
www.allitebooks.com

http://www.allitebooks.org

Learning Bing Maps API

Obtain geographical data from Bing Maps and display
them on the map

Artan Sinani

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Bing Maps API

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1151113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78355-037-1

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Artan Sinani

Reviewers
Thomas M. Anderson

Adrian Cox

Seth Richards

Acquisition Editors
Akram Hussain

Neha Nagwekar

Commissioning Editor
Sruthi Kutty

Technical Editors
Shruti Rawool

Anand Singh

Project Coordinator
Aboli Ambardekar

Proofreader
Clyde Jenkins

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Artan Sinani is a Web Developer living between London and a small town in the
north-west of Spain.

Currently, he works as a Senior Developer at Local Data Company, where he uses
his passion for good design and clean programming to build beautiful interfaces,
including geospatial data visualizations.

He hacks open source code at github.com/artisinani and blogs at lugolabs.com.

This book would not have been written without the help and
understanding of my wife, Sonia, and son, Mattias, who put up
patiently with me writing during family time. I would like to thank
my parents Vasil and Elsa, sister Sara, and brother David, who have
supported and inspired me throughout my life.

I would like to thank my colleagues—first and foremost—Adrian,
who is a also a technical reviewer of this book, for all his help and
understanding; Ivana Mogin, Barnaby Oswald, Alex Oswald, and all
the great people at LDC, who gave me the opportunity to work with
great technologies.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Thomas M. Anderson is a Software Engineer by trade, autodidact by leisure,
and a self-proclaimed tinkerer. He studied Computer Science and Jazz percussion at
North Central College in Naperville, Illinois, and web designing and development
for another two years at Full Sail University in Orlando, Florida. When not behind a
computer screen, he can be found making music, reading a good book, or pondering
over countless questions that need answers.

He has been with his current employer and second family, Punchkick Interactive,
for over three years. Punchkick Interactive is a full-service mobile marketing agency,
and a leader within the mobile development industry.

I would like to thank my family and friends.

Adrian Cox is a Software Development Manager with over 15 years of commercial
experience. He is still very much hands on with development and system design,
and stays up-to-date with the latest technologies.

Seth Richards has over 10 years of professional software development experience.
He got his start by programming embedded devices for the bar and nightclub industry
and transitioned to web application development six years ago. In the past, he has
worked on web-based enterprise-grade geographic information system applications.
Seth is currently a Senior Software Engineer for a Massachusetts-based company
that provides process automation, work automation, and document management
solutions. You can follow him on twitter@shrichards, or view his blog at
http://blog.shrichards.com

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Introduction to Bing Maps AJAX Control Version 7	 5

Bing Maps AJAX Control Version 7	 5
Custom modules	 10
Map events	 15
Summary	 18

Chapter 2: Diving into Bing Maps AJAX Control Version 7	 19
Custom events	 21
Pushpins	 24
Polylines	 28
Summary	 34

Chapter 3: Introduction to Bing Maps REST Services	 35
The application	 36
Bing Maps REST resources	 39
Summary	 46

Chapter 4: Diving into Bing Maps REST Services	 47
The application	 47
The router module	 50
The controller	 53
The model	 54
The proxy	 55
The view	 56
Displaying the route	 57
Summary	 60

Table of Contents

[ii]

Chapter 5: Spatial Data Services	 61
Geocoding dataflow input data	 62
The job	 63
Getting job status	 64
Getting job results	 66
Parsing the geocode response	 67
Websites	 69
Summary	 73

Chapter 6: Diving into Spatial Data Services	 75
The project	 75
Querying for postcodes	 76
The locator	 79
The controller	 80
The client side	 80
The stylesheet	 83
Showing the data	 84
Summary	 86

Chapter 7: Enriching Bing Maps with Overlaying User Data	 87
The data	 87
The application	 88
The poll	 89
The shape	 93
Rolling back the years	 97
Summary	 99

Index	 101

Preface
When I first started working with the Bing Maps APIs, I was amazed at how easy
it was to drop a map on a web page with just a few lines of code. Then I started
changing the way the map looked; then I added some pushpins to show points
of interest, and inevitably changed the way the pins looked.

This book describes many of these processes and much more, building on real
applications as we explore new venues of the vast universe of Bing Maps.

What this book covers
Chapter 1, Introduction to Bing Maps AJAX Control Version 7, explains how to embed
a map on a web page. It shows the way to create a custom theme by changing its
interactive controls with a simple dashboard.

Chapter 2, Diving into Bing Maps AJAX Control Version 7, explains how to add
interactivity to the map, by drawing custom polygons and pushpins and attaching
different events to them.

Chapter 3, Introduction to Bing Maps REST Services, introduces the Locations API and
reverse geocoding addresses from coordinates of any point of the map.

Chapter 4, Diving into Bing Maps REST Services, covers the Routes API and ways
of fetching and displaying on the map route information between multiple places.
It takes a look at different data formats that are exposed by this interface.

Chapter 5, Spatial Data Services, introduces geocoding addresses by setting up
automated jobs on the Bing Maps servers. It examines techniques of monitoring
the jobs, and on their completion, parsing the response.

Chapter 6, Diving into Spatial Data Services, focuses on an experimental part of Bing
Maps, the Geodata API. It presents ways of obtaining geographical information
about various types of administrative areas, from postcode to region or country.

Preface

[2]

Chapter 7, Enriching Bing Maps with Overlaying User Data, wraps up the book with
a web application that turns the map into an interactive chart by means of user
data visualizations.

What you need for this book
You need some experience with JavaScript, HTML, and CSS. For some chapters,
knowledge of C#, ASP.NET MVC, and Visual Studio is also required.

Who this book is for
This book is for developers that wish to build applications with Bing Maps, but have
no previous knowledge of the APIs. More experienced developers can find useful
chapters about areas of Bing Maps with which they are not familiar.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: We can include other contexts through the
use of the include directive.

A block of code is set as follows:

 var map = new Microsoft.Maps.Map(container, {
 credentials: '[YOUR BING MAPS KEY]',
 center: new Microsoft.Maps.Location(39.554883, -99.052734),
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 4
 });

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 8"/>
 <title>LBM | Chapter 1: Introduction to Bing Maps</title>
 <link href="app.css" rel="stylesheet" />

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
Before that, we deactivate the active button (by removing the active class)
if it exists.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really find useful.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic in which you have expertise, and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output.You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/0371OT_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books; maybe a mistake in the text or the
code, we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata is verified, your submission will
be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Bing Maps
AJAX Control Version 7

Bing Maps by Microsoft provide a collection of Application Programming Interfaces
(APIs) that adds mapping capabilities to location-aware applications. The APIs,
open to the public since their first beta release in 2005, can query for location or
business by address or coordinates. They enable searching for routes, including
traffic information; searching for geometrical shapes of geographical entities such as
countries, regions, and other smaller administrative divisions. Consumers of Bing
Maps APIs can geocode address, or reverse geocode coordinates via automated jobs.

All the APIs can be used with JavaScript, but server-side languages such as .Net,
PHP, Ruby, and so on can also be used. The supported browsers include Internet
Explorer Version 7 onwards, Firefox Version 3.6 onwards, Safari Version 5 onwards,
Opera, Google Chrome, iPhone, Android, and Blackberry mobile browsers are
also supported.

To access the APIs, a Bing Maps key is needed; it can be obtained at the Accounts
Center available at https://www.bingmapsportal.com. Bing Maps offer a few
access options, including a basic key for non-profit, educational purposes, with
limited usage. For production scenarios, Bing Maps offer an enterprise key.

Bing Maps AJAX Control Version 7
The AJAX Control is a JavaScript library that adds a fully functional map to a
web page. The current version, V7, released in 2010, was written with a modular
approach in mind, which reduced the core part of the library to around 35 KB.
Additional modules, such as the directions module, or the ones we will write
in this chapter, can be loaded dynamically on request.

Introduction to Bing Maps AJAX Control Version 7

[6]

In this chapter, we are going to place a map on our webpage, and customize its look.
First, let's create a simple HTML5 index.html file, as follows:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-
 8"/>
 <title>LBM | Chapter 1: Introduction to Bing Maps</title>
</head>
<body>
</body>
</html>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Microsoft recommends using UTF-8 encoding on the page. To load the control,
we add the script tag to the header, as shown in the following code snippet:

<script src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.
ashx?v=7.0"></script>

Now, let's add the div element that will contain the map in the body, as shown in
the following code snippet:

<div id="lbm-map"></div>

We need to style our div with height and width, so let's add an external stylesheet
to our page, which now should look as shown in the following code:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-
 8"/>
 <title>LBM | Chapter 1: Introduction to Bing Maps</title>
 <link href="app.css" rel="stylesheet" />
 <script src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.
ashx?v=7.0"></script>
</head>
<body>

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 1

[7]

 <div id="lbm-map"></div>
</body>
</html>

The width and height of the map container will be used by the AJAX Control to
resize the map. The container must also be styled with relative or absolute position.
So, let's code them in our stylesheet file, as follows:

#lbm-map {
 position: relative;
 width: 100%;
 margin: 20px auto;
 border: 1px solid #888;
}

We have used Learning Bing Maps (LBM) to prefix our styles.

Now, let's write the function that instantiates the map on page load in a app.js
JavaScript file as shown in the following code:

window.onload = function() {
 var container = document.getElementById('lbm-map'),
 resize = function () { container.style.height = win
 dow.innerHeight + 'px'; };
 resize();

 var map = new Microsoft.Maps.Map(container, {
 credentials: '[YOUR BING MAPS KEY]',
 center: new Microsoft.Maps.Location(39.554883, -99.052734),
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 4
 });

 window.onresize = function() {
 resize()
 };
};

First, we get a reference to the map container and store it in a container variable for
later use. Since we want our map to cover the whole browser window, we give our
container the same height as the window (we already specified the width value as
100 percent).

Introduction to Bing Maps AJAX Control Version 7

[8]

The main function (we will also refer to them as classes, even though this term is
not supported as such in JavaScript) of the AJAX Control is named Microsoft.
Maps.Map, and accepts two arguments—the first argument is a reference to the
DOM element of the map container and the second argument is a Microsoft.Maps.
MapOptions object—used to customize the map.

One of the important properties of the MapOptions object is credentials, and it
holds the Bing Maps key. Other properties control the view of the map, such as the
zoom level, the background color, the default controls; or the map's behavior, such
as panning, user clicks or touches, keyboard input, and so on (the full reference
of MapOptions can be found at http://msdn.microsoft.com/en-us/library/
gg427603.aspx). Please note that Microsoft.Maps is the namespace that groups
all the JavaScript classes of the control.

Going back to our code, at the end of it, we make sure the map is resized to fill the
whole window, even when the user resizes the browser window. Note how the map
follows the dimensions of its container.

We need to add a reference to this file on our index.html page, and we place the
reference just before the closing </body> tag, so that the file is loaded after all the
other assets of the page have been downloaded by the browser.

<script src="app.js"></script>

If we open the index.html file on the browser, we should get the map as shown in
the following figure:

Chapter 1

[9]

The map is centered somewhere in Kansas, United States. To do this, we set the
center option to a Microsoft.Maps.Location instance, which accepts two
parameters: latitude and longitude.

new Microsoft.Maps.Location(39.554883, -99.052734)

The zoom option can take any value between 1 and 20, with 1 zooming out far
and 20 zooming in close. The mapTypeId property is a value of Microsoft.Maps.
MapTypeId, which includes aerial, birdseye, and so on. (The list can be found at
http://msdn.microsoft.com/en-us/library/gg427625.aspx).

Now, let's remove the map's dashboard, the controls at the top-right corner of the
map, and replace them with our own. To achieve the former, we add two more
options to our map instantiation function, as shown in the following code snippet:

var map = new Microsoft.Maps.Map(document.getElementById('lbm-map'), {
 credentials: '[YOUR BING MAPS KEY]',
 center: new Microsoft.Maps.Location(39.554883, -99.052734),
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 4,
 showBreadcrumb: false,
 showDashboard: false
});

Introduction to Bing Maps AJAX Control Version 7

[10]

Custom modules
We'll add our own controls to the map; they will change the zoom level and the
map type. For this, we will take advantage of the module structure of Bing Maps.
The modules are just JavaScript functions that are loaded dynamically by Bing
Maps AJAX Control. Apart from better code organization, the modules provide
on-demand downloads, reducing the initial script load.

On the flip side, this means that the JavaScript files will be loaded in multiple HTTP
requests. If you prefer your scripts merged into a single HTTP request, you can
use tools that merge and minimize website assets, such as Asset Bundler in ASP.
NET, Sprockets in Ruby, gzipit in PHP, and so forth. In this case, make sure that the
custom modules are instantiated after the map is loaded (more information about
the Bing Maps modules can be found at http://msdn.microsoft.com/en-us/
library/hh125836.aspx).

We'll call our module LearningTheme, and place it under a learningTheme folder.
Let's write our module within a self-calling, immediately invoked function in the
learningTheme.js file:

(function () {
 var lbm = window.lbm = {};
 lbm.LearningTheme = function(map) {
 this._map = map;
 };
 Microsoft.Maps.moduleLoaded('lbm.LearningTheme');
})(this);

We have placed our LearningTheme module under the namespace lbm, just as we
did with the CSS styles. This way, we expose only one global variable, lbm.

The module is just a normal JavaScript function with one argument, that is, map.
This is a reference to the Bing Maps map we instantiated earlier, which we'll store
into a private variable named as _map.

We'll use the convention of starting the variable names with an
underscore in this book, to indicate that they should be considered as
private variables, and not be called outside our module. There are ways
to achieve better access restriction for objects in JavaScript, but they are
outside the scope of this book.

Chapter 1

[11]

After the module body, we add the following line, which turns our function into
a Bing Maps module:

Microsoft.Maps.moduleLoaded('lbm.LearningTheme');

We then load the module in our window.onload function by first registering it:

Microsoft.Maps.registerModule('lbm.LearningTheme', 'learningTheme/
learningTheme.js');
Microsoft.Maps.loadModule('lbm.LearningTheme', {
 callback: function() {
 var learningTheme = new lbm.LearningTheme(map);
 }
});

The registration function accepts two arguments: the name of the module, and its
relative or absolute (or remote) location. We then call Microsoft.Maps.loadModule,
which again needs the module name, and an options object. With the latter argument,
we can specify what should happen when the module is loaded. In this case, we
instantiate it by passing a reference to the map we created earlier.

Let's add the two buttons that will control the zoom level, one with a minus (-) sign
that will decrease the zoom level, and one with a plus (+) sign that will increase it.
We'll also add a third button that will toggle the map type between road and aerial.

A function within the module's prototype (a private instance method we can call
later with the this keyword) achieves the following:

lbm.LearningTheme.prototype = {
 _addHeader: function() {
 var header = document.createElement('div');
 header.className = 'lbm-map-header';
 header.innerHTML = [
 '<button class="lbm-btn" id="lbm-map-btn-zoomin">-
 </button>',
 '<button class="lbm-btn" id="lbm-map-btn-
 zoomout">+</button>',
 '<button class="lbm-btn" id="lbm-map-btn-
 maptype">Aerial</button>'
].join('');

 this._map.getRootElement().appendChild(header);
 }
};

Introduction to Bing Maps AJAX Control Version 7

[12]

First, we create a DOM div element and give it a class name OF lbm-map-header,
so that we can style it later. The markup for the buttons is simple, shown as follows:

<button class="lbm-btn" id="lbm-map-btn-zoomin">-</button>

Again we specify a class (lbm-btn) for styling and an ID (lbm-map-btn-zoomin) for
controlling its behavior. We place the buttons in an array that we later join with an
empty string. This is a common technique for building HTML strings in a JavaScript
code, BECAUSE it improves the readability of the code.

