
Learn Kotlin for
Android
Development

The Next Generation Language for
Modern Android Apps Programming
—
Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Learn Kotlin for
Android Development

The Next Generation Language for
Modern Android Apps Programming

Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Peter Späth
Leipzig, Germany

Learn Kotlin for Android Development: The Next Generation Language for Modern
Android Apps Programming

ISBN-13 (pbk): 978-1-4842-4466-1 ISBN-13 (electronic): 978-1-4842-4467-8
https://doi.org/10.1007/978-1-4842-4467-8

Copyright © 2019 by Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244661. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4467-8
http://www.allitebooks.org

To Alina

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Your First Kotlin Application: Hello Kotlin ��� 1

Setting Up an IDE: Android Studio ��� 1

Connecting Your Android Device ��� 3

Starting Your First Kotlin App �� 5

Setting Up and Using Emulators ��� 6

Continuing with the HelloKotlin App �� 8

Using the Command Line �� 12

Chapter 2: Classes and Objects: Object Orientation Philosophy ����������������������������� 15

Kotlin and Object-Oriented Programming ��� 18

Class Declaration ��� 18

Exercise 1 �� 19

Property Declaration �� 20

Exercise 2 �� 21

Exercise 3 �� 21

Class Initialization�� 22

Exercise 4 �� 23

Exercise 5 �� 23

An Invoice in Kotlin �� 24

More Invoice Properties ��� 25

Invoice Initialization ��� 25

Exercise 6 �� 26

Instantiation in Kotlin ��� 26

About the Author ���xvii

About the Technical Reviewer ��xix

Introduction ��xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Adding Functions to Invoices ��� 27

Exercise 7 �� 30

The Complete Invoice Class ��� 30

A Simple Number Guessing Game �� 31

Constructors �� 41

Exercise 8 �� 43

Constructor Invocation �� 43

Exercise 9 �� 43

Exercise 10 �� 44

Named Constructor Parameters �� 44

Exercise 11 �� 44

Exercise 12 �� 45

Constructor Default Values �� 45

Exercise 13 �� 46

Exercise 14 �� 46

Secondary Constructors �� 46

Exercise 15 �� 48

If Classes Are Not Needed: Singleton Objects ��� 49

Exercise 16 �� 51

Exercise 17 �� 52

If State Doesn’t Matter: Companion Objects ��� 52

Exercise 18 �� 54

Exercise 19 �� 55

Describing a Contract: Interfaces �� 55

Exercise 20 �� 61

Exercise 21 �� 62

Exercise 22 �� 62

Structuring and Packages ��� 62

A Structured Project �� 63

Exercise 23 �� 65

Namespaces and Importing ��� 65

Exercise 24 �� 67

Table of ConTenTs

vii

Chapter 3: Classes at Work: Properties and Functions �� 69

Properties and Their Types �� 69

Simple Properties �� 70

Exercise 1 �� 72

Property Types ��� 72

Property Value Assignment �� 74

Exercise 2 �� 76

Literals ��� 76

Exercise 3 �� 79

Property Visibility ��� 79

Null Values ��� 79

Exercise 4 �� 80

Property Declaration Modifiers �� 80

Member Functions �� 81

Functions Not Returning Values �� 82

Exercise 5 �� 84

Exercise 6 �� 85

Functions Returning Values ��� 85

Exercise 7 �� 86

Exercise 8 �� 87

Exercise 9 �� 87

Accessing Masked Properties ��� 87

Exercise 10 �� 88

Function Invocation ��� 88

Exercise 11 �� 89

Function Named Parameters ��� 89

Exercise 12 �� 90

Function Default Parameters ��� 90

Exercise 13 �� 91

Function Vararg Parameters �� 91

Table of ConTenTs

viii

Exercise 14 �� 93

Abstract Functions ��� 93

Polymorphism �� 94

Local Functions ��� 95

Inheritance �� 96

Classes Inheriting from Other Classes��� 96

Constructor Inheritance ��� 97

Exercise 15 �� 98

Overriding Functions ��� 99

Overriding Properties ��� 100

Exercise 16 �� 100

Exercise 17 �� 101

Accessing Superclass Assets �� 101

Local Variables �� 102

Exercise 18 �� 103

Visibility of Classes and Class Members ��� 104

Self-Reference: This �� 110

Converting Classes to Strings ��� 111

Exercise 19 �� 112

Chapter 4: Classes and Objects: Extended Features ��� 113

Anonymous Classes �� 113

Inner Classes �� 115

Functions and Properties Outside Classes �� 116

Exercise 1 �� 117

Importing Functions and Properties �� 118

Exercise 2 �� 118

Data Classes ��� 118

Exercise 3 �� 119

Exercise 4 �� 120

Table of ConTenTs

ix

Enumerations �� 120

Exercise 5 �� 122

Custom Property Accessors �� 122

Exercise 6 �� 124

Exercise 7 �� 124

Exercise 8 �� 124

Kotlin Extensions ��� 125

Extension Functions �� 125

Extension Properties ��� 126

Extensions with Nullable Receivers��� 127

Encapsulating Extensions �� 127

Functions with Tail Recursion ��� 128

Infix Operators��� 129

Operator Overloading �� 130

Exercise 9 �� 134

Delegation ��� 134

Chapter 5: Expressions: Operations on Data �� 137

Expression Examples �� 137

Ubiquity of Expressions ��� 138

Numerical Expressions ��� 138

Exercise 1 �� 141

Boolean Expressions ��� 141

String and Character Expressions ��� 144

Bits and Bytes ��� 146

Other Operators ��� 148

Exercise 2 �� 150

Conversions �� 150

Table of ConTenTs

x

Chapter 6: Comments in Kotlin Files �� 155

Package Comments �� 156

Markdown ��� 159

Class Comments ��� 162

Function and Property Comments ��� 165

Exercise 1 �� 166

Generate Your Own API Documentation �� 166

Chapter 7: Structural Constructs �� 171

Ifs and Whens ��� 171

Ranges �� 175

For and While Loops �� 176

Scoping Functions �� 177

The apply Function �� 178

The let Function �� 180

The with Function ��� 181

The also Function �� 182

The run Function ��� 182

Conditional Execution ��� 183

Chapter 8: Exceptions: If Something Goes Wrong �� 185

Kotlin and Exceptions �� 185

More Exception Types ��� 188

Throwing Exceptions Yourself ��� 189

Exercise 1 �� 190

Exceptions in Expressions �� 190

Chapter 9: Data Containers ��� 193

Defining and Using Arrays ��� 193

Array Instantiation ��� 195

Exercise 1 �� 197

Exercise 2 �� 198

Table of ConTenTs

xi

Array Operations ��� 198

Sets, Lists, and Maps �� 200

Sets ��� 201

Exercise 3 �� 205

Lists ��� 205

Maps �� 212

Pairs and Triples �� 214

Loops over Data Containers �� 215

Sorting Arrays and Collections �� 217

Exercise 4 �� 220

Exercise 5 �� 221

Grouping, Folding, Reducing, and Zipping ��� 221

Grouping �� 222

Exercise 6 �� 223

Folding ��� 223

Reducing ��� 224

Exercise 7 �� 225

Zipping ��� 225

Exercise 8 �� 227

Searching in Arrays and Collections ��� 227

The Spread Operator ��� 228

Queues and Stacks: Deques ��� 229

A Statistics Class for the NumberGuess App �� 231

Adding an Action Bar to The App ��� 231

The Statistics Activity �� 237

State Housekeeping for the Statistics ��� 239

Communicating Between the Activities ��� 241

Implementing Statistical Calculations ��� 242

Chapter 10: True, False, and Undecided: Nullability ��� 247

What NULL Is ��� 247

How Nullability Gets Handled Inside Kotlin ��� 249

Table of ConTenTs

xii

Chapter 11: Handling Equality �� 253

Identity in Kotlin �� 253

Equality in Kotlin ��� 254

Equals and Hash Code �� 254

Exercise 1 �� 258

Exercise 2 �� 258

Chapter 12: Back to Math: Functional Programming ��� 259

Kotlin and Functional Programming �� 262

Functions Without Names: Lambda Functions �� 264

Exercise 1 �� 266

Exercise 2 �� 266

Loops Once Again ��� 266

Functions with Receivers �� 268

Inline Functions ��� 269

Filters �� 271

Exercise 3 �� 273

Chapter 13: About Type Safety: Generics �� 275

Simple Generics �� 277

Exercise 1 �� 278

Declaration-Side Variance ��� 278

Variance for Immutable Collections �� 281

Type Projections �� 281

Star Projections ��� 283

Generic Functions ��� 283

Generic Constraints ��� 284

Exercise 2 �� 287

Chapter 14: Adding Hints: Annotations��� 289

Annotations in Kotlin ��� 291

Annotation Characteristics �� 292

Applying Annotations �� 294

Table of ConTenTs

xiii

Annotations with Array Parameter �� 297

Reading Annotations ��� 298

Built-in Annotations �� 300

Custom Annotations �� 302

Exercise 1 �� 304

Chapter 15: Using the Java and Kotlin APIs ��� 305

Kotlin and Java Libraries ��� 306

Using the Online Resources �� 306

Making a Local Copy of the Documentation ��� 307

Chapter 16: The Collections API ��� 309

Interfaces �� 309

Classes �� 313

Generator Functions �� 315

Collection and Map Setters and Removers ��� 317

Deterministic Getters �� 318

Collection and Map Characteristics �� 320

Traversing Collections and Maps �� 321

Transformations �� 322

Exercise 1 �� 326

Exercise 2 �� 327

Exercise 3 �� 327

Exercise 4 �� 327

Filtering ��� 327

Exercise 5 �� 328

Changing the Mutability �� 328

Element Checks �� 329

Exercise 6 �� 329

Finding Elements �� 329

Exercise 7 �� 331

Table of ConTenTs

xiv

Aggregating, Folding, and Reducing ��� 331

Exercise 8 �� 335

Joining �� 335

Grouping�� 336

Zipping �� 337

Windowing �� 339

Sequences �� 340

Operators �� 343

Chapter 17: More APIs �� 347

The Math API ��� 347

The Date and Time API, API Level 25 or Less �� 349

The Date and Time API, API Level 26 or Greater �� 352

Local Dates and Times��� 353

Instants �� 357

Offset Dates and Times ��� 358

Zoned Dates and Times ��� 360

Duration and Periods ��� 362

Clock �� 366

Exercise 1 �� 367

Input and Output ��� 367

Creating Some Test Files ��� 368

File Names ��� 368

Listing Directories ��� 369

Writing to Files �� 371

Reading from Files �� 372

Deleting Files ��� 373

Working with Temporary Files ��� 374

More File Operations ��� 375

Reading URLs �� 377

Using Reflection �� 378

Table of ConTenTs

xv

Regular Expressions ��� 382

Patterns ��� 383

Determining Matches �� 386

Exercise 2 �� 386

Splitting Strings ��� 387

Extracting Substrings �� 388

Replacing ��� 390

Chapter 18: Working in Parallel: Multithreading �� 393

Basic Multithreading the Java Way ��� 393

Advanced Multithreading the Java Way �� 402

Special Concurrency Collections ��� 402

Locks ��� 403

Atomic Variable Types �� 406

Executors, Futures, and Callables ��� 407

Exercise 1 �� 414

Kotlin Coroutines ��� 414

Basic Coroutines �� 419

Coroutine Context �� 425

What a delay() Does �� 426

What Is a Suspending Function? ��� 426

Waiting for Jobs��� 427

Canceling Coroutines ��� 428

Timeouts �� 429

Dispatchers ��� 430

Exception Handling �� 432

Exercise 2 �� 435

Chapter 19: Using External Libraries �� 437

Adding External Libraries �� 437

Dependency Management �� 441

Unresolved Local Dependencies ��� 442

Table of ConTenTs

xvi

External Libraries and Nullability �� 442

Creating Your Own Library �� 443

Chapter 20: XML and JSON ��� 447

XML Processing �� 447

Reading XML Data ��� 449

Altering XML Data �� 453

Creating New DOMs �� 458

JSON Processing ��� 458

JSON Helper Functions �� 459

Reading and Writing JSON Data �� 464

Creating New JSON Trees �� 466

Appendix ��� 469

Solutions to the Exercises ��� 469

Chapter 2 �� 469

Chapter 3 �� 482

Chapter 4 �� 486

Chapter 5 �� 489

Chapter 6 �� 489

Chapter 8 �� 489

Chapter 9 �� 490

Chapter 11 �� 492

Chapter 12 �� 492

Chapter 13 �� 493

Chapter 14 �� 494

Chapter 16 �� 494

Chapter 17 �� 495

Chapter 18 �� 496

Chapter 20 �� 500

Index ��� 501

Table of ConTenTs

xvii

About the Author

Peter Späth graduated in 2002 as a physicist and soon afterward became an IT

consultant, mainly for Java-related projects. In 2016 he decided to concentrate on writing

books on various subjects, with a primary focus on software development. With a wealth

of experience in Java-related languages, the release of Kotlin for building Android apps

made him enthusiastic about writing books for Kotlin development in the Android

environment.

xix

About the Technical Reviewer

Ted Hagos is the CTO and Data Protection Officer of RenditionDigital International

(RDI), a software development company based out of Dublin. Before he joined RDI,

he had various software development roles and also spent time as a trainer at IBM

Advanced Career Education, Ateneo ITI, and Asia Pacific College. He spent many years

in software development, dating back to the days of Turbo C, Clipper, dBase IV, and

Visual Basic. Eventually, he found Java and spent many years working on Java-related

projects. Nowadays, he’s busy with full-stack JavaScript and Android.

xxi

Introduction

Computer programs are for executing operations using input data to produce output

data, sometimes by manipulating data taken from a database during that operation.

The word database here is used in the most general sense: It could be a file, some

memory storage, or a full-fledged database product.

Many different programming languages exist nowadays, each with its own merits

and drawbacks. Some of them aim at execution stability, some at high performance,

some are tailored to solve specific tasks, and some exist only because a company

wants to establish a strong market position. Looking at the way programming

languages have developed over time is an interesting subject in and of itself, and

it has implications for various aspects of information technology. One could write

a separate book about that, but for this book I simply want to stress one important

fact about computer language development, which I think has a direct effect on

the way modern computer programs are written. If you are looking at the historical

development of computer languages, you will notice a substantial change in the

abstraction level the languages exhibit. Whereas in the infancy of the industry a

programmer needed to have a fairly good knowledge of computer hardware, now

different levels of abstraction have been introduced into the languages, meaning

an increased conceptional and linguistic distance from hardware features. This

has increasingly alleviated the requirement that software developers know what is

occurring in a computer’s central processing unit (CPU).

Along with an increasing level of abstraction, modern computer languages—

sometimes implicitly, sometimes explicitly—exhibit a prominent new feature: the

expressiveness of language constructs. Let me try to illustrate this using an example

written in pseudo-code. Let’s say you have a list of items and want to perform an

operation on each of the items. With some knowledge of the internal functioning of

computers, a programmer might write a code snippet like this:

• Create some array of data in the memory.

• Assign a pointer to the first element.

• Loop over the array.

xxii

• Dereference the pointer, retrieving a list element.

• Do something with the element (example.g., print it).

• Increment the pointer, let it point to the next item.

• If we are beyond the last element, exit the loop.

• End loop.

Although this looks a little bit complex, it closely relates to what computers are doing

under the hood, and early languages looked more or less like this. As a first abstraction

and a way to improve readability, we can try to get rid of the “pointer” element and

instead write:

• variable theList = [somehow create the list of items]

• loop over "theList", assigning each item to an

iteration variable "item":

• do something with "item", for example print it

• end loop

This already looks more expressive compared to the first version, and a lot of current

programming languages allow for this kind of programming style. We can do even

better, though: You can see the definition of the list being written in one line, separated

from the list processing in the loop. There’s nothing preventing us from writing a lot of

overly complex code between the list definition and the loop, and this is what you see

quite often, making the program hard to read and understand. Wouldn’t it be better to

have it all in one statement? Using a more expressive snippet allows us to write such a

combined statement. In pseudo-code, it could look like this:

[somehow create the list of items].

 [maybe add some filter].

 forEach { item ->

 do something with "item", for example print it

 }

This is about the maximum of expressiveness you can get, if you see the dot “ . ” as

some kind of “do something with it” command and “{ … }” as a block of code doing

something, with the identifier in front of the -> in this case designating a loop variable.

InTroduCTIon

xxiii

Note Making your code expressive from the very beginning will not only help
you to write good code, it will also help you to develop your programming skills
beyond average. expressive code is easier to maintain and extend, easier to reuse,
easier to understand for others, and easier to debug if the program shows some
deficiencies.

The programming language Kotlin is capable of getting us to such an extent of

expressiveness, and in this book I want to introduce Kotlin as a programming language

for Android that allows you to accomplish things in an expressive and concise way. As a

matter of fact, in Kotlin the little looping example, with a filter added, reads:

arrayOf("Blue", "Green", "Yellow", "Gray").

 filter { it.startsWith("G") }.

 forEach { item ->

 println(item)

 }

If you run this, it will print the text Green Gray on two lines of the console. With

the notion of parameters being placed inside round brackets, you should be able to

understand this snippet without knowing a single Kotlin idiom.

Note don’t worry if you don’t know how to write and run this, we’ll be getting
our feet wet very soon in the first chapter of the book.

Once you reach the end of the book, you should be an advanced developer able to

address problems in the Kotlin language, with particular attention on Android matters.

Of course, you will not know all possible libraries that are out there in the wild for solving

specific problems, as only experience will help you there. Knowing most of the language

constructs and having good ideas concerning programming techniques, however, will

set you on the way to become an expert programmer for Android.

The Kotlin version referred to in this book is 1.3. Most of the examples and most of

what gets explained here is likely valid for later versions as well.

InTroduCTIon

xxiv

 The Book’s Target Audience
The book is for beginning software developers with little or no knowledge of

programming, and for developers with knowledge of other languages who are interested

in using Kotlin for future Android projects. The target platforms are Android devices.

The book is not meant to present a thorough introduction into Android; instead, it uses

Android as a platform as is and thoroughly introduces the Kotlin programming language

and how it gets used for Android.

Basic knowledge of how to use a desktop or laptop computer, including the

installation and starting of programs, is expected. The operating system you want to

use plays no major role, but because we are using Android Studio as a development

environment, you must choose an operating system able to run this integrated

development environment (IDE). This is the case for Linux, Windows, and Mac

OS. Screenshots are taken from an Ubuntu Linux installation.

In the end, you will be able to write and run Kotlin programs for Android of

beginning to midlevel complexity.

 Source Code
All source code shown or referred to in this book can be found at

https://github.com/Apress/learn-kotlin-for-android-development

 How to Read This Book
Reading this book sequentially from the beginning to the end will provide the maximum

benefit. If you already have some basic development knowledge, you can skip sections

and chapters at will, and of course you can always take a step back and reread sections

and chapters while you are advancing through the book.

InTroduCTIon

https://github.com/Apress/learn-kotlin-for-android-development

1
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_1

CHAPTER 1

Your First Kotlin
Application: Hello Kotlin
In this chapter we are going to learn how to use the Android Studio integrated

development environment (IDE) to write and execute a first simple Kotlin program.

 Setting Up an IDE: Android Studio
Although computer programs could be written in simple text editors and then prepared

and executed by some system-level commands entered in a system terminal, using an

IDE helps in keeping project files together and also simplifies various development-

related activities.

Note Computer languages come in two flavors: Either you have some program
code that by some execution engine gets interpreted while the program is running
and then executed on the CPU, or you have a compiling language with a special
preparatory system command first translating the program code into a compiled
program that can be directly executed by the operating system or by some specially
tailored execution engine. Kotlin is such a compiling language. If you use an IDE like
Android Studio, the compilation step usually is automatically done for you.

In this book we use Android Studio as an IDE. It is developed by Google, Inc., and

based on the community edition of the IntelliJ IDEA. You can freely download, install,

and use it. As of this writing, the download page is hosted at https://developer.

android.com/studio/. If that link is not functioning, you can easily find the download

https://developer.android.com/studio/
https://developer.android.com/studio/

2

location by entering “android studio download” in your favorite search engine. To use

Android Studio, you don’t have to buy a license for private or commercial projects. To

install Android Studio on your PC, follow these steps:

 1. Download the installer for your operating system. There are

installers for Linux (tested for Ubuntu 14.04; higher versions

should work as well), Windows (starting from version 7), and

MacOS (starting from MacOS X 10.10).

 2. Start the installer. For Linux, unpack the installer ZIP, then

navigate to the bin folder and start studio.sh in a terminal.

On Windows systems, start the .exe file. On MacOS X systems,

launch the .dmg file and then drag and drop Android Studio to the

Applications folder. Launch it again from there.

Note To open a terminal in Ubuntu Linux press Ctrl+Alt+T. Inside the terminal,
commands need to be entered using the keyboard. To change to a directory enter
cd /path/to/directory. To start a .sh file enter ./name.sh

The details of the installation depend on your operating system specifics, including

the operating system version, and also the version of your Android Studio download.

The page where you downloaded Android Studio will give you more details and even

present videos for the installation procedure.

In any case the installer for Android Studio will download additional components.

The same holds for the Project Wizard when you create new projects, depending on the

features needed for the project and also depending on the components already installed.

You thus need to have some patience before you can start your first project; subsequent

startups will, of course, be faster.

Proceed with the installer up to the point where you are being asked whether you

want to create a new project. For Linux this will look like Figure 1-1, and for other

operating systems you will be presented something similar.

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

3

 Connecting Your Android Device
First it is important to say that for developing Android apps you don’t necessarily need

to have a real hardware device at hand. In the section “Setting Up and Using Emulators”

later in this chapter, we talk about how to use emulators to simulate Android devices.

For professional apps, however, it is a good idea to have at least one Android hardware

device at hand.

Android Studio allows for working with both real and simulated devices. To work

with only a real device like a smartphone obviously can give you the most profound

assurance your app is running. However, it will tell you only your smartphone can

operate your app; you cannot be sure other devices will be just as happy with it. You

certainly don’t want to buy dozens of different smartphones and other Android devices.

Likewise, though, working only with simulated devices and not with a real device cannot

give you 100 percent assurance your app works on any real devices.

Figure 1-1. The Project Creation Wizard

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

4

The suggested development technique therefore is to use both real and simulated

devices. You don’t have to check each and every development step in both worlds, but

once you reach a milestone you should do a double check. Of course, before you publish

your app and make it available to a broader audience, you should test it on both real and

simulated devices.

Your process to connect the studio to a real device might vary, but ideally all you

have to do is connect your smartphone to the USB port of your PC or laptop and make

sure your device is a debuggable device. Describing solutions for any problem that might

come up doesn’t make too much sense here, because any update of your operating

system or Android Studio can easily change the picture. Therefore if you have problems,

please consult the official Android and Android Studio documentation, and use your

favorite search engine to find corresponding blog entries. The procedure for connecting

hardware devices basically goes as follows:

 1. To make your smartphone debuggable, for Android version 4.2 or

higher, open the Settings dialog box, go to About phone, and tap

seven times on the build number. For versions prior to that, you

might instead have to go to Settings ➤ Develop Option ➤ Check

“USB debugging.”

 2. Connect the smartphone to your laptop or PC via USB cable.

To see whether the studio actually got connected to the device, go to Tools ➤

Android ➤ Android Device Monitor. You should see your device listed in the devices

section of the Device Monitor, as shown in Figure 1-2.

Figure 1-2. A hardware Android device

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

5

 Starting Your First Kotlin App
It is now time to write our first Kotlin application inside Android Studio. From the

installation step where you are being asked whether you want to create a project, or

after you start an installed Android Studio instance the first time, or from inside a

running Android Studio at File ➤ New ➤ New Project, inside the menu, proceed as

follows:

 1. Select or click Start a New Android Studio Project.

 2. Inside the Project Wizard, as the application name, enter

HelloKotlin. Although not strictly necessary, it is better to avoid

space characters inside the name.

 3. For company domain, enter example.com. Aside from not using

spaces, what you enter here is up to you. It is, however, good

practice to enter a real domain name you or your company owns.

For projects you know you will never publish, choose whatever

you like.

 4. The project location that Android Studio suggests is decent

enough, but if you like you can choose a different one.

 5. Make sure Include Kotlin support is selected.

 6. Choose Phone and Tablet as a form factor.

 7. Choose API 19 as a minimum software development kit (SDK).

 8. Choose Empty Activity. As Activity name, use the suggested

MainActivity. Make sure Generate Layout File is selected, and as

a layout name, accept the suggested activity_main. Make sure

Backwards Compatibility is selected as well.

The first time you create a project Android Studio will automatically download and

install any additional components it needs, and then it also performs an initial build.

This will take several minutes, so be patient here.

At this point if everything worked well the Android Studio main window will appear

as shown in Figure 1-3.

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

6

 Setting Up and Using Emulators
Now it is time to install a device emulator. Emulators are very handy, because they

allow for developing Android apps without having to connect a real device. Emulators

simulate Android devices on your computer’s screen. To install one of the several

available, go to Tools ➤ AVD Manager. The screen that appears shows the title Your

Virtual Devices. Click Create Virtual Device. The following screen shows a device list,

as shown in Figure 1-4.

Figure 1-3. The Android Studio main window

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

7

Under Category, make sure you select Phone. In the middle pane, select the Nexus

6 entry. Click Next. On the next screen, click the Download link for Oreo, API 27. Go

through the subwizard that then appears. Here a system image gets downloaded; this is

something like the operating system for the emulator device. Back on the System Image

screen, the Oreo, API 27 item now gets selected and it is possible to click Next. Click Next,

and on the next screen click Finish.

The Your Virtual Devices screen now shows one entry, as displayed in Figure 1-5.

You can now close that window.

Figure 1-4. Emulated devices

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

8

 Continuing with the HelloKotlin App
Back in the Android Studio main window, on the left side inside the app, by clicking

on the small triangles next to the names you can navigate to the following files (see

Figure 1- 6):

app → java →
 com.example.hellokotlin → MainActivity

app → res →
 layout → activity_main.xml

Figure 1-5. Emulated devices with an entry

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

9

Double-clicking on any of the files will display them in the editor in the center pane

of the window. The two files MainActivity and activity_main.xml are the central files

we will need to adjust for our first simple Kotlin app. The file activity_main.xml defines

the layout on the smartphone’s screen. We will adapt it to show a button and a text area.

For that purpose, open the file, switch to the text view of the editor by selecting the Text

tab on the bottom of the pane, and then as its contents, write the following:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:tools=

 "http://schemas.android.com/tools"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

Figure 1-6. The HelloKotlin app

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

10

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent">

 <Button android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Go"

 android:onClick="go"/>

 <EditText

 android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:inputType="textMultiLine"

 android:ems="10"

 tools:layout_editor_absoluteY="286dp"

 tools:layout_editor_absoluteX="84dp"/>

 </LinearLayout>

</android.support.constraint.ConstraintLayout>

So much for the graphical design. The program goes into the MainActivity.kt file.

Open this one in the editor by double-clicking the name.

As its contents, write the following:

package kotlin.hello.hellokotlin

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_main.*

import java.util.*

class MainActivity : AppCompatActivity() {

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

11

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

 fun go(v:View) {

 text.setText("Hello Kotlin!" + "\n" + Date())

 }

}

Start the app by clicking the green triangle in the task button bar on top of the

window. From the Available Virtual Devices list, choose Nexus 6 API 27, then click

OK. The first time you might be asked whether you want to install a feature called Instant

Run. If so, click Install and Continue.

Now the emulator window appears. The app gets built, sent to the emulator, and

started there, as shown in Figure 1-7.

Figure 1-7. HelloKotlin app started

Click Go and the emulated devices screen gets updated to show the text “Hello

Kotlin!” and the current date, as shown in Figure 1-8.

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

12

Congratulations! You just wrote, compiled, and ran your first Kotlin application!

 Using the Command Line
Although you can continue using Android Studio for working on projects to any depth, it

is also possible to use the command line in a terminal to build and run apps. If you want

to continue using Android Studio, you can safely skip this section. For all others, I want

to describe how to use a terminal to build apps, and more precisely the HelloKotlin app

we created in the last section.

Figure 1-8. HelloKotlin app on the device

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

13

Note Using the command line helps, for example, in cases where you don’t have
a desktop environment, like on servers. You can also use it in an automated build
environment where developers provide the code, but the program to be executed
on Android devices is generated automatically.

Interestingly, Android Studio helps us to get rid of itself. For any project you have

successfully built inside Android Studio, the folder containing the project files also will

contain specially tailored build scripts that you can use to build apps without using

Android Studio.

First we need to open a terminal: In Ubuntu Linux, press Ctrl+Alt+T. In Windows you

find a terminal by searching for CMD in the system menu. For Apple Mac OS, a terminal

can be opened after you search for Terminal in Spotlight. Next we need to know where

in the file system the project files reside. If you accepted the suggestion Android Studio

gave while creating the project, the paths will be as follows:

/home/[USER]/AndroidStudioProjects/HelloKotlin

 for Linux

/Users/[USER]/AndroidStudioProjects/HelloKotlin

 for Mac OS X

C:\Users\[USER]\AndroidStudioProjects\HelloKotlin

 for Windows

where [USER] is your logon username. If you used a custom project location instead, you

have to use that one.

Fluently using a terminal is an art and we won’t go into details here. The following

commands will, however, give you a starting point. Inside the terminal we change to the

project folder as follows:

cd [PATH] #for Linux and Mac OS X and Windows

where [PATH] is the project folder we just determined. From here we can build the app

by entering

./gradlew app:build #for Linux and Mac OS X

gradlew app:build #for Windows

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

14

Note The gradlew command belongs to the Gradle build system. Gradle gets
used throughout Android Studio for building executable apps.

The final app as an APK file with an .apk suffix will now show up inside app/build/

outputs/apk/debug/. The APK comes from Android PacKage; such a file is a compressed

collection of all the files Android needs to install an app on your device. The gradlew

wrapper script actually allows for many more options to build and investigate projects.

Enter -help or tasks as an argument to have them all listed.

./gradlew –help #for Linux and Mac OS X

./gradlew tasks #for Linux and Mac OS X

gradlew –help #for Windows

gradlew tasks #for Windows

For the tasks command to specifically show the app’s tasks, you have to prepend

app:, which we saw earlier for the build task.

Note Describing what you can do with such an APK file resulting from a build
is left to an Android book. As a hint to get you started, learn how to use the tools
provided in the SDK, especially the adb platform tool.

ChAPTEr 1 YoUr FIrST KoTLIn APPLICATIon: hELLo KoTLIn

15
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_2

CHAPTER 2

Classes and Objects:
Object Orientation
Philosophy
At the beginning of the book we said that computer programs are about processing

some input and generating some output from it, possibly also altering the state of some

data-holding instance like a file or a database. Although this is certainly true, it does

not tell the whole story. In real-world scenarios, computer programs exhibit another

characteristic: They are supposed to be of some practical use, and as a result of that,

model real-world events and things.

Say, for example, you write a simple program for registering paper invoices and

summing up the money amounts for each day. The input is clear: It is the paper invoices

in electronic form. The output is the daily sum, and along the way a database keeps

records for all registered invoices. The modeling aspect tells us that we deal with the

following objects: an invoice in electronic form, a database for keeping the records, and

some calculation engine for accessing the database and performing the summation

operation. To be of practical use these objects need to exhibit the following features.

First, depending on their nature, they might have a state. For the invoice object, for

example, we have the name of the seller, the name of the buyer, the date, the name of the

goods, and of course the monetary amount. Such state elements are commonly referred

to as properties. The database obviously has the database contents as its state. The

calculation engine, in contrast, doesn’t need its own state, and it uses the state from the

other objects to do its work. The second feature of objects is operations you can perform

on them, commonly referred to as methods. The invoice object, for example, might have

methods to set and tell us about its state, the database object needs methods for saving

16

and retrieving data from its store, and the calculation engine obviously must be able to

perform the summation calculation for each day.

Before we deepen our insights in that kind of real world to computer world mapping

methodology, let us first sum up what we have seen so far.

• Objects: We use objects to identify things in the real world we want to

model in a computer program.

• State: Objects often have a state, which describes the characteristics

each object has to be able to handle the tasks it is supposed to perform.

• Property: The state of an object consists of a set of properties.

Properties thus are elements of a state.

• Method: A method is a way to access an object. This describes the

functional aspects an object needs to exhibit to handle the tasks

it is supposed to perform, possibly including changing and querying

its state.

Note Depending on the terminology used, methods are also sometimes
called operations or functions, and properties are sometimes referred to as
attributes. Although we continue to use property we’ll switch to using function
for methods because the Kotlin documentation uses the term function and
we want to keep things easy for you, including reference research in the Kotlin
documentation.

One important concept to understand is that Invoice is not an object, nor is Person,

nor is Triangle. How can that be? We just were talking of invoices as objects, and why are

Person and Triangle not objects? This contradiction comes from some kind of linguistic

fluffiness. Did you realize that we’re talking of Invoice, but not of an invoice? There is a

major difference between those: An invoice, or more precisely a particular invoice, is an

object, but Invoice is a classification or class. All possible invoices share membership in

the Invoice class, and all concrete persons share membership in the Person class, just

as all possible triangles belong to the Triangle class. Does this seem theoretical or even

nitpicking? Perhaps, but it has important practical implications and we really need to

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

17

understand that class notion. Consider a thousand invoices arriving on a particular day.

In some computer program, do we really want to write something like this:

object1 = Invoice(Buyer=Smith,Date=20180923,Good=Peas,Cost=$23.99), object2

= Invoice(...), ..., object1000 = Invoice(...)

That just doesn’t make sense, because we don’t want to write a huge new computer

program every day. What instead makes sense is having an Invoice class that describes

all possible invoices. From this class we must be able to create concrete invoices given

some invoice style input. In pseudo-code:

data = [Some incoming invoice data]

This provides incoming invoice data for a particular paper invoice. Make sure the

data can be represented by the abstract characteristics of the Invoice class, so it has a

buyer, a date, goods or services, and so on. This is the same as saying that Invoice is a

valid classification of all possible input data.

object = concrete object using that data

You can build a concrete invoice object, given the classification and the data.

Another way of saying building a concrete invoice object from the Invoice class is

constructing an object from the class or creating an Invoice instance. We will be using

that instance and constructor notion in the rest of the book.

Our main subject of this chapter, object orientation, exactly is about classes,

instantiation, and objects. Some details are still missing, but let us first summarize what

we just learned and continue with our definition list:

• Class: A class characterizes all possible objects of some kind. It is thus

an abstraction, and any such object characterized by the class is said

to belong to that particular class.

• Instance: An instance of a class represents exactly one object

belonging to that class. The process of creating an object from a class

and concrete data is called instantiation.

• Construction: The process of creating an instance from a class is also

called construction.

Equipped with these object orientation concepts we can now start looking at how

Kotlin deals with objects, classes, and instantiation. In the following sections we also talk

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

18

about some aspects of object orientation we haven’t introduced yet. We could have done

that here in a theoretical manner, but describing it with the Kotlin language at hand is a

little easier to grasp.

 Kotlin and Object-Oriented Programming
In this section we talk about the main characteristics of classes and objects in Kotlin.

Some aspects are covered in greater detail in later sections, but here we want to give you

the basics you need for Kotlin programming.

 Class Declaration

Note the term declaration here is used for the description of the structure and
the constituent parts of a class.

In Kotlin, to declare a class you basically write

class ClassName(Parameter-Declaration1, Parameter-Declaration2, ...) {

 [Class-Body]

 }

Let us examine its parts:

• ClassName: This is the name of the class. It must not contain spaces,

and in Kotlin by convention you should use CamelCase notation; that

is, start with a capital letter, and instead of using spaces between words,

capitalize the first letter of the second word, as in EmployeeRecord.

• Parameter-Declaration: These declare a primary constructor and

describe data that are needed to instantiate classes. We talk more

about parameters and parameter types later, but for now we mention

that such parameter declarations basically come in three varieties:

 – Variable-Name:Variable-Type: An example would be userName:

String. Use this to pass a parameter usable for instantiating a

class. This happens inside a special construct called an init{}

block. We’ll talk about that initialization later.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

19

 – val Variable-Name:Variable-Type (e.g., val userName:

String): Use this to pass a usable parameter from inside the

init{} block, but also define a nonmutable (unchangeable)

property. This parameter is thus used to directly set parts of the

object’s state.

 – var Variable-Name:Variable-Type (e.g., var userName:

String): Use this to pass a usable parameter from inside the

init() function, but also to define a mutable (changeable) prop-

erty for setting parts of the object’s state.

For the names use CamelCase notation, this time starting with a

lowercase letter, as in nameOfBuyer. There are lots of possibilities

for a variable type. For example, you can use Int for an integer

and the declaration then could look like val a:Int. In Chapter 3

we talk more about types.

• [Class-Body]: This is a placeholder for any number of functions and

additional properties, and also init { ... } blocks worked through

while instantiating a class. In addition, you can also have secondary

constructors and companion objects, which we describe later, and

inner classes.

 Exercise 1
Which of the following appears to be a valid class declaration?

1. class Triangle(color:Int) (

 val coordinates:Array<Pair<Double,Double>>

 = arrayOf()

)

2. class Triangle(color:Int) {

 val coordinates:Array<Pair<Double,Double>>

 = arrayOf()

 }

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

20

3. class simple_rectangle() {

 val coordinates:Array<Pair<Double,Double>>

 = arrayOf()

 }

4. class Colored Rectangle(color:Int) {

 val coordinates:Array<Pair<Double,Double>>

 = arrayOf()

 }

 Property Declaration
We’ll be talking about detailed characteristics of properties in Chapter 3. Here I provide

just a brief summary for simple property declarations: They basically look like

val Variable-Name:Variable-Type = value

for immutable properties, and

var Variable-Name:Variable-Type = value

for mutable properties. The = value is not needed, however, if the variable’s value gets

set inside an init { } block.

class ClassName(Parameter-Declaration1,

 Parameter-Declaration2, ...) {

 ...

 val propertyName:PropertyType = [init-value]

 var propertyName:PropertyType = [init-value]

 ...

}

One word about mutability is in order: Immutable means the val variable gets its

value at some place and cannot be changed afterward, whereas mutable means the var

variable is freely changeable anywhere. Immutable variables have some advantages

concerning program stability, so as a rule of thumb you should always prefer immutable

over mutable variables.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

21

 Exercise 2
Which one of the following is a valid class?

1. class Invoice() {

 variable total:Double = 0.0

 }

2. class Invoice() {

 property total:Double = 0.0

 }

3. class Invoice() {

 Double total =

 0.0

 }

4. class Invoice() {

 var total:Double = 0.0

 }

5. class Invoice() {

 total:Double = 0.0

 }

 Exercise 3
What is wrong with the following class (not technically, but from a functional

perspective)?

class Invoice() {

 val total:Double = 0.0

}

How can it be fixed?

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

22

 Class Initialization
An init { } block inside the class body may contain statements that get worked

through when the class gets instantiated. As the name says, it should be used to initialize

instances before they actually get used. This includes preparing the state of an instance

so it is set up properly to do its work. You can in fact have several init{ } blocks inside

a class. In this case the init{ } blocks get worked through sequentially in the order in

which they appear in the class. Such init{ } blocks are optional, however, so in simple

cases it is totally acceptable to not provide one.

class ClassName(Parameter-Declaration1,

 Parameter-Declaration2, ...) {

 ...

 init {

 // initialization actions...

 }

}

Note A // starts a so-called end-of-line comment; anything starting from that
until the end of the current line is ignored by the Kotlin language. you can use it for
comments and documentation.

If you set properties inside an init { } block, it is no longer necessary to write = [value]

inside the property declaration.

class ClassName(Parameter-Declaration1,

 Parameter-Declaration2, ...) {

 val someProperty:PropertyType

 ...

 init {

 someProperty = [some value]

 // more initialization actions...

 }

}

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

23

If you specify a property value inside the property declaration and later change the

property’s value inside init { }, the value from the property declaration gets taken to

initialize the property before init{ } starts. Later, inside init { } the property’s value

then gets changed by suitable statements:

class ClassName {

 var someProperty:PropertyType = [init-value]

 ...

 init {

 ...

 someProperty = [some new value]

 ...

 }

}

 Exercise 4
What is wrong with the following class?

class Color(val red:Int,

 val green:Int,

 val blue:Int)

{

 init {

 red = 0

 green = 0

 blue = 0

 }

}

 Exercise 5
What is wrong with the following class?

class Color() {

 var red:Int

 var green:Int

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

24

 var blue:Int

 init {

 red = 0

 green = 0

 }

}

 An Invoice in Kotlin
That is enough theory; let us work out the Invoice class we already talked about. For

simplicity, our invoice will have the following properties: the buyer’s first and last name,

the date, the name and amount of a single product, and the price per item. I know in real

life we need more properties, but this subset will do here because it describes enough

cases and you can easily extend it. A first draft of the actual Invoice class then reads:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

 val amount:Int,

 val pricePerItem:Double) {

}

We talk about data types later in this chapter, but for now we need to know that

String is any character string, Int is an integer number, and Double is a floating-

point number. You can see that for all the parameters passed to the class I used

the val ... form, so after instantiation all those parameters will be available as

immutable (unchangeable) properties. This makes a lot of sense here, because the

parameters are exactly what is needed to describe the characteristics, or state, of an

invoice instance.

Note in Kotlin it is permitted to omit empty blocks altogether. you could therefore
remove the { } from the Invoice class declaration. nevertheless, we leave it
here, because we will add elements to the body soon.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

25

 More Invoice Properties
The class body is still empty, but we can easily think of properties we might want to add.

For example, it could be interesting to have the full name of the buyer at hand, and the

total price of all items. We can add the corresponding properties:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

 val amount:Int,

 val pricePerItem:Double)

{

 val buyerFullName:String

 val totalPrice:Double

}

Did we forget to initialize the properties by adding values via = something? Well,

yes and no. Writing it that way is actually forbidden, but because we will initialize those

properties inside an init{ } block soon, it is allowable to not initialize the properties.

 Invoice Initialization
No sooner said than done, we add a corresponding init{ } block:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

 val amount:Int,

 val pricePerItem:Double)

{

 val buyerFullName:String

 val totalPrice:Double

 init {

 buyerFullName = buyerFirstName + " " +

 buyerLastName

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

26

 totalPrice = amount * pricePerItem

 }

}

By the way, there is a shorter way of writing such one-line initializers for properties:

...

val buyerFullName:String = buyerFirstName + " " + buyerLastName

val totalPrice:Double = amount * pricePerItem

...

This makes an init{ } block unnecessary. There is, however, no functional

difference to using an init{ } block, and the latter allows for more complex calculations

that do not fit into one statement.

 Exercise 6
Write the Invoice class without the init{ } block, keeping its full functionality.

 Instantiation in Kotlin
With the class declaration ready now, to instantiate an Invoice object from it, all you

have to do is write this:

val firstInvoice = Invoice("Richard", "Smith", "2018-10-23", "Peas", 5, 2.99)

If you don’t know how to put all that into a program, in Kotlin it is totally acceptable

to write everything in one file, which then reads:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

 val amount:Int,

 val pricePerItem:Double)

{

 val buyerFullName:String

 val totalPrice:Double

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

27

 init {

 buyerFullName = buyerFirstName + " " +

 buyerLastName

 totalPrice = amount * pricePerItem

 }

}

fun main(args:Array<String>) {

 val firstInvoice = Invoice("Richard", "Smith",

 "2018-10-23", "Peas", 5, 2.99)

 // do something with it...

}

The main() function is the entry point for Kotlin applications. Unfortunately, this

won’t work like that for Android, because Android has a different idea for how to start

apps. Please be patient, as we will come back to that soon.

Note having said that, please do not write files containing a lot of different
classes or long functions. We’ll talk about program structure soon in the section
“structuring and packages” later in this chapter. For now, just remember that
having short identifiable pieces of code helps a great deal in writing good software!

 Adding Functions to Invoices
Our Invoice class does not yet have explicit functions. I deliberately said explicit,

because by virtue of both the constructor properties and the properties we added in the

class body, Kotlin provides us implicit accessor functions in the form of objectName.

propertyName. We can, for example, add inside any function:

...

val firstInvoice = Invoice("Richard", "Smith",

 "2018-10-23", "Peas", 5, 2.99)

val fullName = firstInvoice.buyerFullName

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

28

where firstInvoice.buyerFullName reads the full name of the buyer from the object.

Under different circumstances we could also use accessors to write properties as in

...

val firstInvoice = Invoice("Richard", "Smith",

 "2018-10-23", "Peas", 5, 2.99)

firstInvoice.buyerLastName = "Doubtfire"

Do you see why we can’t do that here? Remember, we declared buyer- LastName as

an immutable val, so it cannot be changed. If we substituted for the val with var, the

variable became mutable and the setting became an allowed operation.

As an example for an explicit function, we could create a means to let the object tell

about its state. Let us call this function getState(). An implementation would be:

class Invoice([constructor parameters]) {

 val buyerFullName:String

 val totalPrice:Double

 init { [initializer code] }

 fun getState(): String {

 return "First name: ${firstName}\n" +

 "Last name: ${lastName}\n" +

 "Full name: ${buyerFullName}\n" +

 "Date: ${date}\n" +

 "Good: ${goodName}\n" +

 "Amount: ${amount}\n" +

 "Price per item: ${pricePerItem}\n" +

 "Total price: ${totalPrice}"

 }

}

where the :String in fun getState(): String indicates that the function returns a

string, and the return ... actually performs the return action. The ${some- Name}

inside a string gets replaced by the value of someName, and the \n represents a line break.

Note Developers use the term implementation quite often to describe the
transition from an idea to the code performing the idea.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

29

To invoke a function from outside the class, just use both the object name and the

function name and write

objectName.functionName(parameter1, parameter2, ...)

Because we don’t have any parameters for getState() this would be:

...

val firstInvoice = Invoice("Richard", "Smith",

 "2018-10-23", "Peas", 5, 2.99)

val state:String = firstInvoice.getState()

If, however, we find ourselves inside the class, say inside an init{ } block or inside

any other function of the class, to call a function just use its name, as in

...

// we are inside the Invoice class

val state:String = getState()

Functions are going to be described in detail later in this chapter. For now, I only

want to mention that functions might have a parameter list. For example, a method for

the Invoice class calculating the tax with the tax rate as a parameter would read:

fun tax(taxRate:Double):Double {

 return taxRate * amount * pricePerItem

}

The :Double after the parameter list declares that the method returns a floating-

point number, which the return statement actually does. For parameter lists with more

than one element use a comma (,) as a separator. In case you didn’t already realize it, the

asterisk (*) is used to describe a multiplication operation.

To invoke that tax method, you write

...

val firstInvoice = Invoice("Richard", "Smith", "2018-10-23", "Peas", 5, 2.99)

val tax:Double = firstInvoice.tax(0.11)

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

30

 Exercise 7
Add a method goodInfo() that returns something like “5 pieces of Apple.” Hint: Use

amount.toString() to convert the amount to a string.

 The Complete Invoice Class
The Invoice class with all properties and methods we have talked about so far, and some

code to invoke it, reads like this:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

 val amount:Int,

 val pricePerItem:Double)

{

 val buyerFullName:String

 val totalPrice:Double

 init {

 buyerFullName = buyerFirstName + " " +

 buyerLastName

 totalPrice = amount * pricePerItem

 }

 fun getState():String {

 return "First name: ${buyerFirstName}\n" +

 "Last name: ${buyerLastName}\n" +

 "Full name: ${buyerFullName}\n" +

 "Date: ${date}\n" +

 "Good: ${goodName}\n" +

 "Amount: ${amount}\n" +

 "Price per item: ${pricePerItem}\n" +

 "Total price: ${totalPrice}"

 }

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

31

 fun tax(taxRate:Double):Double {

 return taxRate * amount * pricePerItem

 }

}

fun main(args:Array<String>) {

 val firstInvoice = Invoice("Richard", "Smith", "2018-10-23", "Peas",

5, 2.99)

 val state:String = firstInvoice.getState()

 val tax:Double = firstInvoice.tax(0.11)

 // do more things with it...

}

This works for an application style invocation you’d find if you built that class for a

desktop or server application. It wouldn’t run on Android, because there the procedures

for starting up apps and communicating with the hardware differ substantially

compared to such a simple main() method. Therefore, to get back to the subject, in the

rest of this chapter we will develop a more Android-style app.

 A Simple Number Guessing Game
In Android, applications circle around Activities, which are identifiable pieces of code

corresponding to particular responsibilities from a user’s workflow perspective. Each

of these responsibilities can be handled by a distinct screen built up by graphical

objects positioned in a screen layout. An app can have one or more activities that are

represented by distinct classes, together with resource and configuration files. As we

have already seen in Chapter 1, Android Studio helps in preparing and tailoring all the

necessary files.

For the rest of this chapter and most of the following chapters we will be working

on a simple game called the Number Guessing Game. Although extremely simple to

understand, it is complex enough to show basic Kotlin language constructs and allows

for extensions that help to illustrate most of the language features introduced during the

course of the book. We thus neither start with the most elegant solution, nor do we show

the most high-performance code from the beginning. The aim is to start with a working

app and introduce new features step by step so we can improve our Kotlin language

proficiency.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

32

The game description goes as follows: At the beginning the user is presented some

informational text and a Start button. Once started, the app internally chooses a random

number between one and seven. The user is asked to guess that number and after each

guess, the user is informed whether the guess matches, is too high, or is too low. Once

the random number gets selected, the game is over and the user can start a new game.

To start app development, open Android Studio. If the last project you worked on is

the HelloKotlin app from Chapter 1, the files from that app appear. To start a new project,

from the menu select File ➤ New ➤ New Project. Enter NumberGuess as the application

name, and book.kotlinforandroid as the company domain. Accept the suggested

project location or choose your own. Make sure Include Kotlin support is selected.

Click Next. Select Phone and Tablet as a form-factor, and API 19 as a minimum software

development kit (SDK) version. Click Next again. Select Empty Activity and click Next.

Accept the suggested activity name MainActivity and the suggested layout name activity_

main. Make sure Generate Layout File and Backwards Compatibility are both selected.

Click Finish.

Android Studio will now generate all build files and basic template files for the game

app. Inside the res folder you will find a couple of resource files, including images and

text that are used for the user interface. We don’t need images for now, but we define a

couple of text elements that are used for both the layout file and the coding. Open the file

res/values/strings.xml by double-clicking it. Let the file read:

<resources xmlns:tools="http://schemas.android.com/tools"

 tools:ignore="ExtraTranslation">

 <string name="app_name">

 NumberGuess</string>

 <string name="title.numberguess">

 NumberGuess</string>

 <string name="btn.start">

 Start</string>

 <string name="label.guess">

 Guess a number:</string>

 <string name="btn.do.guess">

 Do guess!</string>

 <string name="edit.number">

 Number</string>

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

33

 <string name="status.start.info">

 Press START to start a game</string>

 <string name="label.log">

 Log:</string>

 <string name="guess.hint">

 Guess a number between %1$d and %2$d</string>

 <string name="status.too.low">

 Sorry, too low.</string>

 <string name="status.too.high">

 Sorry, too high.</string>

 <string name="status.hit">

 You got it after %1$d tries!

 Press START for a new game.</string>

</resources>

The layout file is situated in res/layout/activity_main.xml. Open that file, switch

to the text view by clicking the Text tab at the bottom of the center pane, and then as its

contents write this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:tools=

 "http://schemas.android.com/tools"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="30dp"

 tools:context=

 "kotlinforandroid.book.numberguess.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

34

 android:text="@string/title.numberguess"

 android:textSize="30sp" />

 <Button

 android:id="@+id/startBtn"

 android:onClick="start"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="@string/btn.start"/>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

 <TextView android:text="@string/label.guess"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <EditText

 android:id="@+id/num"

 android:hint="@string/edit.number"

 android:layout_width="80sp"

 android:layout_height="wrap_content"

 android:inputType="number"

 tools:ignore="Autofill"/>

 <Button

 android:id="@+id/doGuess"

 android:onClick="guess"

 android:text="@string/btn.do.guess"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

35

 <TextView

 android:id="@+id/status"

 android:text="@string/status.start.info"

 android:textColor="#FF000000" android:textSize="20sp"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

 <TextView android:text="@string/label.log"

 android:textStyle="bold"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <kotlinforandroid.book.numberguess.Console

 android:id="@+id/console"

 android:layout_height="100sp"

 android:layout_width="match_parent" />

</LinearLayout>

You will get an error because the file refers to class kotlinforandroid.book.

numberguess.Console, which does not exist yet. Ignore this for now; we are going to fix

that soon. All the other elements of that layout file are described in depth in the Android

developer documentation or an appropriate Android book. A few hints seem appropriate

here, though.

• If you don’t switch to the Text tab in the editor view for that file, the

Design view type gets shown instead. The latter allows for graphically

arranging user interface elements. We won’t use the graphical design

editor in this book, but you are free to try that one as well. Just expect

some minor differences in the resulting XML.

• I don’t use fancy layout containers; instead I prefer ones that are easy

to write and easy to understand when looking at the XML code. You

don’t have to do the same for your projects, and in fact some other

solutions might be better according to the circumstances, so you are

free to try other layout approaches.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

36

• Wherever you see @string/... in the XML code, it refers to one of

the entries from the strings.xml file.

• The kotlinforandroid.book.numberguess.Console element refers

to a custom view. You won’t see that too often in tutorials, but custom

views allow for more concise coding and improved reusability, which

means you could easily use them in other projects. The Console

refers to a custom class we will write soon.

The Kotlin code goes into the file java/kotlinforandroid/book/numberguess/

MainActivity.kt. Open this, and as its contents write:

package kotlinforandroid.book.numberguess

import android.content.Context

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.util.AttributeSet

import android.util.Log

import android.view.View

import android.widget.ScrollView

import android.widget.TextView

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 var started = false

 var number = 0

 var tries = 0

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 fetchSavedInstanceData(savedInstanceState)

 doGuess.setEnabled(started)

 }

 override fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 putInstanceData(outState)

 }

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

37

 fun start(v: View) {

 log("Game started")

 num.setText("")

 started = true

 doGuess.setEnabled(true)

 status.text = getString(R.string.guess_hint, 1, 7)

 number = 1 + Math.floor(Math.random()*7).toInt()

 tries = 0

 }

 fun guess(v:View) {

 if(num.text.toString() == "") return

 tries++

 log("Guessed ${num.text} (tries:${tries})")

 val g = num.text.toString().toInt()

 if(g < number) {

 status.setText(R.string.status_too_low)

 num.setText("")

 } else if(g > number){

 status.setText(R.string.status_too_high)

 num.setText("")

 } else {

 status.text = getString(R.string.status_hit,

 tries)

 started = false

 doGuess.setEnabled(false)

 }

 }

 ///

 ///

 private fun putInstanceData(outState: Bundle?) {

 if (outState != null) with(outState) {

 putBoolean("started", started)

 putInt("number", number)

 putInt("tries", tries)

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

38

 putString("statusMsg", status.text.toString())

 putStringArrayList("logs",

 ArrayList(console.text.split("\n")))

 }

 }

 private fun fetchSavedInstanceData(

 savedInstanceState: Bundle?) {

 if (savedInstanceState != null)

 with(savedInstanceState) {

 started = getBoolean("started")

 number = getInt("number")

 tries = getInt("tries")

 status.text = getString("statusMsg")

 console.text = getStringArrayList("logs")!!.

 joinToString("\n")

 }

 }

 private fun log(msg:String) {

 Log.d("LOG", msg)

 console.log(msg)

 }

}

class Console(ctx:Context, aset:AttributeSet? = null)

 : ScrollView(ctx, aset) {

 val tv = TextView(ctx)

 var text:String

 get() = tv.text.toString()

 set(value) { tv.setText(value) }

 init {

 setBackgroundColor(0x40FFFF00)

 addView(tv)

 }

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

39

 fun log(msg:String) {

 val l = tv.text.let {

 if(it == "") listOf() else it.split("\n")

 }.takeLast(100) + msg

 tv.text = l.joinToString("\n")

 post(object : Runnable {

 override fun run() {

 fullScroll(ScrollView.FOCUS_DOWN)

 }

 })

 }

}

Don’t worry if by now you don’t understand everything in that file. In the rest of this

chapter and in subsequent chapters we refer to this project a lot, and in the end you will

understand all of it. For now here is what you need to know.

• The package ... at the top of the file both defines a namespace for

elements declared in that file and indicates its position in the file

hierarchy. We will be talking about project structure later; for now it

is enough to know that the argument should reflect the file position

inside the java folder, with the dot . as a separator.

• The file contains two classes. In other languages each class is

supposed to go in its own file, and in fact you could move the

declaration of the Console class to the file Console.kt. In Kotlin you

can write as many declarations as you wish into one file. You should

not overuse this feature, though, as writing too many things in one

big file inevitably leads to messy code. For small projects and for

simplicity’s sake, however, it is acceptable to put several declarations

in a file.

• The import ... statements refer to classes from other projects or

classes built into Kotlin. Listing them in import statements allows

us to address the imported elements using just their simple name.

Otherwise you’d have to prepend their package name to use them.

It is common practice to import as much as possible to keep the

code readable.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

40

• The import statement kotlinx.android.synthetic.main.activity_

main.* is special insofar it imports user interface-related classes the

studio derived from the layout file. This has nothing to do with Kotlin;

it is some automation controlled by Android Studio.

• The properties var started = false, var number = 0, and

var tries = 0 seem to miss the property types. However, Kotlin

can automatically infer the type from the right-hand side of the

assignments: false belongs to a boolean and both of the others

belong to an integer. The :PropertyType can thus be left out here.

• The class MainActivity : AppCompatActivity() { ... }

declaration indicates that class MainActivity is derived from

class AppCompatActivity, or inherits from it. We will be talking

about inheritance in detail later; for now it is enough to know that

MainActivity is kind of a copy of AppCompatActivity with some

parts redefined.

• The function onCreate() gets called by Android when the user

interface gets created. Its parameter of type Bundle might or might

not contain saved data from a restart of the user interface. This

is something that happens often in Android apps, so we use that

parameter to rebuild the state of the activity whenever the activity

is restarted.

• The onSaveInstanceState()gets called when the activity is

suspended temporarily. We use it to save the state of the activity.

• Both functions start() and guess() get invoked when the user clicks

a button in the user interface. You can see that in the layout file. We

use them as game actions and accordingly update the user interface

and the activity object state.

• Functions marked with private are only going to be used from

inside the same class; they are not visible to the outside. We will be

talking about visibility later. To stress that fact, I usually put all private

functions at the end of a class and separate normal from private

functions by a two-line comment //////....

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

41

• The Console is a custom view object. It can be placed in any layout

just like all the other built-in views Android provides.

• For reasons of brevity, no in-line documentation was added. We

return to documentation issues in later chapters.

You can now start the game. Click the green arrow in the top toolbar of Android

Studio and choose an emulator or a connected hardware device to specify where to run

the app.

 Constructors
We already learned that parameters passed to a class when an instantiation happens get

declared in parentheses after the class name:

class ClassName(Parameter-Declaration1,

 Parameter-Declaration2, ...) {

 [Class-Body]

}

We also know that parameters are accessible from inside any init{ } block and

furthermore lead to creating properties if we prepend val or var to the parameter

declaration:

Variable-Name:Variable-Type

for parameters that just are needed for the init{ } blocks,

val Variable-Name:Variable-Type

if you additionally want the parameter to be converted to an immutable property, and

var Variable-Name:Variable-Type

if you additionally want the parameter to be converted to a mutable property instead.

Such a parameter declaration list in Kotlin is called a primary constructor. As

you might guess, there are secondary constructors as well. Let’s talk about primary

constructors first, though, because they exhibit features we haven’t seen yet.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

42

The full primary constructor declaration actually reads:

class ClassName [modifiers] constructor(

 Parameter-Declaration1,

 Parameter-Declaration2, ...)

{

 [Class-Body]

}

The constructor in front of the parameter list can be omitted (together with the space

character) if there are no modifiers. As modifiers, you can add one of these visibility

modifiers:

• public: The instantiation can be done from anywhere inside and

outside your program. This is the default.

• private: The instantiation can be done only from inside the very same

class or object. This makes sense if you use secondary constructors.

• protected: The setting is the same as private, but the instantiation

can be done from subclasses as well. Subclasses belong to

inheritance, which is discussed in Chapter 3.

• internal: The instantiation can be done from anywhere inside the

module. In Kotlin, a module is a set of files compiled together. You use

this modifier if you don’t want other programs (from other projects)

to access a constructor, but you otherwise want the constructor to be

freely accessible from other classes or objects inside your program.

Note in other languages, constructors contain statements, or code to be
executed on instantiation. the Kotlin designers decided to only name the
parameters in the (primary) constructor and move any class initialization code to
the init{ } block.

In our NumberGuess game the activity class MainActivity does not have a constructor.

Actually, it implicitly has the default no-operation constructor, which doesn’t need to

be declared. In fact, a specialty of Android is that activities should not have an explicit

constructor. This has nothing to do with Kotlin, though; it is just the way Android

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

43

handles the life cycles of its objects. The Console class instead does have a constructor.

This is again a requirement of Android for its view elements.

 Exercise 8
Create a class Person with constructor parameters: firstName (a String), lastName

(a String), ssn (a String), dateOfBirth (a String) and gender (a Char). Make sure the

parameters are later available as instance properties and are changeable afterward.

 Constructor Invocation
In the previous section we already applied the main usage pattern: Given, for example,

a class

class GameUser(val firstName:String,

 val lastName:String,

 val birthday:String,

 val userName:String,

 val registrationNumber:Int,

 val userRank:Double) {

}

you can instantiate the class via

...

val firstUser = GameUser("Richard", "Smith",

 "2008-10-23", "rsmith", 123, 0.0)

You can see that for this kind of instantiation you have to specify the parameters in

exactly the same order as in the class definition.

 Exercise 9
Instantiate the Person class from the previous exercise, using name John Smith, date

of birth 1997-10-23, SSN 0123456789, and gender M. Assign it to variable val person1.

Hint: Use single quotation marks for Char literals, like 'A' or 'B'.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

44

 Exercise 10
Add the GameUser class we talked about in this section to the NumberGuess game. Just add

the class for now; do not write code to include the user in the game logic.

 Named Constructor Parameters
There is actually a way to construct objects in a more readable and less error-prone

fashion, compared to just listing parameters in the same order as given in the

declaration. For instantiation you can also explicitly specify the parameter names and

then apply any order at will:

val instance = TheClass(

 parameterName1 = [some value],

 parameterName2 = [some value],

 ...)

For our GameUser from the last exercise you can write

...

val user = GameUser(

 lastName = "Smith",

 firstName = "Richard",

 birthday = "2098-10-23",

 userName = "rsmith",

 registrationNumber = 765,

 userRank = 0.5)

With the names given, the sort order of the call parameters no longer plays a role.

Kotlin knows how to properly distribute the passed-in parameters.

 Exercise 11
Rewrite the Person instantiation from Exercise 9 using named parameters.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

45

 Exercise 12
Add a var gameUser property to the MainActivity and initialize it with the name John

Doe, username jdoe, birthday 1900-01-01, registration number = 0 and user rank = 0.0.

Use named parameters. Hint: To initialize the property right in the declaration use var

gameUser = GameUser(...).

 Constructor Default Values
Constructor parameters can also have default values. We could, for example, use ””

as a default birthday, and 0.0 as a rank in case we wouldn’t care. This simplifies the

construction of game users who don’t specify a birthday, and new users, for example,

with an initial ranking of 0.0. To declare such defaults you write:

class GameUser(val firstName:String,

 val lastName:String,

 val userName:String,

 val registrationNumber:Int,

 val birthday:String = "1900-01-01",

 val userRank:Double = 0.0) {

}

If you use parameters with and without defaults, such default values go frequently

to the end of the parameter list. Only then is the distribution of passed-in parameters

during invocation unique. You can now perform the very same construction as before,

but watch out for the changed order:

...

val firstUser = GameUser("Richard", "Smith", "rsmith", 123, "2008-10-23", 0.4)

Now, by virtue of the default parameters, it is possible to omit parameters. In

...

val firstUser = GameUser("Richard", "Smith", "rsmith", 123, "2008-10-23")

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

46

the value 0.0 would apply for the ranking, and in

...

val firstUser = GameUser("Richard", "Smith", "rsmith", 123)

additionally the default birthday of 1900-01-01 would be used.

To make things even easier and extend readability further you can also mix default

and named parameters, as in

...

val firstUser = GameUser(firstName = "Richard",

 lastName = "Smith",

 userName = "rsmith",

 registrationNumber = 123)

this time with any parameter sort order you like.

 Exercise 13
Update the Person class from the previous exercises: add the default value ”” (the empty

string) to the ssn parameter. Perform an instantiation using named parameters, letting

the SSN’s default value apply.

 Exercise 14
Update the GameUser class from the NumberGuess game: Add the default value ”” (the

empty string) to birthday, and add 0.0 to the userRank parameter.

 Secondary Constructors
With named parameters and default parameter values, we already have quite versatile

means for various construction needs. If this is not enough for you, there is another way

of describing different methods of construction: secondary constructors. You can have

several of them, but their parameter list must differ from that of the primary constructor

and they must also be different from each other.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

47

Note More precisely, primary and secondary constructors all must have different
parameter signatures. A signature is the set of parameter types, with the order
taken into account.

To declare a secondary constructor, inside the class body write

constructor(param1:ParamType1,

 param2:ParamType2, ...)

{

 // do some things...

}

If the class has an explicit primary constructor as well, you must delegate to a

primary constructor call as follows:

constructor(param1:ParamType1,

 param2:ParamType2, ...) : this(...) {

 // do some things...

}

where inside this(...) the parameters for the primary constructor have to be specified.

It is also possible here to specify the parameters for another secondary constructor,

which in turn delegates to the primary constructor.

For our GameUser example, removing the default parameter values from the primary

constructor, a secondary constructor could read like this:

constructor(firstName:String,

 lastName:String,

 userName:String,

 registrationNumber:Int) :

 this(firstName = firstName,

 lastName = lastName,

 userName = userName,

 registrationNumber = registrationNumber,

 birthday = "",

 userRank = 0.0

)

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

48

{

 // constructor body

 // do some things...

}

and you can instantiate the class via

...

val firstUser = GameUser(firstName = "Richard",

 lastName = "Smith",

 userName = "rsmith",

 registrationNumber = 123)

Inside the secondary constructor’s body you can perform arbitrary calculations and

other actions, which is what secondary constructors can be used for except for different,

maybe shorter parameter lists.

The construct firstName = firstName, lastName = lastName, userName = userName,

registrationNumber = registrationNumber might seem a bit confusing. It is easy to

understand, however, if you remember that the part to the left of the equals sign points to

the name in the primary constructor’s parameter list, whereas the right side is the value

taken from inside the constructor(...) parameter list.

Note if you can achieve the same thing using default values and secondary
constructors, you should favor default values because the notation is more
expressive and concise.

 Exercise 15
In the Person class of the previous exercises, add a secondary constructor with

parameters firstName (a String), lastName (a String), ssn (a String), and gender (a

Char). Let it call the primary constructor, setting the missing dateOfBirth to 0000-00-00.

Create an instance using the secondary constructor.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

49

 If Classes Are Not Needed: Singleton Objects
Once in a while objects don’t need a classification because you know there will never

be different states associated with them. Here is another way of saying this: If we have a

class, there will never be more than one instance needed, because all instances would

somehow be forced to carry the same state during the lifetime of the application and

thus would be indistinguishable.

To make things clear, Kotlin allows for creating such an object using the following

syntax:

object ObjectName { [Object-Body]

}

where the object body could contain property declarations, init{ } blocks, and

functions. Neither primary nor secondary constructors are allowed. To distinguish this

kind of object from objects that are the result of class instantiations for the rest of the

section, I use the term singleton object.

To access a singleton object’s properties and functions you use a similar notation as

for objects that are the result of a class’s instantiation:

ObjectName.propertyName

ObjectName.function([function-parameters])

You won’t use singleton objects too often, because object orientation without classes

wouldn’t make too much sense, and using too many singleton objects quite often is an

indication of poor application design. There are, however, some prominent examples

where object declarations make sense:

• Constants: For your application you might want to have a single

object containing all constants the application needs.

• Preferences: If you have a file with preferences you might want to use

an object to read in the preferences once the application has started.

• Database: If your application needs a database and you think your

application will never access a different database, you might want to

move database access functions into an object.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

50

• Utilities: Utility functions are functional in a sense that their output

only depends on their input and no state is associated; for example,

fun degreeToRad(deg: Double) = deg * Math.PI / 180. They

also serve a common purpose and adding them to certain classes

doesn’t make sense from a conceptual point of view. Providing such

utility functions in a singleton object, for example named Utility,

thus is reasonable.

Other use cases are possible; just make sure your decision to use classes or singleton

objects is based on sound reasoning. If in doubt, experience tells us that using classes

makes more sense.

For our NumberGuess game, looking into the file MainActivity.kt we can see that we

use numbers 1 and 7 for the lower and upper bounds of the game logic. The numbers get

used in the function fun start(...) for the text shown in the user interface, and for the

random number determination:

status.text = getString(R.string.guess_hint, 1, 7)

number = 1 + Math.floor(Math.random()*7).toInt()

It is better to extract such constants to their own file, so it can more easily be changed

later or used from within other classes if necessary. A Constants singleton object seems

to be a very appropriate place for it. To improve the code, we create a new file via right-

click in the project view at package kotlinforandroid.book.numberguess ➤ New ➤

Kotlin File/Class. Enter Constants as a name and make sure File is selected on the

drop- down list. Inside the file that is created, underneath the package declaration, write

object Constants {

 val LOWER_BOUND = 1

 val UPPER_BOUND = 7

}

We again omitted the property types because Kotlin can infer that 1 and 7 are Int types.

Note this autoinferring works for other types as well, so a common practice is to
leave out the type specification and add it only if it is needed or helps to improve
readability.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

51

There is one other thing you might have noticed: We deviated from the naming

schema for the val inside the companion object. Using this all-capitals with underscore

notation expresses that we have a real immutable instance-independent constant. Such

constants are thus easier to identify from inside your coding.

Back in MainActivity.kt, inside the start() function, we can now write

status.text = getString(R.string.guess_hint,

 Constants.LOWER_BOUND,

 Constants.UPPER_BOUND)

val span = Constants.UPPER_BOUND -

 Constants.LOWER_BOUND + 1

number = Constants.LOWER_BOUND +

 Math.floor(Math.random()*span).toInt()

for the user interface text and the secret number. The function then reads in total:

fun start(v: View) {

 log("Game started")

 num.setText("")

 started = true

 doGuess.setEnabled(true)

 status.text = getString(R.string.guess_hint,

 Constants.LOWER_BOUND,

 Constants.UPPER_BOUND)

 val span = Constants.UPPER_BOUND -

 Constants.LOWER_BOUND + 1

 number = Constants.LOWER_BOUND +

 Math.floor(Math.random()*span).toInt()

 tries = 0

}

 Exercise 16
Which of the following is true?

 1. Using a lot of singleton objects helps to improve code quality.

 2. It is possible to instantiate singleton objects.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

52

 3. To declare singleton objects, use any of object, singleton, or

singleton object.

 4. Singleton objects don’t have a state.

 5. Singleton objects may have a constructor.

 Exercise 17
Create a Constants singleton object with the following properties: numberOf- Tabs = 5,

windowTitle = "Astaria", prefsFile = "prefs.properties". Write some code to

print out all constants for diagnostic purposes. Hint: For formatting you could use \n

inside strings for a line break.

 If State Doesn’t Matter: Companion Objects
Quite often, perhaps without even noticing it, your classes will have two categories of

properties and functions: state related and not state related. Not state related means

for properties that their value will be the same for all possible instances. For functions

it means they will do exactly the same thing for all possible instances. This is somehow

related to singleton objects, which do not care about a distinguishable state at all, and for

that reason Kotlin allows for a construct named the companion object. Such companion

objects have an indistinguishable state for all instances of a particular class they

accompany, and this is where the “companion” in the name comes from.

To declare a companion object inside the class body, write this:

companion object ObjectName {

 ...

}

where the ObjectName is optional; in most cases you can omit it. Inside the companion

object’s body you can add the same elements as for singleton objects (see the previous

section).

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

53

Note you need the companion object to have a name only if you want to address
it from outside the class, using a dedicated name: ClassName.ObjectName.
however, even with the name missing you can access it via ClassName.
Companion.

A companion object is a really good place to declare constants used by the class. You

can then use the constants from anywhere inside the class as if they were declared in the

class itself:

class TheClass {

 companion object ObjectName {

 val SOME_CONSTANT: Int = 42

 }

 ...

 fun someFunction() {

 val x = 7 * SOME_CONSTANT

 ...

 }

}

In our NumberGuess game there are two constants in the Console class: Look at the

init{ } function where we specify a color value 0x40FFFF00 for the background color

(this is a pale yellow). Also, in the function fun log(...) you can see a 100, which

happens to specify a memorized line number limit. I intentionally left these out for the

Constants companion object, as those two new constants can be considered to more

closely belong to the Console class and maybe are misplaced in a common constants file.

