
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Java Web Services: Up and Running

www.allitebooks.com

http://www.allitebooks.org


Other resources from O’Reilly

Related titles Java and XML

Learning Java

Java Generics and

Collections

Head First Java

Java in a Nutshell

Java Power Tools

Java Pocket Guide

Enterprise JavaBeans 3.0

Java Message Service

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.

You’ll also find links to news, events, articles, weblogs, sample

chapters, and code examples.

oreillynet.com is the essential portal for developers interested in

open and emerging technologies, including new platforms, pro-

gramming languages, and operating systems.

Conferences O’Reilly Media brings diverse innovators together to nurture

the ideas that spark revolutionary industries. We specialize in

documenting the latest tools and systems, translating the inno-

vator’s knowledge into useful skills for those in the trenches.

Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-

ence library for programmers and IT professionals. Conduct

searches across more than 1,000 books. Subscribers can zero in

on answers to time-critical questions in a matter of seconds.

Read the books on your Bookshelf from cover to cover or sim-

ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org


Java Web Services: Up and Running

Martin Kalin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org


Java Web Services: Up and Running
by Martin Kalin

Copyright © 2009 Martin Kalin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Julie Steele
Production Editor: Sarah Schneider
Production Services: Appingo, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2009: First Edition. 

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Java Web Services: Up
and Running, the image of a great cormorant, and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52112-7

[M]

1233683127

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org


Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

1. Java Web Services Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
What Are Web Services? 1

What Good Are Web Services? 3
A First Example 4

The Service Endpoint Interface and Service Implementation Bean 4
A Java Application to Publish the Web Service 6
Testing the Web Service with a Browser 7

A Perl and a Ruby Requester of the Web Service 10
The Hidden SOAP 11
A Java Requester of the Web Service 13
Wire-Level Tracking of HTTP and SOAP Messages 14
What’s Clear So Far? 16

Key Features of the First Code Example 16
Java’s SOAP API 18
An Example with Richer Data Types 23

Publishing the Service and Writing a Client 25
Multithreading the Endpoint Publisher 27
What’s Next? 30

2. All About WSDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
What Good Is a WSDL? 31

Generating Client-Support Code from a WSDL 32
The @WebResult Annotation 35

WSDL Structure 36
A Closer Look at WSDL Bindings 38
Key Features of Document-Style Services 39
Validating a SOAP Message Against a WSDL’s XML Schema 42
The Wrapped and Unwrapped Document Styles 43

Amazon’s E-Commerce Web Service 46
An E-Commerce Client in Wrapped Style 47

v

www.allitebooks.com

http://www.allitebooks.org


An E-Commerce Client in Unwrapped Style 52
Tradeoffs Between the RPC and Document Styles 55
An Asynchronous E-Commerce Client 57

The wsgen Utility and JAX-B Artifacts 59
A JAX-B Example 60
Marshaling and wsgen Artifacts 65
An Overview of Java Types and XML Schema Types 67
Generating a WSDL with the wsgen Utility 68

WSDL Wrap-Up 69
Code First Versus Contract First 69
A Contract-First Example with wsimport 70
A Code-First, Contract-Aware Approach 76
Limitations of the WSDL 79

What’s Next? 80

3. SOAP Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
SOAP: Hidden or Not? 81

SOAP 1.1 and SOAP 1.2 81
SOAP Messaging Architecture 82
Programming in the JWS Handler Framework 84
The RabbitCounter Example 85
Injecting a Header Block into a SOAP Header 85
Configuring the Client-Side SOAP Handler 91
Adding a Handler Programmatically on the Client Side 92
Generating a Fault from a @WebMethod 94
Adding a Logical Handler for Client Robustness 95
Adding a Service-Side SOAP Handler 97
Summary of the Handler Methods 101

The RabbitCounter As a SOAP 1.2 Service 102
The MessageContext and Transport Headers 104

An Example to Illustrate Transport-Level Access 104
Web Services and Binary Data 109

Three Options for SOAP Attachments 111
Using Base64 Encoding for Binary Data 111
Using MTOM for Binary Data 116

What’s Next? 119

4. RESTful Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
What Is REST? 121

Verbs and Opaque Nouns 124
From @WebService to @WebServiceProvider 125
A RESTful Version of the Teams Service 126

The WebServiceProvider Annotation 126

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Language Transparency and RESTful Services 132
Summary of the RESTful Features 136
Implementing the Remaining CRUD Operations 136
Java API for XML Processing 138

The Provider and Dispatch Twins 148
A Provider/Dispatch Example 149
More on the Dispatch Interface 153
A Dispatch Client Against a SOAP-based Service 157

Implementing RESTful Web Services As HttpServlets 159
The RabbitCounterServlet 160
Requests for MIME-Typed Responses 165

Java Clients Against Real-World RESTful Services 167
The Yahoo! News Service 167
The Amazon E-Commerce Service: REST Style 170
The RESTful Tumblr Service 173

WADLing with Java-Based RESTful Services 177
JAX-RS: WADLing Through Jersey 182
The Restlet Framework 186
What’s Next? 191

5. Web Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Overview of Web Services Security 193
Wire-Level Security 194

HTTPS Basics 195
Symmetric and Asymmetric Encryption/Decryption 196
How HTTPS Provides the Three Security Services 197
The HttpsURLConnection Class 200

Securing the RabbitCounter Service 203
Adding User Authentication 211
HTTP BASIC Authentication 212

Container-Managed Security for Web Services 212
Deploying a @WebService Under Tomcat 213
Securing the @WebService Under Tomcat 215
Application-Managed Authentication 217
Container-Managed Authentication and Authorization 219
Configuring Container-Managed Security Under Tomcat 220
Using a Digested Password Instead of a Password 223
A Secured @WebServiceProvider 224

WS-Security 227
Securing a @WebService with WS-Security Under Endpoint 229
The Prompter and the Verifier 236
The Secured SOAP Envelope 237
Summary of the WS-Security Example 238

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org


What’s Next? 238

6. JAX-WS in Java Application Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
Overview of a Java Application Server 239
Deploying @WebServices and @WebServiceProviders 244

Deploying @WebServiceProviders 245
Integrating an Interactive Website and a Web Service 250
A @WebService As an EJB 252

Implementation As a Stateless Session EJB 252
The Endpoint URL for an EBJ-Based Service 256
Database Support Through an @Entity 256
The Persistence Configuration File 258
The EJB Deployment Descriptor 260
Servlet and EJB Implementations of Web Services 261

Java Web Services and Java Message Service 262
WS-Security Under GlassFish 265

Mutual Challenge with Digital Certificates 266
MCS Under HTTPS 266
MCS Under WSIT 269
The Dramatic SOAP Envelopes 276

Benefits of JAS Deployment 280
What’s Next? 281

7. Beyond the Flame Wars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
A Very Short History of Web Services 283

The Service Contract in DCE/RPC 284
XML-RPC 285
Standardized SOAP 286

SOAP-Based Web Services Versus Distributed Objects 287
SOAP and REST in Harmony 288

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Preface

This is a book for programmers interested in developing Java web services and Java
clients against web services, whatever the implementation language. The book is a code-
driven introduction to JAX-WS (Java API for XML-Web Services), the framework of
choice for Java web services, whether SOAP-based or REST-style. My approach is to
interpret JAX-WS broadly and, therefore, to include leading-edge developments such
as the Jersey project for REST-style web services, officially known as JAX-RS (Java API
for XML-RESTful Web Services).

JAX-WS is bundled into the Metro Web Services Stack, or Metro for short. Metro is part
of core Java, starting with Standard Edition 6 (hereafter, core Java 6). However, the
Metro releases outpace the core Java releases. The current Metro release can be down-
loaded separately from https://wsit.dev.java.net. Metro is also integrated into the Sun
application server, GlassFish. Given these options, this book’s examples are deployed
in four different ways:

Core Java only
This is the low-fuss approach that makes it easy to get web services and their clients
up and running. The only required software is the Java software development kit
(SDK), core Java 6 or later. Web services can be deployed easily using the Endpoint,
HttpServer, and HttpsServer classes. The early examples take this approach.

Core Java with the current Metro release
This approach takes advantage of Metro features not yet available in the core Java
bundle. In general, each Metro release makes it easier to write web services and
clients. The current Metro release also indicates where JAX-WS is moving. The
Metro release also can be used with core Java 5 if core Java 6 is not an option.

Standalone Tomcat
This approach builds on the familiarity among Java programmers with standalone
web containers such as Apache Tomcat, which is the reference implementation.
Web services can be deployed using a web container in essentially the same way
as are servlets, JavaServer Pages (JSP) scripts, and JavaServer Faces (JSF) scripts. A
standalone web container such as Tomcat is also a good way to introduce
container-managed security for web services.

ix

https://wsit.dev.java.net


GlassFish
This approach allows deployed web services to interact naturally with other
enterprise components such as Java Message Service topics and queues, a JNDI
(Java Naming and Directory Interface) provider, a backend database system and
the @Entity instances that mediate between an application and the database sys-
tem, and an EJB (Enterprise Java Bean) container. The EJB container is important
because a web service can be deployed as a stateless Session EJB, which brings
advantages such as container-managed thread safety. GlassFish works seamlessly
with Metro, including its advanced features, and with popular IDEs (Integrated
Development Environment) such as NetBeans and Eclipse.

An appealing feature of JAX-WS is that the API can be separated cleanly from deploy-
ment options. One and the same web service can be deployed in different ways to suit
different needs. Core Java alone is good for learning, development, and even lightweight
deployment. A standalone web container such as Tomcat provides additional support.
A Java application server such as GlassFish promotes easy integration of web services
with other enterprise technologies.

Code-Driven Approach
My code examples are short enough to highlight key features of JAX-WS but also re-
alistic enough to show off the production-level capabilities that come with the JAX-WS
framework. Each code example is given in full, including all of the import statements.
My approach is to begin with a relatively sparse example and then to add and modify
features. The code samples vary in length from a few statements to several pages of
source. The code is deliberately modular. Whenever there is a choice between con-
ciseness and clarity in coding, I try to opt for clarity.

The examples come with instructions for compiling and deploying the web services
and for testing the service against sample clients. This approach presents the choices
that JAX-WS makes available to the programmer but also encourages a clear and thor-
ough analysis of the JAX-WS libraries and utilities. My goal is to furnish code samples
that can serve as templates for commercial applications.

JAX-WS is a rich API that is explored best in a mix of overview and examples. My aim
is to explain key features about the architecture of web services but, above all, to illus-
trate each major feature with code examples that perform as advertised. Architecture
without code is empty; code without architecture is blind. My approach is to integrate
the two throughout the book.

Web services are a modern, lightweight approach to distributed software systems, that
is, systems such as email or the World Wide Web that require different software com-
ponents to execute on physically distinct devices. The devices can range from large
servers through personal desktop machines to handhelds of various types. Distributed
systems are complicated because they are made up of networked components. There

x | Preface



is nothing more frustrating than a distributed systems example that does not work as
claimed because the debugging is tedious. My approach is thus to provide full, working
examples together with short but precise instructions for getting the sample application
up and running. All of the source code for examples is available from the book’s com-
panion site, at http://www.oreilly.com/catalog/9780596521127. My email address is
kalin@cdm.depaul.edu. Please let me know if you find any code errors.

Chapter-by-Chapter Overview
The book has seven chapters, the last of which is quite short. Here is a preview of each
chapter:

Chapter 1, Java Web Services Quickstart
This chapter begins with a working definition of web services, including the dis-
tinction between SOAP-based and REST-style services. This chapter then focuses
on the basics of writing, deploying, and consuming SOAP-based services in core
Java. There are web service clients written in Perl, Ruby, and Java to underscore
the language neutrality of web services. This chapter also introduces Java’s SOAP
API and covers various ways to inspect web service traffic at the wire level. The
chapter elaborates on the relationship between core Java and Metro.

Chapter 2, All About WSDLs
This chapter focuses on the service contract, which is a WSDL (Web Service Def-
inition Language) document in SOAP-based services. This chapter covers the
standard issues of web service style (document versus rpc) and encoding (literal
versus encoded). This chapter also focuses on the popular but unofficial distinction
between the wrapped and unwrapped variations of document style. All of these
issues are clarified through examples, including Java clients against Amazon’s
E-Commerce services. This chapter explains how the wsimport utility can ease the
task of writing Java clients against commercial web services and how the wsgen
utility figures in the distinction between document-style and rpc-style web services.
The basics of JAX-B (Java API for XML-Binding) are also covered. This chapter,
like the others, is rich in code examples.

Chapter 3, SOAP Handling
This chapter introduces SOAP and logical handlers, which give the service-side
and client-side programmer direct access to either the entire SOAP message or just
its payload. The structure of a SOAP message and the distinction between SOAP
1.1 and SOAP 1.2 are covered. The messaging architecture of a SOAP-based service
is discussed. Various code examples illustrate how SOAP messages can be
processed in support of application logic. This chapter also explains how transport-
level messages (for instance, the typical HTTP messages that carry SOAP
payloads in SOAP-based web services) can be accessed and manipulated in
JAX-WS. This chapter concludes with a section on JAX-WS support for

Preface | xi

http://www.oreilly.com/catalog/9780596521127


transporting binary data, with emphasis on MTOM (Message Transmission Op-
timization Mechanism).

Chapter 4, RESTful Web Services
This chapter opens with a technical analysis of what constitutes a REST-style serv-
ice and moves quickly to code examples. The chapter surveys various approaches
to delivering a Java-based RESTful service: WebServiceProvider, HttpServlet, Jer-
sey Plain Old Java Object (POJO), and restlet among them. The use of a WADL
(Web Application Definition Language) document as a service contract is explored
through code examples. The JAX-P (Java API for XML-Processing) packages,
which facilitate XML processing, are also covered. This chapter offers several ex-
amples of Java clients against real-world REST-style services, including services
hosted by Yahoo!, Amazon, and Tumblr.

Chapter 5, Web Services Security
This chapter begins with an overview of security requirements for real-world web
services, SOAP-based and REST-style. The overview covers central topics such as
mutual challenge and message confidentiality, users-roles security, and
WS-Security. Code examples clarify transport-level security, particularly under
HTTPS. Container-managed security is introduced with examples deployed in the
standalone Tomcat web container. The security material introduced in this chapter
is expanded in the next chapter.

Chapter 6, JAX-WS in Java Application Servers
This chapter starts with a survey of what comes with a Java Application Server
(JAS): an EJB container, a messaging system, a naming service, an integrated
database system, and so on. This chapter has a variety of code examples: a
SOAP-based service implemented as a stateless Session EJB, WebService and
WebServiceProvider instances deployed through embedded Tomcat, a web service
deployed together with a traditional website application, a web service integrated
with JMS (Java Message Service), a web service that uses an @Entity to read and
write from the Java DB database system included in GlassFish, and a WS-Security
application under GlassFish.

Chapter 7, Beyond the Flame Wars
This is a very short chapter that looks at the controversy surrounding SOAP-based
and REST-style web services. My aim is to endorse both approaches, either of
which is superior to what came before. This chapter traces modern web services
from DCE/RPC in the early 1990s through CORBA and DCOM up to the Java EE
and .NET frameworks. This chapter explains why either approach to web services
is better than the distributed-object architecture that once dominated in distributed
software systems.

xii | Preface



Freedom of Choice: The Tools/IDE Issue
Java programmers have a wide choice of productivity tools such as Ant and Maven for
scripting and IDEs such as Eclipse, NetBeans, and IntelliJ IDEA. Scripting tools and
IDEs increase productivity by hiding grimy details. In a production environment, such
tools and IDEs are the sensible way to go. In a learning environment, however, the goal
is to understand the grimy details so that this understanding can be brought to good
use during the inevitable bouts of debugging and application maintenance. Accord-
ingly, my book is neutral with respect to scripting tools and IDEs. Please feel free to
use whichever tools and IDE suit your needs. My how-to segments go over code com-
pilation, deployment, and execution at the command line so that details such as class-
path inclusions and compilation/execution flags are clear. Nothing in any example
depends on a particular scripting tool or IDE.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, file extensions, and emphasis.

Constant width

Used for program listings as well as within paragraphs to refer to program elements
such as variable or method names, data types, environment variables, statements,
and keywords.

Constant width bold
Used within program listings to highlight particularly interesting sections and in
paragraphs to clarify acronyms.

This icon signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Preface | xiii



We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java Web Services: Up and Running, by
Martin Kalin. Copyright 2009 Martin Kalin, 978-0-596-52112-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596521127/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com/

xiv | Preface

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596521127/
http://www.oreilly.com/


Acknowledgments
Christian A. Kenyeres, Greg Ostravich, Igor Polevoy, and Ken Yu were kind enough to
review this book and to offer insightful suggestions for its improvement. They made
the book better than it otherwise would have been. I thank them heartily for the time
and effort that they invested in this project. The remaining shortcomings are mine
alone, of course.

I’d also like to thank Mike Loukides, my first contact at O’Reilly Media, for his role in
shepherding my initial proposal through the process that led to its acceptance. Julie
Steele, my editor, has provided invaluable support and the book would not be without
her help. My thanks go as well to the many behind-the-scenes people at O’Reilly Media
who worked on this project.

This book is dedicated to Janet.

Preface | xv





CHAPTER 1

Java Web Services Quickstart

What Are Web Services?
Although the term web service has various, imprecise, and evolving meanings, a glance
at some features typical of web services will be enough to get us into coding a web
service and a client, also known as a consumer or requester. As the name suggests, a
web service is a kind of webified application, that is, an application typically delivered
over HTTP (Hyper Text Transport Protocol). A web service is thus a distributed ap-
plication whose components can be deployed and executed on distinct devices. For
instance, a stock-picking web service might consist of several code components, each
hosted on a separate business-grade server, and the web service might be consumed on
PCs, handhelds, and other devices.

Web services can be divided roughly into two groups, SOAP-based and REST-style.
The distinction is not sharp because, as a code example later illustrates, a SOAP-based
service delivered over HTTP is a special case of a REST-style service. SOAP originally 
stood for Simple Object Access Protocol but, by serendipity, now may stand for Service
Oriented Architecture (SOA) Protocol. Deconstructing SOA is nontrivial but one point
is indisputable: whatever SOA may be, web services play a central role in the SOA
approach to software design and development. (This is written with tongue only partly
in cheek. SOAP is officially no longer an acronym, and SOAP and SOA can live apart
from one another.) For now, SOAP is just an XML (EXtensible Markup Language)
dialect in which documents are messages. In SOAP-based web services, the SOAP is
mostly unseen infrastructure. For example, in a typical scenario, called the request/
response message exchange pattern (MEP), the client’s underlying SOAP library sends
a SOAP message as a service request, and the web service’s underlying SOAP library
sends another SOAP message as the corresponding service response. The client and the
web service source code may provide few hints, if any, about the underlying SOAP (see
Figure 1-1).

1



SOAP libraries SOAP libraries

Service client SOAP-based service

Request

Response

Figure 1-1. Architecture of a typical SOAP-based web service

REST stands for REpresentational State Transfer. Roy Fielding, one of the main authors
of the HTTP specification, coined the acronym in his Ph.D. dissertation to describe an
architectural style in the design of web services. SOAP has standards (under the World
Wide Web Consortium [W3C]), toolkits, and bountiful software libraries. REST has
no standards, few toolkits, and meager software libraries. The REST style is often seen
as an antidote to the creeping complexity of SOAP-based web services. This book covers
SOAP-based and REST-style web services, starting with the SOAP-based ones.

Except in test mode, the client of either a SOAP-based or REST-style service is rarely a
web browser but rather an application without a graphical user interface. The client
may be written in any language with the appropriate support libraries. Indeed, a major
appeal of web services is language transparency: the service and its clients need not
be written in the same language. Language transparency is the key to web service
interoperability; that is, the ability of web services and requesters to interact seamlessly
despite differences in programming languages, support libraries, and platforms. To
underscore this appeal, clients against our Java web services will be written in various
languages such as C#, Perl, and Ruby, and Java clients will consume services written
in other languages, including languages unknown.

There is no magic in language transparency, of course. If a SOAP-based web service
written in Java can have a Perl or a Ruby consumer, there must be an intermediary that
handles the differences in data types between the service and the requester languages.
XML technologies, which support structured document interchange and processing,
act as the intermediary. For example, in a typical SOAP-based web service, a client
transparently sends a SOAP document as a request to a web service, which transpar-
ently returns another SOAP document as a response. In a REST-style service, a client
might send a standard HTTP request to a web service and receive an appropriate XML
document as a response.

Several features distinguish web services from other distributed software systems. Here
are three:

Open infrastructure
Web services are deployed using industry-standard, vendor-independent protocols
such as HTTP and XML, which are ubiquitous and well understood. Web services

2 | Chapter 1: Java Web Services Quickstart

www.allitebooks.com

http://www.allitebooks.org


can piggyback on networking, data formatting, security, and other infrastructures
already in place, which lowers entry costs and promotes interoperability among
services.

Language transparency
Web services and their clients can interoperate even if written in different pro-
gramming languages. Languages such as C/C++, C#, Java, Perl, Python, Ruby,
and others provide libraries, utilities, and even frameworks in support of web
services.

Modular design
Web services are meant to be modular in design so that new services can be gen-
erated through the integration and layering of existing services. Imagine, for ex-
ample, an inventory-tracking service integrated with an online ordering service to
yield a service that automatically orders the appropriate products in response to
inventory levels.

What Good Are Web Services?
This obvious question has no simple, single answer. Nonetheless, the chief benefits and
promises of web services are clear. Modern software systems are written in a variety of
languages—a variety that seems likely to increase. These software systems will continue
to be hosted on a variety of platforms. Institutions large and small have significant
investment in legacy software systems whose functionality is useful and perhaps mis-
sion critical; and few of these institutions have the will and the resources, human or
financial, to rewrite their legacy systems.