At the end, we append the markup to the map's root element. Bing Maps provide
a nice utility method to get the latter, getRootElement. (The list of methods,
properties, and events of the map can be found at http://msdn.microsoft.com/
en-us/library/gg427609.aspx).

We want the header to be added to the map when the module is loaded; therefore, we
call the _addHandler method in the module's constructor, which now looks like this:

lbm.LearningTheme = function(map) {
 this._map = map;
 this._addHeader();
};

If you view the index.html file on the browser, you will not see the default Bing
Maps dashboard, but you won't see our controls either. This is because we have
not added our styles yet. Let's place them in a learningTheme.css file inside the
learningTheme folder, as shown in the following code:

.lbm-map-header {
 position: absolute;
 top: 1em;
 left: 1em;
 width: 100%;
 color: #fff;
 z-index: 100;
}

.lbm-map-header .lbm-btn {
 font-size: 1em;
 border: 0;
 background: #F04C40;
 color: #fff;
 display: inline-block;
 text-decoration: none;
 width: 2.5em;
 height: 2em;
 line-height: 2em;	

Chapter 1

[13]

 padding: 0;
 margin: 0 1px 0 0;
 outline: 0;
 text-align: center;
 cursor: pointer;

 opacity: .8;

 border-radius: .2em;
 -webkit-border-radius: .2em;
 -moz-border-radius: .2em;
}

.lbm-map-header #lbm-map-btn-zoomin {
 border-top-right-radius: 0;
 -webkit-border-top-right-radius: 0;
 -moz-border-top-right-radius: 0;
 border-bottom-right-radius: 0;
 -webkit-border-bottom-right-radius: 0;
 -moz-border-bottom-right-radius: 0;
}

.lbm-map-header #lbm-map-btn-zoomout {
 border-top-left-radius: 0;
 -webkit-border-top-left-radius: 0;
 -moz-border-top-left-radius: 0;
 border-bottom-left-radius: 0;
 -webkit-border-bottom-left-radius: 0;
 -moz-border-bottom-left-radius: 0;
}

.lbm-map-header .lbm-btn:hover {
 background: #cf343e;
}

.lbm-map-header .lbm-btn:active {
 background: #cc1d28;
}

.lbm-map-header #lbm-map-btn-maptype {
 margin-left: 2em;
 width: auto;
 padding: 0 .8em;
}

Introduction to Bing Maps AJAX Control Version 7

[14]

We make sure that the buttons' container has an absolute position and a high
z-index value, so that it appears above the map.

Now, we need to add a link to the CSS file to our HTML document, and we'll do
this when the module is loaded. This way, if the module is never loaded, then the
stylesheet is not loaded either. Again, loading our CSS file on demand means another
HTTP request, and if you prefer to have the styles merged into a single file, then you
can use the same technique as for the JavaScript files, and skip the following step:

We'll add a link to our CSS file to the head of the page as shown in the following
code snippet:

_addCss: function() {
 var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', 'learningTheme /learningTheme.css');
 var head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
}

First, the preceding function creates a link element, with a href attribute pointing
at our learningTheme.css file. Then, it gets a reference to the head of the document,
and it appends to it the newly created element.

As with the buttons markup, we need the stylesheet to be loaded with the module, so
we'll call this function in the module's constructor, as shown in the following code:

lbm.LearningTheme = function(map) {
 this._map = map;
 this._addCss();
 this._addHeader();
};

Chapter 1

[15]

If we open the index.html file on a browser now, we can finally see our controls,
as shown in the following screenshot:

Map events
We need our buttons to respond to mouse clicks. Since we added them to the map's
root element, we can use the Bing Maps events to add this functionality. Bing
Maps AJAX Control provides a rich event system, that can be attached to the map
or its entities. Some of the events include click, dblclick, keydown, keypress,
imagerychanged, and so on.

Let's add our eventing functionality to a private method, which accepts a context
argument, as shown in the following code:

_bind: function(self) {
 Microsoft.Maps.Events.addHandler(this._map, 'click', function(e) {
 if (e.originalEvent && e.originalEvent.target) {
 var btn = e.originalEvent.target;
 if (btn.tagName === 'BUTTON' && btn.className.match(/lbm-btn/))
{
 if (btn.id === 'lbm-map-btn-maptype') {
 self._changeMapType(btn);

Introduction to Bing Maps AJAX Control Version 7

[16]

 } else {
 self._zoom(btn);
 }
 e.handled = true;
 }
 }
 });
}

The self argument passed to the _bind function will call any functions declared
within it in the module's context. This is necessary, because JavaScript changes the
meaning of this inside the handling function from our module to the DOM element
firing the event.

We then add an event handler to the map by calling the Microsoft.Maps.Events.
addHandler method, which accepts three parameters—the map (or its entity, such
as a pin or shape), the name of the event, and the handler function. To the latter is
then passed a MouseEventsArgs object, which exposes a few properties and methods
(see the full description available at http://msdn.microsoft.com/en-us/library/
gg406731.aspx).

One of these properties is originalEvent. It is tied to the DOM event of the clicked
element, which can be found by calling e.originalEvent.target. We then make
sure that the elements clicked are, in fact, our buttons, and we call the respective
handler depending on their ID, and passing it the button clicked as an argument.

We set the handled property to the Events object to true, telling the map to not call
any original handlers attached to the same event.

In order for the events handlers to work, we need to call our binding function in the
module's constructor, passing it this as the context, because this in the constructor
references the module itself. Now the constructor looks as shown in the following
code snippet:

lbm.LearningTheme = function(map) {
 this._map = map;
 this._addCss();
 this._addHeader();
 this._bind(this);
};

To implement the handlers, we start with the _changeMapType:

_changeMapType: function(btn) {
 var options = this._map.getOptions();
 if (btn.innerHTML.match(/aerial/i)) {

Chapter 1

[17]

 btn.innerHTML = 'Road';
 options.mapTypeId = Microsoft.Maps.MapTypeId.aerial;
 } else {
 btn.innerHTML = 'Aerial';
 options.mapTypeId = Microsoft.Maps.MapTypeId.road;
 }
 this._map.setView(options);
}

First, we cache the map's current options by calling the getOptions method.
This allows us to change the options object and pass it back to the map later,
without having to set all the options.

The handler then checks the text of the button, and it changes the mapTypeId option to
the corresponding Microsoft.Maps.MapTypeId enum value. At the end it passes the
options back to the map's setView method, which in return changes the map type.

If we open the index.html file on the browser, and click on the Aerial button, we
see how the map changes from the road view to the aerial view. The button's text
also changes to Road. Clicking on it again, will change its text back to Aerial and the
map view to road. The AJAX Control adds a nice animation when changing the map
view; it can be disabled by specifying animation: false in the options object.

The _zoom handler looks like this:

_zoom: function(btn) {
 var zoom = this._map.getZoom();
 if (btn.id === 'lbm-map-btn-zoomout') {
 zoom++
 } else if (btn.id === 'lbm-map-btn-zoomin') {
 zoom--
 }
 var options = this._map.getOptions();
 options.zoom = zoom;
 this._map.setView(options);
}

First, we get the map's current zoom value, by calling the getZoom method, and store
it on a zoom variable. We then increase or decrease the value of this variable based
on which button was clicked. The IDs we specified earlier for the buttons come in
handy here, BECAUSE we can easily identify the event target by its DOM ID.
Please note that the Microsoft.Maps API will ignore any zoom levels outside
the established range between 1 and 20.

Introduction to Bing Maps AJAX Control Version 7

[18]

We then get the existing view options of the map and extend them with the updated
zoom level. As in the previous handler, we pass them to the setView method of the
map. After refreshing the index.html file on the browser, we see how our zoom
buttons change the map's zoom level as we click on them.

Summary
The Bing Maps AJAX Control is a JavaScript library that adds mapping functionality to
a web page. In this chapter, we've learned how to load a map on a page, and how easy
it is to customize its appearance and functionality. We've looked at the map methods
for getting and setting options, zoom, map type, and so on. We've also introduced the
map events, and have added handlers to a custom map dashboard. In the next chapter,
we will extend these events to draw polygons on the map.

Diving into Bing Maps AJAX
Control Version 7

With the AJAX Control, we can add pins, lines, and polygons to the map. We can
even add complex shapes, such as donut structures, if we load the Microsoft.Maps.
AdvancedShapes module. However, the library does not have built-in tools that
allow the user to draw shapes manually, so let's create one.

We will build the code we wrote in the previous chapter. This means that we have
an app.js file, where we instantiate the map, and load the LearningTheme module,
which customizes the look and the behavior of the map.

We will create our tool as a module, and name it ShapeDrawing. Just as we did
in Chapter 1, Introduction to BING Maps AJAX Control Version 7, let's create a folder
named shapeDrawing, and a JavaScript file inside it with the same name.
The module skeleton is simple, as shown in the following code:

(function() {
 var lbm = window.lbm || {};
 lbm.ShapeDrawing = function(map) {
 this._map = map;
 };
 Microsoft.Maps.moduleLoaded('lbm.ShapeDrawing');
})(this);

We declare the module under the namespace lbm, so that it does not conflict with
other library objects with the same name. The ShapeDrawing function accepts only
the map argument, which is an instance of the Microsoft.Maps.Map class, stored in
the _map instance variable.

At the end we make a call to Microsoft.Maps.moduleLoaded, which turns the
function into a loadable module by the AJAX Control.

Diving into Bing Maps AJAX Control Version 7

[20]

To load the module on the page, we need to register it in the app.js file we created
in the previous chapter, which now looks as follows:

window.onload = function() {
 var container = document.getElementById('lbm-map'),
 resize = function () { container.style.height = window.innerHeight
+ 'px'; };
 resize();

 var map = new Microsoft.Maps.Map(container, {
 credentials: '[YOUR BING MAPS KEY]',
 center: new Microsoft.Maps.Location(39.554883, -99.052734),
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 4,
 showBreadcrumb: false,
 showDashboard: false
 });

 Microsoft.Maps.registerModule('lbm.LearningTheme', 'learningTheme/
learningTheme.js');
 Microsoft.Maps.loadModule('lbm.LearningTheme', {
 callback: function() {
 var learningTheme = new lbm.LearningTheme(map);
 }
 });

 Microsoft.Maps.registerModule('lbm.ShapeDrawing', 'shapeDrawing/
shapeDrawing.js');
 Microsoft.Maps.loadModule('lbm.ShapeDrawing', {
 callback: function() {
 var shapeDrawing = new lbm.ShapeDrawing(map);
 }
 });

 window.onresize = function() {
 resize()
 };
};

When the AJAX Control loads the module, we create an instance of ShapeDrawing,
passing it a reference to the map.

Chapter 2

[21]

Custom events
Our tool will enable the users to draw custom polylines on the map, but we don't
want this activity to interfere with other tasks performed on the map, such as
dragging, clicking, and so on. Therefore, we need to add a button so that, when
clicked, can allow the users to draw a shape on the map.

Respecting our modular system, we will give the power to add buttons to
our LearningTheme module, which generates the header holding the buttons.
And we will use custom events to do that.

The AJAX Control provides a simple, but a powerful Events object, which among
others exposes two static methods: addHandler and invoke. The former method
attaches a function to the map (and as we will see later in this book, also to polygons,
pins, and other map entities) when an event, specified by an event name, is triggered.
The invoke function triggers the event specified by the event name, with some
optional data objects. The event names are usually click, dblclick, keypress, and
so on, but in fact they can be any string; hence, the custom events are made possible.

Going back to our old LearningTheme class, we add some new code to
the _bind method:

_bind: function(self) {
 ...
 Microsoft.Maps.Events.addHandler(this._map, 'header:button',
function(e) {
 self._addButton(e);
 });
}

Our custom event is named header:button, and LearningTheme adds a button
whenever it's triggered. This is done in a new method, as shown in the following
code snippet:

_addButton: function(event) {
 var header = document.getElementById('lbm-map-header'),
 btn = document.createElement('button'),
options = event.data;

 btn.className = 'lbm-btn text';
 btn.id = 'lbm-map-btn-' + options.id;
 btn.innerHTML = options.text;

 header.appendChild(btn);
 e.handled = true;
}

Diving into Bing Maps AJAX Control Version 7

[22]

First we get a reference to the header we created earlier, and create a new button
element. This element needs to have the same style as the other text buttons on the
theme, so we'll give it the same class name. We also give the button an ID, so that we
can control its behavior.

Next, we store the data property of the event argument into an options object
(event.data is passed by the Events object, when triggered). This is a great way to
pass data around different modules without tightly coupling them. In our code, we
get the ID and text of the button. In this way, other modules can create buttons on
the header and control their text and behavior.

The ShapeDrawing module does it through its own _addButton method, as shown
in the following code snippet:

lbm.ShapeDrawing.prototype = {
 _addButton: function() {
 Microsoft.Maps.Events.invoke(this._map, 'header:button', {
 data: {
 id: 'draw',
 text: 'Draw'
 }
 });
 }
};

The invoke method of the Events object accepts the following three arguments:

•	 target: This argument specifies a reference to the map or its entities
•	 eventName: This argument specifies a string
•	 args: This argument specifies an object which will extend the EventsArgs

object sent to the handler

We need the button to show when the module is first loaded. So, we'll add it to the
module's constructor, as shown in the following code snippet:

lbm.ShapeDrawing = function(map) {
 this._map = map;
 this._addButton();
};

Chapter 2

[23]

Now when we open the index.html file on the browser, we should see the Draw
button, as shown in the following screenshot:

When the user clicks on the button, the map should enter into a drawing mode.
Let's do this next:

_bind: function(self) {
 Microsoft.Maps.Events.addHandler(this._map, 'click', function(e) {
 var btn = e.originalEvent.target;
 if (btn.tagName === 'BUTTON' && btn.className.match(/lbm-btn/)) {
 if (btn.id === 'lbm-map-btn-draw') {
 self._start();
 }
 }
 });
}

As on the LearningTheme module, we add a _bind function to the module's prototype
that accepts a self argument that points the context of the function to the module
itself. This method responds to the map's click event, but only when our button with
the lbm-map-btn-draw ID is clicked.

Diving into Bing Maps AJAX Control Version 7

[24]

We need to bind the event when the module is loaded, therefore, we call it on its
constructor, as shown in the following code snippet:

lbm.ShapeDrawing = function(map) {
 this._map = map;
 this._mapRootElement = this._map.getRootElement();	
this._bind(this);
};

The _start function sets up a drawing mode for the map, starting by changing
the cursor to a type that hints to the user that he/she can draw, as shown in the
following code:

_start: function() {
 this._changeMouseCursor();
}

And a method that changes the cursor type, as shown in the following code snippet:

_changeMouseCursor: function() {
 this._mapRootElement.style.cursor = 'crosshair';
}

This changes the style of the map's root element, which we store on a private
instance variable for future reference. Let's declare that variable on the module's
constructor, as shown in the following code snippet:

lbm.ShapeDrawing = function(map) {
 this._map = map;
 this._mapRootElement = this._map.getRootElement();
 this._addButton();
};

Pushpins
Let's stop for a minute and rethink our workflow. When the user clicks on the
map, we need to show a pin, which will be a corner of the polygon. When the user
double-clicks on the map, we will close the polygon. We also need to provide some
visual clues as the user drags the mouse, trying to find another point.