It is, however, a good idea to move them to a companion object, because both the

color and the line number limit values are shared by all instances of the Console class

and are not subject to being changed from inside an instance. An accordingly rewritten

Console class reads:

class Console(ctx:Context, aset:AttributeSet? = null)

 : ScrollView(ctx, aset) {

 companion object {

 val BACKGROUND_COLOR = 0x40FFFF00

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

54

 val MAX_LINES = 100

 }

 val tv = TextView(ctx)

 var text:String

 get() = tv.text.toString()

 set(value) { tv.setText(value) }

 init {

 setBackgroundColor(BACKGROUND_COLOR)

 ddView(tv)

 }

 fun log(msg:String) {

 val l = tv.text.let {

 if(it == "") listOf() else it.split("\n") }.

 takeLast(MAX_LINES) + msg

 tv.text = l.joinToString("\n")

 post(object : Runnable {

 override fun run() {

 fullScroll(ScrollView.FOCUS_DOWN)

 }

 })

 }

}

Companion object properties and functions can also be accessed from outside the

class. Just write this:

TheClass.THE_PROPERTY

TheClass.someFunction()

to directly address a property or a function from the associated companion object. The

function can, of course, also have parameters.

 Exercise 18
Create a Triangle class. Add constructor parameters and properties at will, but also

create a companion object with a constant NUMBER_OF_CORNERS = 3. Inside the class,

create an info() function indicating the number of corners.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

55

 Exercise 19
Inside a main() function, instantiate the Triangle class from Exercise 18, then assign the

number of corners to some val numberOfCorners.

 Describing a Contract: Interfaces
Software development is about things that need to be done, and in object-oriented

development, this means things that need to be done on objects that are described

inside classes. Object orientation, however, unveils a feature we haven’t talked about

until now: the separation of intent and implementation.

Consider, for example, a class or a couple of classes gathering information on two-

dimensional graphical objects, and another class or couple of classes providing such

graphical objects. This introduces a natural separation of classes. We call the information

collecting part of the classes the info collector module, and the part that provides the

graphical objects the client module. We want to extend that idea by allowing several

client modules, and in the end we want to make sure the info collector module wouldn’t

care how many clients there are (see Figure 2-1).

Note We deviate from the usual path and temporarily leave the NumberGuess
game. the concept of interfaces is a little easier to describe if we have several
classes sharing some features, which the NumberGuess game doesn’t have.
i will, however, propose a possible extension to the NumberGuess game using an
interface in one of the exercises.

Figure 2-1. Collector module and clients

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

56

The most important question now is this: How do the graphics objects get

communicated between the modules? Here is one obvious idea: Because the clients

produce the graphics objects, why not also let the clients provide the classes for them?

At first that doesn’t sound bad, but there is a major drawback: The info collector module

needs to know how to handle each client’s graphics object classes, and it also needs to

be updated when new clients want to transfer their objects. Such a strategy is thus not

flexible enough for a good program.

Let us try to turn it the other way around: The info collector module provides all

graphics object classes and the clients use them to communicate data. Although this

remedies the proliferation of different classes in the collector module, there is a different

problem with this approach. Say, for example, the info collector gets a software update

and provides an altered version for a graphics object class. If this happens, we must also

update all clients, leading to a lot of work, including increased expenses in professional

projects. So this approach is not the best either. What can we do?

We can introduce a new concept that does not describe how things are to be done,

but only what needs to be done. This somehow mediates between the different program

components and for this reason it is called an interface. If such an interface does not

depend on the implementation and clients only depend on interfaces, the probability

for a need to change clients is much lower if the info collector changes. You can also

consider the interface as some kind of contract between the parties: Just like in real life, if

the wording in a contract is satisfied the contract is fulfilled even when the way it is done

is subject to some kind of diversity.

Before I can further explain this, let’s work out the details of the graphics collector

example a little more. We add the following responsibility to the graphics collector: The

graphics collector must be able to take polygon objects that do the following:

• Tell about the number of corners they have.

• Tell us the coordinates of each corner.

• Tell about their fill color.

You are free to extend this at will, but for our aim those three characteristics are

sufficient. We now introduce an interface declaration and write this:

interface GraphicsObject {

 fun numberOfCorners(): Int

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

57

 fun coordsOf(index:Int): Pair<Double, Double>

 fun fillColor(): String

}

The Pair<Double, Double> represents a pair of floating-point numbers for the x-

and y-coordinate of a point. We let the graphics collector module define the interface,

because the interface is what the clients need to know from the graphics collector

module to communicate with it. The implementation of the three functions is, however,

exclusively the clients’ business, because for the graphics collector module the how of

the contract fulfillment doesn’t matter. The interface itself, though, is just a declaration of

intent, so the client modules have to define what to do to fulfill the contract. Another way

of saying this is the clients have to implement the interface functions. This new situation

is depicted in Figure 2-2.

Figure 2-2. Module communication with interfaces

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

58

For example, for a triangle a client might provide this:

class Triangle : GraphicsObject {

 override fun numberOfCorners(): Int {

 return 3

 }

 override fun coordsOf(index:Int):

 Pair<Double,Double> {

 return when(index) {

 0 -> Pair(-1.0, 0.0)

 1 -> Pair(1.0, 0.0)

 2 -> Pair(0.0, 1.0)

 else throw RuntimeException(

 "Index ${index} out of bounds")

 }

 }

 override fun fillColor(): String {

 return "red"

 }

}

For Kotlin it is permissible to write “ = ...” for functions if their result is calculable

with a single expression, so the Triangle class can actually be written as follows:

class Triangle : GraphicsObject {

 override fun numberOfCorners() = 3

 override fun coordsOf(index:Int) =

 when(index) {

 0 -> Pair(-1.0, 0.0)

 1 -> Pair(1.0, 0.0)

 2 -> Pair(0.0, 1.0)

 else -> throw RuntimeException(

 "Index ${index} out of bounds")

 }

 override fun fillColor() = "red"

}

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

59

where we also used the fact that Kotlin can infer the return type automatically in many

cases. The : GraphicsObject in the class declaration expresses that Triangle adheres to

the GraphicsObject contract, and the override in front of each function expresses that

the function implements an interface function. The Triangle class, of course, also might

contain any number of noninterface functions; we just don’t need one in this example.

Note the : in the class header can be translated to “implements” or “is a ...”
if there is an interface name to the right of it.

Inside the coordsOf() function we use a couple of new constructs we haven’t seen

yet. For now, the when(){ } selects one of the x -> ... branches depending on the

argument, and the throw RuntimeException() stops the program flow and writes

an error message to the terminal. We’ll talk about those constructs in more detail in

subsequent chapters.

Note you can see that for the triangle example we allow corner indexes 0, 1,
and 2. it is common in many computer languages to start any kind of indexing at 0.
Kotlin is no exception here.

We still need the accessor function inside one of the collector module’s classes that a

client needs to register a graphics object. We call it add() and it could read like this:

class Collector {

 ...

 fun add(graphics:GraphicsObject) {

 // do something with it...

 }

}

The clients now write something like this:

...

val collector = [get hold of it]

val triang:GraphicsObject = Triangle()

collector.add(triang)

...

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

60

We could have also written val triang:Triangle = Triangle() and

the program would run without error. There is, however, a huge conceptual

difference between those two. Can you tell why? The answer is this: If we write

val triang:Triangle = Triangle() we express passing the Triangle class to the

collector, which is what we actually didn’t want to do. This is because we wanted to

have a proper separation of the clients from the collector and use only the interface

GraphicsObject for communication. The only acceptable way to express this is

writing val triang:GraphicsObject = Triangle().

Note internally the same object gets passed to the collector if we write either
triang:Triangle or triang:GraphicsObject. but we don’t only want to
write programs that work; they must also properly express what they do. For that
reason, triang:GraphicsObject is the much better option.

To get you started for your own experiments, in the following listings I provide a

basic implementation of this interfacing procedure. First, in one file, we write a graphics

object collector and also add the interface.

interface GraphicsObject {

 fun numberOfCorners(): Int

 fun coordsOf(index:Int): Pair<Double, Double>

 fun fillColor(): String

}

object Collector {

 fun add(graphics:GraphicsObject) {

 println("Collector.add():")

 println("Number of corners: " +

 graphics.numberOfCorners())

 println("Color: " +

 graphics.fillColor())

 }

}

You can see we use a singleton object here to simplify access. In another file we

create a GraphicsObject and access the collector.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

61

class Triangle : GraphicsObject {

 override fun numberOfCorners() = 3

 override fun coordsOf(index:Int) =

 when(index) {

 0 -> Pair(-1.0, 0.0)

 1 -> Pair(1.0, 0.0)

 2 -> Pair(0.0, 1.0)

 else -> throw RuntimeException(

 "Index ${index} out of bounds")

 }

 override fun fillColor() = "red"

}

fun main(args:Array<String>) {

 val collector = Collector

 val triang:GraphicsObject = Triangle()

 collector.add(triang)

}

You can see that it is possible to assign a singleton object to a val, although you

could always also use the direct singleton object access notation described earlier in

this chapter.

Although the concept of interfaces is not easy to grasp for a beginning developer,

trying to understand interfaces from the very beginning and using them wherever

possible is an invaluable aid for writing good software.

 Exercise 20
Elementary particles have at least three things in common: a mass, a charge, and a

spin. Create an interface ElementaryParticle with three corresponding functions to

fetch: mass():Double, charge():Double, and spin():Double. Create classes Electron

and Proton that implement the interface. An electron returns mass 9.11 · 10-31, to be

entered as 9.11e-31, charge −1.0, and spin 0.5. A proton returns mass 1.67·10-27, to be

entered as 1.67e-27, charge and spin 0.5.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

62

 Exercise 21
Taking the interface and the classes from Exercise 20, which one is true?

 1. An ElementaryParticle can be instantiated:

var p = ElementaryParticle().

 2. An Electron can be instantiated: val electron = Electron().

 3. A Proton can be instantiated: val proton = Proton().

 4. The initialization var p:ElementaryParticle = Electron()

is possible.

 5. The reassignment p = Proton() is possible.

 6. The initialization var p:Proton = Electron() is possible.

 Exercise 22
Imagine for the NumberGuess game we want to be able to try different functions

of random number generation. Create an interface RandomNumberGenerator with

one function fun rnd(minInt:Int, maxInt:Int): Int. Create a class StdRandom

implementing that interface using the current code from the MainActivity class: val

span = maxInt - minInt + 1; return minInt + Math.floor(Math.random()*span).

toInt(). Create another class RandomRandom also implementing the interface, but with

a property val rnd:Random = Random() (add import java.util.* to the imports) and

using the code minInt + rnd.nextInt(maxInt - minInt + 1). Add a property of

type RandomNumberGenerator to the activity, using either of the implementations. Alter

the start() function from the activity to use that interface.

 Structuring and Packages
For Kotlin applications it is possible to write all classes, interfaces, and singleton objects

into a single file in the main folder java. Whereas for experiments and small projects this

is totally acceptable, for larger projects you shouldn’t do this. Midsize to larger projects

will inevitably have classes, interfaces, and singleton objects that can be grouped into

modules doing different things from a bird’s-eye view perspective. Having large files

implies some kind of conceptual flatness real projects don’t actually have.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

63

Note to avoid always repeating the list, i henceforth use the term structure
unit for classes, singleton objects, companion objects, and interfaces.

For this reason Kotlin allows us to put structure units into different packages

corresponding to different folders and spanning different namespaces. The first thing

we need to establish is a hierarchical structure. This means we assign structure units to

different nodes in a tree. Each node thus contains a couple of structure units that show

high cohesion, meaning they strongly relate to each other.

 A Structured Project
Let’s look at the NumberGuess example to find out what this structuring actually means.

Up until now, including all the improvements and also the exercises, we have the

following classes, interfaces, and singleton objects: the activity itself, a console class, a

constants object, two classes and one interface for random numbers, and one class for

user data. From this we identify the following packages:

• The root for the activity class.

• A package random for the random numbers. We put the interface

right into the package, and the two implementations into a

subpackage impl.

• A gui package for the Console view element.

• A model package for the user data class. Developers often use the

term model to refer to data structures and data relations.

• A common package for the Constants singleton object.

We put this in corresponding directories and subdirectories under src and thus get

the packages and folder structure depicted in Figure 2-3.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

64

As a convention, you must add a package declaration into each of the files reflecting

this packaging structure. The syntax is:

package the.hierarchical.position

...

So, for example, the RandomRandom.kt file must start with

package kotlinforandroid.book.numberguess.random.impl

class RandomRandom {

 ...

}

Figure 2-3. Packaging

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

65

 Exercise 23
Prepare this structure in an Android Studio project. Start with empty files. Hint: Packages

(i.e., folders), classes, interface, and singleton objects all can be initialized by right-

clicking an item from the left side package structure in the Android Studio main window

and selecting New.

 Namespaces and Importing
As already mentioned, the hierarchical structure also spans namespaces. For example,

the Console class lives by virtue of the kotlinforandroid.book.numberguess.gui

package declaration in the kotlinforandroid.book.numberguess.gui namespace. This

means there cannot be another Console class in the same package, but there can be

Console classes in other packages, because they all have a different namespace.

Caution Kotlin allows you to use a package declaration that differs from the
hierarchical position in the file system. however, do yourself a favor and keep
packages and file paths synchronized, otherwise you’ll end up with a complete mess.

Structure units (i.e., classes, interfaces, singleton objects, and companion objects)

can use other structure units from the same package by just using their simple names. If

they use structure units from other packages, though, they must use their fully qualified

name, which means it is necessary to prepend the package name with dots as separators.

The fully qualified name for Console, for example, reads kotlinforandroid.book.

numberguess.gui.Console. There is, however, a way to avoid typing lots of long names to

refer to structure units from other packages: As a shortcut, you can import the referred-

to structure unit by using an import statement. We have already seen that in a couple of

examples, without further explaining it. To import the Console class, for example, you

write directly under the package declaration:

package kotlinforandroid.book.numberguess

import kotlinforandroid.book.numberguess.gui.Console

class Activity {

 ...

}

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

66

In this case and anywhere in this file you can just use Console to address the

kotlinforandroid.book.numberguess.gui.Console class. A file can have any number

of such import statements. To also import the Constants class, write this:

package kotlinforandroid.book.numberguess

import kotlinforandroid.book.numberguess.gui.Console

import kotlinforandroid.book.numberguess.common.

 Constants

class Activity {

 ...

}

Note iDes like Android studio provide help to do these imports for you. if you
type a simple name Android studio tries to determine what package might be
intended. you can then press Alt+enter with the mouse over the name to perform
the import.

There is even a shortcut for importing all structure units from a package by using

an asterisk (*) as a wildcard. So, for example, to import all the classes from package

kotlinforandroid.book.numberguess.random.impl, you would write

package kotlinforandroid.book.numberguess

import kotlinforandroid.book.numberguess.

 random.impl.*

class Activity {

 ...

}

You can see the common root of all packages of the NumberGuess game reads

kotlinforandroid.book.numberguess. Android Studio did that while we initialized

the project. It is common practice to prepend a reverse domain name that points to you

as a developer, or your educational institution or your company, plus a name for your

project. For example, if you own a domain john.doe.com and your project is named

elysium, you would use com.doe.john.elysium as your root package.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

67

Note there is no actual need for such a domain to exist. if you can’t use an
existing domain, you can use a made-up one. just make sure the probability of
clashes with existing projects is low. if you don’t plan to ever publish your software,
you can use what you want, including not using a domain root at all.

 Exercise 24
Distribute all the code we have for the NumberGuess game into the files of the new

structure from the previous section.

ChApter 2 ClAsses AnD ObjeCts: ObjeCt OrientAtiOn philOsOphy

69
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_3

CHAPTER 3

Classes at Work:
Properties and Functions
After reading Chapter 2 about classes and objects, it is now time shine more light

on properties and their types, and also on the options we have to declare functions

and what can be done from inside functions. This chapter talks about property and

function declarations, but also about an important feature of object-oriented languages,

inheritance, through which properties and functions of some class can be altered and

redefined by other classes. We also learn about visibility and encapsulation, which help

us to improve program structure.

 Properties and Their Types
Properties are data holders or variables that define the state of an object. A property

declaration inside a class uses the optional visibility type, optional modifiers, the

keyword val for immutable (nonchangeable) variables or var for mutable (changeable)

variables, the name, the type, and an initial value:

[visibility] [modifiers] val propertyName:PropertyType = initial_value

[visibility] [modifiers] var propertyName:PropertyType = initial_value

Apart from this, any property from a class’s constructor prepended by val or var

directly and automatically goes into a corresponding hidden property using the same

name. In the following paragraphs we discuss all the possible options for properties

given inside the class body.

70

 Simple Properties
Simple properties do not provide a visibility nor any modifiers, so their declaration reads

val propertyName:PropertyType = initial_value

var propertyName:PropertyType = initial_value

respectively, for immutable and mutable variables. Here are some additional rules:

• If inside the class or singleton object or companion object a value

gets assigned inside the init{ } block, the = initial_value can be

omitted.

• If Kotlin can infer the type by the initial value given, the

:PropertyType can be omitted.

Such simple properties can be accessed from outside via instanceName.propertyName

for classes and ObjectName.propertyName for singleton objects. Inside the class or

singleton object, just use the propertyName to access it.

Let’s add two simple properties to the GameUser class from the NumberGuess project

from Chapter 2. We know the first and last name from the constructor, so it might be

interesting to derive a property for initials and one for full name as follows:

class GameUser(val firstName:String,

 val lastName:String,

 val userName:String,

 val registrationNumber:Int,

 val birthday:String = "",

 val userRank:Double = 0.0) {

 val fullName:String

 val initials:String

 init {

 fullName = firstName + " " + lastName

 initials = firstName.toUpperCase() +

 lastName.toUpperCase()

 }

}

Chapter 3 Classes at Work: properties and FunCtions

71

Here you can see that for fullName and initials we have only vals, so it is not

possible to reassign values to them. Because we first assign them inside init{ }, though,

it is possible to omit the = initial value in the property declaration. Also, because

all the constructor parameters have a val prepended, all of them get transported to

corresponding properties, so all of them are properties: firstName, lastName, userName,

registrationNumber, birthday, and userRank. To access them we use, for example:

val user = GameUser("Peter", "Smith", "psmith", 123, "1988-10-03", 0.79)

val firstName = user.firstName

val fullName = user.fullName

A user.firstName = "Linda" for assigning a value is not possible, though, because

we have immutable vals. If we had vars instead this would be allowed:

class GameUser(var firstName:String,

 var lastName:String,

 var userName:String,

 var registrationNumber:Int,

 var birthday:String = "",

 var userRank:Double = 0.0) {

 var fullName:String

 var initials:String

 init {

 fullName = firstName + " " + lastName

 initials = firstName.toUpperCase() +

 lastName.toUpperCase()

 }

}

// somewhere inside a function in class MainActivity

val user = GameUser("Peter", "Smith", "psmith",

 123, "1988-10-03", 0.79)

user.firstName = "Linda"

console.log(user.fullName)

Chapter 3 Classes at Work: properties and FunCtions

72

Can you guess the output? This short program prints Peter Smith, although we

changed the first name to Linda. The answer to the question of how this can be is that

the full name gets calculated inside init{ }, and init{ } does not get invoked again

after we alter the first name, so we’d have to take care of that.

Note For example, you would introduce a new function like setFirstName()
and update the first name, the full name, and the initials accordingly. a possibly
cleaner variant is a function that calculates the full name on the fly, without using a
separate property for it: fun fullName() = firstName + " " + lastName

This is one of the reasons you should prefer vals over vars wherever possible; it is

just easier to avoid corrupted states.

 Exercise 1
What is wrong with the following code?

class Triangle(color: String) {

 fun changeColor(newColor:String) {

 color = newColor

 }

}

 Property Types
In the example code snippets, we’ve already seen a couple of types you can use for

properties. Here is an exhaustive list.

• String: This is a character string. Each character from the Basic

Multilingual Plane (the original Unicode specification) is of type Char

(see later). Supplementary characters use two Char elements. For

most practical purposes and in the majority of languages, assuming

each string element to be a single Char is an acceptable approach.

Chapter 3 Classes at Work: properties and FunCtions

73

• Int: This is an integer number. Values range from −2,147,483,648 to

2,147,483,647.

• Double: This is a floating-point number between

4.94065645841246544 · 10-324 and 1.79769313486231570 · 10+308 for

both positive and negative signs. Formally it is a 64-bit floating-point

value from the IEEE 754 specification.

• Boolean: This is a boolean value that can be true or false.

• Any class: Properties can hold instances of any class or singleton

object. This includes built-in classes, classes from libraries (software

built by others you use), and your own classes.

• Char: This is a single character. Characters in Kotlin use the UTF-16

encoding format (characters from the original Unicode specification)

to store them.

• Long: This is an extended integer number with values between

−9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.

• Short: This is an integer number with a reduced value range. Values

are from –32,768 to 32,767. You won’t see this often, because for most

practical use cases an Int is the better choice.

• Byte: This is an integer number from the very small range from –128

to 127. This type is frequently used for low-level operating system

function calls. You will probably not use this type often, with the

exception that it frequently gets used if you perform input/output

(I/O) operations with files.

• Float: This is a lower precision floating-point number. Ranges are

from 1.40129846432481707 · 10−45 to 3.40282346638528860 · 10+38

for both positive and negative signs. Formally it is a 32-bit floating-

point value from the IEEE 754 specification. Unless storage space

or performance is a major issue, you would usually prefer Double

over Float.

Chapter 3 Classes at Work: properties and FunCtions

74

• [Any class]: You can use any class or interface as a type, including

those built in as provided by Kotlin, from other programs you use,

and from your own programs.

• [Enumeration]: Enumerations are data objects with possible

values from a set of unordered textual values. See Chapter 4 for

further details.

 Property Value Assignment
Properties can have values assigned at four places. The first place is at the property’s

declaration, as in

class TheClassName {

 val propertyName1:PropertyType1 = initial_value

 var propertyName2:PropertyType2 = initial_value

 ...

}

object SingletonObjectName {

 val propertyName1:PropertyType1 = initial_value

 var propertyName2:PropertyType2 = initial_value

 ...

}

class TheClassName {

 companion object {

 val propertyName1:PropertyType1 = initial_value

 var propertyName2:PropertyType2 = initial_value

 ...

 }

}

where initial_value is any expression or literal that can be converted to the expected

property type. We will talk about literals and type conversion later in this chapter.

Chapter 3 Classes at Work: properties and FunCtions

75

The second place where values can be assigned is inside init{ } blocks:

// we are inside a class, a singleton object, or

// a companion object

init {

 propertyName1 = initial_value

 propertyName2 = initial_value

 ...

}

This is only possible if the property was previously declared, either in the class,

singleton object, or companion object, or as a var in the primary constructor declaration.

Only if properties have a value assigned to them inside an init{ } block can you omit

the initial value assignment in the property declaration. It is therefore possible to write

// we are inside a class, a singleton object, or

// a companion object

val propertyName1:PropertyType1

var propertyName2:PropertyType2

init {

 propertyName1 = initial_value

 propertyName2 = initial_value

 ...

}

The third place where values can be assigned to properties is inside functions.

Obviously this is only possible for mutable var variables. Those variables must have

been previously declared using var propertyName:PropertyType = …, and for the

assignment you must omit the var.

// we are inside a class, a singleton object, or

// a companion object

var propertyName1:PropertyType1 = initial_value

...

fun someFunction() {

 propertyName1 = new_value

 ...

}

Chapter 3 Classes at Work: properties and FunCtions

76

The fourth place where values can be assigned is from outside the class, singleton

object, or companion object. Use instanceName. or ObjectName. and append the

property name, as shown here:

instanceName.propertyName = new_value

ObjectName.propertyName = new_value

This is obviously possible only for mutable vars.

 Exercise 2
Create a class A with one property var a:Int. Perform assignments: (a) set it to 1 inside

the declaration, (b) set it to 2 inside an init{ } block, (c) set it to 3 inside function fun

b(){ … }, and (d) set it to 4 inside a main function.

 Literals
Literals express fixed values you can use for property assignments and inside expressions.

Numbers are literals, but so are strings and characters. Here are some examples:

val anInteger = 42

val anotherInteger = anInteger + 7

val aThirdInteger = 0xFF473

val aLongInteger = 700_000_000_000L

val aFloatingPoint = 37.103

val anotherFloatingPoint = -37e-12

val aSinglePrecisionFloat = 1.3f

val aChar = 'A'

val aString = "Hello World"

val aMultiLineString = """First Line

 Second Line"""

Chapter 3 Classes at Work: properties and FunCtions

77

Table 3-1 lists all possible literals you can use for your Kotlin programs.

Table 3-1. Literals

Literal Type Description Enter

decimal

integer

an integer

0, ± 1, ± 2, …

0, 1, 2, …, 2147483647,

–1, –2, …, –2147483648

if you like you can use underscores as the thousands

separator, as in 2_012

double

precision

Float

a double precision floating-

point number between

4.94065645841247.10-324

and

1.79769313486232.10+308

with a positive or negative sign

dot notation:

[s]iii.FFF

where [s] is nothing or a + for positive values, – for

negative values; iii is the integer part (any number

of digits), and FFF is the fractional part (any

number of digits)

scientific notation:

[s]CCC.FFFe[t]ddd

where [s] is nothing or a + for positive values, – for

negative values, CCC.FFF is the mantissa (one or

more digits; the .FFF can be omitted if not needed),

[t] is nothing or a + for positive exponents, – for

negative exponents, and ddd is the (decimal)

exponent (one or more digits)

Char a single character use single quotation marks, as in val someChar =

'a'. there are a number of special characters: write

\t for a tab, \b for a Backspace, \n for a newline,

\r for a carriage return, \' for a single quote, \\ for

a backslash, and \$ for a dollar sign. in addition, you

can write \uXXXX for any unicode character XXXX

(hex values); for example, \u03B1 is an α

(continued)

Chapter 3 Classes at Work: properties and FunCtions

78

Note remember that in the decimal system 214 means 2 · 102 + 1 · 101 +
4 · 100. in the hexadecimal system we accordingly have 0x13d mean 2 · 162
+ 3 · 161 + 13 · 160. the letters a, B, …, F correspond to 10, 11, …, 15.

As for type compatibility, you can assign normal integers to long integer properties,

but not the other way around. You can also assign reduced precision floats to double

Table 3-1. (continued)

Literal Type Description Enter

string a string of characters use double quotation marks, as in val

someString = "Hello World". For the

characters inside, the same rules as for Chars

apply, except that for a single quotation mark you

don’t use a preceding backslash, but for a double

quotation mark you use one:

"Don't say \"Hello\"". in kotlin there are

also multiline raw string literals: use triple double

quotation marks as in """ Here goes multiline

contents""". here the escaping rules for the

characters inside no longer apply (that is where the

name raw comes from).

hexadecimal

integer

an integer 0, ± 1, ± 2, …

using the hexadecimal basis

0x0, 0x1, 0x2, …, 0x9, 0xa, 0xB, 0xC, 0xd, 0xe, 0xF,

0x10, …, 0x7FFFFFFF, –0x1, –0x2, …, –0x80000000

long

decimal

integer

a long integer 0, ± 1, ± 2, …

with extended limits

0, 1, 2, …, 9223372036854775807, –1, –2, …,

–9223372036854775808

if you like you can use underscores as thousands

separator, as in 2_012l

long

hexadecimal

integer

an integer 0, ± 1, ± 2, …

with extended limits, using the

hexadecimal basis

0x0, 0x1, 0x2, …, 0x9, 0xa, 0xB, …, 0xF, 0x10, …,

0x7FFFFFFFFFFFFFFF, –0x1, –0x2, …,

–0x8000000000000000

Float a single precision float same as double precision float, but add an f at the

end; e.g., val f = 3.1415f

Chapter 3 Classes at Work: properties and FunCtions

79

properties, but not the other way around. Disallowed assignments require you use a

conversion (see Chapter 5).

To assign literals to Short and Byte properties, use integers, but make sure the limits

are not exceeded.

Both single and triple double quotation mark String literal representations exhibit a

feature called string templates. That means that an expression starting with a dollar sign

and followed by an expression surrounded by curly brackets gets executed and its result

is passed to the string. Therefore "4 + 1 = ${4+1}" evaluates to the string "4 + 1 = 5".

For simple expressions built from just a single property name, the curly braces can be

omitted, as in "The value of a is $a".

 Exercise 3
Find a shorter way to write

val a = 42

val s = "If we add 4 to a we get " + (a+4).toString()

avoiding the string concatenation "…" + "…"

 Property Visibility
Visibility is about which parts of your program can access which functions and properties

from other classes, interfaces, objects, or companion objects. We talk about visibility in

depth in the section “Visibility of Classes and Class Members” later in this chapter.

 Null Values
The special keyword null designates a value you can use for any nullable property. The

null as value means something like uninitialized, not yet decided, or undefined. Any

property can be nullable, but in the declaration you have to add a question mark to the

type specifier:

var propertyName:PropertyType? = null

This is possible for any type, including classes, so you can write, for example:

var anInteger:Int? = null

var anInstance:SomeClass? = null

Chapter 3 Classes at Work: properties and FunCtions

80

For mutable nullable var properties you can also assign null values at any time:

var anInteger:Int? = 42

anInteger = null

Other languages like Java allow nullability for any object type, which frequently leads

to problems because null has neither any property nor function. Consider, for example,

someInstance.someFunction(), which behaves nicely if someInstance points to a

real object. If, however, you set someInstance = null, a subsequent someInstance.

someFunction() is not possible and thus leads to an exceptional state. Because Kotlin

draws a distinction between normal properties and nullable properties, such state

inconsistencies can more easily be avoided by the Kotlin compiler.

We already used the so-called dereferencing operator (.) a lot to access functions and

properties. To improve stability, Kotlin disallows the . operator for nullable variables (or

expressions). Instead there is a safe-call variant “?.” you have to use in this case—the

dereferencing then happens only if the value on the left side of the operator is not null.

If it is null, the operator calculates to null itself. Look at this example:

var s:String? = "Hello"

val l1 = s?.length() // -> 5

s = null

val l2 = s?.length() // -> null

 Exercise 4
Which of the following is true?

 1. You can perform an assignment val a:Int = null.

 2. It is possible to write val a:Int? = null; val b:Long = a.toLong().

 3. It is possible to write val a:Int? = null; val b:Long? = a.toLong().

 4. It is possible to write val a:Int? = null; val b:Long? = a?.toLong().

 Property Declaration Modifiers
You can add the following modifiers to your property declaration:

• const: Add const as in

const val name = ...

Chapter 3 Classes at Work: properties and FunCtions

81

to the declaration to convert the property into a compile time

constant. The property must be of type Int, Long, Short, Double,

Float, Byte, Boolean, Char, or String for this to work. You can

use this to avoid having to put a constant into the companion

object. Other than that, concerning usage there is no difference

between using and not using const.

• lateinit: If you add lateinit as in

lateinit var name:Type

where Type is a class, interface, or String (none of Int, Long, Short,

Double, Float, Byte, Boolean, Char) you tell the Kotlin compiler to

accept the var being or not being null. You can thus write

class TheClass {

 lateinit var name:String

 fun someFunction() {

 val stringSize = name.length

 }

}

This leads to a runtime error but not a compile time error, and thus thwarts the

Kotlin nullability check system. Using lateinit makes sense if variables get initialized in

a way the Kotlin compiler cannot detect (e.g., by reflection). Do not use lateinit unless

you really know what you want do. By the way, it is possible to check whether a lateinit

var has been initialized or not by using ::name.isInitialized.

 Member Functions
Member functions are elements of classes, singleton objects, and companion objects

responsible for accessing them. Inside functions, the state of the structure unit gets

queried, altered, or both. A calculation based on the state could happen, by taking an

input and producing an output dependent on that input and the state. Functions can

also be purely functional without using the state, which means given some particular

set of input parameters they always produce the same output. Figure 3-1 illustrates the

various possibilities.

Chapter 3 Classes at Work: properties and FunCtions

82

Depending on the terminology used, functions are also sometimes called operations

or methods.

 Functions Not Returning Values
To declare a function not returning anything, in Kotlin you write inside the body of a

class, a singleton object, or a companion object.

[modifiers]

fun functionName([parameters]) {

 [Function Body]

}

Figure 3-1. Functions

Chapter 3 Classes at Work: properties and FunCtions

83

Inside the function body, you can have any number of return statements exiting the

function. A return at the end of the body is allowed as well, but not needed.

Functions might or might not have input parameters. If they don’t, just write fun

functionName() { … }. If input parameters exist, they will be declared like this:

parameterName1:ParameterType1,

parameterName2:ParameterType2, ...

Note in kotlin, function arguments cannot be reassigned inside the function
body. this is not a disadvantage, as reassigning function parameters inside the
function is considered bad practice anyway.

Functions also can have variable argument lists. This feature is called varargs and

we discuss it later. Another feature we cover later is default arguments. Such arguments

allow for the specification of a default value that will be used if a parameter is not

specified in the function invocation.

As an example, two simple function declarations with and without parameters look

like this:

fun printAdded(param1:Int, param2:Int]) {

 console.log(param1 + param2)

}

fun printHello() {

 console.log("Hello")

}

Inside an interface—remember that we use interface to describe what needs to be

done, but not how it needs to be done—functions do not have an implementation and

thus declaring a body is not allowed. For functions not returning anything, the function

declaration in interfaces thus reads like this:

fun functionName([parameters])

The optional [modifiers] you can prepend to the function declaration for fine-

tuning a function’s behavior are as follows:

• private, protected, internal, and public: These are visibility

modifiers. Visibility is explained in the section “Visibility of Classes

and Class Members” later in this chapter.

Chapter 3 Classes at Work: properties and FunCtions

84

• open: Use this to mark a function in a class as overridable by

subclasses. See the section “Inheritance” later in this chapter for

details.

• override: Use this to mark a function in a class as overriding a

function from an interface or from a superclass. See the section

“Inheritance” later in this chapter for details.

• final override: This is the same as override, but indicates that

further overwriting by subclasses is prohibited.

• abstract: Abstract functions cannot have a body, and classes

with abstract functions cannot be instantiated. You must override

such functions in a subclass to make them concrete (which means

“unabstract” them). See the section “Inheritance” later in this

chapter for details.

You cannot freely mix modifiers. Particularly for the visibility modifiers, only one is

allowed. You can, however, combine any of the visibility modifiers with any combination

of the other modifiers listed here. If you need more than one modifier, the separator to

use is a space character.

Note that declarations in interfaces usually don’t have and don’t need modifiers.

Visibility values other than public, for example, are not allowed here. Functions in

interfaces are public by default, and because they have no implementations in the

interfaces themselves, you can consider them abstract by default, so explicitly adding

abstract is unnecessary.

 Exercise 5
What is wrong with the following function?

fun multiply10(d:Double):Double {

 d = d * 10

 return d

}

Chapter 3 Classes at Work: properties and FunCtions

85

 Exercise 6
What is wrong with the following function?

fun printOut(d:Double) {

 println(d)

 return

}

 Functions Returning Values
To declare a value-returning function in Kotlin inside a class, a singleton object, or a

companion object, inside its body you add : ReturnType to the function header and write

[modifiers]

fun functionName([parameters]): ReturnType {

 [Function Body]

 return [expression]

}

The function parameters are the same as for functions not returning values, and so

are the modifiers discussed previously. For the value or expression returned, Kotlin must

be able to convert the expression’s type to the function return type. An example for such

a function would be as follows:

fun add37(param:Int): Int {

 val retVal = param + 37

 return retVal

}

It is possible to have more than one return statement inside the body, but they all

must return a value of the anticipated type.

Note experience says that for improved code quality it is better to always use
just one return statement at the end.

Chapter 3 Classes at Work: properties and FunCtions

86

It is also possible to replace the body by a single expression if this is possible:

 [modifiers]

 fun functionName([parameters]): ReturnType = [expression]

The : ReturnType can be omitted here if the type the expression yields to is the

anticipated function return type. Kotlin can therefore infer from

fun add37(param:Int) = param + 37

that the function return type is Int.

Again for interfaces, functions do not have an implementation and the function

declaration in this case reads

fun functionName([parameters]): ReturnType

Note actually kotlin internally lets all functions return a value. if a returned
value is not needed, kotlin assumes a special void type that it calls Unit. if you
omit : ReturnType and the function does not return a value, or if the function
body does not have a return statement at all, Unit is assumed. if, for whatever
reason, it helps to improve the readability of your program, you can even write
fun name(…) : Unit { … } to express that a function does not return any
interesting value.

 Exercise 7
Is the following true?

fun printOut(d:Double) {

 println(d)

}

is the same as

fun printOut(d:Double):Unit {

 println(d)

}

Chapter 3 Classes at Work: properties and FunCtions

87

 Exercise 8
Create a shorter version of the following class:

class A(val a:Int) {

 fun add(b:Int):Int {

 return a + b

 }

 fun mult(b:Int):Int {

 return a * b

 }

}

 Exercise 9
Create an interface AInterface describing all of class A from Exercise 8.

 Accessing Masked Properties
In case of name clashes, function parameters may mask class properties. Say, for

example, a class has a property xyz and a function parameter has the very same name

xyz, as in

class A {

 val xyz:Int = 7

 fun meth1(xyz:Int) {

 [Function-Body]

 }

}

The parameter xyz is then said to mask the property xyz inside the function body.

This means if you write xyz inside the function, the parameter gets addressed, not the

property. It is still possible, though, to also address the property by prepending this.

to the name:

class A {

 val xyz:Int = 7

 fun meth1(xyz:Int) {

Chapter 3 Classes at Work: properties and FunCtions

88

 val q1 = xyz // parameter

 val q2 = this.xyz // property

 ...

 }

}

The this refers to this current object, so this.xyz means property xyz from this

current object, not xyz as made visible by the function specification.

Note some people use the term shadowed instead of masked for such
properties. Both mean the same thing.

 Exercise 10
What is the output of

class A {

 val xyz:Int = 7

 fun meth1(xyz:Int):String {

 return "meth1: " + xyz +

 " " + this.xyz

 }

}

fun main(args:Array<String>) {

 val a = A()

 println(a.meth1(42))

}

 Function Invocation
Given an instance, a singleton object, or a companion object, you invoke functions as

follows:

instance.functionName([parameters]) // outside the class

functionName([parameters]) // inside the class

Chapter 3 Classes at Work: properties and FunCtions

89

Object.functionName([parameters]) // outside the object

functionName([parameters]) // inside the object

To call the function of a companion object from inside the class you also just

use functionName([parameters]). From outside the class, you’d use ClassName.

functionName([parameters]) here.

 Exercise 11
Given this class

class A {

 companion object {

 fun x(a:Int):Int { return a + 7 }

 }

}

describe how to access function x() with 42 as a parameter from outside the class in a

println() function.

 Function Named Parameters
For a function invocation you can use the argument names to improve readability:

 instance.function(par1 = [value1], par2 = [value2], ...)

or

 function(par1 = [value1], par2 = [value2], ...)

from inside the class or object. Here the parN are the exact function parameter names

as in the function’s declaration. As an additional benefit of using named parameters,

you can use any parameter sort order you like, because Kotlin knows how to

properly distribute the parameters provided. You can also mix unnamed and named

parameters, but it is then necessary to have all named parameters at the end of the

parameter list.

Chapter 3 Classes at Work: properties and FunCtions

90

 Exercise 12
Given this class

class Person {

 var firstName:String? = null

 var lastName:String? = null

 fun setName(fName:String, lName:String) {

 firstName = fName

 lastName = lName

 }

}

create an instance and use named parameters to set the name to John Doe.

Caution using named parameters in function calls greatly improves code
readability. however, be careful if you use code from other programs, as with new
program versions the parameter names might change.

 Function Default Parameters
Function parameters might have defaults that apply if omitted in the function

invocation. To specify a default you just use

parameterName:ParameterType = [default value]

inside the function declaration. A function parameter list may have any number of

default values, but they all must be at the end of the parameter list:

fun functionName(

 param1:ParamType1,

 param2:ParamType2,

 ...

 paramM:ParamTypeM = [default1],

 paramM+1:ParamTypeM+1 = [default2],

 ...) { ... }

To let the defaults apply you then just omit them in the invocation. If you omit x

parameters at the end of the list, the x rightmost parameters take their default values.

Chapter 3 Classes at Work: properties and FunCtions

91

This sorting order dependency makes using default parameters a little cumbersome.

If you mix named parameters and default parameters, though, using defaults adds

versatility to functions.

 Exercise 13
To the function declaration

fun set(lastName:String,

 firstName:String,

 birthDay?:String,

 ssn:String?) { ... }

add as defaults lastName = "", firstName = "", birthDay = null, ssn = null. Then

invoke the function using named parameters, specifying just lastName = "Smith" and

ssn = "1234567890".

 Function Vararg Parameters
We learned functions exist to take input data and alter an object’s state from that, possibly

producing some output data. So far we have learned about fixed parameter lists, covering

a big subset of all possible use cases. What about lists of unknown, potentially unlimited

size, though? Such lists are called arrays or collections, and any modern computer

language needs to provide a way to handle such data in addition to types holding single

data elements. We cover arrays and collections in greater detail in Chapter 9, but for now

you should know that arrays and collections are fully fledged types and you can use them

for single constructor and function parameters, as in …, someArray:Array<String>, ….

There is, however, a construct that sits between using many different single-valued

parameters and one array or collection parameter: varargs. The idea is as follows: As the

last element in the parameter list of a function declaration, add a vararg qualifier as in

fun functionName(

 param1:ParamType1,

 param2:ParamType2,

 ...

 paramN:ParamTypeN,

 vararg paramV:ParamTypeV) { ... }

Chapter 3 Classes at Work: properties and FunCtions

92

The result is a function that is able to take N + x parameters, where x is any number

from 0 to infinity. This is provided, however, that all vararg parameters are of the type

specified by ParamTypeV. Of course, N might be 0, so a function can have a single vararg

parameter:

fun functionName(varargs paramV:ParamTypeV) {

 ...

}

Note kotlin actually allows vararg parameters to appear anywhere earlier in the
parameter list. kotlin then, however, can distribute passed-in parameters during
function invocation only if the next parameter after the vararg has a different
type. Because this complicates call structures, it is better to avoid such vararg
constructs.

To invoke such a function, provide all non-vararg parameters in the call, then any

number of vararg parameters (including zero):

functionName(param1, param2, ..., paramN,

 vararg1, vararg2, ...)

As a simple example we create a function that takes a date as String, then any

number of names, again as Strings. The declaration reads:

fun meth(date:String, vararg names:String) {

 ...

}

The following invocations are now possible:

meth("2018-01-23")

meth("2018-01-23", "Gina Eleniak")

meth("2018-01-23", "Gina Eleniak",

 "John Smith")

meth("2018-01-23", "Gina Eleniak",

 "John Smith", "Brad Cold")

You can extend the name list at will.

Chapter 3 Classes at Work: properties and FunCtions

93

The question is now this: How can we handle the vararg parameter inside the

function? The answer is that the parameter is an array of the specified type, and it has all

the features we describe in Chapter 9, including a size property and the access operator

[] to get elements as in [0], [1], and so on. If we therefore use the example function with

parameters (date:String, vararg names:String) and invoke it via

meth("2018-01-23", "Gina Eleniak",

 "John Smith", "Brad Cold")

inside the function you’ll have date = "2018-01-23" and for the vararg parameter:

names.size = 3

names[0] = "Gina Eleniak"

names[1] = "John Smith"

names[2] = "Brad Cold")

 Exercise 14
Build a Club class and add a function addMembers with the single vararg parameter

names. Inside the function, use

println("Number: " + names.size)

println(names.joinToString(" : "))

to print the parameter. Create a main(args:Array<String>) function outside the class,

instantiate a Club, and invoke its addMembers() function with three names “Hughes,

John”, “Smith, Alina”, and “Curtis, Solange”.

 Abstract Functions
Functions inside classes can be declared without body and marked abstract. This

transforms the class into an abstract class as well, and Kotlin requires the class to be

marked abstract to be compilable.

abstract class TheAbstractClass {

 abstract fun function([parameters])

 ... more functions ...

}

Chapter 3 Classes at Work: properties and FunCtions

94

Abstract classes are something between interfaces and normal classes: They

provide implementations for some functions and leave other functions abstract

(unimplemented) to allow for some variety. Abstract classes thus frequently serve

for some kind of “basis” implementation, leaving the details to one or more classes

implementing the abstract functions.

Abstract functions also make functions behave like interface functions, including the

fact that classes with such functions cannot be instantiated. You have to create a subclass

from such an abstract class implementing all functions to have something that can be

instantiated.

abstract class TheAbstractClass {

 abstract fun function([parameters])

 ... more functions ...

}

// A subclass of TheAbstractClass ->

class TheClass : TheAbstractClass() {

 override fun function([parameters]) {

 // do something...

 }

}

Here TheClass can be instantiated, as it implements the abstract function. For more

details about subclassing see the section “Inheritance” later in this chapter.

 Polymorphism
Inside a class, a singleton object, a companion object, or an interface, you can have

several functions using the same name with different parameters. There is no magic to

that, but this feature in object orientation theory has its own name: polymorphism.

If you have several functions with the same name, Kotlin decides by looking at the

parameters. An invoking code specifies which function to actually use. This dispatching

procedure usually works and you won’t see any problems, but with complicated classes

and lots of possibilities for a certain class, perhaps including complex parameter lists

with default arguments, interfaces, and varargs, the decision of which function to call is

not unambiguous. In such cases the compiler issues an error message and you have to

redesign the function call or your class for everything to work correctly.

Chapter 3 Classes at Work: properties and FunCtions

95

Use cases for polymorphism are manifold; as a simple example consider a class with

several add() functions allowing for an Int parameter, a Double parameter, or a String

parameter. Its code could read:

class Calculator {

 fun add(a:Int) {

 ...

 }

 fun add(a:Double) {

 ...

 }

 fun add(a:String) {

 ...

 }

}

If you now call calc.add(…) with some argument, Kotlin takes the argument’s type

to find out which of the functions to call.

Caution Be careful with function naming: polymorphism (i.e., several functions
with the same name) should not happen by accident or for just technical reasons.
instead, all functions using one particular name should serve the same purpose
from a functional perspective.

 Local Functions
In Kotlin, functions can be declared inside functions. Such functions are called local

functions and they can be used from the point of their declaration until the end of the

enclosing function.

fun a() {

 fun b() {

 ...

 }

 ...

Chapter 3 Classes at Work: properties and FunCtions

96

 b()

 ...

}

 Inheritance
In real life, inheritance means leaving one’s belongings to someone else. In object-

oriented computer languages like Kotlin, the idea is similar. Given a class A, writing

class B : A indicates that we give all the assets from class A to class B. What is this

good for, beyond having some kind of renamed copy of A? The magic is that class B can

overrule or override parts of the assets it inherits from class A. This can be used to alter

some aspects of the class it inherits from to introduce new behavior.

Although this overriding of functions and properties somewhat deviates from the

real-life analogy of inheritance, inheriting classes and overriding particular functions

and properties is one of the central aspects of any object-oriented language.

 Classes Inheriting from Other Classes
The precise syntax for inheritance is

open class A { ... }

class B : A() {

 [overriding assets]

 [own assets]

}

if A has an empty default constructor, and

open class A([constructor parameters]) { ... }

class B : A([constructor parameters]) {

 [overriding assets]

 [own assets]

}

Chapter 3 Classes at Work: properties and FunCtions

97

otherwise. Class B may, of course, have its own constructor:

open class A([constructor parameters]) { ... }

class B([own constructor parameters]) :

 A([constructor parameters])

{

 [overriding assets]

 [own assets]

}

The open in the class declaration is a Kotlin specialty. Only classes marked with open

can be used for inheritance.

Note this is a somewhat odd design decision from the makers of kotlin. it
basically disables inheritance unless you add open to all possible classes that
could be used for inheritance. in real life, developers will likely forget to add open
to all their classes or even refuse to add open everywhere because it feels like a
nuisance, so inheritance most likely is broken if your program uses classes from
other programs or libraries. unfortunately, there is no way out, so we have to live
with that. You can, of course, add open wherever needed in your own classes.

In relation to each other, the class used as a basis for inheritance is also called a

superclass and the class inheriting from it is a subclass. In the preceding code, therefore,

A is the superclass of B, and B is the subclass of A.

In our NumberGuess example you can see, for instance, that our MainActivity

class inherits from AppCompatActivity. This subclassing of built-in activity classes is

important for any app to work with Android.

 Constructor Inheritance
At the very beginning of the subclass construction the superclass’s constructor including

the init{ } block will be called. If the superclass provides secondary constructors,

for a subclass it is also possible to call one of the secondary constructors instead. This

happens by simply using the secondary constructor’s parameter signature:

Chapter 3 Classes at Work: properties and FunCtions

98

open class A([constructor parameters]) {

 constructor([parameters2]) { ... }

}

class B : A([parameters2]) {

 ...

}

Because we know that secondary constructors always also invoke the primary

constructor, inheritance by design in any case always invokes the superclass’s primary

constructor and init{ } block. This is also true if the subclass provides its own init{ }

block, which then gets called second in line. Beginners tend to forget this fact, but if you

keep this in mind you could avoid some difficulty.

In Kotlin, subclasses can steal properties from the superclass’s constructor. To do so,

the val or var needs to be prepended with open, as in this example:

open class A(open val a:Int) {

}

A subclass can then override the parameter in question:

open class A(open val a:Int) {

}

class B(override val a:Int) : A(42) {

 ...

}

Such an overridden property will then be addressed by any code from the superclass

that formerly used its own original version of the property.

 Exercise 15
What will be the output of

open class A(open val a:Int) {

 fun x() {

 Log.d("LOG",

 "A.x() -> a = ${a}")

 }

Chapter 3 Classes at Work: properties and FunCtions

99

 fun q() {

 Log.d("LOG",

 "A.q() -> a = ${a}")

 }

}

class B(override val a:Int) : A(37) {

 fun y() {

 Log.d("LOG",

 "B.y() -> a = ${a}")

 q()

 }

}

// inside some activity function:

val b = B(7)

b.y()

Note that Log.d("TAG", …) prints the second argument to the console.

 Overriding Functions
To override functions of a superclass, in the subclass you have to use the override

modifier and write

open class A {

 open fun function1() { ... }

}

class B : A() {

 override

 fun function1() { ... }

}

Again we have to add open to the function in the superclass to make it eligible for

inheritance. The function could, of course, have a parameter list and parameter types

must be the same in the superclass and in the subclass for overriding to work correctly.

Chapter 3 Classes at Work: properties and FunCtions

100

The overridden function gets a new version in the subclass, but the original version is

not lost altogether. It is possible to address the original function by writing

super.functionName(param1, param2, ...)

in the subclass.

 Overriding Properties
Kotlin has a special feature not found in other object-oriented languages. Not only is it

possible to override functions, but properties can also be overridden. For this to work,

such properties need to be marked open in the superclass, as in

open class A {

 open var a:Int = 0

}

A class that inherits from this superclass can then override the property by declaring

class B : A() {

 override var a:Int = 0

}

Using this notation, any usage of the property from inside class B and A is then

covered by the property as declared in class B. The property behaves as if the declaration

in class A didn’t exist any longer, and functions in A formerly using “their” version of this

property will use the property from class B instead.

 Exercise 16
What will be the output of

open class A() {

 private var g:Int = 99

 fun x() {

 Log.d("LOG", "A.x() : g = ${g}")

 }

 fun q() {

Chapter 3 Classes at Work: properties and FunCtions

101

 Log.d("LOG", "A.q() : g = ${g}")

 }

}

class B : A() {

 var g:Int = 8

 fun y() {

 Log.d("LOG", "B.y() : g = ${g}")

 q()

 }

}

// inside some activity function:

val b = B()

b.x()

b.y()

Note that Log is provided by the Android libraries automatically included in your

project. If you first get an error, place the cursor over it and then press Alt+Enter for a

resolution. Can you guess why property g in class A has to be declared private, meaning

no other class can see it or use it?

 Exercise 17
In Exercise 16, remove the private from the property declaration and make class B

override property g from class A. What will be the output?

 Accessing Superclass Assets
Even with functions or properties overridden in some subclass, you can access the

original versions from the superclass if you prepend a super. So, for example, in

open class A() {

 open var a:Int = 99

 open fun x() {

 Log.d("LOG", "Hey from A.x()")

 }

}

Chapter 3 Classes at Work: properties and FunCtions

102

class B : A() {

 override var a:Int = 77

 override fun x() {

 Log.d("LOG", "Hey from A.x()")

 }

 fun show() {

 Log.d("LOG", "Property: " + a)

 Log.d("LOG", "Formerly: " + super.a)

 Log.d("LOG", "Function: ")

 x()

 Log.d("LOG", "Formerly: ")

 super.x()

 }

}

// inside some activity function:

val b = B()

b.show()

the output shows that from the subclass B we can use both the overridden and the

original properties and functions:

Property: 77

Formerly: 99

Function:

Hey from B.x()

Formerly:

Hey from A.x()

 Local Variables
Local variables are val or var variables that get declared and used inside some function;

for example:

class TheClass {

 fun function() {

 ...

Chapter 3 Classes at Work: properties and FunCtions

103

 var localVar1:Int = 7

 val localVar1:Int = 8

 ...

 }

}

Such local variables are valid from the place of their declaration to the end of the

function; that is why they are called local. They are, of course, allowed to calculate any

expression that is necessary to return something from the function, as they will not be

destroyed before the return happens.

Local variables should not mask function parameters for code quality reasons. If you

have a function parameter xyz of any type, you should not declare a local variable inside

the function using the name xyz. The compiler allows that, but it will issue a warning

about that shadowing.

 Exercise 18
Which of the following classes is valid? For any invalid class, describe what the problem is.

1. class TheClass {

 var a:Int = 7

 fun function() {

 val a = 7

 }

 }

2. class TheClass {

 fun function(a:String) {

 val a = 7

 }

 }

3. class TheClass {

 fun function() {

 println(a)

 val a = 7

 }

 }

Chapter 3 Classes at Work: properties and FunCtions

104

4. class TheClass {

 fun function():Int {

 val a = 7

 return a - 1

 }

 }

5. class TheClass {

 fun function1():Int {

 val a = 7

 return a - 1

 }

 fun function2():Int {

 a = 8

 return a - 1

 }

 }

 Visibility of Classes and Class Members
We have mainly talked about classes, singleton objects, and companion objects

(structure units) and their properties and functions thus far in a literally free manner:

class TheName { // or object or companion object

 val prop1:Type1

 var prop2:Type2

 fun function() {

 ...

 }

}

Literally free here means structure units, functions, and properties declared this

way can be freely accessed from everywhere. In Kotlin, this kind of accessibility is called

public visibility. You can even add the keyword public to all of them this way to describe

this public visibility explicitly.

Chapter 3 Classes at Work: properties and FunCtions

105

public [class or (companion) object] TheName {

 public val prop1:Type1

 public var prop2:Type2

 public fun function() {

 ...

 }

}

For conciseness, however, you would usually omit that, because public is the default

visibility in Kotlin.

In Kotlin, it is possible to impose restrictions on visibility. At first sight it might

appear easier if we keep the default public visibility everywhere because anything can

be accessed from everywhere and you don’t have to think about restrictions. For any

nontrivial project, though, there are good reasons to consider drawing distinctions

concerning visibility. The key term connected with that is encapsulation. What do we

mean by that? Consider for example an analog clock. It shows the time and it provides a

means to adjust the time by some clock control. We could model this by two functions,

time() and setTime():

class Clock {

 fun time(): String {

 ...

 }

 fun setTime(time:String) {

 ...

 }

}

From a user’s point of view, this is all that is needed to “talk” to a clock. What happens

inside the clock is a different story: First, to adjust the time the clock needs to add or

subtract some amount of time from the time currently shown. This is done by turning the

control dial of the clock. Second the current state of the clock is more thoroughly described

by the angles of the hour, minute, and second indicators. There is also a technical device

that reacts to each second tick. This corresponds to the gear of the clock. We also need a

timer that fires events every second, like the spring inside an analog clock does. Finally we

also need to add some timer initialization code into an init{ } block. Taking all that into

account, we’d have to rewrite our class to read like this:

Chapter 3 Classes at Work: properties and FunCtions

106

class Clock {

 var hourAngle:Double = 0

 var minuteAngle:Double = 0

 var secondsAngle:Double = 0

 var timer:Timer = Timer()

 init {

 ...

 }

 fun time(): String {

 ...

 }

 fun setTime(time:String) {

 ...

 }

 fun adjustTime(minutes:Int) {

 ...

 }

 fun tick() {

 ...

 }

}

We now have two types of classes accessing assets: external ones the user cares

about, and internal ones the user doesn’t need to know about. Encapsulation precisely

takes care of hiding internals from clients by introducing a new visibility class, private.

As the name suggests, private properties and functions are private to the structure unit

and nobody from outside needs to be concerned with them, or is even allowed to access

them. To indicate that a property or function is private, just add the private keyword in

front of it. For our Clock class we thus write

Chapter 3 Classes at Work: properties and FunCtions

107

class Clock {

 private var hourAngle:Double = 0

 private var minuteAngle:Double = 0

 private var secondsAngle:Double = 0

 private var timer:Timer = Timer()

 init {

 ...

 }

 fun time(): String {

 ...

 }

 fun setTime(time:String) {

 ...

 }

 private fun adjustTime(minutes:Int) {

 ...

 }

 private fun tick() {

 ...

 }

}

Separating functions and properties this way has the following benefits:

• The client doesn’t need to know details of the internal functioning

of a class or an object. It can just ignore anything that is marked

private, reducing distractions and making it easier to understand

and use the class or object.

• Because the client only needs to know about public properties and

functions, the implementation of the private functions together with

all private properties is freely changeable at any time, provided the

public properties and functions keep functioning in the expected

way. It is thus easier to improve classes or fix deficiencies.

Chapter 3 Classes at Work: properties and FunCtions

108

Back in the NumberGuess game, we already used private as a visibility specifier.

If you look at just the function signatures of the activity class, you will see this:

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?)

 override fun onSaveInstanceState(outState: Bundle?)

 fun start(v: View)

 fun guess(v:View)

 ///

 ///

 private fun putInstanceData(outState: Bundle?)

 private fun fetchSavedInstanceData(

 savedInstanceState: Bundle?)

 private fun log(msg:String)

}

Here you also clearly see that we need onCreate() and onSaveInstanceState() to

be public, because the Android runtime needs to access them from outside for life cycle

handling. Furthermore, start() and guess() need to be public as well, because they get

accessed from outside as a result of button presses. The remaining three functions are

accessed from only inside the class, hence the private visibility for those.

Apart from public and private, there are two more visibility modifiers: internal

and protected. Table 3-2 describes them together with the two we already know.

Table 3-2. Visibility

Visibility Asset Description

public Function or property (default) the function or property is visible from everywhere

inside and outside the structure unit.

private Function or property the function or property is visible only from inside the same

structure unit.

protected Function or property the function or property is visible from inside the same structure

unit, and from inside any direct subclass. subclasses get

declared via class TheSubclass-Name : TheClassName

{ … } and they inherit all the public and protected properties

and functions of the class from which they inherit.

(continued)

Chapter 3 Classes at Work: properties and FunCtions

109

Table 3-2. (continued)

Visibility Asset Description

internal Function or property Functions and properties are public only for structure units

from the same program. For programs from other compilations,

especially for programs from others you include in your

software, internal gets treated like private.

public Class, singleton

object, or companion

object

(default) the structure unit is visible from everywhere inside

and outside the program.

private Class, singleton

object, or companion

object

the structure unit is visible only from inside the same file. For

inner classes the structure unit is only visible from an enclosing

structure unit. For example

class A {

 private class B {

 ... }

 fun function() {

 val b = B()

 }

}

protected Class, singleton

object, or companion

object

the structure unit is visible only from an enclosing structure

unit or a subclass of it. For example

class A {

 protected class B {

 ... }

 fun function() {

 val b = B()

 }

}

class AA : A {

// subclass of A

 fun function() {

 val b = B()

 }

}

Chapter 3 Classes at Work: properties and FunCtions

110

Note For small projects, you wouldn’t care about any visibility modifiers apart
from the default public one. For larger projects, adding visibility restrictions helps
to improve software quality.

 Self-Reference: This
Inside any class’s function, the keyword this refers to the current instance. We know

that from inside the class, we can refer to functions and properties from the same class

by just using their names. If visible, from outside the class we’d instead have to prepend

the instance name. You can consider this as the instance name that could be used from

inside the class, so, if we are in a function, to refer to a property or function from the

same class we could equivalently use

functionName() -the same as- this.functionName()

propertyName -the same as- this.propertyName

If a function’s argument uses the same name as a property of the same class, we

already know that the parameter masks the property. We also know that we still could

access the property if we prepend this. In fact, this is the primary use case for using

this. Under some circumstances it could also help to improve the readability if you

prepend this. to function or property names. For example, in functions that set instance

properties, using this helps to express that setting properties is the primary purpose of

the function.

Consider this:

var firstName:String = ""

var lastName:String = ""

var socialSecurityNumber:String = ""

...

fun set(fName:String, lName:String, ssn:String) {

 this.lastName = lName

 this.firstName = fName

 this.socialSecurityNumber = ssn

}

It technically also works without the three this. instances, but in that case it is less

expressive.

Chapter 3 Classes at Work: properties and FunCtions

111

 Converting Classes to Strings
In Kotlin, any class automatically and implicitly inherits from the built-in class Any. You

don’t have to explicitly state it, and there is no way to prevent it. This super-superclass

already provides a couple of functions, one of which has the name and return type

toString():String. This function is kind of a multipurpose diagnostic function that

frequently gets used to let an instance tell about its state in a textual representation.

The function is open, so any class can override this function to let your classes indicate

instance state in an informal way.

You are free to do whatever you want inside an overridden toString(), but most of

the time one or the other property gets returned, as for example in this case:

class Line(val x1:Double, val y1:Double,

 val x2:Double, val y2:Double) {

{

 override fun toString() =

 "(${x1},${y1}) -> (${x2},${y2})"

}

Often you don’t want to miss what superclasses do in their own toString()

implementation, so you might prefer to write something like this:

class Line(val x1:Double, val y1:Double,

 val x2:Double, val y2:Double) {

{

 override fun toString() = super.toString()

 " (${x1},${y1}) -> (${x2},${y2})"

}

Remember the super. addresses unoverridden properties and functions.

Chapter 3 Classes at Work: properties and FunCtions

112

 Exercise 19
Can you guess what happens if you write this?

class Line(val x1:Double, val y1:Double,

 val x2:Double, val y2:Double) {

{

 override fun toString() = toString() +

 " (${x1},${y1}) -> (${x2},${y2})"

}

Many built-in classes in their toString() implementation already provide some

useful output, so in most cases you don’t have to override built-in classes just for the sake

of providing a sensible toString() output. What happens for some of the other built-in

classes and for any of your classes without their own toString() implementation is that

toString() indicates the memory position of the instance. For example:

class A

val a = A()

println(a.toString())

will print something like A@232204a1, which, depending on the circumstances,

is not very informative. Therefore for diagnostic output, providing a toString()

implementation is a good idea.

Chapter 3 Classes at Work: properties and FunCtions

113
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_4

CHAPTER 4

Classes and Objects:
Extended Features
This chapter covers some extended object orientation features that are not necessary

for a program to work, but nevertheless improve readability and expressiveness. The

chapter presumes that you have read Chapter 2. We also use the NumberGuess sample

app from Chapter 2.

 Anonymous Classes
Inside your coding in some instances you might want to create a one-time

implementation of an interface or a one-time subclass of some class. While in Kotlin, it is

possible to write

class A : SomeInterface {

 // implement interface functions ...

}

val inst:SomeInterface = A()

// use inst ...

or

open class A : SomeBaseClass() {

 // override functions ...

}

val inst:SomeBaseClass = A()

// use inst ...

114

Inside functions, there is a more concise way to create and use such one-time

instances:

val inst:SomeInterface = object : SomeInterface {

 // implement interface functions ...

}

// use inst ...

or

val inst:SomeBaseClass = object : SomeBaseClass() {

 // override functions ...

}

// use inst ...

If you extend some superclass as in the latter listing, this one might also be abstract.

It is then necessary, however, to implement all abstract functions, as is usually the case

for an instantiation to be possible. Because the name of the interface implementation

or subclass is neither specified nor needed, such classes are called anonymous classes.

Inside the class body between the curly braces you can write anything that you could

also write inside a named class’s body.

Note The object : inside the declaration suggests that there is just a one-time
instantiation. It is not possible to have several instances of anonymous classes.

We know that this refers to the actual instance. This is also the case from inside

anonymous classes, where this refers to the one instance of the anonymous class.

There is an extension of this that allows us to get the instance of the enclosing class: Just

append @ClassName to this. For example in

interface X {

 fun doSomething()

}

class A {

 fun meth() {

 val x = object : X {

 override doSomething() {

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

115

 println(this)

 println(this@A)

 }

 }

 }

}

the first this refers to the anonymous class, and this@A refers to the instance of class A.

 Inner Classes
Classes and singleton objects can also be declared inside other classes or singleton

objects, and even inside functions. They then can be accessed from inside their scope,

so if a class or singleton object gets declared inside some class A, it can be instantiated

inside A. If it is declared inside a function, it can be used from the point of its declaration

until the end of the function.

class A {

 class B { ... }

 // B can now be instantiated from

 // everywhere inside A

 fun meth() {

 ...

 class C { ... }

 // C can now be used until the end of

 // the function

 ...

 }

}

Classes and objects inside other classes or other objects can be addressed from

outside using a path specification similar to packages: If X as a class or an object gets

declared inside A (a class or a singleton object), you can write A.X to access it from

outside. You should probably do this, however, only if the inner class provides some kind

of interface to the enclosing class, to avoid breaking encapsulation principles.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

116

class A {

 class B { ... }

}

fun main(args:Array<String>) {

 val ab = A.B()

 // do something with it ...

}

 Functions and Properties Outside Classes
In your project you can have Kotlin files that do not contain a single class, interface,

or object declaration but nevertheless show val and var properties and functions.

Whereas at first sight we seem to work outside object orientation if we use such files, in

fact the Kotlin compiler implicitly and secretly creates a singleton object based on the

package name and puts such properties and functions into this object.

Note For very small projects it is acceptable to not use explicit classes and
singleton objects. If a project gets bigger, it is still possible to only use such
nonclass files, but you’ll then risk having chaotic and unreadable code in
the end.

Derived from that fact, the following rules apply for such properties and functions:

• It does not matter where in the file you declare val and var

properties and functions; they will be usable from everywhere in

the file.

• Such properties and functions are visible to other classes or singleton

objects you write in other files using import the.package.name.name

where the last name refers to the property or function name.

• You can have several files of that type inside a package. The Kotlin

compiler then just sequentially parses all the files and gathers all the

functions and properties that are neither from inside a class nor a

singleton object. The file names play no role here.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

117

• If you have several such files in different packages (as defined by the

package declarations at the top of the files), name clashes do not

cause a problem. You could have properties and functions using the

same name. Nevertheless, you should avoid this to keep your code

readable.

• It is possible to add classes, interfaces, and singleton objects to

such files. You can use such structure units from the place of their

declaration until the end of the file.

Additionally, it is possible to import properties and functions from all files of that kind

inside a particular package using the wildcard notation import the.package.name.*.

This comes in very handy to avoid a lengthy import list.

 Exercise 1
You have a utility singleton object

package com.example.util

object Util {

 fun add10(a:Int) = a + 10

 fun add100(a:Int) = a + 100

}

and a client

package com.example

import com.example.util.Util

class A(q:Int) {

 val x10:Int = Util.add10(q)

 val x100:Int = Util.add100(q)

}

Could you think of a way to rewrite the Util.kt file to not use the object { }

declaration? What will the client code look like?

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

118

 Importing Functions and Properties
Functions and properties from singleton objects can be imported via import statements

like these

import package.of.the.object.ObjectName.propertyName

import package.of.the.object.ObjectName.functionName

at the top of the file, after the package declaration and together with the other import

statements for importing classes and singleton objects. It is then possible to directly use

the function or property by using just its name, without a prepending ObjectName.

Note There is no wildcard for importing all properties and functions of a singleton
object. You have to put each of them into its own import line.

 Exercise 2
Given that Math.log() calculates the logarithm of a number, and with Math residing

inside package java.lang, rewrite

package com.example

class A {

 fun calc(a:Double) = Math.log(a)

}

such that Math. is no longer needed.

 Data Classes
Classes that only contain properties and no or very few functions most likely are data

classes, the purpose of which is to provision a bracket around a couple of properties.

They thus serve as a kind of container gathering a range of properties. Think of a Person

class which for a person gathers the name, birthday, place of birth, SSN, and so on.

Kotlin has a special notation for such classes: Prepend data as in

data class ClassName([constructor])

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

119

This doesn’t look very different from normal classes, but in contrast to them,

prepending data leads to the following outcomes:

• The class automatically gets a specially tailored toString() function

based on the properties; you don’t have to write your own.

• The class automatically gets sensible equals() and hashCode()

functions based only on the properties. We’ll talk about object

equality later; for now, this is what you need to know: The equality

check relation a == b for two instances of data classes yields true

only if the instances belong to the same data class, and all their

properties need to be equal as well.

Data classes come handy if you need a function to return structured or compound

data. In other languages you’d frequently have to use full-fledged classes, arrays, or lists

for that purpose, which makes this task feel a little bit clumsy. In Kotlin you can instead

concisely write, for example:

data class Point(val x:Double, val y:Double)

fun movePoint(pt:Point, dx:Double, dy:Double):Point =

 Point(pt.x + dx, pt.y + dy)

// somewhere in a function ...

val pt = Point(0.0, 1.0)

val pt2 = movePoint(pt, 0.5, 0.5)

You can see that with the single data class line at the top, we can make the function

movePoint() return a structured datum.

 Exercise 3
With the data classes

data class Point2D(val x:Double, val y:Double)

data class Point3D(val x:Double, val y:Double, val z:Double)

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

120

at hand, which of the following is true (the == stands for equals)?

 1. Point2D(0, 1) == Point2D(1, 0)

 2. Point2D(1, 0) == Point3D(1, 0, 0)

 3. Point2D(1, 0).x == Point3D(1, 0, 0).x

 4. Point2D(1, 0) == Point2D(1.0, 0)

 5. Point2D(1, 0) == Point2D(1, 0)

Describe why or why not.

 Exercise 4
Which classes of the NumberGuess game are considered data classes? Perform the

conversion.

 Enumerations
The enumeration type is basically a nonnumeric data type with values from a given

set. Basically here means that internally the type gets handled by an integer by default,

but in basic usage scenarios you don’t have to be concerned about that. The term set

is used in a mathematical sense, which means that values must be unique and do not

have a sort order.

Enumerations in Kotlin are a specialized form of a class:

enum class EnumerationName {

 VALUE1, VALUE2, VALUE3, ...

}

where for EnumerationName you can use any camelCase name and VALUEx is any string

from the character set A-Z0-9_ starting with a letter or _.

Note For the values, technically more characters are available, but by convention
you should use a combination of the characters shown here.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

121

To declare a type of an enumeration you write, as for any other class,

val e1: EnumerationName = ...

var e2: EnumerationName = ...

where for the right side of the assignment you use EnumerationName. appending any of

the enumeration values. For example, an enumeration with fruits as values would be

declared and and used with this result:

enum class Fruit {

 BANANA, APPLE, PINEAPPLE, GRAPE

}

val f1 = Fruit.BANANA

val f2 = Fruit.BANANA

val f3 = Fruit.APPLE

var fx:Fruit? = null

// you can check for equality:

val b1:Boolean = f1 == f2 // -> true

val b2:Boolean = f1 == f3 // -> false

// you can reassign vars:

fx = Fruit.APPLE

fx = Fruit.BANANA

// toString() gives the textual value name

val s = fx.toString() // -> "BANANA"

Note that == is the equivalent of equals. This is a boolean expression we have not yet

formally introduced. If you like, you can define the internal data type of enumeration

values yourself: Just add a primary constructor to the enum class and use it for the values:

enum class Fruit(val fruitName:String) {

 BANANA("banana"),

 APPLE("apple"),

 PINEAPPLE("pineapple"),

 GRAPE("grape")

}

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

122

You can then use the name of the property you introduced to fetch this custom

internal value:

val f1 = Fruit.BANANA

var internalVal = f1.fruitName // -> "banana"

An interesting built-in function for enumeration classes is the dynamic lookup

function valueOf(): If you need to get a value dynamically from a string, write

val f1 = Fruit.valueOf("BANANA")

// <- same as Fruit.BANANA

Use

EnumerationName.values()

to fetch all values for an enumeration (e.g., for loops). The enumeration values

themselves also have two built-in properties:

• Use enumVal.name to get the value’s name as a string.

• Use enumVal.ordinal to get the value’s index in the enumeration

values list.

 Exercise 5
Add a Gender enumeration to the GameUser class from the NumberGuess game app. Allow

values M, F, and X. Add a corresponding constructor parameter gender to the GameUser

constructor parameters with default value X.

 Custom Property Accessors
We know that a var property basically gets declared by writing

var propertyName:PropertyType = [initial_value]

We also know that to get the var we write object.propertyName and to set it we write

object.propertyName =...

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

123

In Kotlin it is possible to change what is happening when you get or set the property.

To adapt the getting process, you write this:

var propertyName:PropertyType = [initial_value]

 get() = [getting_expression]

Inside the [getting_expression] you can write what you like, including accessing

functions and other properties. For more complicated cases you can also provide a

body, as in

var propertyName:PropertyType = [initial_value]

 get() {

 ...

 return [expression]

 }

To instead change the setting process that applies for propertyName = ... you write

var propertyName:PropertyType = [initial_value]

 set(value) { ... }

Inside the set body you can access all the functions and all the other properties of

the object. In addition, you can use the special field identifier to refer to the datum

corresponding to the property.

