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Introduction

The idea of writing this book had already been seeded while I was working 

on my first book, and there was a strong reason for that. The earlier book 

was more focused on machine learning using big data and essentially did 

not deep-dive sufficiently into supporting aspects, but this book goes a 

little deeper into the internals of Spark’s machine learning library, as well 

as analyzing of streaming data. It is a good reference point for someone 

who wants to learn more about how to automate different workflows and 

build pipelines to handle real-time data.

This book is divided into three main sections. The first provides an 

introduction to Spark and data analysis on big data; the middle section 

discusses using Airflow for executing different jobs, in addition to data 

analysis on streaming data, using the structured streaming features of 

Spark. The final section covers translation of a business problem into 

machine learning and solving it, using Spark’s machine learning library, 

with a deep dive into deep learning as well.

This book might also be useful to data analysts and data engineers, as 

it covers the steps of big data processing using PySpark. Readers who want 

to make a transition to the data science and machine learning fields will 

also find this book a good starting point and can gradually tackle more 

complicated areas later. The case studies and examples given in the book 

make it really easy to follow and understand the related fundamental 

concepts. Moreover, there are very few books available on PySpark, and 

this book certainly adds value to readers’ knowledge. The strength of this 

book lies in its simplicity and on its application of machine learning to 

meaningful datasets.



xviii

I have tried my best to put all my experience and knowledge into this 

book, and I feel it is particularly relevant to what businesses are seeking 

in order to solve real challenges. I hope that it will provide you with some 

useful takeaways.

IntroductionIntroduction
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CHAPTER 1

Introduction to Spark
As this book is about Spark, it makes perfect sense to start the first chapter 

by looking into some of Spark’s history and its different components. 

This introductory chapter is divided into three sections. In the first, I go 

over the evolution of data and how it got as far as it has, in terms of size. 

I’ll touch on three key aspects of data. In the second section, I delve into 

the internals of Spark and go over the details of its different components, 

including its architecture and modus operandi. The third and final section 

of this chapter focuses on how to use Spark in a cloud environment.

�History
The birth of the Spark project occurred at the Algorithms, Machine, and 

People (AMP) Lab at the University of California, Berkeley. The project 

was initiated to address the potential issues in the Hadoop MapReduce 

framework. Although Hadoop MapReduce was a groundbreaking 

framework to handle big data processing, in reality, it still had a lot  

of limitations in terms of speed. Spark was new and capable of doing 

in-memory computations, which made it almost 100 times faster than 

any other big data processing framework. Since then, there has been a 

continuous increase in adoption of Spark across the globe for big data 

applications. But before jumping into the specifics of Spark, let’s consider a 

few aspects of data itself.
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Data can be viewed from three different angles: the way it is collected, 

stored, and processed, as shown in Figure 1-1.

�Data Collection
A huge shift in the manner in which data is collected has occurred over 

the last few years. From buying an apple at a grocery store to deleting an 

app on your mobile phone, every data point is now captured in the back 

end and collected through various built-in applications. Different Internet 

of things (IoT) devices capture a wide range of visual and sensory signals 

every millisecond. It has become relatively convenient for businesses 

to collect that data from various sources and use it later for improved 

decision making.

Figure 1-1.  Three aspects of data

Chapter 1  Introduction to Spark
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�Data Storage
In previous years, no one ever imagined that data would reside at some 

remote location, or that the cost to store data would be as cheap as it is. 

Businesses have embraced cloud storage and started to see its benefits 

over on-premise approaches. However, some businesses still opt for on-

premise storage, for various reasons. It’s known that data storage began 

by making use of magnetic tapes. Then the breakthrough introduction 

of floppy discs made it possible to move data from one place to another. 

However, the size of the data was still a huge limitation. Flash drives and 

hard discs made it even easier to store and transfer large amounts of data 

at a reduced cost. (See Figure 1-2.) The latest trend in the advancement of 

storage devices has resulted in flash drives capable of storing data up to 

2TBs, at a throwaway price.

Figure 1-2.  Evolution of data storage

This trend clearly indicates that the cost to store data has been 

reduced significantly over the years and continues to decline. As a result, 

businesses don’t shy away from storing huge amounts of data, irrespective 

of its kind. From logs to financial and operational transactions to simple 

employee feedback, everything gets stored.

�Data Processing
The final aspect of data is using stored data and processing it for some 

analysis or to run an application. We have witnessed how efficient 

computers have become in the last 20 years. What used to take five 

minutes to execute probably takes less than a second using today’s 

Chapter 1  Introduction to Spark
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machines with advanced processing units. Hence, it goes without saying 

that machines can process data much faster and easier. Nonetheless, 

there is still a limit to the amount of data a single machine can process, 

regardless of its processing power. So, the underlying idea behind Spark 

is to use a collection (cluster) of machines and a unified processing 

engine (Spark) to process and handle huge amounts of data, without 

compromising on speed and security. This was the ultimate goal that 

resulted in the birth of Spark.

�Spark Architecture
There are five core components that make Spark so powerful and easy 

to use. The core architecture of Spark consists of the following layers, as 

shown in Figure 1-3:

•	 Storage

•	 Resource management

•	 Engine

•	 Ecosystem

•	 APIs

Chapter 1  Introduction to Spark
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�Storage
Before using Spark, data must be made available in order to process it. This 

data can reside in any kind of database. Spark offers multiple options to 

use different categories of data sources, to be able to process it on a large 

scale. Spark allows you to use traditional relational databases as well as 

NoSQL, such as Cassandra and MongoDB.

�Resource Management
The next layer consists of a resource manager. As Spark works on a set of 

machines (it also can work on a single machine with multiple cores), it 

is known as a Spark cluster. Typically, there is a resource manager in any 

cluster that efficiently handles the workload between these resources. 

Figure 1-3.  Core components of Spark

Chapter 1  Introduction to Spark
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The two most widely used resource managers are YARN and Mesos. The 

resource manager has two main components internally:

	 1.	 Cluster manager

	 2.	 Worker

It’s kind of like master-slave architecture, in which the cluster manager 

acts as a master node, and the worker acts as a slave node in the cluster. 

The cluster manager keeps track of all information pertaining to the 

worker nodes and their current status. Cluster managers always maintain 

the following information:

•	 Status of worker node (busy/available)

•	 Location of worker node

•	 Memory of worker node

•	 Total CPU cores of worker node

The main role of the cluster manager is to manage the worker nodes 

and assign them tasks, based on the availability and capacity of the worker 

node. On the other hand, a worker node is only responsible for executing 

the task it’s given by the cluster manager, as shown in Figure 1-4.

Chapter 1  Introduction to Spark
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The tasks that are given to the worker nodes are generally the 

individual pieces of the overall Spark application. The Spark application 

contains two parts:

	 1.	 Task

	 2.	 Spark driver

The task is the data processing logic that has been written in either 

PySpark or Spark R code. It can be as simple as taking a total frequency 

count of words to a very complex set of instructions on an unstructured 

dataset. The second component is Spark driver, the main controller of a 

Spark application, which consistently interacts with a cluster manager to 

find out which worker nodes can be used to execute the request. The role 

of the Spark driver is to request the cluster manager to initiate the Spark 

executor for every worker node.

Figure 1-4.  Resource management

Chapter 1  Introduction to Spark
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�Engine and Ecosystem
The base of the Spark architecture is its core, which is built on top of RDDs 

(Resilient Distributed Datasets) and offers multiple APIs for building other 

libraries and ecosystems by Spark contributors. It contains two parts: the 

distributed computing infrastructure and the RDD programming abstraction. 

The default libraries in the Spark toolkit come as four different offerings.

�Spark SQL

SQL being used by most of the ETL operators across the globe makes it a 

logical choice to be part of Spark offerings. It allows Spark users to perform 

structured data processing by running SQL queries. In actuality, Spark SQL 

leverages the catalyst optimizer to perform the optimizations during the 

execution of SQL queries.

Another advantage of using Spark SQL is that it can easily deal  

with multiple database files and storage systems such as SQL, NoSQL, 

Parquet, etc.

�MLlib

Training machine learning models on big datasets was starting to become 

a huge challenge, until Spark’s MLlib (Machine Learning library) came into 

existence. MLlib gives you the ability to train machine learning models on 

huge datasets, using Spark clusters. It allows you to build in supervised, 

unsupervised, and recommender systems; NLP-based models; and deep 

learning, as well as within the Spark ML library.

�Structured Streaming

The Spark Streaming library provides the functionality to read and process 

real-time streaming data. The incoming data can be batch data or near 

real-time data from different sources. Structured Streaming is capable of 

Chapter 1  Introduction to Spark
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ingesting real-time data from such sources as Flume, Kafka, Twitter, etc. 

There is a dedicated chapter on this component later in this book (see 

Chapter 3).

�Graph X

This is a library that sits on top of the Spark core and allows users to 

process specific types of data (graph dataframes), which consists of nodes 

and edges. A typical graph is used to model the relationship between the 

different objects involved. The nodes represent the object, and the edge 

between the nodes represents the relationship between them. Graph 

dataframes are mainly used in network analysis, and Graph X makes it 

possible to have distributed processing of such graph dataframes.

�Programming Language APIs
Spark is available in four languages. Because Spark is built using Scala, that 

becomes the native language. Apart from Scala, we can also use Python, 

Java, and R, as shown in Figure 1-5.

Figure 1-5.  Language APIs

Chapter 1  Introduction to Spark
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�Setting Up Your Environment
In this final section of this chapter, I will go over how to set up the  

Spark environment in the cloud. There are multiple ways in which we can 

use Spark:

•	 Local setup

•	 Dockers

•	 Cloud environment (GCP, AWS, Azure)

•	 Databricks

�Local Setup
It is relatively easy to install and use Spark on a local system, but it fails 

the core purpose of Spark itself, if it’s not used on a cluster. Spark’s core 

offering is distributed data processing, which will always be limited to a 

local system’s capacity, in the case that it’s run on a local system, whereas 

one can benefit more by using Spark on a group of machines instead. 

However, it is always good practice to have Spark locally, as well as to test 

code on sample data. So, follow these steps to do so:

	 1.	 Ensure that Java is installed; otherwise install Java.

	 2.	 Download the latest version of Apache Spark from 

https://spark.apache.org/downloads.html.

	 3.	 Extract the files from the zipped folder.

	 4.	 Copy all the Spark-related files to their respective 

directory.

	 5.	 Configure the environment variables to be able to 

run Spark.

	 6.	 Verify the installation and run Spark.

Chapter 1  Introduction to Spark
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�Dockers
Another way of using Spark locally is through the containerization 

technique of dockers. This allows users to wrap all the dependencies and 

Spark files into a single image, which can be run on any system. We can 

kill the container after the task is finished and rerun it, if required. To use 

dockers for running Spark, we must install Docker on the system first 

and then simply run the following command: [In]: docker run -it -p 

8888:8888 jupyter/pyspark-notebook".

�Cloud Environments
As discussed earlier in this chapter, for various reasons, local sets are not 

of much help when it comes to big data, and that’s where cloud-based 

environments make it possible to ingest and process huge datasets in a 

short period. The real power of Spark can be seen easily while dealing with 

large datasets (in excess of 100TB). Most of the cloud-based infra-providers 

allow you to install Spark, which sometimes comes preconfigured as well. 

One can easily spin up the clusters with required specifications, according 

to need. One of the cloud-based environments is Databricks.

�Databricks

Databricks is a company founded by the creators of Spark, in order to 

provide the enterprise version of Spark to businesses, in addition to  

full-fledged support. To increase Spark’s adoption among the community 

and other users, Databricks also provides a free community edition of 

Spark, with a 6GB cluster (single node). You can increase the size of the 

Chapter 1  Introduction to Spark
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cluster by signing up for an enterprise account with Databricks, using the 

following steps:

	 1.	 Search for the Databricks web site and select 

Databricks Community Edition, as shown in 

Figure 1-6.

Figure 1-6.  Databricks web page

	 2.	 If you have a user account with Databricks, you can 

simply log in. If you don’t have an account, you must 

create one, in order to use Databricks, as shown in 

Figure 1-7.

Chapter 1  Introduction to Spark
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	 3.	 Once you are on the home page, you can choose to 

either load a new data source or create a notebook 

from scratch, as shown in Figure 1-8. In the latter 

case, you must have the cluster up and running, to 

be able to use the notebook. Therefore, you must 

click New Cluster, to spin up the cluster. (Databricks 

provides a 6GB AWS EMR cluster.)

Figure 1-7.  Databricks login
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	 4.	 To set up the cluster, you must give a name to the 

cluster and select the version of Spark that must 

configure with the Python version, as shown in 

Figure 1-9. Once all the details are filled in, you must 

click Create Cluster and wait a couple of minutes, 

until it spins up.

Figure 1-9.  Creating a Databricks cluster

Figure 1-8.  Creating a Databricks notebook
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	 5.	 You can also view the status of the cluster by going 

into the Clusters option on the left side widget, as 

shown in Figure 1-10. It gives all the information 

associated with the particular cluster and its current 

status.

Figure 1-10.  Databricks cluster list

	 6.	 The final step is to open a notebook and attach it 

to the cluster you just created (Figure 1-11). Once 

attached, you can start the PySpark code.

Figure 1-11.  Databricks notebook

Chapter 1  Introduction to Spark
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Overall, since 2010, when Spark became an open source platform, its 

users have risen in number consistently, and the community continues to 

grow every day. It’s no surprise that the number of contributors to Spark 

has outpaced that of Hadoop. Some of the reasons for Spark’s popularity 

were noted in a survey, the results of which are shown in Figure 1-12.

Figure 1-12.  Results of Spark adoption survey

�Conclusion
This chapter provided a brief history of Spark, its core components, and 

the process of accessing it in a cloud environment. In upcoming chapters, 

I will delve deeper into the various aspects of Spark and how to build 

different applications with it.

Chapter 1  Introduction to Spark
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CHAPTER 2

Data Processing
This chapter covers different steps to preprocess and handle data in 

PySpark. Preprocessing techniques can certainly vary from case to case, 

and many different methods can be used to massage the data into desired 

form. The idea of this chapter is to expose some of the common techniques 

for dealing with big data in Spark. In this chapter, we are going to go over 

different steps involved in preprocessing data, such as handling missing 

values, merging datasets, applying functions, aggregations, and sorting. 

One major part of data preprocessing is the transformation of numerical 

columns into categorical ones and vice versa, which we are going to look at 

over the next few chapters and are based on machine learning. The dataset 

that we are going to make use of in this chapter is inspired by a primary 

research dataset and contains a few attributes from the original dataset, 

with additional columns containing fabricated data points.

Note  All the following steps are written in Jupyter Notebook, 
running Spark on a Docker image (mentioned in Chapter 1). All the 
subsequent code can also be run in Databricks.
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�Creating a SparkSession Object
The first step is to create a SparkSession object, in order to use Spark. We 

also import all the required functions and datatypes from spark.sql:

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('data_processing').

getOrCreate()

[In]: import pyspark.sql.functions as F

[In]: from pyspark.sql.types import *

Now, instead of directly reading a file to create a dataframe, we go 

over the process of creating a dataframe, by passing key values. The way 

we create a dataframe in Spark is by declaring its schema and pass the 

columns values.

�Creating Dataframes
In the following example, we are creating a new dataframe with five 

columns of certain datatypes (string and integer). As you can see, when 

we call show on the new dataframe, it is created with three rows and five 

columns containing the values passed by us.

[In]:schema=StructType().add("user_id","string").

add("country","string").add("browser", "string").

add("OS",'string').add("age", "integer")

[In]: df=spark.createDataFrame([("A203",'India',"Chrome","WIN", 

33),("A201",'China',"Safari","MacOS",35),("A205",'UK',"Mozilla", 

"Linux",25)],schema=schema)

[In]: df.printSchema()

[Out]:

Chapter 2  Data Processing
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[In]: df.show()

[Out]: 

 

�Null Values
It is very common to have null values as part of the overall data. Therefore, 

it becomes critical to add a step to the data processing pipeline, to handle 

the null values. In Spark, we can deal with null values by either replacing 

them with some specific value or dropping the rows/columns containing 

null values.

First, we create a new dataframe (df_na) that contains null values in 

two of its columns (the schema is the same as in the earlier dataframe). 

By the first approach to deal with null values, we fill all null values in the 

present dataframe with a value of 0, which offers a quick fix. We use the 

fillna function to replace all the null values in the dataframe with 0. 

By the second approach, we replace the null values in specific columns 

(country, browser) with 'USA' and 'Safari', respectively.

[In]: df_na=spark.createDataFrame([("A203",None,"Chrome","WIN",

33),("A201",'China',None,"MacOS",35),("A205",'UK',"Mozilla", 

"Linux",25)],schema=schema)

[In]: df_na.show()

[Out]:
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[In]: df_na.fillna('0').show()

[Out]:

 

[In]: df_na.fillna( { 'country':'USA', 'browser':'Safari' } ).show()

[Out]:

 

In order to drop the rows with any null values, we can simply use the 

na.drop functionality in PySpark. Whereas if this needs to be done for 

specific columns, we can pass the set of column names as well, as shown 

in the following example:

[In]: df_na.na.drop().show()

[Out]:

Chapter 2  Data Processing
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[In]: df_na.na.drop(subset='country').show()

[Out]:

 

Another very common step in data processing is to replace some data 

points with particular values. We can use the replace function for this, as 

shown in the following example. To drop the column of a dataframe, we 

can use the drop functionality of PySpark.