We'll start by writing the method that adds the handlers, as shown in the following
code snippet:

_addHandlers: function(self) {
 this._handlers = {};
 this._handlers.click =
 Microsoft.Maps.Events.addHandler(this._map, 'click', function(e)

Chapter 2

[25]

 {
 self._onmapclick(e);
 });
 this._handlers.dblclick =
 Microsoft.Maps.Events.addHandler(this._map, 'dblclick',
 function(e) {
 self._onmapdblclick(e);
 });
}

We store the click and dblclick handlers on a _handlers object (instance variable),
because we need to remove them when the map exits the drawing mode. First,
we must add them when the drawing mode starts, as shown in the following
code snippet:

_start: function() {
 this._changeMouseCursor();
 this._addHandlers(this);
}

When the user clicks on the map now, a pin is created, as shown in the following
code snippet:

_onmapclick: function(e) {
 var location = this._getLocation(e);
 if (location === null) return;
 this._addPin(location);
 e.handled = true;
}

First, we get the location of the point where the user clicks on the map by calling the
_getLocation method:

_getLocation: function(e) {
 var point = new Microsoft.Maps.Point(e.getX(), e.getY());
 return this._map.tryPixelToLocation(point);
}

This is the standard way of getting an instance of Microsoft.Maps.Location
from a click event. We use the getX and getY methods of the Events object, which
specify the left and top position of the clicked point relative to the map. With these,
we instantiate a Microsoft.Maps.Point instance, which when passed to the map's
tryPixelToLocation method, returns the Location object. However, this object can
be null, therefore, we need to check before using it.

Diving into Bing Maps AJAX Control Version 7

[26]

The Location constructor requires two arguments: latitude
and longitude. For example, new Microsoft.Maps.
Location(48.856930, 2.341200) produces the Paris location.
It's best to limit the coordinate values to six decimal digits, which
correspond to approximately 30 cm on the map. (The full reference of
the Location class is available at http://msdn.microsoft.com/
en-us/library/gg427612.aspx)

Having obtained a location, we now use the _addPin method in the following
code snippet:

_addPin: function(location) {
 var pin = new Microsoft.Maps.Pushpin(location, {
 icon: '',
 width: 10,
 height: 10,
 anchor: new Microsoft.Maps.Point(5, 5),
 typeName: 'lbm-shape-drawing-pin'
 });
 this._pointsLayer.push(pin);
 return pin;
}

The Microsoft.Maps.Pushpin (more information about this class can be found
at http://msdn.microsoft.com/en-us/library/gg427615.aspx) constructor
accepts two arguments: a Location instance, and a PushpinOptions object. We
have used some of the properties of the latter argument (see the entire list available
at http://msdn.microsoft.com/en-us/library/gg427629.aspx) which can be
explained as follows:

•	 icon: This property usually specifies the path to an image. We leave it empty,
so that the AJAX Control doesn't add an image to the DOM div container of
the pin, and we will style the pin with CSS.

•	 width: This property specifies the width (in pixels) of the pushpin icon and
its container (only of the latter in our case). The default value is 25.

•	 height: This property specifies the height (in pixels) of the pushpin icon
and its container (only of the latter in our case). The default value is 39.

•	 anchor: This property specifies the point of the pushpin anchored to its
location and defaults to Point (0,0). We will style our pin as a square;
therefore, we set an anchor at the center of it.

•	 typeName: This property specifies the CSS class name that will be added to
the DOM element of the pushpin.

Chapter 2

[27]

In order to display the pushpin on the map, we need to add it to the map's entities,
or to a layer attached to them. The map's entities property is an instance of the
EntityCollection class, and stores all the shapes and layers shown on the map.
It serves as their root container. We can add our pin to it, or we can add it to a new
EntityCollection instance—an instance variable named _pointsLayer. We then
add this to the map's entities, so that the latter is kept tidy (more information about
EntityCollection can be found at http://msdn.microsoft.com/en-us/library/
gg427616.aspx).

Let's declare our layer on the module's constructor:

lbm.ShapeDrawing = function(map) {
 …
 this._pointsLayer = new Microsoft.Maps.EntityCollection({zIndex:
30});
 this._map.entities.push(this._pointsLayer);
 …
};

The EntityCollection class accepts an EntityCollectionOptions object, through
which we specify a zIndex value (more information about the other options is
available at http://msdn.microsoft.com/en-us/library/gg427614.aspx).
This will be added to the style of the DOM element representing the layer.

Now it's time to style the pin, and as in the previous chapter, we will create
a stylesheet file named shapeDrawing.css, inside the shapeDrawing folder.

_addCss: function() {
 var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', 'shapeDrawing/shapeDrawing.css');
 var head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
}

We want our styles to be added when our module is loaded, thus we add the
following line to the module's constructor:

this._addCss();

Diving into Bing Maps AJAX Control Version 7

[28]

If we open the index.html file on a browser now, and click on the Draw button and
then click on the map, we should see our square pin (this time the map is centered on
New York City, USA, latitude 40.714550, longitude -74.007118, zoomed at level 16),
as shown in the following screenshot:

Polylines
Now, let's create a line that will connect the pushpins, by adding the following code
to our _start function:

this._line = new Microsoft.Maps.Polyline([new Microsoft.Maps.
Location(0, 0)], {
 strokeColor: new Microsoft.Maps.Color(200, 240, 76, 64),
 strokeThickness: 2
});
this._counter = 0;

The Polyline class' constructor accepts two arguments: an array of locations and
a PolylineOptions object. We initialize our polyline with an array containing a
dummy location, and a couple of options (the full reference of PolylineOptions
can be found at http://msdn.microsoft.com/en-us/library/gg427595.aspx):

•	 strokeColor: This option specifies the color of the polyline, which in our
case is pink

•	 strokeThickness: This option specifies the thickness of the polyline in pixels

Chapter 2

[29]

We also maintain a count of the user clicks, which also stores the number of locations
that make up the polyline. We make sure to reset the _counter instance variable
when the user starts drawing, so that the clicks are not double counted.

When the user clicks on the map, we need to add the clicked location to our polyline.
The best place to do this is on the _onmapclick method, which appears as follows:

_onmapclick: function(e) {
 var location = this._getLocation(e);
 if (location === null) return;
 this._addPin(location);
 this._updateLine(location);
 if (this._counter === 0) {
 this._layer.push(this._line);
 this._addMouseMoveHandler(this);
 }
 this._changeMouseCursor();
 this._counter++;
 e.handled = true;
}

We saw earlier how to construct a Location instance from the user click, and how to
build a pushpin from it. Now, we also update the polyline with the current location
by calling the _updateLine function, as shown in the following code snippet:

_updateLine: function(location) {
 var locations = this._line.getLocations();
 locations[this._counter] = location;
 this._line.setLocations(locations);
}

In this listing, we first fetch the existing locations of the polyline, by sending it the
getLocations message (see the entire list of methods, properties, and events of the
Polyline class available at http://msdn.microsoft.com/en-us/library/gg427597.
aspx). We then update the locations array at the same index as the _counter variable
with the current location, and pass the whole array to the polyline's setLocations
method. Please note here, that JavaScript will append an item to an array, if it doesn't
exist at a given index.

Diving into Bing Maps AJAX Control Version 7

[30]

Going back to the _onmapclick handler, we need to add the line to another layer
when the user clicks for the first time on the map in the drawing mode. We do this by
passing the polyline to the push method of the EntityCollection class. We declare
our new layer by adding the following lines to the module's constructor.

this._layer = new Microsoft.Maps.EntityCollection({zIndex: 30});
this._map.entities.push(this._layer);

At the same moment we bind a mouse move handler that will allow us to provide
a clue to the user as he/she draws the line on the map.

_addMouseMoveHandler: function(self) {
 this._handlers.mousemove = Microsoft.Maps.Events.addHandler
(this._map, 'mousemove', function(e) {
 self._onmapmove(e);
 });
}

The handler is simple and similar to the click handlers we declared previously.
It is added to our _handlers variable, so that it can be removed when the user
finishes drawing, together with the other event handlers.

When the user moves the cursor on the map, the _onmapmove function is executed,
as shown in the following code snippet:

_onmapmove: function(e) {
 var location = this._getLocation(e);
 this._updateLine(location);
 e.handled = true;
}

Here, we perform the same task as we did to handle the mouse clicks—update the
line with the current location.

Chapter 2

[31]

If we refresh the index.html file now, we can draw a line by clicking and dragging
the mouse on the map, as shown in the following screenshot:

At this moment we cannot close the line. We'll do that when we double-click on the
map. Let's write that event handler now, as shown in the following code snippet:

_onmapdblclick: function(e) {
 this._closeLine();
 this._removeHandlers();
 this._resetMouseCursor();
 this._removePins();
 e.handled = true;
}

First, we close the polyline by pushing its first location at the end of its locations array:

_closeLine: function() {
 var locations = this._line.getLocations();
 locations.push(locations[0]);
 this._line.setLocations(locations);
}

Diving into Bing Maps AJAX Control Version 7

[32]

Next, we remove all the handlers we attached earlier, as shown in the following
code snippet:

_removeHandlers: function() {
 for (var name in this._handlers) {
 Microsoft.Maps.Events.removeHandler(this._handlers[name]);
 delete this._handlers[name];
 }
}

The Events object provides the removeHandler method to remove any previously
attached event handlers. It accepts a handlerId, which was returned by the
addHandler method, and which we conveniently stored in the _handlers object.
As we enumerate through the properties of the latter, we remove the handler as well
as delete its reference from the _handlers variable.

Back at the _onmapdblclick function, we also reset the mouse cursor, by calling the
following function:

_resetMouseCursor: function() {
 this._mapRootElement.style.cursor = this._initialCursor;
}

We can set the cursor style to default, but it might happen, and it usually does
that Bing Maps use an image for the cursor. Therefore, we get the initial cursor style
on module load, and store it in the _initialCursor variable. The following line
should be added to the module's constructor, just under the line that declares the
_mapRootElement variable:

this._initialCursor = this._mapRootElement.style.cursor || 'default';

Now, let's write the last method we call on the double-click handler:

_removePins: function() {
 this._pointsLayer.clear();
}

The easiest way to remove entities from a collection is by calling its clear method.

Other methods of the EntityCollection class include getLength, which returns
the number of all entities added to the collection. We can obtain a reference to an
entity inside the layer by calling its get method. This method accepts an integer that
represents the index of the entity in the collection, and returns Polyline, Pushpin,
EntityCollection, as well as any of the following types:

Chapter 2

[33]

•	 Infobox: This adds an info box on the map, usually attached to a pushpin.
We'll see an example of this class in the next chapter.

•	 Polygon: This is used to add polygon shapes to the map; similar to Polyline,
but filled.

•	 TileLayer: This creates a custom tile layer on the map, useful for mixing
Bing Maps' imagery with our own images.

Many of these classes expose a getTypeName method, which in the case of pushpins,
returns the CSS class name we provided when we instantiated them. Not all of
these classes expose the getTypeName method though, so we need to check for its
availability on the object before calling it.

The last step is to remove all the entities from the layer, when the user starts
a fresh drawing. Let's insert the following code snippet as the first line of
the _start function:

this._layer.clear();

Now, when we refresh our index.html file on the browser, we can see our
completed tool, as shown in the following screenshot:

Diving into Bing Maps AJAX Control Version 7

[34]

When we click on the Draw button, the mouse cursor changes to crosshair, hinting
that we are now able to draw. We start moving the cursor around and clicking on the
map, seeing how our pink line is following the mouse. When we double-click on the
map, the line closes, and the corners disappear.

We can extend our tool further, for example, instead of removing the corners, it turns
them into draggable handles that change the size and form of the shape.

Summary
Bing Maps AJAX Control provides a powerful Events library, which can be used
to add even custom events. In this chapter, we displayed a Pushpin on the map and
styling it entirely via CSS. In this chapter we learned how to get the geographical
location from a point on the map, generated by a mouse click. From these locations,
we created polylines styled beautifully with the PolylineOptions object.

In the next chapter, we will learn how to get even more information, such as address
data from a point on the map.

Introduction to Bing Maps
REST Services

Apart from the AJAX Control toolkit we saw in the previous chapters, Bing Maps
offer their data through a Representational State Transfer (REST) interface too.
By constructing API specific URLs, this interface allows operations including the
creation of static maps with pushpins, geocoding addresses, tracing routes, and
retrieving imagery metadata.

The amount of data consumption is subject to your Bing Maps account (more
information about billable and non-billable transactions can be found by looking at
the Usage Reports, which are explained at http://msdn.microsoft.com/en-us/
library/ff859477.aspx).

In this chapter we will introduce one of these services, the Locations API. This
interface provides the means for finding a location by address, by query, or by a
point on the map. The point is a pair of floating point values representing latitude
and longitude in decimal format, and it is passed to a URL template. See an example
using a pair of lat/long coordinates:

http://dev.virtualearth.net/REST/v1/Locations/40.714550/-
 74.007118?includeEntityTypes=entityTypes&includeNeighborhood
 =1&key=[YOUR BING MAPS KEY]

When building the template, we start with the root of the URL http://dev.
virtualearth.net/REST/v1/Locations, followed by the latitude and the
longitude of the point. A set of optional parameters can be also added:

•	 includeEntityTypes: This parameter specifies the entity types to be
returned on the response, such as Address, Neighborhood, Post code 1,
and so on

•	 includeNeighborhood: This parameter (or the short version inclnb)
indicates a true value, and 0 the opposite

Introduction to Bing Maps REST Services

[36]

The application
Now, let's build a website that will make use of the Locations API. When the user
clicks on the map, our app will fetch address information about the clicked location.

This time, we will consume the API on the server side, using .NET and C#. We'll
start by creating an ASP.NET MVC blank website in Visual Studio (we're using
Visual Studio 2012, and ASP.NET MVC 4, but you can use any .NET solutions that
can communicate via HTTP). We'll name the project: LBM.Locator.

Next, let's add HomeController with one action, Index:

public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Title = "LBM | Locator";
 return View();
 }
}

In this listing we specify a title for the web page, and then return View, which
looks like:

<div id="lbm-map"></div>

The listing consists of a container for our map. As specified in the _ViewStart.
chtml file (inside the Views folder), our Index view is included within a layout,
named _Layout.chtml (in the Views/Shared folder):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 @Styles.Render("~/Content/css")
</head>
<body>
 @RenderBody()
 <script src="http://ecn.dev.virtualearth.net/mapcontrol/
mapcontrol.ashx?v=
 7.0"></script>
	 <script src="/scripts/jquery-2.0.3.min.js"></script>
 @Scripts.Render("~/bundles/application")
</body>
</html>

Chapter 3

[37]

The listing above is a standard ASP.NET MVC layout, with the Content/css
indicating the stylesheet, and bundles/applications, grouping the JavaScript
files that will be included with the page. We also add a call to the Bing Maps AJAX
Control toolkit, which will generate the map.