You can, of course, do both; that is, adapt the getting and the setting processes:

var propertyName:PropertyType = [initial_value]

 get() = [getting_expression]

 set(value) { ... }

You can fine-tune the visibility of both the getters and setters of a property. Just write

[modifier] var propertyName:PropertyType = ...

 private get

 private set

or any of the other visibility modifiers. To make the getter private, though, the property

itself must be declared to be private as well. Making the setter private for a public

property is a valid option instead.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

124

Interestingly, it is possible to define properties that do not have corresponding data

in the class or singleton object. If you define both the setter and getter of a property and

specify neither an initial value nor use field inside the setter code, no data field will be

generated for that property.

 Exercise 6
Can you guess what can be done with val instead of var properties?

 Exercise 7
Write an str property that does the same as the toString() function (so it is possible to

write obj.str instead of obj.toString()).

 Exercise 8
Recall the NumberGuess game app:

data class GameUser(var firstName:String,

 var lastName:String,

 var userName:String,

 var registrationNumber:Int,

 var gender:Gender = Gender.X,

 var birthday:String = "",

 var userRank:Double = 0.0) {

 enum class Gender{F,M,X}

 var fullName:String

 var initials:String

 init {

 fullName = firstName + " " + lastName

 initials = firstName.toUpperCase() +

 lastName.toUpperCase()

 }

}

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

125

We had the problem that with a later firstName change the fullName gets corrupted.

val u = GameUser("John", "Smith", "jsmith", 123)

u.firstName = "Linda"

val x = u.fullName // -> "John Smith" WRONG!

Find a way to avoid such corrupted states. Hint: Afterward an init{ } block is no

longer needed. Update your code accordingly.

 Kotlin Extensions
In Kotlin, it is possible to “dynamically” add extensions to classes. We need to put that

dynamically in quotation marks because the usage of such extensions must be defined

in your code prior to execution. It is not possible in Kotlin to decide during runtime

whether or not, and if so, which extensions get used. Computer language designers

usually refer to such features as static features.

Here is what we mean by extensions: Wouldn’t it be nice if we could add functions

and custom properties to any class? This could be very useful, for example, if we want

to add extra functionality to classes and functions provided by others. We know we can

use inheritance for that purpose, but depending on the circumstances, this might not be

possible or the implementation could feel clumsy.

Caution The extension mechanism is extremely powerful. be cautious not
to overuse it. You can write very elegant code using extensions that no one
understands without time-consuming research of the extension definitions.

 Extension Functions
Consider we’d like to have a hasLength(l:Int): Boolean function inside the built-in

String class. You might think that this is what inheritance is used for. However, it is not

possible to extend the String class, because it is forbidden to extend String by design,

so we can’t use inheritance for that aim. Still, the Kotlin extension mechanism helps us

here. We can write

package the.ext.pckg

fun String.hasLength(len:Int) = this.length == len

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

126

inside some file fileName.kt (the file name doesn’t play a role here, so use whatever you

like) inside some package the.ext.pckg. Remember the == checks for equality.

We can now use that extension function inside any class or singleton object and write

import the.ext.pckg.*

// anywhere inside a function ...

val hasLen10:Boolean = someString.hasLength(10)

The same process is possible for any other class, including your own classes, and

companion objects. For the latter case write fun SomeClass.Companion.ext() { } to

define a new extension function ext. The Companion here is a literal identifier used to

address the companion object.

Note If extension functions have the same name and function signature
(parameter set) as already existing functions, the latter take priority.

 Extension Properties
A similar procedure works for properties. Say you want to add an l property to String

that does the same as .length() and calculates the string length. You can do that via

some construct like this:

package the.ext.pckg

val String.l get() = this.length

Note that we can’t use val String.l = this.length because for technical reasons

extension properties are not allowed to actually create real data fields. An initialization

is thus not possible, because in fact there is nothing that can be initialized. As for getters

we can write what we want, so we can directly refer to .length. Now it is possible to write

import the.ext.pckg.*

// anywhere inside a function ...

val len1 = someString.length

val len2 = someString.l // this is the same

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

127

 Extensions with Nullable Receivers

Note Receiver refers to the class or singleton object that is being extended.

It is possible to catch null values for the extension. If you prepend a question mark as in

fun SomeClass?.newFunction(...) { ... }

you can check whether this == null inside the body and appropriately react in such

cases to do the right thing. You can then write instance.newFunction(...) even if

instance is null and even then get into the extension function.

 Encapsulating Extensions
If you want to encapsulate extensions inside particular classes, singleton objects, or

companion objects, it is possible to write something like this:

class SomeClass {

 fun SomeOtherClass.meth() {

 ...

 }

}

Here SomeOtherClass receives the extension function, but that function can only

be used from inside SomeClass. For the hasLength() extension for the String class, the

encapsulated version thus reads

class SomeClass {

 fun String.hasLength(len:Int) = this.length == len

 fun function() {

 ...

 // we can use hasLength() here

 val len10:Boolean = someString.hasLength(10)

 ...

 }

}

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

128

class SomeClass2 {

 // we can't use String.hasLength() here

}

A similar procedure allows us to encapsulate extension properties. The notation for

such properties reads

class SomeClass {

 val SomeOtherClass.prop get() = ...

}

and the encapsulated version of the String.l extension for the string length is thus

class SomeClass {

 val String.l get() = this.length

 fun function() {

 ...

 // we can use .l here

 val len = someString.l

 ...

 }

}

The obvious advantage of encapsulated extensions is that we don’t have to import

extension files. If we want to define extensions that are usable for many classes, the

nonencapsulated variant would be the better choice.

 Functions with Tail Recursion
Recursive functions call themselves. This happens once in a while for certain algorithms.

For example, the factorial function n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ ...2 ⋅ 1 can be implemented as

fun factorial(n:Int):Int {

 return if(n==1) n else n * factorial(n-1)

}

Note that the if() expression returns the part before or after the else, depending on

whether the argument evaluates to true or false (we’ll be talking about branching later

in the book).

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

129

For proper application functioning, the runtime engine needs to keep track of

function calls, so internally a call to factorial() will look like factorial(factorial(

factorial (...))) If this recursion depth is not too high, this is not a problem.

If it gets really high, though, we’ll run into trouble concerning memory usage and

performance. However, provided the recursion happens in the last statement of such a

function, it can be converted to a tail recursion function and then internally an overuse

of system resources won’t happen.

To convert a function to a tail recursion function, just prepend tailrec to fun, as in

tailrec fun factorial(n:Int) {

 return if(n==1) n else n * factorial(n-1)

}

 Infix Operators
Infix operators are used for operations notated by

operand1 OPERATOR operand2

We know a lot of such infix operators: Think of multiplication (3 * 4), addition (3 + 4),

and more. In Kotlin, many such infix operators are predefined, but it is also possible to

define your own infix operators. To do so, write

infix operator

fun SomeClass1.oper(param:SomeClass2) = ...

where oper is the name of the operator (use your own) and the ... performs any

calculation using this (the instance of SomeClass1) and param. You can then write

[expression1] oper [expression2]

where the type of [expression1] is SomeClass1 and the type of [expression2] is

SomeClass2. For more complicated calculations you can also use a function body

as usual:

infix operator

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

130

fun SomeClass1.oper(param:SomeClass2):ResultType {

 ...

 return [result_expression]

}

For example, to allow a string to be repeated n times using a new operator TIMES, we

write

infix operator fun String.TIMES(i:Int) =

 (1..i).map { this }.joinToString("")

(The second line is a functional construct; we’ll be talking about functional design

later.) We can then write

val s = "abc" TIMES 3 // -> "abcabcabc"

We can do this more cleverly if we take account of Kotlin having textual counterparts

of the standard operators. The textual representation of *, for example, is times, so we

can write

operator fun String.times(i:Int) =

 (1..i).map { this }.joinToString("")

which then allows us to use the asterisk for the same operation:

val s = "abc" * 3 // -> "abcabcabc"

The infix could be omitted here, because Kotlin knows that * belongs to an infix

operation.

Using the standard operators for defining custom calculation is called operator

overloading. In the following section we learn more about that, using a list and the

textual representation of all the standard operators.

 Operator Overloading
Operators take one or two expressions and produce a single output from that using the

following notation:

[OPER] expression

[expression] [OPER] [expression]

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

131

Handling one expression is referred to as a unary operation and the operator

accordingly gets called a unary operator. Likewise, handling two expressions gives us

binary operations and binary operators.

From math we know a lot of operators like –a, a + b, a * b, a / b, and so on. Kotlin, of

course, has many such operators built in for its data types, so 7 + 3 and 5 * 4 and so on

do the expected things. We’ll be talking about operator expressions in detail later in this

book, but for now we want to pay some attention to operator overloading, the capability

of Kotlin that lets you define your own operators using standard operator symbols for

your own classes.

Say, for example, you have a Point class designating a point (x, y) in space, and a

Vector class designating the direct connection between two points. From what we have

already learned, we know that we can declare both of them concisely via

data class Point(val x:Double, val y:Double)

data class Vector(val dx:Double, val dy:Double)

Now from math we know it is possible to write for the vector from point P1 to point

P2 the expression

v P P= -2 1 . The calculation goes dx = p2.x − p1.x and dy = p2.y − p1.y.

Wouldn’t it be nice if we could just write v = p2 − p1 to perform that operation, as in

val p1 = Point(1.0, 1.0)

val p2 = Point(4.0, -2.0)

val v:Vector = p2 - p1

Using operator overloading we can do exactly that. It is easy: First, we need the

textual representation of the − operator, which happens to be minus. Second we write

data class Point(val x:Double, val y:Double) {

 operator fun minus(p2:Point) =

 Vector(p2.x-this.x, p2.y-this.y)

}

That is it. The val v:Vector = p2 - p1 now works, so whenever the compiler sees a

- between two Point instances it calculates the vector combining them.

For unary operators the procedure is the same, but you don’t specify a parameter in

the operator function. For example, if you want -Vector(1.0, 2.0)) to work, giving the

reversed vector, you just add

operator fun unaryMinus() = Vector(-this.dx, -this.dy)

to the Vector class.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

132

You can do the same for all operators Kotlin knows. The textual representation for all

of them is shown in Table 4-1.

Table 4-1. Operators

Symbol Arity Textual Standard Meaning

+ u unaryplus reproduces data (e.g., +3).

− u unaryMinus negates data (e.g., −7).

! u not logically negates data (e.g., !true == false).

++ u inc Increments data (e.g., var a = 6; a++; // -> a == 7).

The operator must not change the object on which it gets invoked!

The assignment of the incremented value happens under the hood.

−− u dec decrements data (e.g., var a = 6; a−−; // -> a == 5). The

operator must not change the object on which it gets invoked! The

assignment of the decremented value happens under the hood.

+ b plus adds two values.

− b minus subtracts two values.

∗ b times Multiplies two values.

/ b div divides two values.

% b rem remainder of a division (e.g., 5 % 3 = 2).

.. b rangeTo Creates a range (e.g., 2..5 -> 2, 3, 4, 5)

in

!in

b contains Checks whether the right side is contained or not contained in the

left side.

[] b+ get / set Indexed access. If on the left side of an assignment like q[5] = ...

the set() function gets used with the last parameter designating

the value to set. The get() and set() functions allow more

than one parameter, which then corresponds to several comma-

separated indexes inside []; for example, q[i] →q.get(i),

q[i,j] →q.get(i, j), and q[i,j] = 7 →q.set(i, j, 7)

(continued)

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

133

Symbol Arity Textual Standard Meaning

() b+ invoke Invocation. allows more than one parameter, which then corresponds

to several comma-separated parameters inside (); for example,

q(a) →q.invoke(a) and q(a, b) →q.invoke(a, b).

+ = b plusassign same as plus(), but assigns the result to the instance at which

the operator is invoked.

− = b minusassign same as minus(), but assigns the result to the instance at which

the operator is invoked.

∗ = b timesassign same as times(), but assigns the result to the instance at which

the operator is invoked.

/ = b divassign same as div(), but assigns the result to the instance at which the

operator is invoked.

% = b remassign same as rem(), but assigns the result to the instance at which the

operator is invoked.

== b equals Checks for equality. The ! = stands for unequals and corresponds

to equals() returning false.

<

>

<=

>=

b compareTo Compares two values. The compareTo() function is supposed to

return −1, 0, +1, depending on whether the argument is less than,

equal to, or greater than the value to which the function is applied.

Table 4-1. (continued)

Note because in the operator function body or expression you can calculate
what you want, you can let the operator do strange stuff. just bear in mind
that your class users expect a certain behavior when operators are used, so be
reasonable with what you calculate there.

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

134

By the way, if you prefer to overload operators in an extension file, there is no magic

required. Just write operator fun TheClass.[operator_name]([parameters]) = ...

For the earlier points and vectors example, this reads

operator fun Point.minus(p2:Point) =

 Vector(p2.x-this.x, p2.y-this.y)

Don’t forget to import the extension file, just like you would for any other extension.

 Exercise 9
Add - and + operators to the Vector class. The calculation consists of adding or

subtracting the dx and dy members: Vector(this.dx + v2.dx, this.dy + v2.dy) and

Vector(this.dx - v2.dx, this.dy - v2.dy) if v2 is the operator function parameter.

 Delegation
We learned that inheritance via class TheClass : SomeInterface { ... } lets

TheClass implement functions the interface only declares in an abstract manner.

The implementation code enters the overridden functions in TheClass. Delegation is

similar to inheritance; it starts the same way: class TheClass : SomeInterface

The difference is where the implementing code resides: For delegation it is presumed

that an object is at hand that already implements the interface and TheClass primarily

delegates the work to this object. Using the constructs we already know, this could be

written as:

interface TheInterface {

 fun someMethod(i:Int):Int

 ...more functions

}

class Implementor0 : SomeInterface {

 override fun someMethod(i:Int):Int = i*2

 ...implement the other functions

}

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

135

class Implementor : TheInterface {

 val delegate = Implementor0()

 override fun someMethod(i:Int):Int = delegate(i)

 ...do the same for the other functions

}

The method someMethod() in the Implementor class delegated to the delegate, but it

could also add some extra work, as in

override fun someMethod(i:Int):Int = delegate(i-1) + 1

Kotlin has a concise notation for the delegation basic pattern. You simply write

class Implementor : TheInterface by Implementor0()

// or

val impl0 = Implementor0()

class Implementor : TheInterface by impl0

The Kotlin compiler then automatically implements all the interface methods by

forwarding the work to the delegate. You still can change any function by overriding it:

class Implementor : TheInterface by Implementor0() {

 override fun someMethod(i:Int):Int = i * 42

}

If you explicitly need the delegate object, you must add it to the constructor as in

val b = Implementor0()

class Implementor(val b:TheInterface) :

 TheInterface by b {

 override

 fun someMethod(i:Int):Int = b.someMethod(i-1) + 1

}

val instance = Implementor(b)

ChapTer 4 Classes and ObjeCTs: exTended FeaTures

137
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_5

CHAPTER 5

Expressions: Operations
on Data
We already used expressions a couple of times. Whenever you need to assign a value

to a variable, need function call parameters, or need to provide a value to some kind of

language construct, you need an expression. Expressions also show up where you don’t

expect them, and they can be ignored if we don’t need them.

 Expression Examples
Expressions can be subdivided into different types: numerical expressions, boolean

expressions, string and character expressions, expressions acting on bits and bytes, and

a few more unclassified expressions. Before we start explaining them in detail, here are

some examples:

4 * 5 // multiplication

3 + 7 // addition

6 – 1 // subtraction

"a" + "b" // concatenation

(1 + 2) // grouping

-5 // negation

a && b // boolean a AND b

"Hello" // constant (String)

78 // another constant (Int)

3.14 // another constant (Double)

'A' // another constant (Char)

arr[43] // index access

funct(...) // function invocation

138

Clazz() // instantiation

Obj // singleton instance access

q.a // dereferencing

q.f() // another dereferencing

if(){ } // language construct

when(){ } // another language construct

 Ubiquity of Expressions
In Kotlin, unlike many other computer languages, almost everything is an expression.

Look, for example, at the function invocation funct(). You might think that a function

not declared returning a value as in fun funct() { ... } is not an expression, because

it seemingly cannot be assigned to a variable. Try it and write

fun a() {

}

val aa = a()

Surprisingly the compiler does not mark this code as erroneous. In fact, such a

function actually does return a value; it is the instance of the Unit class and gets called

Unit itself. You cannot do anything interesting with it, but it is a value and it makes a

function not explicitly returning anything implicitly return something.

In the rest of this chapter we cover different expression types and conversions

between them.

 Numerical Expressions
Numerical expressions are constructs built of elements like literals, properties, and

subexpressions, possibly combined by operators and resulting in a number. The set

of commonly known operators referring to addition, subtraction, multiplication, and

division are usually called arithmetics. In computation, this set of standard operators

usually gets augmented by an increment and decrement operator ++ and −−, and an

integer division remainder operator %. For the full list of possible elements that are

usable for numerical expressions inside Kotlin, see Table 5-1.

Chapter 5 expressions: operations on Data

139

Table 5-1. Numerical Expression Elements

Symbol Meaning Examples

literal a literal 3 or 7.5

variable a property val a = 7; val b =

a + 3

funct() the value of a function, if it returns a number fun a() = 7; val b =

3 + a()

[] access to an element in an array or a list of numbers arr[0]

list[7]

() replaced by the result of the inside expression 7 * (a + b)

+ if used in front of an expression, reproduces data val a = +3

val a = +7.4

- if used in front of an expression, negates data val a = -(7+2)

++ Can be used in front of or behind a var; if used in front of

it, evaluates to the current value of the var + 1; if used

behind it, evaluates to the current value of the var; as a

side effect, increments the var

var a = 7

val b = 7 + ++a

val c = 7 + a++

-- Can be used in front of or behind a var; if used in front

of it, evaluates to the current value of the var - 1; if used

behind it, evaluates to the current value of the var; as a

side effect, decrements the var

var a = 7

val b = 7 + --a

val c = 7 + a--

+ adds two values 7 + 6

- subtracts two values 7 – 6

* Multiplies two values 7 * 6

/ Divides two values; if between two non-floating-point

values, returns a non-floating-point value; otherwise

returns a Double or a Float

7 / 6 (gives 1)

7.0 / 6.0 (gives

1:16667)

% remainder of a division of two integer values 5 % 3 (gives 2)

subexpr any expression used as a subexpression, returning a

number

in 5 + a / 7 the a/7

can be considered a

subexpression

Chapter 5 expressions: operations on Data

140

If you mix different types of numbers in an expression, the one with the larger value

range gets used for the returned value’s type, so dividing a Long by an Int returns a Long:

val l1:Long = 234567890L

val i1:Int = 37

val x = l1 / i1 // -> is a Long

Likewise, if you mix normal precision Float elements and double precision Double

elements in an expression, Double wins:

val f1:Float = 2.45f

val d1:Double = 37.6

val x = f1 / d1 // -> is a Double

Mixing integer numbers with floating-point number elements will result in a

floating-point number:

val i1:Int = 33

val d1:Double = 37.6

val x = i1 * d1 // -> is a Double

In case we need to combine three values (or subexpressions) and have two operators

in a row, as in

expr1 ° expr2 ° expr3

the question is which operator gets evaluated first. This is called operator precedence,

and the Kotlin rules for that are shown in Table 5-2.

Table 5-2. Arithmetic Operators’ Precedence

Priority Operators Example

1 ++ -- as a postfix a++

2 - (in front of an expression)

+ (in front of an expression)

++ -- as a prefix

–(3 + 4)

--a

3 * / % 7 * a

4 + - 7 – a

Chapter 5 expressions: operations on Data

141

You can always use round brackets (...) to prescribe any operator evaluation

order. Just as used in math, the values within the brackets are calculated first before the

bracketed solution is used.

 Exercise 1
With Math.sqrt(...) designating the square root , write this in Kotlin code:

a
b x

b x

+
-

- ×
2
72

Assume a, b, and x are existing properties.

 Boolean Expressions
Boolean expressions are expressions that evaluate to one of the boolean values true or

false. We use boolean expressions often if we need to decide which parts of a program

participate in the program flow. Objects and operators that participate in boolean

expressions are listed in Table 5-3.

Table 5-3. Boolean Expression Elements

Symbol Meaning Examples

literal a literal true or false

variable a property val a = true; val b = a

funct() the value of a function, if it returns a boolean fun a() = true;

val b = a()

[] access to an element in an array or a list of

booleans

arr[0]

list[7]

() replaced by the result of the inside

expression

b1 && (a || b)

(note: && = anD, || = or)

(continued)

Chapter 5 expressions: operations on Data

142

Symbol Meaning Examples

&& anD operation; a && b is true only if both a

and b are true; note that the right side of &&

never gets evaluated if the left side evaluates

to false

true && true

(yields → true)

|| or operation; a || b is true only if at least

one of a and b is true; note that the right side

of || never gets evaluated if the left side

evaluates to true

true || false

(yields → true)

! negates the following boolean expression val b = true;

val r = !b

(yields r is false)

a == b Yields true if a and b are equal; a and b are

any objects or subexpressions; boolean or

numerical subexpressions are equal if their

values are the same; objects a and b are

equal if their hashCode() functions return

the same value and a.equals(b) returns

true; two strings are equal if they both

contain the same characters; two instances

of a particular data class are equal if all their

properties are equal

a == 3 (true if a has the

value 3)

a == "Hello" (true if a is

the string “hello”)

a != b Unequals, same as !(a == b) 7 != "XYZ" (→ true)

7 != 7 (→ false)

a < b true if a number a is less than a number

b; also evaluates if on objects a and b the

interface Comparable is defined

a < 7 (→ true if a is less

than 7)

a > b true if a number a is greater than a number

b; also evaluates if on objects a and b the

interface Comparable is defined

a > 3 (→ true if a is greater

than 3)

Table 5-3. (continued)

(continued)

Chapter 5 expressions: operations on Data

143

Symbol Meaning Examples

a <= b true if a number a is less than or equal to a

number b; also evaluates if on objects a and

b the interface Comparable is defined

a <= 7 (→ true if a is less

than or equal to 7)

a >= b true if a number a is greater than or equal

to a number b; also evaluates if on objects a

and b the interface Comparable is defined

a >= 3 (→ true if a is

greater than or equal to 3)

a is b true if an object a implements class or

interface b

val a = 7; val b = a is

Int (→ true)

a !is b same as !(a is b) val a = 7; val b = a

!is String (→ true)

a === b Checks for referential equality; returns true

if objects are the same and is thus stronger

than the == comparison; normally not used

very often, because the semantic check

using the == operator in most cases makes

more sense

class A

val a = A();

val b = A()

val c = a === b

(→ false)

Table 5-3. (continued)

Similar to the numeric expressions from the previous section, boolean expression

operators have a precedence if you use expressions with more operators. The Kotlin

rules for boolean operator precedence are shown in Table 5-4.

Table 5-4. Boolean Operators’ Precedence

Priority Operators Example

1 ! (in front of an expression) val a = true; val b = !a

2 is, !is a in b && c

3 <, <=, >=, > a < 7 && b > 5

4 ==, != a == 7 && b != 8

5 && a == 4 && b == 3

6 || a == 4 || a == 7

Chapter 5 expressions: operations on Data

144

As for numeric expressions, you can use round brackets to force a different order of

precedence:

val b1 = a == 7 && b == 3 || c == 4

val b2 = a == 7 && (b == 3 || c == 4)

As you can see, they are different. In the first line, the && wins and gets calculated

first, because it has a higher priority compared to the ||. In the second line the || wins

because it is inside a bracket.

 String and Character Expressions
There are not too many expression elements for strings. You can, however, concatenate

strings and perform string comparisons. See Table 5-5 for the full list of string expression

elements.

Table 5-5. String Expression Elements

Symbol Meaning Examples

literal a literal "Hello world"

or """Hello world"""

variable a property val a = "abc"; val b = a

funct() the value of a function, if it returns a

string

fun a() = "abc"; val b = a()

[] access to an element in an array or a

list of strings

arr[0]

list[7]

str[] extracts a character from a string "Hello" [1] (yields "e")

() replaced by the result of the inside

expression

"ab" + ("cd" + "ef")

+ string concatenation val a = "Hello " + "world"

(yields → "Hello world")

(continued)

Chapter 5 expressions: operations on Data

145

String literals have a couple of special cases.

• String literals using three sets of double-quotation marks are called

raw strings. They can contain everything, including line breaks

and special characters like the backslash (\). Writing "Hello\n

world" yields “Hello world” separated by a line break. If you write

"""Hello\n world""", however, the output will be literally “Hello \n

world”. An exception is $; you have to write ${'$'} to get it.

• In both raw and normal (“escaped”) strings you can use templates:

A ${} gets replaced by the toString() representation of whatever is

included inside the curly brackets. For example: "The sum of 3 and

4 is ${3+4}" yields the string “The sum of 3 and 4 is 7”. If it is a single

identifier like the name of a property, you can also omit the brackets

and write $propertyName, as in "And the value of a is $a".

Table 5-5. (continued)

Symbol Meaning Examples

a == b Checks for equality; two strings are

equal if they both contain the same

characters

a == "Hello" (true if a is the

string "hello")

a != b Unequals, same as !(a == b) "abc" != "XYZ" (→ true)

a < b true if a string a is lexicographically

less than a string b

"abc" < "abd" (→ true)

a > b true if a string a is lexicographically

greater than a string b

"cd" > "ad" (→ true)

a <= b true if a string a is lexicographically

less than or equal to a string b

"abc" <= "abc" (→ true)

"abc" < "abc" (→ false)

a >= b true if a string a is lexicographically

greater than or equal to a string b

"abc" >= "abc" (→ true)

a in b if a is a Char, true if b contains a; if

a is a string itself, true if a is part of

the string b

'e' in "Hello" (→ true)

'lo' in "Hello" (→ true)

a !in b same as !(a in b) 'x' !in "Hello" (→ true)

Chapter 5 expressions: operations on Data

146

Characters have an integer representation because they correspond to an index

inside a character table. This allows for a few arithmetic and comparison operators to

work with characters. The list of character expression elements is shown in Table 5-6.

Table 5-6. Character Expression Elements

Symbol Meaning Examples

literal a literal 'A'

or '7'

variable a property val a = 'x';

val b = a

funct() the value of a function, if it

returns a character

fun a() = 'x';

val b = a()

[] access to an element in an

array or a list of characters

arr[0]

list[7]

- Distance in the character

table

val d = 'c' - 'a'

(yields → 2)

a == b

a != b

a < b

a > b

a <= b

a >= b

Character comparison;

compares the indexes inside

the character table

'c' > 'a'

(yields → true)

 Bits and Bytes
A byte is a more hardware-oriented data storage unit. We know that there is a Byte type

and that it has values between −128 and 127. A byte corresponds to some hardware

storage and processing element that can be accessed and used in an extremely fast

manner. In your app you use bytes only once in a while, especially when it comes to

using some low-level system functions or addressing connected hardware elements like

the camera or the speaker.

Chapter 5 expressions: operations on Data

147

You know that when you write down a number in the decimal number system like

125, what you actually mean is 5 · 1 + 2 · 10 + 1 · 100. Computers internally don’t

like the decimal numbering system, because if they used it, the difference between,

for example, 7 and 8 could not reliably be represented by some technical property

like the voltage between two contacts. What computers can do really well is find out

whether something is switched on or not, represented by the ciphers 0 and 1. For that

reason, they internally use the binary numbering system. If we need a 125 it actually

gets represented by the binary number 01111101, which means 1·1 + 0·2 + 1·22 +

1·23 + 1·24 + 1·25 + 1·26 + 0·27. The digits inside this number are called bits, and as it

happens, we need eight bits to represent all possible values of a byte.

Because a byte is a number, you can do all the things with it we already talked about

earlier regarding numeric expressions. A byte is also a collection of eight bits, however,

and there are a couple of special operations you can do on the bit level (see Table 5-7).

Note that Short, Int, and Long values correspond to two, four, and eight bytes and thus

8, 16, and 32 bits. Bit-level operations cannot only be performed on bytes, therefore, but

on the other integer types as well.

Table 5-7. Bit Expression Elements

Symbol Meaning Examples

a and b an anD on the bit level; each bit of a gets

paired with the corresponding bit of b, and if

both are 1, the bit in the result number will be

set to 1, too

13 and 11 (evaluates to 9:

00001101 and 00001011 →

00001001)

a or b an or on the bit level; each bit of a gets

paired with the corresponding bit of b, and

if either or both are 1, the bit in the result

number will be set 1, too

13 or 11 (evaluates to 15:

00001101 or 00001011 →

00001111)

a xor b an xor on the bit level; each bit of a gets

paired with the corresponding bit of b, and if

exactly one of them is 1, the bit in the result

number will be set 1, too

13 xor 11 (evaluates to 6:

00001101 xor 00001011 →

00000110)

inv a switches all bits from some number a from 0

to 1 and vice versa

inv 13 (evaluates to 114: inv

00001101 → 11110010 = 114)

(continued)

Chapter 5 expressions: operations on Data

148

Note that the shr operator for a signed shift-right operation refers to negative

numbers in bit representation. Such negative numbers are built as follows: Make

sure that the bits from the negative number and the bits from its arithmetical inverse

added together lead exactly to an overflow. The representation of −3 as a byte thus

gives 11111101, because this plus 00000011 (for +3) gives 100000000. The last number

with nine digits for a byte leads to an overflow and the uppermost ninth bit gets lost,

resulting in a zero. This eventually gives us the desired +3 + −3 = 0 also in the binary

representation.

 Other Operators
Kotlin has a few more operators we can use in expressions. They don’t fit well into the

distinction among numeric, boolean, string and character, and bit expressions, so we

present them on their own in Table 5-8.

Symbol Meaning Examples

a shl b shifts all bits from a by b bit positions to the

left

13 shl 2 (evaluates to 52:

00001101 → 00110100 = 52)

a ushr b shifts all bits from a by b bit positions to the

right; the name is an abbreviation for unsigned

right shift, and means the leftmost bit gets no

special treatment

13 shr 2 (evaluates to 3:

00001101 → 00000011 = 3)

a shr b shifts all bits from a by b bit positions to the

right; if the leftmost bit is set to 1, the leftmost

bit after each bit shift gets set to 1 as well

-7 shr 2 (evaluates to -2:

11111001 → 11111110 = -2)

Table 5-7. (continued)

Chapter 5 expressions: operations on Data

149

Table 5-8. Other Expression Elements

Symbol Meaning Examples

a in b Checks whether some a is contained

in b, with b maybe being an array

or a collection; in general the in

operator is applicable for any object

that defines a operator fun

contains(other:SomeClass):

Boolean function, even for your own

classes

class B

class A { operator fun

contains(other:B):Boolean

{ ... } }

val b = B()

val a = A()

val contained = b in a

a !in b the opposite of a in b;

works also if operator fun

contains(other:SomeClass):

Boolean is defined for a’s class

see a in b; add

val notContained = b !in a

:: if used like ClassName::class

it creates a reference to a class; if

used like ClassName::funName or

ClassName::propertyName it creates a

reference to a function or a property

val c = String::class

val f = String::length

a .. b Creates a range from an integer (literal,

Byte, Short, Int, Long, or Char) a to

another integer b

1..100

a ?: b the Elvis operator; if a is not null, take

it; otherwise take b

var s:String? = ...

var ss = s?:"default"

(if s is null, take “default” instead)

a ?. b or

a ?. b()

safe dereferencing or safe call operator;

for some object a, retrieves property b or

the result from function b() invocation

(can have parameters) only if a is not

null; otherwise evaluates to null itself

var i:Int? = ...

var ss:String? =

i?.toString()

a!! Makes sure a is not null; otherwise

throws an exception

var s:String? = ...

var ss = s!!.toString()

Chapter 5 expressions: operations on Data

150

The !! operator at the end of an expression not only checks that it is not null, it

also converts it to a non-nullable type:

val c:Int? = ... // an int or null

val b = c!! // b is non-nullable!

// the same: val b:Int = c!!

Even better, Kotlin remembers that we checked for c not being null and for the rest

of the function considers c as a non-nullable property.

Caution even if the !! seems to be a versatile tool to simplify coding, you should
not use it often. the operator somewhat thwarts Kotlin’s way of handling nullability.
the !! breaks non-nullability and hides the advantages we have by differentiating
between nullable and non-nullable types and expressions.

 Exercise 2
Create a class Concatenator that allows string concatenation via a function

add(s:String). Add another function such that it is possible to write the following to see

whether the concatenated string contains some substring.

val c = Concatenator()

c.add("Hello")

c.add(" ")

c.add("world")

val contained = "ello" in c

 Conversions
If you have a val or var property or a function parameter of some type, the question

is what happens if in an assignment we provide an expression of a different type. If

this type mismatch is substantial, for example if we need an Int number and a String

gets provided, the compiler will fail and we need to fix it. In other cases, for example

providing an Int if we actually needed a Long, a simple conversion between the types

would be nice.

Chapter 5 expressions: operations on Data

151

Kotlin helps us here by providing several functions that can be used to perform type

conversions manually. In the following list we investigate the options we have if types

don’t match.

• An Int is needed.

 – Byte, Short, Int, Long: All these provide a toInt() function that performs a

direct conversion.

 – Char: Has a toInt() function that gives the index of the character in the

character table.

 – Float, Double: Provide a toInt() function that for positive numbers returns

the closest Int below the given floating-point number. For negative num-

bers the closest Int above the given floating-point number gets returned. In

addition, they have a roundToInt() function that provides a half-up round-

ing to the next integer.

 – String: Provides a toInt() function that parses the given string and tries to

convert it to an Int. This will fail if the string provided does not contain an

integer number, as only an optional sign and the ciphers 0 to 9 are allowed.

In addition, there is a toIntOrNull function that handles the same conver-

sion but will not fail and will instead return null if the conversion is not

possible. Variants toInt(radix:Int) and toIntOrNull(radix:Int) use a

different numbering system (radix) for the conversion. For the hexadecimal

radix (use 16 as a radix parameter), for example, the ciphers 0 to 9 and the

letters A to F are allowed.

 – Boolean: No conversion from a boolean to an integer number is possible.

• A Long, Byte,or Short is needed.

All types Byte, Short, Int, Long, Char, Float, Double, and String

provide toLong(), toByte(), and toShort() functions, which

follow the same rules as for the Int target type, except that different

number ranges apply. Note that for strings an L suffix for long

literals is not allowed.

Chapter 5 expressions: operations on Data

152

• A Char is needed.

All integer types Byte, Short, Int, and Long provide a toChar()

function that uses the number provided to perform an indexed

lookup in the character table. A Char.toChar() returns the argument

untouched. The types Float and Double provide a toChar() function

that first applies a toInt() and then performs the character table

lookup. A string does not provide a conversion to a Char, but you can

use a toCharArray() and then the index operator [] to access the

array elements (e.g., "123".toCharArray()[0] gives '1').

• A Double or a Float is needed.

 – Byte, Short, Int, and Long: All these provide toFloat() and toDouble()

functions that perform the obvious conversion.

 – Char: Characters have toFloat() and toDouble() functions as well, but

those return the index in the character table converted to a floating-point

number.

 – Float, Double: These provide toFloat() and toDouble() functions that

perform a precision conversion if necessary.

 – String: This has toFloat() and toDouble() functions that try to parse the

string provided to convert it to a Float or a Double. The String could use an

English format floating-point number representation or scientific notation;

for example, 27.48, -3.0, 1.8e4. This process will fail if the conversion is not

possible. Variants toDoubleOrNull() and toFloatOrNull() will try the

same conversion, but instead return null if a conversion error occurs.

 – Boolean: No conversion from a boolean to a floating-point number is

possible.

• A String is needed.

Any object in Kotlin provides a toString() conversion, which

translates it to a human-readable representation. For integer

numbers including characters, the conversion is obvious; for

floating- point numbers the English format will be chosen; and

booleans translate to true or false. The types Byte, Short, Int,

and Long also have a toString(radix:Int) function that uses the

provided numbering system (radix) for the conversion.

Chapter 5 expressions: operations on Data

153

A couple of automatic conversions apply, so is it possible to write val l:Long = 7,

which looks like an automatic Int to Long conversion.

Note as a rule of thumb during coding, you can test whether automatic
conversions are possible, but in most cases it is better to explicitly declare the
conversion.

In expressions where operators work, another kind of conversion rules applies. For

any operator

a ° b

where a is of type AType and b is of type BType, the operator implementation decides

what the operation outcome type is. An important case is

[Number] ° [Number]

where [Number] is out of Byte, Short, Int, Long, Float, or Double, and the operator is

any numeric operator (+ - / * %). Here the type returned by the expression in most

cases is the type with the higher precision. The precision ranking is Byte < Short < Int

< Long < Float < Double. For example:

7 + 10_000_000_000L -> Long

34 + 46.7 -> Double

Another type of operator-induced conversion you’ll see quite often in Kotlin

programs is

String + [Any]

Here a concatenation of the string and the outcome of .toString() on [Any] will

happen. For example:

"Number is " + 7.3 -> "Number is 7.3"

"Number is " + 7.3.toString() -> "Number is 7.3"

"Hell" + 'o' -> "Hello"

Chapter 5 expressions: operations on Data

155
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_6

CHAPTER 6

Comments in Kotlin Files
Comments in computer language files are text that does not belong to the computer

language itself and thus have no influence over the program execution, but provide a

textual description of elements and constructs used in the program. Comments help the

reader to understand your program.

From a technical point of view comments are easy to generate and differentiate from

the program syntax itself.

• Everything starting with a double slash // (not inside a string literal)

to the end of the line is a comment.

• Everything starting with a /* and ending with a */ (both not inside a

string literal) is a comment, no matter how many lines are spanned

by this.

At first glance, comments might seem like a nice-to-have feature in programs, and

adding or omitting them seems to be a personal decision of each developer. There is

more to commenting, though. Looking a bit closer at the matter, comments are handled

in the realm between two limits:

• Writing no comments at all: For short programs and those that are

extremely well structured and self-explanatory, it is a valid, although

arguable position to write no comments at all. The advantages of

such an approach are obvious: You have to write less, there is no

danger of confusing comments and source code, and following the

approach properly will result in comprehensive code of high quality.

There are disadvantages as well, though: You might be wrong in your

assessment of whether your code is self-explanatory, tools depending

on comments do not provide output, or your company’s quality

assurance guidelines might get violated.

156

• Verbose commenting: On the other hand, if you verbosely comment

each and every bit of your program, you will have to write a lot, and

you might neglect code quality because ambiguous or confusing

constructs in the program are clarified by the comments.

The best approach lies somewhere between these limits. As a rule of thumb,

you should write comments for classes, interfaces, and singleton objects, explaining

what they are good for, and you should comment public functions in them, including

description of their parameters.

Note I owe you a confession here. The NumberGuess game app from the
previous chapters did not contain any comments in the sources I provided.
Comments were left out to keep the listings small, and the floating text around
those listings serves as a substitute for the reader. After you’ve read this chapter,
feel free to remedy this and add appropriate comments to the classes, interfaces,
and singleton objects there.

In this chapter we cover exactly how comments should be added to Kotlin files,

including what can be done with them.

 Package Comments
We learned that packages correspond to files with a strong cohesion of their purpose

and functioning. From a technical point of view, each package also corresponds to a

directory in the operating system’s file hierarchy.

It makes sense to describe packages through appropriate commenting, and the

way we do this in Kotlin is as follows: For each package, that is to say inside each folder,

create a file package-info.md. To do this inside Android Studio, you must switch to

the Project Files view type in the project explorer (see Figure 6-1). Click the small gray

downward-pointing rectangle next to Android to switch the view type. You can then

right-click on one of the packages and from the shortcut menu select New ➤ File. Enter

the complete file name package-info.md.

Files with the suffix .md are Markdown files. Markdown is a styling language similar

to HTML, but with its own simplified syntax. We are going to describe Markdown

soon, but first we must teach Android Studio how to handle Markdown files. To do

ChApTer 6 CommenTs In KoTlIn FIles

157

so, double-click one of the new package-info.md files. The Studio opens the file in its

standard text editor, but it displays a warning message on top of the edit pane, as shown

in Figure 6-2.

Figure 6-1. Project Files view

Figure 6-2. The Android Studio trying to open a Markdown file

ChApTer 6 CommenTs In KoTlIn FIles

158

Click the Install plugins link. On the subsequent screens accept any license

declaration, and if asked, select Use markdown support by JetBrains.

Inside each package-info.md file, let the first line read

Package full.name.of.the.package

where for full.name.of.the.package you substitute the name of each package. The line

starting with a single # actually stands for a level 1 heading.

The rest of the file contains Markdown styled text. For example, the package-info.md

file inside the package kotlinforandroid.book.numberguess.random could read

Package kotlinforandroid.book.numberguess.random

This package contains *interfaces* and *classes* for generating random numbers.

In your code you will write something like this:

 val rnd:RandomNumberGenerator = [one of the 'impl' classes instantiated]

For example,

 val rnd:RandomNumberGenerator = StdRandom()

 // or

 val rnd:RandomNumberGenerator = RandomRandom()

These package-info.md files and all the other documentation constructs we will

talk about here then can be used to generate documentation for your project. During

this process the *interface* will be translated to emphasized text, and passages with

four spaces at the beginning of the line will have a code style format applied. Text

inside backtick quotes (‘) will be marked as inline code. This particular Markdown file,

for example, will be translated into a piece of documentation like the one shown in

Figure 6- 3. These and all the other standard Markdown syntax elements are described

in the next section.

ChApTer 6 CommenTs In KoTlIn FIles

159

Table 6-1. Markdown Syntax

Style Markdown Syntax Hints

heading

level 1

Heading The package-info.md file must not contain more than one

level 1 heading. You can add a # at the end of the header line.

heading

level 2–6

Heading

Heading

…

The number of # determines the level. You can improve

readability by appending the same number of # at the end of

the header.

Unordered

list

- Item1

- Item2

…

You could also use + or * as an item indicator.

ordered list 1. Item1

2. Item2

…

The consecutive numbering will be assured automatically, so

you could write any number (write always “1.” or whatever).

(continued)

Figure 6-3. Translated Markdown code

 Markdown
Both Markdown files as used for package descriptions and inlined documentation inside

your Kotlin code files use a common syntax for styling issues. These Markdown syntax

elements are described in Table 6-1.

ChApTer 6 CommenTs In KoTlIn FIles

160

You have several options for inserting links. First you can create an inlined link as

follows:

[link text](link-URL)

or

[link text](link-URL "Title")

where the optional "Title" goes to the title attribute in case the documentation gets

transformed to HTML. Then the title attribute, for example, gets shown to the user

Table 6-1. (continued)

Style Markdown Syntax Hints

emphasis *some text*

or _some text_

If you need an asterisk (*) or underscore (_) in your text, write

* or _.

strong

emphasis

some text

or

_ _some text_ _

If you need an asterisk (*) or underscore (_) in your text, write

* or _.

Block Quote > some text You can increase the level by using more > characters at the

line beginnings. Block quotes can contain other markdown

elements.

paragraph

Delimiter

<empty line> A line break at the end of some text will not end a paragraph.

link see below —

Inlined Code 'some text'

(backticks)

If you need a backtick (‘) in your text, write \'.

Block Code ⊔⊔⊔⊔ code line 1

⊔⊔⊔⊔ code line 2

…

This must be surrounded by empty lines. ⊔ is a space

character (you could also use one tab character instead).

rules - - -

* * *

You can also use more of these, and use space characters as

delimiters.

escapes prepend a "\" Use this to avoid characters doing something special, as

described earlier in the table. eligible characters are \ * _

[] () # + - . ! '

ChApTer 6 CommenTs In KoTlIn FIles

161

once the mouse hovers over the link (this behavior depends on the browser used). Here

is an example for such an inlined link:

Find the link here:

[Link](http://www.example.com/somePage.html "Page")

Reference links use a reference ID so you can refer to the same link several times

in a text. The syntax is

[link text][link ID]

where the link ID can contain letters, spaces, numbers, and punctuation, but is

otherwise case insensitive. Somewhere else in the text the link definition itself needs to

be provided, on a line on its own:

[link ID]: link-URL

or

[link ID]: link-URL "Title"

For long URLs or long titles, the optional "Title" can also be put in the next line.

Note that the link definitions do not produce any output, they just make the text in the

Markdown file easier to read.

As an abbreviation the link text can serve as both the text and the ID, if you write

[link text][]

and for the definition

[link text]: link-URL

or

[link text]: link-URL "Title"

If you don’t need a link text but just want to tell the URL, you should convert the links

to automatic links by surrounding them with angle brackets as in <http://www.apress.

com>. The URL then gets printed as is, but is clickable in addition.

As an extension to links as just described, you can refer to classes, properties, and

methods as if they were implicit links:

[com.example.TheClass]

[com.example.TheClass.property]

[com.example.TheClass.method]

ChApTer 6 CommenTs In KoTlIn FIles

http://www.apress.com/
http://www.apress.com/

162

You can do this the same way for interfaces and singleton objects. If you want to

provide your own link text, write this:

[link text][com.example.TheClass]

[link text][com.example.TheClass.property]

[link text][com.example.TheClass.method]

If the element being documented might address classes, interfaces, or singleton

objects by their simple name because they have been imported, the package specifier

can be omitted and you can directly write [TheClass], [TheClass.property], and

[TheClass.method].

 Class Comments
We know that multiline comments can be written as /* ... */. As a slight modification,

for documenting code elements the convention is to add another asterisk (*) to the

left comment bracket: /** ... */, and in addition every line inside the comments is

supposed to start with an asterisk as shown here:

/**

 *The comment ...

 * ...

 */

This is still a multiline comment that happens to start with an asterisk, but the

tool that knows how to extract the documentation from the code recognizes this as

something that needs to be handled. You can still use normal multiline comments

/* ... */ at will, but the documentation tool will just ignore them.

Class comments are written just in front of the class ... declaration, as such an

adapted multiline comment /** ... */. The content of the class description comment

is Markdown code, as described earlier.

The first paragraph of such documentation should provide a short summary,

as tools might use it for listings. In addition to standard Markdown elements, in the

documentation you can add elements as follows:

• @param <name> description: Describes a type parameter <name> of

the class. Class type parameters are described later in the book. You

can also write @param[name] description.

ChApTer 6 CommenTs In KoTlIn FIles

163

• @constructor description: Describes the primary constructor of

a class.

• @property <name> description: Describes a parameter of the

primary constructor.

• @sample <specifier>: Inserts the specified function’s code.

• @see <specifier>: Adds a link to the specified identifier (a class,

interface, singleton object, property, or method).

• @author description: Adds authoring information.

• @since description: Adds information about how long the

documented element has existed (version info, etc.).

• @suppress: Excludes the class, interface, or singleton object from the

documentation.

An example of documentation for class MainActivity of the NumberGuess

game reads like this:

/**

 * The main activity class of the NumberGuess game app.

 * Extends from the

 * [android.support.v7.app.AppCompatActivity]

 * class and is thus compatible with earlier

 * Android versions.

 *

 * The app shows a GUI with the following buttons:

 * - **Start**: Starts the game

 * - **Do Guess**: Used for guessing a number

 *

 * Once started, the game secretly determines a random

 * number the user has to guess. The user performs

 * guesses and gets told if the guessed number is too

 * low, too high, or a hit.

*

 * Once hit, the game is over.

*

ChApTer 6 CommenTs In KoTlIn FIles

164

 * @see Constants

*

 * @author Peter Späth

 * @since 1.0

 */

class MainActivity : AppCompatActivity() {

 ...

}

The corresponding output, once converted by a documentation tool, would look like

Figure 6-4.

Figure 6-4. Documentation for the NumberGuess activity

ChApTer 6 CommenTs In KoTlIn FIles

165

 Function and Property Comments
For functions and properties, you basically do the same as for classes. Just add /** ... */

in front of any function or property you want to comment. As for class documentation,

you start each line with any number of spaces and an asterisk. Inside use Markdown

code again. For example:

...

class SomeClass {

 /**

 * This describes property prop

 * ...

 */

 val prop:Int = 7

 /**

 * This describes function func

 * ...

 */

 fun func() {

 ...

 }

}

As for classes, interfaces, and singleton objects, the first paragraph of such

documentation should provide a short summary, as tools might use it for listings.

For properties, there are a couple of additional elements you can use:

• @sample <specifier>: Inserts the specified function’s code.

• @see <specifier>: Adds a link to the specified identifier (a class,

interface, singleton object, property, or method).

• @author description: Adds authoring information.

• @since description: Adds information about how long the

documented element has existed (version info, etc.).

• @suppress: Excludes the property from the documentation.

ChApTer 6 CommenTs In KoTlIn FIles

166

Function documentation snippets should also describe the function’s parameters

and return values. In detail, here are all the documentation elements for functions.

• @param <name> description: Describes a function parameter.

• @return description: Describes what the function returns.

• @receiver description: Describes the receiver of an extension

function.

• @throws <specifier>: Indicates that the function might throw the

exception designated by the specifier. We cover exceptions later in

the book.

• @exception <specifier>: Same as @throws.

• @sample <specifier>: Inserts the specified function’s code.

• @see <specifier>: Adds a link to the specified identifier (a class,

interface, singleton object, property, or method).

• @author description: Adds authoring information.

• @since description: Adds information about how long the

documented element has existed (version info, etc.).

• @suppress: Excludes the property from the documentation.

 Exercise 1
Add comments to all packages, classes, and public functions of the NumberGuess game app.

 Generate Your Own API Documentation
With all elements of a program properly documented, we now need to find a way to

extract the documentation for creating, for example, a collection of interlinked HTML

documents. The generated documentation should describe all classes, interfaces, and

singleton objects, as well as all public methods and properties. Because these elements

are enough for a client software to know how to interact with your program, such

documentation is commonly referred to as application programming interface (API)

documentation.

ChApTer 6 CommenTs In KoTlIn FIles

167

Dokka is a tool Kotlin can use to create exactly this kind of API documentation.

To install Dokka, open Android Studio. Inside the Gradle Scripts drawer (you might need

to switch back to the Android view type), there are two files named build.gradle, one

labeled Project NumberGuess and one labeled Module: app (see Figure 6-5). Those two

build files are responsible for describing how the app is to be built to run correctly. This

includes declaring libraries that need to be made available to your program.

Note The term library commonly refers to programs built by others, from which
parts get used by your app to perform certain tasks. You’ll very often add libraries
to your projects so you can benefit from the work others have made available to
the public.

Open the Project build.gradle and add the following line right under buildscript {:

ext.dokka_version = '0.9.17'

In the same file, inside the dependencies block also add (one line):

classpath "org.jetbrains.dokka:

 dokka-android-gradle-plugin:${dokka_version}"

This ensures the Dokka library gets added to the project.

Figure 6-5. Build scripts

ChApTer 6 CommenTs In KoTlIn FIles

168

Now open the Moduĺe build.gradle and underneath all the other apply plugin

lines, add

apply plugin: 'org.jetbrains.dokka-android'

Inside the same file, add this at the bottom:

task myDokka(type: org.jetbrains.dokka.gradle.

 DokkaAndroidTask) {

 outputFormat = 'html'

 outputDirectory = "dokka"

 includes = ['packages.md']

 doFirst {

 // build the packages.md file

 def pckg = new File(projectDir.absolutePath +

 File.separator + "packages.md")

 pckg.text = ""

 def s = ""

 projectDir.eachFileRecurse(

 groovy.io.FileType.FILES) { f ->

 if(f.name == 'package-info.md') {

 s += "\n" + f.text

 }

 }

 pckg.text = s

 }

}

This configures Dokka and adds a preparation step.

Note Dokka by default doesn’t know how to handle our package-info.md
files. It instead expects a single file packages.md. The preparation step gathers
all package- info.md files and builds a packages.md file. By the way, this little
script is written in Groovy, the language on which the Gradle build system relies.

ChApTer 6 CommenTs In KoTlIn FIles

169

Now to actually perform the documentation generation, open the Gradle tab at the

very right edge of the window, then navigate to NumberGuess: ➤ NumberGuess ➤ Tasks

➤ Documentation. Double-click myDokka (see Figure 6-6).

You’ll now find the API documentation as a collection of interlinked HTML

files inside the folder dokka (switch to the Project Files view type to see it inside

Android Studio).

Figure 6-6. Dokka build task

ChApTer 6 CommenTs In KoTlIn FIles

171
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_7

CHAPTER 7

Structural Constructs
From the very beginning of computer languages, conditional branching of the program

flow has been one of the most basic things program code must be able to express. This

branching happens inside functions, so it imposes some kind of substructuring inside

classes and singleton objects. In this chapter we cover such branching constructs,

together with auxiliary classes that help us write corresponding code.

 Ifs and Whens
In real life many actions are based on decisions. If some condition is met, an action

A happens; otherwise, action B happens. For any programming language we need

something similar, and the most basic way of creating such a branching of the program

flow is the venerable if–else if–else construct. You check some condition, and if it is met,

the if branch gets executed. If not, optionally you check another else if condition, and

if this one is met, the corresponding branch is executed. After potentially more else if

clauses, a final else block gets executed if none of the if and else if checks yield true.

In Kotlin, of course, we have such an if–else if–else program construct, which reads

if([condition]) {

 [statements1]

} else if([condition2]) {

 [statements2]

} else if([condition3]) {

 [statements3]

... more "else ifs"

} else {

 [statementsElse]

}

172

where all the else if and else clauses are optional and each condition must evaluate

to a boolean value. How you calculate this value is up to you: It could be a constant,

a variable, or a complex expression. As an example, consider a check to determine

whether some variable v equals a particular constant, and if so, call some function

abc1(). If not, call function abc2() instead. The code reads:

if(v == 7) {

 abc1()

} else {

 abc2()

}

Where blocks contain only one statement, you can omit the curly brackets and even

the line break, so

if(v == 7) abc1() else abc2()

on one line is valid code.

As a specialty and similar to most other constructs in Kotlin, such a conditional

construct can have a value and thus can be used inside expressions. For this to work, the

last line of all the statement blocks must evaluate to corresponding data.

val x = if([condition]) {

 [statements1]

 [value1]

} else if([condition2]) {

 [statements2]

 [value2]

} else if([condition3]) {

 [statements3]

... more "else ifs"

} else {

 [statementsElse]

 [valueElse]

}

Chapter 7 StruCtural ConStruCtS

173

This time the else clause is not optional; otherwise the result of the complete

construct was undefined if there was no else value. Needless to say, all the values at the

end of the blocks must have the same desired type for this construct to work.

Similar to the nonexpression variant, if there are no statements in the block the

brackets and newlines can be omitted, so this is a valid statement:

val x = if(a > 3) 27 else 28

A large conditional branching construct with lots of else if clauses is rather clumsy.

That is why there is another more concise construct, which reads as follows:

when([expression]) {

 val1 -> { ... }

 val2 -> { ... }

 ...

 else -> { ... }

}

where the branches { … } get executed when [expression] yields the value in front of

the ->. This one also can evaluate to a value:

val x = when([expression]) {

 val1 -> { ... }

 val2 -> { ... }

 ...

 else -> { ... }

}

where the last element in each { … } will be used as a value to return in case the

corresponding check matches.

To avoid repetition of code blocks, you can also define evaluation groups as in

when([expression]) {

 val1 -> { ... }

 val2,val3 -> { ... }

 ...

 else -> { ... }

}

This also works for the value-yielding variant.

Chapter 7 StruCtural ConStruCtS

174

For the values on the left side of the -> you can use arbitrary expressions including

function calls:

val x = when([expression]) {

 calc(val1) + 7 -> { ... }

 val2,val3 -> { ... }

 ...

 else -> { ... }

}

In addition, we can use a special in operator or its negation counterpart !in for

inclusion checks:

val l = listOf(...)

val x = when([expression]) {

 in l -> { ... }

 in 27..53 -> { ... }

 !in 100..110 -> { ... }

 ...

 else -> { ... }

}

which also works for arrays. The 27..53 and 100..110 define ranges, which means they

represent the given limits and all values in between. We discuss ranges in more detail in

the following section.

Another check that comes in handy is a special is operator that performs a type check:

val q:Any = ... // any type

val x = when(q) {

 is Int -> { ... }

 is String -> { ... }

 ...

 else -> { ... }

}

There is also a negation variant of is: Not surprisingly, it reads !is.

Chapter 7 StruCtural ConStruCtS

175

Once again, for one-line blocks the brackets can be omitted, as shown here:

val q = ... // some Int

val x = when(q){ 1 -> "Jean" 2 -> "Sam" else -> "" }

If you need the [expression] from inside when(…) for evaluations inside the inner

blocks, it is possible to capture it:

val x = when(val q = [some value]) {

 1 -> q * 3

 2 -> q * 4

 ...

 else -> 0

}

where the capturing variable is valid only inside the when block.

 Ranges
Ranges frequently get used for looping needs. We discuss looping in the next section, so

consider this section a preparatory step. A range is defined by two bound values and the

way values in between get interpolated.

In Kotlin there are three types of ranges for Int, Long, and Char types. Using the

constructors, they can be built as follows:

val r1 = IntRange(1, 1000)

val r2 = LongRange(1, 10_000_000_000)

val r3 = CharRange('A', 'I')

In addition, to achieve the same you can use the range operator .. as follows:

val r1 = 1..1000

val r2 = 1L..10_000_000_000L

val r3 = 'A'..'I'

Finally, a couple of Kotlin standard library functions return ranges or act on ranges.

Any integral type (i.e., Byte, Short, Int, Long, and Char) has a rangeTo() function to

create a range from it. A 7..77 can therefore also be built by writing 7.rangeTo(77).

Chapter 7 StruCtural ConStruCtS

176

Ranges also have a step property that defines how values get interpolated between

the range bounds. As a default, the step is +1, but you can adjust it as follows:

1..1000 step 5

(1..1000 step 5).reversed()

where the reversed() from the last line exchanges bounds and negates the step. Note

that by language design, explicitly specifying a negative step is not allowed. It is, however,

allowable to use the downTo operator:

1000 downTo 1 step 5

Ranges indicate the first and the last value if you use the first or last property:

(1..1000 step 5).first // -> 1

(1..1000 step 5).last // -> 996

(1000 downTo 1 step 5).first // -> 1000

(1000 downTo 1 step 5).last // -> 5

 For and While Loops
A loop corresponds to a program part iterated over and over multiple times. One

possibility for such a loop is a for loop, which reads as follows:

for(i in [loop data]) {

 // do something with i

}

where [loop data] is a range, a collection, an array, or any other object that has a

function iterator() returning an object that has a next():E and a hasNext():Boolean

function (E is the loop variable type). In the latter case all three functions, iterator(),

next(), and hasNext(), must be marked with operator.

Similar to for loops are while and do .. while loops, which continue to loop until

some condition yields false:

while([condition]) {

 // do something

}

Chapter 7 StruCtural ConStruCtS

177

do {

 // do something

} while([condition])

where in the first case the condition is checked at the very beginning, and in the second

case at the end of any iteration (including the first).

Both for and while loops can be primordially exited by using break in the inner

program flow. Likewise, using a continue statement anywhere inside the loop forces the

next iteration, neglecting anything behind the continue:

while([condition]) {

 ...

 break // -> exit loop

 ...

 continue // -> next iteration

 ...

}

or similarly for for and do .. while loops.

Note For and while loops are now considered quite old school. using
forEach() on collections gives more power over loop preparation actions like
transformation and filtering, so prefer forEach() over for and while. We talk a
lot about collections and iterating over collection data in a later chapter.

 Scoping Functions
A couple of Kotlin’s standard library functions are extremely powerful when it comes

to expressiveness of your code. Five of them—apply, let, also, run, and with—are

called scoping functions because they open a new scope inside a function and thus

improve program flow structuring. Let’s see what they do and how they help us to

write better code.

Chapter 7 StruCtural ConStruCtS

178

Note By the way, if you need a mnemonic to memorize them, read “let us alSo
run WIth applY.”

 The apply Function
Let us look at the first one of these scoping functions, apply. You can hang this at any

object, as in

object.apply {

 ...

}

That doesn’t look too adventurous, but the magic is what happens to the object

instance inside the curly brackets of apply: It gets transported to this. In addition, apply

automatically returns the object instance. Therefore if we write this.someProperty or

someProperty, or this.someFunction() alias someFunction(), it refers to the object in

front of apply, not to the surrounding context. What does that mean? Well, consider this:

class A { var x:Int, var y:Int }

val instance = A()

instance.x = 4

instance.y = 5

instance.y *= instance.x

If we now write .apply{ … } right behind the initialized object, we can use this to

access the instance and get

class A { var x:Int, var y:Int }

val instance = A().apply{

 this.x = 4

 this.y = 5

 this.y *= this.x

}

Chapter 7 StruCtural ConStruCtS

179

which can be shortened further, as this. can be omitted:

class A { var x:Int, var y:Int }

val instance = A().apply{

 x = 4

 y = 5

 y *= x

}

Note Because propertyName and functionName() target the this instance,
we can also say that this represents the receiver of such simple property and
function accesses. Without a scoping function, this refers to the surrounding
class instance or singleton object. With this redefined inside apply{ ... } the
instance in front of .apply becomes the new receiver.

If a property or function identifier used inside the apply{} construct does not exist in

the receiver object, the surrounding context gets used instead:

var q = 37

class A { var x:Int, var y:Int }

val instance = A().apply {

 x = 4

 y = 5

 q = 44 // does not exist in A, so the q from

 // outside gets used

}

This strong coupling of the object the apply{ … } gets operated at, and the this

scope functions and properties inside the curly brackets being received by the same

object, makes the apply{} construct an extremely good candidate for preparing objects

right after their instantiation:

val x = SomeClass().apply {

 // do things with the SomeClass instance

 // while assigning it to x

}

Chapter 7 StruCtural ConStruCtS

180

The this from the surrounding context (class or singleton object) is not lost. If you

need it inside apply{}, you can get it by adding a qualifier @Class, as in

class A {

 fun goA() { ... }

 ...

 val x = SomeClass().apply {

 this.x = ... // -> SomeClass.x

 x = ... // -> SomeClass.x

 this@A.goA() // -> A.goA()

 ...

 }

}

 The let Function
The let scoping function frequently gets used to transform an object into a different

object. Its complete synopsis reads like this:

object.let { o ->

 [statements] // do s.th. with 'o'

 [value]

}

The last line must contain the expression that let{} is supposed to return. The let{}

construct has a function as a parameter, and if you write it as shown here and using an

anonymous lambda function with o as a parameter, this parameter function gets the

object itself as a parameter. You can also omit the o ->, in which case a special variable

it automatically gets used instead:

object.let {

 [statements] // do s.th. with 'it'

 [value]

}

Chapter 7 StruCtural ConStruCtS

181

Note Writing let { } without a x -> inside the curly brackets looks as if the
{ } was a function block. this is a syntactical coincidence; in fact, it is an
anonymous lambda function with the automatic variable it as the parameter.

Functions with other functions as parameters are called higher order
functions. We cover higher order functions in Chapter 12.

As an easy example, we take a string and use let{} to append a line break "\n" to it:

val s = "Hello World"

val s2 = s.let { it + "\n" }

// or s.let { string -> string + "\n" }

 The with Function
The with scoping function is the brother of apply{ … }. The difference is it just gets the

object or value to convert to a receiver as a parameter:

val o = ... // some value

with(o){

 // o is now "this"

 ...

}

The with function is frequently used to avoid repeatedly writing the object to act on,

as in

with(object){ f1(37)

 f1(12)

 fx("Hello")

}

instead of

object.f1(37)

object.f1(12)

object.fx("Hello")

Chapter 7 StruCtural ConStruCtS

182

 The also Function
The also scoping function is related to the apply{ … } function, but does not redefine

this. Instead it provides the object or value in front of also as a parameter to the lambda

function parameter:

object.also { obj ->

 // 'obj' is object

 ...

}

or

object.also {

 // 'it' is object

 ...

}

You use also{ } for cross-cutting concerns, which means you do not alter the object

(this is what apply{ … } is for), but perform actions that are not primarily related to the

current program flow. Performing caching, logging, authentication, or registering the

object in some registry object are suitable examples.

 The run Function
The run scoping function is similar to the apply{ … } function. However, it does not

return the receiver object, but instead returns the value of the last statement:

val s = "Hello"

val x = s.run {

 // 'this' is 's'

 ...

 [value]

}

// x now has [value]

Chapter 7 StruCtural ConStruCtS

183

You can see run{ … } as a general-purpose “do something with an object” bracket. One

prominent use case, though, consists of acting on an object only if it is not null. Instead of

var v:String? = ...

...

if(v != null) {

 ...

}

you can write

var v:String? = ...

...

v?.run {

 ...

}

Remember that a ?. accesses a property or invokes a function only if the object in front

of it is not null. The more concise latter variant might be more readable in some cases.

 Conditional Execution
A construct that allows us to write a conditional branching as an instance function reads

as follows:

someInstance.takeIf { [boolean_expression] }?.run {

 // do something

}

Here inside the boolean expression you can use it to refer to someInstance. The

takeIf() function returns the receiver (here someInstance) if the boolean expression

evaluates to true; otherwise it returns null. This works for any object.

Chapter 7 StruCtural ConStruCtS

185
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_8

CHAPTER 8

Exceptions: If Something
Goes Wrong
For very simple programs it is probably easy to make sure all program parts do exactly

what they are supposed to. For programs with a higher level of complexity, those built

by many developers, or those that use external programs (libraries), the situation is

not that clear. Problems will arise, for example, if lists or arrays get addressed out of

bounds, some I/O access to files or network data streams fails, or objects end up in an

unanticipated or corrupted state.

This is what exceptions are for. Exceptions are objects that get created or thrown if

something unanticipated and possibly malicious happens. Special program parts can

then receive such exception objects and act appropriately.

 Kotlin and Exceptions
Kotlin has a rather liberal way of treating exceptional states, but Android does not. If

you don’t care about exceptions in your app and any program part happens to throw an

exception, Android will soberly tell you the app crashed. You can prevent that by putting

suspicious program parts into a try-catch block:

try {

 // ... statements

} catch(e:Exception) {

 // do something

}

or

186

try {

 // ... statements

} catch(e:Exception) {

 // do something...

} finally {

 // do this by any means: ...

}

In both cases, the construct gets called catching an exception. The optional finally

block gets executed at the end of the construct, regardless of whether or not an exception

got caught. You usually use it to clean up any mess the code inside try { } might have

caused, including closing any open file or network resources and similar operations.

Note As a rule of thumb, using many try-catch clauses in your code hardly
increases code quality. Don’t do that. Having a few of them at central places of
your app usually is a good idea, though.

Once an exception occurs inside the try{ } block—and this includes any method

calls from there—the program flow immediately branches to the catch{ } block. What

exactly should happen there is a question that is difficult to answer, especially in an

Android environment. While you develop an app, writing logging entries certainly

is a good idea. This is not part of the Kotlin standard library, but Android provides a

singleton object android.util.Log you can use to write logs:

import android.util.Log

...

try {

 // ... statements

} catch(e:Exception) {

 Log.e("LOG", "Some exception occurred", e)

}

where instead of the logging text shown here you could, of course, write some more

specific information.

CHApter 8 exCeptions: if sometHing goes Wrong

187

Note if you look at the android.util.Log class, you can see this is a Java
class and function e() is a static function not requiring an instance. thus it is not
a singleton object in the strict sense, but from a Kotlin perspective you treat it as if
it were a singleton object.

While developing an app you can see the logging statements on the Logcat tab,

provided you are using an emulator or a connected hardware device with debugging

switched on. Using the e() function from the Log class provides the advantage that you

get a stack trace, which means line numbers get indicated and the function calls leading

to the erroneous program part get listed. Figure 8-1 shows an example.

Figure 8-1. Exception logging in Android Studio

CHApter 8 exCeptions: if sometHing goes Wrong

188

For your end users, providing logging this way is not an option, as in the vast majority

of cases your users wouldn’t know how to inspect logging files. What you can do instead

is present a short error message in the form of a Toast, as follows:

import android.util.Log

...

try {

 // ... statements

} catch(e:Exception) {

 Log.e("LOG", "Some exception occurred", e)

 Toast.makeText(this,"Error Code 36A",

 Toast.LENGTH_LONG).show()

}

What exactly you present to your users depends, of course, on the severity of the

exception. Maybe you can somehow clean up the erroneous state and continue with the

normal program flow. In really severe cases, you can show an error message dialog box

or branch to an error-handling activity.

 More Exception Types
The Exception class we’ve seen so far is just one kind of exception. If we use Exception

in a catch statement, we formally express a very general kind of exception. Depending

on the circumstances, your app might coexist very well with try-catch clauses using only

Exception for its exception cases. There are, however, many subclasses of Exception

you can use as well. There is, for example, an ArrayIndexOutOfBounds exception, an

IllegalArgumentException, an IllegalStateException, and many more. You can even

use several at once by adding more catch{ } clauses:

try {

 // ... statements

} catch(e:ExceptionType1) {

 // do something...

} catch(e:ExceptionType2) {

 // do something...

... possibly more catch statements

CHApter 8 exCeptions: if sometHing goes Wrong

189

} finally {

 // do this by any means: ...

}

If an exception gets thrown inside try{ }, all the catch clauses get checked one after

another, and if one of the declared exceptions matches, the corresponding catch clause

gets executed. What you usually do if you want to catch several exceptions is to put the

more specific catches at the beginning of the list and the most general at the end. For

example, say you have some code that accesses files, handles arrays, and in addition

might throw unknown exceptions. Here you’d write

try {

 // ... file access

 // ... array access

} catch(e:IOException) {

 // do something...

} catch(e:ArrayIndexOutOfBoundsException) {

 // do something...

} catch(e:Exception) {

 // do something...

} finally {

 // do this by any means: ...

}

where the finally clause is optional, as usual.

 Throwing Exceptions Yourself
To throw exceptions from your code you write

throw exceptionInstance

where exceptionInstance is the instance of an exception class, as for example in

val exc = Exception("The exception message")

throw exc

CHApter 8 exCeptions: if sometHing goes Wrong

190

or

throw Exception("The exception message")

Because exceptions are normal classes, except for their usability in catch clauses,

you can also define your own exceptions. Just extend the Exception class or any of its

subclasses:

class MyException(msg:String) : Exception(msg)

...

try {

 ...

 throw MyException("an error occurred")

 ...

} catch(e:MyException) {

 ...

}

 Exercise 1
In the NumberGuess game app, define a new class GameException as an extension of

Exception. Check the numbers the user inputs and if the minimum or maximum

guessable numbers are exceeded, throw a GameException. Catch the new exception

inside the guess() function and possibly show a Toast message. Hint: Use if (num.

text.toString().toInt() < Constants.LOWER_BOUND) throw ... and if (num.

text.toString().toInt() > Constants.UPPER_BOUND) throw ... for the checks.

 Exceptions in Expressions
One interesting feature of Kotlin is that you can use try-catch blocks and throw

statements in expressions. The outcome of a try-catch block is the value of the last line

inside the try{ } or the catch(...){ } block, depending on whether the exception got

caught or not. You can use this for default values if something goes wrong,

for example. In

val x = try{ arr[ind] }

 catch(e:ArrayIndexOutOfBoundsException) { -1 }

CHApter 8 exCeptions: if sometHing goes Wrong

191

for some IntArray named arr, the variable x will get a default value −1 if the array

bound limits get violated.

Caution Be careful not to abuse try-catch blocks for somewhat exceptional but
otherwise expected program flow paths. You should really use exceptions only for
unanticipated problems.

A throw someException has a value, too. It is of type Nothing and in the Kotlin type

hierarchy is a subclass of everything. It is thus possible to write

val v = map[someKey] ?: throw Exception("no such key in the map")

Note that the operator ?: (sometimes called the Elvis operator) evaluates to the right

side only if the left side yields null; otherwise it takes the left side. Here this means that if

map[someKey] evaluates to null, equivalent to the map not having this key, the exception

is thrown.

CHApter 8 exCeptions: if sometHing goes Wrong

193
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_9

CHAPTER 9

Data Containers
Nature and human civilization are about collections. Families collect relatives, cities

collect people acting together, houses collect people and their belongings, math set

theory uses collections for relation formulas, galaxies collect stars, atoms collect

elementary particles, and so on. It is thus no surprise that computer languages, intended

to model real-world scenarios, must be able to model collections as well.

In the real world this is not such a big topic, but computers from the very beginning

have drawn a sharp distinction between fixed-size collections and variable-size

collections. Fixed-size collections are easier to handle and show high performance,

whereas variable-size collections are slower, but show greater flexibility and according to

the circumstances could exhibit a lower memory footprint. Both options are needed for

various collection-related tasks, so a developer has to learn how to handle both worlds.

To make the difference clearer, fixed-size collections are called arrays, and for variable-

size collections the term used is collection.

The built-in libraries of Kotlin contain several functions to mediate between arrays

and collections, and to make a developer’s life a little bit easier Kotlin also tries to unify

the handling of arrays and collections, so the switching between the two worlds is

easier to achieve. In the following section we first talk about arrays, as they came first in

computer language history, and later switch to collections.

 Defining and Using Arrays
Arrays are fixed-size containers for elements, which could be objects or primitive data

types. We know a lot about objects by now, but we haven’t talked much about primitive

data types yet. From the Kotlin point of view, it would be preferable to not have this

distinction at all, dealing with objects and nothing else.

194

So why is there something like primitive data types, what exactly are they,

and why do we need to use them? The answer is that primitive data types have a

direct representation on the computer hardware. Thus we neither need to perform

instantiations of objects before we can put them into the array, nor do we need to use

some kind of a reference to connect array elements to instances (see Figure 9-1).