[In]: df_na.replace("Chrome","Google Chrome").show()

[Out]:

 

[In]: df_na.drop('user_id').show()

[Out]:
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Now that we have seen how to create a dataframe by passing a value 

and how to treat missing values, we can create a Spark dataframe, by 

reading a file (.csv, parquet, etc.). The dataset contains a total of seven 

columns and 2,000 rows. The summary function allows us to see the 

statistical measures of the dataset, such as the min, max, and mean of the 

numerical data present in the dataframe.

[In]: df=spark.read.csv("customer_data.csv",header=True, 

inferSchema=True)

[In]: df.count()

[Out]: 2000

[In]: len(df.columns)

[Out]: 7

[In]: df.printSchema()

[Out]:

 

[In]: df.show(3)

[Out]: 
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[In]: df.summary().show()

[Out]:

 

Most of the time, we won’t use all the columns present in the 

dataframe, as some might be redundant and carry very little value in terms 

of providing useful information. Therefore, subsetting the dataframe 

becomes critical for having proper data in place for analysis. I’ll cover this 

in the next section.

�Subset of a Dataframe
A subset of a dataframe can be created, based on multiple conditions in 

which we either select a few rows, columns, or data with certain filters in 

place. In the following examples, you will see how we can create a subset 

of the original dataframe, based on certain conditions, to demonstrate the 

process of filtering records.

•	 Select

•	 Filter

•	 Where

Chapter 2  Data Processing
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�Select
In this example, we take one of the dataframe columns, 'Avg_Salary', and 

create a subset of the original dataframe, using select. We can pass any 

number of columns that must be present in the subset. We then apply a 

filter on the dataframe, to extract the records, based on a certain threshold 

(Avg_Salary > 1000000). Once filtered, we can either take the total count 

of records present in the subset or take it for further processing.

[In]: df.select(['Customer_subtype','Avg_Salary']).show()

[Out]:
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[In]: df.filter(df['Avg_Salary'] > 1000000).count()

[In]: 128

[In]: df.filter(df['Avg_Salary'] > 1000000).show()

 

�Filter
We can also apply more than one filter on the dataframe, by including 

more conditions, as shown following. This can be done in two ways: first, 

by applying consecutive filters, then by using (&, or) operands with a 

where statement.

[In]: df.filter(df['Avg_Salary'] > 500000).filter(df['Number_

of_houses'] > 2).show()

[Out]:
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Where
[In]: df.where((df['Avg_Salary'] > 500000) & (df['Number_of_

houses'] > 2)).show()

[Out]: 

 

Now that we have seen how to create a subset from a dataframe, we 

can move on to aggregations in PySpark.

�Aggregations
Any kind of aggregation can be broken simply into three stages, in the 

following order:

•	 Split

•	 Apply

•	 Combine

The first step is to split the data, based on a column or group of 

columns, followed by performing the operation on those small individual 

groups (count, max, avg, etc.). Once the results are in for each set of 

groups, the last step is to combine all these results.

In the following example, we aggregate the data, based on 'Customer 

subtype', and simply count the number of records in each category. 

We use the groupBy function in PySpark. The output of this is not in 

any particular order, as we have not applied any sorting to the results. 

Therefore, we will also see how we can apply any type of sorting to the 

final results. Because we have seven columns in the dataframe—all are 
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categorical columns except for one (Avg_Salary), we can iterate over each 

column and apply aggregation as in the following example:

[In]: df.groupBy('Customer_subtype').count().show()

[Out]:

 

[In]:

for col in df.columns: 

    if col !='Avg_Salary':

        print(f" Aggregation for  {col}")

           �df.groupBy(col).count().orderBy('count',ascending= 

False).show(truncate=False)
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[Out]:
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As mentioned, we can have different kinds of operations on groups of 

records, such as

•	 Mean

•	 Max

•	 Min

•	 Sum
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The following examples cover some of these, based on different 

groupings. F refers to the Spark sql function here.

[In]: df.groupBy('Customer_main_type').agg(F.mean('Avg_

Salary')).show()

[Out]:

 

[In]: df.groupBy('Customer_main_type').agg(F.max('Avg_

Salary')).show()

[Out]: 

 

Chapter 2  Data Processing



31

[In]: df.groupBy('Customer_main_type').agg(F.min('Avg_

Salary')).show()

[Out]:

 

[In]: df.groupBy('Customer_main_type').agg(F.sum('Avg_

Salary')).show()

[Out]: 
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Sometimes, there is simply a need to sort the data with aggregation 

or without any sort of aggregation. That’s where we can make use of the 

'sort' and 'orderBy' functionality of PySpark, to rearrange data in a 

particular order, as shown in the following examples:

[In]: df.sort("Avg_Salary", ascending=False).show()

[Out]:

 

[In]: df.groupBy('Customer_subtype').agg(F.avg('Avg_Salary').

alias('mean_salary')).orderBy('mean_salary',ascending=False).

show(50,False)

[Out]: 
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[In]: df.groupBy('Customer_subtype').agg(F.max('Avg_Salary').

alias('max_salary')).orderBy('max_salary',ascending=False).

show()

[Out]: 
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In some cases, we must also collect the list of values for particular 

groups or for individual categories. For example, let’s say a customer goes 

to an online store and accesses different pages on the store’s web site. If we 

have to collect all the customer’s activities in a list, we can use the collect 

functionality in PySpark. We can collect values in two different ways:

•	 Collect List

•	 Collect Set
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�Collect
Collect list provides all the values in the original order of occurrence (they 

can be reversed as well), and collect set provides only the unique values, 

as shown in the following example. We consider grouping on Customer 

subtype and collecting the Numberof houses values in a new column, 

using list and set separately.

[In]: df.groupby("Customer_subtype").agg(F.collect_set("Number_

of_houses")).show()

[Out]:

 

[In]:

df.groupby("Customer_subtype").agg(F.collect_list("Number_of_

houses")).show()

[Out]: 
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The need to create a new column with a constant value can be very 

common. Therefore, we can do that in PySpark, using the 'lit' function. 

In the following example, we create a new column with a constant value:

[In]: df=df.withColumn('constant',F.lit('finance'))

[In]: df.select('Customer_subtype','constant').show()
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[Out]:

 

Because we are dealing with dataframes, it is a common requirement 

to apply certain custom functions on specific columns and get the output. 

Hence, we make use of UDFs, in order to apply Python functions on one or 

more columns.

�User-Defined Functions (UDFs)
In this example, we are trying to name the age categories and create a 

standard Python function (age_category) for the same. In order to apply 

this on the Spark dataframe, we create a UDF object, using this Python 
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function. The only requirement is to mention the return type of the 

function. In this case, it is simply a string value.

[In]: from pyspark.sql.functions import udf

[In]: df.groupby("Avg_age").count().show()

[Out]:

 

[In]: def age_category(age):

    if age  == "20-30 years":

        return "Young"

    elif age== "30-40 years":

        return "Mid Aged"

    elif ((age== "40-50 years") or (age== "50-60 years")) :

        return "Old"

    else:

        return "Very Old"

[In]: age_udf=udf(age_category,StringType())

[In]: df=df.withColumn('age_category',age_udf(df['Avg_age']))

[In]: df.select('Avg_age','age_category').show()

[Out]: 
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[In]: df.groupby("age_category").count().show()

[Out]:

 

Pandas UDFs are another recent advancement, so let’s review  

them now.
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�Pandas UDF
Pandas UDFs are much faster and efficient, in terms of processing and 

execution time, compared to standard Python UDFs. The main difference 

between a normal Python UDF and a Pandas UDF is that a Python UDF is 

executed row by row and, therefore, really doesn’t offer the advantage of 

a distributed framework. It can take longer, compared to a Pandas UDF, 

which executes block by block and gives faster results. There are three 

different types of Pandas UDFs: scalar, grouped map, and grouped agg. The 

only difference in using a Pandas UDF compared to a traditional UDF lies 

in the declaration. In the following example, we try to scale the Avg_Salary 

values by applying scaling. We first take the min and max values of Avg_

Salary, subtract from each value the minimum salary from each value, 

and then divide by the difference between max and min.

X X

X X

-
-

min

max min

[In]: df.select('Avg_Salary').summary().show()

[Out]:

 

[In]: min_sal=1361

[In]: max_sal=48919896

Chapter 2  Data Processing



41

[In]: from pyspark.sql.functions import pandas_udf, 

PandasUDFType

[In]: def scaled_salary(salary):

        scaled_sal=(salary-min_sal)/(max_sal-min_sal)

        return scaled_sal

[In]: scaling_udf = pandas_udf(scaled_salary, DoubleType())

[In]:df.withColumn("scaled_salary",scaling_udf(df['Avg_

Salary'])).show(10,False)

[Out]: 

 

This is how we can use both conventional and Pandas UDFs to apply 

different conditions on the dataframe, as required.

�Joins
Merging different datasets is a very generic requirement present in most 

of data-processing pipelines in the big data world. PySpark offers a very 

convenient way to merge and pivot your dataframe values, as required. 

In the following example, we create a fabricated dataframe with some 
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dummy Region Code values for all Customer types. The idea is to combine 

this dataframe with the original dataframe, so as to have these region 

codes as part of the original dataframe, as a column.

[In]: region_data = spark.createDataFrame([('Family with grown 

ups','PN'),

                     ('Driven Growers','GJ'),

                       ('Conservative families','DD'),

                     ('Cruising Seniors','DL'),

                     ('Average Family ','MN'),

                     ('Living well','KA'),

                      ('Successful hedonists','JH'),

                       ('Retired and Religious','AX'),

                      �('Career Loners','HY'),('Farmers','JH')], 

schema=StructType().add("Customer_main_ 

type","string").add("Region Code","string"))

[In]: region_data.show()

[Out]: 

 

[In]: new_df=df.join(region_data,on='Customer_main_type')

[In]: new_df.groupby("Region Code").count().show()
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[Out]:

 

We took the regional count after joining the original dataframe (df) 

with the newly created region_data dataframe on the Customer_main_

type column.

�Pivoting
We can use the pivot function in PySpark to simply create a pivot view of 

the dataframe for specific columns, as shown in the following example. 

Here, we are grouping data, based on customer type. Columns represent 

different age groups. The values inside the pivot table are the sum of the 

Avg Salary of each of these customer type categories for a particular age 

group. We also ensure that there are no nulls or empty values, by filling all 

nulls with 0. In the subsequent example, we create one more pivot table, 

using the label column and take the sum of Avg Salary as the values 

inside it.

[In]:df.groupBy('Customer_main_type').pivot('Avg_age').

sum('Avg_Salary').fillna(0).show()

[Out]:
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[In]:df.groupBy('Customer_main_type').pivot('label').sum('Avg_

Salary').fillna(0).show()

[Out]:

 

We split the data, based on the Customer_main_type column, and took 

the cumulative sum of the Avg_Salary of each of the label values (0,1), 

using the pivot function.

�Window Functions or Windowed Aggregates
This functionality in PySpark allows you to perform certain operations on 

groups of records known as “within the window.” It calculates the results 

for each row within the window. A classic example of using window is the 

various aggregations for a user during different sessions. A visitor might 
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have multiple sessions on a particular web site and, hence window can be 

used to count the total activities of the user during each session. PySpark 

supports three types of window functions:

•	 Aggregations

•	 Ranking

•	 Analytics

In the following example, we import the window function, in addition 

to others, such as row_number. The next step is to define the window. 

Sometimes it can be simply an ordered column, or sometimes it can be 

based on particular categories within a column. We will see examples of 

each of these. In the first example, we define the window, which is just based 

on the sorted Avg Salary column, and we rank these salaries. We create a 

new column 'rank' and assign ranks to each of the Avg Salary values.

[In]: from pyspark.sql.window import Window

[In]: from pyspark.sql.functions import col,row_number

[In]: win = Window.orderBy(df['Avg_Salary'].desc())

[In]: df=df.withColumn('rank', row_number().over(win).

alias('rank'))

[In]: df.show()

[Out]:
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One common requirement is to find the top-three values from 

a category. In this case, window can be used to get the results. In the 

following example, we define the window and partition by the Customer 

subtype column. Basically, what it does is sort the Avg Salary for each 

of the Customer subtype category, so now we can use filter to fetch the 

top-three salary values for each group.

[In]:win_1=Window.partitionBy("Customer_subtype").

orderBy(df['Avg_Salary'].desc())

[In]: df=df.withColumn('rank', row_number().over(win_1).

alias('rank'))

Now that we have a new column rank that consists of the rank or each 

category of Customer_subtype, we can filter the top-three ranks for each 

category easily.

[In]: df.groupBy('rank').count().orderBy('rank').show()

[Out]:
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[In]: df.filter(col('rank') < 4).show()

[Out]: 
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�Conclusion
In this chapter, I discussed different techniques to read, clean, and 

preprocess data in PySpark. You saw the methods to join a dataframe and 

create a pivot table from it. The final sections of the chapter covered UDFs 

and window-based operations in PySpark. The upcoming chapters will 

focus on handling streaming data in PySpark and machine learning  

using MLlib.
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CHAPTER 3

Spark Structured 
Streaming
This chapter discusses how to use Spark’s streaming API to process real-

time data. The first part focuses on the main difference between streaming 

and batch data, in addition to their specific applications. The second 

section provides details on the Structured Streaming API and its various 

improvements over previous RDD-based Spark streaming APIs. The final 

section includes the code to use for Structured Streaming on incoming 

data and discusses how to save the output results in memory. We’ll also 

look at an alternative to Structured Streaming.

�Batch vs. Stream
Perhaps most readers of this book are already familiar with the key 

distinction between batch vs. stream data processing. Nonetheless, we can 

start on this note, as it emphasizes the importance of stream processing 

today. If we think of data as a huge ocean, then batch data can be referred 

to as a bucket of water, and we can have multiple buckets of different 

sizes, whereas stream data can be considered to be a water pipe that is 

continuously pumping water from the ocean.
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�Batch Data
As the name suggests, batch refers to a group of records put together 

over a period of time and later used for processing and analysis. Because 

these records are collected over a period of time, size-wise, batch data is 

generally bigger than streaming data (in some cases, however, stream data 

can be bigger than batch data) and is often used to conduct postmortems 

for various analysis purposes. The legacy systems, SQL databases, and 

mainframes all fall under the category of batch data. The key difference 

compared to streaming data is that batch data is not processed as soon as 

it becomes part of an earlier batch dataset.

�Stream Processing
Stream processing refers to the processing of records in real time or  

near real time. One doesn’t wait for the day to end to then process or 

analyze the data. Rather, records of the dataset are processed one by one 

as soon as they become available or based on a window period, as shown 

in Figure 3-1. As a result, this creates a sort of infinite table, with records 

continuously being added as data flows from the stream.

Figure 3-1.  Streaming data
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Today, businesses are very aggressive about using real-time data from 

various sources, such as platforms, devices, applications, and system logs, 

in order to keep their competitive edge. Therefore, stream processing has 

become a critical part of that overall process. Businesses want to use the 

latest or freshest data, to generate useful insights that can help in decision 

making. Batch processing cannot offer analytics on the fly, as it doesn’t 

work on a real-time basis, whereas stream data processing can help more 

effectively in such cases as fraud detection.

�Spark Streaming
In the previous chapter, you have seen the core architecture of Spark. One 

of the components of the Spark framework is Spark Streaming (Structured 

Streaming), shown in Figure 3-2.

Figure 3-2.  Spark Streaming
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The earlier version of Spark offered a streaming API that was known 

as Spark Streaming (Dstream). Spark Streaming was based on RDDs 

(an earlier Spark abstraction before DataFrame/datasets) and had few 

limitations. As shown in Figure 3-3, it was able to receive input data from 

various sources, such as Kafka, Flume, etc., and convert the incoming data 

into micro-batches and process them using Spark Engine.

The results of each batch would be generated as stream-only and 

would be saved to the output location. Each micro-batch was an RDD, 

based on certain time intervals, as shown in Figure 3-4.

Figure 3-3.  Spark Streaming data flow

Figure 3-4.  Spark Streaming batch processing
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Although the earlier Spark streaming component was quite powerful in 

terms of handling the streaming data processing, it was lacking in certain 

aspects.

	 1.	 One core drawback was that there were different 

APIs for batch and stream data processing jobs. Lots 

of changes (translations) had to be made to convert 

a batch job into a Dstream job.

	 2.	 It was unable to handle batch data processing based 

on event time, only on batch time. It was difficult to 

manage late arriving data for processing.

	 3.	 It had limited fault tolerance capability, without any 

end-to-end guarantee of consistent data processing.

�Structured Streaming
The latest version of the streaming component in Spark is known as 

Structured Streaming, which is a huge improvement over the last RDD-

based Spark streaming API. The first significant change from the previous 

version is that Structured Streaming offers the same API for batch as well 

as stream data processing jobs. Therefore, it works in a similar way for 

static and bounded batch data as for streaming and unbounded data, as 

shown in Figure 3-5.
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Another major shift from earlier versions is that Spark Structured 

Streaming is now built on top of the Spark SQL engine and uses DataFrame 

for multiple operations, such as aggregation, filters, etc. It also provides the 

end-to-end guarantee of data consistency, while writing the results in an 

output location. In order to understand how Structured Streaming works, 

let’s go through how data flows through its programming model, as shown 

in Figure 3-6.