We use BundleConfig to include the stylesheet and the scripts:

public class BundleConfig
{
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new
 ScriptBundle("~/bundles/application").
 Include("~/Scripts/app.js"));
 bundles.Add(new
 StyleBundle("~/Content/css").Include
 ("~/Content/app.css"));
 }
}

Let's create a app.js file and save it in the Scripts folder:

(function () {

 var lbm = window.lbm = {};

 lbm.App = function () {
 this._map = new
 Microsoft.Maps.Map(document.getElementById('lbm-map'), {
 credentials: '[YOUR BING MAPS KEY]',
 center: new Microsoft.Maps.Location(48.856930, 2.341200),
 // Paris
 zoom: 12,
 showBreadcrumb: false,
 showDashboard: false
 });
 };

 var app = new lbm.App();

})(this);

Here, we create a JavaScript object to hold our map initialization, under the lbm
namespace. The map is then set up as in previous chapters, but now is centered
in Paris.

Introduction to Bing Maps REST Services

[38]

At the end we create an instance of our App object, and since the code is placed
inside a self-calling function, it will be called as soon as it loads on the page.

We copy the learningTheme.js file created in the previous chapter, into the
Scripts folder and the learningTheme.css into the Content folder. We make
sure we change the reference to the stylesheet within the learningTheme.js file
(inside _addCss method) to point at Content/learningTheme.css.

To register the LearingTheme module, we write a generic method into our
App's prototype:

lbm.App.prototype = {
 _addModule: function (name, path, callback) {
 Microsoft.Maps.registerModule(name, path);
 Microsoft.Maps.loadModule(name, {
 callback: callback
 });
 }
};

The code groups the registerModule and loadModule messages of the Microsoft.
Maps object into a single method, to keep our code DRY (Don't Repeat Yourself
– a popular principle in software development). Using this method, we add the
following lines to our App constructor:

var self = this;
this._addModule('lbm.LearningTheme',
 'Scripts/learningTheme.js', function () {
 var learningTheme = new lbm.LearningTheme(self._map);
});

If we run our application on debug now (by pressing F5), we see the
following screenshot:

Chapter 3

[39]

Bing Maps REST resources
RESTful services provide their data in form of resources accessible via a URL. The
Bing Maps Location API responds with location resources, whereas the other API
responses, in JSON, or XML format, contain imagery, route, or traffic information.

The fields returned by the API are quite large, and need to be serialized in other
programming languages, such as JavaScript, C# or Ruby. In .NET we can use a
collection of DataContracts that correspond to the JSON format of the REST APIs
(the latest version of them can be found at http://msdn.microsoft.com/en-us/
library/jj870778.aspx). We will also use them in our project, so let's copy them
to a JsonDataContracts.cs file inside the Models folder.

Now, it's time to write our proxy class that will communicate with Bing Maps;
we'll place it inside the Models folder:

public class LocatorProxy
 {
 private const string MAP_KEY = "[YOUR BING MAPS KEY]";
 private const string REST_URL =
 "http://dev.virtualearth.net/REST/v1/Locations/";

 public static void QueryByPoint

Introduction to Bing Maps REST Services

[40]

 (double latitude, double longitude, Action<Response>
 callback)
 {
 var uri = new
 Uri(string.Format("{0}/{1},{2}?inclnb=1&key={3}",
 REST_URL, latitude, longitude, MAP_KEY));
 var wc = new WebClient();
 using (var stream = wc.OpenRead(uri))
 {
 if (stream != null)
 {
 var serializer = new
 DataContractJsonSerializer
 (typeof(Response));
 var response = serializer.ReadObject(stream)
 as Response;
 callback(response);
 }
 }
 }
 }

Our class has one asynchronous method, QueryByPoint, which accepts coordinates
as arguments, together with a callback function. First, it builds the URL that the
Location API understands, with the coordinates and the Bing Maps Key. It also
specifies that the results should include neighborhood data by setting inclb as 1.

Next, we use the new .NET 4.5 WebClient class, which makes it easy to
read a URL via HTTP. We pass the stream opened by the client to the
DataContractJsonSerializer class, which converts the JSON string into a
Response object of a DataContract type.

DataContractJsonSerializer is one of the three most common
ways for serializing JSON in .NET. Another one is Json.NET, accepted
to be faster and more resourceful then the first (you can install Json.
NET via NuGet, more information can be found at http://james.
newtonking.com/projects/json-net.aspx). The third method is
via JavaScriptSerializer, a .NET library used for example on ASP.
NET MVC to generate JsonResult.

In order to use DataContractJsonSerializer in our project, we need to reference
two libraries:

•	 System.Runtime.Serialization
•	 System.ServiceModel.Web

Chapter 3

[41]

Now let's write the controller action that will call our proxy method.

public JsonResult QueryByPoint(double latitude, double longitude)
{
 var result = new List<string>();
 LocatorProxy.QueryByPoint(latitude, longitude, x =>
 {
 foreach (var resourceSet in x.ResourceSets)
 {
 foreach (var resource in resourceSet.Resources)
 {
 var description = GetDescription(resource as
 Location);
 if (description.Length > 1)
 result.Add(description);
 }
 }
 });
 if (result.Count == 0) result.Add("No results found.");
 return Json(new { description = String.Join("
", result)
 }, JsonRequestBehavior.AllowGet);
}

When the proxy returns the response from the Bing Maps servers, we loop through the
ResourceSets and their Resources; the first resource found is the location resource
we need, so we extract some information from it through the following code:

private static string GetDescription(Location location)
{
 var description = "";
 if (location != null && location.Address != null)
 {
 if
 (!String.IsNullOrWhiteSpace
 (location.Address.FormattedAddress))
 {
 description = String.Format("- {0}",
 location.Address.FormattedAddress);
 }
 if (!String.IsNullOrWhiteSpace(location.Address.Landmark))
 {
 description = String.Format("{0} - {1}", description,
 location.Address.Landmark);
 }
 }
 return description;
}

Introduction to Bing Maps REST Services

[42]

Here, we navigate through the object graph of JsonDataContracts to fetch
some information about the address and the landmark of the place located at the
coordinates provided to the controller action.

This action will be triggered when the user clicks on the map, so let's build the AJAX
Control module that will handle it.

(function () {
 var lbm = window.lbm || {};
 lbm.Locator = function (map, $) {
 this._map = map;
 this.$ = $;
 this._bind(this);
 };
 lbm.Locator.prototype = {	 };
 Microsoft.Maps.moduleLoaded('lbm.Locator');
})();

By now we must be accustomed to our module structure above, residing in the lbm
namespace. Note how we also pass a $ object, which will handle the AJAX requests.
We initialize our module inside the app.js:

this._addModule('lbm.Locator', 'Scripts/locator.js', function () {
 var locator = new lbm.Locator(self._map, jQuery);
 });

It is seen as good practice to limit the dependencies on external libraries
in our modules, with jQuery being a rare exception. jQuery is a popular
JavaScript library that normalizes HTML document traversal and
manipulation, AJAX and events handling, and so on across browsers.

The binding function looks like the following code:

_bind: function (self) {
 Microsoft.Maps.Events.addHandler(this._map, 'click', function
 (e) {
 var target = e.originalEvent.target;
 if (target.tagName === 'IMG') {
 self._onmapclick(e);
 }
}

Chapter 3

[43]

In this listing, we attach the click event only to the image tiles of the map, avoiding
the buttons we created with the LearningTheme module. We then add the handler
to our module's prototype:

_onmapclick: function (e) {
 var location = this._getLocation(e),
 self = this,
 options = {
 url: '/home/querybypoint',
 data: { latitude: location.latitude, longitude:
 location.longitude },
 success: function (result) {
 self._showPlaces(result, location);
 }
 };
 this._showLoading(location);
 this._getRemote(options);
 e.handled = true;
}

First, we fetch the location from the clicked point of the map, as in the previous
chapter, sending the tryPixelLocation message to the map.

_getLocation: function (e) {
 var point = new Microsoft.Maps.Point(e.getX(), e.getY());
 return this._map.tryPixelToLocation(point);
}

Then, we prepare an options object, which will be passed to the jQuery.ajax
method. The URL option points at our HomeController action we wrote earlier,
and the data is formed of the location coordinates.

We also add a loading message when the app fetches the data from the server.
We do this inside an Infobox class of the Microsoft.Maps API:

_showLoading: function (location) {
 this._pushpin.setLocation(location);
 this._pushpin.setOptions({
 visible: true
 });

 this._infobox.setLocation(location);
 this._infobox.setOptions({
 title: this._round(location.latitude) + ',' +
 this._round(location.longitude),
 description: 'Querying locator ...',

Introduction to Bing Maps REST Services

[44]

 visible: true
 });
}

This method uses a _pushpin instance variable, declared inside the _createInfo
function, which we call in the module's constructor:

_createInfo: function () {
 this._addCss();
 this._pushpin = new Microsoft.Maps.Pushpin(new
 Microsoft.Maps.Location(0, 0), {
 icon: '',
 typeName: 'lbm-locator-pin',
 width: 10,
 height: 10
 });
 this._infobox = new Microsoft.Maps.Infobox(new
 Microsoft.Maps.Location(0, 0), {
 title: 'Locator',
 visible: true
 });
 this._map.entities.push(this._pushpin);
 this._map.entities.push(this._infobox);
}

In this method, we first, add the stylesheet link to the header of the document,
by calling the following function:

_addCss: function () {
var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', '/Content/locator.css'); var
 head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
}

Then we instantiate the small pushpin with the same class name, as the styles
require, lbm-locator-pin.

Chapter 3

[45]

We also declare an instance of Microsoft.Infobox and assign it to the module's
_infobox property, based initially on a 0,0 location (more information about the
Infobox class can be found at http://msdn.microsoft.com/en-us/library/
gg675208.aspx).

At the end, the pushpin and the infobox are added to the map's entities, ready to be
displayed. We do that on the _showLoading function, when passing a location to the
setLocation method of the pushpin and infobox. We also make the entities visible,
and change the title and description of the infobox indicating that data is being
downloaded from the server.

When the server comes back to us with the result we prepared from the Locations
API, we display it on the infobox:

_showPlaces: function (result) {
 this._infobox.setOptions({
 description: result.description
 });
}

This is another example of how Microsoft Maps API uses the JavaScript object literals
to update their objects.

The locator.css stylesheet is saved inside the Contents folder and turns the
pushpins into blue circles:

.lbm-locator-pin {
 background: #00bfff;
 border-radius: 50%;
}

#lbm-map > .MicrosoftMap {
 cursor: pointer !important;
}

Introduction to Bing Maps REST Services

[46]

Let's refresh our browser now, and click on the map. Our app will query Bing Maps
and come back to us with the address of the point we clicked on. The results will
look like as shown in the following screenshot:

Summary
In this chapter, we learned that REST services make Bing Maps information
accessible through a list of APIs:

•	 Locations: This is used to geocode and reverse-geocode location data.
•	 Elevations: This provides elevation information about locations, polylines,

or areas on the earth.
•	 Imagery: This enables creation of static maps, imagery tiles, and

imagery metadata.
•	 Traffic: This supplies data regarding traffic issues.
•	 Routes: This gives directions and route information for driving, walking,

or using transit.

In the next chapter, we will use the Routes API to build a simple route scheduler for
a delivery company in Spain.

Diving into Bing Maps
REST Services

In the previous chapter, we used the Locations API to build a simple web app. In this
chapter, we will dive into another interface of REST Services: the Routes API. We will
do that as we help a fictional delivery company in Spain with their scheduling system.

The app consists of an ASP.NET MVC 4 website: the user will enter the names of a
few towns, and the app will display the route and the route's information between
those towns if it finds one.

The application
Let's create a blank ASP.NET MVC 4 project as we did in the previous chapter,
but this time named LBM.Locator. Next, we add a HomeController class with
a single action:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewBag.Title = "LBM | Router";
 return View();
 }
}

Diving into Bing Maps REST Services

[48]

The action sets the title of the website and returns the view. The Index.chtml
view inside the Views/Home folder, contains the same markup as shown in the
previous chapter:

<div id="lbm-map"></div>

This is where we are going to place our map. For this we need to add a reference to
the Bing Maps AJAX Control, and we'll do this on the _Layout.chtml file, inside the
Views/Shared folder:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 @Styles.Render("~/Content/css")
</head>
<body>
 @RenderBody()
 <script src="/scripts/jquery-2.0.3.min.js"></script>
 <script
 src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.
 ashx?v=7.0"></script>
 @Scripts.Render("~/bundles/application")
</body>
</html>

We also linked to the CSS and JavaScript files via the bundle file, BundleConfig.cs,
inside the App_Start folder.

public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new
 ScriptBundle("~/bundles/application").Include
 ("~/Scripts/app.js"));
 bundles.Add(new
 StyleBundle("~/Content/css").Include
 ("~/Content/app.css"));
}

Chapter 4

[49]

We copy the app.cs, learningTheme.css, app.js, and learningTheme.js files
from the previous chapter; we then paste the CSS files into the Contents folder, and
the JavaScript files into the Scripts folder. Let's make the app.js file look like the
listing below:

(function () {
 var lbm = window.lbm = {};

 lbm.App = function () {
 this._map = new
 Microsoft.Maps.Map(document.getElementById('lbm-map'), {
 credentials: '[YOUR BING MAPS KEY],
 showBreadcrumb: false,
 showDashboard: false,
 center: new Microsoft.Maps.Location(40.420289, -3.70567),
 /* Madrid, Spain */
 zoom: 6
 });

 var self = this;
 this._addModule('lbm.LearningTheme',
 'Scripts/learningTheme.js', function () {
 var learningTheme = new lbm.LearningTheme(self._map);
 });
 };

 lbm.App.prototype = {
 _addModule: function (name, path, callback) {
 Microsoft.Maps.registerModule(name, path);
 Microsoft.Maps.loadModule(name, {
 callback: callback
 });
 }
 };

 var app = new lbm.App();
})();

Diving into Bing Maps REST Services

[50]

The router module
Our app needs to allow users to search by a number of landmarks. We will keep the
functionality simple, and let the user enter the town names, separated by a comma,
into a textbox. A JavaScript file, router.js, which we will save inside the Scripts
folder, will handle this.

(function () {
 var lbm = window.lbm || {};
 lbm.Router = function (map, $) {
 this._map = map;
 this.$ = $;
 };
 Microsoft.Maps.moduleLoaded('lbm.Router');
})();

You will recognize by now that this is an AJAX Control module. Like the previous
modules, it accepts a Microsoft.Maps.Map class instance, which it stores in a private
_map instance variable.

To incorporate the textbox on the map, we write the following method:

_addTextbox: function(self) {
 var html = [
 '<div class="lbm-router-text-wrp">',
 '<input type="text" id="lbm-router-text" placeholder="Enter
 places and press ENTER" value="barcelona,madrid" />',
 '</div>'
];
 this._mapContainer.append(html.join(''));
 this._text = this.$('#lbm-router-text').on('keyup', function(e)
 {
 if (e.keyCode === 13) self._fetch();
 }).focus();
}

The textbox is wrapped inside a div element, which is then added to the map
container. We could not use the header area of the map where the LearningTheme
module has placed the buttons, as we did in the previous chapters, because that
header is inside the map DOM element, and Microsoft.Maps API has disabled all
the key related events.

We bind the keyup event of the textbox to the _fetch handler, only if the ENTER key
(code 13) is pressed. We also make sure the textbox has the focus initially, so the user
can start his/her search immediately.

Chapter 4

[51]

The root element of the map is a normal DIV element, which allows us
to append to it other DOM elements, styled as per our needs.