It is rare that a software system gets to run in splendid isolation. The typical software
system must interoperate with others, which may reside on different hosts and be writ-
ten in different languages. Interoperability is not just a long-term challenge but also a
current requirement of production software.

Web services address these issues directly because such services are, first and foremost,
language- and platform-neutral. If a legacy COBOL system is exposed through a web
service, the system is thereby interoperable with service clients written in other pro-
gramming languages.

Web services are inherently distributed systems that communicate mostly over HTTP
but can communicate over other popular transports as well. The communication pay-
loads of web services are structured text (that is, XML documents), which can be in-
spected, transformed, persisted, and otherwise processed with widely and even freely
available tools. When efficiency demands it, however, web services also can deliver
binary payloads. Finally, web services are a work in progress with real-world distributed
systems as their test bed. For all of these reasons, web services are an essential tool in
any modern programmer’s toolbox.

What Are Web Services? | 3



The examples that follow, in this chapter and the others, are meant to be simple enough
to isolate critical features of web services but also realistic enough to illustrate the power
and flexibility that such services bring to software development. Let the examples begin.

A First Example
The first example is a SOAP-based web service in Java and clients in Perl, Ruby, and
Java. The Java-based web service consists of an interface and an implementation.

The Service Endpoint Interface and Service Implementation Bean
The first web service in Java, like almost all of the others in this book, can be compiled
and deployed using core Java SE 6 (Java Standard Edition 6) or greater without any
additional software. All of the libraries required to compile, execute, and consume web
services are available in core Java 6, which supports JAX-WS (Java API for XML-Web
Services). JAX-WS supports SOAP-based and REST-style services. JAX-WS is com-
monly shortened to JWS for Java Web Services. The current version of JAX-WS is 2.x,
which is a bit confusing because version 1.x has a different label: JAX-RPC. JAX-WS
preserves but also significantly extends the capabilities of JAX-RPC.

A SOAP-based web service could be implemented as a single Java class but, following
best practices, there should be an interface that declares the methods, which are the
web service operations, and an implementation, which defines the methods declared
in the interface. The interface is called the SEI: Service Endpoint Interface. The imple-
mentation is called the SIB: Service Implementation Bean. The SIB can be either a
POJO or a Stateless Session EJB (Enterprise Java Bean). Chapter 6, which deals with
the GlassFish Application Server, shows how to implement a web service as an EJB.
Until then, the SOAP-based web services will be implemented as POJOs, that is, as
instances of regular Java classes. These web services will be published using library
classes that come with core Java 6 and, a bit later, with standalone Tomcat and
GlassFish.

Core Java 6, JAX-WS, and Metro
Java SE 6 ships with JAX-WS. However, JAX-WS has a life outside of core Java 6 and
a separate development team. The bleeding edge of JAX-WS is the Metro Web Services
Stack (https://wsit.dev.java.net), which includes Project Tango to promote interopera-
bility between the Java platform and WCF (Windows Communication Foundation),
also known as Indigo. The interoperability initiative goes by the acronym WSIT (Web
Services Interoperability Technologies). In any case, the current Metro version of JAX-
WS, hereafter the Metro release, is typically ahead of the JAX-WS that ships with the
core Java 6 SDK. With Update 4, the JAX-WS in core Java 6 went from JAX-WS 2.0 to
JAX-WS 2.1, a significant improvement.

The frequent Metro releases fix bugs, add features, lighten the load on the programmer,
and in general strengthen JAX-WS. At the start my goal is to introduce JAX-WS with

4 | Chapter 1: Java Web Services Quickstart

https://wsit.dev.java.net


as little fuss as possible; for now, then, the JAX-WS that comes with core Java 6 is just
fine. From time to time an example may involve more work than is needed under the
current Metro release; in such cases, the idea is to explain what is really going on before
introducing a Metro shortcut.

The Metro home page provides an easy download. Once installed, the Metro release
resides in a directory named jaxws-ri. Subsequent examples that use the Metro release
assume an environment variable METRO_HOME, whose value is the install directory for
jaxws-ri. The ri, by the way, is short for reference implementation.

Finally, the downloaded Metro release is a way to do JAX-WS under core Java 5.
JAX-WS requires at least core Java 5 because support for annotations begins with core
Java 5.

Example 1-1 is the SEI for a web service that returns the current time as either a string
or as the elapsed milliseconds from the Unix epoch, midnight January 1, 1970 GMT.

Example 1-1. Service Endpoint Interface for the TimeServer

package ch01.ts;  // time server

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

/**
 *  The annotation @WebService signals that this is the
 *  SEI (Service Endpoint Interface). @WebMethod signals 
 *  that each method is a service operation.
 *
 *  The @SOAPBinding annotation impacts the under-the-hood
 *  construction of the service contract, the WSDL
 *  (Web Services Definition Language) document. Style.RPC
 *  simplifies the contract and makes deployment easier.
*/
@WebService
@SOAPBinding(style = Style.RPC) // more on this later
public interface TimeServer {
    @WebMethod String getTimeAsString();
    @WebMethod long getTimeAsElapsed();
}

Example 1-2 is the SIB, which implements the SEI.

Example 1-2. Service Implementation Bean for the TimeServer

package ch01.ts; 

import java.util.Date;
import javax.jws.WebService;

A First Example | 5



/**
 *  The @WebService property endpointInterface links the
 *  SIB (this class) to the SEI (ch01.ts.TimeServer).
 *  Note that the method implementations are not annotated
 *  as @WebMethods.
*/
@WebService(endpointInterface = "ch01.ts.TimeServer")
public class TimeServerImpl implements TimeServer {
    public String getTimeAsString() { return new Date().toString(); }
    public long getTimeAsElapsed() { return new Date().getTime(); }
}

The two files are compiled in the usual way from the current working directory, which
in this case is immediately above the subdirectory ch01. The symbol % represents the
command prompt:

% javac ch01/ts/*.java

A Java Application to Publish the Web Service
Once the SEI and SIB have been compiled, the web service is ready to be published. In
full production mode, a Java Application Server such as BEA WebLogic, GlassFish,
JBoss, or WebSphere might be used; but in development and even light production
mode, a simple Java application can be used. Example 1-3 is the publisher application
for the TimeServer service.

Example 1-3. Endpoint publisher for the TimeServer

package ch01.ts;

import javax.xml.ws.Endpoint;

/**
 * This application publishes the web service whose
 * SIB is ch01.ts.TimeServerImpl. For now, the 
 * service is published at network address 127.0.0.1.,
 * which is localhost, and at port number 9876, as this
 * port is likely available on any desktop machine. The
 * publication path is /ts, an arbitrary name.
 *
 * The Endpoint class has an overloaded publish method.
 * In this two-argument version, the first argument is the
 * publication URL as a string and the second argument is
 * an instance of the service SIB, in this case
 * ch01.ts.TimeServerImpl.
 *
 * The application runs indefinitely, awaiting service requests.
 * It needs to be terminated at the command prompt with control-C
 * or the equivalent.
 *
 * Once the applicatation is started, open a browser to the URL
 *

6 | Chapter 1: Java Web Services Quickstart



 *     http://127.0.0.1:9876/ts?wsdl
 *
 * to view the service contract, the WSDL document. This is an
 * easy test to determine whether the service has deployed
 * successfully. If the test succeeds, a client then can be
 * executed against the service.
*/
public class TimeServerPublisher {
    public static void main(String[ ] args) {
      // 1st argument is the publication URL
      // 2nd argument is an SIB instance
      Endpoint.publish("http://127.0.0.1:9876/ts", new TimeServerImpl());
    }
}

Once compiled, the publisher can be executed in the usual way:

% java ch01.ts.TimeServerPublisher

How the Endpoint Publisher Handles Requests

Out of the box, the Endpoint publisher handles one client request at a
time. This is fine for getting web services up and running in development
mode. However, if the processing of a given request should hang, then
all other client requests are effectively blocked. An example at the end
of this chapter shows how Endpoint can handle requests concurrently
so that one hung request does not block the others.

Testing the Web Service with a Browser
We can test the deployed service by opening a browser and viewing the WSDL (Web
Service Definition Language) document, which is an automatically generated service
contract. (WSDL is pronounced “whiz dull.”) The browser is opened to a URL that has
two parts. The first part is the URL published in the Java TimeServerPublisher appli-
cation: http://127.0.0.1:9876/ts. Appended to this URL is the query string ?wsdl in
upper-, lower-, or mixed case. The result is http://127.0.0.1:9876/ts?wsdl. Exam-
ple 1-4 is the WSDL document that the browser displays.

Example 1-4. WSDL document for the TimeServer service

<?xml version="1.0" encoding="UTF-8"?>
<definitions 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:tns="http://ts.ch01/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
    targetNamespace="http://ts.ch01/" 
    name="TimeServerImplService">
  <types></types>

  <message name="getTimeAsString"></message>
  <message name="getTimeAsStringResponse">

A First Example | 7

http://127.0.0.1:9876/ts
http://127.0.0.1:9876/ts?wsdl


    <part name="return" type="xsd:string"></part>
  </message>
  <message name="getTimeAsElapsed"></message>
  <message name="getTimeAsElapsedResponse">
    <part name="return" type="xsd:long"></part>
  </message>
  
  <portType name="TimeServer">
    <operation name="getTimeAsString" parameterOrder="">
      <input message="tns:getTimeAsString"></input>
      <output message="tns:getTimeAsStringResponse"></output>
    </operation>
    <operation name="getTimeAsElapsed" parameterOrder="">
      <input message="tns:getTimeAsElapsed"></input>
      <output message="tns:getTimeAsElapsedResponse"></output>
    </operation>
  </portType>

  <binding name="TimeServerImplPortBinding" type="tns:TimeServer">
    <soap:binding style="rpc" 
                  transport="http://schemas.xmlsoap.org/soap/http">
    </soap:binding>
    <operation name="getTimeAsString">
      <soap:operation soapAction=""></soap:operation>
      <input>
        <soap:body use="literal" namespace="http://ts.ch01/"></soap:body>
      </input>
      <output>
        <soap:body use="literal" namespace="http://ts.ch01/"></soap:body>
      </output>
    </operation>
    <operation name="getTimeAsElapsed">
      <soap:operation soapAction=""></soap:operation>
      <input>
        <soap:body use="literal" namespace="http://ts.ch01/"></soap:body>
      </input>
      <output>
        <soap:body use="literal" namespace="http://ts.ch01/"></soap:body>
      </output>
    </operation>
  </binding>

  <service name="TimeServerImplService">
      <port name="TimeServerImplPort" binding="tns:TimeServerImplPortBinding">
      <soap:address location="http://localhost:9876/ts"></soap:address>
    </port>
  </service>
</definitions>

Chapter 2 examines the WSDL in detail and introduces Java utilities associated with
the service contract. For now, two sections of the WSDL (both shown in bold) deserve
a quick look. The portType section, near the top, groups the operations that the web
service delivers, in this case the operations getTimeAsString and getTimeAsElapsed,
which are the two Java methods declared in the SEI and implemented in the SIB. The

8 | Chapter 1: Java Web Services Quickstart



WSDL portType is like a Java interface in that the portType presents the service opera-
tions abstractly but provides no implementation detail. Each operation in the web
service consists of an input and an output message, where input means input for the web
service. At runtime, each message is a SOAP document. The other WSDL section of
interest is the last, the service section, and in particular the service location, in this
case the URL http://localhost:9876/ts. The URL is called the service endpoint and it
informs clients about where the service can be accessed.

The WSDL document is useful for both creating and executing clients against a web
service. Various languages have utilities for generating client-support code from a
WSDL. The core Java utility is now called wsimport but the earlier names wsdl2java
and java2wsdl were more descriptive. At runtime, a client can consume the WSDL
document associated with a web service in order to get critical information about the
data types associated with the operations bundled in the service. For example, a client
could determine from our first WSDL that the operation getTimeAsElapsed returns an
integer and expects no arguments.

The WSDL also can be accessed with various utilities such as curl. For example, the
command:

% curl http://localhost:9876/ts?wsdl

also displays the WSDL.

Avoiding a Subtle Problem in the Web Service Implementation
This example departs from the all-too-common practice of having the service’s SIB (the
class TimeServerImpl) connected to the SEI (the interface TimeServer) only through the
endpointInterface attribute in the @WebService annotation. It is not unusual to see this:

@WebService(endpointInterface = "ch01.ts.TimeServer")
public class TimeServerImpl { // implements TimeServer removed 

The style is popular but unsafe. It is far better to have the implements clause so that the
compiler checks whether the SIB implements the methods declared in the SEI. Remove
the implements clause and comment out the definitions of the two web service
operations:

@WebService(endpointInterface = "ch01.ts.TimeServer")
public class TimeServerImpl {
    // public String getTimeAsString() { return new Date().toString(); }
    // public long gettimeAsElapsed() { return new Date().getTime(); }
}

The code still compiles. With the implements clause in place, the compiler issues a fatal
error because the SIB fails to define the methods declared in the SEI.

A First Example | 9

http://localhost:9876/ts


A Perl and a Ruby Requester of the Web Service
To illustrate the language transparency of web services, the first client against the Java-
based web service is not in Java but rather in Perl. The second client is in Ruby. Ex-
ample 1-5 is the Perl client.

Example 1-5. Perl client for the TimeServer client

#!/usr/bin/perl -w

use SOAP::Lite;
my $url = 'http://127.0.0.1:9876/ts?wsdl';
my $service = SOAP::Lite->service($url);

print "\nCurrent time is: ", $service->getTimeAsString();
print "\nElapsed milliseconds from the epoch: ", $service->getTimeAsElapsed();

On a sample run, the output was:

Current time is: Thu Oct 16 21:37:35 CDT 2008
Elapsed milliseconds from the epoch: 1224211055700

The Perl module SOAP::Lite provides the under-the-hood functionality that allows the
client to issue the appropriate SOAP request and to process the resulting SOAP re-
sponse. The request URL, the same URL used to test the web service in the browser,
ends with a query string that asks for the WSDL document. The Perl client gets the
WSDL document from which the SOAP::Lite library then generates the appropriate
service object (in Perl syntax, the scalar variable $service). By consuming the WSDL
document, the SOAP::Lite library gets the information needed, in particular, the names
of the web service operations and the data types involved in these operations. Fig-
ure 1-2 depicts the architecture.

SOAP::Lite library JAX-WS library

Perl client TimeServer service

Figure 1-2. Architecture of the Perl client and Java service

After the setup, the Perl client invokes the web service operations without any fuss. The
SOAP messages remain unseen.

Example 1-6 is a Ruby client that is functionally equivalent to the Perl client.

10 | Chapter 1: Java Web Services Quickstart



Example 1-6. Ruby client for the TimeServer client

#!/usr/bin/ruby

# one Ruby package for SOAP-based services
require 'soap/wsdlDriver' 

wsdl_url = 'http://127.0.0.1:9876/ts?wsdl'

service = SOAP::WSDLDriverFactory.new(wsdl_url).create_rpc_driver

# Save request/response messages in files named '...soapmsgs...'
service.wiredump_file_base = 'soapmsgs'

# Invoke service operations.
result1 = service.getTimeAsString
result2 = service.getTimeAsElapsed

# Output results.
puts "Current time is: #{result1}"
puts "Elapsed milliseconds from the epoch: #{result2}"

The Hidden SOAP
In SOAP-based web services, a client typically makes a remote procedure call against
the service by invoking one of the web service operations. As mentioned earlier, this
back and forth between the client and service is the request/response message exchange
pattern, and the SOAP messages exchanged in this pattern allow the web service and
a consumer to be programmed in different languages. We now look more closely at
what happens under the hood in our first example. The Perl client generates an HTTP
request, which is itself a formatted message whose body is a SOAP message. Exam-
ple 1-7 is the HTTP request from a sample run.

Example 1-7. HTTP request for the TimeServer service

POST http://127.0.0.1:9876/ts HTTP/ 1.1
Accept: text/xml
Accept: multipart/*
Accept: application/soap
User-Agent: SOAP::Lite/Perl/0.69
Content-Length: 434
Content-Type: text/xml; charset=utf-8
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
     soap:encodingStyle="http:// schemas.xmlsoap.org/soap/encoding/"
     xmlns:soap="http://schemas.xmlsoap.org/soap/ envelope/"
     xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:tns="http://ts.ch01/"

The Hidden SOAP | 11



     xmlns:xsd ="http://www.w3.org/2001/XMLSchema">
  <soap:Body>
    <tns:getTimeAsString xsi:nil="true" />
  </soap:Body>
</soap:Envelope>

The HTTP request is a message with a structure of its own. In particular:

• The HTTP start line comes first and specifies the request method, in this case the
POST method, which is typical of requests for dynamic resources such as web
services or other web application code (for example, a Java servlet) as opposed to
requests for a static HTML page. In this case, a POST rather than a GET request
is needed because only a POST request has a body, which encapsulates the SOAP
message. Next comes the request URL followed by the HTTP version, in this case
1.1, that the requester understands. HTTP 1.1 is the current version.

• Next come the HTTP headers, which are key/value pairs in which a colon (:) sep-
arates the key from the value. The order of the key/value pairs is arbitrary. The key
Accept occurs three times, with a MIME (Multiple Internet Mail Extension) type/
subtype as the value: text/xml, multipart/*, and application/soap. These three
pairs signal that the requester is ready to accept an arbitrary XML response, a
response with arbitrarily many attachments of any type (a SOAP message can have
arbitrarily many attachments), and a SOAP document, respectively. The HTTP key
SOAPAction is often present in the HTTP header of a web service request and the
key’s value may be the empty string, as in this case; but the value also might be the
name of the requested web service operation.

• Two CRLF (Carriage Return Line Feed) characters, which correspond to two Java
\n characters, separate the HTTP headers from the HTTP body, which is required
for the POST verb but may be empty. In this case, the HTTP body contains the
SOAP document, commonly called the SOAP envelope because the outermost or
document element is named Envelope. In this SOAP envelope, the SOAP body con-
tains a single element whose local name is getTimeAsString, which is the name of
the web service operation that the client wants to invoke. The SOAP request en-
velope is simple in this example because the requested operation takes no
arguments.

On the web service side, the underlying Java libraries process the HTTP request, extract
the SOAP envelope, determine the identity of the requested service operation, invoke
the corresponding Java method getTimeAsString, and then generate the appropriate
SOAP message to carry the method’s return value back to the client. Example 1-8 is
the HTTP response from the Java TimeServerImpl service request shown in Exam-
ple 1-7.

Example 1-8. HTTP response from the TimeServer service

HTTP/1.1 200 OK
Content-Length: 323
Content-Type: text/xml; charset=utf-8

12 | Chapter 1: Java Web Services Quickstart

www.allitebooks.com

http://www.allitebooks.org


Client-Date: Mon, 28 Apr 2008 02:12:54 GMT
Client-Peer: 127.0.0.1:9876
Client-Response-Num: 1

<?xml version="1.0" ?>
<soapenv:Envelope
    xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soapenv:Body>
    <ans:getTimeAsStringResponse xmlns:ans="http://ts.ch01/">
      <return>Mon Apr 28 14:12:54 CST 2008</return>
    </ans:getTimeAsStringResponse>
  </soapenv:Body>
</soapenv:Envelope>

Once again the SOAP envelope is the body of an HTTP message, in this case the HTTP
response to the client. The HTTP start line now contains the status code as the integer
200 and the corresponding text OK, which signal that the client request was handled
successfully. The SOAP envelope in the HTTP response’s body contains the current
time as a string between the XML start and end tags named return. The Perl SOAP
library extracts the SOAP envelope from the HTTP response and, because of informa-
tion in the WSDL document, expects the desired return value from the web service
operation to occur in the XML return element.

A Java Requester of the Web Service
Example 1-9 is a Java client functionally equivalent to the Perl and Ruby clients shown
in Examples 1-5 and 1-6, respectively.

Example 1-9. Java client for the Java web service

package ch01.ts;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import java.net.URL;
class TimeClient {
    public static void main(String args[ ]) throws Exception {
        URL url = new URL("http://localhost:9876/ts?wsdl");

        // Qualified name of the service:
        //   1st arg is the service URI
        //   2nd is the service name published in the WSDL
        QName qname = new QName("http://ts.ch01/", "TimeServerImplService");

        // Create, in effect, a factory for the service.
        Service service = Service.create(url, qname);

        // Extract the endpoint interface, the service "port".
        TimeServer eif = service.getPort(TimeServer.class);

A Java Requester of the Web Service | 13



        System.out.println(eif.getTimeAsString());
        System.out.println(eif.getTimeAsElapsed());
   }
}

The Java client uses the same URL with a query string as do the Perl and Ruby clients,
but the Java client explicitly creates an XML qualified name, which has the syntax
namespace URI:local name. A URI is a Uniform Resource Identifier and differs from
the more common URL in that a URL specifies a location, whereas a URI need not
specify a location. In short, a URI need not be a URL. For now, it is enough to under-
score that the Java class java.xml.namespace.QName represents an XML-qualified name.
In this example, the namespace URI is provided in the WSDL, and the local name is
the SIB class name TimeServerImpl with the word Service appended. The local name
occurs in the service section, the last section of the WSDL document.

Once the URL and QName objects have been constructed and the Service.create method
has been invoked, the statement of interest:

TimeServer port = service.getPort(TimeServer.class);

executes. Recall that, in the WSDL document, the portType section describes, in the
style of an interface, the operations included in the web service. The getPort method
returns a reference to a Java object that can invoke the portType operations. The port
object reference is of type ch01.ts.TimeServer, which is the SEI type. The Java client,
like the Perl client, invokes the two web service methods; and the Java libraries, like
the Perl and Ruby libraries, generate and process the SOAP messages exchanged trans-
parently to enable the successful method invocations.