Object arrays get types declared in Kotlin by the string Array followed by the element

type in angle brackets:

Array<ElementType>

Figure 9-1. Primitive versus object arrays

Chapter 9 Data Containers

195

where ElementType could be any class or interface. Those are then normal types treated

as any other type in Kotlin, so you can have vars and vals using them, for example

val someStringArray:Array<String> = ...

var someObjectArray:Array<Any> = ...

Note Any sits on the very top of Kotlin’s type hierarchy, and any object implicitly
and automatically inherits from it. therefore any object, no matter how you
declared it, automatically also is an instance of Any.

angle brackets declare a generic type. We cover generics later in the book.

Primitive element arrays exist for the following element types: Boolean, Byte, Char,

Double, Float, Int, Long, and Short. For the corresponding array types, use any of those

and add Array, as in

val byteArr:ByteArray = ...

var intArr:IntArray = ...

...

To access array elements, use array[index] where index ranges from 0 to the array

length diminished by one. The length itself is given by property size, and the last index

by property lastIndex. You can read array elements as in val elem1 = array[0] and

write array elements as in array[77] = If while accessing array elements you try

to address an element that is outside the bounds, your app will crash, so you must take

precautions to ensure index limits are not exceeded.

 Array Instantiation
Now that we know how to declare arrays, we need to now how to create or instantiate

them. This is the right side of val arr:IntArray = ... and alike.

Chapter 9 Data Containers

196

First, we can use the constructors Kotlin provides for the arrays. This is the case for

both arrays with object element types, and the specialized primitive element arrays. The

first set of constructors allows instantiating primitive element arrays with a specified

number of elements (as an example, we give all of them size 7):

val byteArr:ByteArray = ByteArray(7)

val shortArr:ShortArray = ShortArray(7)

val intArr:IntArray = IntArray(7)

val longArr:LongArray = LongArray(7)

val doubleArr:DoubleArray = DoubleArray(7)

val floatArr:FloatArray = FloatArray(7)

val booleanArr:BooleanArray = BooleanArray(7)

The elements of these arrays all are initialized with the default values 0 for number

types and false for the boolean array.

A different set of constructors allows us to set individual array members. All you

have to do is add a function as a second parameter to any of the constructors. How can

a function be a constructor parameter, though? This is one of the features Kotlin, among

other computer languages, has to offer: to treat functions as objects you can pass around

in function calls and even let properties point to them. We cover such aspects in detail

in Chapter 12. What we need for the moment is a so-called lambda function without a

function name. Such a lambda function looks like this:

{ i ->

 [program code]

 [expression]

}

where i is a parameter set to the index inside the array. Using i is just an example;

you can choose a different name like ind, index, or whatever you like. The last line

[expression] must evaluate to a value of the type declared for the array elements. What

you do before this last expression statement, though, is up to you. As [program code]

you can write anything, including using the index parameter. Say, for example, we want

to create an IntArray of size 10, with the array elements containing the squared index,

Chapter 9 Data Containers

197

counting from one: 1, 2, 4, 9, 16, We don’t need a [program code] here, but

the [expression] will be (i + 1) ∗ (i + 1) (remember i as an index will start at 0). The

lambda function then reads

{ i -> (i+1) * (i+1) }

and the complete array declaration and initialization is

val arr = IntArray(10, { i -> (i+1) * (i+1) })

With the initialization function added we can now also use a constructor for

generating object arrays, as in

val objArr:Array<SomeType> =

 Array<SomeType>(7, { i -> ... })

where for SomeType you substitute an existing class.

 Exercise 1
Define and initialize an IntArray with elements 100, 99, 98, ..., 0. Assign it to a val arr.

There is a different way of initializing arrays if we have a known set of initial member

values. If, for example, we have five people at hand with ages 26, 56, 12, 17, and 26, and

want to put that into an IntArray, there is no elegant way to use a constructor for that

aim. Of course, we could write

val ages = IntArray(5)

ages[0] = 26

ages[1] = 56

ages[2] = 12

ages[3] = 17

ages[4] = 26

but that looks rather lengthy. Kotlin helps us to write that in a shorter form. Inside its

standard library it contains a couple of functions to create arrays given the element

values. For IntArrays this function reads intArrayOf(...) and because it allows for any

number of arguments we can write

val ages = intArrayOf(26, 56, 12, 17, 26)

Chapter 9 Data Containers

198

which looks much more concise. There are accordingly named array initialization

functions for all the array types, and you can use them anywhere in your code:

intArrayOf(), longArrayOf(), doubleArrayOf(), and so on.

There are also two special array creation functions. The first one creates an array of

null object references, and you write

val size = ...

val arr:Array<ElementType?> = arrayOfNulls(size)

to use it (replace ElementType with the actual element class you need). The other one

creates an empty array of object references:

val arr:Array<ElementType?> = emptyArray()

Last but not least, collections like sets and lists (we describe them later) can be

converted to arrays:

• coll.toTypedArray(): Array<ElementType>

This converts a collection with element type ElementType to an

array of objects. It never returns a primitive element array.

• coll.toXXXArray(): XXXArray

This converts a collection with element type XXX (one of Int, Long,

Byte, Short, Double, Float, Boolean, or Char) to a corresponding

primitive element array.

 Exercise 2
Create a BooleanArray with values true, false, true.

 Array Operations
Apart from accessing elements, arrays allow a couple of operations applied on them (E is

the element type):

• first(): E

This is the first element of the array.

Chapter 9 Data Containers

199

• last(): E

This is the last element of the array.

• copyOf(): Array<E>

For object arrays, this creates a copy of an array. This is a shallow

copy, meaning the copy will contain the same object references as

the original array.

• copyOf(): XXXArray

For primitive element type XXX (one of Int, Long, Byte, Short,

Double, Float, Boolean, or Char), creates a copy of the array.

• fill(element:E>)

This sets all array elements to the given element.

• sliceArray(indices:IntRange)

This creates a new array from a part of the original array. An

IntRange could be entered (e.g., 1..100). Indices are as usual

zero-based.

• contains(element:E): Boolean

This checks whether the specified element is contained in the array.

• all(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for all elements. The

predicate is a function taking each element and performing a

check; for example, { element -> ... [boolean expression] }.

• any(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for any of the elements.

The predicate is a function taking each element and performing a

check, for example { element -> ... [boolean expression] }.

This list is not exhaustive. For more functions, refer to the online API documentation.

Chapter 9 Data Containers

200

Note as of this writing, the api documentation of Kotlin can be found at
https://kotlinlang.org/api/latest/jvm/stdlib/index.html. if this
link is out of date, you can easily find the documentation by searching “kotlin stdlib
api documentation” in your favorite search engine.

android studio helps a lot in finding object properties and functions. Just enter the
object’s name, a dot, and if necessary press alt+enter. android studio then shows
a list with all properties and functions, which you can scan through using the
cursor up and down keys (see Figure 9-2). You can even go to the sources; place
the cursor over a class name and then press Ctrl+B.

 Sets, Lists, and Maps
Collections get used if you need data containers for many elements and don’t know or

don’t want to specify the size. We basically have three types of collections:

• Sets: Sets are collections of unique elements. They contain any

number of elements, but duplicates are not allowed. So [1, 27, 3] is a

set, but [5, 1, 5] is not. Also, sets don’t have an order, so [1, 3, 5] is the

same set as [1, 5, 3].

• Lists: A list is an ordered collection of elements in which duplicates

are allowed. Therefore both [1, 2, 3, 1] and [1, 1, 2, 3] are lists, but they

are not the same.

Figure 9-2. Automatic API documentation

Chapter 9 Data Containers

https://kotlinlang.org/api/latest/jvm/stdlib/index.html

201

• Maps: A map is an unordered collection of pairs [A, B] where there

is a mapping relation between the pair members: A → B. The idea

behind that is, if you have a map A1 → B1, A2 → B2, and A3 → B3,

given any A you can determine the corresponding B using map

functions or operators. The pair [A, B] is commonly referred to as a

key/value pair, where A is the key and B is the value. In Kotlin idioms,

if m is the map and property a contains a key, both m[a] and m.get(a)

can be used to retrieve the corresponding value.

Contrary to arrays, for collections there always exist two variants: The collection can

be mutable (changeable) or immutable (unchangeable). There are not just (immutable)

sets, lists, and maps, but also mutable sets, mutable lists, and mutable maps. Speaking of

classes, we have the following:

Set<MemberType>

List<MemberType>

Map<KeyType, ValueType>

MutableSet<MemberType>

MutableList<MemberType>

MutableMap<KeyType, ValueType>

 Sets
For creating sets, you can use one of the constructors or library functions:

val set1:Set<String> = HashSet()

val set2:MutableSet<String> = HashSet()

val set3 = setOf(4, 7, 55)

val set4 = setOf<Long>(4, 7, 55)

val set5 = mutableSetOf(4, 7, 55)

Looking at that code, we need to explain a couple of things.

• Set is not a class, but an interface. For instantiation we need

an implementation. The HashSet you see here is a standard

implementation that gets used quite often for sets.

Chapter 9 Data Containers

202

• HashSet can be used for both mutable and immutable sets. We have

to explicitly state the variant in the property declaration. See set1

and set2 in the example.

• setOf() and mutableSetOf() try to infer the element type from their

parameters. If it is unclear or you need a conversion to happen, the

type must be explicitly declared inside angle brackets, as for set4 in

the example.

Just like the other collection types, the Set and MutableSet classes contain a vast number

of properties and functions. Listing them all here would inflate the size of this book. Instead I

present the ones most often used; for all the others, refer to the online API documentation.

Note as of this writing, the api documentation of Kotlin can be found at
https://kotlinlang.org/api/latest/jvm/stdlib/index.html.
If this link is out of date, you can easily find the documentation by searching
“kotlin stdlib api documentation” in your favorite search engine.

as for arrays, you can let android studio show you all properties and functions of
an object. enter the object’s name, a dot, and if necessary press alt+enter (refer
back to Figure 9-2). to see the sources, place the cursor over a class name and
then press Ctrl+B.

The most often used properties and functions of the Set and MutableSet interfaces

are given here. I start with basic properties and functions.

• size

This indicates the size of the set.

• add(element:E): Boolean

(MutableSet only) Add an element. This returns true if the

element was really added (it didn’t exist before).

• addAll(elements:Collection<E>): Boolean

(MutableSet only) This adds many elements. A Collection is

another set or a list. It returns true if the set was modified due to

that operation.

Chapter 9 Data Containers

https://kotlinlang.org/api/latest/jvm/stdlib/index.html

203

• addAll(elements:Array<out E>): Boolean

(MutableSet only) This adds all the elements from the specified

array. The out inside the array type parameter allows us to add

arrays with elements that are also subclasses from the type

needed for the set. It returns true if the set was modified due to

that operation.

• intersect(other:Iterable<E>): Set<T>

This returns a set of elements contained in both this set and the

specified Iterable. Sets and lists are also iterables.

The next group of properties and functions are using in dealing with empty sets.

• clear()

(MutableSet only) This removes all elements.

• isEmpty(): Boolean

This returns true if the set is empty.

• isNotEmpty(): Boolean

This returns true if the set is not empty.

The following properties and functions are used to check.

• contains(element:E): Boolean

This checks whether the specified element is contained in the set.

• containsAll(elements:Collection<E>): Boolean

This checks whether all the specified elements are contained in

the set.

For operations on the complete set, use the following properties and functions.

• toMutableSet(): MutableSet<E>

(Non-MutableSet only) This returns a new mutable set based on

the elements from the immutable set.

Chapter 9 Data Containers

204

• map(transform: (E) -> R): List<R>

This applies a mapping function on each element of the set and

returns a list from that. Given, for example, a set of names, the

transform function { s -> s + " (${s.length})" } returns a

list of the names with the name lengths appended.

Use the following properties and functions to remove elements.

• remove(element:E): Boolean

(MutableSet only) This removes the specified element, if it exists

inside the set. It returns true if the element existed and was removed.

• removeAll(elements:Collection<E>): Boolean

(MutableSet only) This removes all the specified elements, as far

as they exist inside the set. A Collection is another set or a list. It

returns true if at least one element was removed.

• removeAll(elements:Array<E>): Boolean

(MutableSet only) This removes all the specified elements, as far

as they exist inside the set. It returns true if at least one element

was removed.

• retainAll(elements:Collection<E>): Boolean

(MutableSet only) This removes all the elements that are not also

inside the specified elements. A Collection is another set or a list.

It returns true if at least one element was removed.

• retainAll(elements:Array<E>): Boolean

(MutableSet only) This removes all the elements that are not also

inside the specified array. It returns true if at least one element

was removed.

To check for predicates, use these properties and functions.

• all(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for all elements. The

predicate is a function taking each element and performing a

check; for example, { element -> ... [boolean expression] }.

Chapter 9 Data Containers

205

• any(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for any of the elements.

The predicate is a function taking each element and performing a

check; for example, { element -> ... [boolean expression] }.

• filter(predicate: (E) -> Boolean): List<E>

This returns all the elements from the set for which the predicate

returns true. The predicate is a function taking each element and

performing a check; for example, { element -> ... [boolean

expression] }.

This last item is used for looping.

• forEach(action: (E) -> Unit)

This loops through the set. Loops are discussed later in this

chapter.

Due to a couple of more extension functions, the + and - operators are supported

and can be used to add or remove elements or other collections:

setOf(1, 2, 3) + setOf(2, 3, 4) // -> [1, 2, 3, 4]

setOf(1, 2, 3, 4) + 5 // -> [1, 2, 3, 4, 5]

setOf(1, 2, 3) - setOf(3, 4) // -> [1, 2]

setOf(1, 2, 3) – 2 // -> [1, 3]

 Exercise 3
Create a mutable set val fruits with elements Apple, Banana, Grape, and Engine as

elements. In a separate statement, add Cherry to the set. In another statement, remove

Engine from the set. Create a new set val fruits5 from this set, as a result of filtering

elements with five characters. Note: You can get a string’s length by addressing its length

property.

 Lists
Lists are similar to sets, but they do not require uniqueness, so elements may appear

several times. In addition, lists have an order.

Chapter 9 Data Containers

206

To create a list, we again have list implementation constructors and functions from

the Kotlin standard library.

val list1:List<Int> = ArrayList()

val list2:MutableList<Int> = ArrayList()

val list3 = listOf(4, 7, 55)

val list4 = listOf<Long>(4, 7, 55)

val list5 = mutableListOf(4, 7, 55)

What we said for the set examples earlier more or less holds for lists as well:

• List is an interface. The implementation we use here, ArrayList, is a

frequently used choice.

• ArrayList can be used for both mutable and immutable lists. We

have to explicitly state the variant in the property declaration. See

list1 and list2 in the example.

• listOf() and mutableListOf() try to infer the element type from

their parameters. If they are unclear or you need a conversion to

happen, the type must be explicitly declared inside angle brackets, as

for list4 in the example.

As an additional means, arrays can be easily converted to lists by using the array’s

toList() or toMutableList() functions:

val array = arrayOf(...)

val list = array.toList()

Due to their nature, lists and sets share many properties and methods, so the

following list includes methods that were already possible for sets. Again, the list is not

exhaustive, so please consult the online documentation for more details.

Note this commonality is not just a coincidence. in fact, both Set and List
are extending the Collection interface. You will see the Collection interface
used once in a while for certain tasks, but usually the conceptional differences
between Set and List are worth retaining, so set and list interfaces are being
used more often.

Chapter 9 Data Containers

207

First, here are some basic properties and functions.

• size

This indicates the size of the list.

• lastIndex

The is the size of the list minus 1.

• add(element:E): Boolean

(MutableList only) This adds an element at the end. It returns

true if the element was really added. Because this will always

happen, the function will always return true.

• addAll(elements:Collection<E>): Boolean

(MutableList only) This adds many elements. A Collection is

another list or a set. It returns true if the list was modified due

to that operation. Unless the parameter provided belongs to an

empty collection, the function will always return true.

• addAll(elements:Array<out E>): Boolean

(MutableList only) This adds all the elements from the specified

array. The out inside the array type parameter allows us to add

arrays with elements that are also subclasses from the type needed

for the list. It returns true if the list was modified due to that

operation. Unless the parameter provided belongs to an empty

array, the function will always return true.

• get(index:Int): E

This retrieves an element from the list. The index is zero based. It

maps to the [] operator, so you can use list[index] to achieve

the same result.

• set(index:Int, element:E): E

(MutableList only) This sets an element inside the list. The

index is zero based. It maps to the [] operator, so you can use

list[index] = ... to achieve the same result.

Chapter 9 Data Containers

208

The next group of properties and functions are used in dealing with empty lists.

• clear()

(MutableList only) This removes all elements.

• isEmpty(): Boolean

This returns true if the list is empty.

• isNotEmpty(): Boolean

This returns true if the list is not empty.

The following properties and functions are used to check for containment.

• contains(element:E): Boolean

This checks whether the specified element is contained in the list.

• containsAll(elements:Collection<E>): Boolean

This checks whether all the specified elements are contained in

the list.

• indexOf(element:E): Int

This retrieves the index of the specified element in the list, or −1 if

not found. The index is zero based.

• lastIndexOf(element:E): Int

This retrieves the last index of the specified element in the list, or

−1 if not found. The index is zero based.

For operations on the complete list, use the following properties and functions.

• toMutableList(): MutableList<E>

(Non-MutableList only) This returns a new mutable list based on

the elements from the immutable list.

• subList(fromIndex:Int, toIndex:Int): List<E>

This returns a view of the list starting at index fromIndex until (not

including) toIndex. The view implies that if you change elements

in the returned list, the change will also happen in the original list.

Chapter 9 Data Containers

209

• asReversed(): List<E>

This returns a read-only view of the list in reverse order. Any

changes in the original list are reflected in the reversed list as well.

• distinct(): List<E>

This returns a new list with duplicates removed.

• shuffled(): List<E>

This returns a new list with the elements from the original list

shuffled.

• map(transform: (E) -> R): List<R>

This applies a mapping function on each element of the list and

returns a new list from that. Given, for example, a list of names,

the transform function { s -> s.length } returns a list of the

name lengths from that.

Use the following properties and functions to remove elements.

• remove(element:E): Boolean

(MutableList only) This removes the specified element, if it

exists inside the list. It returns true if the element existed and was

removed.

• removeAt(index:Int): E

(MutableList only) This removes the element at the specified

index (zero based) and returns the removed element.

• removeAll(elements:Collection<E>): Boolean

(MutableList only) This removes all the specified elements, as far

as they exist inside the list. A Collection is another list or a set. It

returns true if at least one element was removed.

• removeAll(elements:Array<E>): Boolean

(MutableList only) This removes all the specified elements, as far

as they exist inside the list. It returns true if at least one element

was removed.

Chapter 9 Data Containers

210

• retainAll(elements:Collection<E>): Boolean

(MutableList only) This removes all the elements that are not also

inside the specified elements. A Collection is another list or a set.

It returns true if at least one element was removed.

• retainAll(elements:Array<E>): Boolean

(MutableList only) This removes all the elements that are not also

inside the specified array. It returns true if at least one element

was removed.

Use the following properties and functions for fetching parts of the list.

• drop(n:Int): List<E>

This returns a new list with n elements removed from the

beginning.

• dropLast(n:Int): List<E>

This returns a new list with n elements removed from the end.

• first(): E

This returns the first element.

• take(n:Int): List<E>

This returns a new list with the first n elements of the original list.

• first(predicate: (E) -> Boolean): E

This returns the first element matching the predicate. The predicate

is a function taking each element and performing a check; for

example, { element -> ... [boolean expression] }.

• last(): E

This returns the last element.

• takeLast(n:Int): List<E>

This returns a new list with the last n elements of the original list.

Chapter 9 Data Containers

211

• last(predicate: (E) -> Boolean): E

This returns the last element matching the predicate. The predicate

is a function taking each element and performing a check; for

example, { element -> ... [boolean expression] }.

To check for predicates, use these properties and functions.

• all(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for all elements. The

predicate is a function taking each element and performing a

check; for example, { element -> ... [boolean expression] }.

• any(predicate: (E) -> Boolean): Boolean

This returns true if the predicate is met for any of the elements.

The predicate is a function taking each element and performing a

check; for example, { element -> ... [boolean expression] }.

• filter(predicate: (E) -> Boolean): List<E>

This returns all the elements from the list for which the predicate

returns true. The predicate is a function taking each element and

performing a check; for example, { element -> ... [boolean

expression] }.

These items are used for looping.

• forEach(action: (E) -> Unit)

This method loops through the list.

• forEachIndexed(action: (index:Int,E) -> Unit)

This method also loops through the list.

Due to a couple of additional functions, lists understand the + operator, so you can

add elements or collections (other lists or sets) using +.

listOf(1, 2, 3) + listOf(2, 3) // -> [1, 2, 3, 2, 3]

listOf(1, 2, 3, 4) + 5 // -> [1, 2, 3, 4, 5]

Lists can be converted to arrays using toArray(), toIntArray(), toDoubleArray(),

and so on. The conversion to one of the primitive typed arrays will only be successful if

the elements have the correct type.

Chapter 9 Data Containers

212

 Maps
Maps are probably the most interesting, but also the most involved part of the collection

framework in Kotlin. Maps get used whenever you need a mapping in the mathematical

sense, which means unique elements from a set A = {a0, a1, a2, ...} get mapped to

(possibly repeated) elements from a collection B = {b0, b1, b2, ...}. As a result, whenever

you have an ai you immediately can determine the (one and only) mapped bj from it.

In computer languages, the data you map from are usually called the key, and the value

you map to has the name value.

In nature and culture, maps are everywhere: a pair of geographical coordinates

on earth map to an altitude, every second of January 23 maps to an air temperature in

New York, every Social Security number maps to a name, time maps to Earth’s position

in its orbit, the temperature maps to the state of aggregation (solid, liquid, gas) of water,

the note played by an instrument maps to a frequency, the index of an element in an

array maps to some value, and so on.

Similar to sets and lists, we again have the distinction between mutable (changeable)

and immutable (unchangeable) maps.

In the following code snippets we will be using the following map: SSN → name (all

numbers are made up):

152835937 -> Albert Einstein

273495357 -> John Smith

346068589 -> John Smith

484767775 -> Barbra Streisand

To declare maps, you use either Map or MutableMap as the type and add the key and

value type in angle brackets after it.

val map1:Map<String,Int> = ...

var map2:Map<Int,Double> = ...

val map3:MutableMap<Int,String> = ...

To create maps, we first have the option to use one of the constructors:

val map: MutableMap<Int,String> =

 HashMap<Int,String>().apply {

 this[152835937] = "Albert Einstein"

 this[273495357] = "John Smith"

Chapter 9 Data Containers

213

 this[346068589] = "John Smith"

 this[484767775] = "Barbra Streisand"

 }

where HashMap is one of the implementations used most often. The apply{...} is new.

Actually, you can use it for any instance, but here it means this: Take the map we just

created and do something with it. The this refers to the instance of the map being

created, not the class instance or object we are currently in. We use apply{ ... } at this

place to add some key/value pairs.

Next there are Kotlin standard library functions that help us to create and initialize

maps:

val map = mutableMapOf(

 152835937 to "Albert Einstein",

 273495357 to "John Smith",

 346068589 to "John Smith",

 484767775 to "Barbra Streisand"

)

val map2 = mapOf(

 152835937 to "Albert Einstein",

 ...)

Note the instances of to in the preceding initializers actually are operators
that create an instance of the built-in Pair class. if desired, you could use your
own explicit instances of Pair as in val p1 = Pair(152835937, "Albert
Einstein") and then mapOf(p1, ...).

Maps are also the result of some operations on lists, sets, and arrays. With any of the

latter three, you can use one of these (T is the element type):

• associate(transform: (T) -> Pair<K, V>): Map<K,V>

This creates a map with key type K and value type V. The transform

function is supposed to create a Pair<K,V> given each element of

the original set, list, or array. Given, for example, a set of integers

(T = Int) such a transform function could read { i -> Pair(i,

i*i) }, creating a map mapping integers to their square.

Chapter 9 Data Containers

214

• associateWith(ValueSelector: (K) -> V): Map<K,V>

This is much the same as associate(), but as a shortcut always

takes the original element as the key. The valueSelector is

supposed to generate the value. Given, for example, a set of

integers again, the lambda function { i -> i * i } again maps

integers to their square.

• associateBy(keySelector: (T) -> K): Map<K,V>

This is much the same as associate(), but as a shortcut always

takes the original element as the value. The keySelector is

supposed to generate the key. Given, for example, a set of doubles,

the lambda function { d -> Math.floor(d).toInt() } uses the integer

equal to or just below the given double as a key.

• groupBy(keySelector: (T) -> K): Map<K, List<T>>

This gathers elements from the original collection or array and

saves them under the generated key in the resulting map. Say,

for example, you have several names—John, Adam, Joe, and

Gabriel—and apply the keySelector { s -> s.length }. The

resulting map then maps name lengths to names: 3 → [“Joe”],

4 → [“John”, “Adam”], and 7 → [“Gabriel”].

Note that if possible, you should prefer associateWith() and associateBy() over

associate(), because the latter implies an object creation, which always takes

some time.

 Pairs and Triples
Two more types of data containers are pairs and triples. We’ve already seen the first one,

denoted by the Pair class and used for mapping purposes. The triple uses class Triple

and contains only three members. Of course, you can use both for whatever tasks you

like. The declaration and initialization are

val pair = Pair<FirstType, SecondType>(

 firstVal, secondVal)

Chapter 9 Data Containers

215

val triple = Triple<FirstType, SecondType, ThirdType>(

 firstVal, secondVal, thirdVal)

As usual, the type specification < ... > can be omitted if it can be inferred by the

values’ types. For example, you can write

val pair = Pair("Earth", 12800.0)

to get a pair of String and Double.

To fetch the first and second components for pairs, you simply use the properties

first and second as in pair.first and pair.second. The components for a triple are

accordingly accessible via properties first, second, and third.

 Loops over Data Containers
Looping over data containers means visiting each of their members to perform some

action on it. This is an important use case for data containers if you want to print it,

transform it, or aggregate over it to deduce some container characteristics. Think of

summing, concatenating, or averaging.

In the past, computer languages provided some kind of a looping construct circling

around some indexing variable, and in fact this is possible with Kotlin as well. We covered

this old-fashioned kind of looping earlier in the book, but let me show you here a more

elegant and straightforward way to loop over containers in Kotlin.

All collection type data containers like arrays, sets, and lists provide a forEach()

function, and you can use it concisely for looping needs. More precisely, write

val container = ... // array or set or list

container.forEach { elem ->

 // do something with elem

}

Why do we call this a function if it looks like a statement with a block? This is more

or less a coincidence; this sample could also be written as container.forEach({ ...

}) and the Kotlin compiler allows removal of the superfluous round brackets. In reality

the { ... } is not a statement block, but a function literal also called a lambda function.

The elem is just an identifier; you could also use e or element or whatever you like. In any

case, it gets the currently visited element of the array or collection, and automatically has

the same type as it. For example, in

Chapter 9 Data Containers

216

val container = listOf(1, 2, 3, 4, -1)

container.forEach { elem ->

 Log.d("LOG", elem.toString())

}

the elem gets the integers 1, 2, 3, 4, -1, one after the other, and elem automatically has the

type Int, because the container is a list of Int elements.

Note in fact you could add :Int here as in forEach { elem:Int -> ... }
if it helps to improve the readability of your code.

If you need the iteration index inside the function you might be tempted to write

var index = 0

container.forEach { elem ->

 // ... do s.th. with elem

 index++ // NOT ALLOWED!

}

to increment the index variable each iteration. This won’t work, however. It is a

restriction of inner functions to not be allowed to reassign ”outside” variables. If you

need an index you can use a variant of forEach() that reads forEachIndexed(). This

time the inner function receives two arguments, the Int typed index and the element

variable:

container.forEachIndexed { index, elem ->

 // ... do s.th. with elem

}

The index variable gets values 0, 1, 2, ... and always has the type Int. Again, you are

free to change the name of the index variable to whatever you like.

Looping through maps happens in a different manner, but it is not complicated

either. Maps also have a forEach() function, but with different parameter types.

• If using a single parameter as in map.forEach { me -> ...} this

parameter will be of type Map.Entry<K,V> where K is the key type and V

is the value type. From me you then get the key via me.key and the value

via me.value. You can also write me.toPair() to build a Pair from that.

Chapter 9 Data Containers

217

• (Only for Android API level 24 or greater) If using two parameters

they will receive the key and the value during each iteration: map.

forEach { k,v -> ... }.

 Sorting Arrays and Collections
Sorting arrays and collections like lists and sets is a task you frequently need to

accomplish before you present data to your app users. Also, sorting must happen before

you can start the binary search algorithm we discuss in the section ”Searching in Arrays

and Collections” later in this chapter.

Sorting can happen in place, which means the array or collection you want to have

sorted gets altered, or in a functional style, which means the result of the operation is

the sorted array or collection and the original data container stays untouched. Sorting in

place will be the faster choice, but bears the risk that other program parts get corrupted

if they hold a reference to the original array or collection. Functional sorting can improve

program stability, but you can expect some performance penalty, so choose wisely.

For functional style sorting with the original array or collection untouched, you have

a couple of options (T is the element type).

• Array.sorted() : List<T>

This returns a List with the elements from the array sorted

according to their natural sort order. The type T must be a

subinterface of Comparable, which is the case for all built-in

numeric types and strings. As the array, you can use an object

array or any of the primitive element type arrays (IntArray,

DoubleArray, etc.).

• Array.sortedArray() : Array<T>

This is the same as Array.sorted(), but returns an array

instead. Kotlin always returns an object array, never a primitive

typed array. Therefore, arrayOf(1,2,3).sorted() returns an

Array<Int>, not an IntArray. You can, however, add method

toIntArray() to convert the Int object array to an IntArray.

The same holds for the other primitive element type objects.

Chapter 9 Data Containers

218

• Collection.sorted() : List<T>

This is the same as Array.sorted(), but for collections like sets

and lists.

You can add a Descending to any of them to reverse the sort order.

A couple of additional methods allow you to explicitly specify the comparison

operation for sorting the elements.

• Array.sortedBy(selector: (T) -> R?) : List<T>

This creates a sorted list according to the natural sort order

of the value returned by the selector function. Type R must

implement the Comparable interface. Say, for example, you

want to sort an array of data class Car(val make:Int, val

name:String) by make. You can then write array.sortedBy({

car -> car.make }).

• Collection.sortedBy(selector: (T) -> R?) : List<T>

This is the same as Array.sortedBy() shown earlier, but for

collections like sets and lists.

• Array.sortedWith(comparator: Comparator<in T>) : List<T>

This creates a sorted list according to the comparator provided.

You could provide a subclass implementation of Comparator, but

the Kotlin standard library also provides a couple of Comparator

generator functions. The in in the type specifier indicates it is

enough for the comparator to handle a superclass of T as well.

• Array.sortedArrayWith(comparator: Comparator<in T>) :

Array<T>

This is the same Array.sortedWith() shown earlier, but returns

an array.

• Collection.sortedWith(comparator: Comparator<in T>) :

List<T>

This is the same as Array.sortedWith() shown earlier, but for

collections like sets and lists.

Chapter 9 Data Containers

219

You can add a Descending to most of them to reverse the sort order (there is no

sortedWithDescending() and no sortedArrayWithDescending()).

For the comparator needed inside any of the sortedWith() functions, Kotlin

provides standard library functions you can use to create such a comparator.

• compareBy(vararg selectors: (T) -> Comparable<*>?):

Comparator<T>

and

• compareByDescending(vararg selectors: (T) ->

Comparable<*>?): Comparator<T>

This is an important function you likely want to show up inside

sortedWith(). It takes any number of functions evaluating to a

Comparable. Those functions get worked through in consecutive order.

The first Comparable comparison not resulting in an equals will break

the chain and continue with the next iteration in the sorting algorithm.

As a function element you can write a lambda function as in

{elem -> elem.someProperty}

if this property is a Comparable like an Int or a String, but

you can also directly refer to property getters by writing

T::propertyName. As an example: take a list of

data class Car(val make:Int, val name:String)

and consider comparing by the make. Using sortedWith() for

sorting then reads

list.sortWith(compareBy(Car::make)).

• compareBy(comparator: Comparator<in K>, selector:

(T) -> K): Comparator<T>

and

• compareByDescending(comparator: Comparator<in K>, selector:

(T) -> K): Comparator<T>

This creates a comparator that first applies the selector to the

incoming data and applies the provided comparator to the result

from the selector.

Chapter 9 Data Containers

220

• nullsFirst(): Comparator<T>

Use this as a first argument to compareBy() to extend the natural-

order comparator implicitly used there with the capability to

allow null values in the sorted array or collection. Such null

values will show up first in the returned list. The nullsFirst()

comparator can only be used in a context where Comparable

elements get compared, which is automatically the case if you use

nullsFirst() as the first parameter in compareBy().

• nullsLast(): Comparator<T>

This is similar to nullsFirst, but null values will show up last in

the list returned.

• reverseOrder(): Comparator<T>

Use this as a first argument to compareBy() to reverse the order of

the natural-order comparator implicitly used there. It is possible

to mix with the other comparator extenders, as, for example, in

nullsFirst(reverseOrder()).

• then

Use this as an infix operator to chain comparators. You can, for

example, write compareBy(...) then compareBy(...) inside

sortWith().

 Exercise 4
Using sortWith(), do a sorting of a list val gul = listOf(...) of GameUser instances

from the NumberGuess game app, first by the last name, and then by the first name.

Assign the result to val sorted.

In-place sorting differs from the sorting functions handled so far in the original array

or collection (list or set) being altered to contain the sorted data afterward. For lists and

sets, this obviously makes sense only for the mutable variants. The functions for in-place

sorting are given here.

Chapter 9 Data Containers

221

• sort() and sortDescending()

This sorts the array or mutable collection in place, according to

the element’s natural sort order. The elements must implement

the Comparable interface for this to work.

• sortBy(selector: (T) -> R?) and sortByDescending(selector:

(T) -> R?)

This sorts the array or mutable collection in place, according to

the provided selector function, which must return a Comparable.

• sortWith(comparator: Comparator<in T>)

This sorts the array or mutable collection in place, according

to the provided comparator. The in in the comparator type

specification means the comparator must handle the elements,

but also can handle a superclass of the element type. For

the comparator parameter, the same Kotlin standard library

functions can be used as for the functional style sorting

functions described earlier.

Note You should prefer functional style sorting over in-place sorting, unless
performance or resources housekeeping is an important issue.

 Exercise 5
Do the same as for Exercise 4, but perform in-place sorting.

 Grouping, Folding, Reducing, and Zipping
Grouping, folding, reducing, and zipping are advanced operations on arrays and

collections like lists and sets. We discuss each of these in turn.

Chapter 9 Data Containers

222

 Grouping
Grouping is about reorganizing your data in such a way that groups of the data are

gathered according to some key deduced from the data or imposed on the data. Look at,

for example, a set of cars:

data class Car(id:Int,make:Int,name:String,vin:String)

val cars = listOf(

 Car(1, 1994, "Sirus", "WXX 130 007-1J-582943"),

 Car(2, 1997, "Sirus", "WXX 130 008-1J-582957"),

 Car(3, 2010, "Casto 4.0", "WXQ 456 088-4K-005614"),

 Car(4, 2010, "Babo MX", "WYY 518 004-55-171598"),

 Car(5, 1994, "Casto 4.0", "WXQ 456 005-4K-005658"),

 Car(6, 2011, "Quasto", "WA0 100 036-00-012378")

)

What if we want to find out which cars belong to a certain make year? We can see

that we have two cars belonging to 1994, one to 1997, two to 2010, and one to 2011 if

looking at the IDs.:

1994 -> [1, 5]

1997 -> [2]

2010 -> [3, 4]

2011 -> [6]

This operation is called grouping, and in this particular case we group based on

the make.

In Kotlin we have a grouping function that helps us to achieve our aim: groupBy(

keysSelector: (T) -> K): Map<K, List<T>> where the keySelector is supposed

to deduce the grouping key. The type parameter T is the class of the original elements

or a superclass of that. Type K is any type you need for the grouping key. The grouping

function for the cars example reads:

data class Car(id:Int,make:Int,name:String,vin:String)

val cars = listOf(...)

val groupedByMake = cars.groupBy(Car::make)

...

val group1997:List<Car> = groupedByMake[1997]

Chapter 9 Data Containers

223

where we applied the getter function for the make: Car::make. Less concisely, but with

the same result, we could also use this:

val groupedByMake = cars.groupBy { car -> car.make }

 Exercise 6
With substring(0,3) extracting the first three chapters from a string, perform a

grouping for the cars list with the first three characters of the vin as a key. Call it val

groupedByManufacturer. Extract the WXX manufacturer from the grouping result.

There are three more grouping functions. The first is groupBy() with one more

parameter. This one performs a transformation on the values before adding them to the

grouping result. Two more functions, groupByTo(), save the grouping result into a map

provided as a parameter. They are more or less convenience functions. For details, refer

to the official Kotlin API documentation.

 Folding
Folding is about letting an object scan through all elements of an array or collection

(set or list) and update itself each iteration. Think, for example, of a list of invoices and

summing up all money amounts. This is nothing spectacular; one could write

val someObject = ...

list.forEach { elem ->

 // update someObj using elem

 ...

}

However, there is an intrinsic danger that code could initialize the object before the

loop starts doing lots of weird things, so there is a function that performs the task using

one statement. Actually, it is a set of functions.

• fold(initial: R, operation: (acc: R, T) -> R)): R

The function takes as parameters the object that is going to be

updated each loop iteration and a function that performs the

updating. This updater takes as parameters the actual version of

Chapter 9 Data Containers

224

the gathering object and the current loop element. This returns

the gathering object with all data container elements applied.

In most practical cases the first parameter is probably a newly

constructed object, as in list.fold(Gatherer(), ...).

• foldRight(initial: R, operation: (T, acc: R) -> R)): R

This is similar to fold(), but it iterates through the array or

collection in reverse order. To express this backward scanning, the

parameter order of the inner function gets reversed, too.

• foldIndexed(initial: R, operation: (index:Int, acc: R, T)

-> R)): R

This is the same as fold, but the inner function gets the loop

iteration index as an additional first parameter.

• foldRightIndexed(initial: R, operation: (index:Int, T,

acc: R) -> R)): R

This is similar to foldIndexed(), but it iterates through the array

or collection in reverse order. Again, to express this backward

scanning, the parameter order for parameters two and three of the

inner function gets reversed, too.

There is also an advanced folding mechanism that includes a grouping operation. If

you use groupingBy() on an array or a collection (list or set), you will receive a Grouping

object that you later can apply on an array or a collection like a set or a list. This is kind

of a convenience function, as you could do grouping and then folding manually. For

details, please consult the Kotlin API documentation.

 Reducing
Reducing is the little brother of folding. The gatherer is not specified explicitly and

instead the first element of the array or collection (a set or a list) is used. The folding

operation or more precisely reduction operation then understandably starts with the

second element of the data. Reduction functions are listed here.

Chapter 9 Data Containers

225

• reduce(operation: (acc: S, T) -> S): S

This performs the provided reduction operation on the current

gatherer value and the current loop element. It then returns the

reduction result. The reduction function might return a value of

the original data type T or a subclass of it.

• reduceRight(operation: (T, acc: S) -> S): S

This is similar to reduce(), but it scans through the data in reverse

order. Note that the order of the parameters of the reduction

function is reversed, too.

• reduceIndexed(operation: (index: Int, T, acc: S) -> S): S

This is the same as reduce(), but the reduction function receives

the current looping index as an additional first parameter.

• reduceRightIndexed(operation: (T, acc: S) -> S): S

This is similar to reduceRight(), but it scans through the data in

reverse order. Note that the order of parameters two and three of

the reduction function is reversed, too.

 Exercise 7
Create a list [1, 2, 3, 4, ..., 100]. Then, using reduce, calculate the number 1 ∗

2 ∗ 3 ∗ ... ∗ 100 from it. Hint: You can convert a range (f rom..to) to a list via function

toList().

 Zipping
Looping, sorting, folding, and reducing already provide a quite versatile tool set for

handling arrays and collections (sets and lists). We don’t have a tool yet, though, to

combine two arrays or collections element-wise. In Kotlin there is a set of functions

dealing with exactly this kind of task.

The main functions that help us here are called zip() and unzip(). The first of them,

zip(), has the following signature: zip(other: Array<out R>): List<Pair<T, R>>)

or zip(other: Iterable<R>): List<Pair<T, R>>). Both of them are defined as infix

functions, so you can write

Chapter 9 Data Containers

226

array.zip(otherArray)

 -or- array zip otherArray

array.zip(list)

 -or- array zip list

collection.zip(array)

 -or- collection zip array

collection.zip(otherCollection)

 -or- collection zip otherCollection

All of them return a list of Pair instances, as shown in Figure 9-3. Note that Iterable

is an interface that arrays, collections, and ranges implement, so you could use ranges

here as well.

Figure 9-3. Zipping

As an example, say we have two lists [Bananas, Apples, Oranges] and

corresponding prices [1.69, 2.19, 2.79]. To build a list of pairs [Bananas, 1.69],

[Apples, 2.19], and [Oranges, 2.79], all you have to do is write

val fruits = listOf("Bananas", "Apples", "Oranges")

val prices = listOf(1.69, 2.19, 2.79)

val fruitsAndPrices = fruits zip prices

// or fruits.zip(prices)

...

Chapter 9 Data Containers

227

fruitsAndPrices.forEach { p ->

 // p = Pair("Bananas", 1.69) aso.

}

If you try to zip arrays or collections of unequal lengths, the bigger one gets clipped

at the end and the resulting list will have the size of the smaller one.

The unzip() function performs the inverse operation: It takes a list of pairs and

extracts two lists of single elements from it, packed in a pair: unzip(): Pair<List<T>,

List<R>>, where types T and R are the types of the first and second element of each pair

in the original list.

For zipping there is an alternative function to having a second parameter added.

This is a transform function doing something with the paired elements before outputting

them to the zip result; for example, list1.zip(list2, a,b -> ... where a and b are

the elements of lists 1 and 2 at the same index. This is a way to avoid creating pairs in

case you don’t need them. The same process works for arrays, too.

 Exercise 8
With two lists val fruits = listOf("Bananas", "Apples", "Oranges") and val

prices = listOf(1.69, 2.19, 2.79), and a data class Fruit(val name:String,

val price:Double), perform a zipping with the resulting list containing Fruit elements.

 Searching in Arrays and Collections
We’ve already seen that by using indexOf() we can find the index of a particular element

in an array or a list. For very large arrays or collections (e.g., 1 million entries), that might

not be the fastest way to find an element. Internally indexOf() must iterate through the

whole array or list and must check for the equality of each data value until a hit occurs.

For sorted arrays or lists there is a better choice: a binary search. In such a binary

search, the N elements of an array or list get split into two equal parts of approximate size

N /2. Then the part that contains the search element is chosen. With the smaller range,

we again perform a split in the middle, do another check, and so on. Using this algorithm

to search for an element in an array or list of 1 million entries, we don’t need more than

about 20 checks to find it.

Chapter 9 Data Containers

228

The function signatures for such a binary search (E is the element type) are given here.

• binarySearch(element:E, fromIndex:Int = 0, toIndex:Int = size)

This finds the element in an array or a list using its natural

ordering. The element type must have the Comparable interface,

which is automatically the case for all number types and

strings. If the element does not exist in the array or in the list,

the appropriate insertion index gets returned. In [1, 2, 4, 5]

searching for a 3 thus returns 2, because this is the index of 3

in [1, 2, 3, 4, 5]. Because fromIndex and toIndex have

adequate default values, you can omit them if you want to search

the whole list.

• binarySearch(element:E, comparator: Comparator<in E>

fromIndex:Int = 0, toIndex:Int = size)

This finds the element in an array or a list using the provided

comparator. The list or array must have been presorted according

to the comparator provided. If the element does not exist in the

array or in the list, the appropriate insertion index gets returned.

Because fromIndex and toIndex have adequate default values,

you can omit them if you want to search the whole list. The in in

the type parameter indicates that the comparator used also can

deal with superclasses of E.

Note that in all cases sorting the array or list in ascending order is mandatory.

Otherwise the result is undefined.

 The Spread Operator
For any function with a vararg parameter, you can use an array to pass values to the

function:

function xyz(a:Int, vararg x:String) {

 ...

}

val arr = arrayOf("1", "2", "3", "4", "5")

xyz(42, *arr)

Chapter 9 Data Containers

229

The * in front of the parameter is called a spread operator. Note that this works only

for arrays, but for lists or sets you can perform an appropriate conversion via .toArray(),

.toIntArray(), .toDoubleArray(), and so on.

 Queues and Stacks: Deques
Sets and lists are not the only collection types you can use. Kotlin does not explicitly

handle collection types other than sets and lists, but it sits on top of the Java virtual

machine (JVM) and includes a significant subset of the Java standard libraries, including

all Java collection types. We do not cover all of them, because some are rather specialized

and show features you don’t normally need. One interesting type is worth a more

thorough investigation, though: deques.

Deques are collections that are very similar to lists, but in addition they allow adding

elements at the head, and furthermore provide functions for removing elements from

both sides of the collection. Before we discuss the functions deques provide, we first

clarify a couple of terms:

• Head: The head of a list is the element first added to a list. It is thus

the element with index 0. For deques you explicitly state that you

want to do something with the head by using one of the functions

containing First in its name.

• Tail: The tail of a list is where elements get added via the add()

function. For deques you explicitly state that you want to do

something with the tail by using one of the functions containing Last

in its name.

Because Deque is an interface, we need an implementation. There are several, with

java.util.ArrayDeque probably the one used most often. Class ArrayDeque has three

constructors (E is the element type).

• ArrayDeque<E>()

This constructs a deque with an initial capacity of 16 elements

of type E. From a client-side perspective, you don’t have to think

about capacities unless performance or resources housekeeping

is a problem. If you expect many elements, you could specify a

higher initial capacity size using the constructor shown later.

Chapter 9 Data Containers

230

• ArrayDeque<E>(numElements:Int)

This constructs a deque with the given initial capacity.

• ArrayDeque<E>(c:Collection<out E>)

This constructs a deque initialized with the given elements. The

out in the type specification means subclasses of E are allowed for

the parameter.

For example, to create a deque holding Int elements, you writ: val dq =

ArrayDeque<Int>(). Note that the ArrayDeque class will let its internal data container

grow as necessary; the initial capacity thus is a mere hint.

The following is a nonexhaustive list of functions deques provide in addition to

properties and functions a list offers.

• addFirst(element:E)

This adds an element to the HEAD of a deque.

• addLast(element:E)

This adds an element to the TAIL of a deque. It corresponds to

add() for a list.

• removeFirst(): E

This gets and removes the element at the HEAD of the deque. It

throws an exception if the deque is empty.

• removeLast(): E

This gets and removes the element at the TAIL of the deque. It

throws an exception if the deque is empty.

• getFirst(): E

This retrieves but does not remove the element at the HEAD of the

queue. It throws an exception if the deque is empty.

• getLast(): E

This retrieves but does not remove the element at the TAIL of the

queue. It throws an exception if the deque is empty.

Chapter 9 Data Containers

231

In addition, you can use one of the following functions that do not throw an

exception if the deque is empty, but instead return null.

• peekFirst():E?

This gets but does not remove the HEAD of a deque. If the deque

is empty, it returns null instead.

• peekLast():E?

This gets but does not remove the TAIL of a deque. If the deque is

empty, it returns null instead.

• pollFirst():E?

This gets and removes the HEAD of a deque. If the deque is empty,

it returns null instead.

• pollLast():E?

This gets and removes the TAIL of a deque. If the deque is empty,

it returns null instead.

Deques can be used to mimic first-in, first-out (FIFO) queues if you use addLast()

and removeFirst(). Likewise, last-in, first-out (LIFO) stacks can be simulated by using

addLast() and removeLast().

 A Statistics Class for the NumberGuess App
Our NumberGuess game app to this point doesn’t contain any list-like structures, which is

why we didn’t mention it for a while. This can be changed readily and the extension we

add for that aim is a dedicated statistics activity that counts attempts and hits for us.

 Adding an Action Bar to The App
The first thing we do is add an action bar to the NumberGuess app:

 1. Update the AndroidManifest.xml file. Add as an XML attribute

inside the <activity> tag: android:theme = "@style/AppTheme.

NoActionBar" (right after the android:name= ... entry in a new line)

Chapter 9 Data Containers

232

<activity

 android:name=...

 android:theme="@style/AppTheme.NoActionBar">

 2. Update the res/values/styles.xml file. Inside the <resources>

tag add:

<resources>

 ...

 <style name="AppTheme.NoActionBar">

 <item name="windowActionBar">false</item>

 <item name="windowNoTitle">true</item>

 </style>

 <style name="AppTheme.AppBarOverlay"

 parent="ThemeOverlay.AppCompat.Dark.ActionBar"/>

 <style name="AppTheme.PopupOverlay"

 parent="ThemeOverlay.AppCompat.Light"/>

</resources>

 3. Update the res/layout/activity_main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <android.support.design.widget.AppBarLayout

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

Chapter 9 Data Containers

233

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay"

 />

 </android.support.design.widget.AppBarLayout>

 <include layout="@layout/content_main"/>

</android.support.design.widget.CoordinatorLayout>

 4. Create a new file res/layout/content_main.xml:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto"

 xmlns:tools=

 "http://schemas.android.com/tools"

 android:layout_width=

 "match_parent"

 android:layout_height=

 "match_parent"

 app:layout_behavior=

 "@string/appbar_scrolling_view_behavior"

 tools:showIn=

 "@layout/activity_main"

 tools:context=

 ".MainActivity">

<LinearLayout

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="30dp"

 tools:showIn="@layout/activity_main"

 tools:context=".MainActivity">

Chapter 9 Data Containers

234

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/title.numberguess"

 android:textSize="30sp"/>

 <Button

 android:id="@+id/startBtn"

 android:onClick="start"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="@string/btn.start"/>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

 <TextView

 android:text="@string/label.guess"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <EditText

 android:id="@+id/num"

 android:hint="@string/edit.number"

 android:layout_width="80sp"

 android:layout_height="wrap_content"

 android:inputType="number"

 tools:ignore="Autofill"/>

 <Button

 android:id="@+id/doGuess"

 android:onClick="guess"

 android:text="@string/btn.do.guess"

 android:layout_width="wrap_content"

Chapter 9 Data Containers

235

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

 <TextView

 android:id="@+id/status"

 android:text="@string/status.start.info"

 android:textColor="#FF000000"

 android:textSize="20sp"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <Space android:layout_width="match_parent"

 android:layout_height="5dp"/>

 <TextView android:text="@string/label.log"

 android:textStyle="bold"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <kotlinforandroid.book.numberguess.gui.Console

 android:id="@+id/console"

 android:layout_height="100sp"

 android:layout_width="match_parent"/>

</LinearLayout>

</android.support.constraint.ConstraintLayout>

 5. Make sure the MainActivity.kt file contains as imports:

import kotlinx.android.synthetic.main.activity_main.*

import kotlinx.android.synthetic.main.content_main.*

 6. Also inside class MainActivity, let function onCreate() read:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 setSupportActionBar(toolbar) // NEW

Chapter 9 Data Containers

236

 fetchSavedInstanceData(savedInstanceState)

 doGuess.setEnabled(started)

}

 7. Create a menu resource folder. For that aim, right-click the res folder,

then select New ➤ Android Resource Directory. As the directory

name, enter menu, and from the resource types, select Menu.

 8. Create a menu resource: Right-click the res/menu folder, then

select New ➤ Menu resource file. As the file name, enter menu_

options. With the file opened, switch to Text view by pressing on

the tab at the bottom of the editor view. As contents, write

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/statistics"

 android:icon=

 "@android:drawable/ic_menu_info_details"

 android:title=

 "@string/statistics.menu_title"

 app:showAsAction="ifRoom"/>

</menu>

 9. Create a string resource: Open res/values/strings and add

<string name="statistics.menu_title">

 Statistics</string>

 10. In the MainActivity class, add

override

fun onCreateOptionsMenu(menu: Menu): Boolean {

 val inflater: MenuInflater = menuInflater

 inflater.inflate(R.menu.menu_options, menu)

 return true

}

Chapter 9 Data Containers

237

private fun openStatistics() {

 val intent: Intent = Intent(this,

 StatisticsActivity::class.java)

 startActivity(intent)

}

The activity class will now show an error, because the StatisticsActivity does not

exist yet. We create it in the following section.

 The Statistics Activity
We now create a new activity for the statistics.

 1. Right-click app, then select New ➤ Activity ➤ Empty Activity.

As the activity’s name, enter StatisticsActivity. Make sure

Generate Layout file is selected, and use kotlinforandroid.

book.numberguess as a package name. As source language select

Kotlin and set main as the target source. Click Finish.

 2. Open the file res/layout/activity_statistics.xml, switch to

the Text view type, and replace its contents with this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:tools=

 "http://schemas.android.com/tools"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto"

 android:id="@+id/statisticsContainer"

 android:layout_width="match_parent"

 android:orientation="vertical"

 android:layout_height="match_parent"

 tools:context=".StatisticsActivity">

</LinearLayout>

Chapter 9 Data Containers

238

 3. Open the new activity class StatisticsActivity and replace its

contents with this:

package kotlinforandroid.book.numberguess

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.ViewGroup

import android.widget.TextView

import kotlinforandroid.book.numberguess.

 statistics.Statistics

class StatisticsActivity : AppCompatActivity() {

 override

 fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_statistics)

 showData(Statistics.getStatistics())

 }

 fun showData(s:List<String>) {

 val container = findViewById<ViewGroup>(

 R.id.statisticsContainer)

 container.removeAllViews()

 s.forEach {line ->

 container.addView(TextView(this).apply {

 text = line

 })

 }

 }

}

The last import must be entered in a single line, not like shown

here. The editor will show errors for the class, but we correct them

soon.

 4. Create a new package kotlinforandroid.book.numberguess.

statistics and inside a new object Statistics.

Chapter 9 Data Containers

239

 5. For now let the Statistics read:

package kotlinforandroid.book.numberguess.statistics

object Statistics {

 fun getStatistics(): List<String> {

 return emptyList()

 }

}

The errors in class StatisticsActivity should now disappear.

Now you should be able to run the app in an emulator or in a connected device.

If you click the new (i) button on the taskbar, the new statistics activity should appear.

For now, it will display an empty screen, but we change that later and add contents to it

(see Figure 9-4).

Figure 9-4. Empty statistics activity

 State Housekeeping for the Statistics
In the Statistics singleton object we gather the outcome from all game sessions in a

list. Because in a session we get two figures—the number to guess and the number of

tries needed to guess the number—we define an inner class GameSessionRecord holding

one result pair. We therefore update the Statistics object accordingly:

package kotlinforandroid.book.numberguess.statistics

Chapter 9 Data Containers

240

object Statistics {

 data class GameSessionRecord(val numberToGuess:Int,

 val tries:Int) : Serializable

 val data: ArrayList<GameSessionRecord> = ArrayList()

 fun getStatistics(): List<String> {

 return emptyList()

 }

}

where the ArrayList<GameSessionRecord> means we want a mutable list

of exactly such session records. The : Serializable is a marker interface that

makes sure the objects from this class can be converted into a language-agnostic

representation.

Note Unfortunately we cannot write val data = mutableListOf()
because this is not marked serializable. We need a language-agnostic
representation for the complete list as well, so we have to fall back to the
concrete implementation.

This data list represents the complete state of the Statistics object. We learned

from the MainActivity that we must find a way to save and restore the state, because

Android unexpectedly might put any activity into a suspended state, causing it to lose

its properties. We therefore add two functions, save() and restore(). As parameters

they have the Bundle instances needed for state saving and restoring as controlled by the

activity. We add a function call to onCreate():

override

fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_statistics)

 restoreData(savedInstanceState) // new!

 showData(Statistics.getStatistics())

}

Chapter 9 Data Containers

241

The two new functions read:

fun restoreData(savedInstanceState: Bundle?) {

 savedInstanceState?.run {

 getSerializable("statistics.data")?.run {

 Statistics.data.clear()

 Statistics.data.addAll(this as

 ArrayList<Statistics.GameSessionRecord>)

 }

 }

}

override fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 outState?.putSerializable("statistics.data",

 Statistics.data)

}

The ?.run{ } constructs make sure the run block gets executed only if the value

in front of it is not null. If it gets executed, this contains exactly this value. Therefore

the getSerializable() actually translates to this.getSerializable() and thus to the

getSerializable() from the savedInstanceState object. The this as ... is needed

because the getSerializable() by language design has lost its type information, so we

must explicitly state the type.

 Communicating Between the Activities
The game itself gets handled by the MainActivity class and the statistics by

StatisticsActivity. For those running the same process, we choose the simplest

way of communication: using a singleton object for sharing data. We have not yet

covered processes; in most cases it is enough to know that a process is a technical

bracket around app components, and that singleton objects reside within a process’s

boundaries.

Note For more complicated data structures to share between app components,
consider using the built-in android database.

Chapter 9 Data Containers

242

Also, sending a game session’s data to the statistics component does not require any

user interface actions, so there is no need for any elaborate intra-app communication.

We therefore add a simple function to the Statistics singleton object for adding

records to the list.

object Statistics {

 ...

 fun register(numberToGuess:Int, tries:Int) {

 data.add(GameSessionRecord(numberToGuess,

 tries))

 }

}

Now, inside the MainActivity we invoke this function.

fun guess(v:View) {

 ...

 if (g < number) {

 ...

 } else if (g > number) {

 ...

 } else {

 Statistics.register(number, tries)

 ...

 }

 ...

}

Note that for this to work the Statistics singleton object needs to be imported:

import kotlinforandroid.book.numberguess.statistics.Statistics.

 Implementing Statistical Calculations
With the statistics activity all set up and the data from the game activity communicated,

we are now ready for some calculations on the data inside the Statistics class. We start

with a simple one, the number of game sessions.

private fun numberOfSessions() : Int =

 data.size

Chapter 9 Data Containers

243

The next calculation is the average number of tries needed to correctly guess the

number:

private fun averageTriesNeeded() : Double =

 if(data.size > 0) data.map { rec -> rec.tries }

 .sum().toDouble() / data.size ;

 else 0.0

Let us investigate this step by step:

 1. The if() ... ;else ... checks whether we have data at all. If there

is no record, the average cannot be built and we have to avoid

dividing by 0.0. In this case, we return 0.0.

 2. The map() applies the provided lambda function to each element

of data and returns a new list with the number of attempts as

elements.

 3. The sum() is available for any collection with number type

elements. Here it obviously sums up all tries.

 4. The toDouble() is necessary, because otherwise an Int by Int

division will result in an Int, not the desired Double.

We divide the sum by the number of game sessions to obtain the result.

The next figure we want to calculate is the standard deviation of the tries needed to

guess the secret number. In case If you don’t know what a standard deviation is, it tells

us about the ”roughness” of a number, meaning how often and how much the numbers

differ from the average we just calculated. The formula for the standard deviation is

stddev tries

tries tries

N
i

N

i() =
-()

-
å

2

1

where tries designates the average. The corresponding Kotlin function reads:

private fun triesNeededStdDev() : Double {

 if(data.size < 2) return 0.0

 val avg = averageTriesNeeded()

 return Math.sqrt(

Chapter 9 Data Containers

244

 data.map {

 rec -> Math.pow(rec.tries - avg, 2.0)

 }.sum() / (data.size - 1))

}

and has the following characteristics:

• Because we need the average inside a loop, we introduce a val

variable holding the average. It is thus not possible here to use the

fun functName() = ... notation. We cannot put it into a single

expression. Well, we could, but not without significant performance

penalties.

• For the standard deviation we need at least two records. If we have

fewer, we prematurely exit the function and return 0.0.

• The Math.sqrt() calculates the square root needed for the

calculation: x .

• The Math.pow(x, 2.0) calculates the square: x2.

• Similar to the average calculation, the map() extracts tries tries-()2

where tries designates the average.

• We again take the sum from the result list by applying sum().

• The division by size − 1 is part of the formula.

The next function we write calculates a histogram of the tries. For each possible k

tries needed we figure out how often k shows up in the statistics data. This is a typical

case for a map Int → Int mapping the ks to their frequencies. The Kotlin function that

does this for our Statistics class reads:

private fun neededTriesDistrib() : Map<Int, Int> =

 data.groupBy({rec -> rec.tries}).

 mapValues { me -> me.value.size }

It performs in this manner:

• We see a practical implementation of groupBy(). You will see

groupBy() often when it comes to counting things based on some

criterion. Here we count record objects based on the number of tries.

This is exactly what the function parameter of groupBy() here does.

Chapter 9 Data Containers

245

• The result of the groupBy() function is a map Int →

List<GameSessionRecord>. We don’t need the list per tries figure,

though, only the number of records. This is what the mapValues() is

used for; it converts the value of each mapped to item from the map

and replaces the list that it happens to be, in this case by the list size.

The me in the parameter of mapValues() is of type Map.Entry. This is

something mapValues() prescribes. Map.Entry has two properties:

the .key and the .value. The key is the tries figure, and the value

is the list. We take the value and from it the size. The result is the

desired map.

A last interesting function tries to determine whether the number of tries needed to

guess a number depends on the number itself. We count the tries based on the criterion

numberToGuess and take the average. The code for that reads:

private

fun triesByNumberToGuess() : Map<Int, Double> =

 data.groupBy({rec -> rec.numberToGuess})

 .mapValues { me ->

 me.value.map{it.tries}.sum().toDouble()

 / me.value.size }

Let us investigate the parts:

• We again use the groupBy() function. This time, however, we need

to calculate figures for the numberToGuess member and accordingly

extract this property as the groupBy -key.

• We get a map with a list of GameSessionRecord elements as values.

We take each list and calculate the average of tries needed. For this

aim we map the list to a new list containing only the tries figures, take

the sum, convert it to a double, and divide it by the list size.

All that is left now is adapting the getStatistics() function to include the statistics

figures from the new calculation functions. It could read, for example:

fun getStatistics(): List<String> {

 val twoDigits = DecimalFormat().

 apply{ maximumFractionDigits = 2 }

Chapter 9 Data Containers

246

 val triesDistrib = neededTriesDistrib().

 toSortedMap().toString()

 val triesByNumber = triesByNumberToGuess().

 toSortedMap().mapValues {

 me -> twoDigits.format(me.value) }

 .toString()

 return listOf(

 "Sessions: ${numberOfSessions()}",

 "Average Tries: ${averageTriesNeeded()}",

 "Tries Standard Dev: ${triesNeededStdDev()}",

 "Tries Distrib: ${triesDistrib}",

 "Tries by Number: ${triesByNumber}"

)

}

For this to work, the import import java.text.DecimalFormat needs to be added to

the imports list. The NumberFormat used here is new; we need it to avoid doubles being

printed out with too many fraction digits. The .toSortedMap() makes sure the maps get

sorted according to their keys.

After starting the app and playing the game a couple of times, then launching the

statistics activity, the output might look like the display in Figure 9-5.

Figure 9-5. NumberGuess statistics

Chapter 9 Data Containers

247
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_10

CHAPTER 10

True, False, and
Undecided: Nullability
At school you learned about the dichotomy of true versus false, and you probably heard

that there is nothing else. Reading this book, thus far, you have learned that in Kotlin

there exists a boolean type Boolean with exactly those possible values: true and false.

Period. Really?

If you think about real life, experience suggests something else. Ask someone: Is it

going to rain tomorrow? Maybe the answer is yes, and maybe it is no. Honestly, though,

no one knows with 100 percent certainty. We therefore have true, false, and undecided

(or unknown). This trichotomy gets called three-valued logic (also trinary, trivalent, or

ternary logic). Why are we talking about this here? This is not a philosophy book, is it?

For classes and objects, we already pointed out that computer programs need to model

real-world scenarios; therefore we need to have something that is neither true nor false

in a computer language.

 What NULL Is
Even with computer language developers not really being sound philosophers or

perhaps just being unaware of this trichotomy, undecided has been around from the very

beginning of computer language history. It just didn’t get called that. Say, for example,

you need a variable that represents the size of some list. Depending on circumstances, a

list of size zero might make sense, and for coding reasons we might need to express that

a list is not yet defined. What can we do? Well, sizes are from the range 0, 1, 2, 3, ..., so

we just take a number that usually makes no sense and define this to represent a not yet

defined. Can you guess what number this could be? A possible answer is −1.

248

With arrays the story is even more diverse. Usually arrays get defined by some pointer

variable that points to the first element of the array in a computer’s memory. If we need

to say the array is not yet defined, we use a pointer value that doesn’t make sense. This

could be −1, but more practical is the value 0. For technical reasons it is impossible that

at memory address 0 actually starts an array, so 0 for undecided is a valid choice. To

clarify the difference between a real memory address and an undecided, the 0 expressing

the latter just gets a new name: null. For even more fun, with object orientation we also

have pointers to class instances, and those can be null as well as express undecided or

not yet defined.

In addition to a third pseudo-boolean undecided next to true and false, we have

another undecided for arrays and objects. How do they relate? Look at the following code

snippet:

val b:Boolean = ... // some condition

if(b) {

 ... // do something

} else {

 ... // do something else

}

Here we branch on whether some condition is met or not. With objects that could be

null to express them being not yet defined, in many situations you will have an extended

version of this:

val instance = ... // some object

val b:Boolean = ... // some condition

if(instance == null) {

 ... // do something

} else if(b) {

 ... // do something else

} else {

 ... // do something else

}

Here we make a decision based on whether something is true or false, and also if

something is undefined. Now if we had a third boolean value undecided in a fictive

computer language, this could read

Chapter 10 true, False, and undeCided: nullability

249

val b:Boolean = ... // some three-valued condition

ifundecided(b) {

 ... // do something

} if(b) {

 ... // do something else

} else {

 ... // do something else

}

These two constructs, a fictive three-valued boolean and a null object reference,

express the same code. This is where the two undecideds meet. Because in neither

Kotlin, nor in any other language I’m aware of, a third boolean value exists, we must

continue to use null for that purpose.

There is a serious problem with null: Do you remember what the dereferencing

operator . does? It takes the object from the left side of the . and uses the right side to

aim at a property or function. Quite naturally for objects that are undecided or null,

this dereferencing makes no sense. Unfortunately, many computer languages are not

very nice here and crash if we try to dereference on null, or at least break the program

flow and indicate an invalid program flow activity. This nullability annoyed generations

of developers by introducing instability into programs. The benefits outweighed the

problems, though, so just avoiding nullability was never considered a real alternative.

 How Nullability Gets Handled Inside Kotlin
Kotlin introduces a couple of new ideas about nullability, allowing its use but avoiding

most of the associated pitfalls. First, we notice that by default Kotlin does not allow null

values to sneak around in your app. Something like this

var p:SomeType = ...

...

p = null

just is not allowed for any type of property. The same holds for constructors and function

invocation:

class A(var p:SomeType) ...

A(null) // does not compile

Chapter 10 true, False, and undeCided: nullability

250

fun f(p:SomeType) { ... }

f(null) // does not compile

With such non-nullable properties, a dereferencing via . will always succeed. If, on

the other hand, we want a property, constructor parameter, or function parameter to be

nullable, we have to add a question mark (?) to the type:

var p:SomeType? = ...

p = null // OK

class A(var p:SomeType?) ...

A(null) // OK

fun f(p:SomeType?) { ... }

f(null) // OK

Note because you have to add something to allow for nullability, Kotlin slightly
favors non-nullability. in fact, in many cases you can avoid null values, and if this
is the case, chances are good you have a good app design.

For such nullable types Kotlin knows that a dereferencing via .property or

.function() might fail and prohibits using them:

var p:SomeType? = ...

...

p.property // does not compile

p.function() // does not compile

This is even then prohibited if the value happens to be not null.

How can we use such nullable properties then? The answer is that we have to use

one of the null-safe operators Kotlin provides. So for the dereferencing . there is a null-

safe variant ?. that you can use for nullable properties:

var p:SomeType? = ...

...

p?.property // OK

p?.function() // OK

Chapter 10 true, False, and undeCided: nullability

251

The difference is that if p is null the p?.property evaluates to null itself, the

function in p?.function() will not be invoked, and the call evaluates to null, too.

var p:SomeType? = null

val res:TypeOfProperty? = p?.property // -> null

val res2:TypeOfFunct? = p?.function() // -> null

// ... and function() not invoked

Another operator that by design is null-safe is the Elvis operator ?:. We already know

this one; it evaluates to its left side if that one is not null, and otherwise to its right side.

var p:String? = "Hello"

var s1 = p?:"default" // -> "Hello"

p = null

var s2 = p?:"default" // -> "default"

Kotlin cannot always know whether a property is nullable or not. In such cases it

might help to use the !! operator, which also gets called the not null assertion operator.

It takes its left side, and no matter whether or not it might evaluate to null, presumes

that it cannot be null. You might use it once in a while if your app needs programs

written by others. This is especially true for libraries that are written in other languages

and don’t apply Kotlin’s null-checking mechanism. Of course if you then try to

dereference it by using. and the value accidentally is null, your app will crash. By all

means try to avoid that, or know what to do.

Caution using !! you essentially bypass Kotlin’s null-checking mechanism, so
try to avoid it.

var p:String? = ...

// for whatever reason we know that p cannot be null

val len = p!!.length

// valid, because the !! indicates it cannot be null

// If it accidentally _is_ null, we'll crash here.

Chapter 10 true, False, and undeCided: nullability

252

By the way, Kotlin is quite clever if you apply !!. In subsequent statements of the

same function it remembers that we applied this assertion and continues assuming that

the value cannot be null. You can write

var p:String? = ...

val len = p!!.length

val intVal = p.toInt()

Here the last statement only compiles because of the !! somewhere before this line.

Chapter 10 true, False, and undeCided: nullability

253
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_11

CHAPTER 11

Handling Equality
There is a strong distinction between identity and equality. Two things are identical if they

actually are the same. If you bought a white candle this morning, let’s call it A, the white

candle in your shopping bag and the white candle that this afternoon is placed in your

candleholder are the same and thus identical (presume this is the only candle you own).

Now assume you bought a second candle, B, of the same type from the same manufacturer.

Apart from some linguistic mistakes you sometimes hear, those two candles are not the

same. Candles A and B are not the same, but they are equal. This is because they have the

same characteristics: the same color, the same weight, the same diameter, and the same

length. Hold on, though: This is not necessarily true. The manufacturer says such a candle

weights 300 g, but a high-precision balance tells us candle A weighs 300.00245 g, and candle

B weighs 299.99734 g. If you take a kitchen scale, though, the weights of candles A and B are

the same. Therefore you can see that equality depends on strictness and it is relative.

This comparison between identity and equality teaches us an important lesson:

Identity is the case for things that are the same, whereas equality is relative and depends

on some definition.

 Identity in Kotlin
In Kotlin there is an identity operator === and its opposite !==. In Kotlin, identity stands

for referential identity, which means if two variables point to the same object, or refer to

the same object, they are considered identical:

data class A(val x:Double)

val a = A(7.0)

val b = A(7.0)

val c = a

val aIdenticalToC = a === c // -> true

val aIdenticalToB = a === b // -> false

254

In reality, you might not use identity very often. Having different variables pointing

to the same object in most cases is not considered good coding style anyway, and in

addition identity is something that does not differ a lot with different program flows.

Finally, the comparison of any two objects evaluating to false despite all properties

having the same value in the two objects is confusing and thwarts the readability of your

code. The practical use of checking for identity, therefore, is limited.

Note There is another identity notion that is revealed in a database
environment. There you often have a numerical ID field for data records. This field
gets used as a surrogate for the corresponding object’s identity, instead of the
language’s referential === identity. In this chapter we are not talking about this
database kind of identity.

 Equality in Kotlin
For equality Kotlin provides the comparison operator ==, and its opposite !=. Other than

identity, an object must tell whether it is equal to some other object. If you don’t do this

explicitly, the base implementation of an equality check is used, which falls back to the

identity check.

Equality checks on numbers, booleans, chars, and strings do the obvious thing:

Strings are equal if they contain exactly the same characters, characters are equal if

they contain the same letter, and numbers and booleans are equal if they have the

same value.

 Equals and Hash Code
The way a class handles equality checks is governed by two functions: fun

equals(otherObject:Any?): Boolean and fun hashCode(): Int. If your classes need

equality checks, you must implement both. It might seem strange that we need two

functions for equality checks. Why does it not suffice to have just equals() for equality

checks? The reason lies in performance, and the precise idea is described later.

ChapTer 11 hanDlIng equalITy

255

First, though, we state that if we write a1 == a2 for some a1 and a2 as instances of

class A, the function equals() gets called on class A, and only if it returns true, the result

of the comparison is true as well. For == equality checks, then, the equals() function

actually does suffice.

For maps, the story is different. If we have a map mapping instances of some class A

to whatever, for example

class A(val v:Int) {

 override fun hashCode():Int {

 return ...

 }

 override fun equals(other:Any?):Boolean {

 return ...

 }

}

val m = mapOf(A(7) to 8, A(8) to 9)

and then perform a lookup like

val searchKey:A = ...

m[searchKey]

what actually happens is this:

• The hash code of searchKey gets calculated by invoking hashCode()

on it.

• The [] operator (or the get() function) applies a very fast algorithm

to find an entry based on the integer hash key.

• For entries found during the hash key lookup, a call of equals()

happens for all possible entries. If equals() found the precise entry,

the [] operator returns the corresponding value for that entry.