Note how we also added CSS class names to the input wrapper, which we can use to
style the textbox:

_addCss: function () {
 var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', '/Content/router.css');
 var head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
}

In the listing above we, append a link to the router.css stylesheet, which contains
the styles needed for the router. Let's create this file inside the Content folder with
the following content:

.lbm-router-text-wrp {
 position: absolute;
 top: 1em;
 left: 1.9em;
 width: 24em;
}

.lbm-router-text-wrp input[type=text] {
 width: 100%;
 font-size: 1.1em;
 padding: .1em;
 border: 2px solid #F04C40;
}

To maintain the same style of the header, we give the textbox a pinkish border.
We also position the textbox to the left of the screen, so we move the LearningTheme
header to the right by making this change to the learningTheme.css file:

.lbm-map-header {
 position: absolute;
 top: 1em;
 right: 1em;
 color: #fff;
 z-index: 100;
}

Diving into Bing Maps REST Services

[52]

In order to apply the styled content when the Router module loads, we add the
following lines to the module's constructor:

this._mapContainer = this.$('#lbm-map');
this._addCss();
this._addTextbox(this);

When we run our website in debug mode, our page looks like the following
screenshot on the browser:

When you type in the text field now, nothing will happen, because we have yet to
handle the keystrokes. Let's write the code that accomplishes that:

_fetch: function () {
 this._addContainer();
 this._showLoading();
 var self = this,
 options = {
 url: '/routes',
 data: { places: this._text.val() },
 success: function (result) {
 self._showRoute(result);
 }

Chapter 4

[53]

 };
 this._getRemote(options);
}

First, we append a DOM element that will display the route information to the
map's container:

_addContainer: function () {
 if (!this._container) {
 this._container = this.$('<div class="lbm-router"></div>')
 .appendTo(this._mapContainer);
 }
}

Then, we show a loading message as we are waiting for the data from the server:

_showLoading: function() {
 this._container.html('Loading ...');
}

The options variable is a just an object accepted by the $.ajax function (which we
hide by means of our _getRemote method). It indicates that the server responds to
the /routes URL, which we will implement now.

The controller
Let's add RoutesController in the Controllers folder with a single action:

public class RoutesController : Controller
{
 	 public ActionResult Index(string places)
 {
 RouteInfo route = null;
 var placesArray = places.Split(',');
 if (placesArray.Length > 1)
 {
 LocatorProxy.QueryRoute(placesArray, x =>
 {
 route = x;
 });
 }
 return View(route);
 }}

Diving into Bing Maps REST Services

[54]

The model
The RouteInfo model holds the route information, including the coordinates of the
locations that make up that route.

public class RouteInfo
{
 public Route Route { get; private set; }

 public string RoutePath
 {
 get
 {
 if (Route != null)
 {
 return String.Join(",", Route.RoutePath.Line.
Coordinates.Select(c => String.Join(" ", c)));
 }
 return "";
 }
 }
 public string Pins { get; private set; }

 public RouteInfo(Resource resource)
 {
 Route = resource as Route;
 GeneratePins();
 }
}

As specified in JsonDataContracts, we introduced in the previous chapter,
we extract the route's locations from the Route.RoutePath.Line.Coordinates
object graph.

We also need to show pushpins at the beginning of each route leg, and at
the destination:

private void GeneratePins()
{
 var pins = new List<string>();
 for (var i = 0; i < Route.RouteLegs.Length; i++)
 {
 var routeLeg = Route.RouteLegs[i];
 if (i == 0) pins.Add(String.Join(" ", routeLeg.ActualStart.
Coordinates));
 pins.Add(String.Join(" ", routeLeg.ActualEnd.Coordinates));
 }

Chapter 4

[55]

 Pins = String.Join(",", pins);
}

For this, we use the Coordinates pair of ActualStart and ActualEnd of each
RouteLeg object.

The proxy
The LocatorProxy class is similar to the class with the same name we wrote in the
previous chapter; however, this time it generates a URL that points to the Routes API:

public class LocatorProxy
{
 private const string MAP_KEY = "[YOUR BING MAPS KEY]";
 private const string REST_URL =
 "http://dev.virtualearth.net/REST/V1/Routes/
 Driving?rpo=Points";
}

The Routes API URL template expects a set of parameters, including (see the full list
at http://msdn.microsoft.com/en-us/library/ff701717.aspx):

•	 waypoint.n (or wp.n): required, is a list of sequential locations that define
the route, such as addresses, landmarks, or geographical points

•	 viaWaypoint.n (or vwp.n): optional, specifies intermediate locations
between two waypoints

•	 avoid: optional, indicates the road types (highways, tolls) to minimize or
avoid when a driving route is constructed

Now, let's write the method that communicates with the API:

public static void QueryRoute(string[] places, Action<RouteInfo>
callback)
{
 try
 {
 var placesPart = String.Join("&", places.Select((p, i) =>
String.Format("wp.{0}={1}", i, p)));
 var uri = new Uri(string.Format("{0}&key={1}&{2}", REST_URL,
MAP_KEY, placesPart));
 Query(uri, callback);
 }
 catch (Exception)
 {
 callback(null);
 }
}

Diving into Bing Maps REST Services

[56]

First, we join the places by attaching the wp.n parameter key. Next, we add the
resulting string to the URL template, together with the Bing Maps Key.

The query is created in the following method:

public static void Query(Uri uri, Action<RouteInfo> callback)
{
 RouteInfo routeInfo;
 var wc = new WebClient();
 using (var stream = wc.OpenRead(uri))
 {
 if (stream != null)
 {
 var serializer = new DataContractJsonSerializer(typeof(Re
sponse));
 var response = serializer.ReadObject(stream) as Response;
 foreach (var resourceSet in response.ResourceSets)
 {
 foreach (var resource in resourceSet.Resources)
 {
 routeInfo = new RouteInfo(resource);
 callback(routeInfo);
 }
 }
 }
 }
}

The listing above is similar to the one we wrote in the previous chapter. It reads the
URI directed at API into a Stream instance, which is then serialized into a Response
DataContract object. Looping through its resources, we build the RouteInfo model,
and pass it to the callback function. RoutesController, which specified the callback
function, sends the model to the Index.chtml view (inside the Views/Routes folder).

The view
The view displays the route information, including the pins' and route's coordinates:

@if (Model == null)
{
 <h3>Cannot find route</h3>
}
else
{
 <div>

Chapter 4

[57]

 <div class="info">
 Directions
 @Model.Route.TravelDistance.ToKm(), @Model.Route.
TravelDuration.ToHoursMin()
 </div>
 @foreach (var routeLeg in Model.Route.RouteLegs)
 {
 <div class="route-leg">
 <h3>@routeLeg.StartLocation.Name - @routeLeg.
EndLocation.Name</h3>
 <ol class="itinerary-items">
 @foreach (var itineraryItem in routeLeg.
ItineraryItems)
 {
 <li class="itinerary-item">
 @itineraryItem.Instruction.Text
 <p>@itineraryItem.TravelDistance.ToMeters(), @
itineraryItem.TravelDuration.ToHoursMin()</p>

 }

 </div>
 }
 </div>

 <div id="lbm-router-pins" style="display: none;">@Model.Pins</div>
 <div id="lbm-router-route-path" style="display: none;">@Model.
RoutePath</div>

}

We show the travel distance and duration for the whole route, and each one of
its legs, as well as itinerary instructions. The former have been transformed into a
human format by using helpers defined in RoutesHelper.cs file in a Helpers folder
we add to the project.

Displaying the route
When the server returns the view to the browser, our Router module shows it on
the page:

_showRoute: function (result) {
 this._container.html(result);
 this._map.entities.clear();
 this._showRouteLine();

Diving into Bing Maps REST Services

[58]

 this._showPins();
}

First, we replace the container inner HTML with the View, and then we show the
route line and pins:

_showRouteLine: function () {
 var locations = this._parseLocations('lbm-router-route-path'),
 options = {};
 if (locations.length) {
 var polyline = new Microsoft.Maps.Polyline(locations);
 this._map.entities.push(polyline);
 options = {
 bounds: Microsoft.Maps.LocationRect.fromLocations(locations)
 };
 } else {
 options = {
 center: this._initialCenter,
 zoom: this._initialZoom
 };
 }
 this._map.setView(options);
}

For the sake of simplicity, we transfer the coordinates of the locations inside the view,
when normally we would use other data exchange methods, such as JSON or XML.

_parseLocations: function(dataId) {
 var line = this.$('#' + dataId).text();
 if (!line.length) return [];
 var parts = line.split(','),
 locations = [],
 length = parts.length,
 i = 0;
 for (; i < length; i++) {
 var coords = parts[i].split(' ');
 locations.push(new Microsoft.Maps.Location(coords[0], coords[1]));
 }
 return locations;
}

The coordinates are stored as a comma-delimited string of pairs of latitude
and longitude, where the latter two are separated by a space.

Chapter 4

[59]

We use the coordinates extracted from the lbm-router-route-path DIV to build
the route line (as an array of Microsoft.Maps.Location instances), and add it to the
map's entities. We also set the map's bounds within the route line's bounding box by
sending the fromLocations method to the LocationRect object. If our app cannot
find a route, it centers the map to its original center and zoom level. The latter are
saved in the module's constructor, using methods of the map instance:

this._initialCenter = this._map.getCenter();
this._initialZoom = this._map.getZoom();

Now, let's write the code that displays the pins:

_showPins: function () {
 var locations = this._parseLocations('lbm-router-pins');
 if (!locations.length) return;
 for (var i = 0, length = locations.length; i < length; i++) {
 this._map.entities.push(new Microsoft.Maps.Pushpin(locations[i], {
 text: this._letters[i]
 }));
 }
}

The _letters variable is an array of letters: ['A', 'B', 'C', 'D', 'E'], that will
be used as the texts of the pushpins.

If we build our project and refresh the browser now, we see our complete page
(we use Spanish landmarks for testing, such as Barcelona, Madrid, and Valencia):

Diving into Bing Maps REST Services

[60]

Summary
The REST Services provide a rich set of interfaces to the Bing Maps data by means
of simple URL templates. They can be consumed using front-end technologies
like JavaScript or server languages, such as, .NET, Ruby, PHP, and Python. In
this chapter, we explored the Route API, and showed on a map route line and
information between towns.

In the next chapter, we will start a new topic, the Spatial Data Services, which we'll
use to geocode places of interest automatically.

Spatial Data Services
So far we have worked with relatively small sets of data; for larger collections, Bing
Maps provide Spatial Data Services. They offer the Data Source Management API to
load large datasets into Bing Maps servers, and the Query API to query the data.

In this chapter, we will use the Geocode Dataflow API, which provides geocoding
and reverse geocoding of large datasets. Geocoding is the process of finding
geographic coordinates from other geographic data, such as, street addresses or
postal codes. Reverse geocoding is the opposite process, where the coordinates are
used to find their associated textual locations, such as, addresses and postal codes.
Bing Maps implement these processes by creating jobs on Bing Maps servers, and
querying them later. All the process can be automated, which is ideal for huge
amounts of data.

Please note that strict rules of data usage apply to the Spatial Data Services
(please refer http://msdn.microsoft.com/en-us/library/gg585136.aspx
for full details). At the moment of writing, a user with a basic account can set up
to 5 jobs in a 24-hour period.

Our task in this chapter is to geocode the addresses of ten of the biggest technology
companies in the world, such as Microsoft, Google, Apple, Facebook, and so on,
and then display them on the map. The first step is to prepare the file with the
companies' addresses.

Spatial Data Services

[62]

Geocoding dataflow input data
The input and output data can be supplied in the following formats:

•	 XML (content type application/xml)
•	 Comma separated values (text/plain)
•	 Tab-delimited values (text/plain)
•	 Pipe-delimited values (text/plain)
•	 Binary (application/octet-stream) used with Blob Service REST API

We will use the XML format, for its clearer declarative structure.

Now, let's open Visual Studio and create a new C# Console project named LBM.
Geocoder. We then add a Data folder, which will contain all the data files and
samples with which we'll work in this chapter, starting with the data.xml file
we need to upload to the Spatial Data servers to be geocoded.

<?xml version="1.0" encoding="utf-8"?>
<GeocodeFeed
 xmlns="http://schemas.microsoft.com/search/local/2010/5/geocode"
 Version="2.0">
 <GeocodeEntity Id="001"
 xmlns="http://schemas.microsoft.com/search/local/
 2010/5/geocode">
 <GeocodeRequest Culture="en-US" IncludeNeighborhood="1">
 <Address AddressLine="1 Infinite Loop"
 AdminDistrict="CA" Locality="Cupertino" PostalCode="95014" />
 </GeocodeRequest>
 </GeocodeEntity>
 <GeocodeEntity Id="002"
 xmlns="http://schemas.microsoft.com/search/local/2010/5/
 geocode">
 <GeocodeRequest Culture="en-US" IncludeNeighborhood="1">
 <Address AddressLine="185 Berry St"
 AdminDistrict="NY" Locality="New York" PostalCode="10038"
 />
 </GeocodeRequest>
 </GeocodeEntity>

The listing above is a fragment of that file with the addresses of the companies'
headquarters. Please note that the more addressing information we provide to
the API, the better quality geocoding we receive. In production, this file would be
created programmatically, probably based on an Addresses database. The ID of
GeocodeEntity, could also be stored, so that the data is matched easier once fetched
from the servers. (You can find the Geocode Dataflow Data Schema, Version 2, at
http://msdn.microsoft.com/en-us/library/jj735477.aspx.)

Chapter 5

[63]

The job
Let's add a Job class to our project:

public class Job
{
 private readonly string dataFilePath;
 public Job(string dataFilePath)
 {
 this.dataFilePath = dataFilePath;
 }
}

The dataFilePath argument is the path to the data.xml file we created earlier.

Creating the job is as easy as calling a REST URL:

public void Create()
 {
 var uri =
 String.Format("{0}?input=xml&output=xml&key={1}",
 Settings.DataflowUri, Settings.Key);

 var data = File.ReadAllBytes(dataFilePath);
 try
 {
 var wc = new WebClient();
 wc.Headers.Add("Content-Type", "application/xml");
 var receivedBytes = wc.UploadData(uri, "POST",
 data);
 ParseJobResponse(receivedBytes);
 }
 catch (WebException e)
 {
 var response = (HttpWebResponse)e.Response;
 var status = response.StatusCode;
 }
 }

We place all the API URLs and other settings in the Settings class:

public class Settings
{
 public static string Key = "[YOUR BING MAPS KEY];
 public static string DataflowUri =
 "https://spatial.virtualearth.net/REST/v1/dataflows/
 geocode";

Spatial Data Services

[64]

 public static XNamespace XNamespace =
 "http://schemas.microsoft.com/search/local/ws/rest/v1";
 public static XNamespace GeocodeFeedXNamespace =
 "http://schemas.microsoft.com/search/local/2010/5/geocode";
}

To create the job, we need to build the Dataflow URL template with a Bing Maps Key,
and parameters such as input and output formats. We specify the latter to be XML.

Next, we use a WebClient instance to load the data with a POST protocol. Then, we
parse the server response:

private void ParseJobResponse(byte[] response)
 {
 using (var stream = new MemoryStream(response))
 {
 var xDoc = XDocument.Load(stream);
 var job = xDoc.Descendants(Settings.XNamespace +
 "DataflowJob").FirstOrDefault();
 var linkEl = job.Element(Settings.XNamespace +
 "Link");
 if (linkEl != null) Link = linkEl.Value;
 }
 }

Here, we pass the stream created with the bytes received from the server to the
XDocument.load method. This produces an XDocument instance, which we will use
to extract the data we need. We will apply a similar process throughout the chapter
to parse XML content. Note that the appropriate XNamespace needs to be supplied in
order to navigate through the document nodes.