Figure 3-5.  Static vs. Streaming DataFrame
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As the data arrives at time interval 1 (based on the window period 

selected), the input DataFrame consists of all the records up to that 

time interval (t=1). The next step is query execution (processing, 

transformation, join, aggregation) on that particular DataFrame (t=1). 

Once the query is completed, the results are made available, to be saved 

in the relevant output (console, memory, location). Now, new data arrives 

at time interval 2 and is added to the earlier DataFrame (t=1), resulting in 

a larger DataFrame (t=2). The query is again executed, but this time on 

a new DataFrame (t=2), and the results are saved in the selected output 

mode. This process continues for incoming streams of records, and each 

record is appended to the input DataFrame for data processing.

Figure 3-6.  Structured Streaming process
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Now that we understand the basic process of data processing with 

Structured Streaming, we can consider the core pieces of a streaming-

based application. There are three main areas into which we can divide 

this streaming framework:

	 1.	 Data input

	 2.	 Data processing (real time or near real time)

	 3.	 Final output

�Data Input
Any streaming application requires data, to be able to ingest and process 

data continuously. Therefore, there are multiple ways to provide data as 

input to the Structured Streaming platform.

•	 Messaging systems: Apache Kafka, Flume, and Logstash 

can be used to ingest real-time data and, hence, can 

easily become part of building streaming pipelines. The 

idea of using these tools is to capture all the data points 

as data is generated at the source application (web 

app, mobile app, IoT device) and pass it along to the 

Structured Streaming platform for further processing 

and analysis in a fault-tolerant and scalable manner.

•	 File folders/directory: Files are read continuously from 

the directory as a stream of data. A scheduler can be 

used to put the new files into the directory. The files 

can be in text, Parquet, or JSON format. The only 

condition is to have all the files available in the same 

format.
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�Data Processing
This is at the core of using streaming data for creating business value, as it 

can be applied to certain operations on the incoming data to get results. 

Such operations as aggregations, filtering, joins, sorting, etc., can be applied.

�Final Output
Structured Streaming provides multiple options for users to save their 

output results, as required, and it can either be in Append or Complete 

mode. Append mode refers to adding only new results to the final output 

table, whereas Complete mode updates the entire results table at the final 

output location.

	 1.	 File directory sink

	 2.	 Console

	 3.	 Memory sink

�Building a Structured App
In this final section of the chapter, we now build a Structured Streaming 

app that can read files from the local system folder as new files are added 

to the folder as stream data and apply all the operations on the new data 

and, finally, write the results in an output directory. The first step is to 

create the SparkSession object, in order to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('structured_

streaming').getOrCreate()

[In]: import pyspark.sql.functions as F

[In]: from pyspark.sql.types import *
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Then, we create some self-generated data that can be pushed into a 

respective local directory ("csv folder"), to be read by the Structured 

Streaming. The data that we will generate contains four columns and is in 

CSV format. We can also generate a Parquet format, if required.

	 1.	 User ID

	 2.	 App

	 3.	 Time spent (secs)

	 4.	 Age

[In]:df_1=spark.createDataFrame([("XN203",'FB',300,30), 

("XN201",'Twitter',10,19),("XN202",'Insta',500,45)], 

["user_id","app","time_in_secs","age"]).write.csv 

("csv_folder",mode='append')

Once we have created these dataframes, we can define the schema of 

these files, in order to read them using stream processing.

[In]:schema=StructType().add("user_id","string").

add("app","string").add("time_in_secs", "integer").add("age", 

"integer")

Now that we have one file available in the local folder ("csv folder"), 

we can go ahead and read it as a stream dataframe. The API to read a static 

dataframe is similar to that for reading a streaming dataframe, the only 

difference being that we use readStream.

[In]: data=spark.readStream.option("sep", ",").schema(schema).

csv("csv_folder")
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To validate the schema of the dataframe, we can use the printSchema 

command.

[In]: data.printSchema()

[Out]:

 

�Operations
Once we have the streaming dataframe available, we can apply multiple 

transformations, in order to get different results, based on specific 

requirements. In this example, we are going to see aggregations, 

sorting, filters, etc. First, is simply to count the records of each app in 

the dataframe. We can write the command as if we are applying the 

transformations on the static dataframe.

[In]: app_count=data.groupBy('app').count()

In order to view the results, we must mention the output mode, in 

addition to the desired location. In this example, we write the results in 

memory, but it can be written to console, specific cloud storage, or any 

other location. We also give the output mode as complete, in order to write 

results on the entire dataframe every time. Finally, we use a simple Spark 

SQL command to view the output from the query we executed on the 

streaming dataframe, by converting to a Pandas dataframe.

[In]:query=(app_count.writeStream.queryName('count_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from count_query ").toPandas().head(5)

[Out]:
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In this example, a query is being written to filter only the records of the 

Facebook (FB) app. The average time spent by each user on the FB app is 

then calculated.

[In]: fb_data=data.filter(data['app']=='FB')

[In]: fb_avg_time=fb_data.groupBy('user_id').agg(F.avg("time_

in_secs"))

[In]:fb_query=(fb_avg_time.writeStream.queryName('fb_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from fb_query ").toPandas().head(5)

[Out]:

 

Because there is only one dataframe currently in the local folder, we get 

the output of one user accessing FB and the time spent. In order to view 

more relative results, let’s push more self-generated data to the folder.

[In]:df_2=spark.createDataFrame([("XN203",'FB',100,30),("XN201", 

'FB',10,19),("XN202",'FB',2000,45)],["user_id","app","time_in_

secs","age"]).write.csv("csv_folder",mode='append')

We can now safely assume that Spark Structured Streaming has read 

the new records and appended them into the streaming dataframe and, 

therefore, the new results for the same query will differ from the last one.

[In]: spark.sql("select * from fb_query ").toPandas().head(5)
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[Out]:

 

Now, we have the average time spent across all users using the FB app. 

Let’s add few more records to the folder.

[In]:df_3=spark.createDataFrame([("XN203",'FB',500,30), 

("XN201",'Insta',30,19),("XN202",'Twitter',100,45)], 

["user_id","app","time_in_secs","age"]).write.csv("csv_folder", 

mode='append')

[In]: spark.sql("select * from fb_query ").toPandas().head(5)

[Out]:

 

In this example, we see aggregation and sorting of the query on the 

existing dataframe in the local folder. We group all the records by app and 

calculate the total time spent on each app, in decreasing order.

[In]:app_df=data.groupBy('app').agg(F.sum('time_in_secs').

alias('total_time')).orderBy('total_time',ascending=False)

[In]:app_query=(app_df.writeStream.queryName('app_wise_query').

outputMode('complete').format('memory').start())

[In]: spark.sql("select * from app_wise_query ").toPandas().head(5)
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[Out]:

 

We now have the results for each app and the total time spent by all 

users on the respective app, using a stream dataframe. Let’s add new 

records one more time and see the revised results for the same query.

[In]:df_4=spark.createDataFrame([("XN203",'FB',500,30), 

("XN201",'Insta',30,19),("XN202",'Twitter',100,45)], 

["user_id","app","time_in_secs","age"]).write.csv("csv_folder", 

mode='append')

[In]: spark.sql("select * from app_wise_query ").toPandas().

head(5)

[Out]:

 

In this example, we try to find the average age of users for every app in 

our data. We simply group the data by app, take the average age of all the 

users, and sort the results in decreasing order.

[In]:age_df=data.groupBy('app').agg(F.avg('age').alias('mean_

age')).orderBy('mean_age',ascending=False)
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[In]:age_query=(age_df.writeStream.queryName('age_query').

outputMode('complete').format('memory').start())

[In]:df_5=spark.createDataFrame([("XN210",'FB',500,50), 

("XN255",'Insta',30,23),("XN222",'Twitter',100,30)], 

["user_id","app","time_in_secs","age"]).write.csv("csv_folder", 

mode='append')

[In]: spark.sql("select * from age_query ").toPandas().head(5)

[Out]:

 

So, in the preceding examples, we see how we can use Spark Structured 

Streaming to read the incoming data and create a streaming dataframe to 

apply various transformations and write the results in a particular location. 

One more common requirement on streaming data is joins.

�Joins
Sometimes we have to merge incoming data with batch data, to make it 

more comprehensive. In the following example, we will see how we can 

merge incoming data (stream dataframe) with a static dataframe that 

contains the full name of the apps. Let’s create a new static dataframe with 

two columns (app and full name).

 [In]:app_df=spark.createDataFrame([('FB','FACEBOOK'),('Insta',

'INSTAGRAM'),('Twitter','TWITTER')],["app", "full_name"])

[In]: app_df.show()
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[Out]:

 

Now that we have a static dataframe available, we can simply write 

a new query to join the streaming dataframe (data) that we have been 

working with so far and merge both of them in an app column.

[In]: app_stream_df=data.join(app_df,'app')

[In]:join_query=(app_stream_df.writeStream.queryName('join_

query').outputMode('append').format('memory').start())

[In]: spark.sql("select * from join_query ").toPandas().

head(50)

[Out]:
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As you can see, we now have the additional column (full_name) in the 

streaming dataframe as well.

�Structured Streaming Alternatives
Since Spark Structured Streaming was made available in 2016, it has been 

rapidly gaining attention from the developers community. Having said 

that, however, there are a couple of other powerful alternatives to Spark’s 

Structured Streaming. One of them is Flink, which offers similar capability, 

in terms of streaming data processing with excellent latency rate. Another 

alternative is Google’s Beam, which is suitable in limited cases.

The core advantage of Spark’s Structured Streaming over the 

alternatives is the full-fledged framework provided by Spark as a whole, 

including batch processing (no major difference in code for batch or 

stream) and the machine learning library. Another great attribute of 

Structured Streaming is its Spark SQL API, which is extremely comfortable 

to many users. It is hoped that new versions of Spark will include more 

features for Structured Streaming, such as stream joins. Selection depends 

on the specific requirements of the application and finding the best 

possible alternative to make it scalable, fault-tolerant, and robust.

�Conclusion
In this chapter, the basic difference between batch and streaming data was 

identified. How Spark’s streaming API has evolved over the last few years 

to become the default framework for building streaming data applications 

was then discussed. Examples of how Spark’s Structured Streaming API is 

used to read streaming data (local folders), and how to save the aggregated 

results, were then provided.
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CHAPTER 4

Airflow
This chapter focuses on introducing Airflow and how it can be used to 

handle complex data workflows. Airflow was developed in-house by 

Airbnb engineers, to manage internal workflows in an efficient manner. 

Airflow later went on to become part of Apache in 2016 and was made 

available to users as an open source. Basically, Airflow is a framework for 

executing, scheduling, distributing, and monitoring various jobs in which 

there can be multiple tasks that are either interdependent or independent 

of one another. Every job that is run using Airflow must be defined via a 

directed acyclic graph (DAG) definition file, which contains a collection 

you want to run, grouped by relationships and dependencies.

This chapter concentrates on three main topics. I’ll start by examining 

workflow and then cover the basic building block of Airflow: DAG. You will 

then learn about the user interface aspect of Airflow. In the final section, 

I will go over the code to define DAG for a job and how to use Airflow to 

execute and monitor it.

�Workflows
Most of the things that we see around us follow a process. Trains run at set 

intervals, planes fly on fixed times, and signals on roads change at regular 

periods. Process is critical if consistency is required, especially when 

there are dependencies among different tasks. In the world of software or 

technology, a set process is also followed, in building or executing projects. 

If we go down a few levels, we can call these processes workflows. A proper 
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workflow must be designed and executed, in order to achieve the desired 

results. It is rare to witness developers or engineers who don’t follow a 

standard procedure, to build a solution or application. For example, in a 

typical scenario for data processing workflow, developers will define the 

steps before executing the tasks, as shown in Figure 4-1. These steps are 

often referred to as pipelines, which consist of sequences of tasks that must 

be completed.

Figure 4-1.  Sample workflow

The first task is to read the data from the source file and then copy 

it to your platform or desired location. Once data is made available, you 

ingest it and pass it through multiple steps to clean and transform it. You 

then perform the analysis and calculate the results. Finally, you save the 

output to the required location. Traditionally, the way these steps are 

executed is with the help of cron jobs (commands run by the cron daemon 

at scheduled intervals). So, all the tasks are part of the scripts which are 

run as cron jobs. Although, it serves the purpose of executing things in a 

particular order, it still faces many practical challenges. Most common is 

the breakdown of the script execution. There is no clear methodology to 

re-attempt the script run. Another challenge is monitoring the status of the 

running job. It is very difficult to determine the stage and the time duration 

each stage takes while executing. There are other challenges as well, such 

as running multiple cron jobs through a centralized scheduler, for bigger 

and complex pipelines and to accommodate continuous changes in the 

workflow. Owing to all of the difficulties mentioned, Airflow was born as 

a framework with which to schedule and monitor such kinds of jobs and 

run the pipelines smoothly, for consistent output. To truly understand how 

Airflow and DAGs operate, you first must understand graphs in general.
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�Graph Overview
A typical graph data structure consists of two entities, shown in Figure 4-2.

	 1.	 Edges

	 2.	 Nodes/vertices

Figure 4-2.  Structure of a graph

The edges are essentially the connections between the nodes/vertices, 

and nodes are where actual data resides. We can place graph-based 

networks into two main categories:

	 1.	 Undirected graphs

	 2.	 Directed graphs

�Undirected Graphs
In this kind of graph structure, the edges or connections don’t have any 

direction, as in Figure 4-2. The relationship will exist at both ends. For 

example, if person 1 in node 1 is a friend of person 2 in node 2, then person 2 

would also be a friend of person 1.
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�Directed Graphs
A directed graph is either cyclic or acyclic. The direction of the edge 

plays an important role, as all the edges in a graph go only one way, as in 

Figure 4-3.

Cyclic graphs have one or more cycles. A cycle is a path that begins and 

ends at the same node, as shown in Figure 4-4. The information flows from 

node 1 to node 2, but there is another way back from node 2 to node 1. This 

is known as a cycle, or loop, graph.

Figure 4-3.  Directed graph

Figure 4-4.  Cyclic graph
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There are no cycles in DAGs, so their benefits include the following:

•	 A dynamic framework (configuration as code)

•	 Extensibility—They support different types of task 

execution.

•	 Scalability—They can perform an infinite number of 

tasks (worker nodes).

Let’s now turn our attention to DAGs.

�DAG Overview
Because a DAG is a directed graph, information can flow in only one 

direction, and that’s forward, as illustrated in Figure 4-5. So, if node 4 must 

be reached, the path is 1 ➤ 2 ➤ 4. In DAGs, there is no reverse path back to 

the starting node.
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All the tasks of jobs in Airflow must be defined in a DAG. So, the 

order of execution is defined in DAG form. For example, if task 8 has to 

be executed, task 1 and task 3 must be finished first, whereas for task 7 to 

be completed, there doesn’t have to be any dependence on other tasks, 

apart from task 3. Therefore, some of the independent tasks (2, 3) can take 

place irrespective of each other’s state as shown in Figure 4-5. The order of 

execution of the tasks and interdependencies can be defined well before 

executing them with Airflow.

All the configurations related to DAG are defined in a DAG definition 

file, which is a Python extension. It contains all the dependencies and 

configuration parameters, such as e-mail to be sent in case of failures, start 

time, end time, and number of retries. We also have to define all the tasks that 

are part of the DAG, in addition to the dependencies or sequence of the tasks.

Figure 4-5.  Flow of information in a DAG

Chapter 4  Airflow



73

�Operators
As discussed previously, a DAG can contain multiple tasks. These tasks 

can be totally different from one another. One of the tasks can be a simple 

Python script; another can be a shell script or SQL query; and another 

can be a cloud-based Spark job. These tasks are defined inside of DAG 

definition file, using operators. Airflow provides a range of operators for 

different types of tasks. The most common ones are the following:

	 1.	 Python operator (Python script)

	 2.	 Bash operator (Shell script)

	 3.	 SQL operator

	 4.	 Docker operator

	 5.	 Cloud operator (S3, Azure, Google)

This flexibility of Airflow to run any type of task makes it very powerful, 

compared to other schedulers.

A DAG file is simply a Python script that contains all the required 

configuration parameters to run the DAG. There are a few standard steps 

that must be taken, in order to create a DAG, as shown following:

	 1.	 Importing required modules

	 2.	 Declaring default arguments

	 3.	 Instantiating the DAG object

	 4.	 Defining all the tasks

	 5.	 Declaring the order of execution/task dependencies

In some areas, Airflow stands out, compared to alternatives, in terms of 

handling upstream and downstream dependencies more intelligently and 

in its ability to run historical loads. It also handles failures and blockers 

with complete transparency.
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�Installing Airflow
There are multiple ways in which Airflow can be used, as it is designed 

to easily integrate with different environments. If we want to use Airflow 

locally, we can install and configure the Airflow environment locally. 

The other option is to make use of Docker, to containerize the Airflow 

application and run it on any platform, irrespective of the environment. 

The core benefit of using Docker is that it takes on itself the additional 

burden of managing dependencies and deployment.

�Airflow Using Docker
One way to run Airflow is to create your own Docker image, with all the 

dependencies and components, but an Airflow Docker image that makes it 

very easy to run is already available from the Docker Hub. The steps to run 

Airflow are as follows:

[In]: docker pull puckel/docker-airflow

[In]:docker run -d -p 8080:8080 puckel/docker-airflow webserver

Once you run the preceding command in a terminal, you can access 

port 8080, by going to http://127.0.0.1:8080, as shown in Figure 4-6.