• If a hash key lookup failed or all the subsequent equals() checks

failed, the [] operator fails as well and returns null.

ChapTer 11 hanDlIng equalITy

256

We observe two things:

 1. The equals() gets invoked only if the hash code lookup

succeeded.

 2. For the process to make sense, for the hashCode() function

the following must be true: (1) If a == b, we also need

a.hashCode() == b.hashCode(). (2) If a != b, in most cases we

also should have a.hashCode() != b.hashCode(). If (1) wasn’t

true, the map lookup function would fail, and if (2) wasn’t true,

we’d too often have to call equals().

As an example, consider the class

class Person(val lastName:String,

 val firstName:String,

 val birthday:String,

 val gender:Char)

We implement an equals() function based on all properties:

class Person(val lastName:String,

 val firstName:String,

 val birthday:String,

 val gender:Char) {

 override fun equals(other:Any?):Boolean {

 if(other == null) return false

 if(other !is Person) return false

 if(lastName != other.lastName) return false

 if(firstName != other.firstName) return false

 if(birthday != other.birthday) return false

 if(gender != other.gender) return false

 return true

 }

}

ChapTer 11 hanDlIng equalITy

257

The first two lines in fun equals() return null if the object other provided for

comparison is null or not an instance of Person. You will find similar lines in almost

any equals() implementation, although it would be overstating to say you’ll find them

absolutely everywhere; for some strange reason we might accept comparisons with null

or other types.

Because we are already finished if other is not of type Person, starting with the third

line Kotlin knows that other is an instance of Person. This automatic type detection

sometimes gets called smart cast. What comes is a step-by-step comparison of all

properties, and only if they all match we return true.

For a hashCode() function you might think of a lot of algorithms, and on the Web

you’ll also find several ideas about it. Fortunately we don’t have to spend too much brain

power on that; the object Objects from package java.util provides a convenience

function for that and we can write:

class Person(val lastName:String,

 val firstName:String,

 val birthday:String,

 val gender:Char) {

 override fun equals(other:Any?):Boolean {

 if(other == null) return false

 if(other !is Person) return false

 if(lastName != other.lastName) return false

 if(firstName != other.firstName) return false

 if(birthday != other.birthday) return false

 if(gender != other.gender) return false

 return true

 }

 override fun hashCode(): Int {

 return Objects.hash(super.hashCode(),

 lastName, firstName, birthday, gender)

 }

}

ChapTer 11 hanDlIng equalITy

258

For such obvious cases where equality depends on all properties checked

for equality, Kotlin has a shortcut. We already talked about it: data classes. They

implement an equals() and a hashCode() function exactly based on all properties.

For the Person class we can thus remove the explicit equals() and hashCode()

functions and simply write

data class Person(val lastName:String,

 val firstName:String,

 val birthday:String,

 val gender:Char)

 Exercise 1
If two variables a and b are identical, which of the following are true?

 1. a and b refer to the same object.

 2. a == b necessarily yields true.

 3. a !== b necessarily yields false.

 Exercise 2
If two variables a and b are equal, a == b, which of the following are true?

 1. a.equals(b) must be true.

 2. a != b necessarily yields false.

 3. a.hashCode() == b.hashCode() must be true.

ChapTer 11 hanDlIng equalITy

259
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_12

CHAPTER 12

Back to Math: Functional
Programming
If you look at the examples and exercises presented so far in this book you can see that

we fluctuate between two styles of programming:

[statement1] // do something

[statement2] // do something

[statement3] // do something

...

and

object.

 doSomething1().

 doSomething2().

 doSomething3().

 ...

The first style is about a sequence of imperatively telling what a program has to do,

whereas the second is about sequentially applying functions on objects in a function

invocation chain. Because of this, the first style also gets called imperative programming,

and the second is known as functional programming. Functional programming

frequently also implies using functions as arguments to other functions, which then

get called higher order functions. In addition, functional programming favors handling

immutable objects.

260

When using an imperative programming style, the following observations become

clear:

• We have a sequence of statements, including if/else, when

constructs and loops. Obviously, the order of the statements is

important.

• With each statement performing an identifiable program activity,

imperative programming at first glance leads to programs that are

easy to understand.

• The various statements can handle various different objects.

• Each statement might or might not alter the state of the object in

which it is embedded, and also the states of more objects involved.

Obviously with various structural constructs like loops and

conditional branchings there is no real limit to the complexity of the

states and state transitions for all objects involved.

• Statements include function calls that do unexpected things apart

from their main responsibilities. Such subsidiary activities frequently

get called side effects. These side effects can thus be both anticipated

and unanticipated, with possibly erroneous program activities.

In contrast functional programming has the following characteristics:

• Functional constructs primarily refer to single objects or a single

collection of objects. By virtue of function parameters, other objects

or collections might enter the function invocation chain, though.

• Functional programming includes handling functions as function

parameters. It thus allows for a higher abstraction compared to

imperative programming.

• Functional program parts, by virtue of passing around function

invocation results as parameters or input to other functions, allow for

a stateless programming style, avoiding complex state transitions.

With functions not referring and not altering object states, we also return to a

more math-like function notion. Remember that in math functions have an input and

produce an output from that, ignoring any “state” that might influence the calculation.

Chapter 12 BaCk to Math: FunCtional prograMMing

261

Object orientation uses a slightly altered function notion where the state of objects plays

an important role for the outcome of a function invocation. Functional programming

thus moves the function notion to more math-like semantics. Figure 12-1 shows a

comparison of imperative and functional programming.

To this point we didn’t favor either of the two programming paradigms over the

other, and looking at the characteristics of each programming style you can see that both

have their advantages and disadvantages. We continue with that attitude, but point out

that according to the circumstances, functional constructs could lead to more elegant

and more stable programs. Kotlin allows for both styles, and for each task it is up to you

to decide which paradigm best suits your needs.

In the rest of this chapter we deepen our knowledge of functional constructs, so you

have an improved tool set at hand for writing good software.

Figure 12-1. Functional versus imperative programming

Chapter 12 BaCk to Math: FunCtional prograMMing

262

 Kotlin and Functional Programming
Kotlin, although a full-fledged imperative language, also allows for a functional

programming style by virtue of these features:

• Kotlin has a function type declaration:

([parameters]) -> [result-type]

where [parameters] is a comma-separated list of function

parameter types. For example,

val f : (Int,String) -> String = ...

The -> [result-type] cannot be omitted, so if a function doesn’t

return anything you write -> Unit.

• Functions are first-class citizens: Any variable can have a built-in

type, can be an instance of any class, or can be a function. Functions

can be higher order functions by allowing functions as parameters.

val f1 = { -> Log.d("LOG", "Hello Kotlin") }

val f2 = { i:Int, s:String -> "${i}: ${s}" }

...

fun ff(fun1: (Int,String) -> String):String {

 return fun1(7, "Hello")

}

ff(f2)

ff({ i:Int,s:String -> "${i}- ${s}" })

• Kotlin has anonymous lambda functions; these are function literals

that can be used as function invocation parameters. For example:

val f = { i:Int, s:String ->

 i.toString() + ": " + s }

fun fun1(p: (Int,String) -> String) {

 p(42, "Hello")

}

fun1 { i:Int, s:String -> i.toString() + ": " + s }

Chapter 12 BaCk to Math: FunCtional prograMMing

263

Here Kotlin infers that f must be of type (Int, String) ->

String

• Kotlin’s standard library has a lot of higher order functions for

objects, arrays, and collections.

• A function call function({ [lambda-function] }) can be

abbreviated:

function { [lambda-function] }

• A function call function(par1, par2, ..., { [lambda-function]

}) can be abbreviated: function(par1, par2, ...) { [lambda-

function] }

• In a function type ([parameters]) -> [result-type] a parameter

usually is of the form ParType. A special receiver type notation reads

A.(ParType). In this case type A is the receiver type and the function

called inside an instance of class A means inside the function

specification this refers to the instance. A dedicated section of this

chapter talks about such a receiver type notation.

• Kotlin variables can be immutable: val s = Immutable

variables help to avoid state handling and reduce unanticipated side

effects.

• Functions from singleton objects can be addressed as objects

themselves by prepending two colons (::). If, for example,

you want to use the function add() from object X { fun

add(a:Int,b:Int):Int = a+b } you write

object X {

 fun add(a:Int, b:Int): Int = a + b

}

...

val f : (Int,Int) -> Int = X::add

Chapter 12 BaCk to Math: FunCtional prograMMing

264

• Functions from classes can be addressed as objects with receiver type

by prepending two colons (::). For example:

class X {

 fun add(a:Int, b:Int): Int = a + b

}

...

val f : X.(Int,Int) -> Int = X::add

• Functions from instances can be addressed as objects by prepending

two colons (::). For example:

class X {

 fun add(a:Int, b:Int): Int = a + b

}

...

val x1 = X()

val f : (Int,Int) -> Int = x1::add

 Functions Without Names: Lambda Functions
We know that normal functions look like

fun functionName([parameters]): ReturnType {

 ...

}

or

fun functionName([parameters]): ReturnType = ...

if the function can be reduced to an expression. Functions declared that way get

identified by functionName. The question is this: How can it be possible to have

functions without identifying the function name? For the answer, we look at variables

containing data; here we write

val varName = 37

Chapter 12 BaCk to Math: FunCtional prograMMing

265

The value on the right side of the = doesn’t have an identifying name either. All we

need is the variable name to handle the data. If we look at functions that get assigned to

variables,

val f = { i:Int, s:String -> i.toString() + ": " + s }

We can see that the { ... } construct doesn’t have an identifying name either;

the function gets used by the variable to which it got assigned. Such functions thus are

anonymous and commonly get referred to as lambda functions.

Note expressions with such anonymous functions also sometimes are called
lambda calculus.

The same holds for functions that have been passed to other functions as

parameters:

ff({ i:Int,s:String -> "${i}- ${s}" })

Here again we have a function without a name or a lambda function.

To invoke a lambda function, you write one of these:

[lambda_function].invoke([parameters])

[lambda_function]([parameters])

Lambda functions can have a result. Contrary to a normal function, where you return

values via some return statement, the result of a lambda function is whatever the last

line evaluated to. The preceding example

val f = { i:Int, s:String -> i.toString() + ": " + s }

thus returns the string representation of the Int parameter, plus a :, plus the String

parameter, all by virtue of the last line of the lambda function.

In a lambda function with a single parameter, for brevity the parameter declaration

can be omitted and the special identifier it can be used instead to refer to the parameter.

The following two statements are therefore equivalent:

{ par ->

 ... // do something with 'par' }

{

 ... // do something with 'it' }

Chapter 12 BaCk to Math: FunCtional prograMMing

266

 Exercise 1
Write as a lambda function: a function that takes an s:String and a num:Int and outputs

a string with num copies of s concatenated.

 Exercise 2
Rewrite

val f : (String) -> String = { s:String -> s + "!" }

to use it instead.

If a lambda function has one or more parameters you don’t need in a definition, you

can use an underscore wildcard (_) as a parameter name:

val f : (String, Int) -> String = { s:String, _ ->

 // the Int parameter is not used

 s + "!"

}

 Loops Once Again
In Chapter 9 we learned that we can iterate over the elements of an array or collection

(set, list) by writing data.forEach(...) or data.forEachIndexed(...):

val arr = arrayOf("Joe", "Isabel", "John" }

arr.forEach { name ->

 Log.d("A name: ${name}")

}

arr.forEachIndexed { i,s ->

 Log.d("Name #${i}: ${name}")

}

Here the Log comes from package android.util, so you have to import it:

import android.util.Log

Chapter 12 BaCk to Math: FunCtional prograMMing

267

Although at first glance the { } behind forEach or forEachIndexed looks like

a statement block, we can see by looking at the -> that in fact both forEach and

forEachIndexed are actually functions with a lambda function as a parameter. It is also

possible, then, to write arr.forEach({ ... }) or arr.forEachIndexed({ ... }); the

parentheses can be left out, as is always the case in Kotlin, if they just enclose curly brackets.

Inside Android Studio for any function invocation we can also look at the sources.

For this aim, place the cursor, for example, over forEach and then press Ctrl+B.

Android Studio then opens the sources for this function and shows us this:

public inline fun <T> Array<out T>.forEach(

 action: (T) -> Unit): Unit {

 for (element in this) action(element)

}

Here again we see that what comes after the forEach is a function as a function

parameter.

Note pressing Ctrl+B is a good way to learn what is going on behind the scenes
in kotlin. use it extensively to understand kotlin constructs and functions.

Because forEach and forEachIndexed are functions and not language constructs,

they can be intuitively applied to any objects that look like they contain something that

can be iterated over. This includes arrays and collections that are the result of applying

other functions over arrays and collections. We could therefore include filters and

mappings in the function chain that ends up in a loop, as in

originalCollection.

 filter([filter_function]).

 map([mapping_function]).

 take(37).

 forEach { elem ->

 ...

 }

where we first apply a filter, then a mapping, then a reduction to the first 37 elements before

we start the loop. We can see that by virtue of functions being allowed as function parameters,

we can achieve a function chain and avoid intermediate variables as data holders.

Chapter 12 BaCk to Math: FunCtional prograMMing

268

 Functions with Receivers
Functions that are considered function objects and are embedded in a context, as, for

example, functions inside a class, are called functions with receiver types. You declare

them as follows:

val f : ReceiverType.([parameters]) = ...

Such a function then acts as if it was a member function of class ReceiverType, and

inside the function implementation you can use this, which points to the instance. For

example, in

class A {

 var d:Double = 0.0

 fun plus(x:Double) = d + x

}

val f : A.(Double) -> Double =

 { x:Double -> this.d - x }

fun A.minus(x:Double) = f

function f is such a function with receiver type. We use it to extend class A with a minus()

function, and the this.d inside the implementation of f points to property d inside the

receiver type, A in this case.

In the previous section we already noticed that a direct reference to a function inside

a class automatically is such a function with receiver type, because it only works inside

the environment of its class:

class X {

 fun add(a:Int, b:Int): Int = a + b

}

...

val f : X.(Int,Int) -> Int = X::add

Chapter 12 BaCk to Math: FunCtional prograMMing

269

 Inline Functions
Look at this code snippet:

class A {

 fun function1(i:Int, f:(Int) -> String): String {

 return f(i)

 }

 fun function2() {

 val a = 7

 val s = function1(8) {

 i -> "8 + a = " + (i+a) }

 }

}

Inside the invocation of function1() we pass a function object in the form of a

lambda function i -> This function object must be created during runtime, and in

addition the compiler must allow for the local property a to be passed into that object.

This introduces a significant performance penalty. More precisely, the Kotlin compiler

produces something like this:

public class A {

 public String function1(int i,

 Function1<? super Integer, String> f) {

 return f.invoke(i);

 }

 public void function2() {

 int a = 7;

 String s2 = this.function1(8,

 new Function1<Integer, String>(a){

 final int $a;

 public String invoke(int i) {

 return "8 + a = " + (i + this.$a);

 }

Chapter 12 BaCk to Math: FunCtional prograMMing

270

 {

 this.$a = n;

 super(1);

 }

 });

 }

}

This is Java language code, but without going into detail we see that via new

Function1(...) a function object must be instantiated, and inside it a copy of property a

will be created.

If this performance penalty poses a problem, the function1() can be inlined:

class A {

 inline fun function1(i:Int, f:(Int) -> String): String

 {

 return f(i)

 }

 fun function2() {

 val a = 7

 val s = function1(8) {

 i -> "8 + a = " + (i+a) }

 }

}

What does that mean? It basically says that whenever the inlined function gets

used, no actual function invocation happens, but the function code gets copied in

place to the point where the function gets used. Again, looking at the compiler output,

this time we get

public class A {

 public String function1(int i,

 Function1<? super Integer, String> f) {

 return f.invoke(i);

 }

Chapter 12 BaCk to Math: FunCtional prograMMing

271

 public void function2() {

 int a = 7;

 int i$iv;

 int i = i$iv = 8;

 String s2 = "8 + a = " + (i + a);

 }

}

You can see that from inside function2() the inlined function function1 is not

getting invoked; instead the snippet

int i$iv;

int i = i$iv = 8;

String s2 = "8 + a = " + (i + a);

replaces the function invocation. No object instantiation happens and this code thus

runs much faster compared to the variant that is not inlined.

Using an inlined function yields a couple of nontrivial peculiarities. For example,

return statements behave differently from inside inlined functions. Also, it is possible

to only inline dedicated lambda function parameters and leave others creating

function objects. Also, inline functions support a special kind of type parameters,

called reified type parameters, which allow access to the type of parameters at runtime.

We don’t go into detail here; if you are interested please consult the online Kotlin

documentation for functions.

 Filters
If you have a list of some objects, such as instances of a data class Employee(val

firstName:String, val lastName:String, val ssn:String, val yearHired:Int),

in algorithms you frequently need to extract list members based on some criterion.

Using an imperative programming style this often leads to code snippets like this:

data class Employee(val firstName:String,

 val lastName:String,

 val ssn:String,

 val yearHired:Int)

Chapter 12 BaCk to Math: FunCtional prograMMing

272

val employees = listOf(

 Employee("John", "Smith", "123-12-0001", 1987),

 Employee("Linda", "Thundergaard", "123-12-0002", 1987),

 Employee("Lewis", "Black", "123-12-0003", 1977),

 Employee("Evans", "Brightsmith", "123-12-0004", 1991)

)

val before1990 = mutableListOf<Employee>()

for(empl in employees) {

 if(empl.yearHired < 1990) before1990.add(empl)

}

... // do something with before1990

This code seems very easy to understand and seems to solve the filtering task

adequately, but there are a couple of problems if we look closer at it.

• Before we start the loop we need to create the receiving list in a

separate statement. The result list creation is decoupled from the

loop; the code does not prevent us from adding more statements

between the list creation and the loop, for example, because of future

requirements. This decoupling might introduce complicated state

transitions, which destabilizes the program.

• Inside the loop the result list is nothing but a local variable; the

loop exists for the sole purpose of populating the result list, but the

code does not prevent us from doing other things there, eventually

decreasing code readability.

• If the list gets very lengthy we might be tempted to parallelize the

code inside the loop; that is, let several processes do the filtering at

the same time. This very easily will lead to concurrency problems,

since the before1990 variable is just a normal local property. Letting

several processes concurrently access the same collection frequently

leads to data consistency failures.

• With more complicated filtering criteria, we might end up in a

complicated stacking of various if-else/when branchings inside the

loop.

Chapter 12 BaCk to Math: FunCtional prograMMing

273

A remedy for almost all these problems consists of switching to functional code:

data class Employee(val firstName:String,

 val lastName:String,

 val ssn:String,

 val yearHired:Int)

val employees = listOf(

 Employee("John", "Smith", "123-12-0001", 1987),

 Employee("Linda", "Thundergaard", "123-12-0002", 1987),

 Employee("Lewis", "Black", "123-12-0003", 1977),

 Employee("Evans", "Brightsmith", "123-12-0004", 1991)

)

val before1990 = employees.filter {

 it.yearHired < 1990 }.toList()

... // do something with before1990

Here we could avoid writing emp -> ... inside the argument of filter(), as there

is only one function parameter and we use the automatic it variable. After the filter()

we could insert more filters, or a mapping function as we saw in Chapter 9.

 Exercise 3
Create another list startsWithL by applying a filter that only lets employees pass whose

first name starts with L. Note: String has a startsWith() function we can use for that

purpose.

Chapter 12 BaCk to Math: FunCtional prograMMing

275
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_13

CHAPTER 13

About Type Safety:
Generics
Generics is a term used for denoting a set of language features that allow us to add type

parameters to types. Consider, for example, a simple class with a function for adding

elements in the form of Int objects:

class AdderInt {

 fun add(i:Int) {

 ...

 }

}

and another one for String objects:

class AdderString {

 fun add(s:String) {

 ...

 }

}

Apart from what happens inside the add() function, these classes look suspiciously

similar, so we could think of a language feature that abstracts the type for the element to

add. Such a language feature exists in Kotlin, and it is called generics. A corresponding

construct reads as follows:

class Adder<T> {

 fun add(toAdd:T) {

 ...

 }

}

276

where T is the type parameter. Here instead of T any other name could be used for

the type parameter, but in many projects you will often find T, R, S, U, A, or B as type

parameter names.

For instantiating such classes, the type must be known to the compiler. Either you

have to explicitly specify the type, as in

class Adder<T> {

 fun add(toAdd:T) {

 ...

 }

}

val intAdder = Adder<Int>()

val stringAdder = Adder<String>()

or the compiler must be able to infer the type, as in

class Adder<T> {

 fun add(toAdd:T) {

 ...

 }

}

val intAdder:Adder<Int> = Adder()

val stringAdder:Adder<String> = Adder()

Note Generics are compile-time constructs. In the code the compiler generates,
no generics information appears. This effect is commonly referred to as type
erasure.

We’ve already used such a generic type a couple of times in the book. You might

remember as a holder for two data elements we talked about the Pair type, which is

parameterized:

val p1 = Pair<String, String>("A", "B")

val p2 = Pair<Int,String>(1, "A")

ChapTer 13 abouT Type SafeTy: GenerICS

277

Of course, we also talked about various collection types, for example:

val l1: List<String> = listOf("A","B","C")

val l2: MutableList<Int> = mutableListOf(1, 2, 3)

Until now we just took generics as they are, without further explaining them. After all,

writing List<String>, the deduction that we are talking about a list of strings is apparent.

The story gets interesting once we start more thoroughly looking at collections. The

question is this: If we have a MutableList<Any> and a MutableList<String>, how do

they relate? Can we write val l:MutableList<Any> = mutableListOf<String>("A", "B")?

Or in other words, is MutableList<-String> a subclass of MutableList<Any>? It isn’t,

and in the rest of this chapter we talk about generics in depth and try to understand type

relationships.

 Simple Generics
First, let’s address the basics. To type-parameterize a class or an interface, you add a

comma-separated list of formal type parameters inside angle brackets after the type

name:

class TheClass<[type-list]> {

 [class-body]

}

interface TheInterface<[type-list]> {

 [interface-body]

}

Inside the class or interface, including any constructor and init{} block, you can

then use the type parameters like any other type. For example:

class TheClass<A, B>(val p1: A, val p2: B?) {

 constructor(p1:A) : this(p1, null)

 init {

 var x:A = p1

 ...

 }

 fun function(p: A) : B? = p2

}

ChapTer 13 abouT Type SafeTy: GenerICS

278

 Exercise 1
Similar to the Pair class, create a class Quadruple that can hold four data elements.

Create an instance with sample Int, Int, Double, and String type elements.

 Declaration-Side Variance
If we talk about generics, the term variance denotes the ability to use more specific or

less specific types in assignments. Knowing that Any is less specific compared to String,

variance shows up in the question of whether one of the following is possible:

class A<T> { ... }

var a = A<String>()

var b = A<Any>()

a = b // variance?

... or ...

b = a // variance?

Why is that important for us? The answer to that question becomes clear if we look at

type safety. Consider the following code snippet:

class A<T> {

 fun add(p:T) { ... }

}

var a = A<String>()

var b = A<Any>()

b = a // variance?

b.add(37)

Adding 37 to a A<Any> does not pose a problem, because any type is a subclass of

Any. However, because b by virtue of b = a now points to an instance of A<String>,

we’ll get a runtime error, because 37 is not a string. The Kotlin compiler recognizes this

problem and doesn’t allow the b = a assignment.

ChapTer 13 abouT Type SafeTy: GenerICS

279

Likewise, assigning a = b also poses a problem. This one is even more obvious,

because a only is for String elements and cannot handle an Int typed value, as b does.

class A<T> {

 fun extract(): T = ...

}

var a = A<String>()

var b = A<Any>()

a = b // variance?

val extracted:String = a.extract()

The a.extract() in the last statement could evaluate to both an Any and a String

type, because b and now a may, for example, contain an Int object, but a is not allowed

to contain an Int object, because it can handle String elements only. Hence Kotlin does

not allow a = b either.

What can we do? To not allow any variance could be an option, but this would be

too harsh. Again, looking at the first sample with the b = a assignment we can see that

writing to b causes the error. How about reading? Consider this:

class A<T> {

 fun extract(): T = ...

}

var a = A<String>()

var b = A<Any>()

b = a // variance?

val extracted:String = b.extract()

The last operation now is safe as types are concerned, so we actually should not have

a problem here.

The exact opposite case, taking the a = b sample and applying a writing instead of a

reading operation, as in

class A<T> {

 fun add(p:T) { ... }

}

ChapTer 13 abouT Type SafeTy: GenerICS

280

var a = A<String>()

var b = A<Any>()

a = b // variance?

a.add("World")

should not pose a problem either. To both a and b we can add strings.

To make this kind of variance possible, Kotlin allows us to add a variance annotation

to a generic parameter. The first example with b = a does compile if we add the out

annotation to the type parameter:

class A<out T> {

 fun extract(): T = ...

}

var a = A<String>()

var b = A<Any>()

b = a // variance? YES!

val extracted:String = b.extract()

// OK, because we are reading!

The second example with a = b compiles if we add the in annotation to the type

parameter:

class A<in T> {

 fun add(p:T) { ... }

}

var a = A<String>()

var b = A<Any>()

a = b // variance? YES!.add("World")

// OK, because we are writing!

So with the in or out variance annotation added to the type parameters, and

confining class operations to allow for either only an input of the generic type or only an

output of the generic type, variance is possible in Kotlin! If you need both, you can use a

different construct, as covered in the section “Type Projections” later in this chapter.

ChapTer 13 abouT Type SafeTy: GenerICS

281

Note The out variance for classes also gets called covariance, and the in
variance is called contravariance.

The name declaration-side variance stems from declaring the in or out variance
in the declaration of the class. other languages, such as Java, use a different type
of variance that takes effect while using the class and hence gets called use-side
variance.

 Variance for Immutable Collections
Because immutable collections cannot be written to, Kotlin automatically makes them

covariant. If you prefer, you can think of Kotlin implicitly adding the out variance

annotation to immutable collections.

Due to this fact, a List<SomeClass> can be assigned to a List<SomeClassSuper>

where SomeClassSuper is a superclass of SomeClass. For example:

val coll1 = listOf("A", "B") // immutable

val coll2:List<Any> = coll1 // allowed!

 Type Projections
In the previous section we saw that for the out style variance the corresponding class is not

allowed to have functions with the generic type as a function parameter, and that for the in

style variance we accordingly cannot have a function returning the generic type. This is, of

course, unsatisfactory if we need both kinds of functions in a class. Kotlin also has an answer

for this type of requirement. It is called type projection and because it aims at variance while

using different functions of a class, it is the Kotlin equivalent of use-side variance.

The idea goes as follows: We still use the in and out variance annotations, but

instead of declaring them for the whole class we add them to function parameters.

We slightly rewrite the example from the previous section and add in and out variance

annotations:

class Producer<T> {

 fun getData(): Iterable<T>? = null

}

ChapTer 13 abouT Type SafeTy: GenerICS

282

class Consumer<T> {

 fun setData(p:Iterable<T>) { }

}

class A<T> {

 fun add(p:Producer<out T>) { }

 fun extractTo(p:Consumer<in T>) { }

}

The out in the add() functions says that we need an object that produces T objects,

and the in in the extractTo() function designates an object that consumes T objects.

Let us look at some client code:

var a = A<String>()

var b = A<Any>()

var inputStrings = Producer<String>()

var inputAny = Producer<Any>()

a.add(inputStrings)

a.add(inputAny) // FAILS!

b.add(inputStrings) // only because o "out"

b.add(inputAny)

var outputAny = Consumer<Any>()

var outputStrings = Consumer<String>()

a.extractTo(outputAny) // only because of "in"

a.extractTo(outputStrings)

b.extractTo(outputAny)

b.extractTo(outputStrings) // FAILS!

You can see that a.add(inputAny) fails because inputAny produces all kinds of

objects but a can only take String objects. Similarly, b.extractTo(outputStrings)

fails because b contains any kind of object but outputStrings can only receive String

objects. This so far has nothing to do with variance. The story gets interesting for

b.add(inputStrings). The behavior to allow for strings to be added to A<Any> certainly

makes sense, but it only works because we added the out projection to the function

parameter. Similarly, a.extractTo(outputAny), although certainly desirable, only works

because of the in projection.

ChapTer 13 abouT Type SafeTy: GenerICS

283

 Star Projections
If you have a class or an interface with in or out variance annotations, you can use the

special wildcard *, which means the following:

• For the out variance annotation, * means out Any?.

• For the in variance annotation, * means in Nothing.

Remember that Any is the superclass of any class, and Nothing is the subclass of

any class.

For example:

interface Interf<in A, out B> {

 ...

}

val x:Interf<*, Int> = ...

 // ... same as Interf<in Nothing, Int>

val y:Interf<Int, *> = ...

 // ... same as Interf<Int, out Any?>

You use the star wildcard in cases where you know nothing about the type, but still

want to satisfy variance semantics prescribed by class or interface declarations.

 Generic Functions
Functions in Kotlin can also be generic, which means their parameters or some of their

parameters can have a generic type. In such cases, the generic type designators must

be added as a comma-separated list in angle brackets after the function keyword. The

generic types can also show up in the function’s return type. Here is an example.

fun <A> fun1(par1:A, par2:Int) {

 ...

}

ChapTer 13 abouT Type SafeTy: GenerICS

284

fun <A, B> fun2(par1:A, par2:B) {

 ...

}

fun <A> fun3(par1:String) : A {

 ...

}

fun <A> fun4(par1:String) : List<A> {

 ...

}

To call such a function, the concrete type principally must be specified after the

function’s name in angle brackets:

fun1<String>("Hello", 37)

fun2<Int, String>(37, "World")

val s:String = fun3<String>("A")

However, as is often the case in Kotlin, the type arguments can be omitted if Kotlin

can infer the type.

 Generic Constraints
Until now there was no restriction to the type a generic type identifier could be mapped

to during instantiation. Therefore in class TheClass<T> the T generic type could be

anything, a TheClass<Int>, TheClass<String>, TheClass<Any>, or whatever. It is,

however, possible to restrict the type to a certain class or interface or one of its subtypes.

For that aim you write

<T : SpecificType>

as in

class <T : Number> { ... }

ChapTer 13 abouT Type SafeTy: GenerICS

285

which confines T to a Number or any of its subclasses, like Int or Double.

This is very useful. Consider, for example, a class that allows us to add something to a

Double property.

class Adder<T> {

 var v:Double = 0.0

 fun add(value:T) {

 v += value.toDouble()

 }

}

Do you see why this code is illegal? We say that value is of type T, but it is not known

to the class what T happens to be during instantiation, so it is not clear whether or not a

T.toDouble() function actually exists. Because we know that after compilation all types

are erased, the compiler has no chance to check whether there is a toDouble() and it

hence marks the code as illegal. If you look at the API documentation you will find out

that Int, Long, Short, Byte, Float, and Double all are subclasses of kotlin.Number and

they all have a toDouble() function. If we had a way to say that T is a Number or a subclass

thereof, we could thus make the code legal.

Kotlin does have a way to confine generic types that way, and it reads <T : SpecificType>.

Because T then is confined to SpecificType or any subtype of it lower in the type

hierarchy, this is also said to be an upper type bound. To make our Adder class legal all

we have to do is write

class Adder<T : Number> {

 var v:Double = 0.0

 fun add(value:T) {

 // T is a Number, so it _has_ a toDouble()

 v += value.toDouble()

 }

}

ChapTer 13 abouT Type SafeTy: GenerICS

286

Such type constraints can also be added to generic functions, so we actually could

rewrite the Adder class to:

class Adder {

 var v:Double = 0.0

 fun <T:Number> add(value:T) {

 v += value.toDouble()

 }

}

This has the particular advantage that the generic type does not need to be resolved

during instantiation.

val adder = Adder()

adder.add(37)

adder.add(3.14)

adder.add(1.0f)

Note that unlike class inheritance, type bounds can be multiply declared. This just

can’t happen inside the angle brackets, but there is a special construct for handling such

cases.

class TheClass<T> where T : UpperBound1,

 T : UpperBound2, ...

{

 ...

}

or

fun <T> functionName(...) where T : UpperBound1,

 T : UpperBound2, ...

{

 ...

}

for generic functions.

ChapTer 13 abouT Type SafeTy: GenerICS

287

Something that you might have to get used to but that helps for generic constraints

having generic parameters themselves, is that generic classes might show up on both

sides of the colon (:) It is thus completely acceptable to write

class TheClass <T : Comparable<T>> {

 ...

}

to express that T must be a subclass of Comparable.

 Exercise 2
Write a generic class Sorter with a type parameter T and suitable type bound, which

has a property val list:MutableList<T> and a function fun add(value:T). With each

function invocation, the parameter must be added to the list and the list property must

be sorted according to its natural sorting order.

ChapTer 13 abouT Type SafeTy: GenerICS

289
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_14

CHAPTER 14

Adding Hints:
Annotations
Annotations are for adding meta-information to your code. What does that mean?

Consider the following classes:

class Adder {

 fun add(a:Double, b:Double) = a + b

}

class Subtractor {

 fun subtract(a:Double, b:Double) = a - b

}

If we have a larger arithmetic calculation project where the various operations get

handled by classes like Adder and Subtractor here, we could have something like

val eng = CalculationEngine()

...

eng.registerAdder(Adder::class, "add") eng.registerSubtractor(Subtractor::c

lass, "subtract")

...

for registering the particular low-level operations.

We could, however, follow a different approach where the operators somehow

announce their abilities to the framework. They could do this by special documentation

tags, as in

/**

 * @Operator: ADDING

 * @Function: add

 */

290

class Adder {

 fun add(a:Double, b:Double) = a + b

}

/**

 * @Operator: SUBTRACTING

 * @Function: subtract

 */

class Subtractor {

 fun subtract(a:Double, b:Double) = a - b

}

Some parser could then look into the source code to find out which classes and

functions are needed for the various operators.

Note A framework is a collection of classes, interfaces, and singleton objects
that provide a scaffolding structure to software. A framework is not an executable
program itself, but a software project uses the framework to establish a
standardized structure. Different projects using a particular framework thus
exhibit a similar structure and if a developer knows one project embedded into a
particular framework it will be easier to understand other projects using the same
framework.

This method of letting classes announce themselves to a program frequently gets

used in a server environment where the program needs to be able to communicate with

clients over a network.

There is, however, a problem with this approach. Because the meta-information

gets presented from inside the documentation, there is no possibility for the compiler

to check the correctness of the tags. Concerning the compiler, the contents of the

documentation are completely unimportant, and should be unimportant, because this is

what the language specification says.

ChApter 14 ADDing hints: AnnotAtions

291

 Annotations in Kotlin
This is where annotations enter the game. They exist exactly for this kind of task: not

interfering with the class’s primary responsibilities, but providing meta-information

to the program or framework for maintenance or registration purposes. An annotation

looks like this:

@AnnotationName

or

@AnnotationName(...)

if there are parameters. A lot of language elements can be marked with such annotations:

files, classes, interfaces, singleton objects, functions, properties, lambdas, statements,

and even other annotations. The operator classes for the preceding calculation engine

example could read

@Operator(ADDING)

class Adder {

 @OperatorFunction

 fun add(a:Double, b:Double) = a + b

}

@Operator(SUBTRACTING)

class Subtractor {

 @OperatorFunction

 fun subtract(a:Double, b:Double) = a - b

}

Now the compiler is in a better situation. Because annotations are part of the

language the compiler can check whether they exist, are spelled correctly, and have the

correct parameters provided.

In the following sections we first discuss annotation characteristics, then annotations

that Kotlin provides. We then cover how to build and use our own annotations.

ChApter 14 ADDing hints: AnnotAtions

292

 Annotation Characteristics
Annotations get declared by annotation classes as follows:

annotation class AnnotationName

We cover building our own annotations in a later section. For now we mention

the declaration because annotations have their characteristics described by their own

annotations, which then are meta-annotations:

@Target(...)

@Retention(...)

@Repeatable

@MustBeDocumented

annotation class AnnotationName

You can use any combination of them in any order, and they have default values if

unspecified. We describe them, including possible parameters, here.

• @Target(...)

Here you specify the possible element types to which the

annotation can be applied. The parameter is a comma-

separated list of any of the following (all of them are fields of the

enumeration kotlin.annotation.AnnotationTarget):

 – CLASS: All classes, interfaces, singleton objects and annotation classes.

 – ANNOTATION_CLASS: Only annotation classes.

 – PROPERTY: Properties.

 – FIELD: A field that is the data holder for a property. Note that a property by

virtue of getters and setters does not necessarily need a field. However, if

there is a field, this annotation target points to that field. You put it in front

of a property declaration, together with the PROPERTY target.

 – LOCAL_VARIABLE: Any local variable (val or var inside a function).

 – VALUE_PARAMETER: A function or constructor parameter.

ChApter 14 ADDing hints: AnnotAtions

293

 – CONSTRUCTOR: Primary or secondary constructor. If you want to annotate a

primary constructor, you must use the notation with the constructor

keyword added; for example, class Xyz @MyAnnot constructor

(val p1:Int, ...).

 – FUNCTION: Functions (not including constructors).

 – PROPERTY_GETTER: Property getters.

 – PROPERTY_SETTER: Property setters.

 – TYPE: Annotations for types, as in val x: @MyAnnot Int = ...

 – EXPRESSION: Statements (must contain an expression).

 – FILE: File annotation. You must specify this before the package declaration

and in addition add a file: between the @ and the annotation name, as in

@file:AnnotationName.

 – TYPE_ALIAS: We didn’t talk about type aliases yet. They are just new names

for types, as in typealias ABC = SomeClass<Int>. This annotation type is

for such typealias declarations.

If unspecified, targets are CLASS, PROPERTY, LOCAL_VARIABLE,

VALUE_PARAMETER, CONSTRUCTOR, FUNCTION, PROPERTY_GETTER, and

PROPERTY_SETTER.

• @Retention(...)

This specifies where the annotation information goes during

compilation and whether it is visible using one of the following

(all are fields from the enumeration class kotlin.annotation.

AnnotationRetention):

 – SOURCE: Annotation exists only in the sources; the compiler removes it.

 – BINARY: Annotation exists in the compiled classes, interfaces, or singleton

objects. It is not possible to query annotations at runtime using reflection.

 – RUNTIME: Annotation exists in the compiled classes, interfaces, or singleton

objects, and it is not possible to query annotations at runtime using

reflection.

ChApter 14 ADDing hints: AnnotAtions

294

The default is RUNTIME.

• @Repeatable

Add this if you want to allow the annotation to appear more often

than just once.

• @MustBeDocumented

Add this if you want the annotation to show up in the public API

documentation.

You can see that for classes, interfaces, singleton objects, properties, and local

properties, you don’t have to specify special characteristics if you want the annotations

to show up visibly in the compiled files.

 Applying Annotations
In general, annotations get written in front of the element to which the annotation is to

apply. The story gets a little bit complicated because it is not always clear what is meant

by element. Consider this example:

class Xyz {

 @MyAnnot var d1:Double = 1.0

}

Here we have four elements to which the annotation could be applied: the property,

the property getter, the property setter, and the data field. For this reason, Kotlin

introduced use-site targets in the form of a qualifier: written between the @ and the

annotation name. The following use-site targets are available:

• file

We know that a Kotlin file can contain properties and functions

outside classes, interfaces, and singleton objects. For an annotation

applying to such a file, you write @file:AnnotationName in front of

the package declaration. For example:

@file:JvmName("Foo")

package com.xyz.project

...

ChApter 14 ADDing hints: AnnotAtions

295

to give the internally created class the name Foo.

• property

The annotation gets associated with the property. Note that if you

use Java to access your Kotlin classes, this annotation is not visible

to Java.

• field

The annotation gets associated with the data field behind a

property.

• get

The annotation gets associated with the property getter.

• set

The annotation gets associated with the property setter.

• receiver

The annotation gets associated with the receiver parameter of an

extension function or property.

• param

The annotation gets associated with a constructor parameter.

• setparam

The annotation gets associated with a property setter parameter.

• delegate

The annotation gets associated with the field storing the delegate

instance.

If you don’t specify a use-site target, the @Target meta-annotation is used to find the

element to annotate. If there are several possibilities, the ranking is param > property >

field.

ChApter 14 ADDing hints: AnnotAtions

296

The following code shows various annotation application examples (for simplicity,

all annotations are without parameters and are presumed to have the correct @Target

specified):

// An annotation applying to a file (the implicit

// internal class generated)

@file:Annot

package com.xyz.project

...

// An annotation applying to a class, a singleton

// object, or an interface

@Annot class TheName ...

@Annot object TheName ...

@Annot interface TheName ...

// An annotation applying to a function

@Annot fun theName() { ... }

// An annotation applying to a property

@property:Annot val theName = ...

@Annot var theName = ...

class SomeClass(@property:Annot var param:Type, ...) ...

// An annotation applying to a function parameter

f(@Annot p:Int, ...) { ... }

// An annotation applying to a constructor

class TheName @annot constructor(...) ...

// An annotation applying to a constructor parameter

class SomeClass(@param:Annot val param:Type, ...) ...

// An annotation applying to a lambda function

val f = @annot { par:Int -> ... }

// An annotation applying to the data field

// behind a property

@field:Annot val theName = ...

class SomeClass(@field:Annot val param:Type, ...) ...

ChApter 14 ADDing hints: AnnotAtions

297

// An annotation applying to a property setter

@set:Annot var theName = ...

var theName = 37 @Annot set(...) { ... }

class SomeClass(@set:Annot var param:Type, ...) ...

// An annotation applying to a property getter

@get:Annot var theName = ...

var theName = 37 @Annot get() = ...

class SomeClass(@get:Annot var param:Type, ...) ...

// An annotation applying to a property setter

// parameter

var theName:Int = 37

 set(@setparam:Annot p:String) { })

// An annotation applying to a receiver

@receiver:Annot fun String.xyz() { }

// An annotation applying to a delegate

class Derived(@delegate:Annot b: Base) : Base by b

To use annotations as annotation parameters, you don’t add a @ prefix:

@Annot(AnotherAnnot)

 Annotations with Array Parameter
Using arrays as an annotation constructor parameter is easy: Just use the vararg

qualifier in the annotation declaration, and in the annotation instantiation use a

comma-separated parameter list:

annotation class Annot(vararg val params:String)

...

@Annot("A", "B", "C", ...) val prop:Int = ...

If you need to use an annotation with a single array parameter from a Java library

you included in your project, the parameter gets automatically converted to a vararg

parameter, so you basically do the same:

@field:JavaAnnot("A", "B", "C", ...) val prop:Int = ...

ChApter 14 ADDing hints: AnnotAtions

298

If annotations have several named parameters with one or several of them being an

array, you use the special array literal notation:

@Annot(param1 = 37, arrParam = [37, 42, 6], ...)

 Reading Annotations
For reading annotations with retention type SOURCE you need a special annotation

processor. Remember that for SOURCE type annotation the Kotlin compiler removes the

annotation during the compilation step, so in this case we must have some software

looking at the sources before the compiler does its work. Most source type annotation

processing happens inside bigger server framework projects; here the annotations get

used to produce some synthetic Kotlin or Java code that glues together classes to model

complex database structures. There is a special plug-in to be used for such purposes,

KAPT, which allows for the inclusion of such source type annotation preprocessors.

You can find more information about KAPT usage in the online Kotlin

documentation. For the rest of this section we talk about RUNTIME retention type

annotation processing.

For reading annotations that have been compiled by the Kotlin compiler and ended

up in the bytecode that gets executed by the runtime engine, the reflection API gets

used. We discuss the reflection API later in this book; here we mention only annotation

processing aspects.

Note to use reflection, the kotlin-reflect.jar must be in the class path.
this means you have to add implementation "org.jetbrains.kotlin:
kotlin-reflect:$kotlin_version" inside the dependencies section of your
module’s build.gradle file.

To get the annotations for the most basic elements, see Table 14-1, which describes

how to get an annotation or a list of annotations.

ChApter 14 ADDing hints: AnnotAtions

299

Table 14-1. Annotations by Element

Element Reading Annotations

Classes,

singleton

objects, and

interfaces

Use

TheName::class.annotations

to get a list of kotlin.Annotation objects you can further investigate. You can, for

example, use the property .annotationClass to get the class of each annotation. if

you have a property and first need to get the corresponding class, use

property::class.annotations

to read a certain annotation, use

val annot = TheName::class.findAnnotation<AnnotationType>()

where for AnnotationType you substitute the annotation’s class name. From here

you can, for example, read an annotation’s parameter via annot?.paramName.

properties Use

val prop = ClassName::propertyName

val annots = prop.annotations

val annot = prop.findAnnotation<AnnotationType>()

to fetch a property by name and from there get a list of annotations or search for a

certain annotation.

Fields to access a field’s annotations use

val prop = ClassName::propertyNameval field = prop.javaFieldval

annotations = field?.annotations

(continued)

ChApter 14 ADDing hints: AnnotAtions

300

 Built-in Annotations
Kotlin provides a couple of annotations from the start. Table 14-2 shows some general-

purpose annotations.

Table 14-1. (continued)

Element Reading Annotations

Functions to access a nonoverloaded function by name write TheClass::functionName. in

case you have several functions using the same name but with different parameters

you can write

val funName = "functionName"

 // <- choose your own

val pars = listOf(Int::class)

 // <- choose your own

val function =

 TheClass::class.

 declaredFunctions.filter {

 it.name == funName }

 ?.find { f ->

 val types = f.valueParameters.map{

 it.type.jvmErasure}

 types == pars

}

once you have the function, you can use .annotations for a list of annotations, or

.findAnnotation<AnnotationType>() to search for a certain annotation.

ChApter 14 ADDing hints: AnnotAtions

301

Table 14-2. Built-in Annotations: General

Annotation Name Package Targets Description

Deprecated kotlin class, annotation

class, function,

property,

constructor,

property setter,

property getter,

type alias

takes three parameters: message:String,

replaceWith:ReplaceWith

= ReplaceWith("") and

level:DeprecationLevel =

DeprecationLevel.WARNING Mark the

element as deprecated. DeprecationLevel is

an enumeration with fields: WARNING, ERROR,

HIDDEN

ReplaceWith kotlin — takes two parameters: expression:String

and vararg imports:String. Use this to

specify a replacement code snippet inside @

Deprecated.

Suppress kotlin class, annotation

class, function,

property, field,

local variable,

value parameter,

constructor,

property setter,

property getter,

type, type alias,

expression, file

takes one vararg parameter: names:String.

retention type is SOURCE. Use this to suppress

compiler warnings. the names parameter is

a comma-separated list of warning message

identifiers. Unfortunately finding an exhaustive

list of compiler warning identifiers is not that

easy, but Android studio helps: once a compiler

warning appears, the corresponding construct

gets highlighted and pressing Alt+enter

with the cursor over it allows us to generate

a corresponding suppress annotation. see

Figure 14-1 (use arrow keys to navigate in the

menu).

ChApter 14 ADDing hints: AnnotAtions

302

 Custom Annotations
To define your own simple annotations, you write

@Target(...)

@Retention(...)

@Repeatable

@MustBeDocumented

annotation class AnnotationName

For the annotations for the annotation (i.e., the meta-annotations), note that they

are all optional and the order is free. For their meanings, see the section “Annotation

Characteristics” earlier in this chapter.

If you need annotations with parameters, you add a primary constructor to the

declaration:

[possibly meta-annotations]

annotation class AnnotationName(val p1:Type1, val p2:Type2, ...)

where the following parameter types are allowed: types that correspond to primitive

types (i.e., Byte, Short, Int, Long, Char, Float, Double), strings, classes, enums,

other annotations, and arrays of those. You can add vararg for a variable number of

arguments. Note that for annotations used as parameters for other annotations, the @ for

the parameter annotations gets omitted.

Figure 14-1. Suppress annotation in Android Studio

ChApter 14 ADDing hints: AnnotAtions

303

As an example, we start a calculation engine in the form of a class Calculator. We

introduce an annotation to avoid division by 0.0. The annotation reads:

@Target(AnnotationTarget.VALUE_PARAMETER)

@Retention(AnnotationRetention.RUNTIME)

annotation class NotZero()

For the class and two operators divide and multiply we write:

class Calculator {

 enum class Operator(val oper:String) {

 MULTIPLY("multiply"),

 DIVIDE("divide")

 }

 fun operator(oper:Operator,

 vararg params:Double): Double {

 val f = Calculator::class.declaredFunctions.

 find { it.name == oper.oper }

 f?.valueParameters?.forEachIndexed { ind, p ->

 p.findAnnotation<NotZero>()?.run {

 if (params[ind] == 0.0)

 throw RuntimeException(

 "Parameter ${ind} not unequal 0.0")

 }

 }

 val ps = arrayOf(this@Calculator,

 *(params).toList().toTypedArray<Any>())

 return (f?.call(*ps) as Double?) ?: 0.0

 }

 fun multiply(p1:Double, p2:Double) : Double {

 return p1 * p2

 }

 fun divide(p1:Double, @NotZero p2:Double) : Double {

 return p1 / p2

 }

}

ChApter 14 ADDing hints: AnnotAtions

304

The operator() function acts as follows:

• It finds the function corresponding to the first parameter. The

Calculator::class.declaredFunctions lists all the directly

declared functions of the Calculator class. This means it does not

also look into superclasses. The find selects divide() or multiply().

• From the function, we loop though the parameters via

.valueParameters. For each parameter, we see whether it has

annotation NotZero associated with it. If it does, we check the actual

parameter, and if it is 0.0, we throw an exception.

• If no exception was thrown, we invoke the function. The arrayOf()

expression concatenates the receiver object and the function

parameters into a single Array<Any>.

The @NotZero annotation makes sure the parameter gets checked when Calculator.

operator() is called. To use the calculator, you write something like this:

Calculator().

 operator(Calculator.Operator.DIVIDE,

 1.0, 1.0)

To see whether the annotation works, try another invocation with 0.0 as the second

parameter.

 Exercise 1
To the Calculator example, add a new annotation @NotNegative and a new operation

sqrt() for the square root. Make sure a negative parameter for this operator is not

allowed. Note: The actual square root gets calculated via java.lang.Math.sqrt().

ChApter 14 ADDing hints: AnnotAtions

305
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_15

CHAPTER 15

Using the Java and
Kotlin APIs
Kotlin has a language kernel that handles classes, objects, properties, functions,

structural constructs, and all that stuff. We’ve been talking about these a lot to this point.

Once in a while we have mentioned and used the term Kotlin standard library without

explicitly stating what that actually is. In real life a library is a place where extensive

information is available. Whenever you need to know something you can go there and

try to find a book that can show you what things are or how they work, or what you have

to do to achieve something. For a computer language, a library is something similar: a

repository with lots of classes and functions that you can use for certain tasks. We already

talked about collections, which are governed by library classes and functions.

APIs go hand in hand with libraries. An API focuses more on the external face of a

library; that is, how a library gets used from outside without having to know about the

internal functioning.

There are many examples of libraries you can think of; for example, math, chemistry,

physics, biology, sociology, encryption standards, web services, user interfacing, sound

processing, and graphics, to name just a few, and writing a single book about all of them

is just not possible. It makes sense, though, to distinguish between basic libraries that get

shipped with Kotlin and external libraries that you can add on demand. Just looking the

built-in libraries is a much more feasible task, and in this chapter we look at the libraries

that get shipped with Kotlin.

Note that it is neither possible nor desirable in a book like this to list all classes and

functions a library has to offer. There are just too many in any but very simple libraries.

We can, however, try to describe the libraries, show how to use them, and list the most

important classes and functions. This happens in subsequent chapters.

306

 Kotlin and Java Libraries
Before we start looking at the different APIs, we need to talk about where the Kotlin libraries

come from. Kotlin sits on top of the JVM, and the Kotlin developers did a good job to allow

for easy interoperation between Kotlin and Java. This includes the ability to use Java APIs

and libraries. With Java around for more than 20 years, it is not hard to imagine that there

are some extremely well-tailored Java libraries out there, and there is no need for Kotlin to

redo everything. What Kotlin instead does is include some of the libraries that were already

included with a Java distribution, and then extends or redefines them at a couple of places

using its class extension mechanisms.

 Using the Online Resources
For any of the APIs included in Kotlin, having the official API documentation at hand

always is a good idea. The place to go is https://kotlinlang.org/. There you will find

a LEARN link that gets you to the language and standard library reference manual. If this

link is out of date, search “kotlin programming language” in your favorite search engine

to find it.

As already pointed out, Kotlin has a strong relation to Java; it is especially easy to

incorporate Java standard modules into Kotlin. The Android platform includes various

Java APIs, and you don’t have to do anything to use them if you use Android Studio

for development. The API level 28 we have been using throughout this book has the

following Java APIs from Java 8:

• java.beans

• java.io

• java.lang

• java.math

• java.net

• java.nio

• java.security

• java.sql

• java.text

Chapter 15 Using the Java and Kotlin apis

https://kotlinlang.org/

307

• java.time

• java.util

• javax.crypto

• javax.microedition.khronos

• javax.net

• javax.security

• javax.sql

• javax.xml

On the Oracle web site you will find the API documentation for the Java libraries. The

link more precisely reads https://docs.oracle.com/javase/8/docs/api/, but if this

link is out of date, an online search for “java 8 api” will readily lead you to these pages.

For the APIs we describe in the following chapters, we remove the burden of thinking

about whether they come from Kotlin or Java. If you are interested, it is usually easy to

see where the classes and interfaces come from by looking at the import statements. If

they start with java. or javax., the classes and interfaces come from Java, otherwise

they are from Kotlin.

 Making a Local Copy of the Documentation
Inside Android Studio, once you press Ctrl+B over any class or interface name, you will

be taken to the Java or Kotlin sources. If you do this for the first time, Android Studio

might need to download the sources from the Internet, but afterward you will have the

sources locally stored inside your Android Studio installation.

If you want to have a local copy of the API documentation on your PC, for Java the

corresponding links on the Oracle downloads web site are easy to find. For Kotlin, go

to https://github.com/JetBrains/kotlin/releases, choose a release, and then

download the source code as a compressed archive.

You can also fetch the sources from your Android Studio. Make sure the sources

were downloaded by pressing Ctrl+B over any Kotlin standard library class, then go to

STUDIO-INST/plugins/Kotlin/kotlinc/lib. There you’ll find a file kotlin-stdlib-

sources.jar. This is a ZIP archive. You can extract all files from the archive and save

them anywhere on your PC.

Chapter 15 Using the Java and Kotlin apis

https://docs.oracle.com/javase/8/docs/api/
https://github.com/JetBrains/kotlin/releases

309
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_16

CHAPTER 16

The Collections API
We already talked about collections in Chapter 9, namely lists, sets, and maps.

The collections API, however, is extensive and contains more classes and interfaces

than we described in Chapter 9. For Java the API even gets called the collections

framework. Without claiming to be exhaustive in this chapter, we revise what we

already know and also talk about a couple of more interesting collection interfaces,

classes, and functions.

Unfortunately there is nothing like a java.collections package. Concerning Java,

the collections API is scattered with its main part lying inside the java.util package.

Note We’ll exhibit a way to designate generic type parameters in this chapter.
Where obvious, for brevity they are not shown. In all cases we use E as the
element type of a list or a set, and K and V for the keys and values of maps.

 Interfaces
Although Java already has interfaces for sets, lists, and maps, Kotlin has its own

interfaces for them. This mainly stems from Kotlin’s need to distinguish between

mutable and immutable collections and maps. For most use cases you can just use the

Kotlin versions, and the compiler even might warn you if you instead try to use the Java

variants. It is not forbidden, though, to use the Java variants as well, and there might be

reasons to do so. Table 16-1 provides an overview.

310

Table 16-1. Collection Interfaces

Interface Description

kotlin.collections.Iterable An iterable, or something that can be iterated through in

a loop. Any iterable can be used in a for(x in a)

loop, so if you provide your own classes implementing

this interface, you can use it in loops. All collections (i.e.,

lists and sets) are iterables.

kotlin.collections.

MutableIterable

Same as Iterable, but in addition supports removal of

the currently iterated over element.

java.lang.Iterable The Java variant of an iterable; don’t use it unless you

have good reasons to do so.

kotlin.collections.Collection A general immutable collection interface. This is a

subinterface of Iterable.

kotlin.collections.

MutableCollection

A general mutable collection interface. This is a

subinterface of MutableIterable.

java.util.Collection The Java variant of a collection interface; don’t use it

unless you have good reasons to do so.

(continued)

ChApTer 16 The ColleCTIonS ApI

311

Table 16-1. (continued)

Interface Description

java.util.Deque A two-ended queue. Use this to implement or use queues

or stacks. You can put elements at the beginning and at

the end, and you can read and withdraw elements on

both sides. The number of functions available for deques

is a little bit overwhelming; usually you can be happy

with the following set:

• size(): Int to get the size.

• addFirst(element:E) to add an element to the

heAD of a deque.

• addLast(element:E) to add an element to the TAIl

of a deque.

• removeFirst(): E to get and remove the element at

the heAD of the deque (throws an exception if the deque

is empty).

• removeLast(): E to get and remove the element at the

TAIl of the deque (throws an exception if the deque is empty).

• getFirst(): E to retrieve, but not to remove, the

element at the heAD of the queue (throws an exception if

the deque is empty).

• getLast(): E to retrieve, but not to remove the

element at the TAIl of the queue (throws an exception if

the deque is empty).

There is no Kotlin variant for this; deques are always

mutable.

java.util.Queue A one-ended queue. normally you can use a two-ended

deque instead. There is no Kotlin variant for this; queues

are always mutable.

kotlin.collections.List An immutable list.

kotlin.collections.MutableList A mutable list.

(continued)

ChApTer 16 The ColleCTIonS ApI

312

Note that all those interfaces have generic types that must be specified between

angle brackets, unless the Kotlin compiler can infer the types. For maps we need two

type parameters; all the others require one.

Looking a little bit closer at the table, you might notice two somewhat strange

constructs: a sorted set in the form of SortedSet and a sorted map in the form of

SortedMap. These are language constructs that help under circumstances, but have no

direct counterparts in math. In math both sets and maps are unordered! In your code

perhaps it is best if you don’t use them where it can be avoided. If you do use them, the

algorithm should not strongly depend on the order of elements. This is, of course, a

matter of personal preference; take it as a hint or advice.

Table 16-1. (continued)

Interface Description

java.util.List The Java variant of a list; don’t use it unless you have

good reasons to do so.

kotlin.collections.Set An immutable set.

kotlin.collections.MutableSet A mutable set.

java.util.Set The Java variant of a set; don’t use it unless you have

good reasons to do so.

java.util.SortedSet A set with its elements sorted in their natural sorting

order.

java.util.NavigableSet A SortedSet that can additionally be iterated through in

both directions.

kotlin.collections.Map An immutable map.

kotlin.collections.MutableMap A mutable map.

java.util.Map The Java variant of a map; don’t use it unless you have

good reasons to do so.

java.util.SortedMap A map with its keys sorted in their natural sorting order.

java.util.NavigableMap A SortedMap that can additionally be iterated through in

both directions.

ChApTer 16 The ColleCTIonS ApI

313

 Classes
Table 16-2 lists the classes that implement the collection and map interfaces.

Table 16-2. Collection Classes

Class Description

kotlin.collections.ArrayList A list implementation for both mutable and immutable lists.

java.util.ArrayList The Java variant of an ArrayList; don’t use it unless you

have good reasons to do so.

kotlin.collections.HashSet A set implementation for both mutable and immutable sets.

java.util.HashSet The Java variant of a HashSet; don’t use it unless you have

good reasons to do so.

kotlin.collections.

LinkedHashSet

A set implementation for both mutable and immutable sets.

Because the set elements are linked to each other, the

iteration order is the same as the insertion order.

java.util.LinkedHashSet The Java variant of a LinkedHashSet; don’t use it unless

you have good reasons to do so.

kotlin.collections.HashMap A map implementation for both mutable and immutable

maps.

java.util.HashMap The Java variant of a HashMap; don’t use it unless you have

good reasons to do so.

kotlin.collections.

LinkedHashMap

A map implementation for both mutable and immutable

maps. Because the map elements are linked to each other,

the iteration order is the same as the insertion order.

java.util.LinkedHashMap The Java variant of a LinkedHashMap; don’t use it unless

you have good reasons to do so.

java.util.ArrayDeque A Deque implementation.

java.util.EnumSet A specialized java.util.Set implementation for

enumeration elements.

java.util.LinkedList A java.util.List implementation with linked list

elements.

(continued)

ChApTer 16 The ColleCTIonS ApI

314

Table 16-2. (continued)

Class Description

java.util.PriorityQueue A java.util.Queue implementation with elements

inserted at a position according to their natural ordering or

according to an ordering defined by the comparator passed

in during construction.

java.util.Stack A last-in, first-out (lIFo) implementation of a java.util.

List.

java.util.TreeSet A java.util.Set implementation with the elements

sorted according to their natural ordering, or sorted by the

comparator passed in during construction.

java.util.concurrent.

ArrayBlockingQueue

A queue (first-in, first-out list) with a fixed size. Blocks both

if trying to add an element when the queue is full or trying to

remove an element when the queue is empty.

java.util.concurrent.

ConcurrentLinkedDeque

A deque implementation allowing concurrent access to the

elements.

java.util.concurrent.

ConcurrentLinkedQueue

A queue implementation allowing concurrent access to the

elements.

java.util.concurrent.

ConcurrentSkipListSet

A NavigableSet implementation allowing concurrent

access to the elements.

java.util.concurrent.

CopyOnWriteArrayList

A java.util.List implementation allowing concurrent

access to the elements. each write operation leads to a fresh

copy of the complete list.

java.util.concurrent.

CopyOnWriteArraySet

A java.util.Set implementation allowing concurrent

access to the elements. each write operation leads to a fresh

copy of the complete set.

java.util.concurrent.

DelayQueue

A java.util.Queue implementation where elements must

be subclasses of java.util.concurrent.Delayed.

Allows removal of elements only when the delay has expired.

(continued)

ChApTer 16 The ColleCTIonS ApI

315

Note that in properties declarations it is generally desirable to use an interface for the

property type, but to use a class only for the instantiation. This way we express what the

property does, not how it does it.

var l:MutableList<String> = ArrayList()

// ... = ArrayList<String>() is unnecessary, because

// Kotlin can infer the type.

 Generator Functions
Kotlin provides hundreds of functions inside its own collection classes, adds extension

functions to Java’s collection classes, and in addition serves us with many top-level

functions. Without being exhaustive, this section and those that follow list perhaps the

most important collection functions of both Kotlin and Java.

Table 16-3 shows top-level generator functions you can use to create collections.

Unless otherwise noted, the returned collections and maps are instances of classes from

inside package kotlin.collections only.

Table 16-2. (continued)

Class Description

java.util.concurrent.

LinkedBlockingQueue

A queue (first-in, first-out list) optionally with a fixed size.

Blocks both if trying to add an element when the queue is

full or trying to remove an element when the queue is empty.

java.util.concurrent.

PriorityBlockingQueue

A java.util.Queue implementation with elements

inserted at a position according to their natural ordering or

according to an ordering defined by the comparator passed

in during construction. potentially blocks retrieval operations

until elements are available.

java.util.concurrent.

SynchronousQueue

A java.util.Queue implementation where insert

operations are only possible if the element is concurrently

asked for. otherwise the insert operation blocks and waits.

ChApTer 16 The ColleCTIonS ApI

316

Table 16-3. Collection Generators

Function Description

emptyList<E>() Creates an immutable empty list of the given element

type.

listOf<E>(...) Creates an immutable list of the elements given as

parameters; for example, listOf(1, 2, 3)

mutableListOf<E>(...) Creates a mutable list of the elements given as

parameters; for example, mutableListOf(1, 2, 3)

listOfNotNull<E>(...) Creates an immutable list of the elements given as

parameters, but filters out null valued parameters; for

example, listOfNotNull(1, 2, null, 3)

List<E>(size: Int,

init: (index: Int) -> E)

Creates an immutable list calculated by the lambda

function given as the second parameter. note that

despite the name starting with an uppercase letter, this is

a function.

MutableList<E>(size: Int,init:

(index: Int) -> E)

Creates a mutable list calculated by the lambda function

given as the second parameter. note that despite the

name starting with an uppercase letter, this is a function.

emptySet<E>() Creates an immutable empty set.

setOf<E>(...) Creates an immutable set of the elements given as

parameters; for example, setOf(1, 2, 3)

mutableSetOf<E>(...) Creates a mutable set of the elements given as

parameters; for example, mutableSetOf(1, 2, 3)

emptyMap<K,V>() Creates an immutable empty map.

mapOf<K,V>() Creates an immutable map of the Pair elements given

as parameters; for example, mapOf(1 to "A", 2 to

"B")

mutableMapOf<K,V>(...) Creates a mutable map of the Pair elements given as

parameters; for example, mutableMapOf(1 to "A",

2 to "B")

ChApTer 16 The ColleCTIonS ApI

317

As is usually the case for Kotlin, the type parameters can be omitted if Kotlin can

infer the types. So you can write

listOf(1, 5, 7, 9)

and Kotlin knows that this is a List<Int>.

 Collection and Map Setters and Removers
Table 16-4 shows you how to add elements to mutable collections or maps, and also how

to remove them.

Table 16-4. Collection Mutators

For Function Description

lists, sets add(element:E) Add an element at the TAIl of a list, or add

an element to a set.

lists set(index:Int, element:E) overwrites element at the given index. The

element to overwrite must exist.

lists list[index] = value Same as set()

lists, sets addAll(elements:

Collection<E>)

addAll(elements: Array<out E>)

Adds all elements from the array or

collection provided as the parameter to the

TAIl of a list, or add elements to a set.

Maps put(key:K, value:V) puts a key/value pair into a map. If the key

already exists, the value gets overwritten.

Maps map[key:K] = value:V Same as put().

Maps putIfAbsent(key:K, value:V) puts a key/value pair into a map, but only

if the key didn’t exist before.

Maps set(key:K, value:V) Same as put().

Maps putAll(from: Map<out K,V>) performs a put() for all the elements

from the map that gets provided as the

function parameter.

(continued)

ChApTer 16 The ColleCTIonS ApI

318

Table 16-4. (continued)

For Function Description

lists, sets remove(element:E) remove the given element from the set or

list.

lists, sets removeIf { (E) -> Boolean } remove all elements for which the lambda

function provided returns true. returns

true if at least one element was removed.

lists, sets removeAll(

elements:Collection<E>)

removeAll(elements:Array<out T>)

remove all elements from the list or set

that is also included in the collection or

array parameter provided.

lists, sets removeAll { (E) -> Boolean } Same as removeIf().

Maps remove(key:K) removes the element at the given key, if it

exists. returns the previous value, or null

if it didn’t exist.

Maps remove(key:K, value:V) removes the element at the given key, if

it exists and has the given value. returns

true if the element was removed.

lists, sets retainAll(

elements:Collection<E>)

Changes the given set or list and makes

it retain only those elements that are also

inside the parameter collection given.

Maps, lists,

sets

clear() removes all elements.

 Deterministic Getters
Deterministic getters to retrieve elements from collections and maps are listed in

Table 16-5.

ChApTer 16 The ColleCTIonS ApI

319

Table 16-5. Getters

For Function Description

lists get(index:Int) retrieves the element at the specified index.

lists getOrNull(index:Int) retrieves the element at the specified index, or null if

the index is out of bounds.

lists list[index:Int] Same as get().

lists first() returns the first element.

list firstOrNull() returns the first element, or null if the list is empty.

lists last() returns the last element.

lists lastOrNull() returns the last element, or null if the list is empty.

lists, sets random() returns a random element from the list or set.

Maps get(key:K) returns the value for the given key, or if it does not

exist null.

Maps map[key:K] Same as get().

Maps getOrDefault(key:K,

defaultValue:V)

returns the value for the given key, or if it does not

exist the defaultValue.

Maps getOrElse(key:K,

defaultValue: (K) -> V)

returns the value for the given key, or if it does not

exist the result from the lambda function provided as

the second parameter.

Maps getOrPut(key:K,

defaultValue: () -> V)

returns the value for key key. however, if the key

does not exist yet, call the lambda function and put

the result as the value for that key into the map. In the

latter case, return the new value.

lists, sets single() retrieves the single element if there is just one

element inside. otherwise throws an exception.

lists, sets singleOrNull() retrieves the single element if there is just one

element inside. otherwise returns null.

lists drop(n:Int) returns an immutable list with the elements from the

original list with the first n elements dropped.

(continued)

ChApTer 16 The ColleCTIonS ApI

320

 Collection and Map Characteristics
For collection and map characteristics, see Table 16-6.

Table 16-5. (continued)

For Function Description

lists dropLast(n:Int) returns an immutable list with the elements from the

original list with n elements dropped from the end.

lists slice(indices:IntRange) returns an immutable list containing the elements at

the indices given by the range parameter.

lists take(n:Int) returns an immutable list with the first n elements

from the original list.

lists takeLast(n:Int) returns an immutable list with the last n elements

from the original list.

Table 16-6. Characteristics

Receivers Function Description

Maps, lists, sets Size The size of the collection or map.

Maps, lists, sets count() Same as size.

Maps, lists, sets isEmpty() returns true if empty.

Maps, lists, sets isNotEmpty() returns true if not empty.

lists, sets count((E) -> Boolean) Counts the elements that for the given

predicate lambda function return true.

Maps count((K,V) -> Boolean) Counts the elements that for the given

predicate lambda function return true.

lists, sets indices Valid indices as an IntRange.

lists lastIndex The last valid index.

ChApTer 16 The ColleCTIonS ApI

321

 Traversing Collections and Maps
For traversing collections and maps, you can use one of the constructs shown in

Table 16-7.

Table 16-7. Traversing

For Construct Description

list, sets, implements

Iterable

for(i in x) { ... } A language construct, i is the loop

variable and receives the elements.

Maps for(me in x) { ... } A language construct, me is the

loop variable and receives Map.

Element<K,V> elements. You can

fetch the key via me.key and the

value via me.value

Maps for((k,v) in x) { ... } A language construct, k and v are

the loop variables and receive key

and value for each map element.

list, sets, implements

Iterable

x.forEach { i -> ... } Iterates through all elements of x, i

receives each element.

list, sets, implements

Iterable

x.onEach { i -> ... } Same as forEach(), but afterward

returns the iterated-over list, set, or

iterable.

list, sets, implements

Iterable

x.forEachIndexed { ind, i

-> ... }

Iterates through all elements of x, i

receives each element. Ind is the

index variable (0, 1, 2, ...).

Maps x.forEach { me -> ... } Iterates through all elements of map

x, me has type Map.Element<K,V>.

You can fetch the key via me.key

and the value via me.value

Maps x.forEach { k,v -> ... } Iterates through all elements of map

x, k is the key and v the value of

each element.

ChApTer 16 The ColleCTIonS ApI

322

 Transformations
The possibilities to transform a collection or map into another collection or map are

potentially endless. Table 16-8 shows functions to extract the keys and the values from

a map.

Table 16-8. Extraction Keys and Values

Construct Returns Description

map.keys MutableSet<K> Get the keys from a map as a set.

map.values MutableCollection<V> Get the values from a map as a collection.

Throughout this section we use list, set, map, coll, and iter for variables of type

List, Set, Map, Collection, and Iterable, respectively. Remember that a list or set is a

collection and that any collection is an iterable.

Table 16-9 shows various functions to transform collection or map elements on an

element-by-element basis.

Table 16-9. Transforming: Mapping

Construct Returns Description

iter.map(transform:

(E) -> R)

List<R> Transform all the collection’s or any other

iterable’s entries according to the lambda

function given. returns an immutable list.

iter.mapIndexed(

transform: (Int, E) -> R)

List<R> Transforms all the collection’s or any other

iterable’s entries according to the lambda

function given. The lambda function gets

the index (0, 1, 2, ...) as its first parameter.

returns an immutable list.

map.map(transform: (Map.

Entry<K,V>) -> R)

List<R> Creates a new immutable list from the

results of the lambda function provided to

each map element.

(continued)

ChApTer 16 The ColleCTIonS ApI

323

Construct Returns Description

map.mapKeys(transform:

(Map.Entry<K,V>) -> R))

Map<R,V> Creates a new immutable map with the

keys derived from the lambda function

provided.

map.mapValues(transform:

(Map.Entry<K, V>) -> R))

Map<K,R> Creates a new immutable map with the

values derived from the lambda function

provided.

Table 16-10. Transforming: Reordering

Construct Returns Description

list.asReversed() List<E> or

MutableList<E>

reverses a list’s iteration order without changing

the list. Maintains mutability of the original

list. note that changes to the resulting list get

reflected in the original list.

list.reverse() Unit reverses a mutable list in place. The original list

gets changed.

iter.reversed() List<E> returns a new immutable list with the sort order

of the elements from the original collection or

iterable reversed.

iter.distinct() List<E> returns a new immutable list containing only the

distinct elements from the original collection or

iterable.

iter.distinctBy(

selector: (E) -> K)

List<E> returns a new immutable list containing only the

distinct elements from the original collection. For

the equality check the results from the lambda

function provided get used.

(continued)

Table 16-9. (continued)

For a description of functions for changing the sort order of lists or transforming a list

or set to a sorted list, see Table 16-10.

ChApTer 16 The ColleCTIonS ApI

324

Table 16-10. (continued)

Construct Returns Description

list.shuffle() Unit randomly shuffles the elements from a mutable

list in place.

iter.shuffled() List<E> returns an immutable list with the elements

from the original collection or iterable randomly

shuffled.

list.sort() Unit Sorts a mutable list in place according to

the natural sort order. The elements must

implement the Comparable interface. The

sortDescending() function sorts in reverse

order.

list.sortBy

(selector: (E) -> R?)