You can find a sample of the response inside the Data folder (jobSetupResponse.
xml), which shows that the link to the job created is found under a Link element
within the DataflowJob node.

Getting job status
Once we have set up a job, we can store the link on a data store, such as a database,
and check for its status later. The data will be available on the Microsoft servers up to
14 days after creation.

Let's see how we can query the job status:

public static JobStatus CheckStatus(string jobUrl)
{

Chapter 5

[65]

 var result = new JobStatus();

 var uri = String.Format("{0}?output=xml&key={1}", jobUrl,
 Settings.Key);
 var xDoc = XDocument.Load(uri);
 var job = xDoc.Descendants(Settings.XNamespace +
 "DataflowJob").FirstOrDefault();
 if (job != null)
 {
 var linkEls = job.Elements(Settings.XNamespace +
 "Link").ToList();
 foreach (var linkEl in linkEls)
 {
 var nameAttr = linkEl.Attribute("name");
 if (nameAttr != null)
 {
 if (nameAttr.Value == "succeeded") result.
SucceededLink = linkEl.Value;
 if (nameAttr.Value == "failed") result.FailedLink
 = linkEl.Value;
 }
 }

 var statusEl = job.Elements(Settings.XNamespace +
 "Status").FirstOrDefault();
 if (statusEl != null) result.Status = statusEl.Value;
 }

 return result;
}

Now, we know that to query a Data API we need to first build the URL template.
We do this by attaching the Bing Maps Key and an output parameter to the job link.

The response we get from the server, stores the job status within a Link element of
a DataflowJob node (the jobResponse.xml file inside the Data folder contains an
example). The link we need has a name attribute with the value succeeded.

Spatial Data Services

[66]

Getting job results
Once the job is complete, it's time to fetch its results. How are we going to do this?
You guessed it right: we need to make another call to the Dataflow API, using the
link we extracted earlier.

public static void GetResult(string dataFlowLink, string
responseFilePath)
{
 var settings = new XmlWriterSettings();
 settings.Indent = true;

 using (var writer = XmlWriter.Create(responseFilePath, settings))
 {
 var uri = String.Format("{0}?output=xml&key={1}",
dataFlowLink, Settings.Key);
 var xdoc = XDocument.Load(uri);
 xdoc.WriteTo(writer);
 }
}

As before, we add our Bing Maps Key to the URL template, and specify XML as
output. We use XDocument again to fetch the data, which we then store on a file
inside the Data folder. We can then store the data in a database, or some other data
store, and then match the requested addresses with their corresponding responses.

The job's result is as follows (a sample file, dataResponse.xml, can be found inside
the Data folder):

<?xml version="1.0" encoding="utf-8"?>
<GeocodeFeed Version="2.0" xmlns="http://schemas.microsoft.com/search/
local/2010/5/geocode">
 <GeocodeEntity Id="001" xmlns="http://schemas.microsoft.com/search/
local/2010/5/geocode">
 <GeocodeRequest Culture="en-US" IncludeNeighborhood="true">
 <Address AddressLine="1 Infinite Loop" AdminDistrict="CA"
Locality="Cupertino" PostalCode="95014" />
 </GeocodeRequest>
 <GeocodeResponse Name="1 Infinite Loop, Cupertino, CA 95014"
EntityType="Address" Confidence="High" MatchCodes="Good">
 <Address AddressLine="1 Infinite Loop" AdminDistrict="CA"
CountryRegion="United States" AdminDistrict2="Santa Clara
Co." FormattedAddress="1 Infinite Loop, Cupertino, CA 95014"
Locality="Cupertino" PostalCode="95014" />
 <GeocodePoint CalculationMethod="InterpolationOffset"
Latitude="37.3318473994732" Longitude="-122.030806615949" Type="Point"
UsageTypes="Display" />

Chapter 5

[67]

 <GeocodePoint CalculationMethod="Interpolation"
Latitude="37.3318473994732" Longitude="-122.030750289559" Type="Point"
UsageTypes="Route" />
 <BoundingBox SouthLatitude="37.3279846819025"
WestLongitude="-122.03728352294" NorthLatitude="37.3357101170439"
EastLongitude="-122.024329708958" />
 <Point Latitude="37.3318473994732" Longitude="-122.030806615949"
/>
 </GeocodeResponse>
 <StatusCode>Success</StatusCode>
 <TraceId>d9a530c28edd4491bd642a1967c64f5d|SINM000009|02.00.161.180
0|SINMSNVM000145, SINIPEVM000011</TraceId>
 </GeocodeEntity>
 </GeocodeFeed>

Note how for each entity, we also get the request object we sent to the server upon
job creation. Now, let's parse this file.

Parsing the geocode response
We'll start by adding another class to our project, named SpatialParser.

public class SpatialParser
{
 public SpatialParser(string dataflowUri)
 {
 this.dataflowUri = dataflowUri;
 }
}

This class will parse the geocoded data and will update the companies' records.
In real life the latter would be stored in a database or other data store, but here
we'll save it in memory. Thus, we create Company:

public class Company
{
 public string Id { get; set; }
 public string Name { get; set; }
 public Address Address { get; set; }
 public GeocodePoint Point { get; set; }

 public Company(string id, string name)
 {
 Id = id;
 Name = name;
 }
}

Spatial Data Services

[68]

And a Companies class that will operate as the data store:

public class Companies
{
 private static IDictionary<string, Company> companies;
 public static IDictionary<string, Company> All
 {
 get
 {
 if (companies == null)
 {
 companies = new Dictionary<string, Company>();
 companies.Add("001", new Company("001", "Apple"));
 companies.Add("002", new Company("002", "Stack
 Exchange"));
 companies.Add("003", new Company("003",
 "Github"));
 companies.Add("004", new Company("004",
 "Microsoft"));
 companies.Add("005", new Company("005",
 "Paypal"));
 companies.Add("006", new Company("006",
 "Mozilla"));
 companies.Add("007", new Company("007",
 "Google"));
 companies.Add("008", new Company("008",
 "Facebook"));
 companies.Add("009", new Company("009",
 "LikedIn"));
 companies.Add("010", new Company("010", "Twitter,
 Inc."));
 }
 return companies;
 }
 }
}

Now, let's parse the XML document we saved earlier, and update our companies
with the coordinates of their headquarters:

public void Parse()
{
 var xDoc = XDocument.Load(dataflowUri);
 var entities = xDoc.Descendants(Settings.GeocodeFeedXNamespace +
"GeocodeEntity");
 foreach (var entity in entities)

Chapter 5

[69]

 {
 if (!IsSuccessful(entity)) continue;

 var company = GetCompany(entity);
 if (company == null) continue;

 var geocodeResponseEl = Element(entity, "GeocodeResponse");
 if (geocodeResponseEl == null) continue;

 var address = GetAddress(geocodeResponseEl);
 if (address == null) continue;

 var geocodePoints = GetPoints(geocodeResponseEl);
 if (geocodePoints.Count == 0) continue;

 company.Address = address;
 company.Point = geocodePoints[0];

 }
}

We loop through the entities, and extract information from entities using
StatusCode with value Success:

private static bool IsSuccessful(XContainer element)
 {
 var statusEl = Element(element, "StatusCode");
 return statusEl != null && statusEl.Value ==
 "Success";
 }

In production we would have a complete checking system in place that would log
different scenarios of failed attempts. Such systems can also try geocoding the data
again in case of failure, flag certain addresses as not existent, and so on.

Websites
Now, let's add a basic ASP.NET MVC project to our VS solution named LBM.
Geocoder.Web. The website is very similar to the one we built in the previous
chapter, so we can copy HomeController.cs, _Layout.cshtml, the Index.chtml
views, app.js, app.css, learningTheme, and BundleConfig.cs from it.

Spatial Data Services

[70]

Next, we create a new JavaScript module, geocoder.js, and save it inside the
Scripts folder:

lbm.Geocoder = function(map, $) {
 this._map = map;
 this.$ = $;
 this._addCss();
};
lbm.Geocoder.prototype = {
 _addCss: function () {
 var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', '/Content/geocoder.css');
 var head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
 }
};
Microsoft.Maps.moduleLoaded('lbm.Geocoder');

We also pass a $ argument to the module, in the shape of an object that will perform
AJAX requests (in our case jQuery), using the good practice of dependency injection.
Furthermore, we add a link to a stylesheet file inside the Content folder.

The module will load the data from a URL:

load: function(url) {
 var self = this,
 options = {
 url: url,
 success: function(result) {
 self._show(result);
 }
 };
 this.$.ajax(options);
}

And show pushpins on a map:

_show: function (result) {
 var locations = [],
 self = this;
 $.map(result, function (place, i) {
 var location = new Microsoft.Maps.Location(place.Latitude,
place.Longitude),
 pin = new Microsoft.Maps.Pushpin(location, {
 icon: '',

Chapter 5

[71]

 typeName: 'lbm-geocoder-pin icon-' + place.Id,
 text: place.Name
 });
 locations.push(location);
 self._map.entities.push(pin);
 });
 this._map.setView({
 bounds: Microsoft.Maps.LocationRect.fromLocations(locations)
 });
}

Note how we have removed the default image of the pushpin, and added to it
an icon- prefixed class with the company ID. We use that to display the company
logos on the map, through icon fonts (taken from the excellent IcoMoon App at
http://icomoon.io/app).

We register and call the module from app.js:

this._addModule('lbm.Geocoder', 'Scripts/geocoder.js', function ()
 {
 var geocoder = new lbm.Geocoder(self._map, jQuery);
 geocoder.load('/home/places');
});

When the module is loaded, it requests data from the Places action of
HomeController.

public JsonResult Places()
 {
var dataFilePath = Server.MapPath("/App_Data/dataResponse.xml");
 return Json(Companies.ToJson(dataFilePath),
 JsonRequestBehavior.AllowGet);
 }

It takes the data from the Companies class.

public static IList<object> ToJson(string dataFilePath)
{
 var parser = new SpatialParser(dataFilePath);
 parser.Parse();

 var result = new List<object>();
 foreach (var company in All.Values)
 {
 if (company.Address == null || company.Point == null)
 continue;
 result.Add(new

Spatial Data Services

[72]

 {
 company.Id,
 company.Name,
company.Point.Latitude,
 company.Point.Longitude
 });
 }

The listing above uses SpatialParser class to read the XML document and prepare
a list of objects that can be easily serialized into a JSON string.

And we're done; let's click on F5, and run the website as the start project on a
browser. We should see the following screenshot:

When we hover over a company icon, the company name appears on a popup.

Chapter 5

[73]

Summary
When it comes to large amounts of data, the Spatial Data Services offer a number
of interfaces to store, and query user data; geocode addresses or reverse geocode
geographical coordinates. The services perform these tasks by means of background
jobs, which can be set up and queried through REST URLs.

In the next chapter, we will use an experimental interface of Spatial Data Services,
the Geodata API, which we'll use to geocode postcodes.

Diving into Spatial
Data Services

We have a pretty good idea now of how the APIs to the Bing Maps data work.
They are normally URL templates we can query for a single point of data, like a
coordinate, or entire sets, as we did with the spatial geocoding. In Chapter 2, Diving
into Bing Maps AJAX Control Version 7, we went to Paris, and when we clicked on the
map, the Bing Maps gave us the address of that location.

Now we will go back to the United States and have a look at the Geodata API; it is at
the moment in preview mode, which makes it interesting in giving us an insight to
the direction of where the Bing Maps are headed.

The Geodata API produces a set of polygons that constitute the boundaries of
a geographic area, such as different levels of postcodes, province, or state.

In this chapter, we will build a small web app that shows the postcode of the point
where the user clicks on a map. The main structure of the application is the same as
in the previous chapters, starting with an ASP.NET MVC website.

The project
Let's create a basic ASP.NET MVC project in Visual Studio named LBM.Geodata.
We then copy the HomeController from the previous chapter with the Index action.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewBag.Title = "LBM | Geodata";
 return View();
 }
}

Diving into Spatial Data Services

[76]

This returns a simple view, Index.chtml, which will contain a single DIV element to
hold our map.

<div id="lbm-map"></div>

We also copy jquery.js, app.js, learningTheme.js and paste them into the
Scripts folder, as well as app.css and learningTheme.css in the Content folder.
Then, we do the same with the _Layout.cshtml and BundleConfig.cs files, which
we paste into Views/Shared and App_Start folders respectively.

When we run the project in debug mode, we should be presented with the following
screenshot on the browser:

Querying for postcodes
First, we create a proxy model to the Geodata API:

public class GeodataProxy
{
 private const string API_URL_TEMPLATE =
 "https://platform.bing.com/geo/spatial/v1/public/
 geodata?spatialFilter=GetBoundary({0},{1},1,
 'PostCode1',1,1,'en','us')&key=[YOUR BING MAPS
 KEY]&$format=json";
}

Chapter 6

[77]

Note how the URL here points at a different host to the other APIs, a platform.
bing.com.

Apart from the Bing Maps Key (this service is also subject to data usage), the
following parameters are used to build the URL template (you can get the full list
of parameters at http://msdn.microsoft.com/en-us/library/dn306801.aspx):

•	 latitude, longitude (required): This is a pair of double values between -90
and +90 for the latitude, and between -180 and +180 for the longitude.

•	 address (the coordinates or address are required): This is a string
representing an address, as in the previous chapter. This task is performed
in two steps; first the address is geocoded, and then the resulting coordinates
are sent to the API.

•	 levelOfDetail (required): This is an integer ranging between 0 and 3, where
0 represents the coarsest level of boundary detail, and 3 the best. Our proxy
has this value as 1. This and the following parameters are passed to the
GetBoundary function inside the URL.

•	 entityType (required): This is a string specifying different geographical
areas, such as CountryRegion, AdminDivision1, and AdminDivision2,
Postcode1 to Postcode4. We stipulate Postcode1 as the lowest level of
postcode in our app.

•	 getAllPolygons (required): This can be 0 or 1; in the first instance only the
outline is returned, and in the latter the API returns all polygons. We want all
polygons; therefore we put 1 on our URL.

•	 getEntityMetadata (required): This is same as above; specifies whether to
return metadata or not.

•	 $format (optional): This is the default format in which data returned is atom,
but it can also be json, and we specify the latter as our preferred format.

Now, let's write the code that will fetch the geodata from Bing Maps.

public static string Fetch(double latitude, double longitude)
{
 var result = "";
 var url = string.Format(API_URL_TEMPLATE, latitude,
 longitude);
 var wc = new WebClient();
 var data = wc.DownloadData(url);

 var jObject = JObject.Parse(Encoding.ASCII.GetString(data));
 var shape =
 (string)jObject["d"]["results"][0]["Primitives"][0]
 ["Shape"];

Diving into Spatial Data Services

[78]

 var coordinates = new List<Coordinate>();
 if (TryParseEncodedValue(shape.Substring(2), out coordinates))
 {
 result = string.Join(",", coordinates.Select(c =>
 c.ToJson()));
 }

 return result;
}

The method above accepts two arguments of double type, latitude and longitude,
as required by the API. We pass them to the URL template, which is then used to
download the data by means of a WebClient instance.

