
Learn PySpark
Build Python-based Machine
Learning and Deep Learning Models
—
Pramod Singh

www.allitebooks.com

http://www.allitebooks.org

Learn PySpark
Build Python-based Machine
Learning and Deep Learning

Models

Pramod Singh

www.allitebooks.com

http://www.allitebooks.org

Learn PySpark: Build Python-based Machine Learning and Deep
Learning Models

ISBN-13 (pbk): 978-1-4842-4960-4		 ISBN-13 (electronic): 978-1-4842-4961-1
https://doi.org/10.1007/978-1-4842-4961-1

Copyright © 2019 by Pramod Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4960-4.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Pramod Singh
Bangalore, Karnataka, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4961-1
http://www.allitebooks.org

I dedicate this book to my wife, Neha, my son, Ziaan, and
my parents. Without you, this book wouldn’t have
been possible. You complete my world and are the

source of my strength.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Introduction to Spark���1

History��1

Data Collection���2

Data Storage���3

Data Processing���3

Spark Architecture���4

Storage���5

Resource Management��5

Engine and Ecosystem���8

Programming Language APIs���9

Setting Up Your Environment���10

Local Setup���10

Dockers��11

Cloud Environments���11

Conclusion���16

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Data Processing���17

Creating a SparkSession Object���18

Creating Dataframes���18

Null Values��19

Subset of a Dataframe���23

Select���24

Filter���25

Where���26

Aggregations��26

Collect���35

User-Defined Functions (UDFs)��37

Pandas UDF��40

Joins��41

Pivoting��43

Window Functions or Windowed Aggregates���44

Conclusion���48

Chapter 3: Spark Structured Streaming��49

Batch vs. Stream��49

Batch Data��50

Stream Processing���50

Spark Streaming���51

Structured Streaming���53

Data Input���56

Data Processing���57

Final Output��57

Table of ContentsTable of Contents

vii

Building a Structured App��57

Operations��59

Joins���63

Structured Streaming Alternatives���65

Conclusion���65

Chapter 4: Airflow���67

Workflows��67

Graph Overview��69

Undirected Graphs��69

Directed Graphs��70

DAG Overview��71

Operators��73

Installing Airflow��74

Airflow Using Docker��74

Creating Your First DAG��76

Step 1: Importing the Required Libraries��78

Step 2: Defining the Default Arguments���78

Step 3: Creating a DAG���79

Step 4: Declaring Tasks��79

Step 5: Mentioning Dependencies��80

Conclusion���84

Chapter 5: MLlib: Machine Learning Library���������������������������������������85

Calculating Correlations���86

Chi-Square Test��89

Transformations���94

Binarizer���94

Principal Component Analysis��96

Table of ContentsTable of Contents

viii

Normalizer��98

Standard Scaling��100

Min-Max Scaling��101

MaxAbsScaler���103

Binning���104

Building a Classification Model��107

Step 1: Load the Dataset��107

Step 2: Explore the Dataframe��108

Step 3: Data Transformation���110

Step 4: Splitting into Train and Test Data��112

Step 5: Model Training��112

Step 6: Hyperparameter Tuning��113

Step 7: Best Model���115

Conclusion���115

Chapter 6: Supervised Machine Learning��117

Supervised Machine Learning Primer��117

Binary Classification���120

Multi-class Classification���121

Building a Linear Regression Model��121

Reviewing the Data Information���123

Generalized Linear Model Regression��128

Decision Tree Regression���131

Random Forest Regressors��133

Gradient-Boosted Tree Regressor��136

Step 1: Build and Train a GBT Regressor Model���136

Step 2: Evaluate the Model Performance on Test Data���������������������������������137

Table of ContentsTable of Contents

ix

Building Multiple Models for Binary Classification Tasks�����������������������������������138

Logistic Regression��138

Decision Tree Classifier��148

Support Vector Machines Classifiers��150

Naive Bayes Classifier��152

Gradient Boosted Tree Classifier���154

Random Forest Classifier���156

Hyperparameter Tuning and Cross-Validation���158

Conclusion���159

Chapter 7: Unsupervised Machine Learning��������������������������������������161

Unsupervised Machine Learning Primer��161

Reviewing the Dataset���165

Importing SparkSession and Creating an Object��165

Reshaping a Dataframe for Clustering���169

Building Clusters with K-Means���173

Conclusion���181

Chapter 8: Deep Learning Using PySpark��183

Deep Learning Fundamentals��183

Human Brain Neuron vs. Artificial Neuron��185

Activation Functions���188

Neuron Computation���190

Training Process: Neural Network��192

Building a Multilayer Perceptron Model���198

Conclusion���203

Index��205

Table of ContentsTable of Contents

xi

About the Author

Pramod Singh has more than 11 years of

hands-on experience in data engineering

and sciences and is currently a manager

(data science) at Publicis Sapient in India,

where he drives strategic initiatives that

deal with machine learning and artificial

intelligence (AI). Pramod has worked with

multiple clients, in areas such as retail,

telecom, and automobile and consumer

goods, and is the author of Machine Learning with PySpark. He also speaks

at major forums, such as Strata Data, and at AI conferences.

Pramod received a bachelor’s degree in electrical and electronics

engineering from Mumbai University and an MBA (operations and

finance) from Symbiosis International University, in addition to data

analytics certification from IIM–Calcutta.

Pramod lives in Bangalore with his wife and three-year-old son. In his

spare time, he enjoys playing guitar, coding, reading, and watching soccer.

xiii

About the Technical Reviewer

Manoj Patil has worked in the software

industry for 19 years. He received an

engineering degree from COEP, Pune (India),

and has been enjoying his exciting IT journey

ever since.

As a principal architect at TatvaSoft, Manoj

has taken many initiatives in the organization,

ranging from training and mentoring teams,

leading data science and ML practice, to

successfully designing client solutions from

different functional domains.

He began his career as a Java programmer but is fortunate to have

worked on multiple frameworks with multiple languages and can claim

to be a full stack developer. In the last five years, Manoj has worked

extensively in the field of BI, big data, and machine learning, using such

technologies as Hitachi Vantara (Pentaho), the Hadoop ecosystem,

TensorFlow, Python-based libraries, and more.

He is passionate about learning new technologies, trends, and

reviewing books. When he’s not working, he’s either exercising or reading/

listening to infinitheism literature.

xv

Acknowledgments

This is my second book on Spark, and along the way, I have come to

realize my love for handling big data and performing machine learning as

well. Going forward, I intend to write many more books, but first, let me

thank a few people who have helped me along this journey. First, I must

thank the most important person in my life, my beloved wife, Neha, who

selflessly supported me throughout and sacrificed so much to ensure that I

completed this book.

I must thank Celestin Suresh John, who believed in me and extended

the opportunity to write this book. Aditee Mirashi is one of the best editors

in India. This is my second book with her, and it was even more exciting

to work with her this time. As usual, she was extremely supportive and

always there to accommodate my requests. I especially would like to thank

Jim Markham, who dedicated his time to reading every single chapter and

offered so many useful suggestions. Thanks, Jim, I really appreciate your

input. I also want to thank Manoj Patil, who had the patience to review

every line of code and check the appropriateness of each example. Thank

you for your feedback and encouragement. It really made a difference to

me and the book.

I also want to thank the many mentors who have constantly forced

me to pursue my dreams. Thank you Sebastian Keupers, Dr. Vijay

Agneeswaran, Sreenivas Venkatraman, Shoaib Ahmed, and Abhishek

Kumar, for your time. Finally, I am infinitely grateful to my son, Ziaan,

and my parents, for their endless love and support, irrespective of

circumstances. You all make my world beautiful.

xvii

Introduction

The idea of writing this book had already been seeded while I was working

on my first book, and there was a strong reason for that. The earlier book

was more focused on machine learning using big data and essentially did

not deep-dive sufficiently into supporting aspects, but this book goes a

little deeper into the internals of Spark’s machine learning library, as well

as analyzing of streaming data. It is a good reference point for someone

who wants to learn more about how to automate different workflows and

build pipelines to handle real-time data.

This book is divided into three main sections. The first provides an

introduction to Spark and data analysis on big data; the middle section

discusses using Airflow for executing different jobs, in addition to data

analysis on streaming data, using the structured streaming features of

Spark. The final section covers translation of a business problem into

machine learning and solving it, using Spark’s machine learning library,

with a deep dive into deep learning as well.

This book might also be useful to data analysts and data engineers, as

it covers the steps of big data processing using PySpark. Readers who want

to make a transition to the data science and machine learning fields will

also find this book a good starting point and can gradually tackle more

complicated areas later. The case studies and examples given in the book

make it really easy to follow and understand the related fundamental

concepts. Moreover, there are very few books available on PySpark, and

this book certainly adds value to readers’ knowledge. The strength of this

book lies in its simplicity and on its application of machine learning to

meaningful datasets.

xviii

I have tried my best to put all my experience and knowledge into this

book, and I feel it is particularly relevant to what businesses are seeking

in order to solve real challenges. I hope that it will provide you with some

useful takeaways.

IntroductionIntroduction

1© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_1

CHAPTER 1

Introduction to Spark
As this book is about Spark, it makes perfect sense to start the first chapter

by looking into some of Spark’s history and its different components.

This introductory chapter is divided into three sections. In the first, I go

over the evolution of data and how it got as far as it has, in terms of size.

I’ll touch on three key aspects of data. In the second section, I delve into

the internals of Spark and go over the details of its different components,

including its architecture and modus operandi. The third and final section

of this chapter focuses on how to use Spark in a cloud environment.

�History
The birth of the Spark project occurred at the Algorithms, Machine, and

People (AMP) Lab at the University of California, Berkeley. The project

was initiated to address the potential issues in the Hadoop MapReduce

framework. Although Hadoop MapReduce was a groundbreaking

framework to handle big data processing, in reality, it still had a lot

of limitations in terms of speed. Spark was new and capable of doing

in-memory computations, which made it almost 100 times faster than

any other big data processing framework. Since then, there has been a

continuous increase in adoption of Spark across the globe for big data

applications. But before jumping into the specifics of Spark, let’s consider a

few aspects of data itself.

2

Data can be viewed from three different angles: the way it is collected,

stored, and processed, as shown in Figure 1-1.

�Data Collection
A huge shift in the manner in which data is collected has occurred over

the last few years. From buying an apple at a grocery store to deleting an

app on your mobile phone, every data point is now captured in the back

end and collected through various built-in applications. Different Internet

of things (IoT) devices capture a wide range of visual and sensory signals

every millisecond. It has become relatively convenient for businesses

to collect that data from various sources and use it later for improved

decision making.

Figure 1-1.  Three aspects of data

Chapter 1 Introduction to Spark

3

�Data Storage
In previous years, no one ever imagined that data would reside at some

remote location, or that the cost to store data would be as cheap as it is.

Businesses have embraced cloud storage and started to see its benefits

over on-premise approaches. However, some businesses still opt for on-

premise storage, for various reasons. It’s known that data storage began

by making use of magnetic tapes. Then the breakthrough introduction

of floppy discs made it possible to move data from one place to another.

However, the size of the data was still a huge limitation. Flash drives and

hard discs made it even easier to store and transfer large amounts of data

at a reduced cost. (See Figure 1-2.) The latest trend in the advancement of

storage devices has resulted in flash drives capable of storing data up to

2TBs, at a throwaway price.

Figure 1-2.  Evolution of data storage

This trend clearly indicates that the cost to store data has been

reduced significantly over the years and continues to decline. As a result,

businesses don’t shy away from storing huge amounts of data, irrespective

of its kind. From logs to financial and operational transactions to simple

employee feedback, everything gets stored.

�Data Processing
The final aspect of data is using stored data and processing it for some

analysis or to run an application. We have witnessed how efficient

computers have become in the last 20 years. What used to take five

minutes to execute probably takes less than a second using today’s

Chapter 1 Introduction to Spark

4

machines with advanced processing units. Hence, it goes without saying

that machines can process data much faster and easier. Nonetheless,

there is still a limit to the amount of data a single machine can process,

regardless of its processing power. So, the underlying idea behind Spark

is to use a collection (cluster) of machines and a unified processing

engine (Spark) to process and handle huge amounts of data, without

compromising on speed and security. This was the ultimate goal that

resulted in the birth of Spark.

�Spark Architecture
There are five core components that make Spark so powerful and easy

to use. The core architecture of Spark consists of the following layers, as

shown in Figure 1-3:

•	 Storage

•	 Resource management

•	 Engine

•	 Ecosystem

•	 APIs

Chapter 1 Introduction to Spark

5

�Storage
Before using Spark, data must be made available in order to process it. This

data can reside in any kind of database. Spark offers multiple options to

use different categories of data sources, to be able to process it on a large

scale. Spark allows you to use traditional relational databases as well as

NoSQL, such as Cassandra and MongoDB.

�Resource Management
The next layer consists of a resource manager. As Spark works on a set of

machines (it also can work on a single machine with multiple cores), it

is known as a Spark cluster. Typically, there is a resource manager in any

cluster that efficiently handles the workload between these resources.

Figure 1-3.  Core components of Spark

Chapter 1 Introduction to Spark

6

The two most widely used resource managers are YARN and Mesos. The

resource manager has two main components internally:

	 1.	 Cluster manager

	 2.	 Worker

It’s kind of like master-slave architecture, in which the cluster manager

acts as a master node, and the worker acts as a slave node in the cluster.

The cluster manager keeps track of all information pertaining to the

worker nodes and their current status. Cluster managers always maintain

the following information:

•	 Status of worker node (busy/available)

•	 Location of worker node

•	 Memory of worker node

•	 Total CPU cores of worker node

The main role of the cluster manager is to manage the worker nodes

and assign them tasks, based on the availability and capacity of the worker

node. On the other hand, a worker node is only responsible for executing

the task it’s given by the cluster manager, as shown in Figure 1-4.

Chapter 1 Introduction to Spark

7

The tasks that are given to the worker nodes are generally the

individual pieces of the overall Spark application. The Spark application

contains two parts:

	 1.	 Task

	 2.	 Spark driver

The task is the data processing logic that has been written in either

PySpark or Spark R code. It can be as simple as taking a total frequency

count of words to a very complex set of instructions on an unstructured

dataset. The second component is Spark driver, the main controller of a

Spark application, which consistently interacts with a cluster manager to

find out which worker nodes can be used to execute the request. The role

of the Spark driver is to request the cluster manager to initiate the Spark

executor for every worker node.

Figure 1-4.  Resource management

Chapter 1 Introduction to Spark

8

�Engine and Ecosystem
The base of the Spark architecture is its core, which is built on top of RDDs

(Resilient Distributed Datasets) and offers multiple APIs for building other

libraries and ecosystems by Spark contributors. It contains two parts: the

distributed computing infrastructure and the RDD programming abstraction.

The default libraries in the Spark toolkit come as four different offerings.

�Spark SQL

SQL being used by most of the ETL operators across the globe makes it a

logical choice to be part of Spark offerings. It allows Spark users to perform

structured data processing by running SQL queries. In actuality, Spark SQL

leverages the catalyst optimizer to perform the optimizations during the

execution of SQL queries.

Another advantage of using Spark SQL is that it can easily deal

with multiple database files and storage systems such as SQL, NoSQL,

Parquet, etc.

�MLlib

Training machine learning models on big datasets was starting to become

a huge challenge, until Spark’s MLlib (Machine Learning library) came into

existence. MLlib gives you the ability to train machine learning models on

huge datasets, using Spark clusters. It allows you to build in supervised,

unsupervised, and recommender systems; NLP-based models; and deep

learning, as well as within the Spark ML library.

�Structured Streaming

The Spark Streaming library provides the functionality to read and process

real-time streaming data. The incoming data can be batch data or near

real-time data from different sources. Structured Streaming is capable of

Chapter 1 Introduction to Spark

9

ingesting real-time data from such sources as Flume, Kafka, Twitter, etc.

There is a dedicated chapter on this component later in this book (see

Chapter 3).

�Graph X

This is a library that sits on top of the Spark core and allows users to

process specific types of data (graph dataframes), which consists of nodes

and edges. A typical graph is used to model the relationship between the

different objects involved. The nodes represent the object, and the edge

between the nodes represents the relationship between them. Graph

dataframes are mainly used in network analysis, and Graph X makes it

possible to have distributed processing of such graph dataframes.

�Programming Language APIs
Spark is available in four languages. Because Spark is built using Scala, that

becomes the native language. Apart from Scala, we can also use Python,

Java, and R, as shown in Figure 1-5.

Figure 1-5.  Language APIs

Chapter 1 Introduction to Spark

10

�Setting Up Your Environment
In this final section of this chapter, I will go over how to set up the

Spark environment in the cloud. There are multiple ways in which we can

use Spark:

•	 Local setup

•	 Dockers

•	 Cloud environment (GCP, AWS, Azure)

•	 Databricks

�Local Setup
It is relatively easy to install and use Spark on a local system, but it fails

the core purpose of Spark itself, if it’s not used on a cluster. Spark’s core

offering is distributed data processing, which will always be limited to a

local system’s capacity, in the case that it’s run on a local system, whereas

one can benefit more by using Spark on a group of machines instead.

However, it is always good practice to have Spark locally, as well as to test

code on sample data. So, follow these steps to do so:

	 1.	 Ensure that Java is installed; otherwise install Java.

	 2.	 Download the latest version of Apache Spark from

https://spark.apache.org/downloads.html.

	 3.	 Extract the files from the zipped folder.

	 4.	 Copy all the Spark-related files to their respective

directory.

	 5.	 Configure the environment variables to be able to

run Spark.

	 6.	 Verify the installation and run Spark.

Chapter 1 Introduction to Spark

https://spark.apache.org/downloads.html

11

�Dockers
Another way of using Spark locally is through the containerization

technique of dockers. This allows users to wrap all the dependencies and

Spark files into a single image, which can be run on any system. We can

kill the container after the task is finished and rerun it, if required. To use

dockers for running Spark, we must install Docker on the system first

and then simply run the following command: [In]: docker run -it -p

8888:8888 jupyter/pyspark-notebook".

�Cloud Environments
As discussed earlier in this chapter, for various reasons, local sets are not

of much help when it comes to big data, and that’s where cloud-based

environments make it possible to ingest and process huge datasets in a

short period. The real power of Spark can be seen easily while dealing with

large datasets (in excess of 100TB). Most of the cloud-based infra-providers

allow you to install Spark, which sometimes comes preconfigured as well.

One can easily spin up the clusters with required specifications, according

to need. One of the cloud-based environments is Databricks.

�Databricks

Databricks is a company founded by the creators of Spark, in order to

provide the enterprise version of Spark to businesses, in addition to

full-fledged support. To increase Spark’s adoption among the community

and other users, Databricks also provides a free community edition of

Spark, with a 6GB cluster (single node). You can increase the size of the

Chapter 1 Introduction to Spark

12

cluster by signing up for an enterprise account with Databricks, using the

following steps:

	 1.	 Search for the Databricks web site and select

Databricks Community Edition, as shown in

Figure 1-6.

Figure 1-6.  Databricks web page

	 2.	 If you have a user account with Databricks, you can

simply log in. If you don’t have an account, you must

create one, in order to use Databricks, as shown in

Figure 1-7.

Chapter 1 Introduction to Spark

13

	 3.	 Once you are on the home page, you can choose to

either load a new data source or create a notebook

from scratch, as shown in Figure 1-8. In the latter

case, you must have the cluster up and running, to

be able to use the notebook. Therefore, you must

click New Cluster, to spin up the cluster. (Databricks

provides a 6GB AWS EMR cluster.)

Figure 1-7.  Databricks login

Chapter 1 Introduction to Spark

14

	 4.	 To set up the cluster, you must give a name to the

cluster and select the version of Spark that must

configure with the Python version, as shown in

Figure 1-9. Once all the details are filled in, you must

click Create Cluster and wait a couple of minutes,

until it spins up.

Figure 1-9.  Creating a Databricks cluster

Figure 1-8.  Creating a Databricks notebook

Chapter 1 Introduction to Spark

15

	 5.	 You can also view the status of the cluster by going

into the Clusters option on the left side widget, as

shown in Figure 1-10. It gives all the information

associated with the particular cluster and its current

status.