Wire-Level Tracking of HTTP and SOAP Messages
Example 1-7 and Example 1-8 show an HTTP request message and an HTTP response
message, respectively. Each HTTP message encapsulates a SOAP envelope. These mes-
sage traces were done with the Perl client by changing the Perl use directive in Exam-
ple 1-5:

use SOAP::Lite;

to:

use SOAP::Lite +trace;

The Ruby client in Example 1-6 contains a line:

service.wiredump_file_base = 'soapmsgs'

that causes the SOAP envelopes to be saved in files on the local disk. It is possible to
capture the wire-level traffic directly in Java as well, as later examples illustrate. Various
options are available for tracking SOAP and HTTP messages at the wire level. Here is
a short introduction to some of them.

14 | Chapter 1: Java Web Services Quickstart



The tcpmon utility (available at https://tcpmon.dev.java.net) is free and downloads as
an executable JAR file. Its graphical user interface (GUI) is easy to use. The utility
requires only three settings: the server’s name, which defaults to localhost; the server’s
port, which would be set to 9876 for the TimeServer example because this is the port at
which Endpoint publishes the service; and the local port, which defaults to 8080 and is
the port at which tcpmon listens. With tcpmon in use, the TimeClient would send its
requests to port 8080 instead of port 9876. The tcpmon utility intercepts HTTP traffic
between the client and web service, displaying the full messages in its GUI.

The Metro release has utility classes for tracking HTTP and SOAP traffic. This approach
does not require any change to the client or to the service code; however, an additional
package must be put on the classpath and a system property must be set either at the
command line or in code. The required package is in the file jaxws_ri/jaxws-rt.jar.
Assuming that the environment variable METRO_HOME points to the jaxws-ri directory,
here is the command that tracks HTTP and SOAP traffic between the TimeClient, which
connects to the service on port 9876, and the TimeServer service. (Under Windows,
$METRO_HOME becomes %METRO_HOME%.) The command is on three lines for readability:

% java -cp ".":$METRO_HOME/lib/jaxws-rt.jar \
  -Dcom.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true \
  ch01.ts.TimeClient    

The resulting dump shows all of the SOAP traffic but not all of the HTTP headers.
Message tracking also can be done on the service side.

There are various other open source and commercial products available for tracking
the SOAP traffic. Among the products that are worth a look at are SOAPscope (http://
home.mindreef.com), NetSniffer (http://www.miray.de), and Wireshark (http://www
.wireshark.org). The tcpdump utility comes with most Unix-type systems, including
Linux and OS X, and is available on Windows as WinDump (http://www.winpcap
.org). Besides being free, tcpdump is nonintrusive in that it requires no change to either
a web service or a client. The tcpdump utility dumps message traffic to the standard
output. The companion utility tcptrace (http://www.tcptrace.org) can be used to analyze
the dump. The remainder of this section briefly covers tcpdump as a flexible and pow-
erful trace utility.

Under Unix-type systems, the tcpdump utility typically must be executed as super-
user. There are various flagged arguments that determine how the utility works. Here
is a sample invocation:

% tcpdump -i lo -A -s 1024 -l 'dst host localhost and port 9876' | tee dump.log

The utility can capture packets on any network interface. A list of such interfaces is
available with the tcpdump -D (under Windows, WinDump -D), which is equivalent to
the ifconfig -a command on Unix-like systems. In this example, the flag/value pair
-i lo means capture packets from the interface lo, where lo is short for the localhost
network interface on many Unix-like systems. The flag -A means that the captured
packets should be presented in ASCII, which is useful for web packets as these typically

Wire-Level Tracking of HTTP and SOAP Messages | 15

https://tcpmon.dev.java.net
http://home.mindreef.com
http://home.mindreef.com
http://home.mindreef.com
http://www.miray.de
http://www.miray.de
http://www.wireshark.org
http://www.wireshark.org
http://www.wireshark.org
http://www.winpcap.org
http://www.winpcap.org
http://www.winpcap.org
http://www.tcptrace.org


contain text. The -s 1024 flag sets the snap length, the number of bytes that should be
captured from each packet. The flag -l forces the standard output to be line buffered
and easier to read; and, on the same theme, the construct | tee dump.log at the end
pipes the same output that shows up on the screen (the standard output) into a local
file named dump.log. Finally, the expression:

'dst host localhost and port 9876'

acts as a filter, capturing only packets whose destination is localhost on port 9876, the
port on which TimeServerPublisher of Example 1-3 publishes the TimeServer service.

The tcpdump utility and the TimeServerPublisher application can be started in any
order. Once both are running, the TimeClient or one of the other clients can be execu-
ted. With the sample use of tcpdump shown above, the underlying network packets are
saved in the file dump.log. The file does require some editing to make it easily readable.
In any case, the dump.log file captures the same SOAP envelopes shown in Examples
1-7 and 1-8.

What’s Clear So Far?
The first example is a web service with two operations, each of which delivers the
current time but in different representations: in one case as a human-readable string,
and in the other case as the elapsed milliseconds from the Unix epoch. The two oper-
ations are implemented as independent, self-contained methods. From the service re-
quester’s perspective, either method may be invoked independently of the other and
one invocation of a service method has no impact on any subsequent invocation of the
same service method. The two Java methods depend neither on one another nor on
any instance field to which both have access; indeed, the SIB class TimeServerImpl has
no fields at all. In short, the two method invocations are stateless.

In the first example, neither method expects arguments. In general, web service oper-
ations may be parameterized so that appropriate information can be passed to the
operation as part of the service request. Regardless of whether the web service opera-
tions are parameterized, they still should appear to the requester as independent and
self-contained. This design principle will guide all of the samples that we consider, even
ones that are richer than the first.

Key Features of the First Code Example
The TimeServerImpl class implements a web service with a distinctive message
exchange pattern (MEP)—request/response. The service allows a client to make a
language-neutral remote procedure call, invoking the methods getTimeAsString and
getTimeAsElapsed. Other message patterns are possible. Imagine, for example, a web
service that tracks new snow amounts for ski areas. Some participating clients, perhaps
snow-measuring electrical devices strategically placed around the ski slopes, might use
the one-way pattern by sending a snow amount from a particular location but

16 | Chapter 1: Java Web Services Quickstart



without expecting a response from the service. The service might exhibit the notifica-
tion pattern by multicasting to subscribing clients (for instance, travel bureaus) infor-
mation about current snow conditions. Finally, the service might periodically use the
solicit/response pattern to ask a subscribing client whether the client wishes to continue
receiving notifications. In summary, SOAP-based web services support various pat-
terns. The request/response pattern of RPC remains the dominant one. The infrastruc-
ture needed to support this pattern in particular is worth summarizing:

Message transport
SOAP is designed to be transport-neutral, a design goal that complicates matters
because SOAP messages cannot rely on protocol-specific information included in
the transport infrastructure. For instance, SOAP delivered over HTTP should not
differ from SOAP delivered over some other transport protocol such as SMTP
(Simple Mail Transfer Protocol), FTP (File Transfer Protocol), or even JMS (Java
Message Service). In practice, however, HTTP is the usual transport for SOAP-
based services, a point underscored in the usual name: SOAP-based web services.

Service contract
The service client requires information about the service’s operations in order to
invoke them. In particular, the client needs information about the invocation syn-
tax: the operation’s name, the order and types of the arguments passed to the
operation, and the type of the returned value. The client also requires the service
endpoint, typically the service URL. The WSDL document provides these pieces
of information and others. Although a client could invoke a service without first
accessing the WSDL, this would make things harder than they need to be.

Type system
The key to language neutrality and, therefore, service/consumer interoperability is
a shared type system so that the data types used in the client’s invocation coordinate
with the types used in the service operation. Consider a simple example. Suppose
that a Java web service has the operation:

boolean bytes_ok(byte[ ] some_bytes)

The bytes_ok operation performs some validation test on the bytes passed to the
operation as an array argument, returning either true or false. Now assume that
a client written in C needs to invoke bytes_ok. C has no types named boolean and
byte. C represents boolean values with integers, with nonzero as true and zero as
false; and the C type signed char corresponds to the Java type byte. A web service
would be cumbersome to consume if clients had to map client-language types to
service-language types. In SOAP-based web services, the XML Schema type system
is the default type system that mediates between the client’s types and the service’s
types. In the example above, the XML Schema type xsd:byte is the type that me-
diates between the C signed char and the Java byte; and the XML Schema type
xsd:boolean is the mediating type for the C integers nonzero and zero and the Java
boolean values true and false. In the notation xsd:byte, the prefix xsd (XML
Schema Definition) underscores that this is an XML Schema type because xsd is

What’s Clear So Far? | 17



the usual extension for a file that contains an XML Schema definition; for instance,
purchaseOrder.xsd.

Java’s SOAP API
A major appeal of SOAP-based web services is that the SOAP usually remains hidden.
Nonetheless, it may be useful to glance at Java’s underlying support for generating and
processing SOAP messages. Chapter 3, which introduces SOAP handlers, puts the
SOAP API to practical use. This section provides a first look at the SOAP API through
a simulation example. The application consists of one class, DemoSoap, but simulates
sending a SOAP message as a request and receiving another as a response. Exam-
ple 1-10 shows the full application.

Example 1-10. A demonstration of Java’s SOAP API

package ch01.soap;

import java.util.Date;
import java.util.Iterator;
import java.io.InputStream;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.Node;
import javax.xml.soap.Name;

public class DemoSoap {
    private static final String LocalName = "TimeRequest";
    private static final String Namespace = "http://ch01/mysoap/";
    private static final String NamespacePrefix = "ms";

    private ByteArrayOutputStream out;
    private ByteArrayInputStream in;

    public static void main(String[ ] args) {
       new DemoSoap().request();
    }

    private void request() {
       try {
         // Build a SOAP message to send to an output stream.
         SOAPMessage msg = create_soap_message();

18 | Chapter 1: Java Web Services Quickstart



   
         // Inject the appropriate information into the message. 
         // In this case, only the (optional) message header is used
         // and the body is empty.
         SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
         SOAPHeader hdr = env.getHeader();
  
         // Add an element to the SOAP header. 
         Name lookup_name = create_qname(msg);
         hdr.addHeaderElement(lookup_name).addTextNode("time_request");

         // Simulate sending the SOAP message to a remote system by
         // writing it to a ByteArrayOutputStream.
         out = new ByteArrayOutputStream();
         msg.writeTo(out);

         trace("The sent SOAP message:", msg);

         SOAPMessage response = process_request();
         extract_contents_and_print(response);
       }
       catch(SOAPException e) { System.err.println(e); }
       catch(IOException e) { System.err.println(e); }
    }

    private SOAPMessage process_request() {
       process_incoming_soap();
       coordinate_streams();
       return create_soap_message(in);
    }
       
    private void process_incoming_soap() {
       try {
         // Copy output stream to input stream to simulate
         // coordinated streams over a network connection.
         coordinate_streams();

         // Create the "received" SOAP message from the
         // input stream.
         SOAPMessage msg = create_soap_message(in);

         // Inspect the SOAP header for the keyword 'time_request' 
         // and process the request if the keyword occurs.
         Name lookup_name = create_qname(msg);

         SOAPHeader header = msg.getSOAPHeader();
         Iterator it = header.getChildElements(lookup_name);
         Node next = (Node) it.next();
         String value = (next == null) ? "Error!" : next.getValue();

         // If SOAP message contains request for the time, create a
         // new SOAP message with the current time in the body.
         if (value.toLowerCase().contains("time_request")) {

Java’s SOAP API | 19



           // Extract the body and add the current time as an element.
           String now = new Date().toString();
           SOAPBody body = msg.getSOAPBody();
           body.addBodyElement(lookup_name).addTextNode(now);
           msg.saveChanges();

           // Write to the output stream.
           msg.writeTo(out);
           trace("The received/processed SOAP message:", msg);
         }
       }
       catch(SOAPException e) { System.err.println(e); }
       catch(IOException e) { System.err.println(e); }
    }
    
    private void extract_contents_and_print(SOAPMessage msg) {
       try {
         SOAPBody body = msg.getSOAPBody();

         Name lookup_name = create_qname(msg);
         Iterator it = body.getChildElements(lookup_name);
         Node next = (Node) it.next();
    
         String value = (next == null) ? "Error!" : next.getValue();
         System.out.println("\n\nReturned from server: " + value);
       }
       catch(SOAPException e) { System.err.println(e); }
    }

    private SOAPMessage create_soap_message() {
       SOAPMessage msg = null;
       try {
         MessageFactory mf = MessageFactory.newInstance();
         msg = mf.createMessage();
       }
       catch(SOAPException e) { System.err.println(e); }
       return msg;
    }

    private SOAPMessage create_soap_message(InputStream in) {
       SOAPMessage msg = null;
       try {
         MessageFactory mf = MessageFactory.newInstance();
         msg = mf.createMessage(null, // ignore MIME headers
                                in);  // stream source
       }
       catch(SOAPException e) { System.err.println(e); }
       catch(IOException e) { System.err.println(e); }
       return msg;
    }

    private Name create_qname(SOAPMessage msg) {
       Name name = null;

20 | Chapter 1: Java Web Services Quickstart



       try {
         SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
         name = env.createName(LocalName, NamespacePrefix, Namespace);
       }
       catch(SOAPException e) { System.err.println(e); }
       return name;
    }

    private void trace(String s, SOAPMessage m) {
       System.out.println("\n");
       System.out.println(s);
       try {
         m.writeTo(System.out);
       }
       catch(SOAPException e) { System.err.println(e); }
       catch(IOException e) { System.err.println(e); }
    }

    private void coordinate_streams() {
       in = new ByteArrayInputStream(out.toByteArray());
       out.reset();
    }
}   

Here is a summary of how the application runs, with emphasis on the code involving
SOAP messages. The DemoSoap application’s request method generates a SOAP message
and adds the string time_request to the SOAP envelope’s header. The code segment,
with comments removed, is:

SOAPMessage msg = create_soap_message();
SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
SOAPHeader hdr = env.getHeader();
Name lookup_name = create_qname(msg);
hdr.addHeaderElement(lookup_name).addTextNode("time_request");

There are two basic ways to create a SOAP message. The simple way is illustrated in
this code segment:

MessageFactory mf = MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

In the more complicated way, the MessageFactory code is the same, but the creation
call becomes:

SOAPMessage msg = mf.createMessage(mime_headers, input_stream);

The first argument to createMessage is a collection of the transport-layer headers (for
instance, the key/value pairs that make up an HTTP header), and the second argument
is an input stream that provides the bytes to create the message (for instance, the input
stream encapsulated in a Java Socket instance).

Java’s SOAP API | 21



Once the SOAP message is created, the header is extracted from the SOAP envelope
and an XML text node is inserted with the value time_request. The resulting SOAP
message is:

<SOAP-ENV:Envelope
     xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
   <SOAP-ENV:Header>
      <ms:TimeRequest xmlns:ms="http://ch01/mysoap/">
        time_request
      </ms:TimeRequest>
   </SOAP-ENV:Header>
   <SOAP-ENV:Body/>
</SOAP-ENV:Envelope>

There is no need right now to examine every detail of this SOAP message. Here is a
summary of some key points. The SOAP body is always required but, as in this case,
the body may be empty. The SOAP header is optional but, in this case, the header
contains the text time_request. Message contents such as time_request normally would
be placed in the SOAP body and special processing information (for instance, user
authentication data) would be placed in the header. The point here is to illustrate how
the SOAP header and the SOAP body can be manipulated.

The request method writes the SOAP message to a ByteArrayOutputStream, which sim-
ulates sending the message over a network connection to a receiver on a different host.
The request method invokes the process_request method, which in turn delegates the
remaining tasks to other methods. The processing goes as follows. The received SOAP
message is created from a ByteArrayInputStream, which simulates an input stream on
the receiver’s side; this stream contains the sent SOAP message. The SOAP message
now is created from the input stream:

SOAPMessage msg = null;
try {
   MessageFactory mf = MessageFactory.newInstance();
   msg = mf.createMessage(null, // ignore MIME headers
                          in);  // stream source (ByteArrayInputStream)
}  

and then the SOAP message is processed to extract the time_request string. The ex-
traction goes as follows. First, the SOAP header is extracted from the SOAP message
and an iterator over the elements with the tag name:

<ms:TimeRequest xmlns:ms="http://ch01/mysoap/>

is created. In this example, there is one element with this tag name and the element
should contain the string time_request. The lookup code is:

SOAPHeader header = msg.getSOAPHeader();
Iterator it = header.getChildElements(lookup_name);
Node next = (Node) it.next();
String value = (next == null) ? "Error!" : next.getValue();

If the SOAP header contains the proper request string, the SOAP body is extracted from
the incoming SOAP message and an element containing the current time as a string is

22 | Chapter 1: Java Web Services Quickstart

www.allitebooks.com

http://www.allitebooks.org


added to the SOAP body. The revised SOAP message then is sent as a response. Here
is the code segment with the comments removed:

if (value.toLowerCase().contains("time_request")) {
  String now = new Date().toString();
  SOAPBody body = msg.getSOAPBody();
  body.addBodyElement(lookup_name).addTextNode(now);
  msg.saveChanges();

  msg.writeTo(out);
  trace("The received/processed SOAP message:", msg);
}

The outgoing SOAP message on a sample run was:

<SOAP-ENV:Envelope 
      xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
   <SOAP-ENV:Header>
       <ms:TimeRequest xmlns:ms="http://ch01/mysoap/">
          time_request
       </ms:TimeRequest>
   </SOAP-ENV:Header>
   <SOAP-ENV:Body>
       <ms:TimeRequest xmlns:ms="http://ch01/mysoap/">
          Mon Oct 27 14:45:53 CDT 2008
       </ms:TimeRequest>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This example provides a first look at Java’s API. Later examples illustrate production-
level use of the SOAP API.

An Example with Richer Data Types
The operations in the TimeServer service take no arguments and return simple types, a
string and an integer. This section offers a richer example whose details are clarified in
the next chapter.

The Teams web service in Example 1-11 differs from the TimeServer service in several
important ways.

Example 1-11. The Teams document-style web service

package ch01.team;

import java.util.List;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class Teams {
    private TeamsUtility utils;

An Example with Richer Data Types | 23



    public Teams() { 
       utils = new TeamsUtility(); 
       utils.make_test_teams();
    }

    @WebMethod
    public Team getTeam(String name) { return utils.getTeam(name); }

    @WebMethod
    public List<Team> getTeams() { return utils.getTeams(); }
}

For one, the Teams service is implemented as a single Java class rather than as a separate
SEI and SIB. This is done simply to illustrate the possibility. A more important differ-
ence is in the return types of the two Teams operations. The operation getTeam is para-
meterized and returns an object of the programmer-defined type Team, which is a list
of Player instances, another programmer-defined type. The operation getTeams returns
a List<Team>, that is, a Java Collection.

The utility class TeamsUtility generates the data. In a production environment, this
utility might retrieve a team or list of teams from a database. To keep this example
simple, the utility instead creates the teams and their players on the fly. Here is part of
the utility:

package ch01.team;

import java.util.Set;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;

public class TeamsUtility {
    private Map<String, Team> team_map;

    public TeamsUtility() {
       team_map = new HashMap<String, Team>();
    }

    public Team getTeam(String name) { return team_map.get(name); }
    public List<Team> getTeams() {
       List<Team> list = new ArrayList<Team>();
       Set<String> keys = team_map.keySet();
       for (String key : keys)
          list.add(team_map.get(key));
       return list;
    }

    public void make_test_teams() {
       List<Team> teams = new ArrayList<Team>();
       ...
       Player chico = new Player("Leonard Marx", "Chico");
       Player groucho = new Player("Julius Marx", "Groucho");

24 | Chapter 1: Java Web Services Quickstart



       Player harpo = new Player("Adolph Marx", "Harpo");
       List<Player> mb = new ArrayList<Player>();
       mb.add(chico); mb.add(groucho); mb.add(harpo);
       Team marx_brothers = new Team("Marx Brothers", mb);
       teams.add(marx_brothers);

       store_teams(teams);

    }

    private void store_teams(List<Team> teams) {
       for (Team team : teams)
          team_map.put(team.getName(), team);
    }
}

Publishing the Service and Writing a Client
Recall that the SEI for the TimeServer service contains the annotation:

@SOAPBinding(style = Style.RPC) 

This annotation requires that the service use only very simple types such as string and
integer. By contrast, the Teams service uses richer data types, which means that
Style.DOCUMENT, the default, should replace Style.RPC. The document style does re-
quire more setup, which is given below but not explained until the next chapter. Here,
then, are the steps required to get the web service deployed and a sample client written
quickly:

1. The source files are compiled in the usual way. From the working directory, which
has ch01 as a subdirectory, the command is:

% javac ch01/team/*.java

In addition to the @WebService-annotated Teams class, the ch01/team directory con-
tains the Team, Player, TeamsUtility, and TeamsPublisher classes shown below all
together:

package ch01.team;
public class Player {
    private String name;
    private String nickname;

    public Player() { }
    public Player(String name, String nickname) {
       setName(name);
       setNickname(nickname);
    }

    public void setName(String name) { this.name = name; }
    public String getName() { return name; }
    public void setNickname(String nickname) { this.nickname = nickname; }
    public String getNickname() { return nickname; }
}

An Example with Richer Data Types | 25



// end of Player.java

package ch01.team;

import java.util.List;
public class Team {
    private List<Player> players;
    private String name;
    
    public Team() { }
    public Team(String name, List<Player> players) { 
       setName(name);
       setPlayers(players); 
    }

    public void setName(String name) { this.name = name; }
    public String getName() { return name; }
    public void setPlayers(List<Player> players) { this.players = players; }
    public List<Player> getPlayers() { return players; }
    public void setRosterCount(int n) { } // no-op but needed for property
    public int getRosterCount() { return (players == null) ? 0 : players.size(); }

    }
}
// end of Team.java

package ch01.team;
import javax.xml.ws.Endpoint;
class TeamsPublisher {
    public static void main(String[ ] args) {
       int port = 8888;
       String url = "http://localhost:" + port + "/teams";
       System.out.println("Publishing Teams on port " + port);
       Endpoint.publish(url, new Teams());
    }
} 

2. In the working directory, invoke the wsgen utility, which comes with core Java 6:

% wsgen -cp . ch01.team.Teams

This utility generates various artifacts; that is, Java types needed by the method
Endpoint.publish to generate the service’s WSDL. Chapter 2 looks closely at these
artifacts and how they contribute to the WSDL.