Figure 4-6.  Airflow UI
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This is how the Airflow UI looks. It currently holds no DAGs and is a 

vanilla version. If you want to see the sample DAGs that come in Airflow by 

default, you simply have to add one extra argument while running Docker. 

To see which containers are running, we can use the following code:

[In]: docker ps

Once all the containers are listed, you can stop/kill the earlier 

container running Airflow, by using

[In]: docker kill <containerID>

Now we run the following command with LOAD_EX=y as an additional 

parameter, as follows:

[In]: docker run -d -p 8080:8080 -e LOAD_EX=y puckel/docker-

airflow

If we access the Airflow UI now, we get a list of all default DAGs, as 

shown in Figure 4-7.

Figure 4-7.  Airflow DAGs
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�Airflow Setup (Mac)

The first step is to ensure that Python is installed on the machine, and we 

can use the brew install command to install python3. Once Python is 

installed, we can install Airflow. It requires a home directory. ~/airflow 

is the default, but a different location can also be chosen, based on 

preference.

[In]:  brew install python python3

[In]: pip install airflow

[In]: mkdir ~/airflow

[In]: export AIRFLOW_HOME=~/airflow

 [In]: cd ~/airflow

[In]: airflow initdb

[In]: airflow webserver -p 8080

The final two steps are to initialize Airflow, using initdb, and accessing 

the UI on the preferred port.

�Creating Your First DAG
As discussed in the earlier part of the chapter, a DAG consists of multiple 

tasks arranged in a particular order, as shown in Figure 4-8.
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In order to create a DAG, you must define a DAG file that contains all 

the details pertaining to DAG tasks, and dependencies must be defined 

in a file (Python script). This is a configuration file specifying the DAG’s 

structure as code. The five steps that must to be taken to run a DAG are 

shown in Figure 4-9.

Figure 4-8.  Tasks

Figure 4-9.  Airflow steps

Let’s go into detail about each of these steps, to understand the 

internals better.
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�Step 1: Importing the Required Libraries
The first step is to import all the required libraries for running Airflow. 

Some common ones include datetime, different operators (Bash/Python), 

and Airflow itself.

[In]: from datetime import timedelta

[In]: import airflow

[In]: from airflow import DAG

[In]: from airflow.operators.bash_operator import BashOperator

�Step 2: Defining the Default Arguments
The next step is to define some important parameters, to ensure that 

Airflow executes the DAGs at designated time intervals and an appropriate 

number of times.

 [In]: args = {

    'owner': 'Pramod',

    'start_date': airflow.utils.dates.days_ago(3),

    # 'end_date': datetime(2018, 12, 30),

    'depends_on_past': False,

    'email': ['airflow@example.com'],

    'email_on_failure': False,

    'email_on_retry': False,

    'retries': 1,

    'retry_delay': timedelta(minutes=5),

    }
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�Step 3: Creating a DAG
The third step is to create the DAG itself, which consists of the DAG’s name 

and schedule interval, as shown following. You can decide when to run the 

jobs, depending on your requirements.

 [In]: dag = DAG(

    'pramod_airflow_dag',

    default_args=args,

    description='A simple DAG',

    # Continue to run DAG once per day

    schedule_interval=timedelta(days=1)

�Step 4: Declaring Tasks
The next step is to declare the tasks (actual jobs) to be executed. All the 

tasks can be declared and made part of the same DAG created in the 

preceding step.

 [In]: t1 = BashOperator(

    task_id='print_date',

    bash_command='date',

    dag=dag,

)

t2 = BashOperator(

    task_id='sleep',

    depends_on_past=False,

    bash_command='sleep 5',

    dag=dag,

) 
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�Step 5: Mentioning Dependencies
The final step is to set the order of task execution. They can be either 

parallel or sequential tasks. There are multiple ways in which the tasks can 

be defined.

 [In]: t1 >> t2

Once all the preceding steps have been completed, we can start Airflow 

and access the web UI. The screen shown in Figure 4-10 is available with 

the DAG file just created.

Figure 4-11.  Tree view

Currently, it’s in OFF stage, and we can either trigger it manually or 

through a command-line interface (CLI). If we click the DAG itself, it takes 

us to the default tree view of the DAG, which lists all the tasks within the 

DAG, as shown in Figure 4-11.

Figure 4-10.  Airflow DAG
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Now switch on the DAG, in order to initiate the tasks, as shown in 

Figure 4-12.

Then click the Trigger Dag icon and start the execution, as shown in 

Figure 4-13.

Figure 4-12.  DAG initialization

Figure 4-13.  DAG trigger

The moment DAG is triggered, we can see the change under the 

Recent Tasks tab, and DAG runs, as shown in Figure 4-14.

Figure 4-14.  Running the DAG
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Once the DAG starts to run we can view it in different ways , the first 

form is the Tree View as shown in Figure 4-15.

Figure 4-15.  Airflow UI 

Figure 4-16.  Graph view

Another view is the Graph View that shows the order of task execution 

in a slightly different manner, and the color of the task indicates its 

progress (success/running/failed, etc.), as shown in Figure 4-16.

Figure 4-17.  DAG details tab

We can also drill deeper into other details of the DAG, by going to the 

DAG details tab, shown in Figure 4-17.
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Finally, under the Code tab, we can review the DAG Python script that 

was originally created before running the DAG, as shown in Figure 4-18.

Figure 4-18.  DAG code

If we wait a while and recheck Graph View, we will observe that both 

tasks have been completed successfully, as illustrated in Figure 4-19. From 

the Tree View tab, we can see that tasks have been completed for all three 

days (the last two and today’s), as shown in Figure 4-20.

Figure 4-19.  Graph view
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Figure 4-20.  Tree view

�Conclusion
In this chapter, you learned how to define a DAG and run different jobs 

using Airflow. The steps to implement Airflow and monitor the status of 

different tasks were also covered. You were also introduced to the web UI 

for Airflow, in addition to different components within the interface.
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CHAPTER 5

MLlib: Machine 
Learning Library
Depending on your requirements, there are multiple ways in which you 

can build machine learning models, using preexisting libraries, such as 

Python’s scikit-learn, R, and TensorFlow. However, what makes Spark’s 

Machine Learning library (MLlib) really useful is its ability to train models 

on scale and provide distributed training. This allows users to quickly build 

models on a huge dataset, in addition to preprocessing and preparing 

workflows with the Spark framework itself.

This chapter focuses on how to leverage MLlib for building and 

applying various machine learning models. The first part focuses on basic 

statistics, using MLlib, followed by building pipelines to create features 

and other transformations. The last part of the chapter discusses using 

MLlib for building machine learning classification models.

Let’s begin by reviewing how we can use Spark’s MLlib for calculating 

some of the basic statistical measures for data analysis. You will see how to 

calculate correlations between two numerical variables and how to use a 

chi-square test to determine if there is a significant relationship between 

two categorical variables.
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�Calculating Correlations
Correlation is an important metric with which to determine if there is any 

relationship between two continuous variables. Correlation can either be 

positive or negative, as shown in Figure 5-1. It is also possible for there to 

be no correlation between two variables.

Figure 5-1.  Types of correlations

Correlation is very easy to calculate using Spark MLlib. It provides the 

options to calculate two types of coefficients of correlations:

	 1.	 Pearson

	 2.	 Spearman

Using Spark, let’s take a sample dataframe, to calculate the coefficient 

of correlation. This dataset contains just two numerical columns (Years 

Experience and Salary). The first step is to create the Spark context, in 

order to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('basic_stats').

getOrCreate()

[In]: df=spark.read.csv('corr_data.csv',header=True, 

inferSchema=True)

Chapter 5  MLlib: Machine Learning Library



87

[In]: df.count()

[Out]: 30

[In]: df.show()

[Out]:

 

As you can see, there are just 30 records in this dataframe. Next, we 

combine the two columns into a single dense vector representation, in 

order to calculate the correlation coefficient, using VectorAssembler. We 

name the new dense vector “features.”

[In]: from pyspark.ml.feature import VectorAssembler

[In]: assembler = VectorAssembler(inputCols=df.columns, 

outputCol="features")

[In]: df_new=assembler.transform(df)
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[In]: df_new.show()

[Out]:

 

Pearson Coefficient of Correlation

[In]: from pyspark.ml.stat import Correlation

[In]: pearson_corr = Correlation.corr(df_new,'features')

[in]: pearson_corr.show(2,False)

[Out]:
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Spearman Coefficient of Correlation

[In]: spearman_corr=Correlation.corr(df_

new,'features',"spearman")

[In]: spearman_corr.show(2,False)

[Out]:

�Chi-Square Test
Correlation is all about the relationship between numerical features, 

whereas other types of variables can be categorical as well. One of the ways 

to validate the relationship between two categorical variables is through 

a chi-square test. Let’s consider an example, to understand how it works. 

Some made up data is summarized in Table 5-1.

Table 5-1.  Sample Data

Smoker Nonsmoker

Teen 32 12

Young 14 22

Old 6 9

It contains three categories of people (Teen, Young, and Old) and 

is divided into two buckets (Smoker and Nonsmoker). In the next step, 

we calculate the total number of people in each category and bucket, as 

shown in Table 5-2. This is also known as a contingency table.
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The next step is to calculate the expected values, based on the actual 

values in the table. The expected values are calculated with the following 

formula:

Expected Value Total Total TotalTeen Smoker Teen Smoker - = *( )/

Expected ValueTeen Smoker - = *( )44 52 95/

Expected ValueTeen Smoker - = 24

x 2

Similarly, we calculate all the expected values for each category against 

both buckets, as shown in Table 5-3.

Table 5-3.  Expected Values

Smoker Nonsmoker

Teen 24 20

Young 20 16

Old 8 7

Table 5-2.  Contingency Table

Smoker Nonsmoker Total

Teen 32 12 44

Young 14 22 36

Old 6 9 15

52 43 95
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The next step is to arrive at a chi-square table, by comparing the actual 

values against expected values. The chi-square table values are calculated 

with the following formula:

Chi Square Table Value

Actual Expect

Teen Smoker

Teen Smoker

-   -

-

=

- eed ExpectedTeen Smoker Teen Smoker- -( )2
/

Chi SquareTable ValueTeen Smoker-  - =
-( )32 24

24

2

Chi SquareTable ValueTeen Smoker-  - = 2 602.

Now that we have the chi-square values, we take the total for each 

bucket (Smoker and Nonsmoker), as shown in Table 5-4.

Table 5-4.  Chi-Square Totals

Smoker Nonsmoker

Teen 2.602 3.146

Young 1.652 1.998

Old 0.595 0.720

Chi-square value 4.849 5.864

The overall chi-square value comes to 10.7 (4.84 + 5.86). We then look 

up for the value of 10.7 in the chi-square table for the degree of freedom 

(3-1)∗(2-1) = 2 and find the corresponding p value. If the p value is less 

than 0.05, this indicates a statistically significant relationship between the 

two variables. Let’s try to run a chi-square test using Spark. Here we have a 

sample dataset that has three columns, but we will try to determine if there 

is any relationship between the marital and housing columns (both are 

categorical in nature).
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[In]: df=spark.read.csv('chi_sq.csv',inferSchema=True,header=True)

[In]: df.count()

[Out]: 9501

[In]: df.show()

[Out]:

 

[In]: from pyspark.ml.feature import StringIndexer

[In]: marital_indexer = StringIndexer(inputCol="marital", 

outputCol="marital_num").fit(df)

[In]: df = marital_indexer.transform(df)

[In]: from pyspark.ml.feature import OneHotEncoder

[In]: marital_encoder = OneHotEncoder(inputCol="marital_num", 

outputCol="marital_vector")
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[In]: df = marital_encoder.transform(df)

[In]: housing_indexer = StringIndexer(inputCol="housing", 

outputCol="housing_num").fit(df)

[In]: df = housing_indexer.transform(df)

[In]: housing_encoder = OneHotEncoder(inputCol="housing_num", 

outputCol="housing_vector")

[In]: df = housing_encoder.transform(df)

[In]: df.show()

[Out]:

 

[In]: df_assembler = VectorAssembler(inputCols=['marital_

vector','housing_vector'], outputCol="features")

[In]: df = df_assembler.transform(df)

[In]: df.show()
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[Out]:

 

[In]: chi_sq = ChiSquareTest.test(df, "features", "label").head()

[In]: print("pValues: " + str(chi_sq.pValues))

[Out]:

pValues: [0.0,0.0,0.06036632491,0.0,3.56381590905e-14]

�Transformations
In this section, I will go over some of the common transformations 

required for data preprocessing and feature engineering. These help in 

preparing data the right way for applying machine learning.

�Binarizer
We can convert the numerical/continuous variable into categorical 

features (0/1) by using Binarizer in MLlib. We must declare the threshold 

value, in order to convert the numerical feature into a binary feature. Any 

value above the threshold will be converted into 1, and values below or 

equal to the threshold will become 0. Let’s apply Binarizer on the label 

column of the transformation sample dataset.
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[In]: df=spark.read.csv('transformations.csv',header=True,infer

Schema=True)

[In]: df.count()

[Out]: 6366

[In]: df.show()

[Out]:

 

Now we import the Binarizer function from the Spark library.

[In]: from pyspark.ml.feature import Binarizer

[In]: binarizer = Binarizer(threshold=0.99, inputCol="label", 

outputCol="binarized_label")

[In]: new_df=binarizer.transform(df)
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[In]: new_df.show()

[Out]:

�Principal Component Analysis
Most of the time, we deal with multidimensional data, and it sometimes 

becomes difficult to understand the underlying pattern without visualizing 

that data. Principal component analysis (PCA) is one of the transformation 

techniques that allows you to reduce the dimensions of the data while 

keeping intact the variation of the data as much as possible. Let’s go over 

the steps to apply PCA, on the same data used previously.

[In]: from pyspark.ml.feature import PCA

[In]: assembler = VectorAssembler(inputCols=[col for col in 

df.columns if col !='label'], outputCol="features")

[In]: df_new=assembler.transform(df)
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[In]: df_new.show()

[Out]:

 

k represents the number of reduced dimensions of the data after PCA.

[In]: pca = PCA(k=2, inputCol="features", outputCol="pca_

features")

[In]: pca_model=pca.fit(df_new)

[In]: pca_comp = pca_model.transform(df_new).select("pca_

features")

[In]: pca_comp.show(truncate=False)

[out]:
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As you can see, we have applied PCA to the data (except for the “label” 

column) and reduced the number of dimensions to just two.

�Normalizer
Normalization refers to transformation of data in such a way that the 

new normalized data has a mean of 0 and a standard deviation of 1. The 

normalization is done using the following formula:

x mean x

standard dev x

- ( )( )
( )
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To make use of Normalizer in Spark, we simply have to apply it on the 

required column. Here, we apply it to the “features” column.

[In]: from pyspark.ml.feature import Normalizer

[In]: normalizer = Normalizer(inputCol="features", 

outputCol="norm_features", p=1.0)

[In]: normalised_l1_data = normalizer.transform(df_new)

[In]: normalised_l1_data.select('norm_features').

show(truncate=False)

[Out]:

 

The normalization helps standardize the input data and sometimes 

improve the performance of the machine learning models.

Chapter 5  MLlib: Machine Learning Library



100

�Standard Scaling
Scaling is another technique to normalize data, such that the values are 

within a specific range, e.g., [0, 1]. Many machine learning algorithms 

are sensitive to the scale of the input data, and, hence, it becomes critical 

to apply scaling. Scaling can be applied in different ways, but the most 

fundamental approach is to use the following formula:

x min x

max x min x

- ( )
( ) - ( )

[In]: from pyspark.ml.feature import StandardScaler

[In]: scaler = StandardScaler�(inputCol="features", 

outputCol="scaled_features",

                             withStd=False, withMean=True)

[In]: scaler_model = scaler.fit(df_new)

[In]: scaled_data = scaler_model.transform(df_new)

[In]: scaled_data.select('scaled_features').

show(truncate=False)
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[Out]:

�Min-Max Scaling
Min-max scaling is another version of standard scaling, as it allows you to 

rescale the feature values between specific limits (mostly, between 0 and 1).  

You can also rescale the values between 0 and 1, using min-max scaling.

[In]: from pyspark.ml.feature import MinMaxScaler

[In]: mm_scaler = MinMaxScaler(inputCol="features", 

outputCol="mm_scaled_features")

[In]: mm_scaler_model = mm_scaler.fit(df_new)

[In]: rescaled_df = mm_scaler_model.transform(df_new)
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[In]: rescaled_df.select("features", "mm_scaled_features").

show()

[Out]:

 

To access the min and max values, we can use the getMin and getMax 

functions. In order to change the range, we can define the new min and 

max values by creating a scaler object. Here we rescale the values between 

-1 and 1.