Because we requested the data to be returned in JSON format, we use Json.NET
library to parse the response (Json.NET is a popular .NET library written by James
Newton-King with a great set of features for parsing and creating JSON. More
information can be found at http://james.newtonking.com/json.) We use its
generic JObject to navigate through the JSON graph returned, until we get to the
Shape node we need. You can get the full description of what each object of the
response does at http://msdn.microsoft.com/en-us/library/dn306801.aspx).

The Shape object is made of two parts, separated by comma: the first is the version
number of the polygon, and the second is a compressed list of polygons. Microsoft
has provided the Decompression algorithm (found at http://msdn.microsoft.
com/en-us/library/dn306801.aspx), which we need to copy and paste into our
proxy class as a method named TryParseEncodedValue.

We pass the second part of the Shape string to this method, retrieving a list of
Coordinate instances. Let's create the Coordinate class inside the Models folder:

public class Coordinate
 {
 public double Latitude { get; set; }
 public double Longitude { get; set; }

 public string ToJson()
 {
 return string.Format("{0} {1}", Math.Round(Latitude,
 4), Math.Round(Longitude, 4));
 }
 }

Chapter 6

[79]

The model contains two properties, Latitude and Longitude, which make up the
coordinates of the Shape string in the form of polygon rings. The ToJson method
rounds the coordinates to four decimal places, shortening the string that will be sent
to the client.

A polygon ring, or a closed path, is a sequence of coordinates (pairs of
latitude and longitude) where the first pair is the same as the last one.
This is necessary for displaying polygons and polylines in Bing Maps.

The locator
When we show the user the postcode shape of the point he/she clicks on, it is a good
idea to also show the name of the postcode. We will use the REST Services to do that;
therefore, let's copy the LocatorProxy.cs and JsonDataContracts.cs files from
the project we built in chapter 3, Introduction to Bing Maps REST Services, and paste
them into the Models folder.

We also copy the QueryByPoint and GetDescription methods from
HomController of that project and change them to look like this:

private string QueryByPoint(double latitude, double longitude)
{
 var result = "No results found.";
 LocatorProxy.QueryByPoint(latitude, longitude, x =>
 {
 foreach (var resourceSet in x.ResourceSets)
 {
 foreach (var resource in resourceSet.Resources)
 {
 var postcode = GetPostcode(resource as Location);
 if (postcode.Length > 1)
 {
 result = postcode;
 return;
 }
 }
 }

 });
 return result;
}

Diving into Spatial Data Services

[80]

private static string GetPostcode(Location location)
{
 var postcode = "";
 if (location != null && location.Address != null)
 {
 postcode = string.Format("{0} {1}", location.Address.
AdminDistrict ?? "", location.Address.PostalCode ?? "");
 }
 return postcode;
}

We are only interested on the administrative area and the postcode; therefore,
we extract only those parts from the location query.

The controller
We need to write a controller action that fetches the data and returns it in
JSON format.

public JsonResult Postcode(double latitude, double longitude)
{
 var data = new
 {
 Shape = GeodataProxy.Fetch(latitude, longitude),
 Info = QueryByPoint(latitude, longitude)
 };
 return Json(data, JsonRequestBehavior.AllowGet);
}

The data object contains two properties, the Shape string of coordinates, and Info,
with the postcode information. Now, it's time to write the client side.

The client side
As we have done previously, we will organize our client side inside a Microsoft
Maps module, which we will name geodata.js.

(function () {
 var lbm = window.lbm || {};

 lbm.Geodata = function (map, $) {
 this._map = map;
 this.$ = $;

Chapter 6

[81]

 };

 Microsoft.Maps.moduleLoaded('lbm.Geodata');
})();

Next, we create a stylesheet file, geodata.css, inside the Content folder, and add
a link to it in our module, as we did in the previous chapter.

_addCss: function () {
 var link = document.createElement('link');
 link.setAttribute('rel', 'stylesheet');
 link.setAttribute('href', '/Content/geodata.css');
 var head = document.getElementsByTagName('head')[0];
 head.appendChild(link);
}

We would like our app to respond to user clicks, so we add a handler for that event:

_bind: function (self) {
 Microsoft.Maps.Events.addHandler(this._map, 'click', function
 (e) {
 if (e.originalEvent.target.tagName !== 'BUTTON') {
 self._onclick(e);
 }
 });
}

Note how we only handle the clicks on targets other than buttons, to avoid
responding to clicks on our header buttons.

We need a way to show the postcode information, and we will use a pushpin for that.

_createPin: function () {
 this._pushpin = new Microsoft.Maps.Pushpin(new Microsoft.Maps.
Location(0, 0), {
 typeName: 'lbm-geodata-pin',
 visible: false,
 width: 200,
 height: 50,
 anchor: new Microsoft.Maps.Point(110, 50)
 });
 this._map.entities.push(this._pushpin);
}

Diving into Spatial Data Services

[82]

We could have used an infobox as well, but this way we can explore another option
of the Pushpin class, htmlContent. When this option is set, either upon instantiation
of the pushpin, or as an argument to its setOptions method, it replaces the HTML
generated by Microsoft.Maps API. Our pushpin turns thus into an infobox.

We want the methods we have coded so far to run when the module is loaded;
therefore, we add the following lines to the module's constructor:

this._addCss();
this._createPin();
this._bind(this);

Next, let's code the handler:

_onclick: function (e) {
 var self = this,
 location = this._getLocation(e);
 this._showLoadingPin(location);
 this.$.ajax({
 url: '/home/postcode',
 data: { latitude: location.latitude, longitude: location.
longitude },
 success: function (result) {
 self._showResult(result);
 }
 });
}

First, we get the location of point clicked by the user:

_getLocation: function (e) {
 var point = new Microsoft.Maps.Point(e.getX(), e.getY());
 return this._map.tryPixelToLocation(point);
}

Then we show the pushpin with a loading message, while the data is fetched from
the server.

_showLoadingPin: function (location) {
 this._pushpin.setLocation(location);
 this._pushpin.setOptions({
 visible: true,
 htmlContent: this._pushpinContent('Loading ...')
 });
}

Chapter 6

[83]

The listing above positions the pushpin where the user clicked, and sets its content
to Loading

_pushpinContent: function(text) {
 return '<div class="content">'+ text + '</div>';
}

We add a class name, content, to our HTML element, which is useful, when we
style it.

The stylesheet
We style our pushpin with generous padding, a drop shadow, and an arrow
at the bottom:

.lbm-geodata-pin .content {
 color: #F04C40;
 position: relative;
 width: 100%;
 background: white;
 padding: 15px;
 border: 1px solid #bbb;
 z-index: 30;
 -webkit-box-shadow: 0 3px 10px #999;
 -moz-box-shadow: 0 3px 10px #999;
 box-shadow: 0 3px 10px #999;
}

.lbm-geodata-pin .content:before {
 position: absolute;
 bottom: -9px;
 left: 110px;
 display: inline-block;
 border-right: 9px solid transparent;
 border-top: 9px solid #fff;
 border-left: 9px solid transparent;
 content: '';
 z-index: 31;
}

.lbm-geodata-pin .content:after {
 position: absolute;
 bottom: -10px;
 left: 109px;

Diving into Spatial Data Services

[84]

 display: inline-block;
 border-right: 10px solid transparent;
 border-top: 10px solid #999;
 border-left: 10px solid transparent;
 content: '';
 z-index: 30;
}

Showing the data
Going back to our click event handler, after we show a loading message, we fetch the
data through AJAX. Upon success, we show the results on the map.

_showResult: function (result) {
 this._showPin(result.Info);
 this._showShape(result.Shape);
}

In the previous listing, we first show the information on the pushpin:

_showPin: function (text) {
 this._pushpin.setOptions({
 htmlContent: this._pushpinContent(text)
 });
}

Then, we show the shape:

_showShape: function (shapeString) {
 this._shapesLayer.clear();
 var parts = shapeString.split(','),
 length = parts.length,
 i = 0,
 locations = [];
 for (; i < length; i++) {
 var coordinates = parts[i].split(' ');
 locations.push(new Microsoft.Maps.Location(coordinates[0],
 coordinates[1]));
 }
 var shape = new Microsoft.Maps.Polygon(locations, {
 strokeColor: new Microsoft.Maps.Color(200, 240, 76, 64),
 strokeThickness: 2,
 fillColor: new Microsoft.Maps.Color(60, 240, 76, 64),
 emptyFillColor: new Microsoft.Maps.Color(0, 0, 0, 0)
 });

Chapter 6

[85]

 this._shapesLayer.push(shape);
 this._map.setView({
 bounds:
 Microsoft.Maps.LocationRect.fromLocations(locations)
 });
}

We place the shape in its own layer, so that we can clear the latter without clearing
the pushpin. Let's do this in the module's constructor, by adding the following lines:

this._shapesLayer = new Microsoft.Maps.EntityCollection;
this._map.entities.push(this._shapesLayer);

Back to the _showShape method, we split the shape string by comma, and then create
a Location instance from each part. The locations thus created, make up the shape,
which we style in similar pinkish style as the rest of the web page. At the end, we
add the shape to its layer and set the bounds of the map around the list of locations.

When we run the project in debug mode, it opens a browser window, and when we
click on the map, we get something like the following screenshot:

The postcode contour is nicely highlighted, and its name, together with the
administrative area, appears on the pop-up box.

Diving into Spatial Data Services

[86]

Summary
In this chapter we tried an experimental feature of Spatial Data Services, the Geodata
API. It provides geographical information of various administrative areas, from the
postcode level to an entire region or country. This feature is still in preview mode
at the time of this writing, which means that it may not be fully supported on every
point of the globe.

In the next chapter we will place our own data on Bing Maps, building a small app
on the way, which will take us to London.

Enriching Bing Maps with
Overlaying User Data

In the previous chapters, we laid on the map data supplied by Bing Maps APIs, but
Bing Maps can be a useful tool for displaying custom spatial data too. Examples
include residential properties on an estate agency website, best locations in the world
to visit, electoral results, custom map tiles, floor plans of venues, and many more.

Our task in this chapter is to build a simple mashup, which consists of a website that
shows the last four elections for the London Assembly. This will help us to prepare the
data that Microsoft.Maps API understands, and create the shapes based on this data.

The data
The Great Britain's Ordnance Survey provides a product named Open Data that
offers a wide range of digital map products, which you can freely view or download
for use in both personal and commercial applications (as specified in their website
available at http://www.ordnancesurvey.co.uk/business-and-government/
products/opendata-products.html). We need the shapes for the different areas of
the London Assembly, and their boundary-line product provides the necessary files.

The latter are in the ESRI Shapefile format, which we need to convert into sequences
of coordinates that Microsoft.Maps API understands. The conversion is outside the
scope of this book, but if you are interested to see how it was done, you can check the
shape_reader.rb file—a Ruby script in the code bundle.

The electoral results are supplied by the London Elects website available at
http://www.londonelects.org.uk/im-voter/results-and-past-elections/
results-2012.

Enriching Bing Maps with Overlaying User Data

[88]

At the end of the conversion, our data file looks as follows:

var data = [
 {
 "name":"Havering and Redbridge",
 "votes": [0,0,0,0],
 "wkt": [[51.6283,0.0233],[51.6282,0.0235],[51.6278,0
 },
 {
 "name":"Croydon and Sutton",
 "votes": [1,1,1,1],
 "wkt":[[51.321,-0.1551],[51.3235,-0.1572],[51.323	
}

]

The objects' specifications are displayed as follows:

•	 name: This specifies the London Assembly seat name
•	 votes: This specifies the ID of the winning party over the years from 2000

to 2012, where 0 indicates the Conservatives party, and 1 indicates the
Labour party.

•	 wkt: This specifies an array representing a closed polygon of the area

The application
Let's start by creating an application folder, named poll; then, adding an HTML file
named index.html, which can be written as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width" />
 <title>LBM | London Assembly Elections</title>
 <link href="app.css" rel="stylesheet" />
 <script src="http://ecn.dev.virtualearth.net/mapcontrol/
mapcontrol.ashx?v=7.0"></script>
</head>
<body>
 <div id="lbm-map"></div>

 <script src="jquery-2.0.3.min.js"></script>
 <script src="data.js"></script>

Chapter 7

[89]

 <script src="app.js"></script>
</body>
</html>

As in the previous chapters, we add links to the app.css and app.js files, the
link to the AJAX Control, and the link to the jQuery file. The DIV element will
serve as the map container. We then copy the app.css and app.js files from the
previous chapters and paste them inside the poll folder. We also copy and paste the
learningTheme folder with our custom map controls.

In the app.js file, we change the map options so that the map is now centered in
London, as shown in the following code snippet:

this._map = new Microsoft.Maps.Map(document.getElementById('lbm-map'),
{
 credentials: '[YOUR BING MAPS KEY]',
 showBreadcrumb: false,
 showDashboard: false,
 center: new Microsoft.Maps.Location(51.537237, -0.080857), /*
London */
 zoom: 10
 });

The poll
The approach we have taken throughout this book is to extend the Microsoft.Maps
API by means of modules. This project is not an exception. So far, our project folder
holds the index.html file and the learningTheme folder. Let's add a poll directory,
inside which we create the poll.js and poll.css files.

Let's start with our familiar module skeleton inside poll.js, as shown in the
following code snippet:

(function() {
 var lbm = window.lbm || {};

 lbm.Poll = function(map, $) {
 this._map = map;
 this.$ = $;
 };

 Microsoft.Maps.moduleLoaded('lbm.Poll');
})();

Enriching Bing Maps with Overlaying User Data

[90]

The Poll module is attached to the lbm namespace so that the global scope does
not get cluttered. Its constructor accepts an instance of the map and a jQuery object
as its arguments.

Now it's time to pause for a minute and think how we want to develop the user
interface. The requirements state that we need to show the results for four elections; so
probably a list with four buttons labeled with each elections year could be appropriate.
This way, when the user clicks on a year button, the map devises the results for the
ballot vote of that year.

First, we store the years on an array variable, declared just under the namespace
declaration, and outside the module's code, so that it is accessed by all the functions
in that file, which can be written as follows:

var YEARS = [2000, 2004, 2008, 2012];

Then, we write the markup of the navigation bar, as shown in the following
code snippet:

_addMarkup: function() {
 this._container = this.$('<div class="lbm-poll-container"/>');
 var html = [];
 html.push('<p>');
 for (var i = 0; i < YEARS.length; i++) {
 html.push('<button data-year="' + i + '">' + YEARS[i] + '</
button>');
 }
 html.push('</p>');
 this._container
 .append(html.join(''))
 .appendTo(this._map.getRootElement().parentElement);

 this._position();
}

It is a good idea to hold a reference of any elements added to the DOM element, so
that the latter is not queried again for it. We do that with the _container instance
variable, which contains a DIV element with the lbm-poll-container class. Next,
for each year in the YEARS variable we add a button labeled with the respective
value. We also store the index into a data- attribute, a conventional way for storing
small pieces of data within the DOM nodes. This is better than extracting the year
from the text node of the button, because it keeps their concerns separated.

The markup is then added to the container, which in turn is appended to the
map's container.