3. Execute the TeamsPublisher application.

4. In the working directory, invoke the wsimport utility, which likewise comes with
core Java 6:

% wsimport -p teamsC -keep http://localhost:8888/teams?wsdl

This utility generates various classes in the subdirectory teamsC (the -p flag stands
for package). These classes make it easier to write a client against the service.

Step 4 expedites the coding of a client, which is shown here:

26 | Chapter 1: Java Web Services Quickstart



import teamsC.TeamsService;
import teamsC.Teams;
import teamsC.Team;
import teamsC.Player;
import java.util.List;

class TeamClient {
    public static void main(String[ ] args) {
        TeamsService service = new TeamsService();
        Teams port = service.getTeamsPort();
        List<Team> teams = port.getTeams();
        for (Team team : teams) {
            System.out.println("Team name: " + team.getName() +
                               " (roster count: " + team.getRosterCount() + ")");
            for (Player player : team.getPlayers())
                System.out.println("  Player: " + player.getNickname());
        }
    }
}

When the client executes, the output is:

Team name: Abbott and Costello (roster count: 2)
  Player: Bud
  Player: Lou
Team name: Marx Brothers (roster count: 3)
  Player: Chico
  Player: Groucho
  Player: Harpo
Team name: Burns and Allen (roster count: 2)
  Player: George
  Player: Gracie

This example hints at what is possible in a commercial-grade, SOAP-based web service.
Programmer-defined types such as Player and Team, along with arbitrary collections of
these, can be arguments passed to or values returned from a web service so long as
certain guidelines are followed. One guideline comes into play in this example. For the
Team and the Player classes, the JavaBean properties are of types String or int; and a
List, like any Java Collection, has a toArray method. In the end, a List<Team> reduces
to arrays of simple types; in this case String instances or int values. The next chapter
covers the details, in particular how the wsgen and the wsimport utilities facilitate the
development of JWS services and clients.

Multithreading the Endpoint Publisher
In the examples so far, the Endpoint publisher has been single-threaded and, therefore,
capable of handling only one client request at a time: the published service completes
the processing of one request before beginning the processing of another request. If the
processing of the current request hangs, then no subsequent request can be processed
unless and until the hung request is processed to completion.

Multithreading the Endpoint Publisher | 27



In production mode, the Endpoint publisher would need to handle concurrent requests
so that several pending requests could be processed at the same time. If the underlying
computer system is, for example, a symmetric multiprocessor (SMP), then separate
CPUs could process different requests concurrently. On a single-CPU machine, the
concurrency would occur through time sharing; that is, each request would get a share
of the available CPU cycles so that several requests would be in some stage of processing
at any given time. In Java, concurrency is achieved through multithreading. At issue,
then, is how to make the Endpoint publisher multithreaded. The JWS framework sup-
ports Endpoint multithreading without forcing the programmer to work with difficult,
error-prone constructs such as the synchronized block or the wait and notify method
invocations.

An Endpoint object has an Executor property defined with the standard get/set meth-
ods. An Executor is an object that executes Runnable tasks; for example, standard Java
Thread instances. (The Runnable interface declares only one method whose declaration
is public void run().) An Executor object is a nice alternative to Thread instances, as
the Executor provides high-level constructs for submitting and managing tasks that are
to be executed concurrently. The first step to making the Endpoint publisher multi-
threaded is thus to create an Executor class such as the following very basic one:

package ch01.ts;

import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.Condition;

public class MyThreadPool extends ThreadPoolExecutor {
    private static final int pool_size = 10;
    private boolean is_paused;
    private ReentrantLock pause_lock = new ReentrantLock();
    private Condition unpaused = pause_lock.newCondition();
    
    public MyThreadPool(){
       super(pool_size,        // core pool size
             pool_size,        // maximum pool size
             0L,               // keep-alive time for idle thread
             TimeUnit.SECONDS, // time unit for keep-alive setting
             new LinkedBlockingQueue<Runnable>(pool_size)); // work queue 
    }

    // some overrides
    protected void beforeExecute(Thread t, Runnable r) {
       super.beforeExecute(t, r);
       pause_lock.lock();
       try {
          while (is_paused) unpaused.await();
       }

28 | Chapter 1: Java Web Services Quickstart



       catch (InterruptedException e) { t.interrupt(); } 
       finally { pause_lock.unlock(); }
    }
    
    public void pause() {
       pause_lock.lock();
       try {
          is_paused = true;
       } 
       finally { pause_lock.unlock(); }
    }
    
    public void resume() {
       pause_lock.lock();
       try {
          is_paused = false;
          unpaused.signalAll();
       } 
       finally { pause_lock.unlock(); }
    }
}

The class MyThreadPool creates a pool of 10 threads, using a fixed-size queue to store
the threads that are created under the hood. If the pooled threads are all in use, then
the next task in line must wait until one of the busy threads becomes available. All of
these management details are handled automatically. The MyThreadPool class overrides
a few of the available methods to give the flavor.

A MyThreadPool object can be used to make a multithreaded Endpoint publisher. Here
is the revised publisher, which now consists of several methods to divide the work:

package ch01.ts;

import javax.xml.ws.Endpoint;

class TimePublisherMT { // MT for multithreaded
    private Endpoint endpoint;

    public static void main(String[ ] args) {
        TimePublisherMT self = new TimePublisherMT();
        self.create_endpoint();
        self.configure_endpoint();
        self.publish();
    }
    private void create_endpoint() {
        endpoint = Endpoint.create(new TimeServerImpl());
    }
    private void configure_endpoint() {
        endpoint.setExecutor(new MyThreadPool());
    }

Multithreading the Endpoint Publisher | 29



    private void publish() {
        int port = 8888;
        String url = "http://localhost:" + port + "/ts";
        endpoint.publish(url);
        System.out.println("Publishing TimeServer on port " + port);
    }
}    

Once the ThreadPoolWorker has been coded, all that remains is to set the Endpoint pub-
lisher’s executor property to an instance of the worker class. The details of thread
management do not intrude at all into the publisher.

The multithreaded Endpoint publisher is suited for lightweight production, but this
publisher is not a service container in the true sense; that is, a software application that
readily can deploy many web services at the same port. A web container such as Tomcat,
which is the reference implementation, is better suited to publish multiple web services.
Tomcat is introduced in later examples.

What’s Next?
A SOAP-based web service should provide, as a WSDL document, a service contract
for its potential clients. So far we have seen how a Perl, a Ruby, and a Java client can
request the WSDL at runtime for use in the underlying SOAP libraries. Chapter 2 stud-
ies the WSDL more closely and illustrates how it may be used to generate client-side
artifacts such as Java classes, which in turn ease the coding of web service clients. The
Java clients in Chapter 2 will not be written from scratch, as is our first Java client.
Instead such clients will be written with the considerable aid of the wsimport utility, as
was the TeamClient shown earlier. Chapter 2 also introduces JAX-B (Java API for XML-
Binding), a collection of Java packages that coordinate Java data types and XML data
types. The wsgen utility generates JAX-B artifacts that play a key role in this coordina-
tion; hence, wsgen also will get a closer look.

30 | Chapter 1: Java Web Services Quickstart



CHAPTER 2

All About WSDLs

What Good Is a WSDL?
The usefulness of WSDLs, the service contracts for SOAP-based web services, is shown
best through examples. The original Java client against the TimeServer service invokes
the Service.create method with two arguments: a URL, which provides the endpoint
at which the service can be accessed, and an XML-qualified name (a Java QName), which
in turn consists of the service’s local name (in this case, TimeServerImplService) and a
namespace identifier (in this case, the URI http://ts.ch01/). Here is the relevant code
without the comments:

URL url = new URL("http://localhost:9876/ts?wsdl");
QName qname = new QName("http://ts.ch01/", "TimeServerImplService");
Service service = Service.create(url, qname);

Note that the automatically generated namespace URI inverts the package name of the 
service implementation bean (SIB), ch01.ts.TimeServerImpl. The package ch01.ts be-
comes ts.ch01 in the URI. This detail is critical. If the first argument to the QName con-
structor is changed to the URI http://ch01.ts/, the Java TimeClient throws a exception,
complaining that the service’s automatically generated WSDL does not describe a serv-
ice with this namespace URI. The programmer must figure out the namespace URI—
presumably by inspecting the WSDL! By the way, even the trailing slash in the URI is
critical. The URI http://ts.ch01, with a slash missing at the end, causes the same
exception as does http://ch01.ts/, with ch01 and ts in the wrong order.

The same point can be illustrated with a revised Perl client, which accesses the web
service but without requesting its WSDL, as shown in Example 2-1.

Example 2-1. A revised Perl client for the TimeServer service

#!/usr/bin/perl -w

use SOAP::Lite;

my $endpoint = 'http://127.0.0.1:9876/ts'; # endpoint
my $uri      = 'http://ts.ch01/';          # namespace

31



my $client = SOAP::Lite->uri($uri)->proxy($endpoint);

my $response = $client->getTimeAsString()->result();
print $response, "\n";
$response = $client->getTimeAsElapsed()->result();
print $response, "\n";

The revised Perl client is functionally equivalent to the original. However, the revised
Perl client must specify the service’s namespace URI: http://ts.ch01/. No other URI
would work because the Java-generated WSDL produces exactly this one. In effect, the
web service is accessible through a pair: a service endpoint (URL) and a service name-
space (URI). It is harder to code the Perl client in Example 2-1 than the original Perl
client. The revised client requires the programmer to know the service namespace URI
in addition to the service endpoint URL. The original Perl client sidesteps the problem
by requesting the WSDL document, which includes the service URI. The original Perl
client, which gets the URI from the consumed WSDL document, is the easier way to go.

Generating Client-Support Code from a WSDL
Java has a wsimport utility that eases the task of writing a Java client against a SOAP-
based web service. The utility generates client-support code or artifacts from the service
contract, the WSDL document. At a command prompt, the command:

% wsimport

displays a short report on how the utility can be used. The first example with
wsimport produces client artifacts against the TimeServer service.

After the ch01.ts.TimeServerPublisher application has been started, the command:

% wsimport -keep -p client http://localhost:9876/ts?wsdl

generates two source and two compiled files in the subdirectory client. The URL at the
end—the same one used in the original Perl, Ruby, and Java clients to request the
service’s WSDL document—gives the location of the service contract. The option -p
specifies the Java package in which the generated files are to be placed, in this case a
package named client; the package name is arbitrary and the utility uses or creates a
subdirectory with the package name. The option -keep indicates that the source files
should be kept, in this case for inspection. The -p option is important because wsim-
port generates the file TimeServer.class, which has the same name as the compiled ver-
sions of the original service endpoint interface (SEI). If a package is not specified with
the wsimport utility, then the default package is the package of the service implemen-
tation, in this case ch01.ts. In short, using the -p option prevents the compiled SEI file
from being overwritten by the file generated with the wsimport utility. If a local copy
of the WSDL document is available (for instance, the file named ts.wsdl), then the
command would be:

% wsimport -keep -p client ts.wsdl

32 | Chapter 2: All About WSDLs

www.allitebooks.com

http://www.allitebooks.org


Examples 2-2 and 2-3 are the two source files, with comments removed, that the wsim-
port command generates.

Example 2-2. The wsimport-generated TimeServer

package client;

import javax.jws.WebMethod;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

@WebService(name = "TimeServer", targetNamespace = "http://ts.ch01/")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public interface TimeServer {
    @WebMethod
    @WebResult(partName = "return")
    public String getTimeAsString();

    @WebMethod
    @WebResult(partName = "return")
    public long getTimeAsElapsed();
}

Example 2-3. The wsimport-generated TimeServerImplService

package client;

import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.WebEndpoint;
import javax.xml.ws.WebServiceClient;

@WebServiceClient(name = "TimeServerImplService",
                  targetNamespace = "http://ts.ch01/",
                  wsdlLocation = "http://localhost:9876/ts?wsdl")
public class TimeServerImplService extends Service {
    private final static URL TIMESERVERIMPLSERVICE_WSDL_LOCATION;

    static {
        URL url = null;
        try {
            url = new URL("http://localhost:9876/ts?wsdl");
        }
        catch (MalformedURLException e) {
            e.printStackTrace();
        }
        TIMESERVERIMPLSERVICE_WSDL_LOCATION = url;
    }

    public TimeServerImplService(URL wsdlLocation, QName serviceName) {
        super(wsdlLocation, serviceName);
    }

What Good Is a WSDL? | 33



    public TimeServerImplService() {
        super(TIMESERVERIMPLSERVICE_WSDL_LOCATION,
              new QName("http://ts.ch01/", "TimeServerImplService"));
    }

    @WebEndpoint(name = "TimeServerImplPort")
    public TimeServer getTimeServerImplPort() {
        return (TimeServer)super.getPort(new QName("http://ts.ch01/",
                                                   "TimeServerImplPort"),
                                         TimeServer.class);
    }
}

Three points about these generated source files deserve mention. First, the interface
client.TimeServer declares the very same methods as the original SEI, TimeServer. The
methods are the web service operation getTimeAsString and the operation
getTimeAsElapsed. Second, the class client.TimeServerImplService has a no-argument
constructor that constructs the very same Service object as the original Java client
TimeClient. Third, TimeServerImplService encapsulates the getTimeServerImplPort
method, which returns an instance of type client.TimeServer, which in turn supports
invocations of the two web service operations. Together the two generated types, the
interface client.TimeServer and the class client.TimeServerImplService, ease the task
of writing a Java client against the web service. Example 2-4 shows a client that uses
the client-support code from the wsimport utility.

Example 2-4. A Java client that uses wsimport artifacts

package client;

class TimeClientWSDL {
    public static void main(String[ ] args) {
       // The TimeServerImplService class is the Java type bound to
       // the service section of the WSDL document.
       TimeServerImplService service = new TimeServerImplService();

       // The TimeServer interface is the Java type bound to
       // the portType section of the WSDL document.
       TimeServer eif = service.getTimeServerImplPort();

       // Invoke the methods.
       System.out.println(eif.getTimeAsString());
       System.out.println(eif.getTimeAsElapsed());
    }
}

The client in Example 2-4 is functionally equivalent to the original TimeClient, but this
client is far easier to write. In particular, troublesome yet critical details such as the 
appropriate QName and service endpoint now are hidden in the wsimport-generated class,
client.TempServerImplService. The idiom that is illustrated here works in general for

34 | Chapter 2: All About WSDLs



writing clients with help from WSDL-based artifacts such as TimeServer and
TimeServerImplService:

• First, construct a Service object using one of two constructors in the wsimport-
generated class, in this example client.TimeServerImplService. The no-argument
constructor is preferable because of its simplicity. However, a two-argument con-
structor is also available in case the web service’s namespace (URI) or the service
endpoint (URL) have changed. Even in this case, however, it would be advisable
to regenerate the WSDL-based Java files with another use of the wsimport utility.

• Invoke the get...Port method on the constructed Service object, in this example,
the method getTimeServerImplPort. The method returns an object that
encapsulates the web service operations, in this case getTimeAsString and
getTimeAsElapsed, declared in the original SEI.

The @WebResult Annotation
The WSDL-based client.TimeServer interface introduces the @WebResult annotation.
To show how this annotation works, Example 2-5 is a revised version of the
ch01.ts.TimeServer SEI (with comments removed).

Example 2-5. A more annotated version of the TimeServer service

package ch01.ts;  // time server

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebResult;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

@WebService
@SOAPBinding(style = Style.RPC) // more on this later
public interface TimeServer {
    @WebMethod
    @WebResult(partName = "time_response")
    String getTimeAsString();

    @WebMethod
    @WebResult(partName = "time_response")
    long getTimeAsElapsed();
}

The @WebResult annotates the two web service operations. In the resulting WSDL, the
message section reflects this change:

<message name="getTimeAsString"></message>
<message name="getTimeAsStringResponse">
    <part name="time_response" type="xsd:string"></part>
</message>
<message name="getTimeAsElapsed"></message>

What Good Is a WSDL? | 35



<message name="getTimeAsElapsedResponse">
    <part name="time_response" type="xsd:long"></part>
</message>

Note that time_response now replaces return from the original WDSL. The SOAP re-
sponse document from the web service likewise reflects the change:

<?xml version="1.0" ?>
<soapenv:Envelope
    xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soapenv:Body>
     <ans:getTimeAsStringResponse xmlns:ans="http://ts.ch01/">
       <time_response>
          Thu Mar 27 21:20:09 CDT 2008
       </time_response>
     </ans:getTimeAsStringResponse>
  </soapenv:Body>
</soapenv:Envelope>

Once again, the time_response tag replaces the return tag from the original SOAP re-
sponse. If the @WebResult annotation were applied, say, only to the getTimeAsString
operation, then the SOAP response for this operation would use the time_response tag
but the response for the getTimeAsElapsed operation still would use the default
return tag.

The point of interest is that various annotations are available to determine what the
generated WSDL document will look like. Such annotations will be introduced in small
doses. It is easiest to minimize the use of annotations, using only the ones that serve
some critical purpose. The TimeServer works exactly the same whether the
time_response or the default return tag is used in the WSDL and in the SOAP response;
hence, there is usually no need for programmer-generated code to use the @WebResult
annotation.

Various commercial-grade WSDLs are available for generating Java support code. An
example that will be introduced shortly uses a WSDL from Amazon’s Associates Web
Service, more popularly known as Amazon’s E-Commerce service. However, the Am-
azon example first requires a closer look at WSDL structure. My plan is to keep the
tedious details to a minimum. The goal of the next section is to move from basic WSDL
structure to the unofficial but popular distinction between wrapped and unwrapped
SOAP message bodies.

WSDL Structure
At a high level, a WSDL document is a contract between a service and its consumers.
The contract provides such critical information as the service endpoint, the service
operations, and the data types required for these operations. The service contract also
indicates, in describing the messages exchanged in the service, the underlying service

36 | Chapter 2: All About WSDLs



pattern, for instance, request/response or solicit/response. The outermost element
(called the document or root element) in a WSDL is named definitions because the
WSDL provides definitions grouped into the following sections:

• The types section, which is optional, provides data type definitions under some
data type system such as XML Schema. A particular document that defines data
types is an XSD (XML Schema Definition). The types section holds, points to, or
imports an XSD. If the types section is empty, as in the case of the TimeServer
service, then the service uses only simple data types such as xsd:string and
xsd:long.

Although the WSDL 2.0 specification allows for alternatives to XML Schema (see
http://www.w3.org/TR/wsdl20-altschemalangs), XML Schema is the default and the
dominant type system used in WSDLs. Accordingly, the following examples
assume XML Schema unless otherwise noted.

• The message section defines the messages that implement the service. Messages are
constructed from data types either defined in the immediately preceding section
or, if the types section is empty, available as defaults. Further, the order of the
messages indicates the service pattern. Recall that, for messages, the directional
properties in and out are from the service’s perspective: an in message is to the
service, whereas an out message is from the service. Accordingly, the message order
in/out indicates the request/response pattern, whereas the message order out/in
indicates the solicit/response pattern. For the TimeServer service, there are four
messages: a request and a response for the two operations, getTimeAsString and
getTimeAsElapsed. The in/out order in each pair indicates a request/response pat-
tern for the web service operations.

• The portType section presents the service as named operations, with each operation
as one or more messages. Note that the operations are named after methods an-
notated as @WebMethods, a point to be discussed in detail shortly. A web service’s
portType is akin to a Java interface in presenting the service abstractly, that is, with
no implementation details.

• The binding section is where the WSDL definitions go from the abstract to the
concrete. A WSDL binding is akin to a Java implementation of an interface (that
is, a WSDL portType). Like a Java implementation class, a WSDL binding provides
important concrete details about the service. The binding section is the most com-
plicated one because it must specify these implementation details of a service
defined abstractly in the portType section:

— The transport protocol to be used in sending and receiving the underlying SOAP
messages. Either HTTP or SMTP (Simple Mail Transport Protocol) may be used
for what is called the application-layer protocol; that is, the protocol for trans-
porting the SOAP messages that implement the service. HTTP is by far the more
popular choice. The WSDL for the TimeServer service contains this segment:

<soap:binding style="rpc"
              transport="http://schemas.xmlsoap.org/soap/http">

WSDL Structure | 37

http://www.w3.org/TR/wsdl20-altschemalangs


The value of the transport attribute signals that the service’s SOAP messages
will be sent and received over HTTP, which is captured in the slogan SOAP over
HTTP.

— The style of the service, shown earlier as the value of the style attribute, takes
either rpc or document as a value. The document style is the default, which explains
why the SEI for the TimeServer service contains the annotation:

@SOAPBinding(style = Style.RPC)           

This annotation forces the style attribute to have the value rpc in the Java-
generated WSDL. The difference between the rpc and the document style will be
clarified shortly.

— The data format to be used in the SOAP messages. There are two choices,
literal and encoded. These choices also will be clarified shortly.

• The service section specifies one or more endpoints at which the service’s func-
tionality, the sum of its operations, is available. In technical terms, the service
section lists one or more port elements, where a port consists of a portType (inter-
face) together with a corresponding binding (implementation). The term port
derives from distributed systems. An application hosted at a particular network
address (for instance, 127.0.0.1) is available to clients, local or remote, through a
specified port. For example, the TimeServer application is available to clients at
port 9876.