[In]: mm_scaler.getMin()

[Out]: 0.0

[In]: mm_scaler.getMax()

[Out]: 1.0

Alter the min max values
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[In]: mm_scaler = MinMaxScaler(inputCol="features", 

outputCol="mm_scaled_features”, min=-1,max=1)

[In]: mm_scaler_model = mm_scaler.fit(df_new)

[In]: rescaled_df = mm_scaler_model.transform(df_new)

[In]: rescaled_df.select("features", "mm_scaled_features").

show()

[Out]: 

 

�MaxAbsScaler
MaxAbsScaler is a little different from standard scaling tools, as it rescales 

each feature value between -1 and 1. However, it does not shift the center 

of the data and, hence, does not impact any sparsity.
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[In]: from pyspark.ml.feature import MaxAbsScaler

[In]: mxabs_scaler = MaxAbsScaler(inputCol="features", 

outputCol="mxabs_features")

[In]: mxabs_scaler_model = mxabs_scaler.fit(df_new)

[In]: rescaled_df = mxabs_scaler_model.transform(df_new)

[In]: rescaled_df.select("features", "mxabs_features").show()

[Out]: 

 

�Binning
Binning, or bucketing, is useful in cases in which you want to group 

continuous features into categories. You can do binning with the help of 

Bucketizer in Spark. Let’s try to bucketize the target (label) column into 

bins. The splits can be made accordingly, but it’s always advisable to start 
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and end the splits with negative infinity to positive infinity, to avoid out 

of bound errors (especially in cases in which max and min values of the 

feature are unknown).

[In]: from pyspark.ml.feature import Bucketizer

[In]: df.show(10,False)

[Out]:

 

We now define the end points for the splits to occur and create a new 

column that contains the bins.

[In]: splits = [0.0,1.0,2.0,3.0,4.0,5.0,float("inf")]

[In]: bucketizer = Bucketizer(splits=splits, inputCol="label", 

outputCol="label_bins")

[In]: binned_df = bucketizer.transform(df)

[In]: binned_df.select(['label','label_bins']).show(10,False)
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[Out]:

 

As you can see, all the values have been put under a bin, and we can 

use groupby to validate the total bins (6). We can also get the bin values 

using the getSplit function.

[In]: binned_df.groupBy('label_bins').count().show()

[Out]:

 

[In]: print(bucketizer.getSplits())-1

[Out]: 6 
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�Building a Classification Model
In this section, you will see how we can use Spark’s Machine Learning 

library (MLlib) to build classification models. Because there are dedicated 

chapters for supervised and unsupervised ML models later in the book, 

in this section, I will not go too deep into the details but focus instead on 

the overall process of building a model with the MLlib. For our example, 

we will use the data inspired by the dataset provided by Giulio Palombo in 

his book A Collection of Data Science Take-Home Challenges. The dataset 

contains information pertaining to a few customers who have applied 

for new bank loans and whether they will default. We will build a binary 

classification model to predict whether a particular customer should be 

granted a loan, based on the knowledge gleaned from the model. The 

following core steps are used to build a classification model:

	 1.	 Load the dataset.

	 2.	 Perform exploratory data analysis.

	 3.	 Perform required data transformations.

	 4.	 Split data into train and test subsets.

	 5.	 Train and evaluate the baseline model on train data.

	 6.	 Perform hyperparameter tuning.

	 7.	 Build a final model with the best parameters.

�Step 1: Load the Dataset
In the first step, we initiate the Spark object, to use Spark and load the 

dataset to create the Spark dataframe.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('binary_class').

getOrCreate()
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[In]: df=spark.read.csv('classification_data.csv',inferSchema= 

True,header=True)

�Step 2: Explore the Dataframe
In this step, we explore the different aspects of the data and various 

columns in the dataframe.

[In]: print((df.count(),len(df.columns)))

[Out]: (46751, 12)

The dataframe contains 12 columns and more than 46,000 records. We 

can view all the columns and datatypes, using the printSchema function.

[In]: df.printSchema()

[Out]:

 

We can use the show or display function to view the top few rows of 

the dataframe.

[In]: df.show(5)

[Out]:
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We can use groupby to count the number of positive and negative 

events in the target column (label).

[In]: df.groupBy('loan_label).count().show()

[Out]:

 

As you can see, more than one-third of all customers have defaulted on 

their loans. To understand the data better, we continue with exploratory 

data analysis. In the following results, we can see that people prefer to 

apply for a loan mainly for property, operations, and personal reasons.

[In]: df.groupBy('loan_purpose').count().show()

[Out]:
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Customers seem to have applied for property loans more than any 

other category of loan.

�Step 3: Data Transformation
Because all of the variables in the dataframe are numerical, except for 

the loan purpose, we must convert them into numerical form, using 

OneHotEncoder.

[In]: from pyspark.ml.feature import OneHotEncoder, 

StringIndexer, VectorAssembler

[In]: loan_purpose_indexer = StringIndexer(inputCol="loan_

purpose", outputCol="loan_index").fit(df)

[In]: df = loan_purpose_indexer.transform(df)

[In]: loan_encoder = OneHotEncoder(inputCol="loan_index", 

outputCol="loan_purpose_vec")

[In]: df = loan_encoder.transform(df)

[In]: df.select(['loan_purpose','loan_index','loan_purpose_

vec']).show(3,False)

 

Now that we have converted the original loan-purpose feature into 

vectorized form, we can use VectorAssembler to create a single-feature 

vector for model training.
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[In]: from pyspark.ml.feature import VectorAssembler

[In]: df_assembler = VectorAssembler(inputCols=['is_first_loan',

 'total_credit_card_limit',

 'avg_percentage_credit_card_limit_used_last_year',

 'saving_amount',

 'checking_amount',

 'is_employed',

 'yearly_salary',

 'age',

 'dependent_number',

 'loan_purpose_vec'], outputCol="features")

[In]: df = df_assembler.transform(df)

[In]: df.select(['features','label]).show(10,False)

[Out]:

 

We now create a new dataframe with just two columns: features and label.

[In]: model_df=df.select(['features','label'])
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�Step 4: Splitting into Train and Test Data
We now split the overall data into training and test sets randomly, to avoid 

any bias in the training.

[In]: training_df,test_df=model_df.randomSplit([0.75,0.25])

�Step 5: Model Training
Now that our training and test data are ready, we can go ahead and train 

a baseline model, such as logistic regression, with default parameters and 

check its performance on train and test data.

[In]: from pyspark.ml.classification import LogisticRegression

[In]: log_reg=LogisticRegression().fit(training_df)

[In]: lr_summary=log_reg.summary

[In]: lr_summary.accuracy

[Out]: 0.8939298586875679

[In]: lr_summary.areaUnderROC

0.9587456481363935

[In]: print(lr_summary.precisionByLabel)

[Out]: [0.9233245149911816, 0.8396318618667535]

[In]: print(lr_summary.recallByLabel)

[Out]: [0.914054997817547, 0.8556606905710491]

[In]: predictions = log_reg.transform(test_df)

[In]: predictions.show(10) 
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[In]: model_predictions = log_reg.transform(test_df)

[In]: model_predictions = log_reg.evaluate(test_df) 

[In]: model_predictions.accuracy

[Out]: 0.8945984906300347

[In]: model_predictions.areaUnderROC

[Out]: 0.9594316478468224

[In]: print(model_predictions.recallByLabel)

[Out]: [0.9129581151832461, 0.8608235010835541]

[In]: print(model_predictions.precisionByLabel)

[Out]: [0.9234741162452006, 0.8431603773584906] 

�Step 6: Hyperparameter Tuning
So, using a baseline model, we are getting almost 89% accuracy on the 

test data, and a recall rate of 0.86. Now that we have built the baseline 

model, we can build a more sophisticted model, such as a random forest 

model, which is an ensemble method that can improve the accuracy of 

predictions. You will see how we can tune this model, to find the best 

possible hyper-parameters.
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[In]: from pyspark.ml.classification import 

RandomForestClassifier

First, we build a random forest model with default hyper-parameters, then 

train it on the training data, so that predictions can be made on the test data.

[In]: rf = RandomForestClassifier()

[In]: rf_model = rf.fit(training_df)

[In]: model_predictions = rf_model.transform(test_df)

Using cross-validation techniques, we now try to come up with the best 

hyperparameters for this model.

[In]: from pyspark.ml.tuning import ParamGridBuilder, 

CrossValidator

[In]: from pyspark.ml.evaluation import 

BinaryClassificationEvaluator

[In]: evaluator = BinaryClassificationEvaluator()

[In]: rf = RandomForestClassifier()

[In]: paramGrid = (ParamGridBuilder()

             .addGrid(rf.maxDepth, [5,10,20,25,30])

             .addGrid(rf.maxBins, [20,30,40 ])

             .addGrid(rf.numTrees, [5, 20,50])

             .build())

We define the parameter grid with all the possible values for different 

hyperparameters (maxDepth, maxBins, numTrees) and apply cross-

validation, to dtermine the best model. We use five-fold cross-validation in 

this case (four parts for training, and one for testing).

[In]: cv = CrossValidator(estimator=rf, estimatorParam 

Maps=paramGrid, evaluator=evaluator, numFolds=5)

[In]: cv_model = cv.fit(training_df)

Chapter 5  MLlib: Machine Learning Library



115

We then access the best model parameters and use them on the test 

dataset, to make predictions.

�Step 7: Best Model
[In]: best_rf_model = cv_model.bestModel

[In]: model_predictions = best_rf_model.transform(test_df)

[In]:true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]:actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]:pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: recall_rate=float(true_pos)/(actual_pos)

[In]: print(recall_rate)

[Out]: 0.912426614481409

As you can see from the preceding, with the random forest model 

with best hyperparameters, the recall rate has improved, compared to the 

baseline method (logistic regression).

�Conclusion
In this chapter, some transformation techniques using PySpark and ways 

to compute summary statistics were reviewed. You saw how to build a 

machine learning model from scratch and how to tune hyperparameters, 

to choose the best parameters for a model.
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CHAPTER 6

Supervised Machine 
Learning
Machine learning can be broadly divided into four categories: supervised 

machine learning and unsupervised machine learning and, to a lesser 

extent, semi-supervised machine learning and reinforcement machine 

learning. Because supervised machine learning drives a lot of business 

applications and significantly affects our day-to-day lives, it is considered 

one of the most important categories.

This chapter reviews supervised machine learning, using multiple 

algorithms. In Chapter 7, we’ll look at unsupervised machine learning. I’ll 

begin by providing an overview of the different categories of supervised 

machine learning. In the second section, I will cover various regression 

methods, and we will build machine learning models, using PySpark’s 

MLlib library. The third and final section of this chapter focuses on 

classification, using multiple machine learning algorithms.

�Supervised Machine Learning Primer
In supervised machine learning, as the name suggests, the learning 

process is supervised, as the machine learning algorithm being used 

corrects its predictions, based on the actual output. In supervised machine 

learning, the correct labels or output is already known during the model 
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training phase, and, hence, the error can be reduced accordingly. In short, 

we try to map the relationship between the input data and output label in 

such a way as to pick up the signals from the training data and generalize 

about the unseen data as well. The training of the model consists of 

comparing the actual output with the predicted output and then making 

the changes in predictions, to reduce the total error between what is actual 

and what is predicted. The supervised machine learning process followed 

is as shown in Figure 6-1.

Figure 6-1.  Supervised learning approach

The data used for training the model is preprocessed, and features are 

created accordingly. Once the machine learning model is trained, it can be 

used to make predictions on the unseen data. So, in the preceding figure, 

we can see how the model is trained, using input data and how now, the 

trained model is used to predict whether the new transaction is genuine. 

This type of learning is predominantly used in cases in which historical 

data is available and predictions must be made on future data. The further 
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categorization of supervised learning is based on types of output or target 

variables being used for prediction:

•	 Regression

•	 Classification

Regression is used when the target value that is being predicted is 

continuous or numerical in nature. For example, predicting salary based 

on a given number of years of experience or education falls under the 

category of regression.

Note A lthough there are multiple types of regression, in this 
chapter, I’ll focus on linear regression and some of its associated 
algorithms, as you’ll see shortly.

Classification is used if the target variable is a discrete value or 

categorical in nature. For example, predicting whether a customer will 

churn out is a type of classification problem, as shown in Figure 6-2.

Figure 6-2.  Types of suprvised tasks
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Classification tasks can further be broken down into two categories: 

binary class and multi-class, as shown in Figure 6-3.

�Binary Classification
When the target or output variable contains only up to two categories, it is 

referred to as binary classification. So, every record in the data can only fall 

under one of the two groups. For example:

•	 Yes or no

•	 Group A or group B

•	 Sell or not sell

•	 Positive or negative

•	 Accepted or rejected

Figure 6-3.  Types of classes
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�Multi-class Classification
When the target or output variable contains more than two categories, it 

is referred to as multi-class classification. So, there can be multiple groups 

within the data, and every record can belong to any of the groups. For 

example:

•	 Yes or no or maybe

•	 Group A or group B or group C

•	 Category 1 or category 2 or category 3 or others

•	 Rank 1 or rank 2 or rank 3 or rank 4 or rank 5

Another useful property of supervised learning is that the model’s 

performance can be evaluated on training and test data. Based on the 

type of model (classification or regression), the evaluation metric can be 

applied, and performance results can be measured. In this chapter, I will 

cover how to build machine learning models to execute regression and 

binary classification.

�Building a Linear Regression Model
Linear regression refers to modeling the relationship between a set of 

independent variables and the output or dependent (numerical) variables. 

If the input variables include more than one variable, this is known as 

multivariable linear regression. In short, it is assumed that the dependent 

variable is a linear combination of other independent variables.

y B B X B X= + * + * +¼0 1 1 2 2

Here X1, X2, … are the independent variables that are used to predict 

the output variable. The output of the linear regression is a straight line, 

which minimizes the actual vs. predicted values. A linear regression 
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model cannot handle nonlinear data, as it’s only possible to model linearly 

separable data, therefore polynomial regression is used for nonlinear data, 

and the output is generally a curve, instead of a straight line, as shown in 

Figure 6-4.

Linear regression also assumes that data is normally distributed, 

in order to improve prediction. Linear regression is one of the ways to 

predict continuous values, and you will see now how we can use other 

alternatives, to predict numerical output.

The following sections focus on solving regression tasks, using 

multiple machine learning algorithms. I will begin with data ingestion and 

exploratory data analysis and then build models. The steps 1 to 4 will be 

the same for all the regression models.

Note  Complete datasets, along with the relevant code, are available 
for reference from the GitHub repository for this book and execute 
best on Spark 2.3 and higher versions.

Figure 6-4.  Types of regression
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Let’s build a linear regression model, using Spark’s MLlib library, and 

predict the target variable, using the input features.

�Reviewing the Data Information
The dataset that we are going to use for this example is a sample dataset 

and contains a total of 1,232 rows and 6 columns. We have to use 5 input 

variables to predict the target variable, using the linear regression model.

�Step 1: Create the Spark Session Object

We start the Jupyter notebook, import SparkSession, and create a new 

SparkSession object to use with Spark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('supervised_ml').

getOrCreate()

�Step 2: Read the Dataset

We then load and read the dataset within Spark, using DataFrame. We 

have to make sure that we have opened PySpark from the same directory 

folder where the dataset is available, or else we have to mention the 

directory path of the data folder.

[In]: df=spark.read.csv('Linear_regression_dataset.csv',infer 

Schema=True,header=True)

[In]:print((df.count(), len(df.columns)))

[Out]: (1232, 6)
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The preceding output confirms the size of our dataset, so we can  

then validate the datatypes of the input values, to check if we have to 

change/cast any column datatypes. In this example, all columns contain 

integer or double values that are already aligned with our requirements.

[In]: df.printSchema()

[Out]: root

 |-- var_1: integer (nullable = true)

 |-- var_2: integer (nullable = true)

 |-- var_3: integer (nullable = true)

 |-- var_4: double (nullable = true)

 |-- var_5: double (nullable = true)

 |-- output: double (nullable = true)

There is a total of six columns, of which five are input columns  

(var_1 to var_5) and target columns (label). We can now use the describe 

function to go over statistical measures of the dataset.

[In]: df.show(10)

[Out]:
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�Step 3: Feature Engineering

This is the part where we create a single vector combining all input 

features, by using Spark’s VectorAssembler. It creates only a single feature 

that captures the input values for that particular row. So, instead of five 

input columns, the engine essentially translates the features into a single 

column with five input values, in the form of a list.

[In]: from pyspark.ml.linalg import Vector

[In]: from pyspark.ml.feature import VectorAssembler

We will pass all five input columns, to create a single features column.

[In]: df.columns

[Out]: ['var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'label']

[In]: vec_assmebler=VectorAssembler(inputCols=['var_1', 

'var_2', 'var_3', 'var_4', 'var_5'],outputCol='features')

[In]: features_df=vec_assmebler.transform(df)

[In]: features_df.printSchema()

[Out]: root

 |-- var_1: integer (nullable = true)

 |-- var_2: integer (nullable = true)

 |-- var_3: integer (nullable = true)

 |-- var_4: double (nullable = true)

 |-- var_5: double (nullable = true)

 |-- label: double (nullable = true)

 |-- features: vector (nullable = true)

As you can see, we have an additional column (features), which 

contains the single dense vector for all of the inputs. We then take a subset 

of the dataframe and select only the features column and the label column, 

to build the linear regression model.
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[In]: df.select(['features','label']).show()

[Out]:

 

�Step 4: Split the Dataset

Let’s split the dataset into training and test datasets, in order to train 

and evaluate the performance of the linear regression model. We split it 

according to a 70/30 ratio and train our model on 70% of the dataset. We 

can print the shape of the train and test data, to validate the size.

[In]: train, test = df.randomSplit([0.75, 0.25])

[In]:print(f"Size of train Dataset : {train.count()}" )

[Out]: Size of train Dataset : 911

[In]: print(f"Size of test Dataset : {test.count()}" )

[Out]:  Size of test Dataset : 321
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�Step 5: Build and Train Linear Regression Model

Now we build and train the linear regression model, using features, input, and 

label columns. We first import the linear regression from MLlib, as follows:

[In]: from pyspark.ml.regression import LinearRegression

[In]: lr = LinearRegression()

Note  For simplicity, all the machine learning models built in this 
chapter use default hyperparameters. Readers can use their own set 
of hyperparameters.