Figure 1-10.  Databricks cluster list

	 6.	 The final step is to open a notebook and attach it

to the cluster you just created (Figure 1-11). Once

attached, you can start the PySpark code.

Figure 1-11.  Databricks notebook

Chapter 1 Introduction to Spark

16

Overall, since 2010, when Spark became an open source platform, its

users have risen in number consistently, and the community continues to

grow every day. It’s no surprise that the number of contributors to Spark

has outpaced that of Hadoop. Some of the reasons for Spark’s popularity

were noted in a survey, the results of which are shown in Figure 1-12.

Figure 1-12.  Results of Spark adoption survey

�Conclusion
This chapter provided a brief history of Spark, its core components, and

the process of accessing it in a cloud environment. In upcoming chapters,

I will delve deeper into the various aspects of Spark and how to build

different applications with it.

Chapter 1 Introduction to Spark

17© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_2

CHAPTER 2

Data Processing
This chapter covers different steps to preprocess and handle data in

PySpark. Preprocessing techniques can certainly vary from case to case,

and many different methods can be used to massage the data into desired

form. The idea of this chapter is to expose some of the common techniques

for dealing with big data in Spark. In this chapter, we are going to go over

different steps involved in preprocessing data, such as handling missing

values, merging datasets, applying functions, aggregations, and sorting.

One major part of data preprocessing is the transformation of numerical

columns into categorical ones and vice versa, which we are going to look at

over the next few chapters and are based on machine learning. The dataset

that we are going to make use of in this chapter is inspired by a primary

research dataset and contains a few attributes from the original dataset,

with additional columns containing fabricated data points.

Note  All the following steps are written in Jupyter Notebook,
running Spark on a Docker image (mentioned in Chapter 1). All the
subsequent code can also be run in Databricks.

18

�Creating a SparkSession Object
The first step is to create a SparkSession object, in order to use Spark. We

also import all the required functions and datatypes from spark.sql:

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('data_processing').

getOrCreate()

[In]: import pyspark.sql.functions as F

[In]: from pyspark.sql.types import *

Now, instead of directly reading a file to create a dataframe, we go

over the process of creating a dataframe, by passing key values. The way

we create a dataframe in Spark is by declaring its schema and pass the

columns values.

�Creating Dataframes
In the following example, we are creating a new dataframe with five

columns of certain datatypes (string and integer). As you can see, when

we call show on the new dataframe, it is created with three rows and five

columns containing the values passed by us.

[In]:schema=StructType().add("user_id","string").

add("country","string").add("browser", "string").

add("OS",'string').add("age", "integer")

[In]: df=spark.createDataFrame([("A203",'India',"Chrome","WIN",

33),("A201",'China',"Safari","MacOS",35),("A205",'UK',"Mozilla",

"Linux",25)],schema=schema)

[In]: df.printSchema()

[Out]:

Chapter 2 Data Processing

19

[In]: df.show()

[Out]:

�Null Values
It is very common to have null values as part of the overall data. Therefore,

it becomes critical to add a step to the data processing pipeline, to handle

the null values. In Spark, we can deal with null values by either replacing

them with some specific value or dropping the rows/columns containing

null values.

First, we create a new dataframe (df_na) that contains null values in

two of its columns (the schema is the same as in the earlier dataframe).

By the first approach to deal with null values, we fill all null values in the

present dataframe with a value of 0, which offers a quick fix. We use the

fillna function to replace all the null values in the dataframe with 0.

By the second approach, we replace the null values in specific columns

(country, browser) with 'USA' and 'Safari', respectively.

[In]: df_na=spark.createDataFrame([("A203",None,"Chrome","WIN",

33),("A201",'China',None,"MacOS",35),("A205",'UK',"Mozilla",

"Linux",25)],schema=schema)

[In]: df_na.show()

[Out]:

Chapter 2 Data Processing

20

[In]: df_na.fillna('0').show()

[Out]:

[In]: df_na.fillna({ 'country':'USA', 'browser':'Safari' }).show()

[Out]:

In order to drop the rows with any null values, we can simply use the

na.drop functionality in PySpark. Whereas if this needs to be done for

specific columns, we can pass the set of column names as well, as shown

in the following example:

[In]: df_na.na.drop().show()

[Out]:

Chapter 2 Data Processing

21

[In]: df_na.na.drop(subset='country').show()

[Out]:

Another very common step in data processing is to replace some data

points with particular values. We can use the replace function for this, as

shown in the following example. To drop the column of a dataframe, we

can use the drop functionality of PySpark.

[In]: df_na.replace("Chrome","Google Chrome").show()

[Out]:

[In]: df_na.drop('user_id').show()

[Out]:

Chapter 2 Data Processing

22

Now that we have seen how to create a dataframe by passing a value

and how to treat missing values, we can create a Spark dataframe, by

reading a file (.csv, parquet, etc.). The dataset contains a total of seven

columns and 2,000 rows. The summary function allows us to see the

statistical measures of the dataset, such as the min, max, and mean of the

numerical data present in the dataframe.

[In]: df=spark.read.csv("customer_data.csv",header=True,

inferSchema=True)

[In]: df.count()

[Out]: 2000

[In]: len(df.columns)

[Out]: 7

[In]: df.printSchema()

[Out]:

[In]: df.show(3)

[Out]:

Chapter 2 Data Processing

23

[In]: df.summary().show()

[Out]:

Most of the time, we won’t use all the columns present in the

dataframe, as some might be redundant and carry very little value in terms

of providing useful information. Therefore, subsetting the dataframe

becomes critical for having proper data in place for analysis. I’ll cover this

in the next section.

�Subset of a Dataframe
A subset of a dataframe can be created, based on multiple conditions in

which we either select a few rows, columns, or data with certain filters in

place. In the following examples, you will see how we can create a subset

of the original dataframe, based on certain conditions, to demonstrate the

process of filtering records.

•	 Select

•	 Filter

•	 Where

Chapter 2 Data Processing

24

�Select
In this example, we take one of the dataframe columns, 'Avg_Salary', and

create a subset of the original dataframe, using select. We can pass any

number of columns that must be present in the subset. We then apply a

filter on the dataframe, to extract the records, based on a certain threshold

(Avg_Salary > 1000000). Once filtered, we can either take the total count

of records present in the subset or take it for further processing.

[In]: df.select(['Customer_subtype','Avg_Salary']).show()

[Out]:

Chapter 2 Data Processing

25

[In]: df.filter(df['Avg_Salary'] > 1000000).count()

[In]: 128

[In]: df.filter(df['Avg_Salary'] > 1000000).show()

�Filter
We can also apply more than one filter on the dataframe, by including

more conditions, as shown following. This can be done in two ways: first,

by applying consecutive filters, then by using (&, or) operands with a

where statement.

[In]: df.filter(df['Avg_Salary'] > 500000).filter(df['Number_

of_houses'] > 2).show()

[Out]:

Chapter 2 Data Processing

26

Where
[In]: df.where((df['Avg_Salary'] > 500000) & (df['Number_of_

houses'] > 2)).show()

[Out]:

Now that we have seen how to create a subset from a dataframe, we

can move on to aggregations in PySpark.

�Aggregations
Any kind of aggregation can be broken simply into three stages, in the

following order:

•	 Split

•	 Apply

•	 Combine

The first step is to split the data, based on a column or group of

columns, followed by performing the operation on those small individual

groups (count, max, avg, etc.). Once the results are in for each set of

groups, the last step is to combine all these results.

In the following example, we aggregate the data, based on 'Customer

subtype', and simply count the number of records in each category.

We use the groupBy function in PySpark. The output of this is not in

any particular order, as we have not applied any sorting to the results.

Therefore, we will also see how we can apply any type of sorting to the

final results. Because we have seven columns in the dataframe—all are

Chapter 2 Data Processing

27

categorical columns except for one (Avg_Salary), we can iterate over each

column and apply aggregation as in the following example:

[In]: df.groupBy('Customer_subtype').count().show()

[Out]:

[In]:

for col in df.columns:

 if col !='Avg_Salary':

 print(f" Aggregation for {col}")

 �df.groupBy(col).count().orderBy('count',ascending=

False).show(truncate=False)

Chapter 2 Data Processing

28

[Out]:

Chapter 2 Data Processing

29

As mentioned, we can have different kinds of operations on groups of

records, such as

•	 Mean

•	 Max

•	 Min

•	 Sum

Chapter 2 Data Processing

30

The following examples cover some of these, based on different

groupings. F refers to the Spark sql function here.

[In]: df.groupBy('Customer_main_type').agg(F.mean('Avg_

Salary')).show()

[Out]:

[In]: df.groupBy('Customer_main_type').agg(F.max('Avg_

Salary')).show()

[Out]:

Chapter 2 Data Processing

31

[In]: df.groupBy('Customer_main_type').agg(F.min('Avg_

Salary')).show()

[Out]:

[In]: df.groupBy('Customer_main_type').agg(F.sum('Avg_

Salary')).show()

[Out]:

Chapter 2 Data Processing

32

Sometimes, there is simply a need to sort the data with aggregation

or without any sort of aggregation. That’s where we can make use of the

'sort' and 'orderBy' functionality of PySpark, to rearrange data in a

particular order, as shown in the following examples:

[In]: df.sort("Avg_Salary", ascending=False).show()

[Out]:

[In]: df.groupBy('Customer_subtype').agg(F.avg('Avg_Salary').

alias('mean_salary')).orderBy('mean_salary',ascending=False).

show(50,False)

[Out]:

Chapter 2 Data Processing

33

[In]: df.groupBy('Customer_subtype').agg(F.max('Avg_Salary').

alias('max_salary')).orderBy('max_salary',ascending=False).

show()

[Out]:

Chapter 2 Data Processing

34

In some cases, we must also collect the list of values for particular

groups or for individual categories. For example, let’s say a customer goes

to an online store and accesses different pages on the store’s web site. If we

have to collect all the customer’s activities in a list, we can use the collect

functionality in PySpark. We can collect values in two different ways:

•	 Collect List

•	 Collect Set

Chapter 2 Data Processing

35

�Collect
Collect list provides all the values in the original order of occurrence (they

can be reversed as well), and collect set provides only the unique values,

as shown in the following example. We consider grouping on Customer

subtype and collecting the Numberof houses values in a new column,

using list and set separately.

[In]: df.groupby("Customer_subtype").agg(F.collect_set("Number_

of_houses")).show()

[Out]:

[In]:

df.groupby("Customer_subtype").agg(F.collect_list("Number_of_

houses")).show()

[Out]:

Chapter 2 Data Processing

36

The need to create a new column with a constant value can be very

common. Therefore, we can do that in PySpark, using the 'lit' function.

In the following example, we create a new column with a constant value:

[In]: df=df.withColumn('constant',F.lit('finance'))

[In]: df.select('Customer_subtype','constant').show()

Chapter 2 Data Processing

37

[Out]:

Because we are dealing with dataframes, it is a common requirement

to apply certain custom functions on specific columns and get the output.

Hence, we make use of UDFs, in order to apply Python functions on one or

more columns.

�User-Defined Functions (UDFs)
In this example, we are trying to name the age categories and create a

standard Python function (age_category) for the same. In order to apply

this on the Spark dataframe, we create a UDF object, using this Python

Chapter 2 Data Processing

38

function. The only requirement is to mention the return type of the

function. In this case, it is simply a string value.

[In]: from pyspark.sql.functions import udf

[In]: df.groupby("Avg_age").count().show()

[Out]:

[In]: def age_category(age):

 if age == "20-30 years":

 return "Young"

 elif age== "30-40 years":

 return "Mid Aged"

 elif ((age== "40-50 years") or (age== "50-60 years")) :

 return "Old"

 else:

 return "Very Old"

[In]: age_udf=udf(age_category,StringType())

[In]: df=df.withColumn('age_category',age_udf(df['Avg_age']))

[In]: df.select('Avg_age','age_category').show()

[Out]:

Chapter 2 Data Processing

39

[In]: df.groupby("age_category").count().show()

[Out]:

Pandas UDFs are another recent advancement, so let’s review

them now.

Chapter 2 Data Processing

40

�Pandas UDF
Pandas UDFs are much faster and efficient, in terms of processing and

execution time, compared to standard Python UDFs. The main difference

between a normal Python UDF and a Pandas UDF is that a Python UDF is

executed row by row and, therefore, really doesn’t offer the advantage of

a distributed framework. It can take longer, compared to a Pandas UDF,

which executes block by block and gives faster results. There are three

different types of Pandas UDFs: scalar, grouped map, and grouped agg. The

only difference in using a Pandas UDF compared to a traditional UDF lies

in the declaration. In the following example, we try to scale the Avg_Salary

values by applying scaling. We first take the min and max values of Avg_

Salary, subtract from each value the minimum salary from each value,

and then divide by the difference between max and min.

X X

X X

-
-

min

max min

[In]: df.select('Avg_Salary').summary().show()

[Out]:

[In]: min_sal=1361

[In]: max_sal=48919896

Chapter 2 Data Processing

41

[In]: from pyspark.sql.functions import pandas_udf,

PandasUDFType

[In]: def scaled_salary(salary):

 scaled_sal=(salary-min_sal)/(max_sal-min_sal)

 return scaled_sal

[In]: scaling_udf = pandas_udf(scaled_salary, DoubleType())

[In]:df.withColumn("scaled_salary",scaling_udf(df['Avg_

Salary'])).show(10,False)

[Out]:

This is how we can use both conventional and Pandas UDFs to apply

different conditions on the dataframe, as required.

�Joins
Merging different datasets is a very generic requirement present in most

of data-processing pipelines in the big data world. PySpark offers a very

convenient way to merge and pivot your dataframe values, as required.

In the following example, we create a fabricated dataframe with some

Chapter 2 Data Processing

42

dummy Region Code values for all Customer types. The idea is to combine

this dataframe with the original dataframe, so as to have these region

codes as part of the original dataframe, as a column.

[In]: region_data = spark.createDataFrame([('Family with grown

ups','PN'),

 ('Driven Growers','GJ'),

   ('Conservative families','DD'),

 ('Cruising Seniors','DL'),

 ('Average Family ','MN'),

 ('Living well','KA'),

 ('Successful hedonists','JH'),

   ('Retired and Religious','AX'),

   �('Career Loners','HY'),('Farmers','JH')],

schema=StructType().add("Customer_main_

type","string").add("Region Code","string"))

[In]: region_data.show()

[Out]:

[In]: new_df=df.join(region_data,on='Customer_main_type')

[In]: new_df.groupby("Region Code").count().show()

Chapter 2 Data Processing

43

[Out]:

We took the regional count after joining the original dataframe (df)

with the newly created region_data dataframe on the Customer_main_

type column.

�Pivoting
We can use the pivot function in PySpark to simply create a pivot view of

the dataframe for specific columns, as shown in the following example.

Here, we are grouping data, based on customer type. Columns represent

different age groups. The values inside the pivot table are the sum of the

Avg Salary of each of these customer type categories for a particular age

group. We also ensure that there are no nulls or empty values, by filling all

nulls with 0. In the subsequent example, we create one more pivot table,

using the label column and take the sum of Avg Salary as the values

inside it.

[In]:df.groupBy('Customer_main_type').pivot('Avg_age').

sum('Avg_Salary').fillna(0).show()

[Out]:

Chapter 2 Data Processing

44

[In]:df.groupBy('Customer_main_type').pivot('label').sum('Avg_

Salary').fillna(0).show()

[Out]:

We split the data, based on the Customer_main_type column, and took

the cumulative sum of the Avg_Salary of each of the label values (0,1),

using the pivot function.

�Window Functions or Windowed Aggregates
This functionality in PySpark allows you to perform certain operations on

groups of records known as “within the window.” It calculates the results

for each row within the window. A classic example of using window is the

various aggregations for a user during different sessions. A visitor might

Chapter 2 Data Processing

45

have multiple sessions on a particular web site and, hence window can be

used to count the total activities of the user during each session. PySpark

supports three types of window functions:

•	 Aggregations

•	 Ranking

•	 Analytics

In the following example, we import the window function, in addition

to others, such as row_number. The next step is to define the window.

Sometimes it can be simply an ordered column, or sometimes it can be

based on particular categories within a column. We will see examples of

each of these. In the first example, we define the window, which is just based

on the sorted Avg Salary column, and we rank these salaries. We create a

new column 'rank' and assign ranks to each of the Avg Salary values.

[In]: from pyspark.sql.window import Window

[In]: from pyspark.sql.functions import col,row_number

[In]: win = Window.orderBy(df['Avg_Salary'].desc())

[In]: df=df.withColumn('rank', row_number().over(win).

alias('rank'))

[In]: df.show()

[Out]:

Chapter 2 Data Processing

46

One common requirement is to find the top-three values from

a category. In this case, window can be used to get the results. In the

following example, we define the window and partition by the Customer

subtype column. Basically, what it does is sort the Avg Salary for each

of the Customer subtype category, so now we can use filter to fetch the

top-three salary values for each group.

[In]:win_1=Window.partitionBy("Customer_subtype").

orderBy(df['Avg_Salary'].desc())

[In]: df=df.withColumn('rank', row_number().over(win_1).

alias('rank'))

Now that we have a new column rank that consists of the rank or each

category of Customer_subtype, we can filter the top-three ranks for each

category easily.

[In]: df.groupBy('rank').count().orderBy('rank').show()

[Out]:

Chapter 2 Data Processing

47

[In]: df.filter(col('rank') < 4).show()

[Out]:

Chapter 2 Data Processing

48

�Conclusion
In this chapter, I discussed different techniques to read, clean, and

preprocess data in PySpark. You saw the methods to join a dataframe and

create a pivot table from it. The final sections of the chapter covered UDFs

and window-based operations in PySpark. The upcoming chapters will

focus on handling streaming data in PySpark and machine learning

using MLlib.

Chapter 2 Data Processing

49© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_3

CHAPTER 3

Spark Structured
Streaming
This chapter discusses how to use Spark’s streaming API to process real-

time data. The first part focuses on the main difference between streaming

and batch data, in addition to their specific applications. The second

section provides details on the Structured Streaming API and its various

improvements over previous RDD-based Spark streaming APIs. The final

section includes the code to use for Structured Streaming on incoming

data and discusses how to save the output results in memory. We’ll also

look at an alternative to Structured Streaming.

�Batch vs. Stream
Perhaps most readers of this book are already familiar with the key

distinction between batch vs. stream data processing. Nonetheless, we can

start on this note, as it emphasizes the importance of stream processing

today. If we think of data as a huge ocean, then batch data can be referred

to as a bucket of water, and we can have multiple buckets of different

sizes, whereas stream data can be considered to be a water pipe that is

continuously pumping water from the ocean.

50

�Batch Data
As the name suggests, batch refers to a group of records put together

over a period of time and later used for processing and analysis. Because

these records are collected over a period of time, size-wise, batch data is

generally bigger than streaming data (in some cases, however, stream data

can be bigger than batch data) and is often used to conduct postmortems

for various analysis purposes. The legacy systems, SQL databases, and

mainframes all fall under the category of batch data. The key difference

compared to streaming data is that batch data is not processed as soon as

it becomes part of an earlier batch dataset.

�Stream Processing
Stream processing refers to the processing of records in real time or

near real time. One doesn’t wait for the day to end to then process or

analyze the data. Rather, records of the dataset are processed one by one

as soon as they become available or based on a window period, as shown

in Figure 3-1. As a result, this creates a sort of infinite table, with records

continuously being added as data flows from the stream.

Figure 3-1.  Streaming data

Chapter 3 Spark Structured Streaming

51

Today, businesses are very aggressive about using real-time data from

various sources, such as platforms, devices, applications, and system logs,

in order to keep their competitive edge. Therefore, stream processing has

become a critical part of that overall process. Businesses want to use the

latest or freshest data, to generate useful insights that can help in decision

making. Batch processing cannot offer analytics on the fly, as it doesn’t

work on a real-time basis, whereas stream data processing can help more

effectively in such cases as fraud detection.

