernel

URL 155
image processing 126-129
indentation 27
InteractiveShell instance

URL 159
IPython

about 2, 3
display system, URL 166
features 37
references 5, 107

IPython 4.0
URL 4

IPython Cookbook
URL 4

IPython extension
about 159
custom magic command, creating 157, 159

IPython, features
interactive widgets, creating in

Notebook 49, 50
IPython, using as extended shell 37-41
magic commands 42-45
Markdown cell, in Notebook 47, 48
Python code, benchmarking 55
Python code, debugging 54
Python code, profiling 56, 58
Python objects, introspecting 53
Python scripts, running from

IPython 51, 52
tab completion 45, 46

IPython.parallel
about 148, 149
direct interface 149, 150
documentation, URL 153
load-balanced interface 150-152

J
JavaScript

used, for customizing Notebook
interface 170, 171

JavaScript extensions
URL 171

joins 80-83
Julia 155
Jupyter

about 3
features 37
Notebook, URL 4
URL 4

Jupyter kernel
references 164, 165
writing 160-165

Jupyter Notebook
about 157
launching 14

Just-In-Compiler (JIT) 138

K
kernel 15
keyword arguments 29

L
Leaflet

about 134
folium 134
mplleaflet 134
references 134

libdynd
URL 155

list comprehension 26
loops 26

M
magic commands

about 38, 42-45
creating, in IPython extension 157, 159

manipulation functions
reference link 104

maps
creating 132
GeoPandas 133
Leaflet 134
matplotlib Basemap toolkit 132

Markdown cell, Notebook 17
about 16, 17
references 48

[176]

mathematical functions, NumPy
URL 101

mathematical operations
on arrays 100, 102

Math Kernel Library (MKL) 91
matplotlib

about 115
figures, customizing 120-122
figures, in Notebook 122-124
gallery, URL 122
high-level plotting, with seaborn 124, 125
plots with 116-118
references 124

Mayavi 134
Message Passing Interface (MPI)

about 153
URL 153
with IPython, URL 153

Microsoft Visual C++ Compiler
for Python 2.7

URL 144
MinGW

URL 158
Miniconda

URL 5
modal interface, Notebook

about 19
keyboard shortcuts, in both modes 19
keyboard shortcuts, in command mode 20
keyboard shortcuts, in edit mode 19

multidimensional array 86

N
ndarray

about 86, 87
data type (dtype) 87
dimensions 86
shape 86
storing, in memory 89, 90
strides 87
vector operations 87

nopython mode
about 141
URL 141

Notebook
about 2, 13, 15
cell, structure 16
D3 167-169
dashboard 15
dataset, exploring 59
HTML elements, displaying 165
interface customizing, JavaScript

used 170, 171
IPython console, launching 13
JavaScript 167-169
Jupyter Notebook launching 14
modal interface 19
references 5, 20
Scalable Vector Graphics (SVG),

displaying 165, 166
user interface 16

Numba
documentation, URL 141
Python code, accelerating with 138
URL 141

numexpr
URL 142

NumPy
about 85
arrays 91
density map, computing 103-107
references 94
versus pandas 103

NumPy universal functions (ufuncs)
URL 141

O
Object-oriented programming (OOP) 32, 33
operations

complex operations 78
group-by operation 78, 79
joins 80-83

P
pandas

versus NumPy 103
Partial Differential Equation (PDE) 86
passage by assignment 30
Plotly 131

[177]

plots
about 109
customization options, URL 119
D3.js, URL 115
dynamic inline plots 113
exported figures 111
GUI toolkits 111
inline plots 109
mpld3, URL 115
plt.savefig(), URL 111
web-based visualization 114, 115

positional arguments 29
Powershell

URL 7
pure function 31
PyCuda

URL 154
pylab mode

URL 115
PyOpenCL

URL 154
PyPy

about 155
URL 155

Python
about 1, 2
C compiler, installing 143, 144
competitors 2
Cython, installing 143, 144
Eratosthenes Sieve, implementing 144-147
installing, with Anaconda 5
special characters, URL 23

Python 2 and 3 35
Python code

accelerating, with Numba 138-141
benchmarking 55
debugging 54
profiling 56, 58
random walk 138

Python, fundamentals
about 20
conditional branches 27, 28
errors 31, 32
functional programming 34
functions 28, 29
Hello world 21

indentation 27
keyword arguments 29, 30
lists 24, 25
loops 26
Object-oriented programming (OOP) 32
passage by assignment 30
positional arguments 29, 30
Python 2 and 3 35
references 36
string escaping 23
variables 21, 22

Python Package Index (PyPI)
about 11
references 11

Q
Qt console

URL 13

R
record arrays 87
relational database management

systems (RDBMS) 78
row-major order (C-order) 90

S
Scalable Vector Graphics (SVG)

about 165
displaying, in Notebook 166

scikit-image
about 126-128
references 129

seaborn
about 115
high-level plotting with 124, 125

sequential locality 91
statistical functions, NumPy

URL 102
strides 90
structured arrays

about 87
reference link 87

Structured Query Language (SQL) 78
SWIG 154

[178]

U
universal functions

about 141
references 143

V
variables 22
vector computing

about 85
in NumPy 88, 89
multidimensional array 86
ndarray 86, 87
vector operations, on ndarray 87

vectorization 75
vector (or vectorized) operations

comparing 91
on ndarrays 87

Vega
about 130
references 131

Vincent
about 130
references 131

VisPy
about 135
references 135

W
Wakari

URL 5
weave 154
web technologies

references 169

Thank you for buying
Learning IPython for Interactive

Computing and Data Visualization
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

1. Leverage the new features of the IPython
notebook for interactive web-based big data
analysis and visualization.

2. Become an expert in high-performance
computing and visualization for data analysis
and scientific modeling.

3. A comprehensive coverage of scientific
computing through many hands-on,
example-driven recipes with detailed,
step-by-step explanations.