[In]:lr_model = lr.fit(train)

[In]: predictions_df=lr_model.transform(test)

[In]: predictions_df.show()

[Out]:
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�Step 6: Evaluate Linear Regression Model on Test Data

To check the performance of the model on unseen or test data, we make 

use of evaluate.

[In]: model_predictions=lr_model.evaluate(test)

[In]: model_predictions.r2

[Out]: 0.8855561089304634

[In]: print(model_predictions.meanSquaredError)

[Out]:0.00013305453514672318

�Generalized Linear Model Regression
The generalized linear model (GLM) is an advanced version of linear 

regression that considers the target variable to have an error distribution 

other than a preferred normal distribution. The GLM generalizes linear 

regression, using a link function, so that variance is a function of the 

predicted value itself. Let’s try to build the GLM on the same dataset and 

see if it performs better than a simple linear regression model. First, we 

must import the GLM from MLlib.

[In]: from pyspark.ml.regression import 

GeneralizedLinearRegression

�Step 1: Build and Train Generalized Linear  
Regression Model

[In]: glr = GeneralizedLinearRegression()

[In]: glr_model = glr.fit(train)

[In]: glr_model.coefficients

[Out]: DenseVector([0.0003, 0.0001, 0.0001, -0.6374, 0.4822])
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We can get the coefficient values, using coefficient functions of that 

model. Here we can see that one of the features has a negative coefficient 

value. We can get more information about the GLM model, by using the 

summary function. It returns all the details, such as coefficient value, std 

error, AIC (Akaike information criterion) value, and p value.

[In]: glr_model.summary

[Out]:

 

�Step 2: Evaluate the Model Performance on Test Data

[In]: model_predictions=glr_model.evaluate(test)

[In]: model_predictions.predictions.show()

[Out]:
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The Akaike information criterion (AIC) is an evaluation parameter of 

relative performance of quality of models for the same set dataset. AIC is 

mainly used to select among multiple models for a given dataset. A lesser 

value of AIC indicates that the model is of good quality. AIC tries to strike 

a balance between the variance and bias of the model. Therefore, it deals 

with the chances both of overfitting and underfitting. The model with the 

lowest AIC score is preferred over other models.

[In]: model_predictions.aic

[Out]: -1939.88

We can run the GLM for multiple distributions, such as

	 1.	 Binomial

	 2.	 Poisson

	 3.	 Gamma

	 4.	 Tweedie
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[In]: glr = GeneralizedLinearRegression(family='Binomial')

[In]: glr_model = glr.fit(train)

[In]: model_predictions=glr_model.evaluate(test)

[In]: model_predictions.aic

[Out]: 336.991

[In]: glr = GeneralizedLinearRegression(family='Poisson')

[In]: glr_model = glr.fit(train)

[In]: predictions=glr_model.evaluate(test)

[In]: predictions.aic

[Out]: 266.53

[In]: glr = GeneralizedLinearRegression(family='Gamma')

[In]: glr_model = glr.fit(train)

[In]:model_predictions=glr_model.evaluate(test)

[In]: model_predictions.aic

[Out]: -1903.81

Here we can see that our default GLM model with Gaussian 

distribution has the lowest AIC value, compared to others.

�Decision Tree Regression
The decision tree regression algorithm can be used for both regression 

and classification. It is quite powerful in terms of fitting the data well but 

comes with the high risk of sometimes overfitting the data. Decision trees 

contain multiple splits based on entropy or Gini indexes. The deeper the 

tree, the higher the chance of overfitting the data. In our example, we will 

build a decision tree for predicting the target value, with the default value 

of parameters (maxdepth = 5).
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�Step 1: Build and Train Decision Tree Regressor Model

[In]: from pyspark.ml.regression import DecisionTreeRegressor

[In]: dec_tree = DecisionTreeRegressor()

[In]: dec_tree_model = dec_tree.fit(train)

[In]: dec_tree_model.featureImportances

[Out]: SparseVector(5, {0: 0.9641, 1: 0.0193, 2: 0.0029, 3: 

0.0053, 4: 0.0084})

�Step 2: Evaluate the Model Performance on Test Data

[In]: model_predictions = dec_tree_model.transform(test)

[In]: model_predictions.show()

[Out]:
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We import RegressionEvaluation from MLlib, to evaluate the 

performance of the decision tree on test data. As of now, there are two 

metrics available for evaluation: r2 and RMSE (root mean squared error). r2 

mainly suggests how much of the variation in the dataset can be attributed 

to regression. Therefore, the higher the r2, the better the performance of 

the model. On the other hand, RMSE suggests the total errors the model is 

making, in terms of the difference between actual and predicted values.

[In]: from pyspark.ml.evaluation import RegressionEvaluator

[In]: dt_evaluator = RegressionEvaluator(metricName='r2')

[In]: dt_r2 = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of DecisionTreeRegressor is 

{dt_r2}')

[Out]: The r-square value of DecisionTreeRegressor is 

0.8093834699203476

[In]: dt_evaluator = RegressionEvaluator(metricName='rmse')

[In]: dt_rmse = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of DecisionTreeRegressor is {dt_

rmse}')

[Out]: The rmse value of DecisionTreeRegressor is 

0.014111932287681688

The r2 value of this particular model is close to 0.81, which is a little 

lower than that of a simple linear regression model.

�Random Forest Regressors
Random forest regressors are a collection of multiple individual decision 

trees built using different samples of data. The whole idea of combining 

these individual trees is to take majority voting or averages (in case of 

regression) to generalize effectively. A random forest is, therefore, an 

ensembling technique that takes a bagging approach. It can be used for 
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regression as well as for classification tasks. Because decision trees tend 

to overfit the data, random forests remove the element of high variance, 

by taking the means of the predicted values from individual trees. In our 

example, we will build a random forest model for regression, using default 

parameters (numTrees = 20)

�Step 1: Build and Train Random Forest Regressor Model

[In]: from pyspark.ml.regression import RandomForestRegressor

[In]: rf = RandomForestRegressor()

[In]: rf_model = rf.fit(train)

[In]:  rf_model.featureImportances

[Out]: SparseVector(5, {0: 0.4395, 1: 0.045, 2: 0.0243, 3: 

0.2725, 4: 0.2188})

As you can see, the number of trees in the random forest is equal to 20. 

This number can be increased.

[In]: rf_model.getNumTrees

[Out]: 20

[In]: model_predictions = rf_model.transform(test)

[In]: model_predictions.show()

[Out]:
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�Step 2: Evaluate the Model Performance on Test Data

We can again use r2and RMSE as the evaluation parameter of the random 

forest model.

[In]:rf_evaluator = RegressionEvaluator(metricName='r2')

[In]: rf_r2 = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of RandomForestRegressor is 

{rf_r2}')

[Out]: The r-square value of RandomForestRegressor is 

0.8215863293044671

[In]: rf_evaluator = RegressionEvaluator(metricName='rmse')

[In]: rf_rmse = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of RandomForestRegressor is {rf_rmse}')

[Out]: The rmse value of RandomForestRegressor is 

0.01365275410722947
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As you can see, it clearly outperforms the decision tree regressor and 

has a higher r2. The performance of this model can further be enhanced 

with hyperparameter tuning.

�Gradient-Boosted Tree Regressor
A gradient-boosted tree (GBT) regressor is also an ensembling technique, 

which uses boosting under the hood. Boosting refers to making use of 

individual weak learners in order to boost the performance of the overall 

model. One major difference between bagging and boosting is that 

in bagging, the individual models that are built are parallel in nature, 

meaning they can be built independent of each other, but in boosting, the 

individual models are built in a sequential manner. In a gradient boosting 

approach, the second model focuses on the errors made by the first model 

and tries to reduce overall errors for those data points. Similarly, the next 

model tries to reduce the errors made by the previous model. In this way, 

the overall error of prediction is reduced. In the following example, we will 

build a GBT regressor with default parameters.

�Step 1: Build and Train a GBT Regressor Model
[In]: from pyspark.ml.regression import GBTRegressor

[In]: gbt = GBTRegressor()

[In]: gbt_model=gbt.fit(train)

[In]: gbt_model.featureImportances

[Out]: SparseVector(5, {0: 0.2325, 1: 0.2011, 2: 0.1645, 3: 

0.2268, 4: 0.1751})

[In]: model_predictions = gbt_model.transform(test)

[In]: model_predictions.show()

[Out]:
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�Step 2: Evaluate the Model Performance  
on Test Data
[In]: gbt_evaluator = RegressionEvaluator(metricName='r2')

[In]: gbt_r2 = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The r-square value of GradientBoostedRegressor is 

{gbt_r2}')

[Out]: The r-square value of GradientBoostedRegressor is 

0.8477273892307596

[In]: gbt_evaluator = RegressionEvaluator(metricName='rmse')

[In]: gbt_rmse = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The rmse value of GradientBoostedRegressor is 

{gbt_rmse}')

[Out]: The rmse value of GradientBoostedRegressor is 

0.013305445803592103
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As you can see, the GBT regressor outperforms the random 

forestmodel. With r2 being close to 0.85, it can be considered the final 

model, after proper tuning.

�Building Multiple Models for Binary 
Classification Tasks
In this third and final section of the chapter, you will see how to build 

multiple machine learning models for binary classification tasks. The 

data that we are going to use for this is a subset of an open source Bank 

Marketing Data Set from the UCI ML repository, available at https://

archive.ics.uci.edu/ml/datasets/Bank+Marketing.

There are two reasons for selecting only a subset of this data. The first 

is to maintain the class balance for the classification task, so as not to make 

it an anomalous detection category task. Another reason for selecting only 

a subset of the features is to limit the amount of signals in the data, as some 

of the features in the dataset strongly affect the output and, therefore, are 

ignored in this exercise.

The dataset contains 9,500 rows and 8 columns. The idea is to predict 

if the user will subscribe to another product or service (term deposit), 

based on the other attributes, such as age, job, loan, etc. This is a typical 

requirement in which machine learning is leveraged to find the top users 

who can be targeted by the business for cross-selling or upselling.

I’ll begin with the logistic regression model.

�Logistic Regression
Logistic regression is considered to be one of baseline models, owing to 

its simplicity and interpretability. Under the hood, it is quite similar to 

linear regression. It also assumes that output is a linear combination of the 

dependent variables, but to keep the output between 0 and 1, as it returns 
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the probability as output, it makes use of a nonlinear function (sigmoid), 

which produces an S curve instead of a straight line (linear regression).

We’ll start by building the baseline in Steps 1–3 and then complete the 

logistic regression model with default hyperparameters, in Steps 4–6.

�Step 1: Read the Dataset

[In]: df=spark.read.csv('bank_data.csv',inferSchema=True, 

header=True)

[In]: df.count()

[Out]: 9501

[In]: df.columns

[Out]: ['age', 'job', 'marital', 'education', 'default', 

'housing','loan', 'target_class']

[In]: df.printSchema()

[Out]:

 

As you can see, the input columns are all the columns, except for the 

target class column. The target class is also well-balanced, in terms of the 

count of yes and no labels. We will have to convert yeses and noes into 1s 

and 0s, as well as rename the target_class column to “label,” which is the 

default acceptance column name in machine learning model parameters.

[In]: df.groupBy('target_class').count().show()

[Out]:
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�Step 2: Feature Engineering for Model

[In]: from pyspark.sql import functions as F

[In]: from pyspark.sql import ∗
[In]: df=df.withColumn("label", F.when(df.target_class =='no', 

F.lit(0)).otherwise(F.lit(1)))

[In]: df.groupBy('label').count().show()

[Out]:

 

Now that we have renamed the output column “label” and converted 

the target class to 1s and 0s, the next step is to create features for the 

model. Because we have categorical columns, such as job and edu, we 

will have to use StringIndexer and OneHotEncoder to convert them into a 

numerical format. We create a Python function, cat_to_num, to convert all 

the categorical features into numerical ones.

[In]: from pyspark.ml.feature import OneHotEncoder, 

StringIndexer, VectorAssembler

[In]: def cat_to_num(df):

    for col in df.columns:

        �stringIndexer = StringIndexer(inputCol=col, 

outputCol=col+"_index")
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        model = stringIndexer.fit(df)

        indexed = model.transform(df)

        �encoder = OneHotEncoder(inputCol=col+"_index", 

outputCol=col+"_vec")

        df = encoder.transform(indexed)

    �df_assembler = VectorAssembler(inputCols=['age','marit

al_vec','education_vec','default_vec','housing_vec','loan_

vec'], outputCol="features")

    df = df_assembler.transform(df)

    return df.select(['features','label'])

We just select the new features column and target label column, as we 

don’t need the earlier original columns for model training.

[In]: df_new=cat_to_num(df)

[In]: df_new.show()

[Out]:
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Now we have all the input features merged into a single dense vector 

('features'), along with output column labels, which we can use to train 

the machine learning models. The new dataframe created using only two 

columns (features, label) is now called df_new and will be used for every 

model. We can now split this new dataframe into train and test datasets. 

We can split the data into a 75%/25% ratio, using the randomplit function.

�Step 3: Split the Data into Train and Test Datasets

[In]: train, test = df_new.randomSplit([0.75, 0.25])

[In]: print(f"Size of train Dataset : {train.count()}" )

[Out]: 7121

[In]: print(f"Size of test Dataset : {test.count()}" )

[Out]: 2380

�Step 4: Build and Train the Logistic Regression Model

[In]: from pyspark.ml.classification import LogisticRegression

[In]: lr = LogisticRegression()

[In]: lr_model = lr.fit(train)

[In]:print( lr_model.coefficients)

[Out]:

[0.0272019114172,-0.647672064875,0.229030508111,-

0.77074788287,-12.36869511,-12.8865599132,-

13.2257790609,-12.6705131313,-13.0023164274,-13.074766258-

6,-12.6985757761,1.42220523957,0.301582233094,-

0.0127231892838,0.218471149577,0.332362933568]

Once the model is built, we can make use of the internal function 

summary, which offers important details regarding the model, such as ROC 

curve, precision, recall, AUC (area under the curve), etc.
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�Step 5: Evaluate Performance on Training Data

[In]: lr_summary=lr_model.summary

[In]: lr_summary.accuracy

[Out]: 0.673079623648364

[In]: lr_summary.areaUnderROC

[Out]: 0.7186044694483512

[In]: lr_summary.weightedRecall

[Out]: 0.673079623648364

[In]: lr_summary.weightedPrecision

[Out]: 0.6750967624018298

Here, using the summary function, we can view the model’s 

performance on train data, such as its accuracy, AUC, weighted recall, 

and precision. We can also view additional details—such as how precision 

varies for various threshold values, the relation between precision and 

recall, and how recall varies with different threshold values—to pick the 

right threshold value for the model. These also can be plotted, to view the 

relationships.

[In]: lr_summary.precisionByThreshold.show()

[Out]:
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[In]: lr_summary.roc.show()

[Out]:
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[In]: lr_summary.recallByThreshold.show()

[Out]:
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[In]: lr_summary.pr.show()

[Out]:

 

�Step 6: Evaluate Performance on Test Data

[In]: model_predictions = lr_model.transform(test)

[In]: model_predictions.columns

[Out]: ['features', 'label', 'rawPrediction', 'probability', 

'prediction']

[In]: model_predictions.select(['label','probability', 

'prediction']).show(10,False)

[Out]:
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As you can see, the prediction column shows the model prediction 

for each of the records in the test data. The probability column shows the 

values for both classes (0 & 1). The probability at 0th index is of 0; the other 

is for a prediction of 1. The evaluation of the logistic regression model on 

test data can be done using BinaryClassEvaluator. We can get the area 

under ROC and that under the PR curve, as shown following:

[In]:from pyspark.ml.evaluation import 

BinaryClassificationEvaluator

[In]:lr_evaluator = BinaryClassificationEvaluator(metricName= 

'areaUnderROC')

[In]: lr_auroc = lr_evaluator.evaluate(model_predictions)

[In]: print(f'The auroc value of Logistic Regression Model is 

{lr_auroc}')

[Out]: The auroc value of Logistic Regression Model is 

0.7092938229110143

[In]: lr_evaluator = BinaryClassificationEvaluator(metricName= 

'areaUnderPR')

[In]: lr_aupr = lr_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of Logistic Regression Model is 

{lr_aupr}')
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[Out]: The aupr value of Logistic Regression Model is 

0.6630743130940658

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

Recall

[In]: float(true_pos)/(actual_pos)

[Out]: 0.6701030927835051

Precision

[In]: float(true_pos)/(pred_pos)

[Out]: 0.6478405315614618

�Decision Tree Classifier
As mentioned earlier, decision trees can be used for classification 

as well as regression. Here, we will build a decision tree with default 

hyperparameters and use it to predict whether the user will opt for the new 

term deposit plan.