�Spark Streaming
In the previous chapter, you have seen the core architecture of Spark. One

of the components of the Spark framework is Spark Streaming (Structured

Streaming), shown in Figure 3-2.

Figure 3-2.  Spark Streaming

Chapter 3 Spark Structured Streaming

52

The earlier version of Spark offered a streaming API that was known

as Spark Streaming (Dstream). Spark Streaming was based on RDDs

(an earlier Spark abstraction before DataFrame/datasets) and had few

limitations. As shown in Figure 3-3, it was able to receive input data from

various sources, such as Kafka, Flume, etc., and convert the incoming data

into micro-batches and process them using Spark Engine.

The results of each batch would be generated as stream-only and

would be saved to the output location. Each micro-batch was an RDD,

based on certain time intervals, as shown in Figure 3-4.

Figure 3-3.  Spark Streaming data flow

Figure 3-4.  Spark Streaming batch processing

Chapter 3 Spark Structured Streaming

53

Although the earlier Spark streaming component was quite powerful in

terms of handling the streaming data processing, it was lacking in certain

aspects.

	 1.	 One core drawback was that there were different

APIs for batch and stream data processing jobs. Lots

of changes (translations) had to be made to convert

a batch job into a Dstream job.

	 2.	 It was unable to handle batch data processing based

on event time, only on batch time. It was difficult to

manage late arriving data for processing.

	 3.	 It had limited fault tolerance capability, without any

end-to-end guarantee of consistent data processing.

�Structured Streaming
The latest version of the streaming component in Spark is known as

Structured Streaming, which is a huge improvement over the last RDD-

based Spark streaming API. The first significant change from the previous

version is that Structured Streaming offers the same API for batch as well

as stream data processing jobs. Therefore, it works in a similar way for

static and bounded batch data as for streaming and unbounded data, as

shown in Figure 3-5.

Chapter 3 Spark Structured Streaming

54

Another major shift from earlier versions is that Spark Structured

Streaming is now built on top of the Spark SQL engine and uses DataFrame

for multiple operations, such as aggregation, filters, etc. It also provides the

end-to-end guarantee of data consistency, while writing the results in an

output location. In order to understand how Structured Streaming works,

let’s go through how data flows through its programming model, as shown

in Figure 3-6.

Figure 3-5.  Static vs. Streaming DataFrame

Chapter 3 Spark Structured Streaming

55

As the data arrives at time interval 1 (based on the window period

selected), the input DataFrame consists of all the records up to that

time interval (t=1). The next step is query execution (processing,

transformation, join, aggregation) on that particular DataFrame (t=1).

Once the query is completed, the results are made available, to be saved

in the relevant output (console, memory, location). Now, new data arrives

at time interval 2 and is added to the earlier DataFrame (t=1), resulting in

a larger DataFrame (t=2). The query is again executed, but this time on

a new DataFrame (t=2), and the results are saved in the selected output

mode. This process continues for incoming streams of records, and each

record is appended to the input DataFrame for data processing.

Figure 3-6.  Structured Streaming process

Chapter 3 Spark Structured Streaming

56

Now that we understand the basic process of data processing with

Structured Streaming, we can consider the core pieces of a streaming-

based application. There are three main areas into which we can divide

this streaming framework:

	 1.	 Data input

	 2.	 Data processing (real time or near real time)

	 3.	 Final output

�Data Input
Any streaming application requires data, to be able to ingest and process

data continuously. Therefore, there are multiple ways to provide data as

input to the Structured Streaming platform.

•	 Messaging systems: Apache Kafka, Flume, and Logstash

can be used to ingest real-time data and, hence, can

easily become part of building streaming pipelines. The

idea of using these tools is to capture all the data points

as data is generated at the source application (web

app, mobile app, IoT device) and pass it along to the

Structured Streaming platform for further processing

and analysis in a fault-tolerant and scalable manner.

•	 File folders/directory: Files are read continuously from

the directory as a stream of data. A scheduler can be

used to put the new files into the directory. The files

can be in text, Parquet, or JSON format. The only

condition is to have all the files available in the same

format.

Chapter 3 Spark Structured Streaming

57

�Data Processing
This is at the core of using streaming data for creating business value, as it

can be applied to certain operations on the incoming data to get results.

Such operations as aggregations, filtering, joins, sorting, etc., can be applied.

�Final Output
Structured Streaming provides multiple options for users to save their

output results, as required, and it can either be in Append or Complete

mode. Append mode refers to adding only new results to the final output

table, whereas Complete mode updates the entire results table at the final

output location.

	 1.	 File directory sink

	 2.	 Console

	 3.	 Memory sink

�Building a Structured App
In this final section of the chapter, we now build a Structured Streaming

app that can read files from the local system folder as new files are added

to the folder as stream data and apply all the operations on the new data

and, finally, write the results in an output directory. The first step is to

create the SparkSession object, in order to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('structured_

streaming').getOrCreate()

[In]: import pyspark.sql.functions as F

[In]: from pyspark.sql.types import *

Chapter 3 Spark Structured Streaming

58

Then, we create some self-generated data that can be pushed into a

respective local directory ("csv folder"), to be read by the Structured

Streaming. The data that we will generate contains four columns and is in

CSV format. We can also generate a Parquet format, if required.

	 1.	 User ID

	 2.	 App

	 3.	 Time spent (secs)

	 4.	 Age

[In]:df_1=spark.createDataFrame([("XN203",'FB',300,30),

("XN201",'Twitter',10,19),("XN202",'Insta',500,45)],

["user_id","app","time_in_secs","age"]).write.csv

("csv_folder",mode='append')

Once we have created these dataframes, we can define the schema of

these files, in order to read them using stream processing.

[In]:schema=StructType().add("user_id","string").

add("app","string").add("time_in_secs", "integer").add("age",

"integer")

Now that we have one file available in the local folder ("csv folder"),

we can go ahead and read it as a stream dataframe. The API to read a static

dataframe is similar to that for reading a streaming dataframe, the only

difference being that we use readStream.

[In]: data=spark.readStream.option("sep", ",").schema(schema).

csv("csv_folder")

Chapter 3 Spark Structured Streaming

59

To validate the schema of the dataframe, we can use the printSchema

command.

[In]: data.printSchema()

[Out]:

�Operations
Once we have the streaming dataframe available, we can apply multiple

transformations, in order to get different results, based on specific

requirements. In this example, we are going to see aggregations,

sorting, filters, etc. First, is simply to count the records of each app in

the dataframe. We can write the command as if we are applying the

transformations on the static dataframe.

[In]: app_count=data.groupBy('app').count()

In order to view the results, we must mention the output mode, in

addition to the desired location. In this example, we write the results in

memory, but it can be written to console, specific cloud storage, or any

other location. We also give the output mode as complete, in order to write

results on the entire dataframe every time. Finally, we use a simple Spark

SQL command to view the output from the query we executed on the

streaming dataframe, by converting to a Pandas dataframe.

[In]:query=(app_count.writeStream.queryName('count_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from count_query ").toPandas().head(5)

[Out]:

Chapter 3 Spark Structured Streaming

60

In this example, a query is being written to filter only the records of the

Facebook (FB) app. The average time spent by each user on the FB app is

then calculated.

[In]: fb_data=data.filter(data['app']=='FB')

[In]: fb_avg_time=fb_data.groupBy('user_id').agg(F.avg("time_

in_secs"))

[In]:fb_query=(fb_avg_time.writeStream.queryName('fb_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from fb_query ").toPandas().head(5)

[Out]:

Because there is only one dataframe currently in the local folder, we get

the output of one user accessing FB and the time spent. In order to view

more relative results, let’s push more self-generated data to the folder.

[In]:df_2=spark.createDataFrame([("XN203",'FB',100,30),("XN201",

'FB',10,19),("XN202",'FB',2000,45)],["user_id","app","time_in_

secs","age"]).write.csv("csv_folder",mode='append')

We can now safely assume that Spark Structured Streaming has read

the new records and appended them into the streaming dataframe and,

therefore, the new results for the same query will differ from the last one.

[In]: spark.sql("select * from fb_query ").toPandas().head(5)

Chapter 3 Spark Structured Streaming

61

[Out]:

Now, we have the average time spent across all users using the FB app.

Let’s add few more records to the folder.

[In]:df_3=spark.createDataFrame([("XN203",'FB',500,30),

("XN201",'Insta',30,19),("XN202",'Twitter',100,45)],

["user_id","app","time_in_secs","age"]).write.csv("csv_folder",

mode='append')

[In]: spark.sql("select * from fb_query ").toPandas().head(5)

[Out]:

In this example, we see aggregation and sorting of the query on the

existing dataframe in the local folder. We group all the records by app and

calculate the total time spent on each app, in decreasing order.

[In]:app_df=data.groupBy('app').agg(F.sum('time_in_secs').

alias('total_time')).orderBy('total_time',ascending=False)

[In]:app_query=(app_df.writeStream.queryName('app_wise_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from app_wise_query ").toPandas().head(5)

Chapter 3 Spark Structured Streaming

62

[Out]:

We now have the results for each app and the total time spent by all

users on the respective app, using a stream dataframe. Let’s add new

records one more time and see the revised results for the same query.

[In]:df_4=spark.createDataFrame([("XN203",'FB',500,30),

("XN201",'Insta',30,19),("XN202",'Twitter',100,45)],

["user_id","app","time_in_secs","age"]).write.csv("csv_folder",

mode='append')

[In]: spark.sql("select * from app_wise_query ").toPandas().

head(5)

[Out]:

In this example, we try to find the average age of users for every app in

our data. We simply group the data by app, take the average age of all the

users, and sort the results in decreasing order.

[In]:age_df=data.groupBy('app').agg(F.avg('age').alias('mean_

age')).orderBy('mean_age',ascending=False)

Chapter 3 Spark Structured Streaming

63

[In]:age_query=(age_df.writeStream.queryName('age_query').

outputMode('complete').format('memory').start())

[In]:df_5=spark.createDataFrame([("XN210",'FB',500,50),

("XN255",'Insta',30,23),("XN222",'Twitter',100,30)],

["user_id","app","time_in_secs","age"]).write.csv("csv_folder",

mode='append')

[In]: spark.sql("select * from age_query ").toPandas().head(5)

[Out]:

So, in the preceding examples, we see how we can use Spark Structured

Streaming to read the incoming data and create a streaming dataframe to

apply various transformations and write the results in a particular location.

One more common requirement on streaming data is joins.

�Joins
Sometimes we have to merge incoming data with batch data, to make it

more comprehensive. In the following example, we will see how we can

merge incoming data (stream dataframe) with a static dataframe that

contains the full name of the apps. Let’s create a new static dataframe with

two columns (app and full name).

 [In]:app_df=spark.createDataFrame([('FB','FACEBOOK'),('Insta',

'INSTAGRAM'),('Twitter','TWITTER')],["app", "full_name"])

[In]: app_df.show()

Chapter 3 Spark Structured Streaming

64

[Out]:

Now that we have a static dataframe available, we can simply write

a new query to join the streaming dataframe (data) that we have been

working with so far and merge both of them in an app column.

[In]: app_stream_df=data.join(app_df,'app')

[In]:join_query=(app_stream_df.writeStream.queryName('join_

query').outputMode('append').format('memory').start())

[In]: spark.sql("select * from join_query ").toPandas().

head(50)

[Out]:

Chapter 3 Spark Structured Streaming

65

As you can see, we now have the additional column (full_name) in the

streaming dataframe as well.

�Structured Streaming Alternatives
Since Spark Structured Streaming was made available in 2016, it has been

rapidly gaining attention from the developers community. Having said

that, however, there are a couple of other powerful alternatives to Spark’s

Structured Streaming. One of them is Flink, which offers similar capability,

in terms of streaming data processing with excellent latency rate. Another

alternative is Google’s Beam, which is suitable in limited cases.

The core advantage of Spark’s Structured Streaming over the

alternatives is the full-fledged framework provided by Spark as a whole,

including batch processing (no major difference in code for batch or

stream) and the machine learning library. Another great attribute of

Structured Streaming is its Spark SQL API, which is extremely comfortable

to many users. It is hoped that new versions of Spark will include more

features for Structured Streaming, such as stream joins. Selection depends

on the specific requirements of the application and finding the best

possible alternative to make it scalable, fault-tolerant, and robust.

�Conclusion
In this chapter, the basic difference between batch and streaming data was

identified. How Spark’s streaming API has evolved over the last few years

to become the default framework for building streaming data applications

was then discussed. Examples of how Spark’s Structured Streaming API is

used to read streaming data (local folders), and how to save the aggregated

results, were then provided.

Chapter 3 Spark Structured Streaming

67© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_4

CHAPTER 4

Airflow
This chapter focuses on introducing Airflow and how it can be used to

handle complex data workflows. Airflow was developed in-house by

Airbnb engineers, to manage internal workflows in an efficient manner.

Airflow later went on to become part of Apache in 2016 and was made

available to users as an open source. Basically, Airflow is a framework for

executing, scheduling, distributing, and monitoring various jobs in which

there can be multiple tasks that are either interdependent or independent

of one another. Every job that is run using Airflow must be defined via a

directed acyclic graph (DAG) definition file, which contains a collection

you want to run, grouped by relationships and dependencies.

This chapter concentrates on three main topics. I’ll start by examining

workflow and then cover the basic building block of Airflow: DAG. You will

then learn about the user interface aspect of Airflow. In the final section,

I will go over the code to define DAG for a job and how to use Airflow to

execute and monitor it.

�Workflows
Most of the things that we see around us follow a process. Trains run at set

intervals, planes fly on fixed times, and signals on roads change at regular

periods. Process is critical if consistency is required, especially when

there are dependencies among different tasks. In the world of software or

technology, a set process is also followed, in building or executing projects.

If we go down a few levels, we can call these processes workflows. A proper

68

workflow must be designed and executed, in order to achieve the desired

results. It is rare to witness developers or engineers who don’t follow a

standard procedure, to build a solution or application. For example, in a

typical scenario for data processing workflow, developers will define the

steps before executing the tasks, as shown in Figure 4-1. These steps are

often referred to as pipelines, which consist of sequences of tasks that must

be completed.

Figure 4-1.  Sample workflow

The first task is to read the data from the source file and then copy

it to your platform or desired location. Once data is made available, you

ingest it and pass it through multiple steps to clean and transform it. You

then perform the analysis and calculate the results. Finally, you save the

output to the required location. Traditionally, the way these steps are

executed is with the help of cron jobs (commands run by the cron daemon

at scheduled intervals). So, all the tasks are part of the scripts which are

run as cron jobs. Although, it serves the purpose of executing things in a

particular order, it still faces many practical challenges. Most common is

the breakdown of the script execution. There is no clear methodology to

re-attempt the script run. Another challenge is monitoring the status of the

running job. It is very difficult to determine the stage and the time duration

each stage takes while executing. There are other challenges as well, such

as running multiple cron jobs through a centralized scheduler, for bigger

and complex pipelines and to accommodate continuous changes in the

workflow. Owing to all of the difficulties mentioned, Airflow was born as

a framework with which to schedule and monitor such kinds of jobs and

run the pipelines smoothly, for consistent output. To truly understand how

Airflow and DAGs operate, you first must understand graphs in general.

Chapter 4 Airflow

69

�Graph Overview
A typical graph data structure consists of two entities, shown in Figure 4-2.

	 1.	 Edges

	 2.	 Nodes/vertices

Figure 4-2.  Structure of a graph

The edges are essentially the connections between the nodes/vertices,

and nodes are where actual data resides. We can place graph-based

networks into two main categories:

	 1.	 Undirected graphs

	 2.	 Directed graphs

�Undirected Graphs
In this kind of graph structure, the edges or connections don’t have any

direction, as in Figure 4-2. The relationship will exist at both ends. For

example, if person 1 in node 1 is a friend of person 2 in node 2, then person 2

would also be a friend of person 1.

Chapter 4 Airflow

70

�Directed Graphs
A directed graph is either cyclic or acyclic. The direction of the edge

plays an important role, as all the edges in a graph go only one way, as in

Figure 4-3.

Cyclic graphs have one or more cycles. A cycle is a path that begins and

ends at the same node, as shown in Figure 4-4. The information flows from

node 1 to node 2, but there is another way back from node 2 to node 1. This

is known as a cycle, or loop, graph.

Figure 4-3.  Directed graph

Figure 4-4.  Cyclic graph

Chapter 4 Airflow

71

There are no cycles in DAGs, so their benefits include the following:

•	 A dynamic framework (configuration as code)

•	 Extensibility—They support different types of task

execution.

•	 Scalability—They can perform an infinite number of

tasks (worker nodes).

Let’s now turn our attention to DAGs.

�DAG Overview
Because a DAG is a directed graph, information can flow in only one

direction, and that’s forward, as illustrated in Figure 4-5. So, if node 4 must

be reached, the path is 1 ➤ 2 ➤ 4. In DAGs, there is no reverse path back to

the starting node.

Chapter 4 Airflow

72

All the tasks of jobs in Airflow must be defined in a DAG. So, the

order of execution is defined in DAG form. For example, if task 8 has to

be executed, task 1 and task 3 must be finished first, whereas for task 7 to

be completed, there doesn’t have to be any dependence on other tasks,

apart from task 3. Therefore, some of the independent tasks (2, 3) can take

place irrespective of each other’s state as shown in Figure 4-5. The order of

execution of the tasks and interdependencies can be defined well before

executing them with Airflow.

All the configurations related to DAG are defined in a DAG definition

file, which is a Python extension. It contains all the dependencies and

configuration parameters, such as e-mail to be sent in case of failures, start

time, end time, and number of retries. We also have to define all the tasks that

are part of the DAG, in addition to the dependencies or sequence of the tasks.

Figure 4-5.  Flow of information in a DAG

Chapter 4 Airflow

73

�Operators
As discussed previously, a DAG can contain multiple tasks. These tasks

can be totally different from one another. One of the tasks can be a simple

Python script; another can be a shell script or SQL query; and another

can be a cloud-based Spark job. These tasks are defined inside of DAG

definition file, using operators. Airflow provides a range of operators for

different types of tasks. The most common ones are the following:

	 1.	 Python operator (Python script)

	 2.	 Bash operator (Shell script)

	 3.	 SQL operator

	 4.	 Docker operator

	 5.	 Cloud operator (S3, Azure, Google)

This flexibility of Airflow to run any type of task makes it very powerful,

compared to other schedulers.

A DAG file is simply a Python script that contains all the required

configuration parameters to run the DAG. There are a few standard steps

that must be taken, in order to create a DAG, as shown following:

	 1.	 Importing required modules

	 2.	 Declaring default arguments

	 3.	 Instantiating the DAG object

	 4.	 Defining all the tasks

	 5.	 Declaring the order of execution/task dependencies

In some areas, Airflow stands out, compared to alternatives, in terms of

handling upstream and downstream dependencies more intelligently and

in its ability to run historical loads. It also handles failures and blockers

with complete transparency.

Chapter 4 Airflow

74

�Installing Airflow
There are multiple ways in which Airflow can be used, as it is designed

to easily integrate with different environments. If we want to use Airflow

locally, we can install and configure the Airflow environment locally.

The other option is to make use of Docker, to containerize the Airflow

application and run it on any platform, irrespective of the environment.

The core benefit of using Docker is that it takes on itself the additional

burden of managing dependencies and deployment.

�Airflow Using Docker
One way to run Airflow is to create your own Docker image, with all the

dependencies and components, but an Airflow Docker image that makes it

very easy to run is already available from the Docker Hub. The steps to run

Airflow are as follows:

[In]: docker pull puckel/docker-airflow

[In]:docker run -d -p 8080:8080 puckel/docker-airflow webserver

Once you run the preceding command in a terminal, you can access

port 8080, by going to http://127.0.0.1:8080, as shown in Figure 4-6.

Figure 4-6.  Airflow UI

Chapter 4 Airflow

75

This is how the Airflow UI looks. It currently holds no DAGs and is a

vanilla version. If you want to see the sample DAGs that come in Airflow by

default, you simply have to add one extra argument while running Docker.