The tricky part of the binding section involves the possible combinations of the style
and the use attributes. The next subsection looks more closely at the relationships
between these attributes.

A Closer Look at WSDL Bindings
In the WSDL binding section, the style attribute has rpc and document as possible
values, with document as the default. The use attribute has literal and encoded as pos-
sible values, with literal as the default. In theory, there are four possibilities, as shown
in Table 2-1.

Table 2-1. Possible combinations of style and use

style use

document literal

document encoded

rpc literal

rpc encoded

Of the four possible combinations listed in Table 2-1, only two occur regularly in con-
temporary SOAP-based web services: document/literal and rpc/literal. For one

38 | Chapter 2: All About WSDLs



thing, the encoded use, though valid in a WSDL document, does not comply with the
WS-I (Web Services-Interoperability) guidelines (see http://www.ws-i.org). As the name
indicates, the WS-I initiative is meant to help software architects and developers pro-
duce web services that can interoperate seamlessly despite differences in platforms and
programming languages.

Before going any further into the details, it will be helpful to have a sample WSDL for
a document-style service, which then can be contrasted with the WSDL for the rpc-style
TimeServer service. The use attribute will be clarified after the style attribute.

The TimeServer service can be changed to a document-style service in two quick steps.
The first is to comment out the line:

@SOAPBinding(style = Style.RPC)

in the SEI source, ch02.ts.TimeServer.java, before recompiling. (The package has been
changed from ch01.ts to ch02.ts to reflect that this is Chapter 2.) Commenting out
this annotation means that the default style, Style.DOCUMENT, is in effect. The second
step is to execute, in the working directory, the command:

% wsgen -keep -cp . ch02.ts.TimeServerImpl

The revised SEI and the corresponding SIB must be recompiled before the wsgen utility
is used so that the document-style version is current. The wsgen utility then generates
four source and four compiled files in the subdirectory ch02/ts/jaxws. These files pro-
vide the data types needed, in the document-style service, to produce the WSDL auto-
matically. For example, among the files are source and compiled versions of the classes
GetTimeAsElapsed, which is a request type, and GetTimeAsElapsedResponse, which is a
response type. As expected, these two types support requests to and responses from
the service operation getTimeAsElapsed. The wsgen utility generates comparable types
for the getTimeAsString operation as well. The wsgen utility will be examined again
later in this chapter.

The revised program can be published as before with the TimeServerPublisher, and the
WSDL then is available at the published URL http://localhost:9876/ts?wsdl. The con-
trasting WSDLs now can be used to explain in detail how the document and rpc styles
differ. There is one other important change to the TimeServer, which is reflected in the
WSDL: the package name changes from ch01.ts to ch02.ts, a change that is reflected
in a namespace throughout the WSDL.

Key Features of Document-Style Services
The document style indicates that a SOAP-based web service’s underlying messages
contain full XML documents; for instance, a company’s product list as an XML docu-
ment or a customer’s order for some products from this list as another XML document.
By contrast, the rpc style indicates that the underlying SOAP messages contain param-
eters in the request messages and return values in the response messages. Following is
a segment of the rpc-style WSDL for the original TimeServer service:

WSDL Structure | 39

http://www.ws-i.org
http://localhost:9876/ts?wsdl


<types></types>
<message name="getTimeAsString"></message>
<message name="getTimeAsStringResponse">
  <part name="time_response" type="xsd:string"></part>
</message>
<message name="getTimeAsElapsed"></message>
<message name="getTimeAsElapsedResponse">
  <part name="time_response" type="xsd:long"></part>
</message>

The types section is empty because the service uses, as return values, only the simple
types xsd:string and xsd:long. The simple types do not require a definition in the
WSDL’s types section. Further, the message names show their relationships to
the corresponding Java @WebMethods; in this case, the method getTimeAsString and the
method getTimeAsElapsed. The response messages have a part subelement that gives
the data type of the returned value, but because the request messages expect no argu-
ments, the request messages do not need part subelements to describe parameters.

By contrast, here is the same WSDL segment for the document-style version of the
TimeServer service:

<types>
  <xsd:schema>
    <xsd:import schemaLocation="http://localhost:9876/ts?xsd=1"
         namespace="http://ts.ch02/">
    </xsd:import>
  </xsd:schema>
</types>
<message name="getTimeAsString">
  <part element="tns:getTimeAsString" name="parameters"></part>
</message>
<message name="getTimeAsStringResponse">
  <part element="tns:getTimeAsStringResponse" name="parameters"></part>
</message>
<message name="getTimeAsElapsed">
  <part element="tns:getTimeAsElapsed" name="parameters"></part>
</message>
<message name="getTimeAsElapsedResponse">
  <part element="tns:getTimeAsElapsedResponse" name="parameters"></part>
</message>      

The types now contains an import directive for the associated XSD document. The URL
for the XSD is http://localhost:9876/ts?xsd=1. Example 2-6 is the XSD associated with
the WSDL.

Example 2-6. The XSD for the TimeServer WSDL

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:tns="http://ts.ch02/"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           targetNamespace="http://ts.ch02/" version="1.0">
  <xs:element name="getTimeAsElapsed"
              type="tns:getTimeAsElapsed">
  </xs:element>

40 | Chapter 2: All About WSDLs

http://localhost:9876/ts?xsd=1


  <xs:element name="getTimeAsElapsedResponse"
              type="tns:getTimeAsElapsedResponse">
  </xs:element>
  <xs:element name="getTimeAsString"
              type="tns:getTimeAsString">
  </xs:element>
  <xs:element name="getTimeAsStringResponse"
              type="tns:getTimeAsStringResponse">
  </xs:element>
  <xs:complexType name="getTimeAsString"></xs:complexType>
  <xs:complexType name="getTimeAsStringResponse">
    <xs:sequence>
      <xs:element name="return"
                  type="xs:string" minOccurs="0">
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="getTimeAsElapsed"></xs:complexType>
  <xs:complexType name="getTimeAsElapsedResponse">
    <xs:sequence>
      <xs:element name="return" type="xs:long"></xs:element>
    </xs:sequence>
  </xs:complexType>
</xs:schema>

The XSD document defines four complex types whose names (for instance, the class
getTimeAsElapsedResponse) are the names of corresponding messages in the message
section. Under the rpc-style, the messages carry the names of the @WebMethods; under
the document-style, there is an added level of complexity in that the messages carry the
names of XSD types defined in the WSDL’s types section.

The request/response pattern in a web service is possible under either the document or
the rpc style, although the style named rpc obviously underscores this pattern. Under
the rpc style, the messages are named but not explicitly typed; under the document style,
the messages are explicitly typed in an XSD document.

The document style deserves to be the default. This style can support services with rich,
explicitly defined data types because the service’s WSDL can define the required types
in an XSD document. Further, the document style can support any service pattern, in-
cluding request/response. Indeed, the SOAP messages exchanged in the TimeServer
application look the same regardless of whether the style is rpc or document. From an
architectural perspective, the document style is the simpler of the two in that the body
of a SOAP message is a self-contained, precisely defined document. The rpc style re-
quires messages with the names of the associated operations (in Java, the @WebMethods)
with parameters as subelements. From a developer perspective, however, the rpc style
is the simpler of the two because the wsgen utility is not needed to generate Java types
that correspond to XML Schema types. (The current Metro release generates the
wsgen artifacts automatically. The details follow shortly.)

Finally, the use attribute determines how the service’s data types are to be encoded and
decoded. The WSDL service contract has to specify how data types used in the

WSDL Structure | 41



implementation language (for instance, Java) are serialized to WSDL-compliant types
(by default, XML Schema types). On the client side, the WSDL-compliant types then
must be deserialized into client-language types (for instance, C or Ruby types). The
setting:

use = 'literal'

means that the service’s type definitions literally follow the WSDL document’s XML
Schema. By contrast, the setting:

use = 'encoded'

means that the service’s type definitions come from encoding rules, typically the en-
coding rules in the SOAP 1.1 specification. As noted earlier, the document/encoded and
rpc/encoded combinations are not WS-I compliant. The real choices are, therefore,
document/literal and rpc/literal.

Validating a SOAP Message Against a WSDL’s XML Schema
One more point about rpc-style versus document-style bindings needs to be made. On
the receiving end, a document-style SOAP message can be validated straightforwardly
against the associated XML Schema. In rpc-style, by contrast, the validation is trickier
precisely because there is no associated XML Schema. Example 2-7 is a short Java
program that validates an arbitrary XML document against an arbitrary XSD document.

Example 2-7. A short program to validate an XML document

import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.SchemaFactory;
import javax.xml.validation.Schema;
import javax.xml.XMLConstants;
import javax.xml.validation.Validator;

class ValidateXML {
    public static void main(String[ ] args) {
       if (args.length != 2) {
          String msg = "\nUsage: java ValidateXML XMLfile XSDfile";
          System.err.println(msg);
          return;
       }
       try {
          // Read and validate the XML Schema (XSD document).
          final String schema_uri = XMLConstants.W3C_XML_SCHEMA_NS_URI;
          SchemaFactory factory = SchemaFactory.newInstance(schema_uri);
          Schema schema = factory.newSchema(new StreamSource(args[1]));
          // Validate the XML document against the XML Schema.
          Validator val = schema.newValidator();
          val.validate(new StreamSource(args[0]));
       }
       // Return on any validation error.
       catch(Exception e) {
          System.err.println(e);

42 | Chapter 2: All About WSDLs

www.allitebooks.com

http://www.allitebooks.org


          return;
       }
       System.out.println(args[0] + " validated against " + args[1]);
    }
}

Here is the extracted body of a SOAP response to the document-style TimeServer service:

<ns1:getTimeAsElapsedResponse xmlns:ns1="http://ts.ch02/">
   <return>1208229395922</return>
</ns1:getTimeAsElapsedResponse>   

The body has been edited slightly by the addition of the namespace declaration
xmlns:ns1="http://ts.ch02/, which sets ns1 as an alias or proxy for the namespace URI
http://ts.ch02/. This URI does occur in the SOAP message but in the element
SOAP::Envelope rather than in the ns1:getTimeAsElapsedResponse subelement. For a re-
view of the full XSD, see Example 2-6. To keep the processing simple, the response
body and the XSD are in the local files body.xml and ts.xsd, respectively. The command:

% java ValidateXML body.xml ts.xsd

validates the response’s body against the XSD. If the return element in the body were
changed to, say, foo bar, the attempted validation would produce the error message:

'foo bar' is not a valid value for 'integer'

thereby indicating that the SOAP message did not conform to the associated WSDL’s
XSD document.

The Wrapped and Unwrapped Document Styles
The document style is the default under the WS-I Basic profile for web services intero-
perability (see http://www.ws-i.org/Profiles/BasicProfile-1.1.html). This default style
provides, through the XSD in the WSDL’s types section, an explicit and precise defi-
nition of the data types in the service’s underlying SOAP messages. The document style
thereby promotes web service interoperability because a service client can determine
precisely which data types are involved in the service and how the document contained
in the body of an underlying SOAP message should be structured. However, the rpc
style still has appeal in that the web service’s operations have names linked directly to
the underlying implementations; for example, to Java @WebMethods. For instance, the
TimeServer service in the rpc style has a @WebMethod with the name getTimeAsString
whose WSDL counterparts are the request message named getTimeAsString and the
response message named getTimeAsStringResponse. The rpc style is programmer-
friendly.

The gist of the wrapped convention, which is unofficial but widely followed, is to give
a document-style service the look and feel of an rpc-style service. The wrapped conven-
tion seeks to combine the benefits of document and rpc styles.

WSDL Structure | 43

http://www.ws-i.org/Profiles/BasicProfile-1.1.html


To begin, Example 2-8 is an example of an unwrapped SOAP envelope, and Exam-
ple 2-9 is an example of a wrapped SOAP envelope.

Example 2-8. Unwrapped document style

<?xml version="1.0" ?>
<!-- Unwrapped document style -->
<soapenv:Envelope
    xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soapenv:Body>
     <num1 xmlns:ans="http://ts.ch01/">27</num1>
     <num2 xmlns:ans="http://ts.ch01/">94</num1>
  </soapenv:Body>
</soapenv:Envelope>

Example 2-9. Wrapped document style

<?xml version="1.0" ?>
<!-- Wrapped document style -->
<soapenv:Envelope
    xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soapenv:Body>
     <addNums xmlns:ans="http://ts.ch01/">
       <num1>27</num1>
       <num2>94</num1>
     </addNums>
  </soapenv:Body>
</soapenv:Envelope>

The body of the unwrapped SOAP request envelope has two elements, named num1 and
num2. These are numbers to be added. The SOAP body does not contain the name of
the service operation that is to perform the addition and send the sum as a response.
By contrast, the body of a wrapped SOAP request envelope has a single element named
addNums, the name of the requested service operation, and two subelements, each hold-
ing a number to be added. The wrapped version makes the service operation explicit.
The arguments for the operation are nested in an intuitive manner; that is, as
subelements within the operation element addNums.

Guidelines for the wrapped document convention are straightforward. Here is a sum-
mary of the guidelines:

• The SOAP envelope’s body should have only one part, that is, it should contain a
single XML element with however many XML subelements are required. For ex-
ample, even if a service operation expects arguments and returns a value, the pa-
rameters and return value do not occur as standalone XML elements in the SOAP
body but, rather, as XML subelements within the main element. Example 2-9
illustrates with the addNums element as the single XML element in the SOAP body
and the pair num1 and num2 as XML subelements.

44 | Chapter 2: All About WSDLs



• The relationship between the WSDL’s XSD and the single XML element in the
SOAP body is well defined. The document-style version of the TimeServer can be
used to illustrate. In the XSD, there are four XSD complexType elements, each of
which defines a data type. For example, there is a complexType with the name
getTimeAsString and another with the name getTimeAsStringResponse. These def-
initions occur in roughly the bottom half of the XSD. In the top half are XML
element definitions, each of which has a name and a type attribute. The
complexTypes also have names, which are coordinated with the element names. For
example, the complexType named getTimeAsString is matched with an element of
the same name. Here is a segment of the XSD that shows the name coordination:

<xs:element name="getTimeAsString"
            type="tns:getTimeAsString">
</xs:element>
<xs:element name="getTimeAsStringResponse"
            type="tns:getTimeAsStringResponse">
</xs:element>
...
<xs:complexType name="getTimeAsString"></xs:complexType>
<xs:complexType name="getTimeAsStringResponse">
    <xs:sequence>
      <xs:element name="return"
                  type="xs:string" minOccurs="0">
      </xs:element>
    </xs:sequence>
</xs:complexType>

Further, each complexType is either empty (for instance, getTimeAsString) or con-
tains an xs:sequence (for instance, getTimeAsStringResponse, which has an
xs:sequence of one XML element). The xs:sequence contains typed arguments and
typed returned values. The TimeServer example is quite simple in that the requests
contain no arguments and the responses contain just one return value. Nonethe-
less, this segment of XSD shows the structure for the general case. For instance, if
the getTimeAsStringResponse had several return values, then each would occur as
an XML subelement within the xs:sequence. Finally, note that every XML element
in this XSD segment (and, indeed, in the full XSD) is named and typed.

• The XML elements in the XSD serve as the wrappers for the SOAP message body.
For the ch01.ts.TimeServer, a sample wrapped document is:

<?xml version="1.0" ?>
<soapenv:Envelope
     xmlns:soapenv="http://schemas.xmlsoap.or g/soap/envelope/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soapenv:Body>
    <ans:getTimeAsElapsedResponse xmlns:ans="http://ts.ch01/">
      <return>1205030105192</return>
    </ans:getTimeAsElapsedResponse>
  </soapenv:Body>
</soapenv:Envelope>          

WSDL Structure | 45



This is the same kind of SOAP body generated for an rpc-style service, which is
precisely the point. The difference, again, is that the wrapped document-style serv-
ice, unlike its rpc-style counterpart, includes explicit type and format information
in an XSD from the WSDL’s types section.

• The request wrapper has the same name as the service operation (for instance,
addNums in Example 2-9), and the response wrapper should be the request wrapper’s
name with Response appended (for instance, addNumsResponse).

• The WSDL portType section now has named operations (e.g., getTimeAsString)
whose messages are typed. For instance, the input (request) message
getTimeAsString has the type tns:getTimeAsString, which is defined as one of the
four complexTypes in the WSDL’s XSD. For the document-style version of the serv-
ice, here is the portType segment:

<portType name="TimeServer">
  <operation name="getTimeAsString">
    <input message="tns:getTimeAsString"></input>
    <output message="tns:getTimeAsStringResponse"></output>
  </operation>
  <operation name="getTimeAsElapsed">
    <input message="tns:getTimeAsElapsed"></input>
    <output message="tns:getTimeAsElapsedResponse"></output>
  </operation>
</portType>  

The wrapped document convention, despite its unofficial status, has become prevalent.
JWS supports the convention. By default, a Java SOAP-based web service is wrapped
doc/lit, that is, wrapped document style with literal encoding.

This excursion into the details of WSDL binding section will be helpful in the next
example, which uses the wsimport utility to generate client-support code against Am-
azon’s E-Commerce web service. The contrast between wrapped and unwrapped is
helpful in understanding the client-support code.

Amazon’s E-Commerce Web Service
The section title has the popular and formerly official name for one of the web services
that Amazon hosts. The official name is now Amazon Associates Web Service. The
service in question is accessible as SOAP-based or REST-style. The service is free of
charge, but it does require registration at http://affiliate-program.amazon.com/gp/asso
ciates/join. For the examples in this section, an Amazon access key (as opposed to the
secret access key used to generate an authentication token) is required.

Amazon’s E-Commerce service replicates the interactive experience at the Amazon
website (http://www.amazon.com). For example, the service supports searching for
items, bidding on items and putting items up for bid, creating a shopping cart and filling
it with items, and so on. The two sample clients illustrate item search.

46 | Chapter 2: All About WSDLs

http://affiliate-program.amazon.com/gp/associates/join
http://affiliate-program.amazon.com/gp/associates/join
http://www.amazon.com
http://www.amazon.com
http://www.amazon.com


This section examines two Java clients against the Amazon E-Commerce service. Each
client is generated with Java support code from the wsimport utility introduced earlier.
The difference between the two clients refines the distinction between the wrapped and
unwrapped conventions.

An E-Commerce Client in Wrapped Style
The Java support code for the client can be generated with the command:

% wsimport -keep -p awsClient \
http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl    

Recall that the -p awsClient part of the command generates a package (and, therefore,
a subdirectory) named awsClient.

The source code for the first Amazon client, AmazonClientW, resides in the working
directory; that is, the parent directory of awsClient. Example 2-10 is the application
code, which searches for books about quantum gravity.

Example 2-10. An E-Commerce Java client in wrapped style

import awsClient.AWSECommerceService;
import awsClient.AWSECommerceServicePortType;
import awsClient.ItemSearchRequest;
import awsClient.ItemSearch;
import awsClient.Items;
import awsClient.Item;
import awsClient.OperationRequest;
import awsClient.SearchResultsMap;
import javax.xml.ws.Holder;
import java.util.List;
import java.util.ArrayList;

class AmazonClientW { // W is for Wrapped style
    public static void main(String[ ] args) {
      if (args.length < 1) {
        System.err.println("Usage: java AmazonClientW <access key>");
        return;
      }
      final String access_key = args[0];

      // Construct a service object to get the port object.
      AWSECommerceService service = new AWSECommerceService();
      AWSECommerceServicePortType port = service.getAWSECommerceServicePort();

      // Construct an empty request object and then add details.
      ItemSearchRequest request = new ItemSearchRequest();
      request.setSearchIndex("Books");
      request.setKeywords("quantum gravity");

      ItemSearch search = new ItemSearch();
      search.getRequest().add(request);
      search.setAWSAccessKeyId(access_key);

Amazon’s E-Commerce Web Service | 47



      Holder<OperationRequest> operation_request = null;
      Holder<List<Items>> items = new Holder<List<Items>>();

      port.itemSearch(search.getMarketplaceDomain(),
                      search.getAWSAccessKeyId(),
                      search.getSubscriptionId(),
                      search.getAssociateTag(),
                      search.getXMLEscaping(),
                      search.getValidate(),
                      search.getShared(),
                      search.getRequest(),
                      operation_request,
                      items);

      // Unpack the response to print the book titles.
      Items retval = items.value.get(0);       // first and only Items element
      List<Item> item_list = retval.getItem(); // list of Item subelements
      for (Item item : item_list)              // each Item in the list
        System.out.println(item.getItemAttributes().getTitle());
    }
}  

The code is compiled and executed in the usual way but requires your access key (a
string such as 1A67QRNF7AGRQ1XXMJ07) as a command-line argument. On a sam-
ple run, the output for an item search among books on the string quantum gravity was:

The Trouble With Physics
The Final Theory: Rethinking Our Scientific Legacy
Three Roads to Quantum Gravity
Keeping It Real (Quantum Gravity, Book 1)
Selling Out (Quantum Gravity, Book 2)
Mr Tompkins in Paperback
Head First Physics
Introduction to Quantum Effects in Gravity
The Large, the Small and the Human Mind
Feynman Lectures on Gravitation      

The AmazonClientW client is not intuitive. Indeed, the code uses relatively obscure types
such as Holder. The itemSearch method, which does the actual search, takes 10 argu-
ments, the last of which, named items in this example, holds the service response. This
response needs to be unpacked in order to get a list of the book titles returned from the
search. The next client is far simpler. Before looking at the simpler client, however, it
will be instructive to consider what makes the first client so tricky.