�Step 1: Build and Train Decision Tree Classifier Model

[In]: from pyspark.ml.classification import 

DecisionTreeClassifier

[In]: dt = DecisionTreeClassifier()

[In]: dt_model = dt.fit(train)

[In]: model_predictions = dt_model.transform(test)
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[Out]: model_predictions.select(['label','probability', 

'prediction']).show(10,False)

 

�Step 2: Evaluate Performance on Test Data

[In]: dt_evaluator = BinaryClassificationEvaluator(metricName= 

'areaUnderROC')

[In]: dt_auroc = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of Decision Tree Classifier Model 

is {dt_auroc}')

[Out]: The auc value of Decision Tree Classifier Model is 

0.516199386190993

[In]: dt_evaluator = BinaryClassificationEvaluator(metricName= 

'areaUnderPR')

[In]: dt_aupr = dt_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of Decision Tree Model is {dt_aupr}')

[Out]: The aupr value of Decision Tree Model is 

0.46771834172588167

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()
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[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.6907216494845361

[In]: float(true_pos)/(pred_pos)

[Out]: 0.6661143330571665

�Support Vector Machines Classifiers
Support vector machines (SVMs) are used for classification tasks, as they 

find the hyperplane that maximizes the margin (perpendicular distance) 

between two classes. All the instances and target classes are represented 

as vectors in high-dimensional space, and the SVM finds the closest 

two points from the two classes that support the best separating line or 

hyperplane, as shown in Figure 6-5.

Figure 6-5.  Support vector machine
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For nonlinearly separable data, there are different kernel tricks to 

separate the classes. In our example, we will build a linearly separable 

support vector classifier with default hyperparameters.

�Step 1: Build and Train SVM Model

[In]: from pyspark.ml.classification import LinearSVC

[In]: lsvc = LinearSVC()

[In]: lsvc_model = lsvc.fit(train)

[In]: model_predictions = lsvc_model.transform(test)

[In]: model_predictions.columns

[Out]: ['features', 'label', 'rawPrediction', 'prediction']

[In]:model_predictions.select(['label','prediction']).show(10,False)

[Out]:

 

�Step 2: Evaluate Performance on Test Data

[In]: svc_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: svc_auroc = svc_evaluator.evaluate(model_predictions)

Chapter 6  Supervised Machine Learning



152

[In]: print(f'The auc value of SupportVectorClassifier  is 

{svc_auroc}')

[Out]: The auc value of SupportVectorClassifier  is 

0.7043772749366973

[In]: svc_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: svc_aupr =svc_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of SupportVectorClassifier Model 

is {svc_aupr}')

[Out]: The aupr value of SupportVectorClassifier Model is 

0.6567277377856992

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.7774914089347079

[In]: float(true_pos)/(pred_pos)

[Out]: 0.600132625994695

�Naive Bayes Classifier
Naive Bayes (NB) classifiers work on the principle of conditional 

probability and assume absolute independence between predictors. An NB 

classifier doesn’t have many hyperparameters and can outperform some of 

the most sophisticated algorithms out there. In the following example, we 

will build an NB classifier and evaluate its performance on the test data.
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�Step 1: Build and Train SVM Model

[In]: from pyspark.ml.classification import NaiveBayes

[In]: nb = NaiveBayes()

[In]: nb_model = nb.fit(train)

[In]: model_predictions = nb_model.transform(test)

[In]: model_predictions.select(['label','probability', 

'prediction']).show(10,False)

[Out]:

 

�Step 2: Evaluate Performance on Test Data

[In]: nb_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: nb_auroc = nb_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of NB Classifier is {nb_auroc}')

[Out]: The auc value of NB Classifier is 0.43543736717760884

[In]: nb_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderPR')

[In]: nb_aupr =nb_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of NB Classifier Model is {nb_aupr}')

[Out]: The aupr value of NB Classifier Model is 0.4321001351769349
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[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()

[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.586

[In]: float(true_pos)/(pred_pos)

[Out]: 0.625

�Gradient Boosted Tree Classifier
So far, we have used single algorithms for classification. Now we move 

on to use ensemble methods, such as GBT and random forests, for 

classification. Bagging and boosting for classification works according to 

similar principles as regression.

�Step 1: Build and Train the GBT Model

[In]: from pyspark.ml.classification import GBTClassifier

[In]: gbt = GBTClassifier()

[In]: gbt_model = gbt.fit(train)

[In]: model_predictions = gbt_model.transform(test)

[In]: model_predictions.select(['label','probability', 

'prediction']).show(10,False)

[Out]:
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�Step 2: Evaluate Performance on Test Data

[In]: gbt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderROC')

[In]: gbt_auroc = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of GradientBoostedTreesClassifier 

is {gbt_auroc}')

[Out]: The auc value of GradientBoostedTreesClassifier is 

0.7392410330756018

[In]: gbt_evaluator = BinaryClassificationEvaluator(metricName=

'areaUnderPR')

[In]: gbt_aupr = gbt_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of GradientBoostedTreesClassifier 

Model is {gbt_aupr}')

[Out]: The aupr value of GradientBoostedTreesClassifier Model 

is 0.7345982892755392

[In]: true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()
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[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.668

[In]: float(true_pos)/(pred_pos)

[Out]: 0.674

�Random Forest Classifier
Once again, a random forest classifier is a collection of multiple decision 

tree classifiers. It works on the voting mechanism and predicts the output 

class that received the maximum votes from all individual decision trees. 

Let’s build a random forest classifier with the same data.

�Step 1: Build and Train the Random Forest Model

[In]: from pyspark.ml.classification import 

RandomForestClassifier

[In]: rf = RandomForestClassifier(numTrees=50,maxDepth=30)

[In]: rf_model = rf.fit(train)

[In]: model_predictions=rf_model.transform(test)

[In]: model_predictions.select(['label','probability', 

'prediction']).show(10,False)

[Out]:
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�Step 2: Evaluate Performance on Test Data

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: rf_auroc = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The auc value of RandomForestClassifier Model is 

{rf_auroc}')

[Out]:

The auc value of RandomForestClassifier Model is 

0.7326433634020617

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderPR')

[In]: rf_aupr = rf_evaluator.evaluate(model_predictions)

[In]: print(f'The aupr value of RandomForestClassifier Model is 

{rf_aupr}')

[Out]: The aupr value of RandomForestClassifier Model is 

0.7277253895494864

[In]; true_pos=model_predictions.filter(model_

predictions['label']==1).filter(model_

predictions['prediction']==1).count()
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[In]: actual_pos=model_predictions.filter(model_

predictions['label']==1).count()

[In]: pred_pos=model_predictions.filter(model_

predictions['prediction']==1).count()

[In]: float(true_pos)/(actual_pos)

[Out]: 0.67

[In]: float(true_pos)/(pred_pos)

[Out]: 0.67

So far, we have been using the default hyperparameters for all the 

models, but it’s rarely the case that the model can perform to the best of its 

ability with those default settings. Therefore, it’s imperative that we tune 

the models for the right combination of hyperparameters.

�Hyperparameter Tuning and  
Cross-Validation
In the following example, we will take the random forest model that we 

just built and try to find the best combination of its hyperparameters, to 

improve performance. We can use ParamgridBuilder and CrossValidator 

for hyperparameter tuning. We will pass different values in the parameter 

grid for three hyperparameters (maxDepth, maxBins, and numTrees). 

It might take a few minutes to complete, as it builds random forest 

models for all of these combinations before returning the best possible 

combination for this train dataset.

[In]: from pyspark.ml.tuning import ParamGridBuilder, 

CrossValidator

[In]: rf = RandomForestClassifier()

[In]: paramGrid = (ParamGridBuilder()

             .addGrid(rf.maxDepth, [5,10,20,25,30])

             .addGrid(rf.maxBins, [20, 60])
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             .addGrid(rf.numTrees, [5, 20,50,100])

             .build())

[In]: cv = CrossValidator(estimator=rf, estimatorParamMaps= 

paramGrid, evaluator=rf_evaluator, numFolds=5)

[In]: cv_model = cv.fit(train)

[In]: best_rf_model = cv_model.bestModel

best_rf_model contains the best hyper-parameters to be used for 

training the model on this dataset.

[In]: model_predictions = best_rf_model.transform(test)

[In]: rf_evaluator = BinaryClassificationEvaluator(metricName='

areaUnderROC')

[In]: rf_auroc = rf_evaluator.evaluate(model_predictions)

[In]: print(rf_auroc)

[Out]:  0.7425990374615659

As you can see, by using the best hyperparameters for our random 

forest model, the AUC score has increased.

�Conclusion
This chapter covered in detail the different types of supervised learning 

and ways to solve binary classification with multiple machine learning 

algorithms. How to choose the best hyperparameters for a model and 

using cross-validation techniques to build the best possible model on the 

given dataset were also explained.
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CHAPTER 7

Unsupervised 
Machine Learning
As the name suggests, unsupervised machine learning does not include 

finding relationships between input and output. To be honest, there is no 

output that we try to predict in unsupervised learning. It is mainly used 

to group together the features that seem to be similar to one another in 

some sense. These can be the distance between those features or some 

sort of similarity metric. In this chapter, I will touch on some unsupervised 

machine learning techniques and build one of the machine learning 

models, using PySpark to categorize users into groups and, later, to 

visualize those groups as well.

�Unsupervised Machine Learning Primer
As suggested, unsupervised learning does not aim to map the relationship 

between input and output; rather, it tries to group values that are similar to 

one another. There is no training that takes place on the input data. Rather, 

it does this by finding the underlying signals and patterns in the data, to 

form groups within. Unsupervised learning can be categorized further into 

two separate categories:

	 1.	 Clustering

	 2.	 Association rules
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Clustering refers to finding underlying groups of data points, based on 

the attributes present in the data, as shown in Figure 7-1.

Association signifies the probability of co-occurrence. For example, if 

someone bought item X, what’s the probability that he or she might also 

buy item Y with it. In this chapter, I will focus only on clustering techniques. 

We can easily make use of clustering to understand the different groups in 

the data. For example, if we have some data about soccer players, we can 

easily predict who plays what position on the field—either they are forward 

players or defenders. Table 7-1 shows some sample data for players in a 

soccer tournament. The two values captured are

	 1.	 Total number of goal attempts

	 2.	 Total number of tackles made

Figure 7-1.  Unsupervised machine learning
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If we try to visualize the preceding values on a scatter plot, we get 

something similar to what is shown in Figure 7-2. The x axis indicates the 

number of tackles made by the players, and the y axis shows the number of 

attempts to score a goal.

Table 7-1.  Attempts vs. Goals

Sr. No No. of Goal Attempts No. of Tackles

1 8 2

2 2 10

3 9 1

4 15 1

5 2 17

6 4 6

7 8 2

8 0 25

9 1 17

10 0 15

Figure 7-2.  Scatter plot of attempts vs. goals scored
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Up to this point, we don’t know which players are strikers, midfielders, 

or defenders, but if we use some sort of clustering technique on this data, 

we get the groups, as shown in Figure 7-3. The figure clearly shows that 

there are three groups in this data. The top-left corner of the chart groups all 

the strikers, and the bottom-right cluster represents the defenders with the 

highest number of tackles and fewest attempts to score. There is also a player 

between these two groups who probably belongs to the midfield category, 

having a reasonable number of tackles and attempts to score a goal.

Figure 7-3.  Groups within the data

In this example, we see how we can still predict the groups present in 

the data without any supervised training at all.

Clustering can have multiple applications, including the following:

	 1.	 Anomaly detection

	 2.	 Predictive maintenance

	 3.	 Customer segmentation

There are a number of clustering algorithms that can be used, 

depending on the available data and specific requirement. In this chapter, 

I am going to focus on k-means algorithms, to create clusters for sets of 

Chapter 7  Unsupervised Machine Learning



165

users who listen to different genres of music online. K-means is one of the 

strongest algorithms for this grouping exercise. K stands for the number of 

clusters or groups that must be formed from the data. K-means works by 

calculating the distance of each data point from the rest and tries to group 

the nearest ones, until the desired number of K values is reached. We will 

try to divide users into meaningful groups, using k-means algorithm, so 

that recommendations can be made according to their tastes in a specific 

musical genre.

�Reviewing the Dataset
The dataset that we are going to use for this example is a sampled dataset 

that contains only two columns: the user id and the music category. There 

are close to half a million records available in this dataset.

�Importing SparkSession and Creating an Object
The first step is to import SparkSession and create a Spark object, in order 

to use PySpark.

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('unsupervised_

learning').getOrCreate()

We will also import several other libraries, such as Pandas and NumPy, 

for later use.

[In]: import pyspark

[In]: import pandas as pd

[In]: import numpy as np

[In]: import matplotlib.pyplot as plt

[In]: from pyspark.sql.functions import *
[In]: from pyspark.sql.types import *
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[In]: from pyspark.ml.clustering import KMeans

[In]: df=spark.read.csv('music_data.csv',inferSchema=True, 

header=True)

[In]: df.count()

[Out]: 429023

[In]: df.printSchema()

[Out]:

 

The preceding confirms that we are dealing with only two columns 

in the dataset. We can further explore this dataframe by doing a few 

aggregations. The total number of distinct music categories can be 

determined with the distinct function. The topmost preferred music 

category among users can be found by sorting the count values grouped 

under the music category column, as shown following:

[In]: df.select('music category').distinct().count()

[Out]: 21

[In]:df.groupBy('music category').count().orderBy('count', 

ascending=False).show(100,False)

[Out]:
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Alternative music and blues seem to be the genres most preferred by 

the users. We can also find the total number of unique users in the system 

in a manner similar to the one preceding.

[In]: df.select('user_id').distinct().count()

[Out]: 775

[In]:df.groupBy('user_id').count().orderBy('count', 

ascending=False).show(20,False)

[Out]:
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[In]:df.groupBy('user_id').count().

orderBy('count',ascending=True).show(20,False)

[Out]:
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In this dataframe, we have a mix of users. Some have listened to songs 

as many as 14,000 times, and others have listened only once. The next task 

is to reshape this dataframe, in order to use clustering on it.

�Reshaping a Dataframe for Clustering
We pivot the data on user ID and music category and fill the values with 

the total count of songs the user has listened to. We use the crosstab 

function to pivot the data.

[In]: feature_df=df.stat.crosstab("user_id", "music category")

[In]: feature_df.printSchema()

[Out]:
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[In]: feature_df.show(3,False)

[Out]:

 

[In]: from pyspark.ml.linalg import Vectors

[In]: from pyspark.ml.feature import VectorAssembler
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Now that we have the required attributes in the new dataframe, 

we must assemble them, to create a single feature vector, using 

VectorAssembler. One key thing to remember here is that we don’t 

use the index of the dataframe that essentially contains the user IDs for 

VectorAssembler.

[In]: print(feature_df.columns)

[Out]:

 

[In]: feat_cols=[col for col in feature_df.columns if col != 

'user_id_music category']

[In]: print(feat_cols)

[Out]:

 

[In]: vec_assembler = VectorAssembler(inputCols = feat_cols, 

outputCol='features')

[In]: final_data = vec_assembler.transform(feature_df)

[In]: final_data.printSchema()

[Out]:
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Note  One thing to remember is that clustering can be sensitive 
to the scale of the data, for the simple reason that it uses a 
distance metric to compare the similarity between two values 
(multidimensionality). Therefore, it’s always a good idea to scale 
down the data before applying clustering.

Next, we import StandardScaler in the Spark library and apply it on 

the feature vectors.

[In]: from pyspark.ml.feature import StandardScaler

[In]:scaler = StandardScaler(inputCol="features", 

outputCol="scaledFeatures", withStd=True, withMean=False)

[In]: scalerModel = scaler.fit(final_data)
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[In]: cluster_final_data.columns

[Out]:

 

The next step is to actually build clusters, using a k-means clustering 

algorithm.

�Building Clusters with K-Means
One of the key questions to ask before a clustering exercise is: “How many 

clusters should be formed from the data?” One way to approach this issue 

is with the Elbow method, by which we try to plot the total sum of squared 

errors within a cluster against the number of clusters. This gives us a sense 

of what’s a good number of groups that can be formed from the given data. 

Basically, we apply k-means for a set consisting of a pre-decided number of 

clusters (2–10) and visualize the errors against it. Wherever there is an elbow 

kind of shape forming on the chart, that is a good number to pick for k.

Chapter 7  Unsupervised Machine Learning



174

[In]: errors=[]

for k in range(2,10):

    kmeans = KMeans(featuresCol='scaledFeatures',k=k)

    model = kmeans.fit(cluster_final_data)

    wssse = model.computeCost(cluster_final_data)

    errors.append(wssse)

    print("With K={}".format(k))

    print("Within Set Sum of Squared Errors = " + str(wssse))

    print('--'*30)

[Out]:

 

[In]: cluster_number = range(2,10)

[In]: plt.scatter(cluster_number,errors)

[In]: plt.xlabel('clusters')
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[In]: plt.ylabel('WSSE')

[In]: plt.show()

[Out]:

In our case, there are multiple elbows being formed in the chart. 

Therefore, we can choose either 4, 6, or 8 as the value of k. One thing to 

remember is that there is no correct answer in clustering. You can have 

different clusters from the same data, based on techniques being used, as 

the initiation points differ for every technique. Let’s go ahead and chose 

the value of k as 6.

[In]: kmeans6 = KMeans(featuresCol='scaledFeatures',k=6)

[In]: model_k6 = kmeans6.fit(cluster_final_data)

[In]: model_k6.transform(cluster_final_data).

groupBy('prediction').count().show()

Figure 7-4.  Elbow chart
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[Out]:

 

From our data, we see that there is one cluster in which the majority 

of users belong. Apart from that, there are five more clusters with lesser 

values. Now, we add this prediction to the existing dataframe, to be able to 

visualize the clusters.