Unit Sorts a mutable list in place according to the

natural sort order of the selector result. The

selector result must implement the Comparator

interface. The sortDescending() function

sorts in reverse order.

iter.sorted() List<E> returns a new immutable list with the elements

sorted in the natural sort order. The elements

must implement the Comparable interface. The

sortedDescending() function sorts in reverse

order.

iter.sortedBy(

selector: (E) -> R?)

List<E> returns a new immutable list with the

elements sorted in the natural sort order of

the selector result. The selector result must

implement the Comparable interface. The

sortedByDescending() function sorts in

reverse order.

(continued)

ChApTer 16 The ColleCTIonS ApI

325

Construct Returns Description

list.sortWith(

comparator:

Comparator<in E>

Unit Sorts a mutable list in place according to the

comparator given as a parameter. The selector

result must implement the Comparator interface.

The sortDescending() function sorts in

reverse order.

iter.sortedWith(

comparator:

Comparator<in E>

List<E> returns a new immutable list with the elements

sorted according to the comparator given as a

parameter.

Table 16-11. Transforming: Flattening

Construct Returns Description

iter.flatten(...) List<E> here iter is an Iterable<Iterable<E>>,

which is, for example, the case for collections

containing collections. returns a new immutable

list with all elements concatenated in a single

list.

iter.flatMap(transform:

(E) -> Iterable<R>)

List<R> With the transform function applied to all

elements in the original collection or iterable,

and returning an Iterable like a list or a

set, returns a single immutable list with all

transformation result elements concatenated.

map.flatMap(transform:

(Map.Entry<K,V>) ->

Iterable<R>)

List<R> With the transform function applied to all

elements in the original map and returning an

Iterable like a list or a set, returns a single

immutable list with all transformation result

elements concatenated.

Table 16-10. (continued)

A couple of functions can be used to gather the elements of sublists or submaps; that

is, lists and maps as elements of lists or maps (see Table 16-11).

Lists and sets can be transformed to maps by associating elements to keys or values

of the new map. Table 16-12 shows such association functions.

ChApTer 16 The ColleCTIonS ApI

326

Table 16-12. Transforming: Associating

Construct Returns Description

iter.associate

(transform:

(E) -> Pair<K, V>)

Map<K,V> Given the input list or set or iterable, the

transform lambda function is supposed to return

a Pair<K,V> that will be used for a new element

in the map returned.

iter.associateBy

(keySelector:

(E) -> K)

Map<K,E> Given the input list or set or iterable, the

keySelector lambda function gets used to create

a key for the new element in the map returned. The

value is the original element.

iter.associateBy

(keySelector:

(E) -> K,

valueTransform:

(E) -> V)

Map<K,V> Given the input list or set or iterable, the

keySelector lambda function gets used to create

a key for the new element in the map returned. The

values will be taken from the valueTransform

invocation result.

iter.associateWith

(valueSelector:

(E) -> V)

Map<E,V> Given the input list or set or iterable, the

valueTransform lambda function gets used to

create a value for the new element in the map

returned. As a key the original element gets used.

 Exercise 1
Given a class data class Employee(val lastName:String, val firstName:String,

val ssn:String) and a list

val l = listOf(

 Employee("Smith", "Eve", "012-12-5678"),

 Employee("Carpenter", "John", "123-06-4901"),

 Employee("Cugar", "Clara", "034-00-1111"),

 Employee("Lionsgate", "Peter", "965-11-4561"),

 Employee("Disney", "Quentin", "888-12-3412")

)

get a new immutable list from that sorted by SSN.

ChApTer 16 The ColleCTIonS ApI

327

 Exercise 2
Given the employee list from Exercise 1, create an immutable map mapping SSNs to

employees.

 Exercise 3
What is the output of

listOf(listOf(1, 2), listOf(3, 4)).flatten()

 Exercise 4
What is the output of

listOf(listOf(1, 2), listOf(3, 4)).

 flatMap { it.map { it.toString() } }

 Filtering
Strongly related to transformations are filtering functions. They are used to get a new

collection or map based on some criterion. Table 16-13 lists the filtering functions.

Throughout this section we use list, set, map, coll, and iter for variables of type

List, Set, Map, Collection, and Iterable, respectively. Remember that a list or set is a

collection and that any collection is an iterable.

Table 16-13. Filtering

Function Description

iter.filter(predicate: (E) ->

Boolean)

returns a new immutable list containing only those

elements that match the given predicate.

iter.filterNot(predicate: (E) ->

Boolean)

returns a new immutable list containing only those

elements that do not match the given predicate.

(continued)

ChApTer 16 The ColleCTIonS ApI

328

Function Description

iter.filterIndexed(predicate:

(index:Int, T) -> Boolean)

returns a new immutable list containing only those

elements that match the given predicate. The lambda

function retrieves the index (0, 1, 2, ...) as a first

parameter.

map.filter(predicate: (Map.

Entry<K,V>) -> Boolean)

returns a new immutable map containing only those

elements that match the given predicate.

map.filterNot(predicate: (Map.

Entry<K,V>) -> Boolean)

returns a new immutable map containing only those

elements that do not match the given predicate.

Table 16-13. (continued)

 Exercise 5
Given the employee list from Exercise 1, create a new immutable list containing only

SSNs starting with a 0. Hint: String.startsWith(...) checks whether a string starts

with certain characters.

 Changing the Mutability
You can see in Table 16-14 that transformations of mutable maps and lists often return

immutable maps or collections. If you need a mutable map or collection instead, Kotlin

helps you.

Table 16-14. Changing Mode

Function Description

list.toMutableList() Transforms an immutable list to a mutable list.

set.toMutableSet() Transforms an immutable set to a mutable set.

map.toMutableMap() Transforms an immutable map to a mutable map.

mutableList.toList() Transforms a mutable list to an immutable list.

mutableSet.toSet() Transforms a mutable set to an immutable set.

mutableMap.toMap() Transforms a mutable map to an immutable map.

ChApTer 16 The ColleCTIonS ApI

329

Table 16-15. Checks

Function Description

iter.any(predicate: (E) -> Boolean) returns true if any of the elements satisfy

the predicate.

iter.all(predicate: (E) -> Boolean) returns true if all of the elements satisfy

the predicate.

iter.none(predicate: (E) -> Boolean) returns true if none of the elements satisfy

the predicate.

map.any(predicate: (Map.Entry<K,V>) ->

Boolean)

returns true if any of the elements satisfy

the predicate.

map.all(predicate: (Map.Entry<K,V>) ->

Boolean)

returns true if all of the elements satisfy

the predicate.

map.none(predicate: (Map.Entry<K,V>) ->

Boolean)

returns true if none of the elements satisfy

the predicate.

 Element Checks
To check whether any or all elements of a collection or a map satisfy some criterion,

you can use one of the functions depicted in Table 16-15. Throughout this section we

use list, set, map, coll, and iter for variables of type List, Set, Map, Collection, and

Iterable, respectively. Remember that a list or set is a collection and that any collection

is an iterable.

 Exercise 6
Create a check for list listOf(1, 2, 3, 4) to see whether all elements are greater than 0.

 Finding Elements
For finding particular elements from a collection or map, you can use one of the

functions shown in Table 16-16, to which we have also added containment checks.

ChApTer 16 The ColleCTIonS ApI

330

Table 16-16. Finding

For Function Description

lists, iterables indexOf(element:E) Determines the index (Int) of the element in

the list or iterable, or −1 if the element cannot

be found.

lists, iterables find(predicate: (e) ->

Boolean)

returns the first element for which the

predicate lambda function returns true, or

null if no element matches.

lists, iterables findLast(predicate: (e)

-> Boolean)

returns the last element for which the

predicate lambda function returns true, or

null if no element matches.

lists binarySearch(element:

E?, fromIndex: Int = 0,

toIndex: Int = size)

performs a fast binary search in a list. The

list must be sorted according to the natural

ordering of the elements, which must thus

implement the Comparable interface. returns

the index if the element was found, or −

insertion_point − 1 where insertion_

point is the index where the element would

be inserted to maintain the list’s sorting order.

lists binarySearch(element:

E?, comparator:

Comparator<in E>,

fromIndex: Int = 0,

toIndex: Int = size)

Same as binarySearch(), but uses the

comparator provided for comparing elements.

lists, sets,

iterables

contains(element: E) returns true if the list, set, or iterable

contains the element specified.

Maps contains(key: K) returns true if the map contains the key

specified.

Maps containsKey(key: K) Same as contains() for maps.

Maps containsValue(value: V) returns true if the map contains the value

specified.

ChApTer 16 The ColleCTIonS ApI

331

 Exercise 7
Given a list l of Ints, find a one-expression way, not using if, to throw an exception if

the list contains 42. Hint: Use find() or contains(), possibly takeIf(), and ?.run.

 Aggregating, Folding, and Reducing
Aggregators deduce the sum, the maximum, the minimum, or the average from

collections. These are listed in Table 16-17.

Throughout this section we use list, set, map, coll, and iter for variables of type

List, Set, Map, Collection, and Iterable, respectively. Remember that a list or set is a

collection and that any collection is an iterable.

Table 16-17. Aggregating

For Function Description

A collection of numbers (Byte,

Short, Int, Long, Float,

Double)

sum() Sums up the elements. Types Byte and

Short yield an Int-valued sum; all

others yield the same result type as the

elements.

Any collection or iterable sumBy(selector:

(E) -> Int)

Sums up the elements after applying

the lambda function to each element.

results in an Int number.

Any collection or iterable sumByDouble(

selector: (E) ->

Double)

Sums up the elements after applying

the lambda function to each element.

results in a Double number.

A collection of numbers (Byte,

Short, Int, Long, Float,

Double)

average Calculates the average of all elements,

as a Double.

A collection of elements

implementing Comparable

max() returns the maximum value.

(continued)

ChApTer 16 The ColleCTIonS ApI

332

For Function Description

Any collection or iterable maxBy(selector:

(E) -> R)

returns the maximum value after

applying the selector (must return a

Comparable).

Any map maxBy(selector:

(Entry<K, V>) -> R)

returns the maximum value after

applying the selector (must return a

Comparable).

Any collection or iterable maxWith(

comparator:

Comparator<in E>)

returns the maximum value according

to the comparator provided.

Any map maxWith(

comparator:

Comparator<in Map.

Entry<K,V>)

returns the maximum value according

to the comparator provided.

A collection of elements

implementing Comparable

min() returns the minimum value.

Any collection or iterable minBy(selector:

(E) -> R)

returns the minimum value after

applying the selector (must return a

Comparable).

Any map minBy(selector:

(Entry<K, V>) -> R)

returns the minimum value after

applying the selector (must return a

Comparable).

Any collection or iterable minWith(

comparator:

Comparator<in E>)

returns the minimum value according

to the comparator provided.

Any map minWith(

comparator:

Comparator<in Map.

Entry<K,V>)

returns the minimum value according

to the comparator provided.

Table 16-17. (continued)

ChApTer 16 The ColleCTIonS ApI

333

A reduction takes the first element of a collection or an iterable, stores it in a variable,

and then repeatedly applies an operation with all the other elements from the collection

or iterable. If, for example, the operation is addition, in the end you get the sum of the

collection:

start with: (1, 2, 3)

take 1st element: (1), remains (2, 3)

take next element, apply "+": (1+2), remains (3)

take next element, apply "+": (1+2+3), done.

result is 1+2+3 = 6

A reduction from right traverses the collection in reverse order; that is, it first takes

the last element, applies the operator to the second-last element, and so on. Reduction

functions are shown in Table 16-18.

Table 16-18. Reducing

Function Returns Description

<S, E : S> iter<E>.

reduce(operation:

(acc: S, E) -> S)

S reduces over a collection or iterable. The operation

lambda function receives the current accumulator value

and the currently iterated- over element.

<S, E : S> iter<E>.

reduceIndexed(

operation: (index:

Int, acc: S, E) -> S)

S Same as reduce(), but the operation additionally

receives the current iteration index (0, 1, 2, ...).

<S, E : S> list<E>.

reduceRight(operation:

(E, acc: S) -> S)

S reduce from right. note that this does not work for

iterables, because there is nothing like a right iteration.

<S, E : S> list<E>.

reduceRight- Indexed(

operation: (index: Int,

E, acc: S)-> S)

S Same as reduceRight(), but the operation additionally

receives the current iteration index (0, 1, 2, ...).

ChApTer 16 The ColleCTIonS ApI

334

Note that although the iteration goes over elements of type E, the operation function

is allowed to also evaluate to a supertype of E. This is what the E : S in the type

specification stands for. In this case the accumulator and the overall result will have the

same type as this supertype.

A folding is the big brother of reduction. Whereas the reduction starts with the first

element of the collection or iterable, and then uses the rest of the elements to update

it, the folding works with a dedicated folding accumulator object that receives step

by step all the iterated-over elements and therefore can update its state. Because the

accumulator object can have any suitable type, folding is more powerful than reduction.

Folding functions are listed in Table 16-19.

Table 16-19. Folding

Function Returns Description

iter.fold(initial: R,

operation: (acc: R, E) -> R)

R Folds over a collection or iterable. The first

parameter receives the accumulator object.

The operation lambda function receives the

current accumulator object and the currently

iterated-over element.

iter.foldIndexed(initial: R,

operation: (index:Int, acc: R,

E) -> R)

R Same as fold(), but the operation

additionally receives the current iteration index

(0, 1, 2, ...).

list.foldRight(initial: R,

operation: (E, acc: R) -> R)

R Folds over a list, starting from the last object

and iterating in reverse order. The first

parameter receives the accumulator object.

The operation lambda function receives the

current accumulator object and the currently

iterated-over element.

list.foldRightIndexed(

initial: R, operation:

(index:Int, E, acc: R) -> R)

R Same as foldRight(), but the operation

additionally receives the current iteration index

(0, 1, 2, ...).

ChApTer 16 The ColleCTIonS ApI

335

 Exercise 8
Given a class data class Parcel(val receiverId:Int, val weight:Double) and a list

val l = listOf(Parcel(1267395, 1.45),

 Parcel(1515670, 0.46),

 Parcel(8345674, 2.50),

 Parcel(3418566, 1.47),

 Parcel(3491245, 3.04)

)

calculate the weight sum without using a for or while loop.

 Joining
Sometimes instead of a full-fledged folding operation with an object receiving all the

elements from the iteration, all you need is a way to create a string representation of a

collection or an iterable, joining the string representations of all elements. Although this

is possible via fold(), a dedicated joining function provided by Kotlin has a couple of

extra features, namely a prefix and a postfix, and a limit and a truncation designator.

You use

fun <E> Iterable<E>.joinToString(

 separator: CharSequence = ", ",

 prefix: CharSequence = "",

 postfix: CharSequence = "",

 limit: Int = -1,

 truncated: CharSequence = "...",

 transform: (E) -> CharSequence = null

): String

on the collection or iterable, with the following characteristics:

• If you specify a separator, this one will be used for separating the

items in the output string. Otherwise a , will be used.

• If you specify a prefix, it will be used as a prefix for the output string.

Otherwise none will be used.

ChApTer 16 The ColleCTIonS ApI

336

• If you specify a postfix, it will be used as a postfix for the output

string. Otherwise none will be used.

• If you specify a limit, the number of elements used for constructing

the output string will be limited. Otherwise −1 will be used, which

signifies no limit.

• If you specify a truncation string, it will be used to signify a truncation

because the limit (if given) was exceeded. Otherwise ... will be used.

• If you specify a transform function, it will be used to create a string

from each element. Otherwise null will be used, which means

toString() will be applied to each element.

 Grouping
Grouping is about splitting a list into sublists based on some criterion. Think of a list of

employees with each employee having an employer field, and you want to create a list

for each employer. This is not hard to do by writing a few lines of code, but because it is a

recurring task, there are standard library functions that can help us. See Table 16-20 for

grouping-related functions.

Table 16-20. Grouping

Function Returns Description

<E, K> iter.groupBy(

keySelector: (E) -> K)

Map<K, List<E>> Groups based on the key calculated

by the keySelector function.

<E, K> iter.groupBy(

keySelector: (E) -> K,

valueTransform: (E) -> V)

Map<K, List<V>> Groups based on the key calculated

by the keySelector function, but

also transforms the values by the

valueTransform function.

<E, K> iter.groupingBy(

keySelector: (E) -> K)

Grouping<E,K> prepares a grouping based

on the key calculated by the

keySelector function. Creates a

special Grouping object that can

be used for further operations.

(continued)

ChApTer 16 The ColleCTIonS ApI

337

Throughout this section we use list, set, map, coll, and iter for variables of type

List, Set, Map, Collection, and Iterable, respectively. Remember that a list or set is a

collection and that any collection is an iterable.

 Zipping
If you have two related lists and want to bring them together, Kotlin provides a zipping

function that can help you. Say, for example, you have a list of employees and another

list of yearly salaries for a year that has not yet been registered. Both lists have the same

Function Returns Description

grouping.aggregate(

operation: (key: K,

accumulator: R?, element:

E, first: Boolean) -> R)

Map<K, R> Takes the result from

groupingBy() and builds a map

using the original keys. As for the

values, use the operation to

accumulate the values for each

group (e.g., the accumulator could

be a list).

grouping.eachCount() Map<K, Int> returns a map with the element

counts per group.

grouping.fold(

initialValueSelector:

(key: K, element: E) ->

R, operation: (key: K,

accumulator: R, element:

E) -> R)

Map<K, R> Takes the result from

groupingBy() and builds a map

using the original keys. As for the

values, use the operation to

accumulate the values for each

group. The initial accumulator

per group gets constructed by

the initialValueSelector

function.

Table 16-20. (continued)

ChApTer 16 The ColleCTIonS ApI

338

size and each index points to a matching pair of employee and salary. In an imperative

programming style, you’d write something like this to get an updated employee list:

class Employee {

 ...

 fun setSalary(year:Int, salary:Double) {}

}

val employees = ... // list

val newSalaries = ... // list

val newYear = 2018

val newEmployees = mutableListOf<Employee>()

for(ind in employees.indices) {

 val e = employees[ind]

 val sal = newSalaries[ind]

 e.setSalary(newYear, sal)

 newEmployees.add(e)

}

We can rewrite this in a functional style using the zipping function the standard

library provides:

<E, R> Iterable<E>.zip(

 other: Iterable<R>

): List<Pair<E, R>>

which gives us:

val employees = ... // list

val newSalaries = ... // list

val newYear = 2018

val newEmployees = employees.zip(newSalaries).

 map{ p ->

 p.first.setSalary(newYear, p.second)

 p.first

 }

Here the zip() gives us a list of Pairs each containing an Employee and a salary (e.g.,

Double). The map() investigates each pair and updates the employee accordingly.

ChApTer 16 The ColleCTIonS ApI

339

Table 16-21. Windowing

Function Returns Description

<E> iterable.windowed(

size: Int, step: Int

= 1, partialWindows:

Boolean = false)

List<List<E>> Creates a windowed view of an iterable or

a collection. each chunk has size size,

and step indicates the index offset for

each chunk (usually you set step =

size). You must set partialWindows to

true if you want to allow smaller chunks

at the end.

<E, R> iterable.

windowed(size:

Int, step: Int = 1,

partialWindows: Boolean

= false, transform:

(List<E>) -> R)

List<R> Same as windowed(), but provides

a transform function to act on each

chunk.

There is also a reverse operation for creating two lists out of one, fittingly called

unzipping.

<E, R> Iterable<Pair<E, R>>.unzip():

 Pair<List<E>, List<R>>

More precisely, this is the second part of such an unzipping operation; you would

first create a list of Pairs using a mapping function; for example:

list.map { item ->

 Pair(item.something, item.somethingElse)

}.unzip()

 Windowing
For user interface programming you frequently need to split a list into chunks of a given

size. Say, for example, the user interface shows chunks of size 10 and provides page

forward and page backward buttons to show the next or the previous chunk of a longer

list. For this aim the standard library provides a windowing function (see Table 16-21).

ChApTer 16 The ColleCTIonS ApI

340

 Sequences
Sequences are lazily evaluated collections. By that we mean that other than for

collections from the kotlin.collections package, no large amounts of data are held

in memory. So, if you create a collection of size 1,000,000 there will be 1,000,000 items

in the form of object references or primitives allocated in memory. A sequence of size

1,000,000, however, just indicates we have something that can be iterated over 1,000,000

times, without all the values associated with it. Sequence interfaces, classes, and

functions have their own package: kotlin.sequences.

Sequences expose a lot of functions we already know from collections. You can use

forEach(), apply filters, perform mappings, use reductions, perform foldings, and more.

We don’t show them all here; instead we list a few of the more important ones to get you

started. For more information, refer to the Kotlin documentation.

To create a sequence given a list of values, you can use the sequenceOf() function;

for example:

sequenceOf(1, 2, 7, 5)

Or, you can take any Iterable (set or list or range, or any collection) and write

iter.asSequence()

To create genuine sequences that do not depend on existing collections or arrays,

there are several possibilities. The easiest of them perhaps consists of using the function

generateSequence() as in

// Signature:

// fun <T : Any> generateSequence(

// nextFunction: () -> T?

//): Sequence<T>

var iterVar = 0

val seq = generateSequence {

 iterVar++

}

Here all we have to do is provide a function that generates the next sequence value.

The downside of this approach is that we have a state, namely the iteration property

iterVar, somewhere in the surrounding scope of generateSequence(). This is an

ChApTer 16 The ColleCTIonS ApI

341

antipattern thinking of clean code. What comes to the rescue is another variant of

generateSequence():

fun <T : Any> generateSequence(

 seed: T?,

 nextFunction: (T) -> T?

): Sequence<T>

// or

fun <T : Any> generateSequence(

 seedFunction: () -> T?,

 nextFunction: (T) -> T?

): Sequence<T>

Here we can provide a seed, either directly or via a generator function, and the

nextFunction() lambda receives the current iterator value and is supposed to return the

next iterator value. A very simple sequence (0, 1, 2, ...) thus reads

val seq = generateSequence(

 seed = 0,

 nextFunction = { curr -> curr + 1 }

)

// example usage:

seq.take(10).forEach { i ->

 // i will have values 0, 1, 2, ..., 9

 ...

}

The iteration variable doesn’t have to be an Int, or even a number at all. As an

example, consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, ... where each item is the sum of

its two predecessors. This can be handled by a Pair and the sequence reads

val seqFib = generateSequence(

 seed = Pair(1,1),

 nextFunction = { curr ->

 Pair(curr.second, curr.first + curr.second)

 }

)

ChApTer 16 The ColleCTIonS ApI

342

// example usage

seqFib.take(10).map { it.second }.forEach {

 Log.e("LOG", "fib: " + it)

}

The nextFunction starts with a pair(1,1), continues with a pair(1,2), pair(2,3),

pair(3,5), and so on. The mapping in the example usage snippet extracts the second

value of each pair and shows it. Interestingly, for higher numbers the ratio of the

second to the first member of each pair approaches the golden ratio 0.5 · (1 + 5) =

1.6180339887:

val p = seqFib.take(40).last

val gr = p.second * 1.0 / p.first

// = 1.618033988749895

A somewhat more flexible, albeit more involved approach consists of using another

sequence generation function: sequence(). Its signature reads

fun <T> sequence(

 block: suspend SequenceScope<T>.() -> Unit

): Sequence<T>

This function actually instantiates a kotlin.sequences.Sequence object in the

following way:

Sequence { iterator(block) }

where iterator() creates and returns an instance of SequenceBuilderIterator.

This SequenceBuilderIterator and the suspend in front of the lambda function make

sure the sequence can be used in a parallelized execution environment. We’ll talk about

concurrence execution later in the book. What we need to know for now is that by virtue of

the lambda with receiver specification SequenceScope<T>.() -> Unit we are, as concerns

the block lambda function, acting in the environment of the SequenceScope object. To

make this construct do something sensible, from inside block you must at least call one of

yieldAll([some implementation of Iterable])

// or

yieldAll([some implementation of Iterator])

// or

yieldAll([some implementation of Sequence])

ChApTer 16 The ColleCTIonS ApI

343

As an example consider this:

val sequence = sequence {

 // This is an iterable:

 yieldAll(1..10 step 2)

}

// Usage example:

sequence.take(8).forEach {

 Log.e("LOG", it.toString())

}

// -> 1, 3, 5, 7, 9

 Operators
For iterables, including all collections like sets and lists, and also for maps, there are a

couple of operators, shown in Table 16-22, you can use to combine two of them.

Table 16-22. Operators

Operand Operator Operand Returns

Iterable (collections,

lists, sets)

intersect Iterable (collections,

lists, sets)

Creates a new immutable Set that

contains all elements that are included

in both operands.

Iterable (collections,

lists, sets)

union Iterable (collections,

lists, sets)

Creates a new immutable Set that

contains all elements that are included

in either or both operands.

Iterable (collections,

lists, sets)

+ e returns a new immutable List with

all the elements from the left operand,

appended to the right operand.

Iterable (collections,

lists, sets)

+ Iterable, array,

sequence

returns a new immutable List with

all the elements from the left operand,

appended to all the elements from the

right operand.

(continued)

ChApTer 16 The ColleCTIonS ApI

344

Operand Operator Operand Returns

Iterable (collections,

lists, sets)

- E returns a new immutable List with

all the elements from the left operand,

minus the right operand if it exists in

the left operand.

Iterable (collections,

lists, sets)

- Iterable, array,

sequence

returns a new immutable List with

all the elements from the left operand,

minus all the elements from the right

operand that also existed in the left

operand.

Map + Pair<K,V> returns a new immutable map with all

entries from the left operand, plus the

right operand. If the key existed before,

the entry gets overwritten.

Map + Iterable<

Pair<K,V>>,

Array<out

Pair<K, V>>,

Sequence<

Pair<K,V>>,

Map<out K, V>

returns a new immutable map with all

entries from the left operand, plus all

the elements from the right operand.

If any key from the right operand

existed in the left operand as well, the

corresponding entry gets overwritten

by the right operand.

Map - K returns a new immutable map with all

entries from the left operand, but with

the key specified by the right operand

removed (if it exists).

Map - Iterable<K>,

Array<out K>,

Sequence<K>

returns a new immutable map with

all entries from the left operand, but

with all the keys specified by the right

operand removed (only for those that

exist in the left operand).

Table 16-22. (continued)

ChApTer 16 The ColleCTIonS ApI

345

Because a lot of the other operators like *, /, %, and so on are undefined, and as

we know we can define them by operator overloading, you can achieve a lot of things

designing your own operators for collections and maps. Just make sure you provide good

documentation so that others can understand what they do.

ChApTer 16 The ColleCTIonS ApI

347
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_17

CHAPTER 17

More APIs
This chapter gathers a couple of more APIs you can use in your app. First we have the

math API that gets used for mathematical calculations. For date and time handling,

including transformations between different time representations, and parsing and

formatting dates and times, we describe the date and time API. For input and output,

which for Android boils down to file handling, we give an overview of the input and

output API. For dynamically acquiring class member information the reflection API

gets used; this is not a prominent part of object orientation but can help under some

circumstances, so we include a treatise on reflection. Regular expressions provide a very

powerful means to investigate and manipulate patterns inside strings, so we finish the

chapter with a survey of regular expression constructs.

 The Math API
Kotlin allows you to import the Math package from package java.lang

import java.lang.Math

This can be used like a singleton object and has a lot of mathematical functions like

sin(), cos(), tan(), and others. You can look them all up in the Java API documentation.

Kotlin provides a copy of some of them inside the kotlin.math package, so in most cases

you can go without the java.lang import. The sine function, for example, is provided as

an out-of-class function inside the kotlin.math package, so to use it you can write

import kotlin.math.sin

...

val x = sin(1.562)

The same holds for many other functions. Table 17-1 includes a nonexhaustive list.

For a complete list, please see the official Kotlin documentation on the Web.

348

Table 17-1. Kotlin Math Functions

Function Description

sin(), cos(), tan() The sine, cosine, and tangent functions. Same as Math.sin(), Math.

cos(), and Math.tan(), but in addition allow a Float as argument.

asin(), acos(),

atan(), atan2()

The arc sine, arc cosine, and arc tangent functions. Function atan2()

takes two arguments that correspond to (x, y) coordinates. Same as

Math.asin(), Math.acos(), Math.atan(), and Math.atan2(),

but in addition allow Floats as arguments.

sinh(), cosh(),

tanh()

The hyperbolic sine, cosine, and tangent functions. Same as Math.

sinh(), Math.cosh(), and Math.tanh(), but in addition allow a

Float as argument.

asinh(), acosh(),

atanh()

The inverse hyperbolic sine, cosine, and tangent functions. Same as

Math.asinh(), Math.acosh(), and Math.atanh(), but in addition

allow a Float as argument.

abs() The absolute value of a number.

floor(), ceil() For a Float or a Double the lower or upper next integer value. The type

stays intact, so you have to add .toInt() or .toLong() to convert it

to an integer type. Same as Math.floor() and Math.ceil(), but in

addition allow a Float as argument.

round() Half-up rounds to the nearest integer. The type stays intact, so you have

to add .toInt() or .toLong() to convert it to an integer type. Same

as Math.round(), but in addition allows a Float as argument.

exp(), log() The exponential function and the logarithm. Same as Math.exp() and

Math.log(), but in addition allow a Float as argument.

pow() The power function (two parameters) xy. Same as Math.pow(), but in

addition allows a Float as argument.

sqrt() The square root. Same as Math.sqrt(), but in addition allows a

Float as argument.

min(), max() The minimum and maximum of two numbers.

sign() The signum function. Returns –1.0 for negative values, 0.0 for 0.0, and

1.0 for positive numbers. Same as Math.sign(), but in addition allows

a Float as argument.

CHapTeR 17 MoRe apIS

349

The same package, kotlin.math, contains a couple of extension properties. For

example, you can write

import kotlin.math.absoluteValue

...

val x:Double = -3.5

val y = x.absoluteValue // -> 3.5

The complete list of such extensions includes .absoluteValue for the absolute

value of a number (Double, Float, Int, or Long). The constants E and PI are the base of

the natural logarithm and pi (π). The property .sign returns the signum for a number

(Double, Float, Int, or Long), and .ulp returns the unit in the last place of a Float or

Double (this is the smallest measurable distance between two numbers).

 The Date and Time API, API Level 25 or Less
Kotlin does not have a separate date and time API, which is why you wouldn’t find any

information on how to handle date and time in the Kotlin documentation. However, you can

use the date and time API from Java, which is included in Android and accessible to Kotlin.

Note The date and time apI substantially changed with Java 8. android apI
versions up to 25 don’t use Java 8, but the later apI versions do; this is why we
need to describe two date and time apIs. This section is for all android apI levels
and therefore refers to the older Java 7 date and time apI.

The date and time API borrowed from Java version 7 centers around the following

expressions:

import java.util.Date

import java.util.GregorianCalendar

import java.text.SimpleDateFormat

val timeMillis:Long = System.currentTimeMillis()

val d = Date()

val cal = GregorianCalendar()

val sdf = SimpleDateFormat("yyyy-MM-dd HH:mm:ss")

CHapTeR 17 MoRe apIS

350

The first one, System.currentTimeMillis(), expresses the idea of an absolute

time. More precisely this is the number of milliseconds since January 1, 1970, 00:00:00

UTC. This is low-level information that often gets used as a reliable timestamp for

database entries. You’ll also see it for a quick and dirty timing of program parts during

performance measurement:

val t1 = System.currentTimeMillis()

...

Log.d("LOG", "Calculation took " +

 (System.currentTimeMillis() - t1) + "ms")

The Date class is a thin wrapper around the absolute time. It represents it as an

object, and also provides for a simple toString() implementation that outputs the time

in a human-readable format:

import java.util.Date

...

val d = Date() // current time

Log.d("LOG", d.toString())

// -> s.th. like

// Sun Jan 13 10:12:26 GMT+01:00 2019

A Date instance gives us the number of milliseconds that have passed since 1970-01-

01 00:00:00 UTC until its current value. To get that number—it is a Long type number—

use its time property:

import java.util.Date

...

val d = Date() // current time

val tm = d.time // ms since 1970-01-01T00:00:00 UTC

The GregorianCalendar class gives us tools to fiddle with months, weeks, time zone,

time of day, minutes during the hour, seconds during the minute, and all those things.

import java.util.Date

import java.util.Calendar

import java.util.GregorianCalendar

import java.util.TimeZone

...

CHapTeR 17 MoRe apIS

351

val cal = GregorianCalendar()

// <- will hold the current time

cal.timeZone = TimeZone.getTimeZone("US/Hawaii")

// Note: TimeZone.getAvailableIDs().forEach {

// Log.e("LOG","!!! " + it) }

// shows a list

// Set to current time

cal.time = Date()

// Set to 2018-02-01T13:27:44

cal.set(2018, Calendar.FEBRUARY, 1, 13, 27 ,44)

val month = cal.get(Calendar.MONTH)

val hour = cal.get(Calendar.HOUR_OF_DAY)

The SimpleDateFormat class helps us in producing human-readable string

representations of dates and times, and also allows us to convert such string

representations back to Date instances:

import java.util.Date

import java.text.SimpleDateFormat

import java.util.Locale

...

val d = Date() // now

val sdf = SimpleDateFormat("yyyy-MM-dd HH:mm")

Log.d("LOG", sdf.format(d)) // -> 2019-01-13 13:41

val loc = Locale("en")

val sdf2 = SimpleDateFormat("yyyy-MMM-dd HH:mm", loc)

Log.d("LOG", sdf2.format(d)) // -> 2019-Jan-13 13:41

val d2:Date = sdf.parse("2018-12-12 17:13")

Log.d("LOG", d2.toString())

// -> Wed Dec 12 17:13:00 GMT+01:00 2018

CHapTeR 17 MoRe apIS

352

These examples use the time zone they retrieve by querying the operating system.

You could also set a time zone on the SimpleDateFormat object as follows:

import java.text.SimpleDateFormat

import java.util.Date

import java.util.TimeZone

...

val sdf = SimpleDateFormat("yyyy-MM-dd HH:mm")

sdf.timeZone = TimeZone.getTimeZone("US/Hawaii")

val d:Date = sdf.parse("2018-12-12 17:13")

Log.d("LOG", d.toString())

// -> Thu Dec 13 04:13:00 GMT+01:00 2018

By the way, Date.toString() implicitly uses the time zone it gets by querying the

operating system (Europe/Berlin in my case).

Caution Both Date and SimpleDateFormat are not thread safe; you must not
share instances of them between different threads.

For details about all these date and time API interfaces and classes, and also related

interfaces and classes, consult Oracle’s Java documentation. Make sure you don’t use the

documentation for a Java version higher than 7. We deal with the Java 8 related date and

time API in the next section.

 The Date and Time API, API Level 26 or Greater

Note This section is for android apI levels starting from 26 (android 8.0), and
therefore refers to the Java 8 date and time apI.

Starting with Android API level 26 (Android 8.0) a couple of new date and time related

interfaces and classes are available. You can continue using the old API described in

the previous section, but the new API contains some improvements we outline in this

section.

CHapTeR 17 MoRe apIS

353

Note as of the beginning of 2019, the number of devices using apI level 26 or
greater is not very high. You should consult a distribution survey before you start
developing for apI levels beyond 25.

The new API can only be used if in your module’s build.gradle file you set the

minSdkVersion to 26 or greater:

android {

 ...

 defaultConfig {

 ...

 minSdkVersion 26

 ...

 }

 ...

}

The new interfaces and classes reside in the package java.time. For the rest of this

section we usually omit the corresponding imports.

 Local Dates and Times
Local dates and times get described from the context of the observer and basically use

the following classes from the java.time package:

• LocalDate

This class corresponds to a date representation of the format

yyyy-MM-dd (e.g., 2018- 11- 27) and disregards the time of day.

• LocalTime

This class corresponds to a time representation of the format

HH:mm:ss (e.g., 21:27:55) and disregards the date.

• LocalDateTime

A combination of LocalDate and LocalTime, possibly represented

by yyyy-MM- ddTHH:mm:ss (the T is a literal).

CHapTeR 17 MoRe apIS

354

The format designators yyyy, HH, and so on are described in the API documentation

of java.time.DateTimeFormatter.

All three of them include factory methods to generate object instances. This includes

taking the current date and time:

import java.time.*

// current day in the default time zone

val ld1 : LocalDate = LocalDate.now()

// "Now" corresponds to different days in different

// time zones. The following allows us to specify a

// different time zone

val z2 = ZoneId.of("UTC+01")

val ld2 : LocalDate = LocalDate.now(z2)

val ld3 = LocalDate.of(2018, Month.MARCH, 27)

val ld4 = LocalDate.of(2018, 3, 27) // the same

val lt1 : LocalTime = LocalTime.now()

val lt2 = LocalTime.now(z2) // different time zone

val lt3 = LocalTime.of(23, 27, 55) // 23:27:55

val ldt1 = LocalDateTime.now()

val ldt2 = LocalDateTime.now(z2)

val ldt3 = LocalDateTime.of(2018, Month.APRIL, 23, 23, 44, 12)

// <- 2018-04-23T23:44:12

Note that despite the ability to add a time zone specification to further specify to

which time “now” corresponds, this information is by no means somehow stored in the

date and time object. Local dates and times are by definition time-zone agnostic.

We can parse strings to obtain instances of LocalDate, LocalTime, and

LocalDateTime:

import java.time.*

import java.time.format.*

// Parse ISO-8601

val ld1 = LocalDate.parse("2019-02-13")

CHapTeR 17 MoRe apIS

355

// Parse other formats. For the format specification,

// see API documentation of class DateTimeFormatter.

val formatter1 = DateTimeFormatter.ofPattern("yyyy MM dd")

val ld2 = LocalDate.parse("2019 02 13", formatter1)

val lt1 = LocalTime.parse("21:17:23")

val lt2 = LocalTime.parse("21:17:23.3734")

val formatter2 = DateTimeFormatter.ofPattern("HH|mm|ss")

val lt3 = LocalTime.parse("21|17|23", formatter2)

val ldt1 = LocalDateTime.parse("2019-02-13T21:17:23")

val ldt2 = LocalDateTime.parse("2019-02-13T21:17:23.3734")

val formatter3 = DateTimeFormatter.ofPattern("yyyy.MM.dd.HH.mm.ss")

val ldt3 = LocalTime.parse("2019.04.23.17.45.23", formatter3)

We can tailor our own string representations of LocalDate, LocalTime, and

LocalDateTime instances:

import android.util.Log

import java.time.*

import java.time.format.*

val s1 = LocalDate.now().format(

 DateTimeFormatter.ofPattern("yyyy|MM|dd"))

Log.d("LOG","s1 = ${s1}") // -> 2019|01|14

val s2 = LocalDate.now().format(

 DateTimeFormatter.ISO_LOCAL_DATE)

Log.d("LOG","s2 = ${s2}") // -> 2019-01-14

val s3 = LocalTime.now().format(

 DateTimeFormatter.ofPattern("HH mm ss"))

Log.d("LOG","s3 = ${s3}") // -> 14 46 20

CHapTeR 17 MoRe apIS

356

val s4 = LocalTime.now().format(

 DateTimeFormatter.ISO_LOCAL_TIME)

Log.d("LOG","s4 = ${s4}") // 14:46:20.503

val s5 = LocalDateTime.now().format(

 DateTimeFormatter.ofPattern(

"yyyy MM dd - HH mm ss"))

Log.d("LOG","s5 = ${s5}") // -> 2019 01 14 - 14 46 20

val s6 = LocalDateTime.now().format(

 DateTimeFormatter.ISO_LOCAL_DATE_TIME)

Log.d("LOG","s6 = ${s6}") // -> 2019-01-14T14:46:20.505

You can perform time arithmetics with LocalDate, LocalTime, and LocalDateTime

instances:

import java.time.*

import java.time.temporal.*

val ld = LocalDate.now()

val lt = LocalTime.now()

val ldt = LocalDateTime.now()

val ld2 = ld.minusDays(7L)

val ld3 = ld.plusWeeks(2L)

val ld4 = ld.with(ChronoField.MONTH_OF_YEAR, 11L)

val lt2 = lt.plus(Duration.of(2L, ChronoUnit.SECONDS))

val lt3 = lt.plusSeconds(2L) // same

val ldt2 = ldt.plusWeeks(2L).minusHours(2L)

From LocalDateTime we can calculate the number of seconds that have passed since

1970-01-01:00:00:00 UTC, similar to the System.currentTimeMillis() function from the

old API:

import java.time.*

val ldt : LocalDateTime = ...

val secs = ldt.toEpochSecond(ZoneOffset.of("+01:00"))

CHapTeR 17 MoRe apIS

357

Note that to get the epoch seconds, a better solution is to take a ZonedDateTime. We’ll

talk about zoned dates and times later.

 Instants
An instant is an instantaneous point on the timeline. Use this for cases where you

need unique absolute timestamps, for example, to register events in databases and

the like. The precise definition is somewhat involved; for an introduction read the API

documentation for java.time.Instant.

You can get an Instant by, for example, querying the system clock, specifying the

elapsed time since 1970-01-01T00:00:00Z, or parsing a time string, or from other date

and time objects:

import java.time.*

val inz1 = Instant.now() // default time zone

// Specify time zone

val inz2 = Instant.now(Clock.system(

 ZoneId.of("America/Buenos_Aires")))

val secondsSince1970 : Long = 1_000_000_000L

val nanoAdjustment : Long = 300_000_000 // 300ms

val inz3 = Instant.ofEpochSecond(

 secondsSince1970, nanoAdjustment)

// "Z" is UTC ("Zulu" time)

val inz4 = Instant.parse("2018-01-23T23:33:14.513Z")

// Uniform converter, for the ZonedDateTime class

// see below

val inz5 = Instant.from(ZonedDateTime.parse("2019-02-13T21:17:23+01:00

[Europe/Paris]"))

CHapTeR 17 MoRe apIS

358

 Offset Dates and Times
Offset dates and times are like Instants with an additional time offset from UTC/

Greenwich. For such offset dates and times, we have two classes, OffsetTime and

OffsetDateTime, for which you can get instances as follows:

import java.time.*

import java.time.format.DateTimeFormatter

// Get now --

// System clock, default time zone

val ot1 = OffsetTime.now()

val odt1 = OffsetDateTime.now()

// Use a different clock

val clock:Clock = ...

val ot2 = OffsetTime.now(clock)

val odt2 = OffsetDateTime.now(clock)

// Use a different time zone

val ot3 = OffsetTime.now(

 ZoneId.of("America/Buenos_Aires"))

val odt3 = OffsetDateTime.now(

 ZoneId.of("America/Buenos_Aires"))

// From time details --------------------------------

val ot4 = OffsetTime.of(23, 17, 3, 500_000_000,

 ZoneOffset.of("-02:00"))

val odt4 = OffsetDateTime.of(

 1985, 4, 23, // 19685-04-23

 23, 17, 3, 500_000_000, // 23:17:03.5

 ZoneOffset.of("+02:00"))

// Parsed ---

val ot5 = OffsetTime.parse("16:15:30+01:00")

val odt5 = OffsetDateTime.parse("2007-12-03T17:15:30-08:00")

CHapTeR 17 MoRe apIS

359

val ot6 = OffsetTime.parse("16 15 +00:00",

 DateTimeFormatter.ofPattern("HH mm XXX"))

val odt6 = OffsetDateTime.parse("20181115 - 231644 +02:00",

 DateTimeFormatter.ofPattern("yyyyMMdd - HHmmss XXX"))

// From other objects -------------------------------

val lt = LocalTime.parse("16:14:27.235")

val ld = LocalDate.parse("2018-05-24")

val inz = Instant.parse("2018-01-23T23:33:14.513Z")

val ot7 = OffsetTime.of(lt, ZoneOffset.of("+02:00"))

val odt7 = OffsetDateTime.of(ld, lt, ZoneOffset.of("+02:00"))

val ot8 = OffsetTime.ofInstant(inz, ZoneId.of("America/Buenos_Aires"))

val odt8 = OffsetDateTime.ofInstant(inz, ZoneId.of("America/Buenos_Aires"))

val zdt = ZonedDateTime.of(// see below

 2018, 2, 27, // 2018-02-27

 23, 27, 33, 0, // 23:27:33.0

 ZoneId.of("Pacific/Tahiti"))

val odt9 = zdt.toOffsetDateTime()

// uniform converter

val ot10 = OffsetTime.from(zdt)

val odt10 = OffsetDateTime.from(zdt)

With offset dates and times you can do arithmetics and formatting basically the same

way as possible for local dates and times. In addition, for conversion operations, we have

import java.time.*

val ot = OffsetTime.parse("16:15:30+01:00")

val lt : LocalTime = ot.toLocalTime()

CHapTeR 17 MoRe apIS

360

val odt = OffsetDateTime.parse("2007-12-03T17:15:30-08:00")

val ldt : LocalDateTime = odt.toLocalDateTime()

val lt2 : LocalTime = odt.toLocalTime()

val ld2 : LocalDate = odt.toLocalDate()

val ot2 : OffsetTime = odt.toOffsetTime()

val zdt : ZonedDateTime = odt.toZonedDateTime()

// see below for class ZonedDateTime

 Zoned Dates and Times
Local dates and times are great if we aren’t concerned about user location. If we have

different entities, users, computers, or devices all over the world entering dates and times,

we need to add the time zone information. This is what the class ZonedDateTime is for.

Note that this is not the same as a date and time with a fixed time offset information,

as is the case for OffsetDateTime. A time zone includes things like Daylight Saving Time

that need to be taken into account.

Similar to LocalDateTime, the ZonedDateTime has factory methods for getting now:

import java.time.*

// Get "now" using the system clock and the default

// time zone from your operating system.

val zdt1 = ZonedDateTime.now()

// Get "now" using a time zone. To list all available

// predefined zone IDs, try

// Log.d("LOG", ZoneId.getAvailableZoneIds().

// joinToString { it + "\n" })

val z2 = ZoneId.of("UTC+01")

val zdt2 = ZonedDateTime.now(z2)

// Get "now" using an instance of Clock

val clock3 = Clock.systemUTC()

val zdt3 = ZonedDateTime.now(clock3)

CHapTeR 17 MoRe apIS

361

We can also get a ZonedDateTime using detailed time information, and parse a string

representation of a timestamp to get a ZonedDateTime:

import java.time.*

val z4 = ZoneId.of("Pacific/Tahiti")

val zdt4 = ZonedDateTime.of(

 2018, 2, 27, // 2018-02-27

 23, 27, 33, 0, // 23:27:33.0

 z4)

// The 7th par is nanoseconds, so for

// 23:27:33.5 you have to enter

// 500_000_000 here

val localDate = LocalDate.parse("2018-02-27")

val localTime = LocalTime.parse("23:44:55")

val zdt5 = ZonedDateTime.of(localDate, localTime,

 ZoneId.of("America/Buenos_Aires"))

val ldt = LocalDateTime.parse("2018-02-27T23:44:55.3")

val zdt6 = ZonedDateTime.of(ldt,

 ZoneId.of("America/Buenos_Aires"))

val inz = Instant.parse("2018-01-23T23:33:14.513Z")

val zdt7 = ZonedDateTime.ofInstant(inz,

 ZoneId.of("America/Buenos_Aires"))

val zdt8 = ZonedDateTime.parse(

 "2018-01-23T23:33:14Z[America/Buenos_Aires]")

A ZonedDateTime allows for operations like plusWeeks(weeks:Long) and

minusDays(days:Long) to build a new instance with the time given added or subtracted.

This works for any of Years, Months, Weeks, Days, Hours, Minutes, Seconds, or Nanos.

There are various getter functions for the different time fractions: getYear(),

getMonth(), getMonthValue(), getDayOfMonth(), getHour(), getMinute(),

getSecond(), and getNano(), plus a few others. To get the time zone, write getZone().

CHapTeR 17 MoRe apIS

362

To parse a date and time string and to convert a ZonedDateTime to a string, write:

import java.time.*

import java.time.format.DateTimeFormatter

val zdt1 = ZonedDateTime.parse(

 "2007-12-03T10:15:30+01:00[Europe/Paris]")

val formatter = DateTimeFormatter.ofPattern(

 "HH:mm:ss.SSS")

// See DateTimeFormatter API docs for more options

val str = zdt1.format(formatter)

The connection between a ZonedDateTime and a LocalDateTime happens via

import java.time.*

val ldt = LocalDateTime.parse("2018-02-27T23:44:55.3")

val zdt = ZonedDateTime.of(ldt,

 ZoneId.of("America/Buenos_Aires"))

val ldt2 = zdt.toLocalTime()

 Duration and Periods
A duration is the physical time span between two instances. A period is similar, but only

handles years, months, and days, and takes the calendar system into account. there are

the special Duration and Period classes for handling durations and periods:

import java.time.*

import java.time.temporal.ChronoUnit

val ldt1 = LocalDateTime.parse("2018-01-23T17:23:00")

val ldt2 = LocalDateTime.parse("2018-01-24T16:13:10")

val ldt3 = LocalDateTime.parse("2020-01-24T16:13:10")

// Getting a duration: ------------------------------

val d1 = Duration.between(ldt1, ldt2)

// Note: this works also for Instant and ZonedDateTime

// objects

CHapTeR 17 MoRe apIS

363

val d2 = Duration.of(27L, ChronoUnit.HOURS) // 27hours

val d3 = Duration.ZERO.

 plusDays(3L).

 plusHours(4L).

 minusMinutes(78L)

val d4 = Duration.parse("P2DT3H4M")

// <- 2 days, 3 hours, 4 minutes

// For more specifiers, see the API documentation

// of Duration.parse()

// Getting a period: --------------------------------

val ld1 = LocalDate.parse("2018-04-23")

val ld2 = LocalDate.parse("2018-08-16")

val p1 = Period.between(ld1, ld2)

// Note, end date not inclusive

val p2 = Period.of(2, 3, -1)

// <- 2 years + 3 months - 1 day

val p3 = Period.parse("P1Y2M-3D")

// <- 1 year + 2 months - 3 days

// For more specifiers, see the API documentation

// of Period.parse()

You can perform arithmetic calculations on instances of the Duration or Period

classes:

import java.time.*

// Duration operations: ------------------------------

val d = Duration.parse("P2DT3H4M")

// <- 2 days, 3 hours, 4 minutes

val d2 = d.plusDays(3L)

// also: .minusDays(33L)

CHapTeR 17 MoRe apIS

364

// or .plusHours(2L) or .minusHours(1L)

// or .plusMinutes(77L) or .minusMinutes(7L)

// or .plusSeconds(23L) or .minusSeconds(5L)

// or .plusMillis(11L) or .minusMillis(55L)

// or .plusNanos(1000L) or .minusNanos(5_000_000L)

val d3 = d.abs() // make positive

val d4 = d.negated() // swap sign

val d5 = d.multipliedBy(3L) // three times as long

val d6 = d.dividedBy(2L) // half as long

// Period operations: --------------------------------

val p = Period.of(2, 3, -1)

// <- 2 years + 3 months - 1 day

val p2 = p.normalized()

// <- possibly adjusts the year to make the month lie

// inside [-11;+11]

val p3 = p.negated()

val p4 = p.minusYears(11L)

// also: .plusYears(3L)

// or .minusMonths(4L) or .plusMonths(2L)

// or .minusDays(40L) or .plusDays(5L)

val p5 = p.multipliedBy(5) // 5 times as long

You can use duration and periods to add or subtract time amounts to and from

LocalDate, LocalTime, LocalDateTime, ZonedDateTime, and Instant objects.

import java.time.*

val d = Duration.parse("P2DT3H4M")

val p = Period.of(2, 3, -1)

// <- 2 years + 3 months - 1 day

CHapTeR 17 MoRe apIS

365

val ld = LocalDate.parse("2018-04-23")

val lt = LocalTime.parse("17:13:12")

val ldt = LocalDateTime.of(ld, lt)

val zdt = ZonedDateTime.parse(

 "2007-12-03T10:15:30+01:00[Europe/Paris]")

val inz = Instant.parse("2018-01-23T23:33:14.513Z")

// ---- Using a LocalDate

val ld2 = ld.plus(p) // or .minus(p)

// val ld3 = ld.plus(d) // -> exception

// val ld4 = ld.minus(d) // -> exception

// ---- Using a LocalTime

val lt2 = lt.plus(d) // or .minus(d)

// val lt3 = lt.minus(p) // -> exception

// val lt4 = lt.plus(p) // -> exception

// ---- Using a LocalDateTime

val ldt2 = ldt.plus(d) // or .minus(d)

val ldt3 = ldt.plus(p) // or .minus(p)

// ---- Using a ZonedDateTime

val zdt2 = zdt.plus(d) // or .minus(d)

val zdt3 = zdt.plus(p) // or .minus(p)

// ---- Using an Instant

val inz2 = inz.plus(d) // or .minus(d)

// val inz3 = inz.minus(p) // -> exception

// val inz4 = inz.plus(p) // -> exception

Note that some of the operations are not allowed and lead to an exception. Those

are commented out in the previous listing. The reasons for the exceptions are possible

precision losses or mismatches in the time concepts. See the API documentation for

details.

CHapTeR 17 MoRe apIS

366

 Clock
A Clock sits in the depths of the date and time API. For many, if not most applications,

you can work well with local dates and times, offset and zoned dates and times, and

instants. It might be necessary to tweak the clock usage for getting now for testing and

special cases:

import java.time.*

val clock : Clock = ...

val ldt = LocalDateTime.now(clock)

val zdt = ZonedDateTime.now(clock)

val inz = Instant.now(clock)

Apart from overwriting the abstract Clock class, Clock itself provides a couple of

functions to tweak clock usage. These two are particularly interesting:

 1. Clock.fixed(fixedInstant:Instant, zone:ZoneId): This is

always a clock that always returns the same instant.

 2. Clock.offset(baseClock:Clock, offsetDuration:Duration):

Returns a new clock derived from the base clock with the specified

duration added.

If, however, you overwrite the clock, you must implement at least the abstract

functions from the Clock base class. Here is an example of a clock that always returns the

same instant and doesn’t care about zones:

import java.time.*

val myClock = object : Clock() {

 override fun withZone(zone: ZoneId?): Clock {

 // Supposed to return a copy of this clock

 // with a different time zone

 return this

 }

 override fun getZone(): ZoneId {

 // Supposed to return the zone ID

 return ZoneId.of("Z")

CHapTeR 17 MoRe apIS

367

 }

 override fun instant(): Instant {

 // This is the engine of the clock. It must

 // provide an Instant

 return Instant.parse("2018-01-23T23:33:14Z")

 }

}

... use myClock

 Exercise 1
Create a clock ClockTwiceAsFast with a constructor fetching the time from the UTC

system clock. After that, the clock should run twice as fast. Disregard zone information.

To prove that it is running the intended way, use

import java.time.*

val myClock = ClockTwiceAsFast()

Log.d("LOG", LocalDateTime.now(myClock).format(

 DateTimeFormatter.ISO_LOCAL_DATE_TIME))

Thread.sleep(1000L)

Log.d("LOG", LocalDateTime.now(myClock).format(

 DateTimeFormatter.ISO_LOCAL_DATE_TIME))

 Input and Output
In an Android environment you probably won’t use input and output very often. The

users of your app don’t see a console a println("Hello World") would print to, and any

logging your app produces is not supposed to be seen by end users anyway. In addition,

for persisting and reading data of any kind you can use the built-in database.

CHapTeR 17 MoRe apIS

368

Having said that and in case you absolutely need it, you still can read from and write

to files for doing input and output. In Android it is best to use files that lie in a designated

file system space that is accessible to your app. You do so by writing

import java.io.File

// We are inside an Activity or other Context!

val dataDir:File = getFilesDir()

Despite the class naming File in this listing, the dataDir corresponds to a directory,

not a data file in the narrow sense. The rest of this section assumes you have prepended

the snippet val dataDir = getFilesDir().

Kotlin’s file handling relies heavily on Java interfaces and classes and adds

extensions to some Java classes. There are also a couple of out-of-class functions that get

defined in the package kotlin.io. You don’t have to import kotlin.io; it is imported by

default and all class extensions from this package thus are enabled by default.

 Creating Some Test Files
Just to have some files to get you started experimenting with the I/O API, run the

following once:

dataDir.resolve("a.txt").takeIf{ !it.exists() }.appendText("Hello World A")

dataDir.resolve("b.txt").takeIf{ !it.exists() }.appendText("Hello World B")

File(dataDir,"dir1").mkdirs()dataDir.resolve("dir1").resolve("a.txt").

 takeIf{ !it.exists() }.appendText("Hello World dir1-A")

We discuss those functions later.

 File Names
For maximum interoperability you should restrict file names to contain only characters

from A–Z, a–z, 0–9, _, -, and . Also, to indicate that a file file lies inside a directory dir,

write dir/file. To designate the root directory of the file system, use /.

CHapTeR 17 MoRe apIS

369

Note The slash (/) is the file system separator on android. other operating
systems use different separators. If you want to be really polyglot, you can write
"dir" + File.separator + "file". The runtime engine will then pick up
the appropriate separator for the operating system in which it works.

To address a file fileName inside a given directory you can use

val someDir:File = ...

val file:File = someDir.resolve("fileName")

which works for real files and subdirectories.

 Listing Directories
To list the files of the app’s file storage write

dataDir.walk().maxDepth(1).forEach { file ->

 Log.d("LOG", file.toString())

}

This shows the immediate contents of the data directory. If you ran the little

preparation code from earlier, the logging output will look like this:

/data/user/0/multipi.pspaeth.de.multipi/files

/data/user/0/multipi.pspaeth.de.multipi/files/instant-run

/data/user/0/multipi.pspaeth.de.multipi/files/a.txt

/data/user/0/multipi.pspaeth.de.multipi/files/b.txt

/data/user/0/multipi.pspaeth.de.multipi/files/dirs1

/data/user/0/multipi.pspaeth.de.multipi/files/dir1

The multipi.pspaeth.de.multipi happens to be the sample app where I’m running

the code, and in the second line, instant-run belongs to a directory Android installed

by default. You can, of course, apply walk() to any other directory, just make sure you

have the appropriate file system access rights. The maxDepth(1) confines traversal to

the immediate children of the directory only. Omitting it would traverse all contents

recursively, including files in directories, files in directories in directories, and so on.

CHapTeR 17 MoRe apIS

370

Both walk() and maxDepth() return an instance of class FileTreeWalk. This class is

a Sequence and mimics all functions of Iterable, so you could apply filters, mappings,

folding, grouping, and the other processes we investigated in Chapter 9. You can also

write asIterable() if you need a real Iterable (a Sequence itself does not inherit from

Iterable).

Note The reason the Sequence interface exists is that sequences potentially
can be iterated over several times, which is not the case for implementations of
Iterable.

For example, to recursively list all real files inside dataDir, omitting directories,

you’d apply a filter as follows:

dataDir.walk().filter { it.isFile() }.forEach {

 file ->

 Log.d("LOG", file.toString())

}

You can use the same filtering procedure to only list files that have a certain ending:

dataDir.walk().filter { it.endsWith(".txt") }.

forEach {

 file ->

 Log.d("LOG", file.toString())

}

There is also a function startsWith("someString") to see whether a file name starts

with a certain string. You can also check the name against a regular expression:

dataDir.walk().filter {

 it.name.matches(".*invoice\\d\\d.*\\.txt")

}.forEach {

 file ->

 Log.d("LOG", file.toString())

}

This would match any file with a name that contains an invoice with two numbers

added, and ends with .txt.

CHapTeR 17 MoRe apIS

371

 Writing to Files
To write or append text to a file, you can use

val file = dataDir.resolve("a.txt")

// or any other file

// Write to the file

file.writeText("In the house, there was no light")

// Append to the file

file.appendText("\nIn the house, there was no light")

Note that writeText(text:String) and appendText(text:String) use the UTF-8

character set. If you need a different character set, you can add an instance of java.nio.

charset.Charset as a second parameter: writeText("...", Charsets.ISO_8859_1)

(Charsets is a Kotlin class: kotlin.text.Charsets).

To get more low level, it is also possible to write the raw bytes from a ByteArray to a

file:

val file = dataDir.resolve("a.txt")

val bytes = byteArrayOf(27, 34, 13, 47, 50)

// Write to the file

file.writeBytes(bytes)

// Append to the file

file.appendBytes(bytes)

Note If you need really heavy file handling with large files or many fine- grained
file operations, Kotlin provides more extensions that can help you, and you can also
use the plethora of Java file handling classes and methods. Because on android
you have a built-in fast database for such use cases, I don’t think you will use
such special file handling very often, but feel free to explore the Kotlin and Java
documentation.

CHapTeR 17 MoRe apIS

372

 Reading from Files
To read from files, you have to decide whether you want to read the complete file into

memory, you want to read a text file line by line, or you want to read a file containing

binary data block-wise.

To read a moderately sized text file as a whole into a property, write this (again we

assume you ran that little preparatory program from the beginning of the chapter):

val file = dataDir.resolve("a.txt")

val fileText:String = file.readText()

Here the UTF-8 character set gets used. To read a file with a different character set,

add a parameter:

val file = dataDir.resolve("a.txt")

val fileText:String = file.readText(

 Charsets.ISO_8859_1)

If you don’t have a text file, but a file with some raw byte data, to read the bytes from

a file use this:

val file = dataDir.resolve("a.txt")

val fileBytes:ByteArray = file.readBytes()

Reading a text file as a whole into a property certainly makes sense for small text files.

To handle larger text files, you can also read them line by line:

val file = dataDir.resolve("a.txt")

val allLines = file.readLines()

allLines.forEach { ln ->

 // do something with the line (a String)

}

The documentation says you shouldn’t do this for huge files. Internally the file gets

read into a big list containing all lines. Files with up to 100,000 lines do not actually

cause a problem, though. If you target Android devices starting from API level 26, there is

also a more efficient way for reading lines into a stream:

CHapTeR 17 MoRe apIS

373

val file = dataDir.resolve("a.txt")

// Only API level > 25

file.bufferedReader.use {

 it.lines().forEach { ln ->

 // do something with the line (a String)

 }

}

This time no list gets used; the lambda function receives exactly the currently read

line. The use is necessary for the file system resource to get closed properly after usage.

Reading a binary data file chunk-wise helps to handle large binary files:

import java.io.File

...

val file = dataDir.resolve("a.txt")

// Buffer size implementation dependent

file.forEachBlock{ buffer:ByteArray, bytesRead:Int ->

 // do something with the buffer

}

// Or, if you want to prescribe the buffer size

file.forEachBlock(512) { buffer, bytesRead ->

 // do something with the buffer

}

 Deleting Files
To delete a file or a directory you write

import java.io.File

...

val file:File = ...

val wasDeleted:Boolean = file.delete()

CHapTeR 17 MoRe apIS

374

This works both for files and directories; however, the directory must not contain

any files. To delete a directory and all its contents, including other directories, you can

instead use this:

import java.io.File

...

val file:File = ...

val wasDeleted:Boolean = file.deleteRecursively()

If anything happens while deleting the contents—for example, a file cannot be

deleted because of missing access rights—you’ll end up with a partially deleted file

structure. It is also possible to work with a file in your app and request an automatic

deletion when the app terminates:

import java.io.File

...

val file:File = ...

file.deleteOnExit()

If you have several deleteOnExit() in your app, the deletion happens in reverse

order. Note that as for normal delete() calls, it is possible to do that for directories as

well, but they must be empty.

 Working with Temporary Files
If you need temporary files it is easier to use

import java.io.File

...

val prefix = "tmpFile"

val suffix = ".tmp"

val tmpFile:File = File.createTempFile(prefix, suffix)

tmpFile.deleteOnExit()

... use tmpFile

compared to manually making up temporary files.

CHapTeR 17 MoRe apIS

375

This will use a directory provided by your operating system especially for temporary

files, and it will make sure the file does not exist by adding some random, but unique

characters to the file name. For both the prefix and suffix you can use what you want, but

the prefix must be at least three characters long. If you use null for the suffix, .tmp gets

used by default.

If you want to provide your own directory for temporary files, just add a File

denoting the directory as a third argument to createTempFile().

 More File Operations
Copying a file using the functions we already know is relatively easy: file2.writeBytes(

file1.readBytes()). There is also a library function, however, to make it more

expressive and also add some options:

import java.io.File

...

val file1:File = ...

val file2:File = ...

f1.copyTo(f2) // f2 must not exist

f1.copyTo(f2, true) // overwrite if necessary

// To fine-tune performance, you can tweak the

// buffer size

f1.copyTo(f2, bufferSize = 4096)

The copyTo() function returns the target file.

The ability to copy a complete directory recursively including all subdirectories and

their files is provided by another standard library function:

import java.io.File

...

val dir1:File = ...

val dir2:File = ...

f1.copyRecursively(f2) // f2 must not exist

f1.copyRecursively(f2, true) // overwrite if necessary

CHapTeR 17 MoRe apIS

376

// To fine-tune error handling, you can add a handler.

// Otherwise an IOException gets thrown.

f1.copyRecursively(f2, onError = {

 file:File, ioException:IOException ->

 // do something.

 // What to do now? Just skip this file, or

 // terminate the complete function?

 OnErrorAction.SKIP // or .TERMINATE

})

Renaming a file happens via

import java.io.File

...

val file1:File = ...

val file2:File = ...

file1.renameTo(file2)

The File class has more functions that tell us about the details of a file:

import java.io.File

import java.util.Date

...

val file = dataDir.resolve("a.txt")

val log = { msg:String -> Log.d("LOG", msg) }

log("Name: " + file.name)

log("The file exists: " + file.exists())

log("You can read the file: " + file.canRead())

log("You can write to the file: " + file.canWrite())

log("Is a directory: " + file.isDirectory())

log("Is a real file: " + file.isFile())

log("Last modified: " + Date(file.lastModified()))

log("Length: " + file.length())

CHapTeR 17 MoRe apIS

377

Note The java.nio package contains more classes and functions that give
more information about files, if you need even more details.

 Reading URLs
The file API contains very convenient functions to read the contents of an Internet URL.

Just write

import java.net.URL

import kotlin.concurrent.thread

thread {

 val contents:String =

 URL("http://www.example.com/something.txt").

 readText()

 val isoContents =

 URL("http://www.example.com/something.txt").

 readText(Charsets.ISO_8859_1)

 val img:ByteArray =

 URL("http://www.example.com/somepic.jpg").

 readBytes()

}

Note on android, you must request Internet access permission for this to work.
add <uses-permission android:name = "android.permission.
INTERNET"/> right inside the manifest element in the AndroidManifest.
xml file.

on android, this must be run in a background thread. This is why I wrapped the
read operation in a thread{ } construct. This is easy, but in a serious app you
should instead use one of android’s genuine background execution features, for
example, an IntentService. That one implies considerably more work. Consult
the android documentation for more details.

CHapTeR 17 MoRe apIS

378

This is just a very simplistic way of accessing Internet resources. For more options

use a dedicated software like, for example, the Apache HttpClient library.

 Using Reflection
Reflection is about considering classes as objects. How can that be? We learned that

objects are instances of classes. We also learned, though, that objects are identifiable

units describing something via properties, and giving methods at hand for doing

something with the properties using functions.

The trick is this: Classes are also identifiable units, and if you want to describe them

you’d explain the nature of their properties and functions. Reflection is exactly that:

Classes are objects describing the properties and functions of the class to which they are

referring. In addition, we can also dynamically look up the interfaces a class implements,

and possible superclasses.

Note Kotlin reflection is not part of the standard library. You must add

implementation "org.jetbrains.kotlin:kotlin- reflect:$kotlin_
version"

(one line) to the dependencies section of your app module’s build.gradle file.

We start with a simple class extending some base class, implementing some arbitrary

interface and furthermore with a constructor, two properties, and a function:

import android.util.Log

open class MyBase(val baseProp:Int)

class MyClass(var prop1:Int) :

 java.io.Serializable, MyBase(13) {

 var prop2:String

 get() = "Hi"

 set(value) { /* ignore */ }

 init {

 Log.d("LOG", "Hello from init")

 }

CHapTeR 17 MoRe apIS

379

 fun function(i:Int):Int {

 return prop1 * i

 }

}

val instance = MyClass(42)

We first note that there is a Class class for describing class objects (not class

instances). It is from the package java.lang. Kotlin exhibits some peculiarities

compared to Java, however, making it necessary for Kotlin to have its own class class. It

is called KClass and you can find it in the package kotlin.reflect. They have a strong

relation with each other. We fetch the KClass for MyClass:

val clazz = MyClass::class

// We can also get it from instances

val clazz = instance::class

From here it is still possible to get the Java class, in case you need it: val javaClass

= clazz.java

Once we have a KClass object, we can introspect the class, and that lets us show

constructors, properties, and functions:

import android.util.Log

import kotlin.reflect.*

import kotlin.reflect.full.*

Log.d("LOG", "**** constructors")

clazz.constructors.forEach { c ->

 Log.d("LOG", c.toString())

}

// show only our own properties

Log.d("LOG", "**** declaredMemberProperties") clazz.

declaredMemberProperties.forEach { p ->

 Log.d("LOG", p.toString())

}

// show also inherited properties

Log.d("LOG", "**** memberProperties")

CHapTeR 17 MoRe apIS

380

clazz.memberProperties.forEach { p ->

 Log.d("LOG", p.toString())

}

// show only our own functions

Log.d("LOG", "**** declaredFunctions")

clazz.declaredFunctions.forEach { f ->

 Log.d("LOG", f.toString())

}

// show also inherited functions

Log.d("LOG", "**** functions")

clazz.functions.forEach { f ->

 Log.d("LOG", f.toString())

}

We can obtain a specific property or function if we use a finder filter:

val p1: KProperty1<out MyClass, Any?> =

 clazz.declaredMemberProperties.find {

 it.name == "prop1" }!!

val f1: KFunction<*> =

 clazz.declaredFunctions.find {

 it.name == "function" }!!

With KProperty1 and KFunction instances you can do several interesting things,

like finding out whether it is private or public, whether it is final or open, or whether

a property belongs to a cons or is a lateinit. For functions we can determine the

parameter types and the return type, and so on. Please consult the API documentation

for these classes to see all the details.

We can invoke functions on or get and set properties from actual instances:

...

val instance = MyClass(42)

val p1: KProperty1<out MyClass, Any?>? =

 clazz.declaredMemberProperties.find {

 it.name == "prop1" }!!

CHapTeR 17 MoRe apIS

381

val p1Mutable: KMutableProperty1<out MyClass, Any?> =

 p1 as KMutableProperty1

// getting

val prop1Val = p1.getter.call(instance)

// setting

p1Mutable.setter.call(instance, 55)

// invoking

val f1: KFunction<*> =

 clazz.declaredFunctions.find {

 it.name == "function" }!!

val res = f1.call(instance, 44) as Int

We can fetch the superclasses and interfaces from which the class inherits:

// Only directly declared superclasses and interfaces

clazz.superclasses.forEach { sc ->

 Log.d("LOG", sc.toString())

}

// All superclasses and interfaces

clazz.allSuperclasses.forEach { sc ->

 Log.d("LOG", sc.toString())

}

To dynamically create instances, we have to distinguish between no-arg constructors

and constructors with parameters:

val clazz : KClass = ...

// If we have a no-arg primary constructor

val instance1 = clazz.createInstance()

// Otherwise for the primary constructor

val instance2 = clazz.primaryConstructor?.call(

 [parameters]

)

CHapTeR 17 MoRe apIS

382

// Otherwise

val instance3 = clazz.constructors.

 find { [criterion] }!!.

 call([parameters])

Caution Do not make the mistake of taking the improved dynamics of reflection
over normal class, property, and function usage as a sign that using reflection
for all property and function accesses is the better way of writing programs.
Using reflection, you’ll get a considerable performance degradation, you’ll lose
expressiveness and conciseness, and you also develop somewhat “around” object
orientation. Use reflection with care.

 Regular Expressions
Regular expressions try to give answers to the following questions:

• Does a string contain a certain character pattern? For example,

we want to know whether the string invoice 2018-01-01-A4536

contains a substring that starts with A. Or whether the same string

contains any date yyyy-MM-dd. We want to be pretty versatile

here; patterns should allow us to specify character classes like

letters, lowercase letters, uppercase letters, numbers, character

enumerations, spaces, repetitions, and more.

• How can we split a string at delimiters in the form of patterns? For

example, we have a string A37 | Q8 | 156-WE and we want to split

it at | to get a string array ["A37 ", " Q8 ", " 156-WE"]. For the

split marker it should also be possible to specify a longer string, or a

pattern.

• How can we extract certain substrings from a string given a pattern?

For example, we have a string The invoice numbers are X-23725,

X-7368 and X-71885 and we want to extract all the invoice numbers

X-<some digits> to get an array ["X-23725", "X-7368", "X-

71885"].

CHapTeR 17 MoRe apIS

383

• How can we replace certain patterns in a string by other strings? For

example, we have a string For version v1.7 it is possible, ...

another advantage of version v.1.7 is that ... and we want

to replace all occurrences of v<digit>.<digit> by LEOPARD.

 Patterns
Before we talk about how to achieve regular expression operations, we investigate

the patterns that can be used for them. A pattern is a string with regular expression

constructs, as shown in Table 17-2. You can enter patterns in a normal string with

backslashes (\) escaped: The pattern ^\w{3} (three word characters at the beginning)

thus must be entered as ^\\w{3}. You can use raw strings to avoid escaping:

val patStr = "^\\w{3}$" // exactly 3 word chars

val patStr2 = """^\w{3}$""" // the same

Note Table 17-2 is not exhaustive; it shows the constructs most often used. For a

complete reference, consult the Java API documentation for java.util.regex.Pattern.