To see which containers are running, we can use the following code:

[In]: docker ps

Once all the containers are listed, you can stop/kill the earlier

container running Airflow, by using

[In]: docker kill <containerID>

Now we run the following command with LOAD_EX=y as an additional

parameter, as follows:

[In]: docker run -d -p 8080:8080 -e LOAD_EX=y puckel/docker-

airflow

If we access the Airflow UI now, we get a list of all default DAGs, as

shown in Figure 4-7.

Figure 4-7.  Airflow DAGs

Chapter 4 Airflow

76

�Airflow Setup (Mac)

The first step is to ensure that Python is installed on the machine, and we

can use the brew install command to install python3. Once Python is

installed, we can install Airflow. It requires a home directory. ~/airflow

is the default, but a different location can also be chosen, based on

preference.

[In]: brew install python python3

[In]: pip install airflow

[In]: mkdir ~/airflow

[In]: export AIRFLOW_HOME=~/airflow

 [In]: cd ~/airflow

[In]: airflow initdb

[In]: airflow webserver -p 8080

The final two steps are to initialize Airflow, using initdb, and accessing

the UI on the preferred port.

�Creating Your First DAG
As discussed in the earlier part of the chapter, a DAG consists of multiple

tasks arranged in a particular order, as shown in Figure 4-8.

Chapter 4 Airflow

77

In order to create a DAG, you must define a DAG file that contains all

the details pertaining to DAG tasks, and dependencies must be defined

in a file (Python script). This is a configuration file specifying the DAG’s

structure as code. The five steps that must to be taken to run a DAG are

shown in Figure 4-9.

Figure 4-8.  Tasks

Figure 4-9.  Airflow steps

Let’s go into detail about each of these steps, to understand the

internals better.

Chapter 4 Airflow

78

�Step 1: Importing the Required Libraries
The first step is to import all the required libraries for running Airflow.

Some common ones include datetime, different operators (Bash/Python),

and Airflow itself.

[In]: from datetime import timedelta

[In]: import airflow

[In]: from airflow import DAG

[In]: from airflow.operators.bash_operator import BashOperator

�Step 2: Defining the Default Arguments
The next step is to define some important parameters, to ensure that

Airflow executes the DAGs at designated time intervals and an appropriate

number of times.

 [In]: args = {

 'owner': 'Pramod',

 'start_date': airflow.utils.dates.days_ago(3),

 # 'end_date': datetime(2018, 12, 30),

 'depends_on_past': False,

 'email': ['airflow@example.com'],

 'email_on_failure': False,

 'email_on_retry': False,

 'retries': 1,

 'retry_delay': timedelta(minutes=5),

 }

Chapter 4 Airflow

79

�Step 3: Creating a DAG
The third step is to create the DAG itself, which consists of the DAG’s name

and schedule interval, as shown following. You can decide when to run the

jobs, depending on your requirements.

 [In]: dag = DAG(

 'pramod_airflow_dag',

 default_args=args,

 description='A simple DAG',

 # Continue to run DAG once per day

 schedule_interval=timedelta(days=1)

�Step 4: Declaring Tasks
The next step is to declare the tasks (actual jobs) to be executed. All the

tasks can be declared and made part of the same DAG created in the

preceding step.

 [In]: t1 = BashOperator(

 task_id='print_date',

 bash_command='date',

 dag=dag,

)

t2 = BashOperator(

 task_id='sleep',

 depends_on_past=False,

 bash_command='sleep 5',

 dag=dag,

)

Chapter 4 Airflow

80

�Step 5: Mentioning Dependencies
The final step is to set the order of task execution. They can be either

parallel or sequential tasks. There are multiple ways in which the tasks can

be defined.

 [In]: t1 >> t2

Once all the preceding steps have been completed, we can start Airflow

and access the web UI. The screen shown in Figure 4-10 is available with

the DAG file just created.

Figure 4-11.  Tree view

Currently, it’s in OFF stage, and we can either trigger it manually or

through a command-line interface (CLI). If we click the DAG itself, it takes

us to the default tree view of the DAG, which lists all the tasks within the

DAG, as shown in Figure 4-11.

Figure 4-10.  Airflow DAG

Chapter 4 Airflow

81

Now switch on the DAG, in order to initiate the tasks, as shown in

Figure 4-12.

Then click the Trigger Dag icon and start the execution, as shown in

Figure 4-13.

Figure 4-12.  DAG initialization

Figure 4-13.  DAG trigger

The moment DAG is triggered, we can see the change under the

Recent Tasks tab, and DAG runs, as shown in Figure 4-14.

Figure 4-14.  Running the DAG

Chapter 4 Airflow

82

Once the DAG starts to run we can view it in different ways , the first

form is the Tree View as shown in Figure 4-15.

Figure 4-15.  Airflow UI

Figure 4-16.  Graph view

Another view is the Graph View that shows the order of task execution

in a slightly different manner, and the color of the task indicates its

progress (success/running/failed, etc.), as shown in Figure 4-16.

Figure 4-17.  DAG details tab

We can also drill deeper into other details of the DAG, by going to the

DAG details tab, shown in Figure 4-17.

Chapter 4 Airflow

83

Finally, under the Code tab, we can review the DAG Python script that

was originally created before running the DAG, as shown in Figure 4-18.

Figure 4-18.  DAG code

If we wait a while and recheck Graph View, we will observe that both

tasks have been completed successfully, as illustrated in Figure 4-19. From

the Tree View tab, we can see that tasks have been completed for all three

days (the last two and today’s), as shown in Figure 4-20.

Figure 4-19.  Graph view

Chapter 4 Airflow

84

Figure 4-20.  Tree view

�Conclusion
In this chapter, you learned how to define a DAG and run different jobs

using Airflow. The steps to implement Airflow and monitor the status of

different tasks were also covered. You were also introduced to the web UI

for Airflow, in addition to different components within the interface.

Chapter 4 Airflow

85© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_5

CHAPTER 5

MLlib: Machine
Learning Library
Depending on your requirements, there are multiple ways in which you

can build machine learning models, using preexisting libraries, such as

Python’s scikit-learn, R, and TensorFlow. However, what makes Spark’s

Machine Learning library (MLlib) really useful is its ability to train models

on scale and provide distributed training. This allows users to quickly build

models on a huge dataset, in addition to preprocessing and preparing

workflows with the Spark framework itself.

This chapter focuses on how to leverage MLlib for building and

applying various machine learning models. The first part focuses on basic

statistics, using MLlib, followed by building pipelines to create features

and other transformations. The last part of the chapter discusses using

MLlib for building machine learning classification models.

Let’s begin by reviewing how we can use Spark’s MLlib for calculating

some of the basic statistical measures for data analysis. You will see how to

calculate correlations between two numerical variables and how to use a

chi-square test to determine if there is a significant relationship between

two categorical variables.

86

�Calculating Correlations
Correlation is an important metric with which to determine if there is any

relationship between two continuous variables. Correlation can either be

positive or negative, as shown in Figure 5-1. It is also possible for there to

be no correlation between two variables.

Figure 5-1.  Types of correlations

Correlation is very easy to calculate using Spark MLlib. It provides the

options to calculate two types of coefficients of correlations:

	 1.	 Pearson

	 2.	 Spearman

Using Spark, let’s take a sample dataframe, to calculate the coefficient

of correlation. This dataset contains just two numerical columns (Years

Experience and Salary). The first step is to create the Spark context, in

order to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('basic_stats').

getOrCreate()

[In]: df=spark.read.csv('corr_data.csv',header=True,

inferSchema=True)

Chapter 5 MLlib: Machine Learning Library

87

[In]: df.count()

[Out]: 30

[In]: df.show()

[Out]:

As you can see, there are just 30 records in this dataframe. Next, we

combine the two columns into a single dense vector representation, in

order to calculate the correlation coefficient, using VectorAssembler. We

name the new dense vector “features.”

[In]: from pyspark.ml.feature import VectorAssembler

[In]: assembler = VectorAssembler(inputCols=df.columns,

outputCol="features")

[In]: df_new=assembler.transform(df)

Chapter 5 MLlib: Machine Learning Library

88

[In]: df_new.show()

[Out]:

Pearson Coefficient of Correlation

[In]: from pyspark.ml.stat import Correlation

[In]: pearson_corr = Correlation.corr(df_new,'features')

[in]: pearson_corr.show(2,False)

[Out]:

Chapter 5 MLlib: Machine Learning Library

89

Spearman Coefficient of Correlation

[In]: spearman_corr=Correlation.corr(df_

new,'features',"spearman")

[In]: spearman_corr.show(2,False)

[Out]:

�Chi-Square Test
Correlation is all about the relationship between numerical features,

whereas other types of variables can be categorical as well. One of the ways

to validate the relationship between two categorical variables is through

a chi-square test. Let’s consider an example, to understand how it works.

Some made up data is summarized in Table 5-1.

Table 5-1.  Sample Data

Smoker Nonsmoker

Teen 32 12

Young 14 22

Old 6 9

It contains three categories of people (Teen, Young, and Old) and

is divided into two buckets (Smoker and Nonsmoker). In the next step,

we calculate the total number of people in each category and bucket, as

shown in Table 5-2. This is also known as a contingency table.

Chapter 5 MLlib: Machine Learning Library

90

The next step is to calculate the expected values, based on the actual

values in the table. The expected values are calculated with the following

formula:

Expected Value Total Total TotalTeen Smoker Teen Smoker - = *()/

Expected ValueTeen Smoker - = *()44 52 95/

Expected ValueTeen Smoker - = 24

x 2

Similarly, we calculate all the expected values for each category against

both buckets, as shown in Table 5-3.

Table 5-3.  Expected Values

Smoker Nonsmoker

Teen 24 20

Young 20 16

Old 8 7

Table 5-2.  Contingency Table

Smoker Nonsmoker Total

Teen 32 12 44

Young 14 22 36

Old 6 9 15

52 43 95

Chapter 5 MLlib: Machine Learning Library

91

The next step is to arrive at a chi-square table, by comparing the actual

values against expected values. The chi-square table values are calculated

with the following formula:

Chi Square Table Value

Actual Expect

Teen Smoker

Teen Smoker

- -

-

=

- eed ExpectedTeen Smoker Teen Smoker- -()2
/

Chi SquareTable ValueTeen Smoker- - =
-()32 24

24

2

Chi SquareTable ValueTeen Smoker- - = 2 602.

Now that we have the chi-square values, we take the total for each

bucket (Smoker and Nonsmoker), as shown in Table 5-4.

Table 5-4.  Chi-Square Totals

Smoker Nonsmoker

Teen 2.602 3.146

Young 1.652 1.998

Old 0.595 0.720

Chi-square value 4.849 5.864

The overall chi-square value comes to 10.7 (4.84 + 5.86). We then look

up for the value of 10.7 in the chi-square table for the degree of freedom

(3-1)∗(2-1) = 2 and find the corresponding p value. If the p value is less

than 0.05, this indicates a statistically significant relationship between the

two variables. Let’s try to run a chi-square test using Spark. Here we have a

sample dataset that has three columns, but we will try to determine if there

is any relationship between the marital and housing columns (both are

categorical in nature).

Chapter 5 MLlib: Machine Learning Library

92

[In]: df=spark.read.csv('chi_sq.csv',inferSchema=True,header=True)

[In]: df.count()

[Out]: 9501

[In]: df.show()

[Out]:

[In]: from pyspark.ml.feature import StringIndexer

[In]: marital_indexer = StringIndexer(inputCol="marital",

outputCol="marital_num").fit(df)

[In]: df = marital_indexer.transform(df)

[In]: from pyspark.ml.feature import OneHotEncoder

[In]: marital_encoder = OneHotEncoder(inputCol="marital_num",

outputCol="marital_vector")

Chapter 5 MLlib: Machine Learning Library

93

[In]: df = marital_encoder.transform(df)

[In]: housing_indexer = StringIndexer(inputCol="housing",

outputCol="housing_num").fit(df)

[In]: df = housing_indexer.transform(df)

[In]: housing_encoder = OneHotEncoder(inputCol="housing_num",

outputCol="housing_vector")

[In]: df = housing_encoder.transform(df)

[In]: df.show()

[Out]:

[In]: df_assembler = VectorAssembler(inputCols=['marital_

vector','housing_vector'], outputCol="features")

[In]: df = df_assembler.transform(df)

[In]: df.show()

Chapter 5 MLlib: Machine Learning Library

94

[Out]:

[In]: chi_sq = ChiSquareTest.test(df, "features", "label").head()

[In]: print("pValues: " + str(chi_sq.pValues))

[Out]:

pValues: [0.0,0.0,0.06036632491,0.0,3.56381590905e-14]

�Transformations
In this section, I will go over some of the common transformations

required for data preprocessing and feature engineering. These help in

preparing data the right way for applying machine learning.

�Binarizer
We can convert the numerical/continuous variable into categorical

features (0/1) by using Binarizer in MLlib. We must declare the threshold

value, in order to convert the numerical feature into a binary feature. Any

value above the threshold will be converted into 1, and values below or

equal to the threshold will become 0. Let’s apply Binarizer on the label

column of the transformation sample dataset.

Chapter 5 MLlib: Machine Learning Library

95

[In]: df=spark.read.csv('transformations.csv',header=True,infer

Schema=True)

[In]: df.count()

[Out]: 6366

[In]: df.show()

[Out]:

Now we import the Binarizer function from the Spark library.

[In]: from pyspark.ml.feature import Binarizer

[In]: binarizer = Binarizer(threshold=0.99, inputCol="label",

outputCol="binarized_label")

[In]: new_df=binarizer.transform(df)

Chapter 5 MLlib: Machine Learning Library

96

[In]: new_df.show()

[Out]:

�Principal Component Analysis
Most of the time, we deal with multidimensional data, and it sometimes

becomes difficult to understand the underlying pattern without visualizing

that data. Principal component analysis (PCA) is one of the transformation

techniques that allows you to reduce the dimensions of the data while

keeping intact the variation of the data as much as possible. Let’s go over

the steps to apply PCA, on the same data used previously.

[In]: from pyspark.ml.feature import PCA

[In]: assembler = VectorAssembler(inputCols=[col for col in

df.columns if col !='label'], outputCol="features")

[In]: df_new=assembler.transform(df)

Chapter 5 MLlib: Machine Learning Library

97

[In]: df_new.show()

[Out]:

k represents the number of reduced dimensions of the data after PCA.

[In]: pca = PCA(k=2, inputCol="features", outputCol="pca_

features")

[In]: pca_model=pca.fit(df_new)

[In]: pca_comp = pca_model.transform(df_new).select("pca_

features")

[In]: pca_comp.show(truncate=False)

[out]:

Chapter 5 MLlib: Machine Learning Library

98

As you can see, we have applied PCA to the data (except for the “label”

column) and reduced the number of dimensions to just two.

�Normalizer
Normalization refers to transformation of data in such a way that the

new normalized data has a mean of 0 and a standard deviation of 1. The

normalization is done using the following formula:

x mean x

standard dev x

- ()()
()

Chapter 5 MLlib: Machine Learning Library

99

To make use of Normalizer in Spark, we simply have to apply it on the

required column. Here, we apply it to the “features” column.

[In]: from pyspark.ml.feature import Normalizer

[In]: normalizer = Normalizer(inputCol="features",

outputCol="norm_features", p=1.0)

[In]: normalised_l1_data = normalizer.transform(df_new)

[In]: normalised_l1_data.select('norm_features').

show(truncate=False)

[Out]:

The normalization helps standardize the input data and sometimes

improve the performance of the machine learning models.

Chapter 5 MLlib: Machine Learning Library

100

�Standard Scaling
Scaling is another technique to normalize data, such that the values are

within a specific range, e.g., [0, 1]. Many machine learning algorithms

are sensitive to the scale of the input data, and, hence, it becomes critical

to apply scaling. Scaling can be applied in different ways, but the most

fundamental approach is to use the following formula:

x min x

max x min x

- ()
() - ()

[In]: from pyspark.ml.feature import StandardScaler

[In]: scaler = StandardScaler�(inputCol="features",

outputCol="scaled_features",

 withStd=False, withMean=True)

[In]: scaler_model = scaler.fit(df_new)

[In]: scaled_data = scaler_model.transform(df_new)

[In]: scaled_data.select('scaled_features').

show(truncate=False)

Chapter 5 MLlib: Machine Learning Library

101

[Out]:

�Min-Max Scaling
Min-max scaling is another version of standard scaling, as it allows you to

rescale the feature values between specific limits (mostly, between 0 and 1).

You can also rescale the values between 0 and 1, using min-max scaling.

[In]: from pyspark.ml.feature import MinMaxScaler

[In]: mm_scaler = MinMaxScaler(inputCol="features",

outputCol="mm_scaled_features")

[In]: mm_scaler_model = mm_scaler.fit(df_new)

[In]: rescaled_df = mm_scaler_model.transform(df_new)

Chapter 5 MLlib: Machine Learning Library

102

[In]: rescaled_df.select("features", "mm_scaled_features").

show()

[Out]:

To access the min and max values, we can use the getMin and getMax

functions. In order to change the range, we can define the new min and

max values by creating a scaler object. Here we rescale the values between

-1 and 1.

[In]: mm_scaler.getMin()

[Out]: 0.0

[In]: mm_scaler.getMax()

[Out]: 1.0

Alter the min max values

Chapter 5 MLlib: Machine Learning Library

103

[In]: mm_scaler = MinMaxScaler(inputCol="features",

outputCol="mm_scaled_features”, min=-1,max=1)

[In]: mm_scaler_model = mm_scaler.fit(df_new)

[In]: rescaled_df = mm_scaler_model.transform(df_new)

[In]: rescaled_df.select("features", "mm_scaled_features").

show()

[Out]:

�MaxAbsScaler
MaxAbsScaler is a little different from standard scaling tools, as it rescales

each feature value between -1 and 1. However, it does not shift the center

of the data and, hence, does not impact any sparsity.

Chapter 5 MLlib: Machine Learning Library

104

[In]: from pyspark.ml.feature import MaxAbsScaler

[In]: mxabs_scaler = MaxAbsScaler(inputCol="features",

outputCol="mxabs_features")

[In]: mxabs_scaler_model = mxabs_scaler.fit(df_new)

[In]: rescaled_df = mxabs_scaler_model.transform(df_new)

[In]: rescaled_df.select("features", "mxabs_features").show()

[Out]:

�Binning
Binning, or bucketing, is useful in cases in which you want to group

continuous features into categories. You can do binning with the help of

Bucketizer in Spark. Let’s try to bucketize the target (label) column into

bins. The splits can be made accordingly, but it’s always advisable to start

Chapter 5 MLlib: Machine Learning Library

105

and end the splits with negative infinity to positive infinity, to avoid out

of bound errors (especially in cases in which max and min values of the

feature are unknown).

[In]: from pyspark.ml.feature import Bucketizer

[In]: df.show(10,False)

[Out]:

We now define the end points for the splits to occur and create a new

column that contains the bins.

[In]: splits = [0.0,1.0,2.0,3.0,4.0,5.0,float("inf")]

[In]: bucketizer = Bucketizer(splits=splits, inputCol="label",

outputCol="label_bins")

[In]: binned_df = bucketizer.transform(df)

[In]: binned_df.select(['label','label_bins']).show(10,False)

Chapter 5 MLlib: Machine Learning Library

106

[Out]:

As you can see, all the values have been put under a bin, and we can

use groupby to validate the total bins (6). We can also get the bin values

using the getSplit function.