In the binding section of the WSDL for the E-Commerce service, the style is set to the
default, document, and the encoding is likewise set to the default, literal. Further, the
wrapped convention is in play, as this segment from the XSD illustrates:

<xs:element name="ItemSearch">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="MarketplaceDomain"
                  type="xs:string" minOccurs="0"/>

48 | Chapter 2: All About WSDLs



      <xs:element name="AWSAccessKeyId"
                  type="xs:string" minOccurs="0"/>
      <xs:element name="SubscriptionId"
                  type="xs:string" minOccurs="0"/>
      <xs:element name="AssociateTag"
                  type="xs:string" minOccurs="0"/>
      <xs:element name="XMLEscaping"
                  type="xs:string" minOccurs="0"/>
      <xs:element name="Validate"
                  type="xs:string" minOccurs="0"/>
      <xs:element name="Shared"
                  type="tns:ItemSearchRequest" minOccurs="0"/>
      <xs:element name="Request"
                  type="tns:ItemSearchRequest" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
</xs:element>    

This XSD segment defines the ItemSearch element, which is the wrapper type in the
body of a SOAP request. Here is a segment from the XSD’s message section, which
shows that the request message is the type defined above:

<message name="ItemSearchRequestMsg">
   <part name="body" element="tns:ItemSearch"/>
</message>      

For the service response to an ItemSearch, the wrapper type defined in the XSD is:

<xs:element name="ItemSearchResponse">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="tns:OperationRequest" minOccurs="0"/>
      <xs:element ref="tns:Items" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
</xs:element>      

The impact of these WSDL definitions is evident in the SOAP request message from a
client and the SOAP response message from the server. Example 2-11 shows a SOAP
request from a sample run.

Example 2-11. A SOAP request against Amazon’s E-Commerce service

<?xml version="1.0" ?>
<soapenv:Envelope
  xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:ns1="http://webservices.amazon.com/AWSECommerceService/2008-03-03">
   <soapenv:Body>
     <ns1:ItemSearch>
       <ns1:AWSAccessKeyId>...</ns1:AWSAccessKeyId>
       <ns1:Request>
          <ns1:Keywords>quantum gravity</ns1:Keywords>
          <ns1:SearchIndex>Books</ns1:SearchIndex>
       </ns1:Request>
     </ns1:ItemSearch>

Amazon’s E-Commerce Web Service | 49



   </soapenv:Body>
</soapenv:Envelope> 

The ItemSearch wrapper is the single XML element in the SOAP body and this element
has two subelements, one with the name ns1:AWSAccessKeyId and the other with the
name ns1:Request, whose subelements specify the search string (in this case, quantum
gravity) and the search category (in this case, Books).

Here is part of the SOAP response for the request above:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <SOAP-ENV:Body>
    <ItemSearchResponse
       xmlns="http://webservices.amazon.com/AWSECommerceService/2008-03-03">
      <OperationRequest>
        <HTTPHeaders>
          <Header Name="UserAgent" Value="Java/1.6.0"></Header>
        </HTTPHeaders>
        <RequestId>0040N1YEKV0CRCT2B5PR</RequestId>
        <Arguments>
          <Argument Name="Service" Value="AWSECommerceService"></Argument>
        </Arguments>
        <RequestProcessingTime>0.0566580295562744</RequestProcessingTime>
      </OperationRequest>
      <Items>
        <Request>
          <IsValid>True</IsValid>
          <ItemSearchRequest>
            <Keywords>quantum gravity</Keywords>
            <SearchIndex>Books</SearchIndex>
          </ItemSearchRequest>
        </Request>
        <TotalResults>207</TotalResults>
        <TotalPages>21</TotalPages>
        <Item>
          <ASIN>061891868X</ASIN>
          <DetailPageURL>http://www.amazon.com/gp/redirect.html...
          </DetailPageURL>
          <ItemAttributes>
            <Author>Lee Smolin</Author>
            <Manufacturer>Mariner Books</Manufacturer>
            <ProductGroup>Book</ProductGroup>
            <Title>The Trouble With Physics</Title>
          </ItemAttributes>
        </Item>
        ...
      </Items>
    </ItemSearchResponse>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

50 | Chapter 2: All About WSDLs



The SOAP body now consists of a single element named ItemSearchResponse, which is
defined as a type in the service’s WSDL. This element contains various subelements,
the most interesting of which is named Items. The Items subelement contains multiple
Item subelements, one apiece for a book on quantum gravity. Only one Item is shown,
but this is enough to see the structure of the response document. The code near the
end of the AmazonClientW reflects the structure of the SOAP response: first the Items
element is extracted, then a list of Item subelements, each of which contains a book’s
title as an XML attribute.

Now we can look at a wsimport-generated artifact for the E-Commerce service, in par-
ticular at the annotations on the itemSearch method with its 10 arguments. The method
is declared in the AWSECommerceServicePortType interface, which declares a single
@WebMethod for each of the E-Commerce service’s operations. Example 2-12 shows the
declaration of interest.

Example 2-12. Java code generated from Amazon’s E-Commerce WSDL

@WebMethod(operationName = "ItemSearch",
           action = "http://soap.amazon.com")
@RequestWrapper(localName = "ItemSearch",
                targetNamespace =
                 "http://webservices.amazon.com/AWSECommerceService/2008-03-03",
                className = "awsClient.ItemSearch")
@ResponseWrapper(localName = "ItemSearchResponse",
                 targetNamespace =
                  "http://webservices.amazon.com/AWSECommerceService/2008-03-03",
                 className = "awsClient.ItemSearchResponse")
public void itemSearch(
  @WebParam(name = "MarketplaceDomain",
            targetNamespace =
             "http://webservices.amazon.com/AWSECommerceService/2008-03-03")
  String marketplaceDomain,
  @WebParam(name = "AWSAccessKeyId",
            targetNamespace =
             "http://webservices.amazon.com/AWSECommerceService/2008-03-03")
  String awsAccessKeyId,
  ...
  ItemSearchRequest shared,
  @WebParam(name = "Request",
            targetNamespace =
             "http://webservices.amazon.com/AWSECommerceService/2008-03-03")
  List<ItemSearchRequest> request,
  @WebParam(name = "OperationRequest",
            targetNamespace =
             "http://webservices.amazon.com/AWSECommerceService/2008-03-03",
            mode = WebParam.Mode.OUT)
  Holder<OperationRequest> operationRequest,
  @WebParam(name = "Items",
            targetNamespace =
             "http://webservices.amazon.com/AWSECommerceService/2008-03-03",
            mode = WebParam.Mode.OUT)
  Holder<List<Items>> items);

Amazon’s E-Commerce Web Service | 51



The last two parameters, named operationRequest and items, are described as
WebParam.Mode.OUT to signal that they represent return values from the E-Commerce
service to the requester. An OUT parameter is returned in a Java Holder object. The
method itemSearch thus reflects the XSD request and response types from the WSDL.
The XSD type ItemSearch, which is the request wrapper, has eight subelements such
as MarketplaceDomain, AWSAccessKeyId, and ItemSearchRequest. Each of these
subelements occurs as a parameter in the itemSearch method. The XSD type
ItemSearchResponse has two subelements, named OperationRequest and Items, which
are the last two parameters (the OUT parameters) in the itemSearch method. The tricky
part for the programmer, of course, is that itemSearch becomes hard to invoke precisely
because of the 10 arguments, especially because the last 2 arguments hold the return
values.

Why does the wrapped style result in such a complicated client? Recall that the wrapped
style is meant to give a document-style service the look and feel of an rpc-style service
without giving up the advantages of document style. The wrapped document style requires
a wrapper XML element, typically with the name of a web service operation such as
ItemSearch, that has a typed XML subelement per operation parameter. In the case of
the itemSearch operation in the E-Commerce service, there are eight in or request pa-
rameters and two out or response parameters, including the critical Items response
parameter. The XML subelements that represent the parameters occur in an
xs:sequence, which means that each parameter is positional. For example, the response
parameter Items must come last in the list of 10 parameters because the part
@ResponseWrapper comes after the @RequestWrapper and the Items parameter comes last
in the @ResponseWrapper. The upshot is that the wrapped style makes for a very tricky
invocation of the itemSearch method. The wrapped style, without a workaround, may
well produce an irritated programmer. The next section presents a workaround.

An E-Commerce Client in Unwrapped Style
The client built from artifacts in the unwrapped style is simpler than the client built
from artifacts in the wrapped style. However, artifacts for the simplified E-Commerce
client are generated from the very same WSDL as the artifacts for the more complicated,
wrapped-style client. The underlying SOAP messages have the same structure with
either the complicated or the simplified client. Yet the clients differ significantly—the
simplified client is far easier to code and to understand. Here is the call to
invokeSearch in the simplified client:

ItemSearchResponse response = port.itemSearch(item_search);

The itemSearch method now takes one argument and returns a value, which is assigned
to the object reference response. Unlike the complicated client, the simplified client has
no Holder of a return value, which is an exotic and difficult construct. The invocation
of itemSearch is familiar, identical in style to method calls in standalone applications.
The full simplified client is in Example 2-13.

52 | Chapter 2: All About WSDLs

www.allitebooks.com

http://www.allitebooks.org


Example 2-13. An E-Commerce Java client in unwrapped style

import awsClient2.AWSECommerceService;
import awsClient2.AWSECommerceServicePortType;
import awsClient2.ItemSearchRequest;
import awsClient2.ItemSearchResponse;
import awsClient2.ItemSearch;
import awsClient2.Items;
import awsClient2.Item;
import java.util.List;

class AmazonClientU { // U is for Unwrapped style
    public static void main(String[ ] args) {
        // Usage
        if (args.length != 1) {
            System.err.println("Usage: java AmazonClientW <access key<");
            return;
        }
        final String access_key = args[0];

        // Create service and get portType reference.
        AWSECommerceService service = new AWSECommerceService();
        AWSECommerceServicePortType port =
          service.getAWSECommerceServicePort();

        // Create request.
        ItemSearchRequest request = new ItemSearchRequest();

        // Add details to request.
        request.setSearchIndex("Books");
        request.setKeywords("quantum gravity");
        ItemSearch item_search= new ItemSearch();
        item_search.setAWSAccessKeyId(access_key);
        item_search.getRequest().add(request);

        // Invoke service operation and get response.
        ItemSearchResponse response = port.itemSearch(item_search);

        List<Items> item_list = response.getItems();
        for (Items next : item_list)
           for (Item item : next.getItem())
              System.out.println(item.getItemAttributes().getTitle());
    }
}

Generating the simplified client with the wsimport is ironically more complicated than
generating the complicated client. Here is the command, on three lines to enhance
readability:

% wsimport -keep -p awsClient2 \
  http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl \
  -b custom.xml . 

Amazon’s E-Commerce Web Service | 53



The -b flag at the end specifies a customized jaxws:bindings document, in this case in
the file custom.xml, that overrides wsimport defaults, in this case a WrapperStyle setting
of true. Example 2-14 shows the document with the customized binding information.

Example 2-14. A customized bindings document for wsimport

<jaxws:bindings
    wsdlLocation =
     "http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl"
    xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
  <jaxws:enableWrapperStyle>false</jaxws:enableWrapperStyle>
</jaxws:bindings>        

The impact of the customized binding document is evident in the generated artifacts.
For example, the segment of the AWSECommerceServicePortType artifact becomes:

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
public interface AWSECommerceServicePortType {
...
  @WebMethod(operationName = "ItemSearch",
             action = "http://soap.amazon.com")
  @WebResult(name = "ItemSearchResponse",
             targetNamespace =
              "http://webservices.amazon.com/AWSECommerceService/2008-04-07",
             partName = "body")
  public ItemSearchResponse itemSearch(
      @WebParam(name = "ItemSearch",
                targetNamespace =
                 "http://webservices.amazon.com/AWSECommerceService/2008-04-07",
                partName = "body")
      ItemSearch body);

The wsimport-generated interface AWSECommerceServicePortType now has the annota-
tion @SOAPBinding.ParameterStyle.BARE, where BARE is the alternative to WRAPPED. JWS
names the attribute parameterStyle because the contrast between wrapped and un-
wrapped in document-style web services comes down to how parameters are represented
in the SOAP body. In the unwrapped style, the parameters occur bare; that is, as a
sequence of unwrapped XML subelements in the SOAP body. In the wrapped style,
the parameters occur as wrapped XML subelements of an XML element with the name
of the service operation; and the wrapper XML element is the only direct subelement
of the SOAP body.

What may be surprising is that the structure of the underlying SOAP messages, both
the request and the response, remain unchanged. For instance, the request message
from the simplified client AmazonClientU is identical in structure to the request message
from the complicated client AmazonClientW. Here is the body of the SOAP envelope from
a request that the simplified client generates:

<soapenv:Body>
  <ns1:ItemSearch>
    <ns1:AWSAccessKeyId>...</ns1:AWSAccessKeyId>
    <ns1:Request>

54 | Chapter 2: All About WSDLs



      <ns1:Keywords>quantum gravity</ns1:Keywords>
      <ns1:SearchIndex>Books</ns1:SearchIndex>
    </ns1:Request>
</ns1:ItemSearch>
</soapenv:Body>      

The SOAP body contains a single wrapper element, ns1:ItemSearch, with subelements
for the access key identifier and the request details. The complicated, wrapped-style
client generates requests with the identical structure.

The key difference is in the Java client code, of course. The simplified client, with the
unwrapped parameterStyle, calls invokeSearch with one argument of type ItemSearch
and expects a single response of type ItemSearchResponse. So the parameterStyle with
a value of BARE eliminates the complicated call to invokeSearch with 10 arguments, 8
of which are arguments bound to the subelements in the @RequestWrapper, and 2 of
which are arguments bound to subelements in the @ResponseWrapper.

The E-Commerce example shows that the wrapped document-style, despite its advan-
tages, can complicate the programming of a client. In that example, the simplified client
with the BARE or unwrapped parameterStyle is a workaround.

The underlying WSDL for the E-Commerce example could be simplified, which would
make clients against the service easier to code. Among SOAP-based web services avail-
able commercially, it is not unusual to find complicated WSDLs that in turn complicate
the clients written against the service.

Tradeoffs Between the RPC and Document Styles
JWS still supports both rpc and document styles, with document as the default; for both
styles, only literal encoding is supported in compliance with the WS-I Basic Profile.
The issue of rpc versus document often is touted as a freedom of choice issue. Nonetheless,
it is clear that document style, especially in the wrapped flavor, is rapidly gaining mind
share. This subsection briefly reviews some tradeoffs between the two styles.

As in any tradeoff scenario, the pros and cons need to be read with a critical eye, es-
pecially because a particular point may be cited as both a pro and a con. One familiar
complaint against the rpc style is that it imposes the request/response pattern on the
service. However, this pattern remains the dominant one in real-world, SOAP-based
web services, and there are obviously situations (for instance, validating a credit card
to be used in a purchase) in which the request/response pattern is needed.

Here are some upsides of the rpc style:

• The automatically generated WSDL is relatively short and simple because there is
no types section.

• Messages in the WSDL carry the names of the underlying web service operations,
which are @WebMethods in a Java-based service. The WSDL thus has a what you see
is what you get style with respect to the service’s operations.

Amazon’s E-Commerce Web Service | 55



• Message throughput may improve because the messages do not carry any type-
encoding information.

Here are some downsides to the rpc style:

• The WSDL, with its empty types section, does not provide an XSD against which
the body of a SOAP message can be validated.

• The service cannot use arbitrarily rich data types because there is no XSD to define
such types. The service is thus restricted to relatively simple types such as integers,
strings, dates, and arrays of such.

• This style, with its obvious link to the request/response pattern, encourages tight
coupling between the service and the client. For example, the Java client
ch01.ts.TimeClient blocks on the call:

port.getTimeAsString()

until either the service responds or an exception is thrown. This same point is
sometimes made by noting that the rpc style has an inherently synchronous as
opposed to asynchronous invocation idiom. The next section offers a workaround,
which shows how JWS supports nonblocking clients under the request/response
pattern.

• Java services written in this style may not be consumable in other frameworks, thus
undermining interoperability. Further, long-term support within the web services
community and from the WS-I group is doubtful.

Here are some upsides of the document style:

• The body of a SOAP message can be validated against the XSD in the types section
of the WSDL.

• A service in this style can use arbitrarily rich data types, as the XML Schema lan-
guage supports not only simple types such as integers, strings, and dates, but also
arbitrarily rich complex types.

• There is great flexibility in how the body of a SOAP message is structured so long
as the structure is clearly defined in an XSD.

• The wrapped convention provides a way to enjoy a key upside of the rpc style—
naming the body of a SOAP message after the corresponding service operation—
without enduring the downsides of the rpc style.

Here are some downsides of the document style:

• In the unwrapped variant, the SOAP message does not carry the name of the service
operation, which can complicate the dispatching of messages to the appropriate
program code.

• The wrapped variant adds a level of complexity, in particular at the API level.
Writing a client against a wrapped-document service can be challenging, as the
AmazonClientW example shows.

56 | Chapter 2: All About WSDLs



• The wrapped variant does not support overloaded service operations because the
XML wrapper element in the body of a SOAP message must have the name of
the service operation. In effect, then, there can be only one operation for a given
element name.

An Asynchronous E-Commerce Client
As noted earlier, the original TimeClient blocks on calls against the TimeServer service
operations. For example, the call:

port.getTimeAsString()

blocks until either a response from the web service occurs or an exception is thrown.
The call to getTimeAsString is, therefore, known as a blocking or synchronous call. JWS
also supports nonblocking or asynchronous clients against web services.

Example 2-15 shows a client that makes an asynchronous call against the E-Commerce
service.

Example 2-15. An asynchronous client against the E-Commerce service

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import awsClient3.AWSECommerceService;
import awsClient3.AWSECommerceServicePortType;
import awsClient3.ItemSearchRequest;
import awsClient3.ItemSearchResponse;
import awsClient3.ItemSearch;
import awsClient3.Items;
import awsClient3.Item;

import java.util.List;
import java.util.concurrent.ExecutionException;

class AmazonAsyncClient {
    public static void main(String[ ] args) {
        // Usage
        if (args.length != 1) {
            System.err.println("Usage: java AmazonAsyncClient <access key>");
            return;
        }
        final String access_key = args[0];

        // Create service and get portType reference.
        AWSECommerceService service = new AWSECommerceService();
        AWSECommerceServicePortType port = service.getAWSECommerceServicePort();

        // Create request.
        ItemSearchRequest request = new ItemSearchRequest();

        // Add details to request.
        request.setSearchIndex("Books");

Amazon’s E-Commerce Web Service | 57



        request.setKeywords("quantum gravity");
        ItemSearch item_search= new ItemSearch();
        item_search.setAWSAccessKeyId(access_key);
        item_search.getRequest().add(request);

        port.itemSearchAsync(item_search, new MyHandler());

        // In this case, just sleep to give the search process time.
        // In a production application, other useful tasks could be
        // performed and the application could run indefinitely.
        try {
           Thread.sleep(400);
        }
        catch(InterruptedException e) { System.err.println(e); }
    }

    // The handler class implements handleResponse, which executes
    // if and when there's a response.
    static class MyHandler implements AsyncHandler<ItemSearchResponse> {
        public void handleResponse(Response<ItemSearchResponse> future) {
          try {
             ItemSearchResponse response = future.get();
             List<Items> item_list = response.getItems();
             for (Items next : item_list)
               for (Item item : next.getItem())
                  System.out.println(item.getItemAttributes().getTitle());
          }
          catch(InterruptedException e) { System.err.println(e); }
          catch(ExecutionException e) { System.err.println(e); }
        }
    }
}  

The nonblocking E-Commerce client uses artifacts generated by wsimport, again with
a customized bindings file. Here is the file:

<jaxws:bindings
    wsdlLocation=
      "http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl"
    xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
  <jaxws:enableWrapperStyle>false</jaxws:enableWrapperStyle>
  <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
</jaxws:bindings>

with the enableAsyncMapping attribute set to true.

The nonblocking call can follow different styles. In the style shown here, the call to
itemSearchAsync takes two arguments: the first is an ItemSearchRequest, and the second
is a class that implements the AsyncHandler interface, which declares a single method
named handleResponse. The call is:

port.itemSearchAsync(item_search, new MyHandler());      

58 | Chapter 2: All About WSDLs



If and when an ItemSearchResponse comes from the E-Commerce service, the method
handleResponse in the MyHandler class executes as a separate thread and prints out the
books’ titles.

There is a version of itemSearchAsync that takes one argument, an ItemSearchRequest.
In this version the call also returns if and when the E-Commerce service sends a re-
sponse, which then can be processed as in the other E-Commerce clients. In this style,
the application might start a separate thread to execute this code segment:

Response<ItemSearchResponse> res = port.itemSearchAsync(item_search);
try {
   ItemSearchResponse response = res.get();
   List<Items> item_list = response.getItems();
   for (Items next : item_list)
      for (Item item : next.getItem())
         System.out.println(item.getItemAttributes().getTitle());
}
catch(InterruptedException e) { System.err.println(e); }
catch(ExecutionException e) { System.err.println(e); }      

JWS is flexible in supporting nonblocking as well as the default blocking clients. In the
end, it is application logic that determines which type of client is suitable.

The wsgen Utility and JAX-B Artifacts
Any document-style service, wrapped or unwrapped, requires the kind of artifacts that
the wsgen utility produces. It is time to look again at this utility. A simple experiment
underscores the role that the utility plays. To begin, the line:

@SOAPBinding(style = Style.RPC)

should be commented out or deleted from the SEI ch01.ts.TimeServer. With this
annotation gone, the web service becomes document style rather than rpc style. After
recompiling the altered SEI, try to publish the service with the command:

% java ch01.ts.TimeServerPublisher

The resulting error message is:

Exception in thread "main" com.sun.xml.internal.ws.model.RuntimeModelerException:
runtime modeler error: Wrapper class ch01.ts.jaxws.GetTimeAsString is not found.     