Table 17-2. Regular Expression Pattern

Construct Matches

x any character x

\\ The backslash character \

\X a literal X, if X otherwise stands for a pattern construct

\n a newline character

\r a carriage return character

[abc] any of a, b, or c

[^abc] anything but a, b, or c

[A-Z] anything between a and Z

[0-9a-z] anything between 0 and 9 or between a and z

. any character

(continued)

CHapTeR 17 MoRe apIS

384

Quantifiers are for declaring repetitions of pattern constructs. There are three types

of quantifiers:

• Greedy: During pattern matching, the pattern will consume as much

of the string as is possible, not thwarting subsequent pattern parts.

• Reluctant: During pattern matching, the pattern will consume only as

much of the string as is necessary.

• Possessive: During pattern matching, the pattern will consume as

much of the string as possible, disregarding subsequent pattern parts.

The greedy and reluctant quantifiers get used most often, and the possessive

quantifier is more or less a candidate for corner cases only. To understand the

differences, consider the input string 012345abcde and the pattern \d+.*. The * here

means zero or more times greedily, and the + means one or more times greedily. If we

perform the match, the \d+ will consume as many digits as possible (i.e., all of them,

012345). The .* as a matcher for any characters will match the remaining abcde.

Construct Matches

\d any digit [0–9]

\D any nondigit [^0–9]

\s a whitespace character

\s a nonwhitespace character

\w a word character [a–z_a–Z_0–9]

\W a nonword character [^\w]

^ The beginning of a line

$ The end of a line

\b a word boundary

\B a nonword boundary

xy a x followed by a y

x|y either x or y

(p) any subpattern p as a group

Table 17-2. (continued)

CHapTeR 17 MoRe apIS

385

If we instead use a reluctant pattern \d+?.*?, the \d+? will match as many digits as is

necessary. Because the \d+? matcher by virtue of the + is happy with one occurrence of

a digit, and the .*? matcher is able to match any number of characters, the \d+? will be

happy to match the 0, and the .*? matcher will consume the rest 12345abcde.

The functioning of the less important possessive quantifier is best described by an

input string 012345abcde and a possessive pattern .*+de. The .*+ matcher here is able

to take the string from the beginning all the way to the end. Because it doesn’t care about

the rest of the pattern, it will consume all characters. However, the de needs the already

consumed string part de; it thus has nothing to match and the whole regular expression

match will fail. The quantifiers are listed in Table 17-3.

Table 17-3. Regular Expression Quantifiers

Construct Type Matches

X? Greedy X once or not at all.

X* X zero or more times.

X+ X one or more times.

X{n} X exactly n times.

X{n,} X n times or more often.

X{n,m} X n to m times.

X?? Reluctant X once or not at all.

X*? X zero or more times.

X+? X one or more times.

X{n}? X exactly n times.

X{n,}? X n times or more often.

X{n,m}? X n to m times.

X?+ possessive X once or not at all.

X*+ X zero or more times.

X++ X one or more times.

X{n}+ X exactly n times.

X{n,}+ X n times or more often.

X{n,m}+ X n to m times.

CHapTeR 17 MoRe apIS

386

 Determining Matches
To see whether a string matches a given regular expression, you can use the following

function:

val re = Regex("^\\w{3}$") // exactly 3 word chars

val matches1 = "Hello".matches(re) // -> false

val matches2 = "abc".matches(re) // -> true

 Exercise 2
Write a string extension function that allows us to write

"Hello" % ".*ll.*"

instead of

"Hello".matches(Regex(".*ll.*"))

Hint: The operator % writes as .rem().

The Regex class has constructors that allow specification of one or more options:

Regex(pattern:String, option:RegexOption)

Regex(pattern:String, options:Set<RegexOption>)

RegexOption is an enum class including the following members (see the API

documentation for the complete list):

• IGNORE_CASE: Use this to perform case-insensitive matches.

• DOT_MATCHES_ALL: Use this if you want a . pattern to also include line

breaks.

• MULTILINE: Use this if you want ^ and $ to respect line breaks.

• COMMENTS: Allow comments in regular expression patterns.

If you add the RegexOption.COMMENTS flag, you can add comments to your regular

expression patterns. This is invaluable if regular expressions are more complex. As an

example, consider this:

CHapTeR 17 MoRe apIS

387

val re1 = Regex("^A(/|_)\\d{4}$")

// This is the same:

val ENDS = "$"

val re2 = Regex("""

 ^ # begins with

 A # an "A"

 (/|_) # a "/" or a "_"

 \d{4} # 4 digits

 $ENDS # ends here

""", RegexOption.COMMENTS)

(Ignore the multiple spaces warning.) We had to add the clumsy val ENDS = "$"

here to avoid a $-induced string interpolation. You can see the spaces get ignored (use \s

if you need to include spaces in the pattern) and a # starts a line comment.

 Splitting Strings
To split a string around a regular expression as a delimiter you write

val re = Regex("\\|")

// <- use "\" escape to get a "|" as a literal

val s = "ABC|12345|_0_1"

val split: List<String> = s.split(re)

// -> "ABC", "12345", "_0_1"

// limit to at most 37 splits

val split37 = s.split(re, limit = 37)

Note For splitting up a big string including line breaks into lines you probably
don’t want to use regular expressions for performance reasons. It is much easier
to use the lines() function, which can be applied on any string: val s = "big
string... "; s.lines().forEach { ln -> ... }

CHapTeR 17 MoRe apIS

388

 Extracting Substrings
Finding patterns in a string and actually extracting them happens via functions of the

Regex class:

// a number pattern

val re = Regex("""

 -? # possibly a "-"

 \d+ # one or more digits

 (

 \. # a dot

 \d+ # one or more digits

)? # possibly

 """, RegexOption.COMMENTS)

val s = "x = 37.5, y = 3.14, z = -100.0"

val firstNumber:MatchResult? = re.find(s)

// start at a certain index instead:

// val firstNumber = re.find(s, 5)

val notFound = firstNumber == null

firstNumber?.run {

 val num = groupValues[0]

 // do something with num...

}

val allNumbers:Sequence<MatchResult> = re.findAll(s)

allNumbers.forEach { mr ->

 val num = mr.groupValues[0]

 // do something with num...

}

This is fine if we want to assign each pattern match to a local property. There is more

to this, though: We can acquire match groups that belong to subpatterns defined by ()

pairs. Consider the number matcher slightly rewritten:

CHapTeR 17 MoRe apIS

389

val re = Regex("""

 (

 (

 -? # possibly a "-"

 \d+ # one or more digits

)

 (

 \. # a dot

 (

 \d+ # one or more digits

)

)? # possibly

)

 """, RegexOption.COMMENTS)

It still matches the same patterns, but introduces subpatterns by various ()

groups. If we apply this pattern to a number like, for example, −3.14, we can add the

corresponding groups for illustration purposes, which gives us ((−3)(.(14))). Such

groups can easily be addressed independently in the MatchResult:

// The pattern from the last listing compressed

val re = Regex("""((-?\d+)(\.(\d+))?)""")

val s = "x = 37.5, y = 3.14, z = -100.0"

val firstNumber:MatchResult? = re.find(s)

val notFound = firstNumber == null

firstNumber?.run {

 val (num, nf, f1, f2) = destructured

 // <- "37.5", "37", ".5", "5"

 // the same:

 // val num = groupValues[1]

 // val nf = groupValues[2]

 // val f1 = groupValues[3]

 // val f2 = groupValues[4]

CHapTeR 17 MoRe apIS

390

 val wholeMatch = groupValues[0] // 37.5

 // ...

}

val allNumbers:Sequence<MatchResult> = re.findAll(s)

allNumbers.forEach { mr ->

 val (num, nf, f1, f2) = mr.destructured

 // the same:

 // val num = mr.groupValues[1]

 // val nf = mr.groupValues[2]

 // val f1 = mr.groupValues[3]

 // val f2 = mr.groupValues[4]

 val wholeMatch = mr.groupValues[0]

 // ... wholeMatch is: 37.5, 3.14 or -100.0

 // ... num is: 37.5, 3.14 or -100.0

 // ... nf is: 37, 3, -100

 // ... f1 is: .5, .14, .0

 // ... f2 is 5, 14, 0

}

You can see that inside the groupValues property of the MatchResult instance the

index 0 element always refers to the whole match, whereas all other indexes refer to

() groups. The destructured property instead starts with the first () group. Only

because we added one big surrounding () embracing everything, the first member of

destructured contains the same string as groupValues[0].

Caution The destructured property, although easy to use, only can handle up
to ten groups. The property groupValues is potentially unlimited.

 Replacing
Replacing patterns in strings is similar to finding patterns. We have a function

replaceFirst() that only replaces the first occurrence of a pattern, and replace(),

which replaces all occurrences:

CHapTeR 17 MoRe apIS

391

// again the number pattern:

val re = Regex("""((-?\d+)(\.(\d+))?)""")

val s = "x = 37.5, y = 3.14, z = -100.0"

// replace the first number by 22.22

val s2 = re.replaceFirst(s, "22.22")

// -> "x = 22.22, y = 3.14, z = -100.0"

// replace all numbers by 22.22

val s3 = re.replace(s, "22.22")

// -> "x = 22.22, y = 22.22, z = 22.22"

There is more to these two replace functions, though. With the second argument

replaced by a lambda function we can do real magic during replacement (shown only for

replace(); for replaceFirst() use the appropriate equivalent):

// again the number pattern:

val re = Regex("""((-?\d+)(\.(\d+))?)""")

val s = "x = 37.5, y = 3.14, z = -100.0"

// double all numbers

val s2 = re.replace(s, { mr:MatchResult ->

 val theNum = mr.groupValues[1].toDouble()

 (theNum * 2).toString() // <- replacement

})

// -> "x = 75.0, y = 6.28, z = -200.0"

// zero all fractions

val s3 = re.replace(s, { mr:MatchResult ->

 val (num, nf, f1, f2) = mr.destructured

 nf + ".0" // <- replacement

})

// -> "x = 37.0, y = 3.0, z = -100.0"

CHapTeR 17 MoRe apIS

393
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_18

CHAPTER 18

Working in Parallel:
Multithreading
Modern computers and modern smartphones have several CPUs able to work in

parallel. You probably think of several apps running at the same time, but there

is more to concurrency; you can have several “actors” do work in parallel in one

app, noticeably speeding up program execution. I deliberately say “actors” because

simply saying that several CPUs work in parallel only covers part of the story.

In fact, software developers prefer to think of threads, which are program sequences

that can potentially run independent of each other. Which CPU actually runs a

thread is left to the process scheduling managed by the operating system. We adopt

that thread notion and by that abstract from operation system process handling and

hardware execution internals.

Within one app, having several threads running concurrently is commonly referred

to as multithreading. Multithreading has been a prominent part of Java for years now,

and you can find Java’s relevant interfaces and classes inside packages java.lang

and java.util.concurrent and subpackages. These are also included within Kotlin

for Android. However, Kotlin has its own idea about multithreading and introduces a

technique called coroutines. You can use both features, and in this chapter we discuss

both of them.

 Basic Multithreading the Java Way
Without any further preparation, when you start a Kotlin (or Java) app the program gets

run in the main thread. However, you can define and start other threads that can be

worked through concurrently while the main thread is running.

394

Note The Java multithreading classes are automatically available to Kotlin in an
Android development environment.

The most important multithreading-related class in Java is java.util.Thread. You

can create one using its constructor, but Kotlin has a function that simplifies thread

creation: thread(). Its synopsis reads like this:

fun thread(

 start: Boolean = true,

 isDaemon: Boolean = false,

 contextClassLoader: ClassLoader? = null,

 name: String? = null,

 priority: Int = -1,

 block: () -> Unit

)

You use it as follows, for example:

val thr:Thread = thread(start = true) {

 ... do something ...

}

The thread() function creates a Thread using the following characteristics:

• If you don’t explicitly specify the start parameter to read false, the

Thread.start() function gets called immediately after thread creation.

• If you set isDaemon to true, a running thread will not prevent

the runtime engine from shutting down when the main thread

has finished its work. In an Android environment, however,

undaemonized threads will not make an app continue being active

when the system decides to shut down or suspend an app, so this flag

has no noticeable implications for Android.

• Specifying a separate class loader is an advanced feature you can use if

you want the thread to use a class loader different from the system class

loader. In this book we don’t talk about class loading issues; usually

you can safely ignore class loading issues in an Android environment.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

395

• Specifying a separate name for your thread helps troubleshooting if

problems arise. The thread’s name could show up in log files.

• Specifying a priority gives the system a hint for how a thread should

be prioritized in relation to other threads. Values range from Thread.

MIN_PRIORITY to Thread.MAX_PRIORITY. The default value is Thread.

NORM_PRIORITY. For your first experiments you don’t have to be

concerned with this value.

• The block contains statements that get executed when the thread

runs. The thread() function always exits immediately no matter

what the block does and how long it runs.

The most basic thread example for an Android app might read (remember that a

function as a last invocation parameter can go outside parentheses):

// inside an activity:

override fun onCreate(savedInstanceState: Bundle?) {

 ...

 thread {

 while(true) {

 Thread.sleep(1000L)

 Log.e("LOG", Date().toString())

 }

 }

}

For your experiments you can use the NumberGuess sample app we developed in

earlier chapters. This thread starts an infinite loop (while(true){ }), each iteration

sleeps for 1,000 milliseconds and then writes the current date and time to the logging

console. The thread() function returns the Thread instance, so if we need to later do

more things with the thread we can also write

val thr:Thread = thread {

 while(true) {

 Thread.sleep(1000L)

 Log.e("LOG", Date().toString())

 }

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

396

Because of the default start = true the thread immediately starts its work in the

background. If, however, you want to start the thread yourself, you write

val thr = thread(start = false) {

 while(true) {

 Thread.sleep(1000L)

 Log.e("LOG", Date().toString())

 }

}

...

thr.start()

This sounds easy so far, doesn’t it? There is a reason we talk about multithreading in

a later chapter of this book, though. Consider the following example:

val l = mutableListOf(1,2,3)

var i = 0

thread {

 while(true) {

 Thread.sleep(10L)

 i++

 if(i % 2 == 0) { l.add(i) }

 else { l.remove(l.first()) }

 }

}

thread {

 while(true) {

 Thread.sleep(1000L)

 Log.e("LOG", l.joinToString())

 }

}

Here we let one thread alter a list every 10 milliseconds, and another thread print the

list to the logging console.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

397

Once you start this it shouldn’t take longer than a few milliseconds before your app

crashes. What happened? The logs say (abbreviated):

2018-12-29 09:40:52.570 14961-14983/

 android.kotlin.book.numberguess

 E/AndroidRuntime: FATAL EXCEPTION: Thread-5

 Process: android.kotlin.book.numberguess, PID: 14961

 java.util.ConcurrentModificationException

 at java.util.ArrayList$Itr.next(...)

 at ...CollectionsKt.joinTo(...)

 at ...CollectionsKt.joinToString(...)

 at ...CollectionsKt.joinToString...

 at ...MainActivity$onCreate$2.invoke...

 at ...MainActivity$onCreate$2.invoke...

 at ...ThreadsKt....run()

The important parts are the two lines at java.util.ConcurrentModificationException

and java.util.ArrayList$Itr.next(...). The latter says something happens while

we are iterating through the list. This iteration is needed to construct the string for the

joinToString() function. The main clue comes from the exception name:

ConcurrentModificationException

It basically says that we are iterating through a list while it is being modified by

another thread, and this is the problem: We have a list data inconsistency if we let several

threads at the same time modify a list’s structure and iterate through it.

Another issue that comes up when we talk about multithreading is that we need

to find a clever way to synchronize threads. For example, one thread needs to wait for

another thread to finish some work before it can start running.

These two issues—data consistency and synchronization—make multithreading

kind of an art, and until now no final universal solution has been found. That is why,

concerning multithreading, new ideas are constantly born and several approaches exist

at the same time, all with mutual advantages and disadvantages over the others.

Before we talk about advanced approaches that Java and Kotlin follow, we finish

our investigation of Java’s basic multithreading solutions, so we get an understanding

of the problem sphere. If we consider that concurrent modification exception example

again, wouldn’t it help if we could avoid multiple threads working on a shared list at the

ChApTer 18 WorKing in pArAllel: MulTiThreAding

398

same time? This is possible, and the way we can do this is by wrapping the relevant code

examples inside synchronized(){ } blocks as follows:

val l = mutableListOf(1,2,3)

var i = 0

thread {

 while(true) {

 Thread.sleep(10L)

 i++

 synchronized(l) {

 if(i % 2 == 0) { l.add(i) }

 else { l.remove(l.first()) }

 }

 }

}

thread {

 while(true) {

 Thread.sleep(1000L)

 synchronized(l) {

 Log.e("LOG", l.joinToString())

 }

 }

}

Here the synchronized(l) blocks in all threads accessing the list make sure that no

thread accessing the list can enter the code inside synchronized while another thread is

inside any other synchronized block for the same list. Instead the thread that arrives first

makes all the other threads wait until it has finished its synchronized block.

It is also possible to add more parameters to the synchronized instruction. Just make

it a comma-separated list as in

synchronized(l1, l2) {

 ...

}

where the synchronization makes sure that it is safe to let multiple threads work on both

l1 and l2.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

399

We still need a way to let one thread wait until another thread has finished its work.

For this aim, the join instruction exists. Say you want to achieve the following:

val l = mutableListOf(1,2,3)

var i = 0

val thr1 = thread {

 for(i in 1..100) {

 l.add(i)

 Thread.sleep(10)

 }

}

thread {

 // Here we want to wait until thread thr1 is done.

 // How can this be achieved?

 ...

 Log.e("LOG", l.joinToString())

}

Now, tell the second thread to explicitly wait for thread thr1 to finish its work via

thr1.join():

val l = mutableListOf(1,2,3)

var i = 0

val thr1 = thread {

 ...

}

thread {

 thr1.join()

 Log.e("LOG", l.joinToString())

}

Now the instructions after thr1.join() only start after thread thr1 has finished its

work.

These keywords and functions, and more interesting functions and constructs for

basic multithreading the Java way, are listed in Table 18-1.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

400

Table 18-1. Basic Multithreading the Java Way

Construct/Function Description

thread(...) Creates and possibly starts a thread. parameters are:

• start: immediately start the thread after construction. default:

true.

• isDaemon: if true, a running thread will not prevent the runtime

engine from shutting down when the main thread has finished its

work. has no effect in Android. default: false.

• contextClassLoader: Specify a different class loader. default

is null, which signifies the system class loader. For Android you

usually go with the default.

• name: The name of the thread. Shows up in log files. default: use

a default string with consecutive numbering.

• priority: Specifying a priority gives the system a hint for

how a thread should be prioritized in relation to other threads.

possible values: Between Thread.MIN_PRIORITY and

Thread.MAX_PRIORITY, with Thread.NORM_PRIORITY being

the default.

• block: Contains the thread’s code. if you don’t need any special

parameters you just write thread { [thread_code] }.

synchronized(object1,

object2, ...) { }

The block inside the { } gets entered only if no other thread

currently executes in a synchronized block with at least one of

the same objects in its parameter list. otherwise the thread will

be put in a waiting state until the other relevant synchronized

blocks have finished their work.

Thread.sleep

(millis: Long)

Makes the current thread wait for the specified number of

milliseconds. Can be interrupted, in which case the statement

terminates immediately and an InterruptedException gets

thrown.

Thread.sleep(millis:

Long, nanos:Int)

Same as Thread.sleep(Long), but makes the function

additionally sleep nanos nanoseconds.

(continued)

ChApTer 18 WorKing in pArAllel: MulTiThreAding

401

Construct/Function Description

thread.join() Makes the current thread wait until thread thread has finished

its work.

thread.interrupt() The current thread interrupts thread thread. The interrupted

thread gets terminated and throws an InterruptedException.

The interrupted thread must support interruption. it does so by

invoking interruptible methods like Thread.sleep() or by

periodically checking its own Thread.interrupted flag to see

whether it is supposed to exit.

@Volatile var

varName = ...

only for class or object properties. Marks the backing field

(the data behind the property) as volatile. The runtime engine

(Java virtual machine) makes sure that updates to volatile variables

get immediately communicated to all threads. otherwise the

cross- thread state under the circumstances might be inconsistent.

The performance overhead is smaller compared to synchronized

blocks.

Any.wait() only from inside a synchronized block. Suspends the

synchronization such that other threads can continue their work.

At the same time, it makes this thread wait for an unspecified time,

until notify() or notifyAll() gets called.

Any.wait(timeout:Long) Same as wait(), but waits at most for the specified number of

milliseconds.

Any.wait(timeout:Long,

nanos:Int)

Same as wait(), but waits at most for the specified number of

milliseconds and nanoseconds.

Any.notify() only from inside a synchronized block. Wakes up one of the

waiting threads. The waiting thread starts to work once the current

thread leaves its synchronized block.

Any.notifyAll() only from inside a synchronized block. Wakes up all of the

waiting threads. The waiting threads start to work once the current

thread leaves its synchronized block.

Table 18-1. (continued)

For all other functions of class java.lang.Thread, consult the API documentation.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

402

 Advanced Multithreading the Java Way
Scattering synchronized blocks and join functions throughout your code poses a

couple of problems: First, it makes your code hard to understand; understanding

multithreaded state handling is anything but easy for nontrivial programs. Second,

having several threads and synchronized blocks might end up in a deadlock: Some

thread A waits for thread B while thread B is waiting for thread A. Third, writing too

many join functions for gathering the threads’ calculation results might result in

too many threads just waiting, thwarting the advantages of multithreading. Fourth,

using synchronized blocks for any collection handling might also end up in too many

threads just waiting.

At some point in the history of Java’s evolution, advanced higher level multithreading

constructs were introduced, namely the interfaces and classes inside the java.util.

concurrent package and subpackages. Without claiming completeness in this section,

we cover some of these constructs, because they are also included within Kotlin and you

can use them to any extent you wish.

 Special Concurrency Collections
Wrapping any list or set access into synchronized blocks just for the sake of proper

concurrent accessibility, or thread safety, leaves a feeling of discontent. If collections and

maps are important for your app, it almost seems like thinking about multithreading

is not worth the effort. Fortunately the java.util.concurrency package contains

some list, set, and map implementations that help to avoid putting everything into a

synchronized block.

• CopyOnWriteArrayList: A list implementation where any mutation

operations happen on a fresh copy of the complete list. At the same

time, any iteration uses exactly the state of the list it had when the

iterator got created, so a ConcurrentModificationException cannot

happen. Copying the complete list is costly, so this implementation

usually helps only where reading operations vastly outnumber

writing operations. In such cases, however, no synchronized blocks

are needed for thread safety.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

403

• CopyOnWriteArraySet: A set implementation where any

mutation operations happen on a fresh copy of the complete set.

What we said earlier for CopyOnWriteArrayList also holds for

CopyOnWriteArraySet instances.

• ConcurrentLinkedDeque: A thread-safe Deque where iteration

operations are weakly consistent, meaning read elements reflect the

deque’s state at some point at or since the creation of the iterator. No

ConcurrentModificationException will be thrown.

• ConcurrentLinkedQueue: A thread-safe Queue implementation. What

was said for the ConcurrentLinkedDeque earlier concerning thread

safety also holds for this class. No ConcurrentModificationException

will be thrown.

• ConcurrentSkipListSet: A thread-safe Set implementation.

Iteration operations are weakly consistent, meaning read elements

reflect the set’s state at some point at or since the creation of the

iterator. No ConcurrentModificationException will be thrown. Other

than the type specification the API documentation suggests, the

elements must implement the Comparable interface.

• ConcurrentSkipListMap: A thread-safe Map implementation.

Iteration operations are weakly consistent, meaning read elements

reflect the map’s state at some point at or since the creation of the

iterator. No ConcurrentModificationException will be thrown.

Other than the type specification the API documentation suggests,

the keys must implement the Comparable interface.

 Locks
In the section “Basic Multithreading the Java Way” earlier in this chapter, we learned that

synchronized blocks make sure program parts cannot be worked at the same time by

different threads:

val obj = ...

thread {

 synchronized(obj) {

ChApTer 18 WorKing in pArAllel: MulTiThreAding

404

 ... synchronized code

 }

}

Such a synchronized block is a language construct; we can, however, achieve the

same thing in a more object-oriented way by using a lock object as follows:

import java.util.concurrent.lock.*

...

val lock:Lock = ...

...

lock.lock()

try {

 ... synchronized code

} finally {

 lock.unlock()

}

More precisely, synchronized has its equivalent in a so-called reentrant lock, and the

corresponding lock class accordingly reads ReentrantLock. In the preceding code we

would therefore use

val lock:Lock = ReentrantLock()

as a Lock implementation.

The name reentrant lock comes from the lock’s ability to be acquired by the same

thread several times, so a thread would not fall into a waiting state when it already has

acquired the lock via lock.lock() and tries to acquire the same lock again before an

unlock() happens.

A Lock has more options compared to synchronized. Using a Lock you can, for

example, avoid trying to lock while the current thread recently entered an interrupted

state or does so while waiting for a lock. This can be achieved by writing

val lock:Lock = ReentrantLock()

...

try {

 lock.lockInterruptibly()

} catch(e: InterruptedException) {

ChApTer 18 WorKing in pArAllel: MulTiThreAding

405

 ... do things if we were interrupted

 return

}

try {

 ... synchronized code

} finally {

 lock.unlock()

}

You can also first check the lock, whether it can be acquired now or within some time

before it actually gets acquired. The corresponding code reads

val lock:Lock = ReentrantLock()

...

if(lock.tryLock()) {

 try {

 ... synchronized code

 } finally {

 lock.unlock()

 }

} else {

 ... no lock acquired

 ... do other things

}

or in a variant that waits for a specific amount of time:

...

if(lock.tryLock(time:Long, unit:TimeUnit)) {

 // lock was acquired within that time span

 ...

} else {

 ...

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

406

A different lock interface is called ReadWriteLock. Compared to a normal Lock

it has the ability to distinguish between read and write operations. This could be

helpful in cases where several threads would be able to use variables in a read-only

manner without any problem, whereas writing must block read operations and in

addition must be confined to a single thread. A corresponding implementation reads

ReentrantReadWriteLock. Its usage details are available in the API documentation.

 Atomic Variable Types
Consider the following example:

class Counter {

 var c = 0

 fun increment() { c++ }

 fun decrement() { c-- }

}

Because the runtime engine (Java virtual machine JVM) internally decomposes c++

into (1) get the value of c, (2) increment what we just retrieved, and (3) write back the

altered value to c, the following might happen:

Thread-A calls increment

Thread-B calls decrement

Thread-A retrieves c

Thread-B retrieves c

Thread-A increments its version of c

Thread-A updates c, c is now +1

Thread-B decrements its version of c

Thread-B updates c, c is now -1

The work of thread A therefore got lost entirely. This effect is commonly referred to

as thread interference.

We saw in the previous section that synchronization via synchronized helps:

class Counter {

 var c = 0

 fun increment() { synchronized(c){ c++ } }

 fun decrement() { synchronized(c){ c-- } }

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

407

The updating of c by virtue of synchronized now can no longer be influenced by

other threads. However, we might have a different solution. If we had a variable type

that handles modification and retrieval in an atomic manner, without the chance of

another thread interfering and destroying consistency, we could reduce the overhead

a synchronized imposes. Such atomic data types do exist, and they are called

AtomicInteger, AtomicLong, and AtomicBoolean. They are all from the java.util.

concurrent.atomic package.

Using an AtomicInteger we can get rid of the synchronized blocks. A solution for

the Counter class will then read:

import java.util.concurrent.atomic.*

...

class Counter {

 var c:AtomicInteger = AtomicInteger(0)

 fun increment() { c.incrementAndGet() }

 fun decrement() { c.decrementAndGet() }

}

Note The package java.util.concurrent.atomic has a few more atomic
types that are for special use cases. have a look at the documentation if you are
interested.

 Executors, Futures, and Callables
Inside the java.util.concurrent package you will find a couple of interfaces and

classes that handle multithreading on a higher level. The following list shows the main

interfaces and classes important for high-level multithreading.

• Callable

This is something that can be invoked, possibly by another thread,

and returns a result.

• Runnable

This one is not in package java.util.concurrent, but in package

java.lang. It is something that can be invoked, possibly by

another thread. No result is returned.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

408

• Executors

This is an important utility class for, among other things,

obtaining ExecutorService and ScheduledExecutorService

implementations.

• ExecutorService

This is an interface for objects that allows invoking Runnables or

Callables and gathering their results.

• ScheduledExecutorService

This is an interface for objects that allows invoking Runnables or

Callables and gathering their results. The invocation happens

after some delay, or in a repeated manner.

• Future

This is an object you can use to fetch the result from a Callable.

• ScheduledFuture

This is an object you can use to fetch the result from a Callable

submitted to a ScheduledExecutorService.

The primary usage pattern for these interfaces and classes goes as follows:

 1. Use one of the functions starting with new from the

singleton object Executors to get an ExecutorService or

ScheduledExecutorService. Save it in a property; for our

purposes we call it srvc or schedSrvc.

 2. For registering tasks that need to be done concurrently, use any of

the functions starting with invoke or submit for srvc, or any of the

functions starting with schedule for schedSrvc.

 3. Wait for termination, as signaled by suitable functions from

ExecutorService or ScheduledExecutorService, or by the

Futures or ScheduledFutures you might have received in the

previous step.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

409

As you can see, these interfaces, classes, and functions mainly orchestrate threads

and their calculation results. They do not control the usage of shared data; for that you

need to follow the techniques presented in the preceding sections.

As an example, we develop a multithreaded program that calculates π. The idea is

simple: Obtain a pair of random numbers from the [0; 1]×[0; 1] plane. Calculate the

distance to the origin and count the number of points with distances smaller than 1.0

and those with distances 1.0 or higher. Call the number of all points n and the number

of points inside the quarter unit circle p. Because the area of a [0; 1] × [0; 1] plane is

1.0, but the area of the region within the quarter unit circle is π/4, we have
p

n
 = π/4 or

π = 4 ·
p

n
 (see Figure 18-1).

Figure 18-1. Pi calculation

Note This is definitely not the cleverest way to calculate π, but it is easy to
understand and you can easily distribute the workload among multiple threads.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

410

Figure 18-2. Pi user interface

In Android Studio, start a new app, and proceed as described in Chapter 1 for

your first Kotlin app, renaming the app and packages accordingly. For the activity, create

a layout with the following elements:

• Any labels, as shown in Figure 18-2.

• A TextView with ID @+id/procs next to the Processors label.

• An EditText with ID @+id/iters next to the Iterations label.

Add attribute android:text="1000000".

• An EditText with ID @+id/threads next to the Threads label.

Add attribute android:text="4".

• A TextView with ID @+id/cumulIters next to the Cumul Iters label.

• A TextView with ID @+id/pi next to the Current Pi label.

• A TextView with ID @+id/calcTime next to the Calc Time label.

• A Button with text CALC and attribute android:onClick="calc".

• A Button with text RESET and attribute android:onClick="reset".

ChApTer 18 WorKing in pArAllel: MulTiThreAding

411

We leave the the details of the layout up to you. For the actual calculation, the view

IDs and the onClick handlers shown in the list are important. The calculation is not too

complicated, so we do everything in the activity class. For more complex projects you

should outsource the calculation to one or more dedicated calculation classes. In our

case, let the activity class read

class MainActivity : AppCompatActivity() {

 var points = 0L

 var insideCircle = 0L

 var totalIters = 0L

override

fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 savedInstanceState?.run {

 points = getLong("points")

 insideCircle = getLong("insideCircle")

 totalIters = getLong("totalIter")

 }

 val cores = Runtime.getRuntime().

 availableProcessors()

 procs.setText(cores.toString())

}

override

fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 outState?.run {

 putLong("points",points)

 putLong("insideCircle",insideCircle)

 putLong("totalIter", totalIters)

 report()

 }

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

412

fun calc(v:View) {

 val t1 = System.currentTimeMillis()

 val nThreads = threads.text.toString().

 takeIf { it != "" }?.toInt()?:1

 val itersNum = iters.text.toString().

 takeIf { it != "" }?.toInt()?:10000

 val itersPerThread = itersNum / nThreads

 val srvc = Executors.newFixedThreadPool(nThreads)

 val callables = (1..nThreads).map {

 object : Callable<Pair<Int,Int>> {

 override fun call(): Pair<Int, Int> {

 var i = 0

 var p = 0

 (1..itersPerThread).forEach {

 val x = Math.random()

 val y = Math.random()

 val r = x*x + y*y

 i++

 if(r < 1.0) p++

 }

 return Pair(i, p)

 }

 }

 }

 val futures = srvc.invokeAll(callables)

 futures.forEach{ f ->

 val p = f.get()

 points += p.first

 insideCircle += p.second

 }

 val t2 = System.currentTimeMillis()

 calcTime.setText((t2-t1).toString())

 report()

 }

ChApTer 18 WorKing in pArAllel: MulTiThreAding

413

 fun reset(v:View) {

 points = 0

 insideCircle = 0

 report()

 }

 private fun report() {

 cumulIters.setText(points.toString())

 if(points > 0) {

 val pipi = 1.0 * insideCircle / points * 4

 pi.setText(pipi.toString())

 } else {

 pi.setText("")

 }

 }

}

The characteristics are as follows:

• The class has as state the total number of points in points, the

number of points inside the quarter unit circle in insideCircle, and

the total number of iterations in totalIters.

• In onSaveInstanceState() and onCreate() we make sure the state

gets saved and restored whenever Android decides to suspend the

app.

• Also in onCreate() we determine the number of CPUs the device has

and write it to the user interface.

• Inside reset(), the algorithm gets reinitialized.

• Inside report(), we calculate π according to the preceding formula

and write it to the user interface.

• The multithreading happens inside calc(). We read the number of

threads and iterations to use from the user interface, distribute the

iteration number evenly among the threads, obtain a thread pool

from Executors, define and register the calculation algorithm, and

eventually gather the results from all threads.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

414

• At the end of calc(), we determine the time needed for the

calculation and write it to the user interface.

You can play around with the thread and iteration numbers to see the impact of

multithreading. On most devices you should see a noticeable difference between

running on one and two or more threads. By the way, pressing the CALC button several

times improves the accuracy of the calculated π as the numbers get accumulated.

 Exercise 1
Implement the multithreaded π calculation app as described in this section.

 Kotlin Coroutines
Kotlin has its own idea of how to handle multithreading. It uses a concept that has

been around for a while in older computer languages, coroutines. Here the idea is

implemented to write functions that can get suspended and later resumed at certain

locations during their inner program flow. This happens in a nonpreemptive way, which

means during running a program in a multithreaded way the program flow context

doesn’t get switched by the operating system, but rather by language constructs, library

calls, or both.

Coroutines are not by default included within Kotlin. To install them, open the “app”

module’s build.gradle file and add to the “dependencies” section:

implementation

 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.1.0'

(one line).

Before we continue to discuss coroutines for Kotlin, we first present an extended

glossary to help you get used to coroutines programming. You can quickly scan

over it or entirely skip it for now and come back later, as after the list we give a more

comprehensive introduction to coroutines.

• Coroutine scope: Any coroutine functionality runs within a

coroutine scope. A scope is like a bracket around a multithreading

ensemble, and scopes can have a parent scope defining a scope

hierarchy. The root of the scope hierarchy can either be the

ChApTer 18 WorKing in pArAllel: MulTiThreAding

415

GlobalScope or it can be obtained by the function runBlocking

{ } where inside the { } block you entered a new blocking scope.

The blocking here means that the runBlocking() invocation only

finishes after all included scopes finished their work. Because

CoroutineScope is an interface, you can also define any class to

spawn a coroutine scope. A very prominent example is to have an

activity also represent a coroutine scope:

class MyActivity : AppCompatActivity(),

 CoroutineScope by MainScope() {

 ...

 override fun onDestroy() {

 super.onDestroy()

 cancel() // CoroutineScope.cancel

 }

 ...

}

The CoroutineScope by MainScope() refers to delegation: Any CoroutineScope

function gets forwarded to an instance of MainScope, which is a scope especially tailored

for user interface activities. Here, because of the cancel() on the root of the scope

hierarchy, any currently active scope inside the hierarchy gets shut down in the activity’s

onDestroy().

• Coroutine context: A CoroutineContext object is a data container

associated with a coroutine scope. It contains the objects that are

necessary for a coroutine scope to properly do its work. Without any

further intervention in a scope hierarchy, scope children inherit the

context from their parents.

• Global scope: The GlobalScope is a singleton object with a lifetime

determined by the application as a whole. Although it is tempting to

use the global scope as a basis for the most important coroutines, it

is generally not recommended that you use it for the sake of properly

structuring the multithreading aspects of your app. Use a dedicated

coroutine builder instead.

• Job: A job is a task that possibly runs in its own thread.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

416

• Coroutine builder: These are functions that start a coroutine either in

a blocking or nonblocking manner. Examples for builders are:

• runBlocking(): This defines and runs a blocking coroutine.

If runBlocking() gets used inside a coroutine scope, the block

defined by runBlocking{ } spawns a new child scope.

• launch(): This defines and runs a nonblocking coroutine.

It cannot be used outside a coroutine scope. It immediately

returns a Job object and runs its block in the background.

• async(): This defines and runs a nonblocking coroutine that

returns a value. It cannot be used outside a coroutine scope.

It immediately returns a Deferred object and runs its block in the

background.

• coroutineScope(): This creates a new scope with the context

inherited from the outer scope, except for a new Job object.

It calls the specified block in the new scope.

• supervisorScope(): This creates a new scope with a

SupervisorJob. It calls the specified block in the new scope.

Supervisor jobs are special jobs that can fail independently of

each other.

All of them expect a lambda function as a last parameter, which serves as the block

of instructions to run. Because such parameters can be noted outside the parentheses,

you’ll most often use them as in launch { ..instructions.. }.

• Joining: If you get the result of invoking launch() in a property: val

job = launch{ ... }, you can later call job.join() to block the

program execution until the job has finished.

• Suspending function: The keyword suspend is the only coroutine-

related keyword you will find in the Kotlin language. All other

coroutine material is available via the coroutines library. You need

to add the suspend to functions that you want to be callable from

inside a scope and that you want to be able to use with coroutines.

For example, suspend fun theFun() { }. Consider the suspend as a

coroutine scope forwarder.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

417

• Cancellation: Once you have a Job object, you can invoke cancel()

on it to signal canceling the job. Note that the job usually doesn’t

immediately quit its work, so you have to wait for the actual

termination via a join() invocation, or you use cancelAndJoin().

You must ensure the coroutine you want to cancel is cancelable. To

meet this aim you can either let the code call a suspending function

like yield(), or you can periodically check for the isActive property

you automatically have inside a coroutines scope.

• Timeout: To explicitly specify a timeout for a block of statements

you use

withTimeout(3000L) { // milliseconds

 ... code here

}

Once the timeout limit is reached, a TimeoutCancellationException gets thrown,

which is a subclass of CancellationException and gets ignored if you don’t use a

custom exception handler. A variant of withTimeout() reads withTimeoutOrNull();

it does not throw a TimeoutCancellationException but returns the value of the last

expression in its block if no timeout happened, or otherwise null:

val res = withTimeoutOrNull(3000L) {

 ... code here

 "Done."

}

// -> res is null if timeout happened

• Coroutine exception handler: Coroutines have their own idea about

how to handle exceptions. For example, if you do not provide a separate

CoroutineExceptionHandler in the coroutine context, while canceling

a job a CancellationException gets thrown, but that is ignored. What

you still can do is wrap your code in a try { } finally { } block if you

need to perform cleanup actions once a job gets canceled:

runBlocking {

 val job = launch {

 try {

ChApTer 18 WorKing in pArAllel: MulTiThreAding

418

 ... do work

 } finally {

 ... cleanup if canceled

 }

 }

 ...

 job.cancelAndJoin()

}

• Delay: Use delay(timeMillis) to specify a temporary suspension.

The API documentation here speaks of a nonblocking suspension,

as the thread running behind the coroutines actually is allowed to do

other work. After the delay, the program flow can continue with the

instructions behind the delay function.

• Blocking: You use

runBlocking {

 ...

}

to initiate a blocking execution of the statements inside the { }

block. You usually apply it in the main function of your program to

have a first coroutine scope that you can use for coroutines.

• Coroutine dispatcher: An instance of a CoroutineDispatcher is part

of the coroutine context you find in the property coroutineContext

of each scope.

runBlocking {

 val ctx:CoroutineContext =

 coroutineContext

 ...

}

The dispatcher controls what thread a coroutine is running in. This could be a

specific thread, a thread pool, or the caller’s thread (until the first suspension point) if an

unconfined dispatcher gets used (not for general use).

ChApTer 18 WorKing in pArAllel: MulTiThreAding

419

• Structured concurrency: This describes the dependencies of job

concurrency characteristics mirrored in a structure depicted by a

hierarchy of { ... } constructs. Kotlin’s coroutines strongly favor a

structured concurrency style of setting up concurrency.

• Channel: Channels provide a means to communicate a data stream

between coroutines. As of Kotlin version 1.3, this API is considered

experimental. Check the official documentation to learn about the

current state of this API.

• Actor: An actor is both a coroutine launcher and a channel

endpoint. As of Kotlin version 1.3, this API is considered

experimental. Check the official documentation to learn about the

current state of this API.

The following paragraphs outline basic and advanced coroutine usage patterns.

 Basic Coroutines
The most important thing to know about coroutines is that we need a coroutine scope

before we can use the coroutine way of multithreading. For simplicity it would be nice if

we had a construct like this:

openScope {

 // Scope now automatically available

 ...

}

Kotlin knows how to do that by virtue of functions with receivers. Look, for example,

at the coroutines-related function runBlocking(). In the source code you’ll basically

find this:

fun <T> runBlocking(context: CoroutineContext =

 EmptyCoroutineContext,

 block: suspend CoroutineScope.() -> T): T

{

 // code to run block in a blocking thread

 ...

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

420

In the block: suspend CoroutineScope.() -> T you can see the block runs inside

an object that extends CoroutineScope. Such a CoroutineScope is an interface with a

val named coroutineContext of type CoroutineContext. See later for details about the

context.

Caution interfaces can have vals. We didn’t mention this feature in the object
orientation introductory chapters, and during the runtime engine evolution it was
primarily introduced for technical reasons. here it gets used to make coroutines
handling easier. using vals and vars in your app’s interfaces is discouraged though,
because variables usually belong to implementation aspects, not to declaration
aspects, which is what interfaces are for. use variables in interfaces with caution!

Your options to use an existing scope if we already are running inside a coroutine or

to generate a new scope are as follows:

• runBlocking { ... }

This enters a new blocking scope. Blocking here means the

runBlocking() invocation will only return after all activities inside

the { ... } lambda finished their work. The runBlocking() can

be started from inside and outside a coroutine scope, although

using it from inside a coroutine scope is discouraged. In both

cases a fresh context is created that includes using the currently

running thread for the job.

• runBlocking(context:CoroutineContext) { ... }

This is the same as runBlocking(), but with a base context as

given by the parameter.

• GlobalScope

Use of this is discouraged. Use this singleton object if you want

to use a scope that is tied to the application itself and its life

cycle. You can, for example, use GlobalScope.launch{ ... } or

GlobalScope.async{ ... }. Normally you should start from a

runBlocking{ ... } instead. Not explicitly using GlobalScope

improves the structuring of your app.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

421

• coroutineScope { ... }

This creates a new coroutine scope that inherits the context from the

outer coroutine scope; that is, the scope in which the coroutineScope()

gets invoked. However, it overwrites the job and uses its own job derived

from the contents of its lambda function parameter (the content of

{ ... }). This function can only be called from inside a scope. Using

coroutineScope() is a prominent example for structured concurrency:

Once any child inside the { ... } fails, all the rest of the children will

fail as well and eventually the whole coroutineScope() will fail.

• supervisorScope { ... }

This is the same as coroutineScope(), but lets its child scopes run

independent of each other. In particular, if any of the children get

canceled, the other children and the supervisor scope do not get canceled.

• launch { ... }

This defines a background job. The launch() invocation returns

immediately while the background job defined by the { ... }

lambda starts doing its work in the background. The launch()

returns an instance of class Job. You can use the join() function

from Job to wait for the job to finish.

• async { ... }

This is the same as launch(), but allows for the background job to

produce a result. For this aim launch() returns an instance of class

Deferred. You can use its await() function to retrieve the result; of

course, this implies waiting for the job to have finished.

• Implement CoroutineScope

In any of your classes, you can implement class CoroutineScope:

class MyClass : CoroutineScope { ... }. The problem with this

approach is that, because CoroutineScope is just an interface, we

need to implement the coroutine functionality by filling the coroutine

context with sensible objects. A simple way to do that is using

delegation: class MyClass : CoroutineScope by MainScope() {

... }, which delegates all coroutine builders to a MainScope object.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

422

That one is particularly useful for user interfaces. Once this is done we

can freely use builders like launch() and async(), and also control

functions like cancel(), from anywhere inside MyClass.

The launch() function has a couple of default parameters. Its complete synopsis

reads as follows:

public fun CoroutineScope.launch(

 context: CoroutineContext = EmptyCoroutineContext,

 start: CoroutineStart = CoroutineStart.DEFAULT,

 block: suspend CoroutineScope.() -> Unit

): Job

You can use the context parameter to set the context name, for example, as in

launch(context = coroutineContext +

 CoroutineName("CoRou1")) {

 ...

)

The start parameter can be used to tweak the way the coroutine starts. See the API

documentation for details (enter “CoroutineStart” in Android Studio, then press Ctrl+B).

The async() function has the same default parameters as launch(), so you can also

tweak the async() startup characteristics.

Consider the following example code. For Android you could test it directly inside

the onCreate() function inside an activity.

runBlocking {

 // This starts in the current thread.

 // We are now inside a coroutine scope. This means

 // we have a

 // val coroutineContext:CoroutineContext

 // for the context. The runBlocking() ends

 // after all work is done.

 Log.d("LOG", "1. Started inside runBlocking()")

 coroutineScope {

 Log.d("LOG", "2. coroutineScope()")

 delay(500L)

 Log.d("LOG", "3. coroutineScope()")

ChApTer 18 WorKing in pArAllel: MulTiThreAding

423

 coroutineScope {

 Log.d("LOG", "4. coroutineScope() II")

 // If you add this, both coroutineScope()

 // fail and runBlocking() prematurely ends:

 // throw CancellationException("4.")

 // Also, because runBlocking transports the

 // exception to the outside world, (15.)

 // below will not be reached.

 }

 Log.d("LOG", "5. inner done")

 }

 val job1 = launch {

 // This runs in the background, so

 // (8.) happens before (7.)

 Log.d("LOG", "6. inside launch()")

 delay(500)

 Log.d("LOG", "7. done with launch()")

 }

 Log.d("LOG", "8. returned from launch()")

 val deferr1 = async {

 // This runs in the background as well, but it

 // returns something

 Log.d("LOG", "9. inside async()")

 delay(500)

 Log.d("LOG", "10. done with async()")

 "Result"

 }

 Log.d("LOG", "11. returned from async()")

 job1.join()

 Log.d("LOG", "12. launch finish")

 val res1 = deferr1.await()

 Log.d("LOG", "13. async finish")

ChApTer 18 WorKing in pArAllel: MulTiThreAding

424

 Log.d("LOG", "14. End of runBlocking()")

}

Log.d("LOG", "15. Returned from runBlocking()")

It has the following characteristics.

• Running the code, the logs will show this:

1. Started inside runBlocking()

2. coroutineScope()

3. coroutineScope() - 0.5secs later

4. coroutineScope() II

5. inner done

8. returned from launch()

11. returned from async()

6. inside launch()

9. inside async()

7. done with launch()

10. done with async()

12. launch finish

13. async finish

14. End of runBlocking()

15. Returned from runBlocking()

Items 6, 9, 7, and 10 might show up in a different order because they belong to

background processing.

• The outer runBlocking() introduces a root in the coroutine scope

hierarchy.

• The runBlocking() only returns if all its children finish their work or

a cancellation of their work occurs.

• If a CancellationException gets thrown (uncomment the throw

to see that happen), it gets transported up the scope hierarchy and

consequentially 15 will not be reached.

• Both async() and launch() introduce asynchronicity (concurrency);

they return immediately while their { ... } lambdas do their work

in the background.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

425

• The job1.join() and deferr1.await() synchronize the background

jobs; both wait for the corresponding job to finish.

 Coroutine Context
A CoroutineContext holds the state of the coroutine scope as a set of context elements.

Although the CoroutineContext does not implement the normal Set, List, or Map interface

you’d normally use for such cases, you still can get its elements by one of these methods.

• coroutineContext[Job]

This retrieves the Job instance that holds the instructions of which

the coroutine consists.

• coroutineContext[CoroutineName]

Optionally, this retrieves the name of the coroutine. You can

specify the name via coroutineContext + CoroutineName("My

FancyCoroutine") as the first parameter of a coroutine builder

(e.g., launch() or async()) invocation.

• coroutineContext[CoroutineExceptionHandler]

This is an optional dedicated exception handler. We’ll talk about

exceptions later.

• coroutineContext[ContinuationInterceptor]

This internal item holds the object that is responsible for correctly

continuing a coroutine after it was suspended and resumes its work.

Although any scope builder like runBlocking(), launch(), or async() spawns a new

coroutine context that gets forwarded to other coroutine functions invoked from inside,

you can temporarily tweak the context by using

withContext(context: CoroutineContext) {

 ...

}

As a parameter you are free to build your own context, or use + to change dedicated

elements of the current context. For example, to temporarily set the coroutine name

you’d write

ChApTer 18 WorKing in pArAllel: MulTiThreAding

426

... we are inside a coroutine scope

withContext(context = coroutineContext +

 CoroutineName("TmpName")) {

 ... here we have a scope with a tweaked context

}

In the same way, you can alter or redefine other context elements.

 What a delay() Does
At first glance the delay(timeMillis:Long) function has the same use as the basic

Thread.sleep(millis:Long) function from the Java way of using concurrency: Let

the program flow wait for some time before it can continue with the instructions after

the delay() or sleep() statement. However, there is a major difference between the

two: The function Thread.sleep() actually blocks the current thread and lets other

threads do their work, whereas delay() calls a suspending function that does not block

the current thread but instead schedules a resumption of the program flow after the

specified time elapses.

From a use-case view you use both for the same purpose: to continue with the

program flow only after the specified time has elapsed. Knowing that for coroutines the

thread does not get blocked, however, helps to tailor concurrency for maximum stability

and performance.

 What Is a Suspending Function?
A suspending function is a function that might or might not execute immediately or be

suspended once invocation starts, and then eventually ends. It does not block a thread,

even when it or parts of it are suspended.

From a coding point of view, you must make your own functions suspendable if you

extract functions from a coroutine:

runBlocking {

 ...

 launch {

 ...

 }

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

427

converts to

runBlocking {

 ...

 doLaunch()

}

suspend fun doLaunch() {

 launch {

 ...

 }

}

Internally the suspend keyword leads to adding a hidden parameter for the coroutine

context.

 Waiting for Jobs
Dispatching work to several concurrently acting coroutines is one part of the story. First,

if the coroutines calculated something, after the coroutines do their work we need to

make sure we can gather the results before we continue with the program flow. Second,

we must make sure the program as a big state machine is in a consistent state before

we can continue doing more work after the coroutines finish. Here we are talking about

result gathering and concertation or synchronization.

For synchronization, to make sure a Job or a Deferred has finished its work, use

join() as in

val job = launch { ... }

val deferr = async { ... }

job.join() // suspend until job finished

deferr.join() // suspend until deferr finished

We can do this also for the Deferred, because it is a subclass of Job. In both cases

it ensures that all the coroutine children of the jobs also finished their work. For the

Deferred, however, we actually want to get the result of the calculation, which leads us to

coroutines result gathering. You do so by writing

ChApTer 18 WorKing in pArAllel: MulTiThreAding

428

val deferr1 = async { ... }

val deferr2 = async { ... }

val deferr1Res = deferr1.await()

val deferr2Res = deferr2.await()

Again the await() function invocations suspend the program flow until the

Deferreds finish their work. Again, the coroutine children of the async jobs also will

have finished their work.

For a Deferred there is also a function getCompleted() you can use to get an already

calculated result:

val deferr1Res = deferr1.getCompleted()

Here you must have made sure, though, that the Deferred actually finished

its calculation, otherwise you’ll get an IllegalStateException. You can read the

isCompleted property to check whether a Deferred or a Job has completed.

In a hierarchical setup of coroutines with parent–child relationships, the coroutines

library makes sure that children will finish their work before a parent quits, so we don’t

have to write

runBlocking {

 val job1 = launch {

 }

 job1.join() // unnecessary!

}

The join will happen automatically.

 Canceling Coroutines
To cancel any job, invoke the cancel() function on the Job or Deferred object.

val job = launch { ... }

val deferr = async { ... }

...

job.cancel() // or deferr.cancel()

Canceling does not mean a job immediately quits its work. Instead it is marked and

stops working at a feasible time.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

429

• Inside a canceled job, any invocation of a suspend function will lead

to the job finishing its execution. An example is delay(); inside the

delay() function a cancellation check will occur and if the job was

canceled, the job will immediately quit.

• If there are no suspend function calls or not enough of them, you can

use the yield() function to initiate such a cancellation check.

• Inside your code you can regularly check whether the isActive

property gives false. If this is the case, you know the job was

canceled and you can finish the job execution.

Because a cancellation does not normally lead to an immediate job termination, you

must append a join():

val job = launch { ... }

...

job.cancel()

job.join()

Another option is to use

val job = launch { ... }

...

job.cancelAndJoin()

which combines those two.

What a cancellation leads to concerning the coroutine scope hierarchy is discussed

in the section “Exception Handling” later in this chapter.

 Timeouts
You can specify timeouts to instructions inside a coroutine via

withTimeout(1000L) { // milliseconds

 ...

}

This throws a TimeoutCancellationException (a subclass of

CancellationException) if the timeout limit gets reached, or

ChApTer 18 WorKing in pArAllel: MulTiThreAding

430

val res = withTimeoutOrNull(1000L) { // milliseconds

 ...

 [result expression]

}

which does not throw an exception but instead assigns null to the result if the elapsed

time exceeds the given time. Because of Kotlin’s idiomatic ?: operator for null value

handling, we can also throw our own exceptions as in

withTimeoutOrNull(1000L) { // milliseconds

 ...

 "OK"

} ?: throw Exception("Timeout Exception")

 Dispatchers
A coroutine dispatcher actually tells where and how a job gets run. More precisely, it

describes which thread the coroutine runs in and how a thread gets created or looked up

(e.g., from a thread pool). You can get hold of the current dispatcher with

coroutineContext[ContinuationInterceptor]

If you don’t want to go with the defaults that a builder like launch() or async() uses,

you can explicitly prescribe a dispatcher. Remember we can give launch() or async()

the context as a first parameter. If we have a dispatcher, then, we can write

val myDispatcher = ...

runBlocking {

 val job = launch(coroutineContext + myDispatcher) {

 ...

 }

 job.join()

}

You don’t have to develop such a dispatcher on your own, because some dispatchers

are provided by the coroutines library:

• Dispatchers.Default

This is the default dispatcher used if the context does not yet

contain a dispatcher. It uses a thread pool with at least two

ChApTer 18 WorKing in pArAllel: MulTiThreAding

431

threads, and the maximum number of threads is the number of

CPUs the current device has minus 1. You can, however, overwrite

that number by writing System.setProperty("kotlinx.

coroutines.default.parallelism", 12) early in your app

(before any coroutine gets built).

• Dispatchers.Main

This is a dispatcher tied to user interface processing. For Android,

if you want to use the main dispatcher, you must add library

kotlinx-coroutinesandroid to the dependencies section inside

build.gradle. If you route your coroutines structure like

class MyClass :

 CoroutineScope by MainScope()

{

 ...

}

the Dispatchers.Main gets used automatically.

• Dispatchers.IO

This is a dispatcher especially tailored for blocking IO

functionality. It is similar to the Dispatchers.Default dispatcher,

but if necessary creates up to 64 threads.

• newSingleThreadContext("MyThreadName)"

This starts a dedicated new thread. You should finish using it

by applying close() at the end or otherwise store the instance

returned by the newSingleThreadContext() function call at some

global place for reuse.

• Dispatchers.Unconfined

This is not for general use. An unconfined dispatcher is a

dispatcher that uses the surrounding context’s thread until the

first suspending function gets called. It resumes from the first

suspending function in the thread that got used there.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

432

 Exception Handling
During a coroutine’s execution, we basically have three kinds of exceptions, and unless

further precautions are taken, the following will happen:

• For CancellationException exceptions and launch(): Remember

that cancellation exceptions occur when you explicitly invoke

cancel() on a Job element. If a CancellationException gets

thrown, it will lead to a quitting of the current coroutine, but not to a

quitting of any of the parents; they will just ignore it. The hierarchy’s

root coroutine will just as well ignore the exception, so outside the

coroutine machinery such an exception will not be detected.

• For CancellationException exceptions and async(): Other than for

launch(), a cancellation of a Deferred job by invoking cancel() on

the Deferred element will not lead to the exception being ignored.

Instead, we must react on the exception, which will show up in the

await() function.

• For TimeoutCancellationException exceptions: If a timeout

in a withTimeout(timeMillis:Long) { ... } happens, a

TimeoutCancellationException gets thrown. This is a subclass of

CancellationException and receives no special treatment, so what

is true for normal cancellation exceptions holds for timeouts as well.

• Any other exception: Normal exceptions lead to an immediate

quitting of any running job in the coroutines hierarchy, and will also

be thrown by the root coroutine. If you expect such an exception, you

must, for example, wrap a root runBlocking() into a try-catch clause.

You can, of course, add try-catch clauses inside the jobs to catch such

exceptions early.

To see what happens with a cancellation exception and how it gets propagated

through the coroutines hierarchy, try the following code:

var l1:Job? = null

var l11:Job? = null

var l111:Job? = null

ChApTer 18 WorKing in pArAllel: MulTiThreAding

433

runBlocking {

 Log.d("LOG", "A")

 l1 = launch {

 Log.d("LOG", "B")

 l11 = launch {

 Log.d("LOG", "C")

 delay(1000L)

 Log.d("LOG", "D")

 l111 = launch {

 Log.d("LOG", "E")

 delay(1000L)

 Log.d("LOG", "F")

 delay(1000L)

 Log.d("LOG", "G")

 }

 delay(2500L)

 Log.d("LOG", "H")

 }

 delay(1000L)

 Log.d("LOG", "I")

 }

 Log.d("LOG", "X1")

 delay(1500L)

 Log.d("LOG", "X2")

 l111?.cancel()

 Log.d("LOG", "X3")

}

If you run this the logging will look like this:

10:05:31.295: A

10:05:31.295: X1

10:05:31.299: B

10:05:31.301: C

10:05:32.300: I

10:05:32.302: D

ChApTer 18 WorKing in pArAllel: MulTiThreAding

434

10:05:32.302: E

10:05:32.796: X2

10:05:32.796: X3

10:05:34.802: H

We observe the following characteristics:

• The runBlocking() does not forward the cancellation exception to the

outside world. This exception thus is a somewhat “expected” exception.

• Label X1 gets reached immediately after A. This is not a surprise, as all

launch() invocations lead to background processing.

• Labels B and C get reached shortly after A, because other than

background processing startup, no delays are specified.

• Label I gets reached 1 second later, because of the delay(1000L)

immediately in front of it. At that time the delay after label C has

almost passed by. A few milliseconds later D and E get reached.

• While label E gets reached, the delay after X1 has not yet passed by

completely, but half a second later X2 gets reached and we fire a

cancellation on job l111. At that time we are in the middle of the

delay(1000L) after E.

• Because of the cancellation, the delay after E is quit immediately and

job l111 prematurely exits. Labels F and G thus never get reached.

• The parent coroutines of l111 continue with their work, they just ignore

the cancellation of job l111. That is why a little later label H gets reached.

• Label X3 happens before H. We know that runBlocking() continues

its work while any noncanceled child is still running. Job l111 was

canceled, but neither job l11 nor l1 have been canceled, so both H

and I get reached.

If in the latter example you replace l111.cancel() by l11.cancel(), the following

output is produced:

11:40:35.893: A

11:40:35.894: X1

11:40:35.894: B

ChApTer 18 WorKing in pArAllel: MulTiThreAding

435

11:40:35.896: C

11:40:36.896: I

11:40:36.898: D

11:40:36.899: E

11:40:37.394: X2

11:40:37.395: X3

Here we can see both the parent job l11 and its children (job l111) get canceled;

labels F, G, and H never get reached.

 Exercise 2
In the preceding example, remove the cancel() statement and instead add a timeout

of 0.5 seconds to the delay() immediately after label E. What do you expect? Will the

logging differ from the logging with the cancel() statement?

If you want to make sure a passage of the code cannot be canceled despite it

containing suspending function calls, you can wrap it into a special new context:

...

withContext(NonCancellable) {

 // uncancellable code here

 ...

}

...

If you need to tailor the exception handling, it is possible to explicitly register an

ExceptionHandler with a builder invocation:

val handler = CoroutineExceptionHandler {

 _, exception ->

 Log.e("LOG", "Caught $exception")

}

runBlocking(handler) {

 ...

}

ChApTer 18 WorKing in pArAllel: MulTiThreAding

436

or

val handler = ...

runBlocking {

 ...

 launch(coroutineContext + handler) {

 ...

 }

}

Note that despite it starting with a capital letter, the CoroutineExceptionHandler()

actually is a function invocation. There is also an interface using the same name

CoroutineExceptionHandler if you want to write a class for handling exceptions.

Such an exception handler only handles exceptions that do not otherwise get caught

by the coroutines. We know that for launch() jobs a CancellationException does not

get transported up the coroutines hierarchy; in this case and for this particular exception

type, the exception handler does not get invoked either.

If you don’t want all that exception propagation stuff, you can either use a supervisor

job as in

// we are inside a coroutine scope

val supervisor = SupervisorJob()

withContext(coroutineContext + supervisor) {

 // the coroutines hierarchy here

 ...

}

or you use a supervisor scope:

// we are inside a coroutine scope

supervisorScope {

 // the coroutines hierarchy here

 ...

}

A supervisor leads to all coroutines handling their exceptions independent of each

other. No child will, however, live longer than its parent.

ChApTer 18 WorKing in pArAllel: MulTiThreAding

437
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_19

CHAPTER 19

Using External Libraries
External libraries are collections of interfaces and classes that are of general use and thus

can be reused in various projects. You won’t find many Kotlin libraries yet, but because

it is easy for Kotlin to interface with Java classes and interfaces, in your projects you

can use one or some of the plethora of Java libraries published by other developers and

development teams.

Example fields for external libraries are encoding and decoding, compression, CSV

file handling, e-mailers, higher level math and statistics, databases, extended logging

facilities, XML and JSON file handling, and many more. You will learn more about XML

and JSON in Chapter 20.

The rest of this chapter talks about ways to add external libraries to your Android

project, dives into peculiarities concerning nullability if you add external Java libraries,

and describes how to build your own libraries.

 Adding External Libraries
The first step in adding external libraries is specifying where the libraries come from. The

places where libraries can be loaded or included from are called repositories. Once you

start a new Android project, the project’s build.gradle script contains the repositories at

two places, inside the buildscript section and inside the allprojects section:

buildscript {

 ...

 repositories {

 google()

 jcenter()

 }

 ...

}

438

allprojects {

 ...

 repositories {

 google()

 jcenter()

 }

 ...

}

...

Application dependencies use the repositories from the allprojects section. The

repositories from the buildscript section instead refer to plug-ins and dependencies

for the build process. We want to add application libraries, not tweak the build process,

so the place to look at is the allprojects section. Here the following repositories can be

specified:

• google(): This is a repository from which Android-specific libraries

get loaded. This is always included and always necessary for

Android projects, but it is usually not the place where you’d look up

application-specific libraries. In other words, this is not the place

we’d use for external libraries.

• mavenCentral(): This is the original Maven repository located at

https://repo1.maven.org/maven2. In talking of the Maven build

system, most developers first think of this repository for adding

libraries. For Android, however, the first choice is to use jcenter

instead.

• jcenter(): This references an alternative Maven repository at

http://jcenter.bintray.com. It normally doesn’t hurt to favor

jcenter over mavenCentral, but in many cases both will work

and it is even possible to specify both. Differences might show up

in different performance for downloading libraries, and different

“latest” library versions. The jcenter people claim that their

repository is bigger and faster compared to mavenCentral.

• mavenLocal(): No matter how you use Maven as a build system, on

your development machine a cache will be built up and perpetually

filled with libraries you downloaded from any Maven repository

Chapter 19 Using external libraries

https://repo1.maven.org/maven2
http://jcenter.bintray.com

439

(including jcenter). Also, if you create a Maven library project and

install it, the library will show up in this cache even when you never

plan to upload it to an official public repository. The mavenLocal()

repository looks into that cache for library dependencies. Note that

you’d usually find that cache under .m2 in your PC user’s home folder.

• maven { url 'http://example.com/maven' }: You can use this to

add a custom Maven repository. This is handy if you use your private

or your company’s Maven repository. Note that the google() and

jcenter() repositories are just shortcuts for maven { url 'https://

dl.google.com/dl/android/maven2/' } and maven { url

'https://jcenter.bintray.com/' }.

• ivy { url 'http://example.com/ivy' }: You can use this to add an

Apache Ivy repository.

In most cases you will be fine with the default setting: Use google() and jcenter()

as shown. You can try these and add new repositories only if necessary.

With the repositories set up, we can now add actual libraries in the form of

dependencies. This works best in the module’s build.gradle file. With a new project,

the dependencies section of this file probably reads like this:

dependencies {

 implementation

 fileTree(dir: 'libs', include: ['*.jar'])

 implementation

 "org.jetbrains.kotlin:kotlin-stdlib-jdk7:

 $kotlin_version"

 implementation

 "com.android.support:appcompat-v7:28.0.0"

 implementation

 "com.android.support.constraint:

 constraint-layout:1.1.3"

 testImplementation

 "junit:junit:4.12"

 androidTestImplementation

 "com.android.support.test:runner:1.0.2"

Chapter 19 Using external libraries

http://example.com/maven
https://dl.google.com/dl/android/maven2/
https://dl.google.com/dl/android/maven2/
https://jcenter.bintray.com/
http://example.com/ivy

440

 androidTestImplementation

 "com.android.support.test.espresso:

 espresso-core:3.0.2"

}

(Each item is on one line.) The details are not interesting here; what you need

to know is that for new external libraries we have to add another line starting with

implementation. The precise syntax for this new entry adheres to the following format:

implementation "MAVEN_GROUP_ID:MAVEN_ARTIFACT_ID:VERSION"

or

implementation 'MAVEN_GROUP_ID:MAVEN_ARTIFACT_ID:VERSION'

This triple of group ID, artifact ID, and version is also known as the Maven

coordinates.

An equivalent approach consists of using a parameterized form (write it on one line

without line breaks):

implementation group: "MAVEN_GROUP_ID",

 name: "MAVEN_ARTIFACT_ID",

 version "VERSION"

Again, you can also use single quotation marks.

This is best explained by an example. Say you want to add the Apache Commons

Math library that allows for sophisticated mathematical calculations. We first need to

determine the Maven coordinates for the library. There are several ways to get those

coordinates.

• The library might have its own web site where, for example, the

Maven coordinates are available under Downloads.

• Look directly at the web site of the repository and use a search facility

provided there.

• Use a search engine of your choice and enter a search string like

“apache commons math maven.”

Chapter 19 Using external libraries

441

In most cases you will get the Maven coordinates as an XML string in the form

<!-- https://mvnrepository.com/artifact/

 org.apache.commons/commons-math3 -->

<dependency>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-math3</artifactId>

 <version>3.2</version>

</dependency>

Inside the dependency element you can see the group ID, the artifact ID, and the

version. The Gradle equivalent can thus be easily deduced from the XML by looking at

the tag names. Here the transcription reads

implementation "org.apache.commons:commons-math3:3.2"

or

implementation group: "org.apache.commons",

 name : "commons-math3",

 version : "3.2"

(one line).

Note sometimes you also get the gradle syntax. even if it reads compile
'org.apache.commons:commons-math3:3.2' do not use compile but
implementation instead. the compile keyword belongs to an older version
of gradle.

Android Studio then asks you to synchronize your project. Do so, and after that you

can use the new library from inside your code.

 Dependency Management
Libraries can depend on other libraries. This happens quite often, and it could develop

into a real nightmare if we have to manually add all the dependencies a library exposes.

Another Apache Commons library called Apache Commons Configuration in version 2.4,

Chapter 19 Using external libraries

442

for example, depends on three more libraries, and those three in turn might depend on

other libraries, and so on. Fortunately, Maven automatically resolves such dependencies,

including all transitive dependencies, so we do not have to do anything.

We mention this here so you are aware that such dependencies and transitive

dependencies could considerably blow up our app. If, for example, you add an

unsuspicious library of size 100 kb, due to dependencies it could easily blow up to

several megabytes. On modern devices this hardly ever poses a real problem, but it is

good to know why the app file gets so big under certain circumstances.

 Unresolved Local Dependencies
If you create a new project using Android Studio the first line inside the dependencies

section of the module’s build.gradle file reads

fileTree(dir: 'libs', include: ['*.jar'])

This means any .jar file you put into the libs folder will be added as a library to

your app. No automatic dependency resolution will happen and you have to download

the libraries yourself. This somewhat conflicts with the Maven method of dependency

inclusion, so try to avoid using this technique.

 External Libraries and Nullability
We know that in Kotlin the nullability of properties plays an important role in improving

program stability. If we include external Java libraries the story is different. Java as a

language does not draw the same precise distinction between nullable and non-nullable

variables as Kotlin does. To be able to use external Java libraries, Kotlin assumes all

function invocation parameters and function return values to be nullable.

If the API documentation of an external library says a function return value cannot

be null, the only way to tell Kotlin about this fact is to use the Elvis operator and throw

an exception if the return value is null:

val res = javaObject.function() ?:

 throw Exception("Cannot happen")

Chapter 19 Using external libraries

443

 Creating Your Own Library
You can create a library in whatever way you want, including using the command line or

other IDEs such as Eclipse. In this section we cover how to create and use libraries using

Android Studio.

In Android Studio, a library project actually is more than just a .jar file that could be

included in other projects. It is almost an app on its own because it can include Android

configuration files and files that describe the user interface. No one hinders us from

using Android libraries just for defining interfaces and classes that could be used from

other projects, though.

As an example, we define a library named StringRegex that just extends the String

class by an operator function for checking regular expression matches, so we can write

val s = "The big brown fox jumps over the creek."

val containsOnlyLetters = s % "[A-Za-z]*"

// -> false because of the "."

For the definition of this extension function we overload the % operator rem(). The

code for this reads

package org.foo.stringregex

operator fun String.rem(re:String):Boolean =

 this.matches(Regex(re))

where for the package you could, of course, use something different.

We first start a new library project in Android Studio. To do so go to File ➤ New ➤

New Project and select Add No Activity. As a project name, enter StringRegexApp, and

as a package name enter org.foo.stringregex. As a Save location, enter whatever you

like. Make you have Kotlin selected as the Language setting, and as a Minimum API level

select anything that seems appropriate to you. Inside the new Android Studio project

window that then opens go to File ➤ New ➤ New Module. Select Java Library. Enter

StringRegex as the Library name. The other settings are not important here. The Project

view will now look similar to Figure 19-1.

Chapter 19 Using external libraries

444

Delete the Java class MyClass, as we don’t need it. Inside the package org.foo.

stringregex, create a new Kotlin file. Right-click, and select New ➤ Kotlin File/Class. As

the name enter stringregex and as Kind select File.

Android Studio then might show a warning stating that Kotlin is not configured. If

this is the case, click Configure, select Java with Gradle from the menu, and in the dialog

box asking you for which modules to enable Kotlin, select All modules.

Note For android studio 3.3 there is a bug in the Kotlin configuration wizard.
inside the stringregex module’s build.gradle file you might have to comment
out the plug-in version inside plugins:

id 'org.jetbrains.kotlin.jvm' //version '1.3.20'

Open the stringregex file and enter the extension function code shown in the

preceding listing. You can now close the window, as we will be making a reference to it

from a client project.

From any app open in Android Studio, you can choose one of the apps we created for

this book, open the settings.gradle file, and add two statements.

include ':StringRegex'

project(':StringRegex').projectDir =

 new File('../StringRegexApp/StringRegex')

Figure 19-1 StringRegex Android library

Chapter 19 Using external libraries

445

where the string inside File() must point to the library module we just created. We

still need to declare the module dependency. To do this, open the client app module’s

build.gradle file and inside the dependencies section add

implementation project(":StringRegex")

This procedure can be repeated for as many apps referring to this library as you wish.

You can now import the extension function and use it from inside the client code.

import org.foo.stringregex.rem

...

val s = "The big brown fox jumps over the creek."

val containsOnlyLetters = s % "[A-Za-z]*"

// -> false because of the "."

To see or use the .jar file generated from the library, in the file system explorer of

your operating system go to StringRegexApp / StringRegex / build / libs.

Chapter 19 Using external libraries

447
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8_20

CHAPTER 20

XML and JSON
In Chapter 19 we learned how to include external libraries in our Android projects.