[In]: binned_df.groupBy('label_bins').count().show()

[Out]:

[In]: print(bucketizer.getSplits())-1

[Out]: 6

Chapter 5 MLlib: Machine Learning Library

107

�Building a Classification Model
In this section, you will see how we can use Spark’s Machine Learning

library (MLlib) to build classification models. Because there are dedicated

chapters for supervised and unsupervised ML models later in the book,

in this section, I will not go too deep into the details but focus instead on

the overall process of building a model with the MLlib. For our example,

we will use the data inspired by the dataset provided by Giulio Palombo in

his book A Collection of Data Science Take-Home Challenges. The dataset

contains information pertaining to a few customers who have applied

for new bank loans and whether they will default. We will build a binary

classification model to predict whether a particular customer should be

granted a loan, based on the knowledge gleaned from the model. The

following core steps are used to build a classification model:

	 1.	 Load the dataset.

	 2.	 Perform exploratory data analysis.

	 3.	 Perform required data transformations.

	 4.	 Split data into train and test subsets.

	 5.	 Train and evaluate the baseline model on train data.

	 6.	 Perform hyperparameter tuning.

	 7.	 Build a final model with the best parameters.

�Step 1: Load the Dataset
In the first step, we initiate the Spark object, to use Spark and load the

dataset to create the Spark dataframe.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('binary_class').

getOrCreate()

Chapter 5 MLlib: Machine Learning Library

108

[In]: df=spark.read.csv('classification_data.csv',inferSchema=

True,header=True)

�Step 2: Explore the Dataframe
In this step, we explore the different aspects of the data and various

columns in the dataframe.

[In]: print((df.count(),len(df.columns)))

[Out]: (46751, 12)

The dataframe contains 12 columns and more than 46,000 records. We

can view all the columns and datatypes, using the printSchema function.

[In]: df.printSchema()

[Out]:

We can use the show or display function to view the top few rows of

the dataframe.

[In]: df.show(5)

[Out]:

Chapter 5 MLlib: Machine Learning Library

109

We can use groupby to count the number of positive and negative

events in the target column (label).

[In]: df.groupBy('loan_label).count().show()

[Out]:

As you can see, more than one-third of all customers have defaulted on

their loans. To understand the data better, we continue with exploratory

data analysis. In the following results, we can see that people prefer to

apply for a loan mainly for property, operations, and personal reasons.

[In]: df.groupBy('loan_purpose').count().show()

[Out]:

Chapter 5 MLlib: Machine Learning Library

110

Customers seem to have applied for property loans more than any

other category of loan.

�Step 3: Data Transformation
Because all of the variables in the dataframe are numerical, except for

the loan purpose, we must convert them into numerical form, using

OneHotEncoder.

[In]: from pyspark.ml.feature import OneHotEncoder,

StringIndexer, VectorAssembler

[In]: loan_purpose_indexer = StringIndexer(inputCol="loan_

purpose", outputCol="loan_index").fit(df)

[In]: df = loan_purpose_indexer.transform(df)

[In]: loan_encoder = OneHotEncoder(inputCol="loan_index",

outputCol="loan_purpose_vec")

[In]: df = loan_encoder.transform(df)

[In]: df.select(['loan_purpose','loan_index','loan_purpose_

vec']).show(3,False)

Now that we have converted the original loan-purpose feature into

vectorized form, we can use VectorAssembler to create a single-feature

vector for model training.

Chapter 5 MLlib: Machine Learning Library

111

[In]: from pyspark.ml.feature import VectorAssembler

[In]: df_assembler = VectorAssembler(inputCols=['is_first_loan',

 'total_credit_card_limit',

 'avg_percentage_credit_card_limit_used_last_year',

 'saving_amount',

 'checking_amount',

 'is_employed',

 'yearly_salary',

 'age',

 'dependent_number',

 'loan_purpose_vec'], outputCol="features")

[In]: df = df_assembler.transform(df)

[In]: df.select(['features','label]).show(10,False)

[Out]:

We now create a new dataframe with just two columns: features and label.

[In]: model_df=df.select(['features','label'])

Chapter 5 MLlib: Machine Learning Library

112

�Step 4: Splitting into Train and Test Data
We now split the overall data into training and test sets randomly, to avoid

any bias in the training.

[In]: training_df,test_df=model_df.randomSplit([0.75,0.25])

�Step 5: Model Training
Now that our training and test data are ready, we can go ahead and train

a baseline model, such as logistic regression, with default parameters and

check its performance on train and test data.

[In]: from pyspark.ml.classification import LogisticRegression

[In]: log_reg=LogisticRegression().fit(training_df)

[In]: lr_summary=log_reg.summary

[In]: lr_summary.accuracy

[Out]: 0.8939298586875679

[In]: lr_summary.areaUnderROC

0.9587456481363935

[In]: print(lr_summary.precisionByLabel)

[Out]: [0.9233245149911816, 0.8396318618667535]

[In]: print(lr_summary.recallByLabel)

[Out]: [0.914054997817547, 0.8556606905710491]

[In]: predictions = log_reg.transform(test_df)

[In]: predictions.show(10)

Chapter 5 MLlib: Machine Learning Library

113

[In]: model_predictions = log_reg.transform(test_df)

[In]: model_predictions = log_reg.evaluate(test_df)

[In]: model_predictions.accuracy

[Out]: 0.8945984906300347

[In]: model_predictions.areaUnderROC

[Out]: 0.9594316478468224

[In]: print(model_predictions.recallByLabel)

[Out]: [0.9129581151832461, 0.8608235010835541]

[In]: print(model_predictions.precisionByLabel)

[Out]: [0.9234741162452006, 0.8431603773584906]

�Step 6: Hyperparameter Tuning
So, using a baseline model, we are getting almost 89% accuracy on the

test data, and a recall rate of 0.86. Now that we have built the baseline

model, we can build a more sophisticted model, such as a random forest

model, which is an ensemble method that can improve the accuracy of

predictions. You will see how we can tune this model, to find the best

possible hyper-parameters.

Chapter 5 MLlib: Machine Learning Library

114

[In]: from pyspark.ml.classification import

RandomForestClassifier

First, we build a random forest model with default hyper-parameters, then

train it on the training data, so that predictions can be made on the test data.

[In]: rf = RandomForestClassifier()

[In]: rf_model = rf.fit(training_df)

[In]: model_predictions = rf_model.transform(test_df)

Using cross-validation techniques, we now try to come up with the best

hyperparameters for this model.

[In]: from pyspark.ml.tuning import ParamGridBuilder,

CrossValidator

[In]: from pyspark.ml.evaluation import

BinaryClassificationEvaluator

[In]: evaluator = BinaryClassificationEvaluator()

[In]: rf = RandomForestClassifier()

[In]: paramGrid = (ParamGridBuilder()

 .addGrid(rf.maxDepth, [5,10,20,25,30])

 .addGrid(rf.maxBins, [20,30,40])

 .addGrid(rf.numTrees, [5, 20,50])

 .build())

We define the parameter grid with all the possible values for different

hyperparameters (maxDepth, maxBins, numTrees) and apply cross-

validation, to dtermine the best model. We use five-fold cross-validation in

this case (four parts for training, and one for testing).

[In]: cv = CrossValidator(estimator=rf, estimatorParam

Maps=paramGrid, evaluator=evaluator, numFolds=5)

[In]: cv_model = cv.fit(training_df)

Chapter 5 MLlib: Machine Learning Library

115

We then access the best model parameters and use them on the test

dataset, to make predictions.

�Step 7: Best Model
[In]: best_rf_model = cv_model.bestModel

[In]: model_predictions = best_rf_model.transform(test_df)

[In]:true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]:actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]:pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: recall_rate=float(true_pos)/(actual_pos)

[In]: print(recall_rate)

[Out]: 0.912426614481409

As you can see from the preceding, with the random forest model

with best hyperparameters, the recall rate has improved, compared to the

baseline method (logistic regression).

�Conclusion
In this chapter, some transformation techniques using PySpark and ways

to compute summary statistics were reviewed. You saw how to build a

machine learning model from scratch and how to tune hyperparameters,

to choose the best parameters for a model.

Chapter 5 MLlib: Machine Learning Library

117© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_6

CHAPTER 6

Supervised Machine
Learning
Machine learning can be broadly divided into four categories: supervised

machine learning and unsupervised machine learning and, to a lesser

extent, semi-supervised machine learning and reinforcement machine

learning. Because supervised machine learning drives a lot of business

applications and significantly affects our day-to-day lives, it is considered

one of the most important categories.

This chapter reviews supervised machine learning, using multiple

algorithms. In Chapter 7, we’ll look at unsupervised machine learning. I’ll

begin by providing an overview of the different categories of supervised

machine learning. In the second section, I will cover various regression

methods, and we will build machine learning models, using PySpark’s

MLlib library. The third and final section of this chapter focuses on

classification, using multiple machine learning algorithms.

�Supervised Machine Learning Primer
In supervised machine learning, as the name suggests, the learning

process is supervised, as the machine learning algorithm being used

corrects its predictions, based on the actual output. In supervised machine

learning, the correct labels or output is already known during the model

118

training phase, and, hence, the error can be reduced accordingly. In short,

we try to map the relationship between the input data and output label in

such a way as to pick up the signals from the training data and generalize

about the unseen data as well. The training of the model consists of

comparing the actual output with the predicted output and then making

the changes in predictions, to reduce the total error between what is actual

and what is predicted. The supervised machine learning process followed

is as shown in Figure 6-1.

Figure 6-1.  Supervised learning approach

The data used for training the model is preprocessed, and features are

created accordingly. Once the machine learning model is trained, it can be

used to make predictions on the unseen data. So, in the preceding figure,

we can see how the model is trained, using input data and how now, the

trained model is used to predict whether the new transaction is genuine.

This type of learning is predominantly used in cases in which historical

data is available and predictions must be made on future data. The further

Chapter 6 Supervised Machine Learning

119

categorization of supervised learning is based on types of output or target

variables being used for prediction:

•	 Regression

•	 Classification

Regression is used when the target value that is being predicted is

continuous or numerical in nature. For example, predicting salary based

on a given number of years of experience or education falls under the

category of regression.

Note A lthough there are multiple types of regression, in this
chapter, I’ll focus on linear regression and some of its associated
algorithms, as you’ll see shortly.

Classification is used if the target variable is a discrete value or

categorical in nature. For example, predicting whether a customer will

churn out is a type of classification problem, as shown in Figure 6-2.

Figure 6-2.  Types of suprvised tasks

Chapter 6 Supervised Machine Learning

120

Classification tasks can further be broken down into two categories:

binary class and multi-class, as shown in Figure 6-3.

�Binary Classification
When the target or output variable contains only up to two categories, it is

referred to as binary classification. So, every record in the data can only fall

under one of the two groups. For example:

•	 Yes or no

•	 Group A or group B

•	 Sell or not sell

•	 Positive or negative

•	 Accepted or rejected

Figure 6-3.  Types of classes

Chapter 6 Supervised Machine Learning

121

�Multi-class Classification
When the target or output variable contains more than two categories, it

is referred to as multi-class classification. So, there can be multiple groups

within the data, and every record can belong to any of the groups. For

example:

•	 Yes or no or maybe

•	 Group A or group B or group C

•	 Category 1 or category 2 or category 3 or others

•	 Rank 1 or rank 2 or rank 3 or rank 4 or rank 5

Another useful property of supervised learning is that the model’s

performance can be evaluated on training and test data. Based on the

type of model (classification or regression), the evaluation metric can be

applied, and performance results can be measured. In this chapter, I will

cover how to build machine learning models to execute regression and

binary classification.

�Building a Linear Regression Model
Linear regression refers to modeling the relationship between a set of

independent variables and the output or dependent (numerical) variables.

If the input variables include more than one variable, this is known as

multivariable linear regression. In short, it is assumed that the dependent

variable is a linear combination of other independent variables.

y B B X B X= + * + * +¼0 1 1 2 2

Here X1, X2, … are the independent variables that are used to predict

the output variable. The output of the linear regression is a straight line,

which minimizes the actual vs. predicted values. A linear regression

Chapter 6 Supervised Machine Learning

122

model cannot handle nonlinear data, as it’s only possible to model linearly

separable data, therefore polynomial regression is used for nonlinear data,

and the output is generally a curve, instead of a straight line, as shown in

Figure 6-4.

Linear regression also assumes that data is normally distributed,

in order to improve prediction. Linear regression is one of the ways to

predict continuous values, and you will see now how we can use other

alternatives, to predict numerical output.

The following sections focus on solving regression tasks, using

multiple machine learning algorithms. I will begin with data ingestion and

exploratory data analysis and then build models. The steps 1 to 4 will be

the same for all the regression models.

Note  Complete datasets, along with the relevant code, are available
for reference from the GitHub repository for this book and execute
best on Spark 2.3 and higher versions.

Figure 6-4.  Types of regression

Chapter 6 Supervised Machine Learning

123

Let’s build a linear regression model, using Spark’s MLlib library, and

predict the target variable, using the input features.

�Reviewing the Data Information
The dataset that we are going to use for this example is a sample dataset

and contains a total of 1,232 rows and 6 columns. We have to use 5 input

variables to predict the target variable, using the linear regression model.

�Step 1: Create the Spark Session Object

We start the Jupyter notebook, import SparkSession, and create a new

SparkSession object to use with Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('supervised_ml').

getOrCreate()

�Step 2: Read the Dataset

We then load and read the dataset within Spark, using DataFrame. We

have to make sure that we have opened PySpark from the same directory

folder where the dataset is available, or else we have to mention the

directory path of the data folder.

[In]: df=spark.read.csv('Linear_regression_dataset.csv',infer

Schema=True,header=True)

[In]:print((df.count(), len(df.columns)))

[Out]: (1232, 6)

Chapter 6 Supervised Machine Learning

124

The preceding output confirms the size of our dataset, so we can

then validate the datatypes of the input values, to check if we have to

change/cast any column datatypes. In this example, all columns contain

integer or double values that are already aligned with our requirements.

[In]: df.printSchema()

[Out]: root

 |-- var_1: integer (nullable = true)

 |-- var_2: integer (nullable = true)

 |-- var_3: integer (nullable = true)

 |-- var_4: double (nullable = true)

 |-- var_5: double (nullable = true)

 |-- output: double (nullable = true)

There is a total of six columns, of which five are input columns

(var_1 to var_5) and target columns (label). We can now use the describe

function to go over statistical measures of the dataset.

[In]: df.show(10)

[Out]:

Chapter 6 Supervised Machine Learning

125

�Step 3: Feature Engineering

This is the part where we create a single vector combining all input

features, by using Spark’s VectorAssembler. It creates only a single feature

that captures the input values for that particular row. So, instead of five

input columns, the engine essentially translates the features into a single

column with five input values, in the form of a list.

[In]: from pyspark.ml.linalg import Vector

[In]: from pyspark.ml.feature import VectorAssembler

We will pass all five input columns, to create a single features column.

[In]: df.columns

[Out]: ['var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'label']

[In]: vec_assmebler=VectorAssembler(inputCols=['var_1',

'var_2', 'var_3', 'var_4', 'var_5'],outputCol='features')

[In]: features_df=vec_assmebler.transform(df)

[In]: features_df.printSchema()

[Out]: root

 |-- var_1: integer (nullable = true)

 |-- var_2: integer (nullable = true)

 |-- var_3: integer (nullable = true)

 |-- var_4: double (nullable = true)

 |-- var_5: double (nullable = true)

 |-- label: double (nullable = true)

 |-- features: vector (nullable = true)

As you can see, we have an additional column (features), which

contains the single dense vector for all of the inputs. We then take a subset

of the dataframe and select only the features column and the label column,

to build the linear regression model.

Chapter 6 Supervised Machine Learning

126

[In]: df.select(['features','label']).show()

[Out]:

�Step 4: Split the Dataset

Let’s split the dataset into training and test datasets, in order to train

and evaluate the performance of the linear regression model. We split it

according to a 70/30 ratio and train our model on 70% of the dataset. We

can print the shape of the train and test data, to validate the size.

[In]: train, test = df.randomSplit([0.75, 0.25])

[In]:print(f"Size of train Dataset : {train.count()}")

[Out]: Size of train Dataset : 911

[In]: print(f"Size of test Dataset : {test.count()}")

[Out]: Size of test Dataset : 321

Chapter 6 Supervised Machine Learning

127

�Step 5: Build and Train Linear Regression Model

Now we build and train the linear regression model, using features, input, and

label columns. We first import the linear regression from MLlib, as follows:

[In]: from pyspark.ml.regression import LinearRegression

[In]: lr = LinearRegression()

Note  For simplicity, all the machine learning models built in this
chapter use default hyperparameters. Readers can use their own set
of hyperparameters.

[In]:lr_model = lr.fit(train)

[In]: predictions_df=lr_model.transform(test)

[In]: predictions_df.show()

[Out]:

Chapter 6 Supervised Machine Learning

128

�Step 6: Evaluate Linear Regression Model on Test Data

To check the performance of the model on unseen or test data, we make

use of evaluate.

[In]: model_predictions=lr_model.evaluate(test)

[In]: model_predictions.r2

[Out]: 0.8855561089304634

[In]: print(model_predictions.meanSquaredError)

[Out]:0.00013305453514672318

�Generalized Linear Model Regression
The generalized linear model (GLM) is an advanced version of linear

regression that considers the target variable to have an error distribution

other than a preferred normal distribution. The GLM generalizes linear

regression, using a link function, so that variance is a function of the

predicted value itself. Let’s try to build the GLM on the same dataset and

see if it performs better than a simple linear regression model. First, we

must import the GLM from MLlib.

[In]: from pyspark.ml.regression import

GeneralizedLinearRegression

�Step 1: Build and Train Generalized Linear
Regression Model

[In]: glr = GeneralizedLinearRegression()

[In]: glr_model = glr.fit(train)

[In]: glr_model.coefficients

[Out]: DenseVector([0.0003, 0.0001, 0.0001, -0.6374, 0.4822])

Chapter 6 Supervised Machine Learning

129

We can get the coefficient values, using coefficient functions of that

model. Here we can see that one of the features has a negative coefficient

value. We can get more information about the GLM model, by using the

summary function. It returns all the details, such as coefficient value, std

error, AIC (Akaike information criterion) value, and p value.

[In]: glr_model.summary

[Out]:

�Step 2: Evaluate the Model Performance on Test Data

[In]: model_predictions=glr_model.evaluate(test)

[In]: model_predictions.predictions.show()

[Out]:

Chapter 6 Supervised Machine Learning

130

The Akaike information criterion (AIC) is an evaluation parameter of

relative performance of quality of models for the same set dataset. AIC is

mainly used to select among multiple models for a given dataset. A lesser

value of AIC indicates that the model is of good quality. AIC tries to strike

a balance between the variance and bias of the model. Therefore, it deals

with the chances both of overfitting and underfitting. The model with the

lowest AIC score is preferred over other models.

[In]: model_predictions.aic

[Out]: -1939.88

We can run the GLM for multiple distributions, such as

	 1.	 Binomial

	 2.	 Poisson

	 3.	 Gamma

	 4.	 Tweedie

Chapter 6 Supervised Machine Learning

131

[In]: glr = GeneralizedLinearRegression(family='Binomial')

[In]: glr_model = glr.fit(train)

[In]: model_predictions=glr_model.evaluate(test)

[In]: model_predictions.aic

[Out]: 336.991

[In]: glr = GeneralizedLinearRegression(family='Poisson')

[In]: glr_model = glr.fit(train)

[In]: predictions=glr_model.evaluate(test)

[In]: predictions.aic

[Out]: 266.53

[In]: glr = GeneralizedLinearRegression(family='Gamma')

[In]: glr_model = glr.fit(train)

[In]:model_predictions=glr_model.evaluate(test)

[In]: model_predictions.aic

[Out]: -1903.81

Here we can see that our default GLM model with Gaussian

distribution has the lowest AIC value, compared to others.

�Decision Tree Regression
The decision tree regression algorithm can be used for both regression

and classification. It is quite powerful in terms of fitting the data well but

comes with the high risk of sometimes overfitting the data. Decision trees

contain multiple splits based on entropy or Gini indexes. The deeper the

tree, the higher the chance of overfitting the data. In our example, we will

build a decision tree for predicting the target value, with the default value

of parameters (maxdepth = 5).