[In]: model_k6.transform(cluster_final_data).show()

[Out]:
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[In]: cluser_prediction=model_k6.transform(cluster_final_data)

[In]: cluser_prediction.printSchema()

[Out]:

 

Because we’re dealing with multiple dimensions, it will become 

difficult to visualize the data with cluster numbers. Therefore, we reduce 

the total number of dimensions, using the PCA (principal component 

analysis) technique. In previous chapters, you have already seen how to 

use PCA. We now reduce the original number of features from 21 to just 3, 

using PCA, as shown following.

[In]: from pyspark.ml.feature import PCA

[In]: from pyspark.ml.linalg import Vectors
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[In]: pca = PCA(k=3, inputCol="scaledFeatures", outputCol="pca_

features")

[In]: pca_model = pca.fit(cluser_prediction)

[In]: result = pca_model.transform(cluser_prediction).

select('user_id_music category',"pca_features",'prediction')

[In]: result.show(truncate=False)

[Out]:

 

Finally, we convert the PCA dataframe to a Pandas dataframe, in 

addition to creating separate columns (x, y, z) from the PCA feature 

column, by making individual columns from the list.
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[In]: clusters = result.toPandas().set_index('user_id_music 

category')

[In]: clusters.head(10)

[Out]:

 

[In]: clusters[['x','y','z']]=pd.DataFrame(clusters.pca_

features.values.tolist(), index= clusters.index)

[In]: del clusters['pca_features']

[In]: clusters.head(10)

[Out]:
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Now that we have three-dimensional (3D) data representing the 

original features, and the cluster prediction by k-means, we can use 3D 

plotting techniques, to visualize these clusters on a 3D plot.

[In]: from mpl_toolkits.mplot3d import Axes3D

[In]: cluster_vis= plt.figure(figsize=(10,10)).

gca(projection='3d')

[In]: cluster_vis.scatter(clusters.x, clusters.y, clusters.z, 

c=clusters.prediction)

[In]: cluster_vis.set_xlabel('x')

[In]: cluster_vis.set_ylabel('y')

[In]: cluster_vis.set_zlabel('z')

[In]: plt.show()

[Out]:

Figure 7-5.  Clusters Visualization
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One of the follow-up activities after this clustering exercise can be 

to assign different personas to the groups, based on the attribute values. 

This can be a manual activity and can take some time to come up with 

meaningful personas. Once created, businesses can use these in numerous 

ways to market and target specific users.

�Conclusion
In this chapter, you learned the difference between supervised and 

unsupervised machine learning techniques. You also saw how to build 

clusters from raw data, using k-means clustering. The method to find the 

optimal value of k and how to visualize the final clusters formed by the 

k-means algorithm were then explained.
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CHAPTER 8

Deep Learning Using 
PySpark
Deep learning has been in the limelight for quite a few years and is making 

leaps and bounds in terms of solving various business challenges. From 

image language translation to self-driving cars, deep learning has become 

an important component in the larger scheme of things. There is no 

denying the fact that lots of companies today are betting heavily on deep 

learning, as a majority of their applications run using deep learning in 

the back end. For example, Google’s Gmail, YouTube, Search, Maps, and 

Assistance all use deep learning in some form or other. The reason is deep 

learning’s incredible ability to provide far better results, compared to some 

other machine learning algorithms.

This chapter is divided into three parts. The first focuses on 

understanding the fundamentals and underlying operating principles of 

deep learning. The second part covers the training process of the deep 

learning model. Finally, in the third and final part, you will see how to 

build a multilayer perceptron, using Spark.

�Deep Learning Fundamentals
Before even getting into deep learning, we must understand what neural 

networks are, as deep learning is a sort of extension of neural networks. 

Neural networks are not new; in fact, they go way back to the 1950s, when 
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researchers began working on them. Unfortunately, they hit a major 

roadblock, owing to limited computation capabilities at the time. In the 

recent past, neural networks have gained in popularity, due to major 

advancements in processing power and access to big data. The availability 

of super-powerful processing devices, such as GPUs and TPUs, has made 

it possible to run huge neural networks with better performance. From the 

data aspect, the availability of labeled data over the last few years has also 

helped immensely. More than any of the preceding reasons, it’s the unique 

ability of deep learning models to offer significant performance over other 

machine learning algorithms that has made deep learning the preferred, 

mainstream approach. Figure 8-1 shows the evolutionary time line of 

artificial intelligence, machine learning, and deep learning.

In supervised learning settings, there is specific input and 

corresponding output. The objective of machine learning algorithms 

is to use this data and approximate the relationship between input and 

output variables. In some cases, this relationship can be quite evident and 

easy to capture, but in realistic scenarios, the relationship between input 

Figure 8-1.  Deep learning time line
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and output variables is very complex and nonlinear in nature. To give an 

example, a self-driving car, the input variables can be as follows:

•	 Terrain

•	 Distance from nearest object

•	 Traffic lights

•	 Signboards

The output must be either turn or drive fast or slowly or apply brakes, 

etc. As you might imagine, the relationship between input variables and 

output variables is fairly complex in nature. Therefore, the traditional 

machine learning algorithm finds it hard to map this kind of relationship. 

However, deep learning outperforms other machine learning algorithms in 

such situations, as it is able to learn nonlinear features as well.

�Human Brain Neuron vs. Artificial Neuron
As mentioned, deep learning is an extension of neural networks only and is 

also known as deep neural networks. Neural networks are a little different 

than other machine learning algorithms. Neural networks are loosely 

inspired by neurons in the human brain. Neural networks are made up of 

artificial neurons. Although I don’t claim to be an expert on neuroscience or 

functioning of the brain, let me try to give you a high-level overview of how 

the human brain functions. You might already be aware of the fact that the 

human brain is made up of billions of neurons, with an incredible number 

of connections between them. Each neuron is connected by multiple other 

neurons in some way and repeatedly exchanges information (signals). Each 

activity that we undertake physically or mentally fires up a certain set of 

neurons in our brain. Every neuron is made up of three basic components:

•	 Dendrites

•	 Cell Body

•	 Terminals
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As you can see in Figure 8-2, in a human brain neuron, the dendrites 

are responsible for receiving signals from other neurons. They act as 

receivers of the particular neuron and pass information to a cell body, 

where the specific information is processed. Now, based on the level of 

information, it either activates (fires up) or doesn’t trigger. This activity 

depends on a particular threshold value of the neuron. If the incoming 

signal value is below that threshold, it will not fire; otherwise, it activates. 

Finally, the third component is terminals, which are connected to the 

dendrites of other neurons. Terminals are responsible for passing on the 

output of a particular neuron to other relevant connectors.

Artificial neurons, on the other hand, consist mainly of two parts: one 

is summation, and the other is activation, as shown in Figure 8-3. This 

is also known as a perceptron. Summation refers to adding all the input 

signals, and activation refers to whether the neuron will trigger, based on 

the threshold value.

Figure 8-2.  Neuron of the human brain
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Let’s say we have two binary inputs (X1, X2) and weights of their 

respective connections (W1, W2), as shown in Figure 8-4. The weights 

can be considered similar to coefficients of input variables in traditional 

machine learning. These weights indicate how important the particular 

input feature in the model is. The summation function calculates the total 

sum of the input.

The activation function then uses this total summated value and gives 

a certain output. Activation is sort of a decision-making function. Based on 

the type of activation function used, it gives an output accordingly. There 

are different types of activation functions that can be used in a neural 

network layer.

Figure 8-3.  Parts of an artificial neuron

Figure 8-4.  Inputs and weights in an artificial neuron
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�Activation Functions
Activation functions play a critical role in neural networks, as the output 

varies, based on the type of activation function used. There are typically 

three main activation functions that are widely used: sigmoid, hyperbolic 

tangent, and rectified linear unit.

�Sigmoid

This activation function ensures that the output is always between 0 and 1, 

irrespective of the input, as shown in Figure 8-5. That’s why it is also used 

in logistic regression, to predict the probability of an event.

f x
e x( ) =

+ -

1

1

�Hyperbolic Tangent

Hyperbolic tangent activation (tanh) ensures that the output value remains 

between -1 to 1, regardless of the input, as shown in Figure 8-6. Following 

is the tanh formula:

f x
e

e

x

x( ) = -
+

2

2

1

1

Figure 8-5.  Sigmoid activation function
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�Rectified Linear Unit

Rectified linear units (ReLUs) have been increasingly popular over the last 

few years and have become the default activation function. A ReLU is very 

powerful, as it produces values between 0 and ∞. If the input is 0 or less 

than 0, the output is always going to be 0, but for anything more than 0, 

the output is similar to the input, as shown in Figure 8-7. The formula for a 

ReLU is

f x x( ) = ( )max 0,

Figure 8-6.  Tanh activation function

Figure 8-7.  Rectified linear unit
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�Neuron Computation
Now that we have a basic understanding of different activation functions, 

let’s consider an example, to understand how the actual output is 

calculated inside a neuron. Let’s say we have two inputs, X1 and X2, with 

values of 0.2 and 0.7, respectively, and the weights are 0.05 and 0.03. The 

summation function calculates the total sum of incoming input signals, as 

shown in Figures 8-8 and 8-9.

The summation is as follows:

sum X W X W= * + *1 1 2 2

sum = * + *0 2 0 05 0 7 0 03. . . .

sum = +0 01 0 021. .

sum = 0 031.

Figure 8-8.  Neuron computation
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The next step is to pass this sum through an activation function. Let’s 

consider using a sigmoid function, which returns values between 0 and 1, 

irrespective of the input. The sigmoid function will calculate the value, as 

follows:

f x
e x

( ) =
+( )-

1

1

f sum
e sum

( ) =
+( )-

1

1

f
e

0 031
1

1 0 031
.

.
( ) =

+( )-

f 0 031 0 5077. .( ) =

Figure 8-9.  Summation
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So, the output of this single neuron is equal to 0.5077. Now that we 

know how a single neuron operates, let’s quickly go over how multiple 

connected neurons work together to calculate the output.

�Training Process: Neural Network
When we combine multiple neurons, we end up with a neural network. 

Most simple and basic neural networks can be built using just input and 

output neurons, as shown in Figure 8-11.

Figure 8-10.  Neuron Activation
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The challenge with using a neural network such as this is that it can 

only learn linear relationships and cannot perform well in cases in which 

the relationship between input and output is nonlinear. As we have seen, 

in real-world scenarios, the relationship is hardly simple and linear. 

Therefore, we must introduce an additional layer of neurons between the 

input and output layer, in order to increase the network’s capacity to learn 

different kinds of nonlinear relationships. This additional layer of neurons 

is known as a hidden layer, as shown in Figure 8-12. It is responsible for 

introducing nonlinearities into the learning process of the network. Neural 

networks are also known as universal approximators, because they have 

the ability to approximate any relationship between input and output 

variables, no matter how complex and nonlinear in nature. A lot depends 

on the number of hidden layers in the networks and the total number of 

neurons in each hidden layer. Given sufficient numbers of hidden layers, a 

network can perform brilliantly at mapping this relationship.

Figure 8-11.  Basic neural network
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A neural network is all about various connections (red lines) and 

different weights associated with these connections. The training of neural 

networks primarily includes adjusting these weights in such a way that 

the model can make predictions with a higher degree of accuracy. To 

understand how neural networks are trained, let’s break down the steps of 

network training.

Step 1. Take the input values and calculate the 

output values that are passed to hidden neurons, 

as shown in Figure 8-13. The weights used for the 

first iteration of sum calculation are generated 

randomly.

Figure 8-12.  Multiple layer neural network
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An additional component that is passed is the 

bias neuron input, as shown in Figure 8-14. This is 

mainly used when you want to have some non-zero 

output for even the zero input values.

Figure 8-13.  Neural network training process
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Step 2. The hidden layer neurons now go through the 

same process to calculate the output, using the inputs 

from the previous layer (input layer). This hidden 

layer output acts as an input for the final output 

neuron (red) calculation, as shown in Figure 8-15. 

Figure 8-14.  Bias component

Figure 8-15.  Output calculation
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Step 3. Once we have the final output, it is 

compared with the actual output, and the error is 

backpropagated to the network, to adjust the weights 

of the connections so as to reduce the overall error 

on the training data, as shown in Figure 8-16. This 

process is known as backpropagation. 

Step 4. Weights of the connections are readjusted 

according to the output, to minimize the overall 

errors made by the network, to the point that there is 

no further reduction of error on the training data.

Step 5. Now that we have the final version of the 

weights, a new output value is calculated, based 

on updated weights, by the network, as shown in 

Figure 8-17.

Figure 8-16.  Backpropagation
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�Building a Multilayer Perceptron Model
When it comes to using Deep Learning in Spark, there are multiple 

options.Depending on the exact requirement and available infrastructure, 

the relevant approach can be used. On a high level,there are close to 4 

important deep learning libraries which can be used with Spark.

	 1.	 Spark’s MLlib

	 2.	 TensorflowOnSpark

	 3.	 Deep Learning Pipelines

	 4.	 DeepLearning4J

For simplicity, we will build a multilayer perceptron, using Spark. 

The dataset that we are going to use for this exercise contains close to 

75k records, with some sample customer journey data on a retail web 

site. There are 16 input features to predict whether the visitor is likely to 

convert. We have a balanced target class in this dataset. We will use Multi

layerPerceptronClassifier from Spark’s Machine Learning library. We 

start by importing a few important dependencies.

Figure 8-17.  Final output
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[In]: from pyspark.sql import SparkSession

[In]: spark = SparkSession.builder.appName('deep_learning').

getOrCreate()

[In]: import os

[In]: import numpy as np

[In]: import pandas as pd

[In]: from pyspark.sql.types import *

Now we load the dataset into Spark, for feature engineering and model 

training. As mentioned, there are 16 input features and 1 output column 

('Orders_Normalized').

[In]: data = spark.read.csv('dl_data.csv', header=True, 

inferSchema=True)

[In]: data.printSchema()

[Out]:
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We change the name of the label column from 'Orders_Normalized' 

to 'label', to be able to train the model.

[In]: data = data.withColumnRenamed('Orders_Normalized', 

'label')

[In]: data.printSchema()

[Out]:

 

Because we are dealing with both numerical and categorical 

columns, we must write a pipeline to create features combining both 

for model training. Therefore, we import Pipeline, VectorAssembler, 

and OneHotEncoder, to create feature vectors. We will also import 

MultiClassificationEvaluator and MultilayerPerceptron, to check the 

performance of the model.

[In]: from pyspark.ml.feature import OneHotEncoder, 

VectorAssembler, StringIndexer

[In]: from pyspark.ml import Pipeline

[In]: from pyspark.sql.functions import udf, StringType
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[In]: from pyspark.ml.evaluation import MulticlassClassificatio

nEvaluator

[In]: from pyspark.ml.classification import 

MultilayerPerceptronClassifier

We now split the data into train, test, and validation sets, for training of 

the model.

[In]: train, validation, test  = data.randomSplit([0.7, 0.2, 

0.1], 1234)

We create separate lists of categorical columns and numeric columns, 

based on datatypes.

[In]: categorical_columns = [item[0] for item in data.dtypes if 

item[1].startswith('string')]

[In]: numeric_columns = [item[0] for item in data.dtypes if 

item[1].startswith('double')]

[In]: indexers = [StringIndexer(inputCol=column, 

outputCol='{0}_index'.format(column)) for column in 

categorical_columns]

We now create consolidated feature vectors, using VectorAssembler.

[In]: featuresCreator = VectorAssembler(inputCols=[indexer.

getOutputCol() for indexer in indexers] + numeric_columns, 

outputCol="features")

[In]: layers = [len(featuresCreator.getInputCols()), 4, 2, 2]

The next step is to build the MultilayerPerceptron model. One can 

play around with different hyperparameters, such as number of layers and 

maxiters, to improve the performance of the model.
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[In]: classifier = MultilayerPerceptronClassifier(labelCol= 

'label', featuresCol='features', maxIter=100, layers=layers, 

blockSize=128, seed=1234)

Now that we have defined every stage, we add all these steps to the 

pipeline and run it on the training data.

[In]: pipeline = Pipeline(stages=indexers + [featuresCreator, 

classifier])

 [In]: model = pipeline.fit(train)

We now calculate the predictions of the model on train, test, and 

validation datasets.

[In]: train_output_df = model.transform(train)

[In]: validation_output_df = model.transform(validation)

[In]: test_output_df = model.transform(test)

[In]: train_predictionAndLabels = train_output_df.select 

("prediction", "label")

[In]: validation_predictionAndLabels = validation_output_

df.select("prediction", "label")

[In]: test_predictionAndLabels = test_output_df.select 

("prediction", "label")

We define three different metrics, to evaluate the performance of the 

model.
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metrics = ['weightedPrecision', 'weightedRecall', 'accuracy']

 [In]: for metric in metrics:

    �evaluator = MulticlassClassificationEvaluator 

(metricName=metric)

    �print('Train ' + metric + ' = ' + str(evaluator.

evaluate(train_predictionAndLabels)))

    �print('Validation ' + metric + ' = ' + str(evaluator.

evaluate(validation_predictionAndLabels)))

    �print('Test ' + metric + ' = ' + str(evaluator.

evaluate(test_predictionAndLabels)))

As you can see, the deep learning model is doing reasonably well on 

the test data, based on the input signal.

[Out]:

 

�Conclusion
This chapter covered the internals of the basic building blocks of neural 

networks—artificial neurons—and the entire training process of a neural 

network. Different ways in which deep learning models can be constructed 

were mentioned, and, using Spark, a multilayer perceptron model was built.
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