Chapter 7

[91]

We position the container so that it sits in the middle of the browser window
through the app.css stylesheet, as shown in the following code:

.lbm-poll-container {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 width: 30em;
 z-index: 30;
 background: #F5F5F5;
 padding: .5em 0;
 margin: auto;
 text-align: center;
 text-transform: uppercase;
 border-top: 5px solid #F04C40;
 box-shadow: 0 2px 5px #bbb;
}

.lbm-poll-container button {
 background: transparent;
 border: none;
 padding: .6em;
 margin: 0 .2em;
 font-size: 1em;
 color: #9C9D9E;
}

.lbm-poll-container button:hover {
 box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.125);
}

.lbm-poll-container button:active,

.lbm-poll-container button.active,

.lbm-poll-container button.active:hover {
 color: #F04C40;
 box-shadow: inset 0 3px 4px rgba(0, 0, 0, 0.125);
}

Enriching Bing Maps with Overlaying User Data

[92]

Now, when we open the index.html file on the browser, we should see our
navigation bar centered at the top of the map, as shown in the following screenshot:

Let's now load the data by adding the following method to our module's prototype:

load: function(data) {
 this._data = data;
 for (var i = 0; i < this._data.length; i++) {
 this._showShape(this._data[i]);
 }
this._activate(this._container.find('button').eq(this._currentYear));
}

The function accepts a data argument, which we store on the _data instance variable.
We loop through the latter, sending each of its parts to the _showShape method.

At the end, we activate the button found under the same index as the _currentYear
instance variable. The latter is used to control the data of the year that will be shown
on the map. We start by showing the latest election year, 2012; therefore, we set the
_currentYear variable to its index in the YEARS array as 3.

this._currentYear = 3;

Chapter 7

[93]

We add the preceding line at the end of the module's constructor, and then write
the _activate method, as shown in the following code snippet:

_activate: function(button) {
 this._activeButton = button.addClass('active');
}

The preceding code sets one of the buttons as active, so that by keeping track of the
active button, we make it easier to deactivate it later. To tell it apart from the other
buttons, we style the button with the active class.

Now, let's write the code for the method that shows the shape on the map, as shown
in the following code snippet:

_showShape: function(data) {
 var shape = new Shape(this._map, data, this._currentYear);
 shape.show();
}

We love object oriented programming, and we take full advantage of JavaScript
capabilities in the matter, by delegating the shape creation to a Shape class.

The shape
As we saw earlier, this class stores a reference to the map, data, and the initial year.
The election results of the latter will be reflected on the shape first, as shown in the
following code snippet:

var Shape = function (map, data, currentYear) {
 this._map = map;
 this._data = data;
 this._updateParty(currentYear);
}

A shape will be filled with the color of the political party that has won the elections
on the London Assembly area represented by that shape. For this, we create an object
instance variable (_party) with the id extracted from the votes array.

_updateParty: function(year) {
 this._party = {
 id: this._data.votes[year]
 };
 this._party.name = PARTIES[this._party.id];
}

Enriching Bing Maps with Overlaying User Data

[94]

The party's name is fetched from a constant array we define at the top of the file,
below the line specifying the YEARS array.

var PARTIES = ['Conservative', 'Labour'];

These are the only two parties that have controlled the London Assembly in the past
four elections, so we add only them to the list.

It's time to write the show method as follows:

Shape.prototype = {
 show: function() {
 this._getLocations();
 this._addShape();
 }
}

This method does two jobs: it prepares the locations and adds the shape to the map.
Let's write the code for the first process, as follows:

_getLocations: function() {
 this._locations = [];
 for (var i = 0, length = this._data.wkt.length; i < length; i++) {
 var coords = this._data.wkt[i];
 this._locations.push(new Microsoft.Maps.Location(coords[0],
 coords[1]));
}
}

Here, we loop through the array of coordinate pairs with which we build the
Location instances to make up the shape.

_addShape: function() {
 this._shape = new Microsoft.Maps.Polygon(this._locations, {
 strokeThickness: 2,
 strokeColor: this._getColor({stroke: true}),

 fillColor: this._getColor()
 });
 this._bind(this);
 this._map.entities.push(this._shape);
}

Chapter 7

[95]

The preceding code generates a polygon with the fill and border color depending on
the party it pertains. The method that sets the colors looks like this:

_getColor: function(options) {
 options = options || {};
 var opacity = options.stroke ? 200 : (options.onMouseOver ? 120 :
60);
 if (this._party.id === 1) {
 return new Microsoft.Maps.Color(opacity, 0, 134, 219);
 }
 return new Microsoft.Maps.Color(opacity, 238, 50, 36);
}

A reddish color is specified for the Labor party and a bluish color for the
Conservatives. The opacity of the polygon's background increases on mouse over,
taking advantage of the first argument of the Color class, which defines opacity.
The other three arguments represent the red, green, and blue components of the color.

To make the shape change its color when the user moves the mouse over it, we need
a couple of event handlers, as shown in the following code:

_bind: function(self) {
 Microsoft.Maps.Events.addHandler(this._shape, 'mouseover',
function() {
 self._onmouseover();
 });

 Microsoft.Maps.Events.addHandler(this._shape, 'mouseout', function()
{
 self._onmouseout();
 });
}

The Polygon class responds to the mouseover and mouseout events, as does the Map
class. The former event is bound to the following handler:

_onmouseover: function() {
 this._shape.setOptions({
 fillColor: this._getColor({onMouseOver: true}),
 });
 this._log(this._data.name + ' ' + this._party.name + '');
}

Enriching Bing Maps with Overlaying User Data

[96]

First, we send an option with the darker color to the setOptions method of the
Polygon class. Then, we show the name of the area and its controlling party on the
navigation bar. We do this through a _log method, as shown in the following
code snippet:

_log: function(message) {
 Microsoft.Maps.Events.invoke(this._map, 'poll:log', {
 message: message
 });
}

This function delegates displaying of the message to a custom map event, named
poll:log. Any object that listens to this event will be triggered at this moment.
As stated earlier, we want to show the message on the navigation bar. Therefore,
we need the Poll class to handle the poll:log event, as shown in the following code:

_bind: function(self) {
 Microsoft.Maps.Events.addHandler(this._map, 'poll:log', function(e)
{
 self._log(e.message);
 });
}

The preceding function is added to the prototype of the Poll class. It binds the _log
handler to the event, which is described as follows:

_log: function (message) {
 this._logger = this._logger || this._$('#lbm-poll-log');
 this._logger.html(message);
}

The handler needs an element with the lbm-poll-log ID to be available on the DOM
element, so let's do that by adding the following lines to the _addMarkup function,
just before we close the DIV node:

html.push('</p>');
html.push('<p id="lbm-poll-log"></p>');
html.push('</div>');

To make the element look nice on the page, we add the following style to the poll.
css stylesheet:

.lbm-poll-container #lbm-poll-log {
 margin-top: .6em;
 font-size: .8em;
 height: 1.2em;
}

Chapter 7

[97]

If we refresh the index page on the browser now, we should see our shapes painted
with different colors; the latter changes when we move the mouse over the polygons.

We can note how the text on the navigation bar also changes according to the shape
over which has the mouse.

Rolling back the years
The last requirement we need to implement, states that the application must change
the colors of the polygons as the user clicks on the year buttons of the navigation bar.
As before, we will achieve this through the year:change custom event we'll add to
the map that will be triggered by the navigation buttons, and handled by the shapes.

Microsoft.Maps.Events.addHandler(this._map, 'year:change', function(e)
{
 self._changeYear(e.currentYear);
});

Enriching Bing Maps with Overlaying User Data

[98]

The preceding lines, which we add to the _bind method of the Shape class, bind the
year:change event to the _changeYear function. Note that this function expects that
the eventArgs object passed should contain information about the year selected in
the form of its index in the YEARS array. It's time to write the handler as follows:

_changeYear: function(currentYear) {
 this._updateParty(currentYear);
 this._shape.setOptions({
 strokeColor: this._getColor({stroke: true}),
 fillColor: this._getColor()
 });
}

This method updates the party based on its data, and sets the fill and border colors
accordingly. We can note how calling the setOptions method of the polygon
changes its appearance immediately.

Now, let's trigger the year:change event from the Poll class, by adding the
following lines to its _bind method.

this._container.on('click', 'button', function() {
 self._changeYear(this);
});

When the navigation buttons are clicked, the app calls another _changeYear
function, but this time a method of the Poll module. The function can be written
as shown in the following code:

_changeYear: function(button) {
 if (this._activeButton) this._activeButton.removeClass('active');
 this._activate($(button));
 this._currentYear = this._activeButton.data('year');
 Microsoft.Maps.Events.invoke(this._map, 'year:change', {
 currentYear: this._currentYear
 });
}

We make the clicked button active by passing it to the _active routine we wrote
earlier. Before that, we deactivate the active button (by removing the active class)
if it exists. Then, we extract the current year from the data-year attribute and store
it in the _currentYear variable. This is used to create the eventArgs object that is
passed to the invoke method of the Events object, together with a map reference
and the year:change event name.

Chapter 7

[99]

Time to test our full application on the browser now. Let's refresh the index page,
and click on the buttons:

When we click on different years, the polygons change their colors to reflect the
political party that controlled the London area they represent after the elections of
that year. Some of the shapes don't seem to change their colors, indicating that their
areas continued with the same party. This is a great way of showing the political
movements of different areas over the years.

Summary
Bing Maps can be a great canvas for us to draw our own picture on it. We can lay on
the map any kind of geodata to illustrate an idea, such as the available schools in a
geographical area, or even where check-in desks are situated on an airport based on
their flight information.

In this chapter, we drew the last four electoral results for the London Assembly,
painting its constituent areas with the colors of the wining party.

Index
Symbols
$.ajax function 53
$format parameter 77
_activate method 93
_addButton method 22
_addMarkup function 96
_bind function 23
_bind method 98
_changeYear function 98
_getLocation method 25
_letters variable 59
_onmapclick handler 30
_onmapdblclick function 32
_onmapmove function 30
_showLoading function 45
_showShape method 85
_start function 24

A
active button 98
address parameter 77
AJAX Control 5, 6
anchor property 26
application

building 36-38
application folder. See poll
Application Programming Interfaces (APIs)

5
ASP.NET MVC 4 project

creating 47, 48

B
Bing Maps

about 5
accessing, URL 5
events 15-18
modules 10-14
modules, URL 10
REST resources 39-46
Spatial Data Services 61

C
classes 8
client side 80-82
Companies class 68
Conservatives party 88
container variable 7
controller 80
custom events 21, 22

D
data

displaying 84, 85
DataContractJsonSerializer class 40
dataflow input data

geocoding 62
Draw button 34

E
EntityCollection class 32
entityType parameter 77
e.originalEvent.target 16

[102]

F
fromLocations method 59

G
geocode response

parsing 67-69
getAllPolygons parameter 77
getEntityMetadata parameter 77
getTypeName method 33

H
handled property 16
height property 26

I
icon property 26
includeEntityTypes parameter 35
includeNeighborhood parameter 35
invoke method 22

J
Job class

adding, to project 63, 64
job results

obtaining 66
job status

obtaining 64, 65
jQuery.ajax method 43

K
keyup event 50

L
Labour party 88
latitude, longitude parameter 77
LBM 7
LBM.Geocoder.Web

basic ASP.NET MVC project, adding to
69-72

LBM.Geodata project
creating 75, 76

Learning Bing Maps. See LBM
learningTheme.js file 38
LearningTheme module

about 10, 19
buttons, adding to 21

levelOfDetail parameter 77
locator 79, 80
LocatorProxy class 55, 56

M
map events 15-17
MapOptions object

about 8
URL 8

mapTypeId option 17
mapTypeId property 9
Microsoft.Maps 8
Microsoft.Maps.AdvancedShapes module

19
Microsoft.Maps.Events.addHandler method

16
Microsoft.Maps.Location instance 9
Microsoft.Maps.Map 8
Microsoft.Maps.MapOptions object 8
Microsoft.Maps.MapTypeId 9
modules

custom modules 10-14

O
onmapclick method 29
Open Data 87
originalEvent 16

P
poll:log event 96
poll

creating 88, 89
poll directory

adding 89-93
polylines

creating 28-33
postcodes

querying for 76-79
pushpins 24-27

[103]

R
removeHandler method 32
Representational State Transfer (REST) 35
route

displaying 57-59
RouteInfo model 54
Router module 50-53
Routes API 47
RoutesController 53

S
script tag 6
setLocation method 45
setOptions method 82, 98
shapeDrawing folder

creating 19, 20
ShapeDrawing function 19
ShapeDrawing module 22
shapes

creating 93-97
show method 94
Spatial Data Services 61
SpatialParser class 72
strokeColor option 28
strokeThickness option 28
stylesheet 83

T
ToJson method 79
typeName property 26

U
Usage Reports 35

V
view 56, 57

W
WebClient class 40
width property 26

X
XDocument.load method 64

Y
year:change custom event 97
year button, on navigation bar

creating 97, 98

Z
zoom option 9

Thank you for buying
Learning Bing Maps API

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Windows Phone 7.5: Building
Location-aware Applications
ISBN: 978-1-84968-724-9 Paperback: 148 pages

Build your first Windows Phone application with
Location and Maps

1.	 Understand Location Based Services.

2.	 Work with Windows Phone Location Service.

3.	 Understand how Maps work.

4.	 Create a simple Map application and learn to
use Geocoding, Pushpins.

OpenStreetMap
ISBN: 978-1-84719-750-4 Paperback: 252 pages

Be your own cartographer

1.	 Collect data for the area you want to map with
this OpenStreetMap book and eBook

2.	 Create your own custom maps to print or use
online following our proven tutorials

3.	 Collaborate with other OpenStreetMap
contributors to improve the map data

Please check www.PacktPub.com for information on our titles

Mind Mapping with FreeMind
ISBN: 978-1-84951-762-1 Paperback: 146 pages

Easy recipes to increase productivity and creativity
using powerful free tools—Freemind and Freeplane

1.	 Design, write, add visual aids, link and share
your mind maps

2.	 Increase productivity and creativity

OpenLayers 2.10 Beginner's Guide
ISBN: 978-1-84951-412-5 Paperback: 372 pages

Create, optimize, and deploy stunning cross-browser
web maps with the OpenLayers JavaScript
web-mapping library

1.	 Learn how to use OpenLayers through
explanation and example

2.	 Create dynamic web map mashups using
Google Maps and other third-party APIs

3.	 Customize your map's functionality and
appearance

4.	 Deploy your maps and improve page
loading times

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Bing Maps AJAX Control, Version 7
	Bing Maps AJAX Control Version 7
	Custom modules
	Map events
	Summary

	Chapter 2: Diving into Bing Maps AJAX Control, Version 7
	Custom events
	Pushpins
	Polylines
	Summary

	Chapter 3: Introduction to Bing Maps REST Services
	The Application
	Bing Maps REST resources
	Summary

	Chapter 4: Diving into Bing Maps
REST Services
	The Application
	The Router module
	The Controller
	The Model
	The Proxy
	The View
	Displaying the route
	Summary

	Chapter 5: Spatial Data Services
	Geocoding dataflow input data
	The job
	Getting job status
	Gettting job results
	Parsing the geocode response
	Website
	Summary

	Chapter 6: Diving into Spatial
Data Services
	The project
	Querying for postcodes
	The locator
	The controller
	The client side
	The stylesheet
	Showing the data
	Summary

	Chapter 7: Enriching Bing Maps with Overlaying User Data
	The data
	The application
	The poll
	The shape
	Rolling back the years
	Summary

	Index