Chapter 6 Supervised Machine Learning

132

�Step 1: Build and Train Decision Tree Regressor Model

[In]: from pyspark.ml.regression import DecisionTreeRegressor

[In]: dec_tree = DecisionTreeRegressor()

[In]: dec_tree_model = dec_tree.fit(train)

[In]: dec_tree_model.featureImportances

[Out]: SparseVector(5, {0: 0.9641, 1: 0.0193, 2: 0.0029, 3:

0.0053, 4: 0.0084})

�Step 2: Evaluate the Model Performance on Test Data

[In]: model_predictions = dec_tree_model.transform(test)

[In]: model_predictions.show()

[Out]:

Chapter 6 Supervised Machine Learning

133

We import RegressionEvaluation from MLlib, to evaluate the

performance of the decision tree on test data. As of now, there are two

metrics available for evaluation: r2 and RMSE (root mean squared error). r2

mainly suggests how much of the variation in the dataset can be attributed

to regression. Therefore, the higher the r2, the better the performance of

the model. On the other hand, RMSE suggests the total errors the model is

making, in terms of the difference between actual and predicted values.

[In]: from pyspark.ml.evaluation import RegressionEvaluator

[In]: dt_evaluator = RegressionEvaluator(metricName='r2')

[In]: dt_r2 = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of DecisionTreeRegressor is

{dt_r2}')

[Out]: The r-square value of DecisionTreeRegressor is

0.8093834699203476

[In]: dt_evaluator = RegressionEvaluator(metricName='rmse')

[In]: dt_rmse = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of DecisionTreeRegressor is {dt_

rmse}')

[Out]: The rmse value of DecisionTreeRegressor is

0.014111932287681688

The r2 value of this particular model is close to 0.81, which is a little

lower than that of a simple linear regression model.

�Random Forest Regressors
Random forest regressors are a collection of multiple individual decision

trees built using different samples of data. The whole idea of combining

these individual trees is to take majority voting or averages (in case of

regression) to generalize effectively. A random forest is, therefore, an

ensembling technique that takes a bagging approach. It can be used for

Chapter 6 Supervised Machine Learning

134

regression as well as for classification tasks. Because decision trees tend

to overfit the data, random forests remove the element of high variance,

by taking the means of the predicted values from individual trees. In our

example, we will build a random forest model for regression, using default

parameters (numTrees = 20)

�Step 1: Build and Train Random Forest Regressor Model

[In]: from pyspark.ml.regression import RandomForestRegressor

[In]: rf = RandomForestRegressor()

[In]: rf_model = rf.fit(train)

[In]: rf_model.featureImportances

[Out]: SparseVector(5, {0: 0.4395, 1: 0.045, 2: 0.0243, 3:

0.2725, 4: 0.2188})

As you can see, the number of trees in the random forest is equal to 20.

This number can be increased.

[In]: rf_model.getNumTrees

[Out]: 20

[In]: model_predictions = rf_model.transform(test)

[In]: model_predictions.show()

[Out]:

Chapter 6 Supervised Machine Learning

135

�Step 2: Evaluate the Model Performance on Test Data

We can again use r2and RMSE as the evaluation parameter of the random

forest model.

[In]:rf_evaluator = RegressionEvaluator(metricName='r2')

[In]: rf_r2 = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of RandomForestRegressor is

{rf_r2}')

[Out]: The r-square value of RandomForestRegressor is

0.8215863293044671

[In]: rf_evaluator = RegressionEvaluator(metricName='rmse')

[In]: rf_rmse = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of RandomForestRegressor is {rf_rmse}')

[Out]: The rmse value of RandomForestRegressor is

0.01365275410722947

Chapter 6 Supervised Machine Learning

136

As you can see, it clearly outperforms the decision tree regressor and

has a higher r2. The performance of this model can further be enhanced

with hyperparameter tuning.

�Gradient-Boosted Tree Regressor
A gradient-boosted tree (GBT) regressor is also an ensembling technique,

which uses boosting under the hood. Boosting refers to making use of

individual weak learners in order to boost the performance of the overall

model. One major difference between bagging and boosting is that

in bagging, the individual models that are built are parallel in nature,

meaning they can be built independent of each other, but in boosting, the

individual models are built in a sequential manner. In a gradient boosting

approach, the second model focuses on the errors made by the first model

and tries to reduce overall errors for those data points. Similarly, the next

model tries to reduce the errors made by the previous model. In this way,

the overall error of prediction is reduced. In the following example, we will

build a GBT regressor with default parameters.

�Step 1: Build and Train a GBT Regressor Model
[In]: from pyspark.ml.regression import GBTRegressor

[In]: gbt = GBTRegressor()

[In]: gbt_model=gbt.fit(train)

[In]: gbt_model.featureImportances

[Out]: SparseVector(5, {0: 0.2325, 1: 0.2011, 2: 0.1645, 3:

0.2268, 4: 0.1751})

[In]: model_predictions = gbt_model.transform(test)

[In]: model_predictions.show()

[Out]:

Chapter 6 Supervised Machine Learning

137

�Step 2: Evaluate the Model Performance
on Test Data
[In]: gbt_evaluator = RegressionEvaluator(metricName='r2')

[In]: gbt_r2 = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of GradientBoostedRegressor is

{gbt_r2}')

[Out]: The r-square value of GradientBoostedRegressor is

0.8477273892307596

[In]: gbt_evaluator = RegressionEvaluator(metricName='rmse')

[In]: gbt_rmse = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of GradientBoostedRegressor is

{gbt_rmse}')

[Out]: The rmse value of GradientBoostedRegressor is

0.013305445803592103

Chapter 6 Supervised Machine Learning

138

As you can see, the GBT regressor outperforms the random

forestmodel. With r2 being close to 0.85, it can be considered the final

model, after proper tuning.

�Building Multiple Models for Binary
Classification Tasks
In this third and final section of the chapter, you will see how to build

multiple machine learning models for binary classification tasks. The

data that we are going to use for this is a subset of an open source Bank

Marketing Data Set from the UCI ML repository, available at https://

archive.ics.uci.edu/ml/datasets/Bank+Marketing.

There are two reasons for selecting only a subset of this data. The first

is to maintain the class balance for the classification task, so as not to make

it an anomalous detection category task. Another reason for selecting only

a subset of the features is to limit the amount of signals in the data, as some

of the features in the dataset strongly affect the output and, therefore, are

ignored in this exercise.

The dataset contains 9,500 rows and 8 columns. The idea is to predict

if the user will subscribe to another product or service (term deposit),

based on the other attributes, such as age, job, loan, etc. This is a typical

requirement in which machine learning is leveraged to find the top users

who can be targeted by the business for cross-selling or upselling.

I’ll begin with the logistic regression model.

�Logistic Regression
Logistic regression is considered to be one of baseline models, owing to

its simplicity and interpretability. Under the hood, it is quite similar to

linear regression. It also assumes that output is a linear combination of the

dependent variables, but to keep the output between 0 and 1, as it returns

Chapter 6 Supervised Machine Learning

139

the probability as output, it makes use of a nonlinear function (sigmoid),

which produces an S curve instead of a straight line (linear regression).

We’ll start by building the baseline in Steps 1–3 and then complete the

logistic regression model with default hyperparameters, in Steps 4–6.

�Step 1: Read the Dataset

[In]: df=spark.read.csv('bank_data.csv',inferSchema=True,

header=True)

[In]: df.count()

[Out]: 9501

[In]: df.columns

[Out]: ['age', 'job', 'marital', 'education', 'default',

'housing','loan', 'target_class']

[In]: df.printSchema()

[Out]:

As you can see, the input columns are all the columns, except for the

target class column. The target class is also well-balanced, in terms of the

count of yes and no labels. We will have to convert yeses and noes into 1s

and 0s, as well as rename the target_class column to “label,” which is the

default acceptance column name in machine learning model parameters.

[In]: df.groupBy('target_class').count().show()

[Out]:

Chapter 6 Supervised Machine Learning

140

�Step 2: Feature Engineering for Model

[In]: from pyspark.sql import functions as F

[In]: from pyspark.sql import ∗
[In]: df=df.withColumn("label", F.when(df.target_class =='no',

F.lit(0)).otherwise(F.lit(1)))

[In]: df.groupBy('label').count().show()

[Out]:

Now that we have renamed the output column “label” and converted

the target class to 1s and 0s, the next step is to create features for the

model. Because we have categorical columns, such as job and edu, we

will have to use StringIndexer and OneHotEncoder to convert them into a

numerical format. We create a Python function, cat_to_num, to convert all

the categorical features into numerical ones.

[In]: from pyspark.ml.feature import OneHotEncoder,

StringIndexer, VectorAssembler

[In]: def cat_to_num(df):

 for col in df.columns:

 �stringIndexer = StringIndexer(inputCol=col,

outputCol=col+"_index")

Chapter 6 Supervised Machine Learning

141

 model = stringIndexer.fit(df)

 indexed = model.transform(df)

 �encoder = OneHotEncoder(inputCol=col+"_index",

outputCol=col+"_vec")

 df = encoder.transform(indexed)

 �df_assembler = VectorAssembler(inputCols=['age','marit

al_vec','education_vec','default_vec','housing_vec','loan_

vec'], outputCol="features")

 df = df_assembler.transform(df)

 return df.select(['features','label'])

We just select the new features column and target label column, as we

don’t need the earlier original columns for model training.

[In]: df_new=cat_to_num(df)

[In]: df_new.show()

[Out]:

Chapter 6 Supervised Machine Learning

142

Now we have all the input features merged into a single dense vector

('features'), along with output column labels, which we can use to train

the machine learning models. The new dataframe created using only two

columns (features, label) is now called df_new and will be used for every

model. We can now split this new dataframe into train and test datasets.

We can split the data into a 75%/25% ratio, using the randomplit function.

�Step 3: Split the Data into Train and Test Datasets

[In]: train, test = df_new.randomSplit([0.75, 0.25])

[In]: print(f"Size of train Dataset : {train.count()}")

[Out]: 7121

[In]: print(f"Size of test Dataset : {test.count()}")

[Out]: 2380

�Step 4: Build and Train the Logistic Regression Model

[In]: from pyspark.ml.classification import LogisticRegression

[In]: lr = LogisticRegression()

[In]: lr_model = lr.fit(train)

[In]:print(lr_model.coefficients)

[Out]:

[0.0272019114172,-0.647672064875,0.229030508111,-

0.77074788287,-12.36869511,-12.8865599132,-

13.2257790609,-12.6705131313,-13.0023164274,-13.074766258-

6,-12.6985757761,1.42220523957,0.301582233094,-

0.0127231892838,0.218471149577,0.332362933568]

Once the model is built, we can make use of the internal function

summary, which offers important details regarding the model, such as ROC

curve, precision, recall, AUC (area under the curve), etc.

Chapter 6 Supervised Machine Learning

143

�Step 5: Evaluate Performance on Training Data

[In]: lr_summary=lr_model.summary

[In]: lr_summary.accuracy

[Out]: 0.673079623648364

[In]: lr_summary.areaUnderROC

[Out]: 0.7186044694483512

[In]: lr_summary.weightedRecall

[Out]: 0.673079623648364

[In]: lr_summary.weightedPrecision

[Out]: 0.6750967624018298

Here, using the summary function, we can view the model’s

performance on train data, such as its accuracy, AUC, weighted recall,

and precision. We can also view additional details—such as how precision

varies for various threshold values, the relation between precision and

recall, and how recall varies with different threshold values—to pick the

right threshold value for the model. These also can be plotted, to view the

relationships.

[In]: lr_summary.precisionByThreshold.show()

[Out]:

Chapter 6 Supervised Machine Learning

144

[In]: lr_summary.roc.show()

[Out]:

Chapter 6 Supervised Machine Learning

145

[In]: lr_summary.recallByThreshold.show()

[Out]:

Chapter 6 Supervised Machine Learning

146

[In]: lr_summary.pr.show()

[Out]:

�Step 6: Evaluate Performance on Test Data

[In]: model_predictions = lr_model.transform(test)

[In]: model_predictions.columns

[Out]: ['features', 'label', 'rawPrediction', 'probability',

'prediction']

[In]: model_predictions.select(['label','probability',

'prediction']).show(10,False)

[Out]:

Chapter 6 Supervised Machine Learning

147

As you can see, the prediction column shows the model prediction

for each of the records in the test data. The probability column shows the

values for both classes (0 & 1). The probability at 0th index is of 0; the other

is for a prediction of 1. The evaluation of the logistic regression model on

test data can be done using BinaryClassEvaluator. We can get the area

under ROC and that under the PR curve, as shown following:

[In]:from pyspark.ml.evaluation import

BinaryClassificationEvaluator

[In]:lr_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: lr_auroc = lr_evaluator.evaluate(model_predictions)

[In]: print(f'The auroc value of Logistic Regression Model is

{lr_auroc}')

[Out]: The auroc value of Logistic Regression Model is

0.7092938229110143

[In]: lr_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: lr_aupr = lr_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of Logistic Regression Model is

{lr_aupr}')

Chapter 6 Supervised Machine Learning

148

[Out]: The aupr value of Logistic Regression Model is

0.6630743130940658

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

Recall

[In]: float(true_pos)/(actual_pos)

[Out]: 0.6701030927835051

Precision

[In]: float(true_pos)/(pred_pos)

[Out]: 0.6478405315614618

�Decision Tree Classifier
As mentioned earlier, decision trees can be used for classification

as well as regression. Here, we will build a decision tree with default

hyperparameters and use it to predict whether the user will opt for the new

term deposit plan.

�Step 1: Build and Train Decision Tree Classifier Model

[In]: from pyspark.ml.classification import

DecisionTreeClassifier

[In]: dt = DecisionTreeClassifier()

[In]: dt_model = dt.fit(train)

[In]: model_predictions = dt_model.transform(test)

Chapter 6 Supervised Machine Learning

149

[Out]: model_predictions.select(['label','probability',

'prediction']).show(10,False)

�Step 2: Evaluate Performance on Test Data

[In]: dt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: dt_auroc = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of Decision Tree Classifier Model

is {dt_auroc}')

[Out]: The auc value of Decision Tree Classifier Model is

0.516199386190993

[In]: dt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: dt_aupr = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of Decision Tree Model is {dt_aupr}')

[Out]: The aupr value of Decision Tree Model is

0.46771834172588167

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

Chapter 6 Supervised Machine Learning

150

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.6907216494845361

[In]: float(true_pos)/(pred_pos)

[Out]: 0.6661143330571665

�Support Vector Machines Classifiers
Support vector machines (SVMs) are used for classification tasks, as they

find the hyperplane that maximizes the margin (perpendicular distance)

between two classes. All the instances and target classes are represented

as vectors in high-dimensional space, and the SVM finds the closest

two points from the two classes that support the best separating line or

hyperplane, as shown in Figure 6-5.

Figure 6-5.  Support vector machine

Chapter 6 Supervised Machine Learning

151

For nonlinearly separable data, there are different kernel tricks to

separate the classes. In our example, we will build a linearly separable

support vector classifier with default hyperparameters.

�Step 1: Build and Train SVM Model

[In]: from pyspark.ml.classification import LinearSVC

[In]: lsvc = LinearSVC()

[In]: lsvc_model = lsvc.fit(train)

[In]: model_predictions = lsvc_model.transform(test)

[In]: model_predictions.columns

[Out]: ['features', 'label', 'rawPrediction', 'prediction']

[In]:model_predictions.select(['label','prediction']).show(10,False)

[Out]:

�Step 2: Evaluate Performance on Test Data

[In]: svc_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: svc_auroc = svc_evaluator.evaluate(model_predictions)

Chapter 6 Supervised Machine Learning

152

[In]: print(f'The auc value of SupportVectorClassifier is

{svc_auroc}')

[Out]: The auc value of SupportVectorClassifier is

0.7043772749366973

[In]: svc_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: svc_aupr =svc_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of SupportVectorClassifier Model

is {svc_aupr}')

[Out]: The aupr value of SupportVectorClassifier Model is

0.6567277377856992

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.7774914089347079

[In]: float(true_pos)/(pred_pos)

[Out]: 0.600132625994695

�Naive Bayes Classifier
Naive Bayes (NB) classifiers work on the principle of conditional

probability and assume absolute independence between predictors. An NB

classifier doesn’t have many hyperparameters and can outperform some of

the most sophisticated algorithms out there. In the following example, we

will build an NB classifier and evaluate its performance on the test data.

Chapter 6 Supervised Machine Learning

153

�Step 1: Build and Train SVM Model

[In]: from pyspark.ml.classification import NaiveBayes

[In]: nb = NaiveBayes()

[In]: nb_model = nb.fit(train)

[In]: model_predictions = nb_model.transform(test)

[In]: model_predictions.select(['label','probability',

'prediction']).show(10,False)

[Out]:

�Step 2: Evaluate Performance on Test Data

[In]: nb_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: nb_auroc = nb_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of NB Classifier is {nb_auroc}')

[Out]: The auc value of NB Classifier is 0.43543736717760884

[In]: nb_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderPR')

[In]: nb_aupr =nb_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of NB Classifier Model is {nb_aupr}')

[Out]: The aupr value of NB Classifier Model is 0.4321001351769349

Chapter 6 Supervised Machine Learning

154

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.586

[In]: float(true_pos)/(pred_pos)

[Out]: 0.625

�Gradient Boosted Tree Classifier
So far, we have used single algorithms for classification. Now we move

on to use ensemble methods, such as GBT and random forests, for

classification. Bagging and boosting for classification works according to

similar principles as regression.

�Step 1: Build and Train the GBT Model

[In]: from pyspark.ml.classification import GBTClassifier

[In]: gbt = GBTClassifier()

[In]: gbt_model = gbt.fit(train)

[In]: model_predictions = gbt_model.transform(test)

[In]: model_predictions.select(['label','probability',

'prediction']).show(10,False)

[Out]:

Chapter 6 Supervised Machine Learning

155

�Step 2: Evaluate Performance on Test Data

[In]: gbt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: gbt_auroc = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of GradientBoostedTreesClassifier

is {gbt_auroc}')

[Out]: The auc value of GradientBoostedTreesClassifier is

0.7392410330756018

[In]: gbt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: gbt_aupr = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of GradientBoostedTreesClassifier

Model is {gbt_aupr}')

[Out]: The aupr value of GradientBoostedTreesClassifier Model

is 0.7345982892755392

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

Chapter 6 Supervised Machine Learning

156

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.668

[In]: float(true_pos)/(pred_pos)

[Out]: 0.674

�Random Forest Classifier
Once again, a random forest classifier is a collection of multiple decision

tree classifiers. It works on the voting mechanism and predicts the output

class that received the maximum votes from all individual decision trees.

Let’s build a random forest classifier with the same data.

�Step 1: Build and Train the Random Forest Model

[In]: from pyspark.ml.classification import

RandomForestClassifier

[In]: rf = RandomForestClassifier(numTrees=50,maxDepth=30)

[In]: rf_model = rf.fit(train)

[In]: model_predictions=rf_model.transform(test)

[In]: model_predictions.select(['label','probability',

'prediction']).show(10,False)

[Out]:

Chapter 6 Supervised Machine Learning

157

�Step 2: Evaluate Performance on Test Data

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: rf_auroc = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of RandomForestClassifier Model is

{rf_auroc}')

[Out]:

The auc value of RandomForestClassifier Model is

0.7326433634020617

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderPR')

[In]: rf_aupr = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of RandomForestClassifier Model is

{rf_aupr}')

[Out]: The aupr value of RandomForestClassifier Model is

0.7277253895494864

[In]; true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

Chapter 6 Supervised Machine Learning

158

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.67

[In]: float(true_pos)/(pred_pos)

[Out]: 0.67

So far, we have been using the default hyperparameters for all the

models, but it’s rarely the case that the model can perform to the best of its

ability with those default settings. Therefore, it’s imperative that we tune

the models for the right combination of hyperparameters.

�Hyperparameter Tuning and
Cross-Validation
In the following example, we will take the random forest model that we

just built and try to find the best combination of its hyperparameters, to

improve performance. We can use ParamgridBuilder and CrossValidator

for hyperparameter tuning. We will pass different values in the parameter

grid for three hyperparameters (maxDepth, maxBins, and numTrees).

It might take a few minutes to complete, as it builds random forest

models for all of these combinations before returning the best possible

combination for this train dataset.