The message is obscure in citing the immediate problem rather than the underlying
cause. The immediate problem is that the publisher cannot find the class
ch01.ts.jaxws.GetTimeAsString. Indeed, at this point the package ch01.ts.jaxws that
houses the class does not even exist. The publisher cannot generate the WSDL because
the publisher needs Java classes such as GetTimeAsString to do so. The wsgen utility
produces the classes required to build the WSDL, classes known as wsgen artifacts. The
command:

% wsgen -keep -cp . ch01.ts.TimeServerImpl

The wsgen Utility and JAX-B Artifacts | 59



produces the artifacts and, if necessary, the package ch01.ts.jaxws that houses these
artifacts. In the TimeServer example, there are four messages altogether: the request
and response messages for the getTimeAsString operation, and the request and response
messages for the getTimeAsElapsed operation. The wsgen utility generates a Java class—
hence, a Java data type—for each of these messages. It is these Java types that the
publisher uses to generate the WSDL for a document-style service. So each of the Java
data types is bound to an XML Schema type, which serves as a type for one of the four
messages involved in the service. Considered from the other direction, a document-style
web service has typed messages. The wsgen artifacts are the Java types from which the
XML Schema types for the messages are derived.

A SOAP-based web service, in either document or rpc style, should be interoperable: a
client application written in one language should be able to interact seamlessly with a
service written in another despite any differences in data types between the two lan-
guages. A shared type system such as XML Schema is, therefore, the key to interoper-
ability. The document style extends typing to the service messages; and typed messages
requires the explicit binding of Java and XML Schema types.

Any document-style service, wrapped or unwrapped, has a WSDL with an XSD in its
types section. (The term in is being used loosely here. The types section could import
the XSD or link to the XSD.) The types in the WSDL’s associated XSD bind to types in
a service-implementation or client language such as Java. The wsgen utility, introduced
earlier to change the TimeServer service from rpc to document style, generates Java types
that bind to XML Schema types. Under the hood, this utility uses the packages
associated with JAX-B (Java API for XML-Binding). In a nutshell, JAX-B supports con-
versions between Java and XML types.

A JAX-B Example
Before looking again at the artifacts that wsgen generates, let’s consider a JAX-B ex-
ample to get a better sense of what is going on in wsgen. Example 2-16 is the code for
a programmer-defined Java type, the Person class, and Example 2-17 is another pro-
grammer-defined Java type, the Skier class. Each class declaration begins with a single
annotation for Java-to-XML binding. The Person class is annotated as an @XmlType,
whereas the Skier class is annotated as an @XmlRootElement. At the design level, a
Skier is also a Person; hence, the Skier class has a Person field.

Example 2-16. The Person class for a JAX-B example

import javax.xml.bind.annotation.XmlType;

@XmlType
public class Person  {
    // fields
    private String name;
    private int    age;
    private String gender;

60 | Chapter 2: All About WSDLs



    // constructors
    public Person() { }

    public Person(String name, int age, String gender){
        setName(name);
        setAge(age);
        setGender(gender);
    }

    // properties: name, age, gender
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }

    public int getAge() { return age;  }
    public void setAge(int age) { this.age = age; }

    public String getGender() { return gender; }
    public void setGender(String gender) { this.gender = gender; }
}    

Example 2-17. The Skier class for a JAX-B example

import javax.xml.bind.annotation.XmlRootElement;
import java.util.Collection;

@XmlRootElement
public class Skier  {
    // fields
    private Person person;
    private String national_team;
    private Collection major_achievements;
    // constructors
    public Skier() { }
    public Skier (Person person,
                  String national_team,
                  Collection<String> major_achievements) {
        setPerson(person);
        setNationalTeam(national_team);
        setMajorAchievements(major_achievements);
    }
    // properties
    public Person getPerson() { return person; }
    public void setPerson (Person person) { this.person = person; }

    public String getNationalTeam() { return national_team; }
    public void setNationalTeam(String national_team) {
        this.national_team = national_team;
    }

    public Collection getMajorAchievements() { return major_achievements; }
    public void setMajorAchievements(Collection major_achievements) {
        this.major_achievements = major_achievements;
    }
}    

The wsgen Utility and JAX-B Artifacts | 61



The @XmlType and @XmlRootElement annotations direct the marshaling of Skier objects,
where marshaling is the process of encoding an in-memory object (for example, a
Skier) as an XML document so that, for instance, the encoding can be sent across a
network to be unmarshaled or decoded at the other end. In common usage, the dis-
tinction between marshal and unmarshal is very close and perhaps identical to the
serialize/deserialize distinction. I use the distinctions interchangeably. JAX-B supports
the marshaling of in-memory Java objects to XML documents and the unmarshaling
of XML documents to in-memory Java objects.

The annotation @XmlType, applied in this example to the Person class, indicates that
JAX-B should generate an XML Schema type from the Java type. The annotation
@XmlRootElement, applied in this example to the Skier class, indicates that JAX-B should
generate an XML document (outermost or root) element from the Java class. Accord-
ingly, the resulting XML in this example is a document whose outermost element rep-
resents a skier; and the document has a nested element that represents a person.

The Marshal application in Example 2-18 illustrates marshaling and unmarshaling.

Example 2-18. The Marshal application for a JAX-B example

import java.io.File;
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.FileInputStream;
import java.io.IOException;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.JAXBException;
import java.util.List;
import java.util.ArrayList;

class Marshal {
    private static final String file_name = "bd.mar";
    public static void main(String[ ] args) {
        new Marshal().run_example();
    }

    private void run_example() {
        try {
            JAXBContext ctx = JAXBContext.newInstance(Skier.class);
            Marshaller m = ctx.createMarshaller();
            m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

            // Marshal a Skier object: 1st to stdout, 2nd to file
            Skier skier = createSkier();
            m.marshal(skier, System.out);

            FileOutputStream out = new FileOutputStream(file_name);
            m.marshal(skier, out);
            out.close();

62 | Chapter 2: All About WSDLs



            // Unmarshal as proof of concept
            Unmarshaller u = ctx.createUnmarshaller();
            Skier bd_clone = (Skier) u.unmarshal(new File(file_name));
            System.out.println();
            m.marshal(bd_clone, System.out);
        }
        catch(JAXBException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
    }

    private Skier createSkier() {
        Person bd = new Person("Bjoern Daehlie", 41, "Male");
        List<String> list = new ArrayList<String>();
        list.add("12 Olympic Medals");
        list.add("9 World Championships");
        list.add("Winningest Winter Olympian");
        list.add("Greatest Nordic Skier");
        return new Skier(bd, "Norway", list);
    }
}    

The application constructs a Skier object, including a Person object encapsulated as a
Skier field, and sets the appropriate Skier and Person properties. A critical feature of
marshaling is that the process preserves an object’s state in the encoding, where an
object’s state comprises the values of its instance (that is, non-static) fields. In the case
of a Skier object, the marshaling must preserve state information such as the skier’s
major accomplishments together with Person-specific state information such as the
skier’s name and age. The @XmlRootElement annotation in the declaration of the Skier
class directs the marshaling as follows: the Skier object is encoded as an XML document
whose outermost (that is, document) element is named skier. The @XmlType annotation
in the Person class directs the marshaling as follows: the skier XML document has a
person subelement, which in turn has subelements for the name, age, and gender prop-
erties of the marshaled skier.

By default, JAX-B marshaling follows standard Java and JavaBean naming conventions.
For example, the Java class Skier becomes the XML tag named skier and the Java class
Person becomes the XML tag named person. For both the Skier and the encapsulated
Person objects, the JavaBean-style get methods are invoked (e.g., getNationalTeam in
Skier and getAge in Person) to populate the XML document with state information
about the skier.

It is possible to override, with annotations, JavaBean naming conventions in marshaling
and unmarshaling classes. Following, for example, is a wsgen-generated artifact with
the get and set methods that do not follow JavaBean naming conventions. The anno-
tation of interest is in bold:

...
@XmlRootElement(name = "getTimeAsElapsedResponse", namespace = "http://ts.ch02/")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "getTimeAsElapsedResponse", namespace = "http://ts.ch02/")

The wsgen Utility and JAX-B Artifacts | 63



public class GetTimeAsElapsedResponse {
    @XmlElement(name = "return", namespace = "")
    private long _return;
    public long get_return() { return this._return; }

    public void set_return(long _return) { this._return = _return; }
}

The annotation in bold indicates that the field named _return will be marshaled and
unmarshaled rather than a property defined with a get/set method pair that follows
the usual JavaBean naming conventions.

Other annotation attributes can be set to override the default naming conventions. For
example, if the annotation in the Skier class declaration is changed to:

@XmlRootElement(name = "NordicSkier")

then the resulting XML document begins:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<NordicSkier>

Once the Skier object has been constructed, the Marshal application marshals the object
to the standard output and, to set up unmarshaling, to a local file. Here is the XML
document that results from marshaling the legendary Nordic skier Bjoern Daehlie:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<skier>
    <majorAchievements
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:xs="http://www.w3.org/2001/XMLSchema"
        xsi:type="xs:string">
      12 Olympic Medals
    </majorAchievements>
    <majorAchievements
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:xs="http://www.w3.org/2001/XMLSchema"
        xsi:type="xs:string">
      9 World Championships
    </majorAchievements>
    <majorAchievements
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:xs="http://www.w3.org/2001/XMLSchema"
        xsi:type="xs:string">
      Winningest Winter Olympian
    </majorAchievements>
    <majorAchievements
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:xs="http://www.w3.org/2001/XMLSchema"
        xsi:type="xs:string">
      Greatest Nordic Skier
    </majorAchievements>
    <nationalTeam>Norway</nationalTeam>
    <person>
        <age>41</age>
        <gender>Male</gender>

64 | Chapter 2: All About WSDLs



        <name>Bjoern Daehlie</name>
    </person>
</skier>    

The unmarshaling process constructs a Skier, with its encapsulated Person field, from
the XML document. JAX-B unmarshaling requires that each class have a public no-
argument constructor, which is used in the construction. After the object is constructed,
the appropriate set methods are invoked (for instance, setNationalTeam in Skier and
setAge in Person) to restore the marshaled skier’s state. The marshaling and unmarshal-
ing processes are remarkably clear and straightforward at the code level.

Marshaling and wsgen Artifacts
Now we can tie the wsgen utility and marshaling together. Recall that there were two
steps to changing the TimeServer application from rpc to document style. First, the
annotation:

@SOAPBinding(style = Style.RPC)

is commented out in the SEI, ch01.ts.TimeServer. Second, the wsgen utility is executed
in the working directory against the ch01.ts.TimeServerImpl class:

% wsgen -keep -cp . ch01.ts.TimeServerImpl

The wsgen invocation generates two source and two compiled files in the automatically
created subdirectory ch01/ts/jaxws. Example 2-19 shows the wsgen artifact, the class
named GetTimeAsElapsedResponse, with the comments removed.

Example 2-19. A Java class generated with wsgen

package ch01.ts.jaxws;

import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlRootElement(name = "getTimeAsElapsedResponse", namespace = "http://ts.ch01/")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "getTimeAsElapsedResponse", namespace = "http://ts.ch01/")
public class GetTimeAsElapsedResponse {
    @XmlElement(name = "return", namespace = "")
    private long _return;
    public long get_return() { return this._return; }
    public void set_return(long _return) { this._return = _return; }
}    

Of particular interest is the @XmlType annotation applied to the class. The annotation
sets the name attribute to getTimeAsElapsedResponse, the name of a SOAP message
returned from the web service to the client on a call to the getTimeAsElapsed opera-
tion. The @XmlType annotation means that such SOAP response messages are typed; that

The wsgen Utility and JAX-B Artifacts | 65



is, that they satisfy an XML Schema. In a document-style service, a SOAP message is
typed.

Example 2-20 shows a modified version of the Marshal application, renamed
MarshalGTER to signal that the revised application is to be run against the wsgen-
generated class named GetTimeAsElapsedResponse.

Example 2-20. Code to illustrate the link between wsgen and JAX-B

import javax.xml.bind.JAXBContext;
import javax.xml.bind.Marshaller;
import javax.xml.bind.JAXBException;

import ch01.ts.jaxws.GetTimeAsElapsedResponse;

class MarshalGTER {
    private static final String file_name = "gter.mar";

    public static void main(String[ ] args) {
        new MarshalGTER().run_example();
    }

    private void run_example() {
        try {
            JAXBContext ctx =
                JAXBContext.newInstance(GetTimeAsElapsedResponse.class);
            Marshaller m = ctx.createMarshaller();
            m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

            GetTimeAsElapsedResponse tr = new GetTimeAsElapsedResponse();
            tr.set_return(new java.util.Date().getTime());

            m.marshal(tr, System.out);
        }
        catch(JAXBException e) { System.err.println(e); }
    }
}     

The marshaled XML document on a sample run was:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:getTimeAsElapsedResponse xmlns:ns2="http://ts.ch01/">
    <return>1209174518855</return>
</ns2:getTimeAsElapsedResponse>      

For reference, here is the response message from the document-style version of the
TimeServer service:

<?xml version="1.0" ?>
<soapenv:Envelope
    xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:ns1="http://ts.ch01/">
  <soapenv:Body>
    <ns1:getTimeAsElapsedResponse>

66 | Chapter 2: All About WSDLs



      <return>1209181713849</return>
    </ns1:getTimeAsElapsedResponse>
  </soapenv:Body>
</soapenv:Envelope>      

There are some incidental differences between the body of the SOAP message and the
output of the MarshalGTER application. For instance, the namespace prefix is ns1 in the
SOAP message but ns2 in the marshaled XML document. Note, however, that the all-
important namespace URI is the same in both: http://ts.ch01. In the SOAP message,
the namespace prefix is defined in the Envelope element rather than in the element
getTimeAsElapsedResponse. Of interest here is that the wsgen-generated artifacts such
as the GetTimeAsElapsedResponse class provide the annotated types that the underlying
SOAP libraries can use to marshal Java objects of some type into XML documents and
to unmarshal such documents into Java objects of the appropriate type.

An Overview of Java Types and XML Schema Types
Java’s primitive types such as int and byte bind to similarly named XML Schema types,
in this case xsd:int and xsd:byte, respectively. The java.lang.String type binds to
xsd:string, and the java.util.Calendar typebinds to each of xsd:date, xsd:time, and
xsd:dateTime. The XML Schema type xsd:decimal binds to the Java type BigDecimal.
Not all bindings are obvious and the same Java type—for example, int may match up
with several XSD types, for instance, xsd:int and xsd:unsignedShort. Here is the reason
for the apparent mismatch between a Java int and an XSD xsd:unsignedShort. Java
technically does not have unsigned integer types. (You could argue, of course, that a
Java char is really an unsigned 16-bit integer.) The maximam value of the Java 16-bit
short integer is 32,767, but the maximum value of the xsd:unsignedShort integer is
65,535, a value within the range of a 32-bit Java int.

What JAX-B brings to the table is a framework for binding arbitrarily rich Java types,
with the Skier class as but a hint of the possibilities, to XML types. Instances of these
Java types can be marshaled to XML document instances, which in turn can be un-
marshaled to instances of either Java types or types in some other language.

How the wsgen utility and the JAX-B packages interact in JWS now can be summarized.
A Java web service in document rather than rpc style has a nonempty types section in
its WSDL. This section defines, in the XML Schema language, the types required for
the web service. The wsgen utility generates, from the SIB, Java classes that are coun-
terparts of XSD types. These wsgen artifacts are available for the underlying JWS li-
braries, in particular for the JAX-B family of packages, to convert (marshal) instances
of Java types (that is, Java in-memory objects) into XML instances of XML types (that
is, into XML document instances that satisfy an XML Schema document). The inverse
operation is used to convert (unmarshal) an XML document instance to an in-memory
object, an object of a Java type or a comparable type in some other language. The
wsgen utility thus produces the artifacts that support interoperability for a Java-based
web service. The JAX-B libraries provide the under-the-hood support to convert

The wsgen Utility and JAX-B Artifacts | 67



between Java and XSD types. For the most part, the wsgen utility can be used without
our bothering to inspect the artifacts that it produces. For the most part, JAX-B remains
unseen infrastructure.

Beyond the Client-Side wsgen
A web service’s SEI contains all of the information required to generate the wsgen
artifacts. After all, the SEI declares the service operations as @WebMethods and these
declarations specify argument and return types.

In the current Metro release, the Endpoint publisher automatically generates the
wsgen artifacts if the programmer does not. For example, once the sample service has
been compiled, the command:

% java -cp .:$METRO_HOME/lib/jaxws-rt.jar test.WS1Pub

publishes the web service even though no wsgen artifacts were generated beforehand.
(Under Windows, $METRO_HOME becomes %METRO_HOME%.) Here is the output:

com.sun.xml.ws.model.RuntimeModeler getRequestWrapperClass
INFO: Dynamically creating request wrapper Class test.jaxws.Op
com.sun.xml.ws.model.WrapperBeanGenerator createBeanImage
INFO:
@XmlRootElement(name=op, namespace=http://test/)
@XmlType(name=op, namespace=http://test/)
public class test.jaxws.Op {
    @XmlRootElement(name=arg0, namespace=)
    public I arg0
}
com.sun.xml.ws.model.RuntimeModeler getResponseWrapperClass
INFO: Dynamically creating response wrapper bean Class
      test.jaxws.OpResponse
com.sun.xml.ws.model.WrapperBeanGenerator createBeanImage
INFO:
@XmlRootElement(name=opResponse, namespace=http://test/)
@XmlType(name=opResponse, namespace=http://test/)
public class test.jaxws.OpResponse {
    @XmlRootElement(name=return, namespace=)
    public I _return
}

In time this convenient feature of the Metro release will make its way into core Java so
that the wsgen step in document-style services can be avoided. It is still helpful to un-
derstand exactly how the JAX-B artifacts from the wsgen utility figure in Java-based
web services.

Generating a WSDL with the wsgen Utility
The wsgen utility also can be used to generate a WSDL document for a web service.
For example, the command:

% wsgen -cp "." -wsdl ch01.ts.TimeServerImpl    

68 | Chapter 2: All About WSDLs



generates a WSDL for the original TimeServer service. The TimeServer service is rpc
rather than document style, which is reflected in the WSDL. There is one critical differ-
ence between the WSDL generated with the wsgen utility and the one retrieved at run-
time after the web service has been published: the wsgen-generated WSDL does not
include the service endpoint, as this URL depends on the actual publication of the
service. Here is the relevant segment from the wsgen-generated WSDL:

<service name="TimeServerImplService">
  <port name="TimeServerImplPort" binding="tns:TimeServerImplPortBinding">
    <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
  </port>
</service>

Except for this difference, the two WSDLs are the same service contract.

Generating a WSDL directly from wsgen will be useful in later security examples. If a
web service is secured, then so is its WSDL; hence, the first step in writing a wsimport-
supported client to test the service is to access the WSDL, and wsgen is an easy way to
take this step.

WSDL Wrap-Up
This section completes the chapter with a look at two issues. The first issue is whether
the web service code—in particular, its SEI and SIB—should come before or after the
WSDL. In other words, should the WSDL be generated automatically from the service
implementation or should the WSDL be designed and written before the web service
code is written? This issue has been popularized as the code first versus the contract
first controversy. The second issue is about the limited information that a WSDL
provides to potential consumers of the corresponding web service.

Code First Versus Contract First
The issue can be expressed as a question: should the web service code be used to
generate the WSDL automatically or should the WSDL, independently designed and
created, be used to guide web service coding? All of the examples so far take the code-
first approach because of its most obvious advantage: it is easy. However, there are
some obvious shortcomings and even dangers in this approach, including:

• If the service changes, the WSDL automatically changes. The WSDL thereby loses
some of its appeal for creating client artifacts, as this process may have to be re-
peated over and over. One of the first principles of software development is that
an interface, once published, should be regarded as immutable so that code once
written against a published interface never has to be rewritten. The code-first
approach may compromise this principle.

• The code-first approach usually results in a service contract that provides few, if
any, provisions for handling tricky but common problems in distributed systems

WSDL Wrap-Up | 69



such as partial failure of the service. The reason is that the service may be pro-
grammed as if it were a standalone application rather than part of a distributed
application with consumers on other hosts.

• If the service implementation is complicated or even messy, these features carry
over into a WSDL that may be difficult to understand and to use in the generation
of client artifacts. In short, the code-first approach is clearly not consumer-oriented.

• The code-first approach seems to go against the language-neutral theme of SOAP-
based web services. If the contract is done first, then the implementation language
remains open.

The list could go on and on. My aim, however, is not to jump into the fray but only to
caution that the issue has merit. The core difficulty for the contract-first advocates is
real-world programming practice. A programmer under the pressure of deadlines and
application expectations is unlikely to have the time, let alone the inclination, to master
the subtleties of WSDLs and then to produce a service contract that suitably guides the
programming of the service.

Even the WSDL generated for the simple TimeServer web service could use improve-
ment. For example, here is a segment from the XML Schema for the document-style
TimeServer web service:

<xs:complexType name="getTimeAsStringResponse">
  <xs:sequence>
     <xs:element name="return" type="xs:string" minOccurs="0"/>
  </xs:sequence>
</xs:complexType>      

Note that the element for the returned value sets the minimum occurrences to 0 instead
of 1. The reason is that the Java-based web service might return null, a valid value for
a String type. To tighten up the service contract by requiring that a non-null string be
returned, the 0 can be replaced with 1. (The minOccurs="0" also could be deleted be-
cause the default value for minOccurs and maxOccurs is 1.)

A Contract-First Example with wsimport
The wsimport utility can be used in support of a contract-first approach. Exam-
ple 2-21 shows a web service for temperature conversion written in C#.