Kotlin doesn’t have dedicated XML and JSON processing classes included in its standard

library, so to achieve XML- and JSON-related tasks we use appropriate external libraries

and add some convenience functions in the form of extension functions.

Note Both XML and JSON are format specifications for structured data. You will
frequently use them if your Android app communicates with the outside world for
receiving or sending data in a standardized format.

This chapter assumes you have a sample app you can use to test the code snippets

provided. Use whatever app you like or one of the apps we developed in this book. You

could, for example, add some sample code providing Log output for testing inside the

activity’s onCreate() function, or you could use a test class using one of Android’s test

methodologies. Choose a method that best suits your needs.

 XML Processing
XML files are at their simplest files of a form similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<ProbeMsg>

 <TimeStamp>2016-10-30T19:07:07Z</TimeStamp>

 <ProbeId>1A6G</ProbeId>

 <ProbeValue ScaleUnit="cm">37.4</ProbeValue>

448

 <Meta>

 <Generator>045</Generator>

 <Priority>-3</Priority>

 <Actor>P. Rosengaard</Actor>

 </Meta>

</ProbeMsg>

Note XML allows for more elaborate constructs like schema validation and
namespaces. In this chapter we only describe XML tags, attributes, and text
contents. You are free to extend the samples and utility functions presented in this
chapter to also include such extended features.

For XML processing one or a combination of the following paradigms gets used.

• DOM Model: Complete tree handling: In the Document Object Model

(DOM) the XML data get treated as a whole represented by an

in- memory, tree-like structure.

• SAX: Event-based processing: Here an XML file gets parsed and with

each element or attribute an appropriate event is fired. The events are

received by callback functions that have to be registered with the SAX

processor. Such a “tell me what you are doing” style of processing is

commonly called push parsing.

• StAX: Stream-based processing: Here you perform operations like

“Give me the next XML element” and the like. In contrast to SAX,

where we have a push parsing, for StAX we tell the parser what it has

to do: “I tell you what you do.” This therefore is called pull parsing.

On Android you typically handle small to medium-size XML files. For this reason in

this chapter we use the DOM. For reading, we first parse the complete XML file and store

the data in a DOM tree in memory. Here operations on them like deleting, changing,

or adding elements are easy to accomplish and happen in memory; thus they are very

fast. For writing we take the complete DOM tree from memory and generate an XML

character stream from it, perhaps writing the result back to a file.

ChApter 20 XML ANd JSON

449

For XML handling we add the Java reference implementation Xerces as an external

library. Inside Android Studio, open the module’s build.gradle file and inside the

dependencies section add:

implementation 'xerces:xercesImpl:2.12.0'

Note Xerces also implements the SAX and StAX ApIs, although we will use only
its dOM implementation.

 Reading XML Data
The DOM implementation we can use by virtue of the Xerces implementation already

contains everything needed to read XML elements. We will, however, add a couple of

extension functions that greatly improve the DOM API’s usability. For this aim, create a

package com.example.domext, or you can also use any other suitable package name. Add

a Kotlin file dom.kt inside this package, and as its contents write:

package com.example.domext

import org.apache.xerces.parsers.DOMParser

import org.w3c.dom.Document

import org.w3c.dom.Node

import org.xml.sax.InputSource

import java.io.StringReader

import java.io.StringWriter

import javax.xml.transform.OutputKeys

import javax.xml.transform.TransformerFactory

import javax.xml.transform.dom.DOMSource

import javax.xml.transform.stream.StreamResult

fun parseXmlToDOM(s:String) : Document {

 val parser: DOMParser = DOMParser()

 return parser.let {

 it.parse(InputSource(StringReader(s)))

 it.document

 }

}

ChApter 20 XML ANd JSON

450

fun Node.fetchChildren(withText:Boolean = false) =

 (0..(this.childNodes.length - 1)).

 map { this.childNodes.item(it) }.

 filter { withText || it.nodeType != Node.TEXT_NODE }

fun Node.childCount() = fetchChildren().count()

fun Node.forEach(withText:Boolean = false,

 f:(Node) -> Unit) {

 fetchChildren(withText).forEach { f(it) }

}

operator fun Node.get(i:Int) = fetchChildren()[i]

operator fun Node.invoke(s:String): Node =

 if(s.startsWith("@")) {

 this.attributes.getNamedItem(s.substring(1))

 }else{

 this.childNodes.let { nl ->

 val iter = object : Iterator<Node> {

 var i: Int = 0

 override fun next() = nl.item(i++)

 override fun hasNext() = i < nl.length

 }

 iter.asSequence().find { it.nodeName == s }!!

 }

 }

operator fun Node.invoke(vararg s:String): Node =

 s.fold(this, { acc, s1 -> acc(s1) })

fun Node.text() = this.firstChild.nodeValue

fun Node.name() = this.nodeName

fun Node.type() = this.nodeType

Those are all package-level functions and extension functions for org.w3c.dom.Node,

with the following characteristics:

• In the DOM API, each element in the tree (e.g., ProbeValue in the

XML data from the beginning of this section) gets represented by a

Node instance.

ChApter 20 XML ANd JSON

451

• We add a parseXmlToDOM(s:String) package-level function that

converts an XML string to a Document.

• We add a fetchChildren() function to Node that returns all nontext

children of a node that are disregarding text elements. If you add

with- Text=true as a parameter, the text nodes of an element get

included in the children list, even if they only contain spaces and

line breaks. For example, in the XML data from the beginning of this

section, the node Meta has three children: Generator, Priority, and

Actor. With withText=true the spaces and line breaks between them

would be returned as well.

• We add a childCount() function to Node that counts the number of

children elements of a node, disregarding text elements. The official

DOM API does not provide a function for that.

• We add a forEach() function to Node that allows us to iterate through a

node’s children the Kotlin way. The original DOM API does not provide

such an iterator, as it only has functions and properties hasChild-

Nodes(), childNodes.length, and childNodes.item(index:Int) to

iterate through children. If you add withText=true as a parameter, the

text nodes of an element are included in the children list, even if they

only contain spaces and line breaks.

• We add a get(i:Int) function to Node to get a certain child from an

element, disregarding text nodes.

• We overload the invoke operator of Node, which belongs to the

parentheses (). The first variant with a String parameter navigates

to a child by name: node("cn") = node → child with name “cn.” If the

parameter starts with a @ the attribute gets addressed: node("@an")

= node → attribute with name “an.” In the latter case, you still need to

call text() to get the attribute value as a string.

• The second variant of the overloaded invoke operator allows us to

specify several strings, which navigates to a child from a child from a

child, and so on.

ChApter 20 XML ANd JSON

452

• We add functions to Node: first, text() gets the text contents

of an element, then name()gives us the node name, and then

type()evaluates to the node type (for possible values see the

constant properties of the Node class).

Caution For simplicity, the code snippets shown in this section for dOM
processing do not handle exceptions in a sensible manner. You must add
appropriate error handling before using the code for production projects.

This snippet provides examples of how to use the API and the extensions.

import ...

import com.example.domext.*

...

val xml = """<?xml version="1.0" encoding="UTF-8"?>

 <ProbeMsg>

 <TimeStamp>2016-10-30T19:07:07Z</TimeStamp>

 <ProbeId>1A6G</ProbeId>

 <ProbeValue ScaleUnit="cm">37.4</ProbeValue>

 <Meta>

 <Generator>045</Generator>

 <Priority>-3</Priority>

 <Actor>P. Rosengaard</Actor>

 </Meta>

</ProbeMsg>"""

try {

 // Parse the complete XML document

 val dom = parseXmlToDOM(xml)

 // Access an element

 val ts = dom("ProbeMsg")("TimeStamp").text()

 Log.d("LOG", ts) // 2001-11-30T09:08:07Z

ChApter 20 XML ANd JSON

453

 // Access an attribute

 val uni = dom("ProbeMsg")("ProbeValue")("@ScaleUnit")

 Log.d("LOG", uni.text()) // cm

 // Simplified XML tree navigation

 val uni2 = dom("ProbeMsg","ProbeValue","@ScaleUnit")

 Log.d("LOG", uni2.text()) // cm

 // Iterate through an element's children

 dom("ProbeMsg")("Meta").forEach { n ->

 Log.d("LOG", n.name() + ": " + n.text())

 // Generator: 045

 // Priority: -3

 // Actor: P. Rosengaard

 }

}catch(e:Exception) {

 Log.e("LOG", "Cannot parse XML", e)

}

...

 Altering XML Data
Once we have a DOM representation of an XML tree in memory, we can add elements.

Although we could use the functions already provided by the DOM API, Kotlin allows us

to improve the expressiveness. For this purpose, add the following code to our extension

file dom.kt (I don’t add new imports; press Alt+Enter to let Android Studio help you add

necessary imports):

fun prettyFormatXml(document:Document): String {

 val format = OutputFormat(document).apply { lineWidth = 65

 indenting = true

 indent = 2

 }

 val out = StringWriter()

 val serializer = XMLSerializer(out, format)

 serializer.serialize(document)

 return out.toString()

}

ChApter 20 XML ANd JSON

454

fun prettyFormatXml(unformattedXml: String) =

 prettyFormatXml(parseXmlToDOM(unformattedXml))

fun Node.toXmlString():String {

 val transformerFact = TransformerFactory.newInstance()

 val transformer = transformerFact.newTransformer()

 transformer.setOutputProperty(OutputKeys.INDENT, "yes")

 val source = DOMSource(this)

 val writer = StringWriter()

 val result = StreamResult(writer)

 transformer.transform(source, result)

 return writer.toString()

}

operator fun Node.plusAssign(child:Node) {

 this.appendChild(child)

}

fun Node.addText(s:String): Node {

 val doc = ownerDocument

 val txt = doc.createTextNode(s)

 appendChild(txt)

 return this

}

fun Node.removeText() {

 if(hasChildNodes() && firstChild.nodeType == Node.TEXT_NODE)

 removeChild(firstChild)

}

fun Node.updateText(s:String) : Node { removeText()

 return addText(s)

}

ChApter 20 XML ANd JSON

455

fun Node.addAttribute(name:String, value:String): Node {

 (this as Element).setAttribute(name, value)

 return this

}

fun Node.removeAttribute(name:String) {

 this.attributes.removeNamedItem(name)

}

Here is a description of what we have in this case

• Functions prettyFormatXml(document: Document) and

prettyFormatXml(unformattedXml: String) are utility functions

mainly for diagnostic purposes. They create a pretty string given a

Document or an unformatted XML string.

• Extension function Node.toXmlString() creates a string

representation of the XML subtree starting from the current node.

If you do this for the Document, the whole DOM structure will be

converted.

• We overload the plusAssign operator (corresponding to +=) of Node

to add a child node.

• We add an addText() extension to Node for adding text content to a

node.

• We add a removeText() extension to Node for removing text content

from a node.

• We add an updateText() extension to Node for altering the text

content of a node.

• We add an addAttribute() extension to Node for adding an attribute

to a node.

• We add a removeAttribute() extension to Node for removing an

attribute from a node.

• We add an updateAttribute() extension to Node for altering an

attribute of a node.

ChApter 20 XML ANd JSON

456

For example, use cases of these functions include the following code snippets. First

we add an element plus attribute to a given node:

val xml = """<?xml version="1.0" encoding="UTF-8"?>

<ProbeMsg>

 <TimeStamp>2016-10-30T19:07:07Z</TimeStamp>

 <ProbeId>1A6G</ProbeId>

 <ProbeValue ScaleUnit="cm">37.4</ProbeValue>

 <Meta>

 <Generator>045</Generator>

 <Priority>-3</Priority>

 <Actor>P. Rosengaard</Actor>

 </Meta>

</ProbeMsg>"""

 try {

 val dom = parseXmlToDOM(xml)

 val msg = dom("ProbeMsg")

 val meta = msg("Meta")

 // Add a new element to "meta".

 meta += dom.createElement("NewMeta").

 addText("NewValue").

 addAttribute("SomeAttr", "AttrVal")

 Log.d("LOG", "\n\n" + prettyFormatXml(dom))

 }catch(e:Exception) { Log.e("LOG", "XML Error", e)

}

For this to work we also use the createElement() function from the Document class.

At the end this code writes the altered XML to the logging console.

ChApter 20 XML ANd JSON

457

The following code samples explain how we can change and remove attributes and

elements:

val xml = """<?xml version="1.0" encoding="UTF-8"?>

<ProbeMsg>

 <TimeStamp>2016-10-30T19:07:07Z</TimeStamp>

 <ProbeId>1A6G</ProbeId>

 <ProbeValue ScaleUnit="cm">37.4</ProbeValue>

 <Meta>

 <Generator>045</Generator>

 <Priority>-3</Priority>

 <Actor>P. Rosengaard</Actor>

 </Meta>

</ProbeMsg>"""

 try {

 val dom = parseXmlToDOM(xml)

 val msg = dom("ProbeMsg")

 val ts = msg("TimeStamp")

 val probeValue = msg("ProbeValue")

 // Update an attribute and the text contents of

 // an element.

 probeValue.updateAttribute("ScaleUnit", "dm")

 ts.updateText("1970-01-01T00:00:00Z")

 Log.d("LOG", "\n\n" + prettyFormatXml(dom))

 // Remove an attribute

 probeValue.removeAttribute("ScaleUnit")

 Log.d("LOG", "\n\n" + prettyFormatXml(dom))

 // Removing a node means removing it from

 // its parent node.

 msg.removeChild(probeValue)

 Log.d("LOG", "\n\n" + prettyFormatXml(dom))

}catch(e:Exception) {

 Log.e("LOG", "XML Error", e)

}

ChApter 20 XML ANd JSON

458

 Creating New DOMs
If you need to write a DOM representation of an XML document from scratch, first create

a Document instance. This one does not have a public constructor; instead you write:

val doc = DocumentBuilderFactory.

 newInstance().newDocumentBuilder().newDocument()

From there you can add elements as described previously. Note that to see any

output from our prettyFormatXml() utility function you must add at least one child

element to doc.

 Exercise 1

Add a createXmlDocument() function to the dom.kt file to simplify document creation.

 JSON Processing
JavaScript Object Notation (JSON) is the little sister of XML. Data written in the JSON

format require less space compared those same data using the XML format. In addition,

JSON data almost naturally map to JavaScript objects in a browser environment and

JSON therefore has gained considerable attention during recent years.

Kotlin’s standard library doesn’t know how to handle JSON data, so, similar to XML

processing, we add a suitable external library. From several possibilities we use the

widely adopted Jackson library. To add it to an Android project, inside the module’s

build.gradle file in the dependencies section add

implementation

 'com.fasterxml.jackson.core:jackson-core:2.9.8'

implementation

 'com.fasterxml.jackson.core:jackson-databind:2.9.8'

(on two lines, remove the line breaks).

Several paradigms exist for JSON processing. The most commonly used are a

tree-like structure with JSON-specific objects, and a mapping between Kotlin and

JSON objects with various semiautomatic conversion mechanisms. We leave the

mapping methodology for your further research; it contains a couple of highly involved

ChApter 20 XML ANd JSON

459

peculiarities, mostly for JSON collection mapping. The Jackson home page gives you

more information about it. We instead describe mechanisms to handle an in-memory

tree representation of JSON data.

For the rest of this section we use the following JSON data to explain the functions

used inside the examples:

val json = """{

 "id":27,

 "name":"Roger Rabbit",

 "permanent":true,

 "address":{

 "street":"El Camino Real",

 "city":"New York",

 "zipcode":95014

 },

 "phoneNumbers":[9945678, 123456781],

 "role":"President"

}"""

 JSON Helper Functions
The Jackson library for JSON processing contains all that is needed to write, update, and

delete JSON elements. The library is quite extensive and contains an enormous amount

of classes and functions. To simplify the development and to include Kotlin goodies we

use a couple of package-level functions and extension functions to improve the JSON

code readability. These are best located in a Kotlin file json.kt inside some package

com.whatever.ext.

We start with the imports, add an invoke operator so we can easily fetch a child from

a node, and add a remove and a forEach function for removing a node and traversing

through the children of a node:

import com.fasterxml.jackson.core.JsonFactory

import com.fasterxml.jackson.core.util.DefaultPrettyPrinter

import com.fasterxml.jackson.databind.JsonNode

import com.fasterxml.jackson.databind.ObjectMapper

ChApter 20 XML ANd JSON

460

import com.fasterxml.jackson.databind.node.*

import java.io.ByteArrayOutputStream

import java.math.BigInteger

operator fun JsonNode.invoke(s:String) = this.get(s)

operator fun JsonNode.invoke(vararg s:String) =

 s.fold(this, { acc, s -> acc(s) })

fun JsonNode.remove(name:String) {

 val on = (this as? ObjectNode)?:

 throw Exception("This is not an object node")

 on.remove(name) }

fun JsonNode.forEach(iter: (JsonNode) -> Unit) {

 when(this) {

 is ArrayNode -> this.forEach(iter)

 is ObjectNode -> this.forEach(iter)

 else -> throw Exception("Cannot iterate over " +

 this::class)

 }

}

Next we add simple alias text() for asText()to streamline text extraction:

fun JsonNode.text() = this.asText()

Another iterator traverses through the children of an object node. This time we take

care of the children’s names as well:

fun JsonNode.forEach(iter: (String, JsonNode) -> Unit) {

 if(this !is ObjectNode)

 throw Exception(

 "Cannot iterate (key,val) over " + this::class)

 this.fields().forEach{

 (name, value) -> iter(name, value) }

}

ChApter 20 XML ANd JSON

461

To write a child of an object node we define a put() function, so we can write node.

put("childName", 42):

// Works only if the node is an ObjectNode!

fun JsonNode.put(name:String, value:Any?) : JsonNode {

 if(this !is ObjectNode)

 throw Exception("Cannot put() on none-object node")

 when(value) {

 null -> this.putNull(name)

 is Int -> this.put(name, value)

 is Long -> this.put(name, value)

 is Short -> this.put(name, value)

 is Float -> this.put(name, value)

 is Double -> this.put(name, value)

 is Boolean -> this.put(name, value)

 is String -> this.put(name, value)

 is JsonNode -> this.put(name, value)

 else -> throw Exception(

 "Illegal value type: ${value::class}")

 }

 return this

}

For appending a value to an array object we define an add() function, which works

for various types:

// Add a value to an array, works only if this is an

// ArrayNode

fun JsonNode.add(value:Any?) : JsonNode {

 if(this !is ArrayNode)

 throw Exception("Cannot add() on none-array node")

 when(value) {

 null -> this.addNull()

 is Int -> this.add(value)

 is Long -> this.add(value)

 is Float -> this.add(value)

 is Double -> this.add(value)

ChApter 20 XML ANd JSON

462

 is Boolean -> this.add(value)

 is String -> this.add(value)

 is JsonNode -> this.add(value)

 else -> throw Exception(

 "Illegal value type: ${value::class}")

 }

 return this

}

For JSON object creation we define various createSomething() style functions, and

we also add a couple of Kotlin-like builder functions:

// Node creators

fun createJsonTextNode(text:String) = TextNode.valueOf(text)

fun createJsonIntNode(i:Int) = IntNode.valueOf(i)

fun createJsonLongNode(l:Long) = LongNode.valueOf(l)

fun createJsonShortNode(s:Short) = ShortNode.valueOf(s)

fun createJsonFloatNode(f:Float) = FloatNode.valueOf(f)

fun createJsonDoubleNode(d:Double) = DoubleNode.valueOf(d)

fun createJsonBooleanNode(b:Boolean) = BooleanNode.valueOf(b)

fun createJsonBigIntegerNode(b: BigInteger) = BigIntegerNode.valueOf(b)

fun createJsonNullNode() = NullNode.instance

fun jsonObjectNodeOf(

 children: Map<String,JsonNode> = HashMap()) :

 ObjectNode {

 return ObjectNode(JsonNodeFactory.instance, children)

}

fun jsonObjectNodeOf(

 vararg children: Pair<String,Any?>) :

 ObjectNode {

 return children.fold(

 ObjectNode(JsonNodeFactory.instance), { acc, v ->

 acc.put(v.first, v.second)

 acc

 })

}

ChApter 20 XML ANd JSON

463

fun jsonArrayNodeOf(elements: Array<JsonNode> =

 emptyArray()) : ArrayNode {

 return ArrayNode(JsonNodeFactory.instance,

 elements.asList())

}

fun jsonArrayNodeOf(elements: List<JsonNode> =

 emptyList()) : ArrayNode {

 return ArrayNode(JsonNodeFactory.instance,

 elements)

}

fun jsonEmptyArrayNode() : ArrayNode {

 return ArrayNode(JsonNodeFactory.instance)

}

fun jsonArrayNodeOf(vararg elements: Any?) : ArrayNode {

 return elements.fold(

 ArrayNode(JsonNodeFactory.instance), { acc, v ->

 acc.add(v)

 acc

 })

}

Extension functions toPrettyString() and toJsonString() can be used to generate

a string representation of any JSON node:

// JSON output as pretty string

fun JsonNode.toPrettyString(

 prettyPrinter:PrettyPrinter? =

 DefaultPrettyPrinter()) : String {

 var res:String? = null

 ByteArrayOutputStream().use { os ->

 val gen = JsonFactory().createGenerator(os).apply {

 if(prettyPrinter != null) this.prettyPrinter = prettyPrinter

 }

 val mapper = ObjectMapper()

 mapper.writeTree(gen, this)

ChApter 20 XML ANd JSON

464

 res = String(os.toByteArray())

 }

 return res!!

}

// JSON output as simple string

fun JsonNode.toJsonString() : String =

 toPrettyString(prettyPrinter = null)

The main idea of all these extension functions is to improve conciseness by adding

JSON object-related and JSON array-related functions to the base node class JsonNode

and perform class casts during runtime. Although it makes the JSON code smaller and

more expressive, the risk of getting exceptions during runtime is increased.

 Reading and Writing JSON Data
To read in JSON data, all you have to do is to write:

val json = ... // see section beginning

val mapper = ObjectMapper()

val root = mapper.readTree(json)

From here we can investigate JSON elements, iterate through and fetch JSON object

members, and extract JSON array elements:

try {

 val json = ... // see section beginning

 val mapper = ObjectMapper()

 val root = mapper.readTree(json)

 // see what we got

 Log.d("LOG", root.toPrettyString())

 // type of the node

 Log.d("LOG", root.nodeType.toString())

 // <- OBJECT

 // is it a container?

ChApter 20 XML ANd JSON

465

 Log.d("LOG", root.isContainerNode.toString())

 // <- true

 root.forEach { k,v ->

 Log.d("LOG",

 "Key:${k} -> val:${v} (${v.nodeType})")

 Log.d("LOG",

 " <- " + v::class.toString())

 }

 val phones = root("phoneNumbers")

 phones.forEach { ph ->

 Log.d("LOG", "Phone: " + ph.text())

 }

 Log.d("LOG", "Phone[0]: " + phones[0].text())

 val street = root("address")("street").text()

 Log.d("LOG", "Street: " + street)

 Log.d("LOG", "Zip: " + root(“address”, “zipcode”).asInt())

}catch(e:Exception) {

 Log.e("LOG", "JSON error", e)

}

The following code snippet shows how to alter a JSON tree by adding, changing, or

deleting nodes or JSON object members.

// add it to the "try" statements from the

// last listing

// remove an entry

root("address").remove("zipcode")

Log.d("LOG", root.toPrettyString())

// update an entry

root("address").put("street", "Fake Street 42")

Log.d("LOG", root.toPrettyString())

ChApter 20 XML ANd JSON

466

root("address").put("country", createJsonTextNode("Argentina"))

Log.d("LOG", root.toPrettyString())

// create a new object node

root.put("obj", jsonObjectNodeOf(

 "abc1" to 23,

 "abc2" to "Hallo",

 "someNull" to null

))

Log.d("LOG", root.toPrettyString())

// create a new array node

root.put("arr", jsonArrayNodeOf(

 23,

 null,

 "Hallo"

))

Log.d("LOG", root.toPrettyString())

// write without spaces or line breaks

Log.d("LOG", root.toJsonString())

 Creating New JSON Trees
To create a new JSON tree in memory you use:

val root = jsonObjectNodeOf()

From there you can add JSON elements as described previously.

 Exercise 2

Create a JSON document corresponding to:

{

 "firstName": "Arthur",

 "lastName": "Doyle",

 "dateOfBirth": "03/04/1997",

 "address": {

ChApter 20 XML ANd JSON

467

 "streetAddress": "21 3rd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": "10021-1234"

 },

 "phoneNumbers": [

 {

 "type": "home",

 "number": "212 555-1234"

 },

 {

 "type": "mobile",

 "number": "123 456-7890"

 }

],

 "children": [],

 "spouse": null

}

ChApter 20 XML ANd JSON

469
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8

 Appendix

 Solutions to the Exercises
The following are the solutions to the exercises given in the chapters.

 Chapter 2
Exercise 1: Only (2) is correct. Version (1) uses round brackets for the body, but curly

brackets are needed. Version (3) is technically correct but does not use camelcase

notation for the class name, and Version (4) tries to use a space in the class name.

Exercise 2: Only (4) is correct. Version (1) uses an undefined “variable” keyword.

Version (2) uses an undefined “property” keyword. Version (3) does not yield to

the propertyName:PropertyType property notation. Version (5) does not specify a

mutability keyword (var or val).

Exercise 3: A val corresponds to an immutable (unchangeable) variable. Setting it to

0.0 means it will never have a different value, which makes no sense for an invoice. This

can be fixed by using var instead of val.

Exercise 4: It is not allowed to change a val property. The property gets first set

by the parameter declaration part of the class declaration and cannot be changed

afterward.

Exercise 5: The property blue must be initialized as well, either in the property

declaration or inside the init{ } block.

Exercise 6: The class reads:

class Invoice(val buyerFirstName:String,

 val buyerLastName:String,

 val date:String,

 val goodName:String,

https://doi.org/10.1007/978-1-4842-4467-8

470

 val amount:Int,

 val pricePerItem:Double)

{

 val buyerFullName:String =

 buyerFirstName + " " + buyerLastName

 val totalPrice:Double =

 amount * pricePerItem

}

Exercise 7: The method reads:

fun goodInfo():String {

 return amount.toString() + " pieces of "

 + goodName

}

or

fun goodInfo():String =

 amount.toString() + " pieces of " + goodName

Using string interpolation you can also use

fun goodInfo():String =

 "${amount} pieces of ${goodName}"

Here the .toString() is implied.

Exercise 8: The class reads:

class Person(var firstName:String,

 var lastName:String,

 var ssn:String,

 var dateOfBirth:String,

 var gender:Char)

An empty body { } can be added, but because it is empty it is optional.

Exercise 9: The class instantiation reads:

val person1 = Person("John", "Smith", "0123456789", "1997-10-23", 'M')

APPENDIX

471

Exercise 10: Either add

class GameUser(val firstName:String,

 val lastName:String,

 val birthday:String,

 val userName:String,

 val registrationNumber:Int,

 val userRank:Double) {

}

to the end of the MainActivity.kt file, or create a file GameUser.kt inside the same

folder as file MainActivity.kt. As its contents, you must repeat the package declaration.

package kotlinforandroid.book.numberguess

class GameUser(val firstName:String,

 val lastName:String,

 val birthday:String,

 val userName:String,

 val registrationNumber:Int,

 val userRank:Double) {

}

Exercise 11: The class instantiation using named parameters reads:

val person1 = Person("firstName = John",

 lastName = "Smith",

 ssn = "0123456789",

 dateOfBirth = "1997-10-23",

 gender = 'M')

The argument sort order is free.

Exercise 12: Add

var gameUser = GameUser(lastName = "Doe",

 firstName = "John",

 userName = "jdoe",

 birthday = "1900-01-01",

Appendix

472

 registrationNumber = 0,

 userRank = 0.0)

right underneath var tries = 0

Exercise 13: The new class with default SSN parameter in the constructor reads:

class Person(var firstName:String,

 var lastName:String,

 var ssn:String = "",

 var dateOfBirth:String,

 var gender:Char)

An instantiation using this default value would read:

val person1 = Person("firstName = John",

 lastName = "Smith",

 dateOfBirth = "1997-10-23",

 gender = 'M')

where the sort order of the arguments is free.

Exercise 14: The class declaration now reads:

class GameUser(val firstName:String,

 val lastName:String,

 val userName:String,

 val registrationNumber:Int,

 val birthday:String = "",

 val userRank:Double = 0.0) {

}

Exercise 15: The class with the secondary constructor added reads:

class Person(var firstName:String,

 var lastName:String,

 var ssn:String,

 var dateOfBirth:String,

 var gender:Char)

APPENDIX

473

{

 constructor(firstName:String,

 lastName:String,

 ssn:String,

 gender:Char) : this(firstName,

 lastName, ssn, "000-00-00", gender)

}

To perform an instantiation, for example, write:

val person1 = Person("John", "Smith",

 "0123456789", 'M')

But you can also use named parameters:

val person1 = Person(firstName = "John",

 lastName = "Smith",

 ssn = "0123456789",

 gender = 'M')

Exercise 16: None.

Exercise 17: The object declaration reads:

object Constants {

 val numberOfTabs = 5

 val windowTitle = "Astaria"

 val prefsFile = "prefs.properties"

}

Property types are not needed; Kotlin can infer them from the literals right of the ”=”

sign. The diagnostic code looks like this:

fun main(args:Array<String>) {

 println(

 "Number of tabs: " +

 Constants.numberOfTabs +

 "\nWindow title: " +

 Constants.windowTitle +

Appendix

474

 "\nPrefs file: " +

 Constants.prefsFile

)

}

The formatting is, of course, up to you.

Exercise 18: The class at a bare minimum reads

class Triangle() {

 companion object {

 val NUMBER_OF_CORNERS = 3

 }

 fun info() {

 println("Number of corners: " +

 NUMBER_OF_CORNERS)

 }

}

Exercise 19: The code reads:

fun main(args:Array<String>) {

 val triangle = Triangle()

 val numberOfCorners =

 Triangle.NUMBER_OF_CORNERS

}

Exercise 20: The code reads:

interface ElementaryParticle {

 fun mass():Double

 fun charge():Double

 fun spin():Double

}

class Electron : ElementaryParticle {

 override fun mass() = 9.11e-31

 override fun charge() = -1.0

 override fun spin() = 0.5

}

APPENDIX

475

class Proton : ElementaryParticle {

 override fun mass() = 1.67e-27

 override fun charge() = 1.0

 override fun spin() = 0.5

}

Exercise 21: (2), (3), (4), and (5) are true; (1) and (6) are false. For (1): Interfaces can

never be instantiated. For (6): An electron is not a proton. (5) is possible because both

are ElementaryParticles and we have a var that allows reassignment.

Exercise 22: The interface plus implementations code reads:

interface RandomNumberGenerator {

 fun rnd(minInt:Int, maxInt:Int)

}

class StdRandom : RandomNumberGenerator {

 override fun rnd(minInt: Int, maxInt: Int):Int {

 val span = maxInt - minInt + 1

 return minInt + Math.floor(Math.random()*span).toInt()

 }

}

class RandomRandom : RandomNumberGenerator {

 val rnd:Random = Random()

 override fun rnd(minInt: Int, maxInt: Int):Int {

 val span = maxInt - minInt + 1

 return minInt + rnd.nextInt(span)

 }

}

Put that at the end of MainActivity.kt, or put it into a new file using, for example,

the name random.kt.

The new property in the activity reads

val rnd:RandomNumberGenerator = StdRandom()

// or ... = RandomRandom()

Appendix

476

The new code in method start(...) reads

number = rnd.rnd(Constants.LOWER_BOUND, Constants. UPPER_BOUND)

(the val span = ... line can be removed).

Exercise 23: Over the “java” item on the left-side pane (Android view), press mouse-

right and then New → Kotlin File/Class for classes, interface, or singleton objects. Or

choose New → Package for packages (folders). If asked, select the “main/java” branch.

For all classes, interfaces, and singleton objects you can always first create a “class” type

file and then accordingly adapt its contents.

Exercise 24: The listings read:

 MainActivity.kt

package kotlinforandroid.book.numberguess

import android.content.Context

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.util.AttributeSet

import android.util.Log

import android.view.View

import android.widget.ScrollView

import android.widget.TextView

import kotlinforandroid.book.numberguess.common.Constants

import kotlinforandroid.book.numberguess.model.GameUser

import kotlinforandroid.book.numberguess.random.RandomNumberGenerator

import kotlinforandroid.book.numberguess.random.impl.StdRandom

import kotlinx.android.synthetic.main.activity_main.*

import java.util.*

class MainActivity : AppCompatActivity() {

 val rnd: RandomNumberGenerator = StdRandom()

 // or ... = RandomRandom()

 var started = false var number = 0

 var tries = 0

APPENDIX

477

 var gameUser = GameUser(

 lastName = "Doe",

 firstName = "John",

 userName = "jdoe",

 birthday = "1900-01-01",

 registrationNumber = 0,

 userRank = 0.0

)

 override

 fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 fetchSavedInstanceData(savedInstanceState)

 doGuess.setEnabled(started)

 }

 override

 fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 putInstanceData(outState)

 }

 fun start(v: View) {

 log("Game started")

 num.setText("")

 started = true

 doGuess.setEnabled(true)

 status.text = getString(R.string.guess_hint,

 Constants.LOWER_BOUND,

 Constants.UPPER_BOUND)

 number = rnd.rnd(Constants.LOWER_BOUND, Constants.UPPER_BOUND)

 tries = 0

 val r = Random()

 r.nextInt(7)

 }

Appendix

478

 fun guess(v:View) {

 if(num.text.toString() == "") return

 tries++

 log("Guessed " + num.text +

 " (tries:" + tries + ")")

 val g = num.text.toString().toInt()

 if(g < number) {

 status.setText(R.string.status_too_low)

 num.setText("")

 } else if(g > number){

 status.setText(R.string.status_too_high) num.setText("")

 } else {

 status.text = getString(R.string.status_hit, tries)

 started = false

 doGuess.setEnabled(false)

 }

 }

 //

 //

 private

 fun putInstanceData(outState: Bundle?) {

 if (outState != null) with(outState) {

 putBoolean("started", started) putInt("number", number)

 putInt("tries", tries)

 putString("statusMsg", status.text.toString())

 putStringArrayList("logs", ArrayList(console.text.split("\n")))

 }

 }

 private

 fun fetchSavedInstanceData(

 savedInstanceState: Bundle?) {

 if (savedInstanceState != null)

 with(savedInstanceState) {

 started = getBoolean("started")

APPENDIX

479

 number = getInt("number")

 tries = getInt("tries")

 status.text = getString("statusMsg")

 console.text =

 getStringArrayList("logs")!!.

 joinToString("\n")

 }

 }

 private fun log(msg:String) {

 Log.d("LOG", msg)

 console.log(msg)

 }

}

 Constants.kt

package kotlinforandroid.book.numberguess.common

object Constants {

 val LOWER_BOUND = 1

 val UPPER_BOUND = 7

}

 Console.kt

package kotlinforandroid.book.numberguess.gui

 import android.content.Context

 import android.util.AttributeSet

 import android.widget.ScrollView

 import android.widget.TextView

 class Console(ctx: Context, aset: AttributeSet? = null) :

 ScrollView(ctx, aset) {

 companion object {

 val BACKGROUND_COLOR = 0x40FFFF00

 val MAX_LINES = 100

Appendix

480

 }

 val tv = TextView(ctx)

 var text:String

 get() = tv.text.toString()

 set(value) { tv.setText(value) }

 init {

 setBackgroundColor(BACKGROUND_COLOR)

 addView(tv)

 }

 fun log(msg:String) {

 val l = tv.text.let {

 if(it == "") listOf() else it.split("\n")

 }.takeLast(MAX_LINES) + msg

 tv.text = l.joinToString("\n")

 post(object : Runnable {

 override fun run() {

 fullScroll(ScrollView.FOCUS_DOWN)

 }

 })

 }

}

You also must adapt the element in activity_main.xml:

...

<kotlinforandroid.book.numberguess.gui.Console

 android:id="@+id/console"

 android:layout_height="100sp"

 android:layout_width="match_parent" />

...

 GameUser.kt

package kotlinforandroid.book.numberguess.model

class GameUser(val firstName:String,

 val lastName:String,

APPENDIX

481

 val userName:String,

 val registrationNumber:Int,

 val birthday:String = "",

 val userRank:Double = 0.0) {

}

 RandomNumberGenerator.kt

package kotlinforandroid.book.numberguess.random

interface RandomNumberGenerator {

 fun rnd(minInt:Int, maxInt:Int):Int

}

 RandomRandom.kt

package kotlinforandroid.book.numberguess.random.impl

import kotlinforandroid.book.numberguess.random.

 RandomNumberGenerator

import java.util.*

class RandomRandom : RandomNumberGenerator {

 val rnd: Random = Random()

 override fun rnd(minInt: Int, maxInt: Int):Int {

 val span = maxInt - minInt + 1

 return minInt + rnd.nextInt(span)

 }

}

 StdRandom.kt

package kotlinforandroid.book.numberguess.random.impl

import kotlinforandroid.book.numberguess.random.

 RandomNumberGenerator

class StdRandom : RandomNumberGenerator {

 override fun rnd(minInt: Int, maxInt: Int):Int {

 val span = maxInt - minInt + 1

Appendix

482

 return minInt +

 Math.floor(Math.random()*span).toInt()

 }

}

 Chapter 3
Exercise 1: The var or val in the constructor parameter is missing, so the color is not

transported to a property. In this case we have to use var, because we want to change it:

class Triangle(var color: String) {

 fun changeColor(newColor:String) {

 color = newColor

 }

}

Exercise 2: The code reads:

class A {

 var a:Int = 1 // A

 init {

 a = 2 // B

 }

 fun b() {

 a = 3 // C

 }

}

fun main(args:Array<String>) {

 val a = A()

 a.a = 4 // D

}

Exercise 3: Write

val a = 42

val s = "If we add 4 to a we get ${a+4}"

APPENDIX

483

Exercise 4: Only (4) is allowed.

Exercise 5: It is not allowed to change method parameter variables.

Exercise 6: A return without argument is allowed for methods not returning

anything, so the method is valid. The return at the end is superfluous though.

Exercise 7: Yes.

Exercise 8: Use the expression variant:

class A(val a:Int) {

 fun add(b:Int) = a + b

 fun mult(b:Int) = a * b

}

Exercise 9: The interface reads:

interface AInterface {

 fun add(b:Int):Int

 fun mult(b:Int):Int

}

Exercise 10: The output is meth1: 42 7

Exercise 11: The code reads:

println(A.x(42))

For using companion objects an instance of the class is not needed!

Exercise 12: The code reads:

val p = Person()

p.setName(lName = "Doe", fName = "John")

// or

p.setName(fName = "John", lName = "Doe")

Exercise 13: The method declaration reads:

fun set(lastName:String = "",

 firstName:String = "",

 birthDay?:String = null,

 ssn:String? = null) { ... }

Appendix

484

And for the invocation write:

set(lastName = "Smith", ssn = "1234567890")

or

set(ssn = "1234567890", lastName = "Smith")

Exercise 14: The code reads:

class Club {

 fun addMembers(vararg names:String) {

 println(names.size)

 println(names.joinToString(" : "))

 }

}

fun main(args:Array<String>) {

 var club = Club()

 club.addMembers("Hughes, John",

 "Smith, Alina",

 "Curtis, Solange")

}

Exercise 15: The output will be:

B.y() -> a = 7

A.q() -> a = 7

Exercise 16: The output will be:

A.x() : g = 99

B.y() : g = 8

A.q() : g = 99

The property needs to be declared private, otherwise g from class A will be visible

in the subclass B as well, and then we have two declarations of one property, which the

language does not allow.

APPENDIX

485

Exercise 17: The code then reads:

open class A() {

 open var g:Int = 99

 fun x() {

 println("A.x() : g = ${g}")

 }

 fun q() {

 println("A.q() : g = ${g}")

 }

}

class B : A() {

 override var g:Int = 8

 fun y() {

 println("B.y() : g = ${g}") q()

 }

}

 fun main(args:Array<String>) {

 val b = B()

 b.x()

 b.y()

 }

And the output will be

A.x() : g = 8

B.y() : g = 8

A.q() : g = 8

Exercise 18: Class (3) is invalid, because the local variable gets used before it is

declared. Class (5) is invalid, because the declaration of a is valid only inside method1().

All the other classes are valid.

Exercise 19: The method calls itself, calls itself, calls itself, and so on, forever. This is

called recursion and here leads to an error.

Appendix

486

 Chapter 4
Exercise 1: Write

package com.example.util

fun add10(a:Int) = a + 10

fun add100(a:Int) = a + 100

Maybe rename the file util.kt to avoid the impression that it contained a class or a

singleton object. The file name, in fact, no longer plays a role.

The client code then reads:

package com.example

import com.example.util.*

class A(q:Int) {

 val x10:Int = add10(q)

 val x100:Int = add100(q)

}

Exercise 2: Write

package com.example

import java.lang.Math.log

class A {

 fun calc(a:Double) = log(a)

}

Exercise 3: (1) is not true, as the coordinates x and y cannot be swapped. (2) is not

true, because the classes don’t match. (3) is true, because the extracted x coordinates

match. (4) is true, because the 1 automatically gets converted to 1.0 and after that all

coordinates match. (5) is true, as the class and all coordinates match.

Exercise 4: The GameUser class is a good candidate for a data class. Just prepend

data to the class declaration: data class GameUser

APPENDIX

487

Exercise 5: Write

data class GameUser(val firstName:String,

 val lastName:String,

 val userName:String,

 val registrationNumber:Int,

 val gender:Gender = Gender.X,

 val birthday:String = "",

 val userRank:Double = 0.0) {

 enum class Gender{F,M,X}

 val fullName:String

 val initials:String

 init {

 fullName = firstName + " " + lastName

 initials = firstName.toUpperCase() +

 lastName.toUpperCase()

 }

}

The enumeration class could also be placed outside the GameUser class. Also, for this

exercise whether you use vals or vars does not play a role.

Exercise 6: A set(value) ... does not make sense, because vals are immutable.

Other than that, for the getters you can do the same as for vars

Exercise 7: Write

val str:String get() = toString()

or

val str get() = toString()

because Kotlin can infer the return type. Do not use var instead of val, as setting here

makes no sense.

Appendix

488

Exercise 8: Write

data class GameUser(var firstName:String,

 var lastName:String,

 var userName:String,

 var registrationNumber:Int,

 var gender:Gender = Gender.X,

 var birthday:String = "",

 var userRank:Double = 0.0) {

 enum class Gender{F,M,X}

 val fullName:String

 get() = firstName + " " + lastName

 val initials:String

 get() = firstName.toUpperCase() +

 lastName.toUpperCase()

}

Both fullName and initials shouldn’t be vars, because they provide derived

values.

Exercise 9: Write

data class Point(val x:Double, val y:double) {

 operator fun minus(p2:Point) =

 Vector(p2.x-this.x, p2.y-this.y)

}

data class Vector(val dx:Double, val dy:Double) {

 operator fun plus(v2:Vector) =

 Vector(this.dx + v2.dx, this.dy + v2.dy)

 operator fun minus(v2:Vector) =

 Vector(this.dx - v2.dx, this.dy - v2.dy)

}

APPENDIX

489

 Chapter 5
Exercise 1: The code reads:

Math.sqrt(

 (a + (b-x)/2) / (b*b - 7*x)

)

You can also use Math.pow(b, 2.0) instead of b * b

Exercise 2: Write

class Concatenator {

 var string:String = ""

 fun add(s:String) { string += s }

 operator fun contains(other:String) =

 string.contains(other)

}

 Chapter 6
Exercise 1: Texts and formatting are up to you.

 Chapter 8
Exercise 1: The exception class reads:

package kotlinforandroid.book.numberguess.common

class GameException(msg:String) : Exception(msg)

The guess() function inside class MainActivity with the check added reads:

fun guess(v:View) {

 if(num.text.toString() == "") return

 try {

 if (num.text.toString().toInt() <

 Constants.LOWER_BOUND)

 throw GameException(

Appendix

490

 "Must guess a number >= " +

 "${Constants.LOWER_BOUND}")

 if (num.text.toString().toInt() >

 Constants.UPPER_BOUND)

 throw GameException(

 "Must guess a number <= " +

 "${Constants.UPPER_BOUND}")

 // rest of the original function...

 } catch(e:GameException) {

 Toast.makeText(this,

 "Guessable numbers: " +

 "${Constants.LOWER_BOUND} to " +

 "${Constants.UPPER_BOUND} ",

 Toast.LENGTH_LONG).show()

 }

}

 Chapter 9
Exercise 1: The code reads:

val arr = IntArray(101, { i -> 100 - i })

Exercise 2: The code reads:

booleanArrayOf(true, false, true)

Exercise 3: The code reads:

val fruits = mutableSetOf("Apple", "Banana",

 "Grape", "Engine")

fruits.remove("Engine")

fruits.add("Cherry")

val fruits5 = fruits.filter {

 element -> element.length == 5

}

APPENDIX

491

Note in Kotlin you can remove the round brackets from ({ ... }). Also, you can
substitute the element with any other name you like.

Exercise 4: You could write

val sorted = gul.sortedWith(

 compareBy(GameUser::lastName)

 then

 compareBy(GameUser::firstName))

Or, to be a little bit less expressive:

val sorted = gul.sortedWith(

 compareBy(GameUser::lastName,

 GameUser::firstName))

Exercise 5: The code reads:

gul.sortWith(

 compareBy(GameUser::lastName)

 then

 compareBy(GameUser::firstName))

or

gul.sortWith(

 compareBy(GameUser::lastName,

 GameUser::firstName))

Exercise 6: The code reads:

val groupedByManufacturer = cars.groupBy {

 car -> car.vin.substring(0,3)

}

val wxxCars = groupedByManufacturer["WXX"]

Exercise 7: The code reads:

(1..100).toList().reduce{ acc,v -> acc*v }

Appendix

492

Actually the toList() can be omitted, as ranges have a reduce() as well:

(1..100).reduce{ acc,v -> acc*v }

Exercise 8: The code reads:

val fruits = listOf("Bananas", "apples",

 "Oranges")

val prices = listOf(1.69, 2.19, 2.79)

data class Fruit(

 val name:String, val price:Double)

val zipped = fruits.zip(prices,

 { a, b -> Fruit(a, b) })

 Chapter 11
Exercise 1: (1) and (3) are true, and (2) is only true in cases where we implemented an

appropriate equals() function.

Exercise 2: (1) and (2) are true. (3) is true only if function hashCode() is

implemented appropriately. However, for == to work correctly, a hashCode()

implementation is not needed. It should be provided, though, to avoid surprises if a class

gets used as a map key.

 Chapter 12
Exercise 1: One possible solution would be:

val f : (String, Int) -> String =

 { s:String, num:Int ->

 (1..num).map { s }.joinToString { it } }

We use the range operator .. to get something that iterates num times over whatever,

map each iteration to the parameter string, and then concatenate the num identical

copies of the string.

APPENDIX

493

Exercise 2: The code reads:

val f : (String) -> String = { it + "!" }

Exercise 3: The filter reads:

val startsWithL = employees.filter {

 it.firstName.startsWith("L") }.toList()

 Chapter 13
Exercise 1: The code reads:

class Quadruple<A,B,C,D>(

 var p1:A, var p2:B, var p3:C, var p4:D)

val q1 = Quadruple(1, 2, 3.14, "Hello")

The type and property parameter names, of course, are up to you.

Note that we could have written this:

class Quadruple<A,B,C,D>(

 var p1:A, var p2:B, var p3:C, var p4:D)

val q1:Quadruple<Int, Int, Double, String> =

 Quadruple<Int, Int, Double, String>(

 1, 2, 3.14, "Hello")

but the explicit type parameters could be omitted because Kotlin can infer the type

from the literals provided.

Exercise 2: The code reads:

class Sorter<T : Comparable<T>> {

 val list: MutableList<T> = mutableListOf()

 fun add(value:T) {

 list.add(value)

 list.sort()

 }

}

Appendix

494

 Chapter 14
Exercise 1: The annotation declaration reads:

@Target(AnnotationTarget.VALUE_PARAMETER)

@Retention(AnnotationRetention.RUNTIME)

annotation class NotNegative()

Inside the Calculator.Operator enumeration, add SQRT(”sqrt”)

Inside the f?.valueParameters?.forEachIndexed { ... loop, add

p.findAnnotation<NotNegative>()?.run {

 if (params[ind] < 0.0)

 throw RuntimeException(

 "Parameter ${ind} must be positive")

}

Finally, add a function:

fun sqrt(@NotNegative p:Double) : Double {

 return Math.sqrt(p)

}

 Chapter 16
Exercise 1: Write

val sorted = l.sortedBy { empl -> empl.ssn }

or

val sorted = l.sortedBy { it.ssn }

Exercise 2: Let it read

val map = l.associateBy { empl -> empl.ssn }

or

val map = l.associateBy { Employee::ssn }

APPENDIX

495

Exercise 3: The output is a list [1, 2, 3, 4]

Exercise 4: The output is a list [“1”, “2”, “3”, “4”]

Exercise 5: The code reads:

val filtered = l.filter { it.ssn.startsWith("0") }

Exercise 6: The check reads:

val l = listOf(1, 2, 3, 4)

val allGreaterThanZero = l.all { it > 0 }

Exercise 7: One possibility is

l.find{ it == 42 }?.run{

 throw Exception("42 found!") }

Another possibility reads:

l.contains(42).takeIf { it }?.run {

 throw Exception("42 found!") }

Exercise 8: The solution is

l.sumByDouble { it.weight }

 Chapter 17
Exercise 1: There are several possibilities. We save the “now” instant on creation and

deduce a Duration object with twice the elapsed time since that instant:

class ClockTwiceAsFast : Clock() {

 val myStartInstant : Instant

 init {

 myStartInstant = Clock.systemUTC().instant()

 }

 override

 fun withZone(zone: ZoneId?): Clock = this

 override

 fun getZone(): ZoneId = ZoneId.of("Z")

Appendix

496

 override fun instant(): Instant {

 val dur2 = Duration.between(myStartInstant,

 Clock.systemUTC().instant()).multipliedBy(2L)

 return myStartInstant.plus(dur2)

 }

}

Exercise 2: Write

operator fun String.rem(regex:String) = this.matches

 (Regex(regex))

 Chapter 18
Exercise 1: Start creating the app as a “Basic Activity” app. Android Studio then builds

a standard activity_main.xml file. The actual user interface elements get defined in

content_main.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:tools=

 "http://schemas.android.com/tools"

 xmlns:app=

 "http://schemas.android.com/apk/res-auto"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior=

 "@string/appbar_scrolling_view_behavior"

 tools:showIn="@layout/activity_main"

 tools:context=".MainActivity">

APPENDIX

497

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Multithreaded PI"

 android:textSize="25sp"/>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Processors"/>

 <TextView android:id="@+id/procs"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Iterations"/>

 <EditText android:id="@+id/iters"

 android:text="1000000"

 android:inputType="number"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Threads"/>

Appendix

498

 <EditText android:id="@+id/threads"

 android:text="4"

 android:inputType="number"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Cumul Iters"/>

 <TextView android:id="@+id/cumulIters"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Current Pi"/>

 <TextView android:id="@+id/pi"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal">

 <TextView android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Calc Time"/>

APPENDIX

499

 <TextView android:id="@+id/calcTime"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <Button android:text="CALC"

 android:onClick="calc"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"/>

 <Button android:text="RESET"

 android:onClick="reset"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"/>

</LinearLayout>

The corresponding activity class already got listed in the floating text. Note that for

simplicity, label and button texts are directly entered in the layout file. Instead they

should be exported to resource files.

Exercise 2: Write

...

l111 = launch {

 Log.d("LOG", "E")

 withTimeout(500L) {

 delay(1000L)

 }

 Log.d("LOG", "F")

 delay(1000L)

 Log.d("LOG", "G")

}

...

The logging will not differ from the logging with the cancel().

Appendix

500

 Chapter 20
Exercise 1: Write

fun createXmlDocument(): Document =

 DocumentBuilderFactory.newInstance().

 newDocumentBuilder().newDocument()

Exercise 2: A possible solution would be:

val root = jsonObjectNodeOf()

with(root) {

 put("firstName", "Arthur")

 put("lastName", "Doyle")

 put("dateOfBirth", "03/04/1997")

 put("address",

 jsonObjectNodeOf(

 "streetAddress" to "21 3rd Street",

 "city" to "New York",

 "state" to "NY",

 "postalCode" to "10021-1234"))

 put("phoneNumbers",

 jsonArrayNodeOf(

 jsonObjectNodeOf("type" to "home",

 "number" to "212 555-1234"),

 jsonObjectNodeOf("type" to "mobile",

 "number" to "123 456-7890")

))

 put("children", jsonEmptyArrayNode())

 putNull("spouse")

}

Log.d("LOG", root.toPrettyString())

APPENDIX

501
© Peter Späth 2019
P. Späth, Learn Kotlin for Android Development, https://doi.org/10.1007/978-1-4842-4467-8

Index

A
abs() function, 348
add() functions, 95, 275, 282
Aggregators function, 331–332
Android device, 3–4
Android Studio

adding external libraries
parameterized form, 440
repositories, 437–439

library creation, 443–445
nullability, 442

Annotations
applications, 296–297
array, 297
characteristics, 292–294
custom, 302–304
elements, 298–300
KAPT, 298
meta-information, 289–291
operator classes, 291
operator() function, 304
reflection API, 298
use-site targets, 294–295

Anonymous classes, 113
Any.notifyAll() function, 401
Any.notify() function, 401
Any.wait() function, 401
Apache Commons library, 441
API level 25 or less, 349–352
API level 26 or greater

clock, 366–367
Duration and Period classes, 362–365
instants, 357
LocalDate, 353–356
LocalDateTime, 353–356, 360–362
LocalTime, 353–356
minSdkVersion, 353
OffsetDateTime, 358–359
OffsetTime, 358–359
ZonedDateTime, 360–362

Application programming interface (API)
documentation, 166

Array
collections

lists, 200, 205–211
maps, 201, 212–214
sets, 200–204

constructors, 196–197
empty array of object references, 198
folding, 223–224
grouping, 222–223
lambda function, 196–197
null object references, 198
objects, 193–195
operations, 198–200
reducing, 224–225
sorting, 217–220
zipping, 225–227

async() function, 416, 422
atan2() function, 348
await() function, 421, 428, 432

https://doi.org/10.1007/978-1-4842-4467-8

502

B
Binary operations, 131
Bits, 147
Boolean expressions, 141
Bytes, 146

C
calc() function, 413
cancel() function, 428
Character expression elements, 146
childCount() function, 451
Classes, 313–315

benefits, 107
encapsulation, 105
if statement

companion objects, 52
singleton objects, 49
start() function, 51

self-reference (This), 110
strings conversion, 111
visibility of, 104

Clock class, 366
ClockTwiceAsFast class, 495
Collection and map

characteristics, 320
deterministic getters, 318–320
element checks, 329
filtering, 327–328
finding elements, 329–330
mutators, 317–318
transformations

association, 326
changing mode, 328
flattening, 325
keys and values, extraction, 322
mapping, 322, 327
reordering, 323–325

traversing, 321
Command line, 12–14
Comments

advantages, 155
API documentation, 166
class, 162
disadvantages, 155
functions and properties, 165
markdown files, 157, 159
multiline, 162
package, 156
project files view, 157
verbose commenting, 156

Companion objects, 52–54
Console class, 479–480
Constants class, 66, 479
Constructors, 196–197

invocation, 43
modifiers, 42
named parameters, 44
parameters, 41
primary constructors, 41
secondary constructors, 46

Contravariance, 281
Conversions, 150–153
Coroutines

async() function, 422, 424
await() function, 421
blocking, 418
builder, 416
cancellation, 417, 428–429
channel, 419
context, 415, 425–426
coroutineScope() function, 421
delay() function, 418, 426
dispatchers, 418, 430–431
exception handling, 417, 432–436
global scope, 415

INDEX

503

join() function, 421
launch() function, 421–422, 424
onCreate() function, 422–424
runBlocking() function, 419–420, 424
scope, 414–415
structured concurrency, 419
suspending function,

416–417, 426–427
synchronization, 427–428
timeouts, 417, 429–430

coroutineScope() function, 416
createXmlDocument() function, 458

D
Data classes, 118–119
Data containers

loops, 215–216
pairs and triples, 214–215

Date class, 350
Declaration-side

variance, 278–280
Decoupling, 272
delay() function, 429
Delegation, 134–135
Deprecated annotation, 301
Document Object Model (DOM) model, 448

E
Elvis operator, 191, 251, 442
Emulators, 6–8
enum class, 386
Enumerations, 120–122
equals() function, 254–255, 492
Exceptions

e() function, 187
error-handling, 188

throw exceptions, 189
try-catch block, 185–186
types, 188–189

Expressions, 137
arithmetic operators’ precedence, 140
arithmetics, 138
bits and bytes, 146
boolean, 141
character elements, 146
conversions, 150
numerical elements, 139
operators, 148
string elements, 144
ubiquity of, 138
unclassified expressions, 137–138

exractTo() function, 282
Extensions

encapsulation, 127
functions, 125
hasLength() extension, 127
nullable receivers, 127
properties, 126
static features, 125

F
fetchChildren() function, 451
File class, 376
FileTreeWalk class, 370
Filters, 271–273
First-in, first-out (FIFO), 231
Fixed-size collections, see Array
Folding function, 334
forEach() function, 177, 216, 267, 451
forEachIndexed() function, 267
Functional programming, 259–260

features, 262–264
vs. imperative programming, 261

INDEX

504

Functions and properties
imported vs. import statements, 118
outside classes, 116

Functions with receiver types, 268

G
GameUser class, 480, 486–487
generateSequence() function, 340–341
Generator functions, 315–317
Generics, 275

compile-time constructs, 276
constraints, 284–287
functions, 283–284
type parameters, 276–277

get(i:Int) function, 451
getCompleted() function, 428
getFirst() function, 311
getLast() function, 311
getState() function, 28
GregorianCalendar class, 350
Grouping functions, 336–337
guess() function, 40, 489

H
hashCode() function, 256–258, 492
HelloKotlin app

emulated devices screen, 11–12
emulator window, 11
graphical design, 10
layout, 9

Higher order functions, 259

I
Identity operator (===), 253
Immutable collections, 281
Imperative programming, 259, 260

Infix operators, 129–130
Inheritance

classes from other classes, 96
constructor, 97
override functions, 99
overriding properties, 100
superclass assets, 101

Inline function, 269–271
Inner classes, 115–116
Input and output

copyTo() function, 375–376
file

append text, 371
creation, 368
deletion, 373–374
listing directories, 369–370
read, 372–373
(/) system separator, 368–369

internet URL, 377–378
temporary files, 375

Instantiation, 26
Integrated development environment (IDE)

Android Studio, 1–3
command line, 12–14
emulators, 6–8
HelloKotlin app, 8–12

Interfaces, 309–312
Invoice class

complete class, 30
functions, 27
initialization, 25
Kotlin, 24
properties, 25

J
JavaScript Object Notation (JSON)

processing, 458
add() function, 461

INDEX

505

alter JSON tree, 465–466
asText(), 460
createSomething() style functions,

462–463
invoke operator, 459
Jackson library, 458
put() function, 461
read data, 464–465
toJsonString(), 463
toPrettyString(), 463
tree, create, 466

Java virtual machine (JVM), 229
jcenter() repository, 438
Joining function, 335–336

K
KClass, 379
Kotlin programming, object orientation,

see Object orientation
programming

L
Lambda functions, 196–197, 215, 262,

265–266
Last-in, first-out (LIFO), 231
launch() function, 416
list.toMutableList() function, 328
Literals, 76–79
LocalDate class, 353
LocalDateTime class, 353
LocalTime class, 353
Local variables, 102–103

M
MainActivity class, 475–478, 489
map.toMutableMap() function, 328

Markdown files, 159–162
Math API, 347–349
mavenCentral() repository, 438
Maven coordinates, 440
mavenLocal() repository, 438
Member functions

abstract class, 93
accessing masked properties, 87
default parameters, 90
function not returning values, 82
functions, 81–82
invocation, 88
local functions, 95
named parameters, 89
operations or methods, 82
polymorphism, 94
value-returning function, 85
vararg parameters, 91

movePoint() function, 119
Multithreading

atomic variable types, 406–407
callable, 407
executors class, 408
functions and

constructs, 400–401
future object, 408
joinToString() function, 397
list implementation, 402
lock object, 404–406
program development

Pi calculation, 409
Pi user interface, 410–414

set implementation, 403
thread() function, 394–395
thread-safe Deque implementation, 403
thread-safe Map implementation, 403
thread-safe Queue implementation, 403
thread-safe Set implementation, 403

INDEX

506

@MustBeDocumented(…) annotation, 294
mutableList.toList() function, 328
mutableMap.toMap() function, 328
mutableSet.toSet() function, 328

N
Namespaces, 65
Not null assertion operator, 251–252
@NotZero annotation, 304
Nullability

elvis operator, 251
fictive computer

language, 248–249
not null assertion operator, 251
nullable properties, 250
pointer variable, 248

NumberGuess app
Android Studio, 32
error, 35
layout file, 33–35
Kotlin code, 36–41
statistics class

add action bar, 231–237
average tries needed, 243
data list, 240
getSerializable() function, 241
getStatistics() function, 245
groupBy() function, 245
histogram, 244
mutable list, 240
restore() function, 240
save() function, 240
singleton object, 241–242
standard deviation, 244
StatisticsActivity, 237–239
toSortedMap() function, 246

Numerical expressions, 138

O
Object orientation programming

attributes, 16
class declaration, 18
class initialization, 22
computer mapping

methodology, 16
concrete invoice object, 17
constructors (see Constructors)
contract and interfaces

add() function, 59
characteristics, 56
collector module and clients, 55
coordsOf() function, 59
graphics collector, 56
GraphicsObject function, 60
module communication, 57
Triangle class, 58

definition, 17
end-of-line comment, 22
invoice class (see Invoice class)
methods, 15
properties, 15
property declaration, 20
structure unit and packages, 62

namespaces, 65
project, 63

onCreate() function, 413
onSaveInstanceState() function, 413
[] operator, 255
-operator, 344
!! operator, 251–252
!= operator, 254
+ operator, 343–344
== operator, 254
Operator overloading, 130–134
Operators, 343–345

INDEX

507

P
Pairs and triples containers, 214
Pointer value, 248
Polymorphism, 94
pow() function, 348
prettyFormatXml() function, 455, 458
Primitive data types, 193–195
Properties

accessors, 122–124
data holders/variables, 69
declaration modifiers, 80
dereferencing operator (.), 80
fullName and initials, 71
GameUser class, 70
immutable and immutable variables, 70
literals, 76
null values, 79
rules, 70
string templates, 79
types, 72–74
vals function, 71
values assignment, 74
visibility, 79

Q
Quantifiers, 384–385
Queues and stacks, 229–231

R
RandomNumberGenerator class, 481
RandomRandom class, 481
rangeTo() function, 175
Recursive functions, 128–129
Reduction function, 333
Reflection, 378–381
Regex class, 386, 388

Regular expressions
patterns, 382–385
quantifiers, 384–385
strings

extraction, 388–390
matches, 386
replacing patterns, 390–391
splitting, 387

reified type parameters, 271
removeFirst() function, 311
removeLast() function, 311
@Repeatable(…) annotation, 294
replaceFirst() function, 390–391
ReplaceWith annotation, 301
Repositories, 437–439
@Retention(…) annotation, 293
round() function, 348
runBlocking() function, 416, 419

S
SAX, 448
sequenceOf() function, 340
Sequences, 340–343
setTime() function, 105
set.toMutableSet()

function, 328
sign() function, 348
SimpleDateFormat, 351–352
Spread operator, 228–229
sqrt() function, 348
Standard deviation, 243
Standard library, 305–306

API documentation, 307
API level, 306–307

Star projections, 283
startsWith() function, 273
StAX, 448

INDEX

508

StdRandom class, 481
String expression elements, 144–145
Structural constructs, 171

also scoping function, 182
apply function, 178
conditional execution, 183
for and while Loops, 176
ifs and whens

arbitrary expressions, 174
conditional branching

construct, 173
else if and else clauses, 172
if–else program, 171
inner blocks, 175
ranges, 174
statement blocks, 172
value-yielding variant, 173

let function, 180
ranges, 175–176
run scoping function, 182
scoping functions, 177
with function, 181

supervisorScope() function, 416
Suppress annotation, 301–302
System.currentTimeMillis() function, 356

T
takeIf() function, 183
@Target(…) annotation, 292–293
thread() function, 400
thread.join() function, 401
three-valued logic, 247
time() function, 105
toDouble() function, 285
Triangle class, 482
Type projections, 281–282

U
Unary operation, 131
unzip() function, 227
Use-side variance, 281

V
Variable-size collections, 193

W
Windowing function, 339

X
Xerces, 449
XML processing

add element, 456
alter data, 453–457
createElement()

function, 456
DOM, 448, 458
prettyFormatXml, 455
read data

API and extensions, 452–453
invoke operator, 451
Kotlin file, 449–450
parseXmlToDOM(s:String), 451

Y
yield() function, 429

Z
Zipping function, 225–227, 337–339
ZonedDateTime class, 360–362

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Your First Kotlin Application: Hello Kotlin
	Setting Up an IDE: Android Studio
	Connecting Your Android Device
	Starting Your First Kotlin App
	Setting Up and Using Emulators
	Continuing with the HelloKotlin App
	Using the Command Line

	Chapter 2: Classes and Objects: Object Orientation Philosophy
	Kotlin and Object-Oriented Programming
	Class Declaration
	Exercise 1
	Property Declaration
	Exercise 2
	Exercise 3
	Class Initialization
	Exercise 4
	Exercise 5
	An Invoice in Kotlin
	More Invoice Properties
	Invoice Initialization
	Exercise 6
	Instantiation in Kotlin
	Adding Functions to Invoices
	Exercise 7
	The Complete Invoice Class

	A Simple Number Guessing Game
	Constructors
	Exercise 8
	Constructor Invocation
	Exercise 9
	Exercise 10
	Named Constructor Parameters
	Exercise 11
	Exercise 12
	Constructor Default Values
	Exercise 13
	Exercise 14
	Secondary Constructors
	Exercise 15

	If Classes Are Not Needed: Singleton Objects
	Exercise 16
	Exercise 17

	If State Doesn’t Matter: Companion Objects
	Exercise 18
	Exercise 19

	Describing a Contract: Interfaces
	Exercise 20
	Exercise 21
	Exercise 22

	Structuring and Packages
	A Structured Project
	Exercise 23
	Namespaces and Importing
	Exercise 24

	Chapter 3: Classes at Work: Properties and Functions
	Properties and Their Types
	Simple Properties
	Exercise 1
	Property Types
	Property Value Assignment
	Exercise 2
	Literals
	Exercise 3
	Property Visibility
	Null Values
	Exercise 4
	Property Declaration Modifiers

	Member Functions
	Functions Not Returning Values
	Exercise 5
	Exercise 6
	Functions Returning Values
	Exercise 7
	Exercise 8
	Exercise 9
	Accessing Masked Properties
	Exercise 10
	Function Invocation
	Exercise 11
	Function Named Parameters
	Exercise 12
	Function Default Parameters
	Exercise 13
	Function Vararg Parameters
	Exercise 14
	Abstract Functions
	Polymorphism
	Local Functions

	Inheritance
	Classes Inheriting from Other Classes
	Constructor Inheritance
	Exercise 15
	Overriding Functions
	Overriding Properties
	Exercise 16
	Exercise 17
	Accessing Superclass Assets

	Local Variables
	Exercise 18

	Visibility of Classes and Class Members
	Self-Reference: This
	Converting Classes to Strings
	Exercise 19

	Chapter 4: Classes and Objects: Extended Features
	Anonymous Classes
	Inner Classes
	Functions and Properties Outside Classes
	Exercise 1

	Importing Functions and Properties
	Exercise 2

	Data Classes
	Exercise 3
	Exercise 4

	Enumerations
	Exercise 5

	Custom Property Accessors
	Exercise 6
	Exercise 7
	Exercise 8

	Kotlin Extensions
	Extension Functions

	Extension Properties
	Extensions with Nullable Receivers
	Encapsulating Extensions

	Functions with Tail Recursion
	Infix Operators
	Operator Overloading
	Exercise 9

	Delegation

	Chapter 5: Expressions: Operations on Data
	Expression Examples
	Ubiquity of Expressions
	Numerical Expressions
	Exercise 1

	Boolean Expressions
	String and Character Expressions
	Bits and Bytes
	Other Operators
	Exercise 2

	Conversions

	Chapter 6: Comments in Kotlin Files
	Package Comments
	Markdown
	Class Comments
	Function and Property Comments
	Exercise 1

	Generate Your Own API Documentation

	Chapter 7: Structural Constructs
	Ifs and Whens
	Ranges
	For and While Loops
	Scoping Functions
	The apply Function
	The let Function
	The with Function
	The also Function
	The run Function
	Conditional Execution

	Chapter 8: Exceptions: If Something Goes Wrong
	Kotlin and Exceptions
	More Exception Types
	Throwing Exceptions Yourself
	Exercise 1

	Exceptions in Expressions

	Chapter 9: Data Containers
	Defining and Using Arrays
	Array Instantiation
	Exercise 1
	Exercise 2

	Array Operations
	Sets, Lists, and Maps
	Sets
	Exercise 3
	Lists
	Maps

	Pairs and Triples
	Loops over Data Containers
	Sorting Arrays and Collections
	Exercise 4
	Exercise 5

	Grouping, Folding, Reducing, and Zipping
	Grouping
	Exercise 6
	Folding
	Reducing
	Exercise 7
	Zipping
	Exercise 8

	Searching in Arrays and Collections
	The Spread Operator
	Queues and Stacks: Deques
	A Statistics Class for the NumberGuess App
	Adding an Action Bar to The App
	The Statistics Activity
	State Housekeeping for the Statistics
	Communicating Between the Activities
	Implementing Statistical Calculations

	Chapter 10: True, False, and Undecided: Nullability
	What NULL Is
	How Nullability Gets Handled Inside Kotlin

	Chapter 11: Handling Equality
	Identity in Kotlin
	Equality in Kotlin
	Equals and Hash Code
	Exercise 1
	Exercise 2

	Chapter 12: Back to Math: Functional Programming
	Kotlin and Functional Programming
	Functions Without Names: Lambda Functions
	Exercise 1
	Exercise 2

	Loops Once Again
	Functions with Receivers
	Inline Functions
	Filters
	Exercise 3

	Chapter 13: About Type Safety: Generics
	Simple Generics
	Exercise 1

	Declaration-Side Variance
	Variance for Immutable Collections
	Type Projections
	Star Projections
	Generic Functions
	Generic Constraints
	Exercise 2

	Chapter 14: Adding Hints: Annotations
	Annotations in Kotlin
	Annotation Characteristics
	Applying Annotations
	Annotations with Array Parameter
	Reading Annotations
	Built-in Annotations
	Custom Annotations
	Exercise 1

	Chapter 15: Using the Java and Kotlin APIs
	Kotlin and Java Libraries
	Using the Online Resources
	Making a Local Copy of the Documentation

	Chapter 16: The Collections API
	Interfaces
	Classes
	Generator Functions
	Collection and Map Setters and Removers
	Deterministic Getters
	Collection and Map Characteristics
	Traversing Collections and Maps
	Transformations
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Filtering
	Exercise 5

	Changing the Mutability
	Element Checks
	Exercise 6

	Finding Elements
	Exercise 7

	Aggregating, Folding, and Reducing
	Exercise 8

	Joining
	Grouping
	Zipping
	Windowing
	Sequences
	Operators

	Chapter 17: More APIs
	The Math API
	The Date and Time API, API Level 25 or Less
	The Date and Time API, API Level 26 or Greater
	Local Dates and Times
	Instants
	Offset Dates and Times
	Zoned Dates and Times
	Duration and Periods
	Clock
	Exercise 1

	Input and Output
	Creating Some Test Files
	File Names
	Listing Directories
	Writing to Files
	Reading from Files
	Deleting Files
	Working with Temporary Files
	More File Operations
	Reading URLs

	Using Reflection
	Regular Expressions
	Patterns
	Determining Matches
	Exercise 2
	Splitting Strings
	Extracting Substrings
	Replacing

	Chapter 18: Working in Parallel: Multithreading
	Basic Multithreading the Java Way
	Advanced Multithreading the Java Way
	Special Concurrency Collections
	Locks
	Atomic Variable Types
	Executors, Futures, and Callables
	Exercise 1

	Kotlin Coroutines
	Basic Coroutines
	Coroutine Context
	What a delay() Does
	What Is a Suspending Function?
	Waiting for Jobs
	Canceling Coroutines
	Timeouts
	Dispatchers
	Exception Handling
	Exercise 2

	Chapter 19: Using External Libraries
	Adding External Libraries
	Dependency Management
	Unresolved Local Dependencies
	External Libraries and Nullability
	Creating Your Own Library

	Chapter 20: XML and JSON
	XML Processing
	Reading XML Data
	Altering XML Data
	Creating New DOMs
	Exercise 1

	JSON Processing
	JSON Helper Functions
	Reading and Writing JSON Data
	Creating New JSON Trees
	Exercise 2

	Appendix
	Solutions to the Exercises
	Chapter 2
	MainActivity.kt
	Constants.kt
	Console.kt
	GameUser.kt
	RandomNumberGenerator.kt
	RandomRandom.kt
	StdRandom.kt

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 8
	Chapter 9
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 20

	Index