[In]: from pyspark.ml.tuning import ParamGridBuilder,

CrossValidator

[In]: rf = RandomForestClassifier()

[In]: paramGrid = (ParamGridBuilder()

 .addGrid(rf.maxDepth, [5,10,20,25,30])

 .addGrid(rf.maxBins, [20, 60])

Chapter 6 Supervised Machine Learning

159

 .addGrid(rf.numTrees, [5, 20,50,100])

 .build())

[In]: cv = CrossValidator(estimator=rf, estimatorParamMaps=

paramGrid, evaluator=rf_evaluator, numFolds=5)

[In]: cv_model = cv.fit(train)

[In]: best_rf_model = cv_model.bestModel

best_rf_model contains the best hyper-parameters to be used for

training the model on this dataset.

[In]: model_predictions = best_rf_model.transform(test)

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: rf_auroc = rf_evaluator.evaluate(model_predictions)

[In]: print(rf_auroc)

[Out]: 0.7425990374615659

As you can see, by using the best hyperparameters for our random

forest model, the AUC score has increased.

�Conclusion
This chapter covered in detail the different types of supervised learning

and ways to solve binary classification with multiple machine learning

algorithms. How to choose the best hyperparameters for a model and

using cross-validation techniques to build the best possible model on the

given dataset were also explained.

Chapter 6 Supervised Machine Learning

161© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_7

CHAPTER 7

Unsupervised
Machine Learning
As the name suggests, unsupervised machine learning does not include

finding relationships between input and output. To be honest, there is no

output that we try to predict in unsupervised learning. It is mainly used

to group together the features that seem to be similar to one another in

some sense. These can be the distance between those features or some

sort of similarity metric. In this chapter, I will touch on some unsupervised

machine learning techniques and build one of the machine learning

models, using PySpark to categorize users into groups and, later, to

visualize those groups as well.

�Unsupervised Machine Learning Primer
As suggested, unsupervised learning does not aim to map the relationship

between input and output; rather, it tries to group values that are similar to

one another. There is no training that takes place on the input data. Rather,

it does this by finding the underlying signals and patterns in the data, to

form groups within. Unsupervised learning can be categorized further into

two separate categories:

	 1.	 Clustering

	 2.	 Association rules

162

Clustering refers to finding underlying groups of data points, based on

the attributes present in the data, as shown in Figure 7-1.

Association signifies the probability of co-occurrence. For example, if

someone bought item X, what’s the probability that he or she might also

buy item Y with it. In this chapter, I will focus only on clustering techniques.

We can easily make use of clustering to understand the different groups in

the data. For example, if we have some data about soccer players, we can

easily predict who plays what position on the field—either they are forward

players or defenders. Table 7-1 shows some sample data for players in a

soccer tournament. The two values captured are

	 1.	 Total number of goal attempts

	 2.	 Total number of tackles made

Figure 7-1.  Unsupervised machine learning

Chapter 7 Unsupervised Machine Learning

163

If we try to visualize the preceding values on a scatter plot, we get

something similar to what is shown in Figure 7-2. The x axis indicates the

number of tackles made by the players, and the y axis shows the number of

attempts to score a goal.

Table 7-1.  Attempts vs. Goals

Sr. No No. of Goal Attempts No. of Tackles

1 8 2

2 2 10

3 9 1

4 15 1

5 2 17

6 4 6

7 8 2

8 0 25

9 1 17

10 0 15

Figure 7-2.  Scatter plot of attempts vs. goals scored

Chapter 7 Unsupervised Machine Learning

164

Up to this point, we don’t know which players are strikers, midfielders,

or defenders, but if we use some sort of clustering technique on this data,

we get the groups, as shown in Figure 7-3. The figure clearly shows that

there are three groups in this data. The top-left corner of the chart groups all

the strikers, and the bottom-right cluster represents the defenders with the

highest number of tackles and fewest attempts to score. There is also a player

between these two groups who probably belongs to the midfield category,

having a reasonable number of tackles and attempts to score a goal.

Figure 7-3.  Groups within the data

In this example, we see how we can still predict the groups present in

the data without any supervised training at all.

Clustering can have multiple applications, including the following:

	 1.	 Anomaly detection

	 2.	 Predictive maintenance

	 3.	 Customer segmentation

There are a number of clustering algorithms that can be used,

depending on the available data and specific requirement. In this chapter,

I am going to focus on k-means algorithms, to create clusters for sets of

Chapter 7 Unsupervised Machine Learning

165

users who listen to different genres of music online. K-means is one of the

strongest algorithms for this grouping exercise. K stands for the number of

clusters or groups that must be formed from the data. K-means works by

calculating the distance of each data point from the rest and tries to group

the nearest ones, until the desired number of K values is reached. We will

try to divide users into meaningful groups, using k-means algorithm, so

that recommendations can be made according to their tastes in a specific

musical genre.

�Reviewing the Dataset
The dataset that we are going to use for this example is a sampled dataset

that contains only two columns: the user id and the music category. There

are close to half a million records available in this dataset.

�Importing SparkSession and Creating an Object
The first step is to import SparkSession and create a Spark object, in order

to use PySpark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('unsupervised_

learning').getOrCreate()

We will also import several other libraries, such as Pandas and NumPy,

for later use.

[In]: import pyspark

[In]: import pandas as pd

[In]: import numpy as np

[In]: import matplotlib.pyplot as plt

[In]: from pyspark.sql.functions import *
[In]: from pyspark.sql.types import *

Chapter 7 Unsupervised Machine Learning

166

[In]: from pyspark.ml.clustering import KMeans

[In]: df=spark.read.csv('music_data.csv',inferSchema=True,

header=True)

[In]: df.count()

[Out]: 429023

[In]: df.printSchema()

[Out]:

The preceding confirms that we are dealing with only two columns

in the dataset. We can further explore this dataframe by doing a few

aggregations. The total number of distinct music categories can be

determined with the distinct function. The topmost preferred music

category among users can be found by sorting the count values grouped

under the music category column, as shown following:

[In]: df.select('music category').distinct().count()

[Out]: 21

[In]:df.groupBy('music category').count().orderBy('count',

ascending=False).show(100,False)

[Out]:

Chapter 7 Unsupervised Machine Learning

167

Alternative music and blues seem to be the genres most preferred by

the users. We can also find the total number of unique users in the system

in a manner similar to the one preceding.

[In]: df.select('user_id').distinct().count()

[Out]: 775

[In]:df.groupBy('user_id').count().orderBy('count',

ascending=False).show(20,False)

[Out]:

Chapter 7 Unsupervised Machine Learning

168

[In]:df.groupBy('user_id').count().

orderBy('count',ascending=True).show(20,False)

[Out]:

Chapter 7 Unsupervised Machine Learning

169

In this dataframe, we have a mix of users. Some have listened to songs

as many as 14,000 times, and others have listened only once. The next task

is to reshape this dataframe, in order to use clustering on it.

�Reshaping a Dataframe for Clustering
We pivot the data on user ID and music category and fill the values with

the total count of songs the user has listened to. We use the crosstab

function to pivot the data.

[In]: feature_df=df.stat.crosstab("user_id", "music category")

[In]: feature_df.printSchema()

[Out]:

Chapter 7 Unsupervised Machine Learning

170

[In]: feature_df.show(3,False)

[Out]:

[In]: from pyspark.ml.linalg import Vectors

[In]: from pyspark.ml.feature import VectorAssembler

Chapter 7 Unsupervised Machine Learning

171

Now that we have the required attributes in the new dataframe,

we must assemble them, to create a single feature vector, using

VectorAssembler. One key thing to remember here is that we don’t

use the index of the dataframe that essentially contains the user IDs for

VectorAssembler.

[In]: print(feature_df.columns)

[Out]:

[In]: feat_cols=[col for col in feature_df.columns if col !=

'user_id_music category']

[In]: print(feat_cols)

[Out]:

[In]: vec_assembler = VectorAssembler(inputCols = feat_cols,

outputCol='features')

[In]: final_data = vec_assembler.transform(feature_df)

[In]: final_data.printSchema()

[Out]:

Chapter 7 Unsupervised Machine Learning

172

Note  One thing to remember is that clustering can be sensitive
to the scale of the data, for the simple reason that it uses a
distance metric to compare the similarity between two values
(multidimensionality). Therefore, it’s always a good idea to scale
down the data before applying clustering.

Next, we import StandardScaler in the Spark library and apply it on

the feature vectors.

[In]: from pyspark.ml.feature import StandardScaler

[In]:scaler = StandardScaler(inputCol="features",

outputCol="scaledFeatures", withStd=True, withMean=False)

[In]: scalerModel = scaler.fit(final_data)

Chapter 7 Unsupervised Machine Learning

173

[In]: cluster_final_data.columns

[Out]:

The next step is to actually build clusters, using a k-means clustering

algorithm.

�Building Clusters with K-Means
One of the key questions to ask before a clustering exercise is: “How many

clusters should be formed from the data?” One way to approach this issue

is with the Elbow method, by which we try to plot the total sum of squared

errors within a cluster against the number of clusters. This gives us a sense

of what’s a good number of groups that can be formed from the given data.

Basically, we apply k-means for a set consisting of a pre-decided number of

clusters (2–10) and visualize the errors against it. Wherever there is an elbow

kind of shape forming on the chart, that is a good number to pick for k.

Chapter 7 Unsupervised Machine Learning

174

[In]: errors=[]

for k in range(2,10):

 kmeans = KMeans(featuresCol='scaledFeatures',k=k)

 model = kmeans.fit(cluster_final_data)

 wssse = model.computeCost(cluster_final_data)

 errors.append(wssse)

 print("With K={}".format(k))

 print("Within Set Sum of Squared Errors = " + str(wssse))

 print('--'*30)

[Out]:

[In]: cluster_number = range(2,10)

[In]: plt.scatter(cluster_number,errors)

[In]: plt.xlabel('clusters')

Chapter 7 Unsupervised Machine Learning

175

[In]: plt.ylabel('WSSE')

[In]: plt.show()

[Out]:

In our case, there are multiple elbows being formed in the chart.

Therefore, we can choose either 4, 6, or 8 as the value of k. One thing to

remember is that there is no correct answer in clustering. You can have

different clusters from the same data, based on techniques being used, as

the initiation points differ for every technique. Let’s go ahead and chose

the value of k as 6.

[In]: kmeans6 = KMeans(featuresCol='scaledFeatures',k=6)

[In]: model_k6 = kmeans6.fit(cluster_final_data)

[In]: model_k6.transform(cluster_final_data).

groupBy('prediction').count().show()

Figure 7-4.  Elbow chart

Chapter 7 Unsupervised Machine Learning

176

[Out]:

From our data, we see that there is one cluster in which the majority

of users belong. Apart from that, there are five more clusters with lesser

values. Now, we add this prediction to the existing dataframe, to be able to

visualize the clusters.

[In]: model_k6.transform(cluster_final_data).show()

[Out]:

Chapter 7 Unsupervised Machine Learning

177

[In]: cluser_prediction=model_k6.transform(cluster_final_data)

[In]: cluser_prediction.printSchema()

[Out]:

Because we’re dealing with multiple dimensions, it will become

difficult to visualize the data with cluster numbers. Therefore, we reduce

the total number of dimensions, using the PCA (principal component

analysis) technique. In previous chapters, you have already seen how to

use PCA. We now reduce the original number of features from 21 to just 3,

using PCA, as shown following.

[In]: from pyspark.ml.feature import PCA

[In]: from pyspark.ml.linalg import Vectors

Chapter 7 Unsupervised Machine Learning

178

[In]: pca = PCA(k=3, inputCol="scaledFeatures", outputCol="pca_

features")

[In]: pca_model = pca.fit(cluser_prediction)

[In]: result = pca_model.transform(cluser_prediction).

select('user_id_music category',"pca_features",'prediction')

[In]: result.show(truncate=False)

[Out]:

Finally, we convert the PCA dataframe to a Pandas dataframe, in

addition to creating separate columns (x, y, z) from the PCA feature

column, by making individual columns from the list.

Chapter 7 Unsupervised Machine Learning

179

[In]: clusters = result.toPandas().set_index('user_id_music

category')

[In]: clusters.head(10)

[Out]:

[In]: clusters[['x','y','z']]=pd.DataFrame(clusters.pca_

features.values.tolist(), index= clusters.index)

[In]: del clusters['pca_features']

[In]: clusters.head(10)

[Out]:

Chapter 7 Unsupervised Machine Learning

180

Now that we have three-dimensional (3D) data representing the

original features, and the cluster prediction by k-means, we can use 3D

plotting techniques, to visualize these clusters on a 3D plot.

[In]: from mpl_toolkits.mplot3d import Axes3D

[In]: cluster_vis= plt.figure(figsize=(10,10)).

gca(projection='3d')

[In]: cluster_vis.scatter(clusters.x, clusters.y, clusters.z,

c=clusters.prediction)

[In]: cluster_vis.set_xlabel('x')

[In]: cluster_vis.set_ylabel('y')

[In]: cluster_vis.set_zlabel('z')

[In]: plt.show()

[Out]:

Figure 7-5.  Clusters Visualization

Chapter 7 Unsupervised Machine Learning

181

One of the follow-up activities after this clustering exercise can be

to assign different personas to the groups, based on the attribute values.

This can be a manual activity and can take some time to come up with

meaningful personas. Once created, businesses can use these in numerous

ways to market and target specific users.

�Conclusion
In this chapter, you learned the difference between supervised and

unsupervised machine learning techniques. You also saw how to build

clusters from raw data, using k-means clustering. The method to find the

optimal value of k and how to visualize the final clusters formed by the

k-means algorithm were then explained.

Chapter 7 Unsupervised Machine Learning

183© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1_8

CHAPTER 8

Deep Learning Using
PySpark
Deep learning has been in the limelight for quite a few years and is making

leaps and bounds in terms of solving various business challenges. From

image language translation to self-driving cars, deep learning has become

an important component in the larger scheme of things. There is no

denying the fact that lots of companies today are betting heavily on deep

learning, as a majority of their applications run using deep learning in

the back end. For example, Google’s Gmail, YouTube, Search, Maps, and

Assistance all use deep learning in some form or other. The reason is deep

learning’s incredible ability to provide far better results, compared to some

other machine learning algorithms.

This chapter is divided into three parts. The first focuses on

understanding the fundamentals and underlying operating principles of

deep learning. The second part covers the training process of the deep

learning model. Finally, in the third and final part, you will see how to

build a multilayer perceptron, using Spark.

�Deep Learning Fundamentals
Before even getting into deep learning, we must understand what neural

networks are, as deep learning is a sort of extension of neural networks.

Neural networks are not new; in fact, they go way back to the 1950s, when

184

researchers began working on them. Unfortunately, they hit a major

roadblock, owing to limited computation capabilities at the time. In the

recent past, neural networks have gained in popularity, due to major

advancements in processing power and access to big data. The availability

of super-powerful processing devices, such as GPUs and TPUs, has made

it possible to run huge neural networks with better performance. From the

data aspect, the availability of labeled data over the last few years has also

helped immensely. More than any of the preceding reasons, it’s the unique

ability of deep learning models to offer significant performance over other

machine learning algorithms that has made deep learning the preferred,

mainstream approach. Figure 8-1 shows the evolutionary time line of

artificial intelligence, machine learning, and deep learning.

In supervised learning settings, there is specific input and

corresponding output. The objective of machine learning algorithms

is to use this data and approximate the relationship between input and

output variables. In some cases, this relationship can be quite evident and

easy to capture, but in realistic scenarios, the relationship between input

Figure 8-1.  Deep learning time line

Chapter 8 Deep Learning Using PySpark

185

and output variables is very complex and nonlinear in nature. To give an

example, a self-driving car, the input variables can be as follows:

•	 Terrain

•	 Distance from nearest object

•	 Traffic lights

•	 Signboards

The output must be either turn or drive fast or slowly or apply brakes,

etc. As you might imagine, the relationship between input variables and

output variables is fairly complex in nature. Therefore, the traditional

machine learning algorithm finds it hard to map this kind of relationship.

However, deep learning outperforms other machine learning algorithms in

such situations, as it is able to learn nonlinear features as well.

�Human Brain Neuron vs. Artificial Neuron
As mentioned, deep learning is an extension of neural networks only and is

also known as deep neural networks. Neural networks are a little different

than other machine learning algorithms. Neural networks are loosely

inspired by neurons in the human brain. Neural networks are made up of

artificial neurons. Although I don’t claim to be an expert on neuroscience or

functioning of the brain, let me try to give you a high-level overview of how

the human brain functions. You might already be aware of the fact that the

human brain is made up of billions of neurons, with an incredible number

of connections between them. Each neuron is connected by multiple other

neurons in some way and repeatedly exchanges information (signals). Each

activity that we undertake physically or mentally fires up a certain set of

neurons in our brain. Every neuron is made up of three basic components:

•	 Dendrites

•	 Cell Body

•	 Terminals

Chapter 8 Deep Learning Using PySpark

186

As you can see in Figure 8-2, in a human brain neuron, the dendrites

are responsible for receiving signals from other neurons. They act as

receivers of the particular neuron and pass information to a cell body,

where the specific information is processed. Now, based on the level of

information, it either activates (fires up) or doesn’t trigger. This activity

depends on a particular threshold value of the neuron. If the incoming

signal value is below that threshold, it will not fire; otherwise, it activates.

Finally, the third component is terminals, which are connected to the

dendrites of other neurons. Terminals are responsible for passing on the

output of a particular neuron to other relevant connectors.

Artificial neurons, on the other hand, consist mainly of two parts: one

is summation, and the other is activation, as shown in Figure 8-3. This

is also known as a perceptron. Summation refers to adding all the input

signals, and activation refers to whether the neuron will trigger, based on

the threshold value.

Figure 8-2.  Neuron of the human brain

Chapter 8 Deep Learning Using PySpark

187

Let’s say we have two binary inputs (X1, X2) and weights of their

respective connections (W1, W2), as shown in Figure 8-4. The weights

can be considered similar to coefficients of input variables in traditional

machine learning. These weights indicate how important the particular

input feature in the model is. The summation function calculates the total

sum of the input.

The activation function then uses this total summated value and gives

a certain output. Activation is sort of a decision-making function. Based on

the type of activation function used, it gives an output accordingly. There

are different types of activation functions that can be used in a neural

network layer.

Figure 8-3.  Parts of an artificial neuron

Figure 8-4.  Inputs and weights in an artificial neuron

Chapter 8 Deep Learning Using PySpark

188

�Activation Functions
Activation functions play a critical role in neural networks, as the output

varies, based on the type of activation function used. There are typically

three main activation functions that are widely used: sigmoid, hyperbolic

tangent, and rectified linear unit.

�Sigmoid

This activation function ensures that the output is always between 0 and 1,

irrespective of the input, as shown in Figure 8-5. That’s why it is also used

in logistic regression, to predict the probability of an event.

f x
e x() =

+ -

1

1

�Hyperbolic Tangent

Hyperbolic tangent activation (tanh) ensures that the output value remains

between -1 to 1, regardless of the input, as shown in Figure 8-6. Following

is the tanh formula:

f x
e

e

x

x() = -
+

2

2

1

1

Figure 8-5.  Sigmoid activation function

Chapter 8 Deep Learning Using PySpark

189

�Rectified Linear Unit

Rectified linear units (ReLUs) have been increasingly popular over the last

few years and have become the default activation function. A ReLU is very

powerful, as it produces values between 0 and ∞. If the input is 0 or less

than 0, the output is always going to be 0, but for anything more than 0,

the output is similar to the input, as shown in Figure 8-7. The formula for a

ReLU is

f x x() = ()max 0,

Figure 8-6.  Tanh activation function

Figure 8-7.  Rectified linear unit

Chapter 8 Deep Learning Using PySpark

190

�Neuron Computation
Now that we have a basic understanding of different activation functions,

let’s consider an example, to understand how the actual output is

calculated inside a neuron. Let’s say we have two inputs, X1 and X2, with

values of 0.2 and 0.7, respectively, and the weights are 0.05 and 0.03. The

summation function calculates the total sum of incoming input signals, as

shown in Figures 8-8 and 8-9.

The summation is as follows:

sum X W X W= * + *1 1 2 2

sum = * + *0 2 0 05 0 7 0 03. . . .

sum = +0 01 0 021. .

sum = 0 031.