IPython Notebook Essentials
ISBN: 978-1-78398-834-1 Paperback: 190 pages

Compute scientific data and execute code
interactively with NumPy and SciPy

1. Perform Computational Analysis interactively.

2. Create quality displays using matplotlib and
Python Data Analysis.

3. Step-by-step guide with a rich set of examples
and a thorough presentation of The IPython
Notebook.

Please check www.PacktPub.com for information on our titles

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and how
to use the right visualizations.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed version
control.

4. Profile and optimize your code.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with IPython
	What are Python, IPython, and Jupyter?
	Jupyter and IPython
	What this book covers
	References

	Installing Python with Anaconda
	Downloading Anaconda
	Installing Anaconda
	Before you get started...
	Opening a terminal
	Finding your home directory
	Manipulating your system path

	Testing your installation
	Managing environments
	Common conda commands
	References
	Downloading the notebooks

	Introducing the Notebook
	Launching the IPython console
	Launching the Jupyter Notebook
	The Notebook dashboard
	The Notebook user interface
	Structure of a notebook cell
	Markdown cells
	Code cells

	The Notebook modal interface
	Keyboard shortcuts available in both modes
	Keyboard shortcuts available in the edit mode
	Keyboard shortcuts available in the command mode

	References

	A crash course on Python
	Hello world
	Variables
	String escaping
	Lists
	Loops
	Indentation
	Conditional branches
	Functions
	Positional and keyword arguments
	Passage by assignment
	Errors
	Object-oriented programming
	Functional programming
	Python 2 and 3
	Going beyond the basics

	Ten Jupyter/IPython essentials
	Using IPython as an extended shell
	Learning magic commands
	Mastering tab completion
	Writing interactive documents in the Notebook with Markdown
	Creating interactive widgets in the Notebook
	Running Python scripts from IPython
	Introspecting Python objects
	Debugging Python code
	Benchmarking Python code
	Profiling Python code

	Summary

	Chapter 2: Interactive Data Analysis
with pandas
	Exploring a dataset in the Notebook
	Provenance of the data
	Downloading and loading a dataset
	Making plots with matplotlib
	Descriptive statistics with pandas and seaborn

	Manipulating data
	Selecting data
	Selecting columns
	Selecting rows
	Filtering with boolean indexing

	Computing with numbers
	Working with text
	Working with dates and times
	Handling missing data

	Complex operations
	Group-by
	Joins

	Summary

	Chapter 3: Numerical Computing
with NumPy
	A primer to vector computing
	Multidimensional arrays
	The ndarray
	Vector operations on ndarrays
	How fast are vector computations in NumPy?
	How an ndarray is stored in memory
	Why operations on ndarrays are fast

	Creating and loading arrays
	Creating arrays
	Loading arrays from files

	Basic array manipulations
	Computing with NumPy arrays
	Selection and indexing
	Boolean operations on arrays
	Mathematical operations on arrays
	A density map with NumPy
	Other topics

	Summary

	Chapter 4: Interactive Plotting and Graphical Interfaces
	Choosing a plotting backend
	Inline plots
	Exported figures
	GUI toolkits
	Dynamic inline plots
	Web-based visualization

	matplotlib and seaborn essentials
	Common plots with matplotlib
	Customizing matplotlib figures
	Interacting with matplotlib figures in the Notebook
	High-level plotting with seaborn

	Image processing
	Further plotting and visualization libraries
	High-level plotting
	Bokeh
	Vincent and Vega
	Plotly

	Maps and geometry
	The matplotlib Basemap toolkit
	GeoPandas
	Leaflet wrappers: folium and mplleaflet

	3D visualization
	Mayavi
	VisPy

	Summary

	Chapter 5: High-Performance and Parallel Computing
	Accelerating Python code with Numba
	Random walk
	Universal functions

	Writing C in Python with Cython
	Installing Cython and a C compiler for Python
	Implementing the Eratosthenes Sieve in Python and Cython

	Distributing tasks on several cores with IPython.parallel
	Direct interface
	Load-balanced interface

	Further high-performance computing techniques
	MPI
	Distributed computing
	C/C++ with Python
	GPU computing
	PyPy
	Julia

	Summary

	Chapter 6: Customizing IPython
	Creating a custom magic command in an IPython extension
	Writing a new Jupyter kernel
	Displaying rich HTML elements in the Notebook
	Displaying SVG in the Notebook
	JavaScript and D3 in the Notebook

	Customizing the Notebook interface with JavaScript
	Summary

	Index