Figure 8-8.  Neuron computation

Chapter 8 Deep Learning Using PySpark

191

The next step is to pass this sum through an activation function. Let’s

consider using a sigmoid function, which returns values between 0 and 1,

irrespective of the input. The sigmoid function will calculate the value, as

follows:

f x
e x

() =
+()-

1

1

f sum
e sum

() =
+()-

1

1

f
e

0 031
1

1 0 031
.

.
() =

+()-

f 0 031 0 5077. .() =

Figure 8-9.  Summation

Chapter 8 Deep Learning Using PySpark

192

So, the output of this single neuron is equal to 0.5077. Now that we

know how a single neuron operates, let’s quickly go over how multiple

connected neurons work together to calculate the output.

�Training Process: Neural Network
When we combine multiple neurons, we end up with a neural network.

Most simple and basic neural networks can be built using just input and

output neurons, as shown in Figure 8-11.

Figure 8-10.  Neuron Activation

Chapter 8 Deep Learning Using PySpark

193

The challenge with using a neural network such as this is that it can

only learn linear relationships and cannot perform well in cases in which

the relationship between input and output is nonlinear. As we have seen,

in real-world scenarios, the relationship is hardly simple and linear.

Therefore, we must introduce an additional layer of neurons between the

input and output layer, in order to increase the network’s capacity to learn

different kinds of nonlinear relationships. This additional layer of neurons

is known as a hidden layer, as shown in Figure 8-12. It is responsible for

introducing nonlinearities into the learning process of the network. Neural

networks are also known as universal approximators, because they have

the ability to approximate any relationship between input and output

variables, no matter how complex and nonlinear in nature. A lot depends

on the number of hidden layers in the networks and the total number of

neurons in each hidden layer. Given sufficient numbers of hidden layers, a

network can perform brilliantly at mapping this relationship.

Figure 8-11.  Basic neural network

Chapter 8 Deep Learning Using PySpark

194

A neural network is all about various connections (red lines) and

different weights associated with these connections. The training of neural

networks primarily includes adjusting these weights in such a way that

the model can make predictions with a higher degree of accuracy. To

understand how neural networks are trained, let’s break down the steps of

network training.

Step 1. Take the input values and calculate the

output values that are passed to hidden neurons,

as shown in Figure 8-13. The weights used for the

first iteration of sum calculation are generated

randomly.

Figure 8-12.  Multiple layer neural network

Chapter 8 Deep Learning Using PySpark

195

An additional component that is passed is the

bias neuron input, as shown in Figure 8-14. This is

mainly used when you want to have some non-zero

output for even the zero input values.

Figure 8-13.  Neural network training process

Chapter 8 Deep Learning Using PySpark

196

Step 2. The hidden layer neurons now go through the

same process to calculate the output, using the inputs

from the previous layer (input layer). This hidden

layer output acts as an input for the final output

neuron (red) calculation, as shown in Figure 8-15.

Figure 8-14.  Bias component

Figure 8-15.  Output calculation

Chapter 8 Deep Learning Using PySpark

197

Step 3. Once we have the final output, it is

compared with the actual output, and the error is

backpropagated to the network, to adjust the weights

of the connections so as to reduce the overall error

on the training data, as shown in Figure 8-16. This

process is known as backpropagation.

Step 4. Weights of the connections are readjusted

according to the output, to minimize the overall

errors made by the network, to the point that there is

no further reduction of error on the training data.

Step 5. Now that we have the final version of the

weights, a new output value is calculated, based

on updated weights, by the network, as shown in

Figure 8-17.

Figure 8-16.  Backpropagation

Chapter 8 Deep Learning Using PySpark

198

�Building a Multilayer Perceptron Model
When it comes to using Deep Learning in Spark, there are multiple

options.Depending on the exact requirement and available infrastructure,

the relevant approach can be used. On a high level,there are close to 4

important deep learning libraries which can be used with Spark.

	 1.	 Spark’s MLlib

	 2.	 TensorflowOnSpark

	 3.	 Deep Learning Pipelines

	 4.	 DeepLearning4J

For simplicity, we will build a multilayer perceptron, using Spark.

The dataset that we are going to use for this exercise contains close to

75k records, with some sample customer journey data on a retail web

site. There are 16 input features to predict whether the visitor is likely to

convert. We have a balanced target class in this dataset. We will use Multi

layerPerceptronClassifier from Spark’s Machine Learning library. We

start by importing a few important dependencies.

Figure 8-17.  Final output

Chapter 8 Deep Learning Using PySpark

199

[In]: from pyspark.sql import SparkSession

[In]: spark = SparkSession.builder.appName('deep_learning').

getOrCreate()

[In]: import os

[In]: import numpy as np

[In]: import pandas as pd

[In]: from pyspark.sql.types import *

Now we load the dataset into Spark, for feature engineering and model

training. As mentioned, there are 16 input features and 1 output column

('Orders_Normalized').

[In]: data = spark.read.csv('dl_data.csv', header=True,

inferSchema=True)

[In]: data.printSchema()

[Out]:

Chapter 8 Deep Learning Using PySpark

200

We change the name of the label column from 'Orders_Normalized'

to 'label', to be able to train the model.

[In]: data = data.withColumnRenamed('Orders_Normalized',

'label')

[In]: data.printSchema()

[Out]:

Because we are dealing with both numerical and categorical

columns, we must write a pipeline to create features combining both

for model training. Therefore, we import Pipeline, VectorAssembler,

and OneHotEncoder, to create feature vectors. We will also import

MultiClassificationEvaluator and MultilayerPerceptron, to check the

performance of the model.

[In]: from pyspark.ml.feature import OneHotEncoder,

VectorAssembler, StringIndexer

[In]: from pyspark.ml import Pipeline

[In]: from pyspark.sql.functions import udf, StringType

Chapter 8 Deep Learning Using PySpark

201

[In]: from pyspark.ml.evaluation import MulticlassClassificatio

nEvaluator

[In]: from pyspark.ml.classification import

MultilayerPerceptronClassifier

We now split the data into train, test, and validation sets, for training of

the model.

[In]: train, validation, test = data.randomSplit([0.7, 0.2,

0.1], 1234)

We create separate lists of categorical columns and numeric columns,

based on datatypes.

[In]: categorical_columns = [item[0] for item in data.dtypes if

item[1].startswith('string')]

[In]: numeric_columns = [item[0] for item in data.dtypes if

item[1].startswith('double')]

[In]: indexers = [StringIndexer(inputCol=column,

outputCol='{0}_index'.format(column)) for column in

categorical_columns]

We now create consolidated feature vectors, using VectorAssembler.

[In]: featuresCreator = VectorAssembler(inputCols=[indexer.

getOutputCol() for indexer in indexers] + numeric_columns,

outputCol="features")

[In]: layers = [len(featuresCreator.getInputCols()), 4, 2, 2]

The next step is to build the MultilayerPerceptron model. One can

play around with different hyperparameters, such as number of layers and

maxiters, to improve the performance of the model.

Chapter 8 Deep Learning Using PySpark

202

[In]: classifier = MultilayerPerceptronClassifier(labelCol=

'label', featuresCol='features', maxIter=100, layers=layers,

blockSize=128, seed=1234)

Now that we have defined every stage, we add all these steps to the

pipeline and run it on the training data.

[In]: pipeline = Pipeline(stages=indexers + [featuresCreator,

classifier])

 [In]: model = pipeline.fit(train)

We now calculate the predictions of the model on train, test, and

validation datasets.

[In]: train_output_df = model.transform(train)

[In]: validation_output_df = model.transform(validation)

[In]: test_output_df = model.transform(test)

[In]: train_predictionAndLabels = train_output_df.select

("prediction", "label")

[In]: validation_predictionAndLabels = validation_output_

df.select("prediction", "label")

[In]: test_predictionAndLabels = test_output_df.select

("prediction", "label")

We define three different metrics, to evaluate the performance of the

model.

Chapter 8 Deep Learning Using PySpark

203

metrics = ['weightedPrecision', 'weightedRecall', 'accuracy']

 [In]: for metric in metrics:

 �evaluator = MulticlassClassificationEvaluator

(metricName=metric)

 �print('Train ' + metric + ' = ' + str(evaluator.

evaluate(train_predictionAndLabels)))

 �print('Validation ' + metric + ' = ' + str(evaluator.

evaluate(validation_predictionAndLabels)))

 �print('Test ' + metric + ' = ' + str(evaluator.

evaluate(test_predictionAndLabels)))

As you can see, the deep learning model is doing reasonably well on

the test data, based on the input signal.

[Out]:

�Conclusion
This chapter covered the internals of the basic building blocks of neural

networks—artificial neurons—and the entire training process of a neural

network. Different ways in which deep learning models can be constructed

were mentioned, and, using Spark, a multilayer perceptron model was built.

Chapter 8 Deep Learning Using PySpark

205© Pramod Singh 2019
P. Singh, Learn PySpark, https://doi.org/10.1007/978-1-4842-4961-1

Index

A
Activation function, 188
Aggregation

collect functionality, 34
groupBy function, 26, 27
operations, 29–31
orderBy functionality, 32
PySpark, 32, 33
sort functionality, 32
sql function, 30
stages, 26

Airflow
framework, 67
graphs

directed, 70
undirected, 69

installation, 74
setup (Mac), 76
using Docker, 74, 75
workflows, 67, 68

Akaike information
criterion (AIC), 129, 130

B
Baseline method, 115
Bash operator, 73

Batch data, 50
Batch vs. stream

batch data, 50
spark streaming, 51–53
stream processing, 50, 51

Big data processing, 1
Binarizer, 94–96
BinaryClassEvaluator, 147
Binning/bucketing, 104–106

C
Chi-square test, 89–94
Classification model, build

dataframe, explore, 108, 109
data transformation, 110, 111
hyperparameter

tuning, 113–115
load dataset, 107
MLlib, 107
model training, 112, 113
training and test sets, 112

Cloud-based environments, 11
Cloud operator, 73
Collect list, 35, 37
Command-line interface

(CLI), 80
Contingency table, 89, 90

https://doi.org/10.1007/978-1-4842-4961-1

206

Core architecture, Spark
components, 5
graph X, 9
MLlib, 8
programming language APIs, 9
resource management

cluster mangers, 6
task, 7
worker, 6

SQL, 8
storage, 5
structured streaming, 8

Correlations, 86–89
Cyclic graph, 70

D, E
DAG, see Directed acyclic

graph (DAG)
Databricks

cluster
creation, 14
list, 15

login, 13
notebook creation, 13–15
spark adoption survey, 16
web page, 12

Dataframe clustering
crosstab function, 169, 170
StandardScaler, 172
VectorAssembler, 171

Dataframe, subset
filter, 25, 26
select, 24, 25

Data processing
aggregations, 26
dataframe, subset, 23
joins, 41, 43
pivoting, 43, 44
sparkSession object, 18
UDFs, 37
window functions, 44–47

Decision tree classifier
build and train, 148
test data, evaluation, 149, 150

Decision tree regression
build and train, 132
model performance,

evaluate, 132, 133
overfitting, 131

Deep learning
activation function

hyperbolic tangent, 188, 189
ReLUs, 189
sigmoid, 188

multilayer perception
model, 198–200, 202

neural network
vs. artificial networks,

185–187
backpropagation, 197
bias component, 196
challenge, 193
multiple layer, 194
output, 198
training process, 195

neuron computation, 190, 191
time line, 184, 185

INDEX

207

Directed acyclic graph (DAG), 67
creation, 79
default arguments, 78
dependencies, mentioning

airflow, 80
code, 83
details tab, 82
graph view, 82, 83
initialization, 81
tree view, 80, 84
trigger, 81
UI, 82

import libraries, 78
information flow, 71, 72
operators, 73
python extension, 72
tasks declaring, 79

Dockers, 11

F
File folders/directory, 56
fillna function, 19

G
Generalized linear model (GLM)

build and train, 129
link function, 128
model performance,

evaluate, 129–131
Gradient boosted tree (GBT)

classifier

build and train, 154
test data, evaluation, 155

Gradient-boosted tree (GBT)
regressor

boosting, 136
build and train, 136
model performance,

evaluate, 137, 138
Graph data structure, 69

H
Hadoop MapReduce

framework, 1
Hyperbolic tangent activation, 188
Hyperparameter tuning, 113–115,

158, 159

I
Internet of things (IoT), 2, 56

J
Joins, dataframe, 41–43

K
K-means clustering, 173, 174

3D data, 180
existing dataframe, 176
multiple elbows, 175
Pandas dataframe, 178
PCA, 177

Index

208

L
Linear regression model

data information
build and train, 127
dataset, 124
evaluate, test data, 128
feature engineering, 125
read dataset, 123
sparkSession object, 123
split dataset, 126

types, 122
Logistic regression, 112

build and train, 142
feature engineering, 140–142
read dataset, 139
test data, evaluation, 146–148
train and test datasets, 142
training data,

evaluation, 143–146

M
Machine Learning library

(MLlib), 8, 123
chi-square test, 89
classification models, 107
correlations, 86
data analysis, 85
distributed training, 85

MaxAbsScaler, 103, 104
Messaging systems, 56
Min-max scaling, 101–103
MLlib, see Machine Learning

library (MLlib)

MultilayerPerceptron
model, 200, 201

Multivariable linear regression, 121

N, O
Naive Bayes (NB) classifiers

build and train, 153
conditional probability, 152
test data, evaluation, 153

Normalization, 98, 99

P, Q
Pandas UDFs, 40, 41
pivot function, 43, 44
Principal component analysis

(PCA), 96–98, 177
Python operator, 73

R
Random forest classifier

build and train, 156
test data, evaluation, 157, 158

Random forest regressors
build and train, 134
model performance,

evaluate, 135, 136
Rectified linear units

(ReLUs), 189
Resilient Distributed Datasets

(RDDs), 8, 52
Root mean squared

error (RMSE), 133

INDEX

209

S
Scaling, 100
Sigmoid activation function, 188
Spark

application, 7
architecture, 4 (See also Core

architecture, Spark)
aspects of data, 2
cluster, 5
data collection, 2
data processing, 3, 4
data storage, 3
history, 1, 2

Spark environment
databricks, 11
Dockers, 11
local setup, 10

SparkSession object
dataframes, creation, 18, 19
null values, 19–23

Spark streaming
batch processing, 52
component, 53
data flow, 52
framework, 51

Static vs. streaming
DataFrame, 54

Stream processing, 50, 51
Structured streaming, 8

application, 57
batch processing, 65
dataframe, 58
data input, 56
data processing, 57

definition, 53
final output, 57
joins, 63–65
local directory, 58
operations, 59–63
process, 55, 56
Spark SQL engine, 54

Supervised machine
learning, 117, 118

binary class, 120
multi class, 121
regression, 119
task type, 119

Support vector machines
(SVMs), 150

build and train, 151
test data, evaluation, 151, 152

T
Transformations

Binarizer, 94–96
binning/bucketing, 104–106
MaxAbsScaler, 103, 104
min-max scaling, 101–103
normalization, 98, 99
PCA, 96–98
standard scaling, 100, 101

U, V
Unsupervised machine learning

association, 161, 162
attempts vs. goals,

sample data, 162, 163

Index

210

clustering, 161, 162, 164
groups, data, 164
K-means, 165
SparkSession, import, 165–169

User-defined functions
(UDFs), 37–39

W, X, Y, Z
Windowed aggregates, 44–47

Unsupervised machine
learning (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Spark
	History
	Data Collection
	Data Storage
	Data Processing

	Spark Architecture
	Storage
	Resource Management
	Engine and Ecosystem
	Spark SQL
	MLlib
	Structured Streaming
	Graph X

	Programming Language APIs

	Setting Up Your Environment
	Local Setup
	Dockers
	Cloud Environments
	Databricks

	Conclusion

	Chapter 2: Data Processing
	Creating a SparkSession Object
	Creating Dataframes
	Null Values

	Subset of a Dataframe
	Select
	Filter
	Where

	Aggregations
	Collect

	User-Defined Functions (UDFs)
	Pandas UDF

	Joins
	Pivoting
	Window Functions or Windowed Aggregates
	Conclusion

	Chapter 3: Spark Structured Streaming
	Batch vs. Stream
	Batch Data
	Stream Processing
	Spark Streaming

	Structured Streaming
	Data Input
	Data Processing
	Final Output

	Building a Structured App
	Operations
	Joins

	Structured Streaming Alternatives
	Conclusion

	Chapter 4: Airflow
	Workflows
	Graph Overview
	Undirected Graphs
	Directed Graphs

	DAG Overview
	Operators

	Installing Airflow
	Airflow Using Docker
	Airflow Setup (Mac)

	Creating Your First DAG
	Step 1: Importing the Required Libraries
	Step 2: Defining the Default Arguments
	Step 3: Creating a DAG
	Step 4: Declaring Tasks
	Step 5: Mentioning Dependencies

	Conclusion

	Chapter 5: MLlib: Machine Learning Library
	Calculating Correlations
	Chi-Square Test

	Transformations
	Binarizer
	Principal Component Analysis
	Normalizer
	Standard Scaling
	Min-Max Scaling
	MaxAbsScaler
	Binning

	Building a Classification Model
	Step 1: Load the Dataset
	Step 2: Explore the Dataframe
	Step 3: Data Transformation
	Step 4: Splitting into Train and Test Data
	Step 5: Model Training
	Step 6: Hyperparameter Tuning
	Step 7: Best Model

	Conclusion

	Chapter 6: Supervised Machine Learning
	Supervised Machine Learning Primer
	Binary Classification
	Multi-class Classification

	Building a Linear Regression Model
	Reviewing the Data Information
	Step 1: Create the Spark Session Object
	Step 2: Read the Dataset
	Step 3: Feature Engineering
	Step 4: Split the Dataset
	Step 5: Build and Train Linear Regression Model
	Step 6: Evaluate Linear Regression Model on Test Data

	Generalized Linear Model Regression
	Step 1: Build and Train Generalized Linear Regression Model
	Step 2: Evaluate the Model Performance on Test Data

	Decision Tree Regression
	Step 1: Build and Train Decision Tree Regressor Model
	Step 2: Evaluate the Model Performance on Test Data

	Random Forest Regressors
	Step 1: Build and Train Random Forest Regressor Model
	Step 2: Evaluate the Model Performance on Test Data

	Gradient-Boosted Tree Regressor
	Step 1: Build and Train a GBT Regressor Model
	Step 2: Evaluate the Model Performance on Test Data

	Building Multiple Models for Binary Classification Tasks
	Logistic Regression
	Step 1: Read the Dataset
	Step 2: Feature Engineering for Model
	Step 3: Split the Data into Train and Test Datasets
	Step 4: Build and Train the Logistic Regression Model
	Step 5: Evaluate Performance on Training Data
	Step 6: Evaluate Performance on Test Data

	Decision Tree Classifier
	Step 1: Build and Train Decision Tree Classifier Model
	Step 2: Evaluate Performance on Test Data

	Support Vector Machines Classifiers
	Step 1: Build and Train SVM Model
	Step 2: Evaluate Performance on Test Data

	Naive Bayes Classifier
	Step 1: Build and Train SVM Model
	Step 2: Evaluate Performance on Test Data

	Gradient Boosted Tree Classifier
	Step 1: Build and Train the GBT Model
	Step 2: Evaluate Performance on Test Data

	Random Forest Classifier
	Step 1: Build and Train the Random Forest Model
	Step 2: Evaluate Performance on Test Data

	Hyperparameter Tuning and Cross-Validation
	Conclusion

	Chapter 7: Unsupervised Machine Learning
	Unsupervised Machine Learning Primer
	Reviewing the Dataset
	Importing SparkSession and Creating an Object

	Reshaping a Dataframe for Clustering
	Building Clusters with K-Means

	Conclusion

	Chapter 8: Deep Learning Using PySpark
	Deep Learning Fundamentals
	Human Brain Neuron vs. Artificial Neuron
	Activation Functions
	Sigmoid
	Hyperbolic Tangent
	Rectified Linear Unit

	Neuron Computation

	Training Process: Neural Network
	Building a Multilayer Perceptron Model
	Conclusion

	Index