Example 2-21. A SOAP-based service in C#

using System;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;

[WebService(Namespace = "http://tempConvertURI.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

70 | Chapter 2: All About WSDLs



public class Service : System.Web.Services.WebService {
    public Service () { }

    [WebMethod]
    public double c2f(double t) { return 32.0 + (t * 9.0 / 5.0); }
    [WebMethod]
    public double f2c(double t) { return (5.0 / 9.0) * (t - 32.0); }
}      

Example 2-22 shows the WSDL for this C# web service.

Example 2-22. The WSDL for the C# service

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
                  xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
                  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
                  xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
                  xmlns:tns="http://tempConvertURI.org/"
                  xmlns:s="http://www.w3.org/2001/XMLSchema"
                  xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
                  xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
                  targetNamespace="http://tempConvertURI.org/"
                  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
  <wsdl:types>
    <s:schema elementFormDefault="qualified"
              targetNamespace="http://tempConvertURI.org/">
      <s:element name="c2f">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="t" type="s:double"/>
          </s:sequence>
        </s:complexType>
      </s:element>
      <s:element name="c2fResponse">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="c2fResult" type="s:double"/>
          </s:sequence>
        </s:complexType>
      </s:element>
      <s:element name="f2c">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="t" type="s:double"/>
          </s:sequence>
        </s:complexType>
      </s:element>
      <s:element name="f2cResponse">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="f2cResult" type="s:double"/>
          </s:sequence>
        </s:complexType>
      </s:element>

WSDL Wrap-Up | 71



    </s:schema>
  </wsdl:types>
  <wsdl:message name="c2fSoapIn">
    <wsdl:part name="parameters" element="tns:c2f"/>
  </wsdl:message>
  <wsdl:message name="c2fSoapOut">
    <wsdl:part name="parameters" element="tns:c2fResponse"/>
  </wsdl:message>
  <wsdl:message name="f2cSoapIn">
    <wsdl:part name="parameters" element="tns:f2c"/>
  </wsdl:message>
  <wsdl:message name="f2cSoapOut">
    <wsdl:part name="parameters" element="tns:f2cResponse"/>
  </wsdl:message>
  <wsdl:portType name="ServiceSoap">
    <wsdl:operation name="c2f">
      <wsdl:input message="tns:c2fSoapIn"/>
      <wsdl:output message="tns:c2fSoapOut"/>
    </wsdl:operation>
    <wsdl:operation name="f2c">
      <wsdl:input message="tns:f2cSoapIn"/>
      <wsdl:output message="tns:f2cSoapOut"/>
    </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name="ServiceSoap" type="tns:ServiceSoap">
    <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="c2f">
      <soap:operation soapAction="http://tempConvertURI.org/c2f" style="document"/>
      <wsdl:input>
        <soap:body use="literal"/>
      </wsdl:input>
      <wsdl:output>
        <soap:body use="literal"/>
      </wsdl:output>
    </wsdl:operation>
    <wsdl:operation name="f2c">
      <soap:operation soapAction="http://tempConvertURI.org/f2c" style="document"/>
      <wsdl:input>
        <soap:body use="literal"/>
      </wsdl:input>
      <wsdl:output>
        <soap:body use="literal"/>
      </wsdl:output>
    </wsdl:operation>
  </wsdl:binding>
  <wsdl:binding name="ServiceSoap12" type="tns:ServiceSoap">
    <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="c2f">
      <soap12:operation soapAction="http://tempConvertURI.org/c2f" style="document"/>
      <wsdl:input>
        <soap12:body use="literal"/>
      </wsdl:input>
      <wsdl:output>
        <soap12:body use="literal"/>
      </wsdl:output>

72 | Chapter 2: All About WSDLs



    </wsdl:operation>
    <wsdl:operation name="f2c">
      <soap12:operation soapAction="http://tempConvertURI.org/f2c" style="document"/>
      <wsdl:input>
        <soap12:body use="literal"/>
      </wsdl:input>
      <wsdl:output>
        <soap12:body use="literal"/>
      </wsdl:output>
    </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name="Service">
    <wsdl:port name="ServiceSoap" binding="tns:ServiceSoap">
      <soap:address location="http://localhost:1443/TempConvert/Service.asmx"/>
    </wsdl:port>
    <wsdl:port name="ServiceSoap12" binding="tns:ServiceSoap12">
      <soap12:address location="http://localhost:1443/TempConvert/Service.asmx"/>
    </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

This WSDL has some features worth noting. The service section (shown in bold) has
two ports, one for a SOAP 1.1 version of the service and another for the SOAP 1.2
version. However, the location attributes for the two ports have the same value, which
means that the same implementation is available at the two ports. The reason is found
in the binding (that is, implementation) section. There are several ways in which two
port elements, each a combination of a portType and a binding, could differ. The bind-
ings could differ on the transport attribute with, for example, one binding delivering
SOAP over HTTP and the other delivering SOAP over SMTP. The bindings also could
differ, as in this example, on the SOAP version: the first is the SOAP 1.1 binding and
the second is the SOAP 1.2 binding. However, the service is simple enough that no
differences arise because of the SOAP 1.1 versus SOAP 1.2 binding. The two bindings
and, therefore, the two ports are identical in this case.

The wsimport utility can be used with the WSDL for the C# service to generate the
usual artifacts that aid in writing a client. Here is the command:

% wsimport -p tcClient -extension  http://localhost:1443/TempConvert/Service.asmx?wsdl

The -extension flag is used because the WSDL includes a SOAP 1.2 binding. With
these artifacts, the sample client code is straightforward:

import tcClient.Service;
import tcClient.ServiceSoap; // port

// A sample Java client against a C# web service
class ClientDotNet {
   public static void main(String[ ] args) {
      Service service = new Service();
      // There's also a getServiceSoap12 for the SOAP 1.2 binding
      ServiceSoap port = service.getServiceSoap();

WSDL Wrap-Up | 73



      double temp = 98.7;
      System.out.println(port.c2F(temp)); // 209.65999450683594
      System.out.println(port.f2C(temp)); //  37.05555386013455
   }
}

However, the main point of this section is to show how the same WSDL also can be
used to generate a Java version of the service itself.

Although the WSDL for the C# web service is generated automatically, the origin of
the WSDL is unimportant in this example. Further, the WSDL could be edited to make
whatever changes seem appropriate and perhaps even rewritten from scratch. The point
of interest is that the WSDL is language-neutral; hence, the service that the WSDL
describes can be implemented in Java rather than C#. For the sake of the example, the
critical point is that the WSDL does not come from Java.

Several details in this WSDL do not make sense for a Java implementation of the service
described therein. For one, the service location ends with Service.asmx, the file name
of the C# implementation. This detail might be changed in the WSDL. Other changes
might be made as well; for instance, the service’s port is currently ServiceSoap instead
of something more suggestive such as TempConvert. In this example, however, the
WSDL will be left as is and changes will be made instead to the wsimport-generated
Java code.

Assuming this time that the WDSL is in the local file named tempc.wsdl, the command:

% wsimport -keep -p  ch02.tc tempc.wsdl

generates the wsimport artifacts in the subdirectory ch02/tc. Of interest is the Java
counterpart to the WSDL portTypeM; in this case it is the file ServiceSoap.java, which
contains the segment:

@WebService(name = "ServiceSoap",
            targetNamespace = "http://tempConvertURI.org/")
public interface ServiceSoap {
    @WebMethod(operationName = "c2f",
               action = "http://tempConvertURI.org/c2f")
    @WebResult(name = "c2fResult",
               targetNamespace = "http://tempConvertURI.org/")
    @RequestWrapper(localName = "c2f",
                    targetNamespace = "http://tempConvertURI.org/",
                    className = "ch02.tc.C2F")
    @ResponseWrapper(localName = "c2fResponse",
                     targetNamespace = "http://tempConvertURI.org/",
                     className = "ch02.tc.C2FResponse")
    public double c2F(
        @WebParam(name = "t", targetNamespace = "http://tempConvertURI.org/")
        double t);
...

This interface is the SEI, but it is easily transformed into the SIB as well: first, the
keyword interface is changed to the keyword class; second, the method declarations

74 | Chapter 2: All About WSDLs



(only the declaration for c2F is shown here) are changed to method definitions. A third
but optional step is to drop the service name ServiceSoap in favor of something more
suggestive such as the name TempConvert. Here is the SIB that results from changes to
the SEI:

package ch02.tc;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;
@WebService(name = "TempConvert", targetNamespace = "http://tempConvertURI.org/")
public class TempConvert {
    @WebMethod(operationName = "c2f",
               action = "http://tempConvertURI.org/c2f")
    @WebResult(name = "c2fResult",
               targetNamespace = "http://tempConvertURI.org/")
    @RequestWrapper(localName = "c2f",
                    targetNamespace = "http://tempConvertURI.org/",
                    className = "ch02.tc.C2F")
    @ResponseWrapper(localName = "c2fResponse",
                     targetNamespace = "http://tempConvertURI.org/",
                     className = "ch02.tc.C2FResponse")
    public double c2F(
        @WebParam(name = "t",
                  targetNamespace = "http://tempConvertURI.org/")
        double t) { return 32.0 + (t * 9.0 / 5.0); }

    @WebMethod(operationName = "f2c",
               action = "http://tempConvertURI.org/f2c")
    @WebResult(name = "f2cResult",
               targetNamespace = "http://tempConvertURI.org/")
    @RequestWrapper(localName = "f2c",
                    targetNamespace = "http://tempConvertURI.org/",
                    className = "ch02.tc.F2C")
    @ResponseWrapper(localName = "f2cResponse",
                     targetNamespace = "http://tempConvertURI.org/",
                     className = "ch02.tc.F2CResponse")
    public double f2C(
        @WebParam(name = "t",
                  targetNamespace = "http://tempConvertURI.org/")
        double t) { return (5.0 / 9.0) * (t - 32.0); }

}      

Once this Java-based web service is published in the usual way using the method
Endpoint.publish, the wsimport utility can be used again but this time to generate client-
side support code:

% wsimport -keep -p clientTC http://localhost:5599/tc?wsdl      

A Java client such as ClientTC below then can be coded:

WSDL Wrap-Up | 75



import javax.xml.ws.Service;
import clientTC.TempConvertService;
import clientTC.TempConvert;

class ClientTC {
    public static void main(String args[ ]) throws Exception {
        TempConvertService service = new TempConvertService();
        TempConvert port = service.getTempConvertPort();
        double d1 = -40.1, d2 = -39.4;
        System.out.printf("f2C(%f) = %f\n", d1, port.f2C(d1));
        System.out.printf("c2F(%f) = %f\n", d2, port.c2F(d2));
   }
}

When executed, this client outputs:

f2C(-40.100000) = -40.055556
c2F(-39.400000) = -38.920000

The example shows that the artifacts generated from wsimport can be used to support
a Java client against a web service or to implement web service in Java. With a WSDL
in hand, a Java implementation of the service is within reach.

A Code-First, Contract-Aware Approach
JWS also supports a code-first, contract-aware approach. JWS encourages the code
first by making it easy to generate the WSDL. Once the service is published, the WSDL
is generated automatically and available to clients. Java, however, does provide anno-
tations that the programmer can use in order to determine, in critical areas, how the
generated WSDL or, in turn, WSDL-generated artifacts will turn out. Example 2-23
shows yet another revision of the TimeServer service. For illustration, the web service
is now implemented as a single file, TimeServer.java, and various annotations have been
added so that their impact on the automatically generated WSDL and on SOAP mes-
sages can be seen.

Example 2-23. A code-first, contract-aware service

package ch02.tsa;  // 'a' for 'annotation'

import java.util.Date;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.Oneway;
import javax.jws.WebParam;
import javax.jws.WebParam.Mode;
import javax.jws.WebResult;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;
import javax.jws.soap.SOAPBinding.Use;
import javax.jws.soap.SOAPBinding.ParameterStyle;

76 | Chapter 2: All About WSDLs



@WebService(name            = "AnnotatedTimeServer",
            serviceName     = "RevisedTimeServer",
            targetNamespace = "http://ch02.tsa")
@SOAPBinding(style          = SOAPBinding.Style.DOCUMENT,
             use            = SOAPBinding.Use.LITERAL,
             parameterStyle = SOAPBinding.ParameterStyle.WRAPPED)
public class TimeServer {
    @WebMethod(operationName   = "time_string")
    @WebResult(name            = "ts_out",
               targetNamespace = "http://ch02.tsa")
    public String getTimeAsString(
       @WebParam(name            = "client_message",
                 targetNamespace = "http://ch02.tsa",
                 mode            = WebParam.Mode.IN)
       String msg) {
          return msg + " at " + new Date().toString();
    }

    @WebMethod (operationName = "time_elapsed")
    public long getTimeAsElapsed() { return new Date().getTime(); }

    @WebMethod
    @Oneway
    public void acceptInput(String msg) { System.out.println(msg); }
}     

Let’s begin with the @WebService annotation, which includes attribute settings in this
revision. Once the publisher application is running, with the revised TimeServer service
available at port 8888, the command:

% wsimport -keep -p clientA http://localhost:8888/tsa?wsdl      

generates the usual artifacts in subdirectory clientA. In the @WebService annotation, the:

serviceName = RevisedTimeServer

attribute causes the service artifact to be the class named RevisedTimeServer, and the:

name = AnnotatedTimeServer

attribute causes the portType artifact to be the class named AnnotatedTimeServer.
The Java client against the revised service illustrates these points:

import clientA.RevisedTimeServer;
import clientA.AnnotatedTimeServer;

class TimeClientA {
    public static void main(String[ ] args) {
        RevisedTimeServer ts = new RevisedTimeServer();
        AnnotatedTimeServer ats = ts.getAnnotatedTimeServerPort();

        System.out.println(ats.timeString("Hi, world!"));
        System.out.println(ats.timeElapsed());
        ats.acceptInput("Hello, world!");
    }
}    

WSDL Wrap-Up | 77



In the revised TimeServer, the targetNamespace is set to http://ch02.tsa (with no trailing
slash) ensures that this will be the namespace URI for the service in the WSDL; in other
words, the ch02.tsa will not be inverted to tsa.ch02, which occurred in effect in the
original TimeServer service. The @SOAPBinding attributes, set to their default values, are
included for illustration.

The getTimeAsString method is the most heavily annotated of the three @WebMethods,
with both a @WebResult and a @WebParam annotation. This method and the method
getTimeAsElapsed have their operational names explicitly set to time_string and
time_elapsed, respectively. Here is the segment from the WSDL’s message section that
reflects these settings. Note, too, that the message names reflect the operation names,
as is standard in the wrapped document style:

<message name="time_string">
  <part element="tns:time_string" name="parameters"></part>
</message>
<message name="time_stringResponse">
  <part element="tns:time_stringResponse" name="parameters"></part>
</message>
<message name="time_elapsed">
  <part element="tns:time_elapsed" name="parameters"></part>
</message>
<message name="time_elapsedResponse">
  <part element="tns:time_elapsedResponse" name="parameters"></part>
</message>      

The @WebResult annotation of the getTimeAsString method does not impact the WSDL
but rather the SOAP response message; in particular the subelement with the tag name
ns1:ts_out in the wrapped SOAP body:

<?xml version="1.0" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
                  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                  xmlns:ns1="http://ch02.tsa">
  <soapenv:Body>
    <ns1:time_stringResponse>
      <ns1:ts_out>Hi, world! at Thu Oct 23 22:24:59 CDT 2008</ns1:ts_out>
    </ns1:time_stringResponse>
  </soapenv:Body>
</soapenv:Envelope>      

The @WebMethod named acceptInput is annotated as @Oneway, which requires that the
method return void. As a result, a client can send a request to the parameterized
acceptInput operation but receives no response. Following is the WSDL segment that
defines the operation with only an input message and no output message.

<operation name="acceptInput">
   <input message="tns:acceptInput"></input>
</operation>     

78 | Chapter 2: All About WSDLs



The example shows some of the possibilities in JWS’s code-first, contract-aware ap-
proach. If the web service creator is willing to accept defaults, the JWS annotations
such as @WebService and @WebMethod are clear and simple. If fine-grained control over
the WSDL and the SOAP messages is required, such control is available with additional
annotations.

Limitations of the WSDL
WSDL documents, as web service descriptions, should be publishable and discovera-
ble. A UDDI (Universal Description Discovery and Integration) registry is one way to
publish WSDLs so that potential clients can discover them and ultimately consume the
services that the WSDLs describe. UDDI does not directly support any particular type
of service description, including WSDL, but instead provides its own type system that
accommodates WSDL documents. In UDDI terms, a WSDL is essentially a two-part
document. The first part, which comprises the types through the binding sections, is
the UDDI service interface. The second part, which comprises any import directives and
the service section, is the UDDI service implementation. In WSDL, the service interface
and service implementation are two parts of the same document. In UDDI, the two
parts are separate documents.

Once a WSDL has been located, perhaps through a UDDI service, critical questions
remain about the service described in the WSDL. For one, the WSDL does not explain
service semantics or, in plainer terms, what the service is about. The WSDL precisely
describes what might be called the service’s invocation syntax: the names of the service
operations; the expected pattern for a service operation (e.g., request/response); the
number, order, and type of arguments that each operation expects; fault codes, if any,
associated with a service operation; and the number and types of any response values
from the service. The Amazon E-Commerce WSDL, which has about 3,640 lines, con-
tains such information for all of the many operations that the service provides. Yet the
WSDL itself contains no information about the intended use of the service. Figuring
this out is left to the programmer, who, drawing presumably on experience with the
Amazon website, recognizes from service operation names such as itemSearch,
sellerLookup, and cartCreate that the E-Commerce service is meant to replicate the
functionality available from a browser-based session at the Amazon website. Amazon
does provide supplementary material such as documentation, tutorials, and sample
code libraries, all of which are meant to provide the semantic information that the
WSDL itself does not provide. The W3C is pursuing initiatives in web semantics under
the rubric of WSDL-S (Semantics). For more information on WSDL-S, see http://www
.w3.org/Submission/WSDL-S. As of now, a WSDL typically is useful only if the client
programmer already understands what the service is about.

WSDL Wrap-Up | 79

http://www.w3.org/Submission/WSDL-S
http://www.w3.org/Submission/WSDL-S


What’s Next?
SOAP-based web services in Java have two levels. The application level, which consists
of the service itself and any Java-based client, typically and appropriately hides the
SOAP. The handler level, which consists of SOAP message interceptors on either the
service or the client side, can manipulate the SOAP. At times it is useful to handle
the SOAP directly, as the next chapter illustrates. Chapter 3 also looks at how SOAP-
based web services can transport large binary payloads efficiently.

80 | Chapter 2: All About WSDLs



CHAPTER 3

SOAP Handling

SOAP: Hidden or Not?
Until now we have looked at SOAP messages only to see how SOAP-based web services
operate under the hood. After all, the point of JWS is to develop and consume web
services, ignoring infrastructure whenever possible. It is one thing to track web service
messages at the wire level in order to see what is really going on. It is quite another to
process SOAP messages in support of application logic.

At times, however, a web service or a client might need to process a SOAP envelope.
For example, a client might need to add security credentials to the header of a SOAP
message before sending the message; and the web service that receives the message then
might need to validate these security credentials after extracting them from the header
of the incoming SOAP message. How to add, extract, and otherwise process informa-
tion in a SOAP message is the main topic in this chapter. The goal is to illustrate tech-
niques for dealing directly with SOAP messages in SOAP-based web services. This
chapter also examines SOAP attachments, particularly for large binary payloads.

SOAP 1.1 and SOAP 1.2
SOAP now comes in two versions, 1.1 and 1.2. There is debate within the W3C about
whether a version 1.3 is needed. The good news is that the differences between SOAP
1.1 and SOAP 1.2 have minor impact on programming web services in general and
programming JAX-WS in particular. There are exceptions. For example, the structure
of the SOAP header differs between the versions, which can impact programming.
Figure 3-1 depicts the general structure of a SOAP message under either 1.1 or 1.2.

81



Optional SOAP header

Optional SOAP
attachments

Required SOAP body

SOAP message

SOAP envelope

Figure 3-1. The structure of a SOAP Message

Under either version, SOAP messages can be manipulated through handlers, which are
programmer-written classes that contain callbacks; that is, methods invoked from the
web service runtime so that an application has access to the underlying SOAP. At what
might be called the application level, which consists of web services and their clients,
the SOAP remains hidden. At the handler level, the SOAP is exposed so that the pro-
grammer can manipulate the incoming and outgoing messages.

Even at the handler level, most differences between 1.1 and 1.2 amount to refinements
that usually can be ignored. For example, SOAP 1.1 technically allows XML elements
to occur after the SOAP body. In SOAP 1.2, by contrast, the SOAP body is the last XML
element in the SOAP envelope. Even in SOAP 1.1, however, it is only in contrived
examples that a SOAP envelope contains XML elements in the wasteland between the
end of the SOAP body and the end of the SOAP envelope. The 1.1 version binds SOAP
to HTTP transport, whereas the 1.2 version also supports SOAP over SMTP. The SOAP
1.1 specification is a single document, but the SOAP 1.2 specification is divided into
three documents. In JAX-WS, as in most frameworks, SOAP 1.1 is the default and
SOAP 1.2 is an option readily available, as examples in this chapter illustrate. Finally,
starting with the 1.2 version, SOAP is officially no longer an acronym!

SOAP Messaging Architecture
A SOAP message is a one-way transmission from a sender to a receiver; hence, the
fundamental message exchange pattern (MEP) for SOAP is one way. SOAP-based ap-
plications such as web services are free to set up conversational patterns that combine
one-way messaging in richer ways. The request/response MEP in a SOAP-based web
service is a brief conversation in which a request initiates the conversion and a response
concludes the conversation. MEPs such as request/response and solicit/response can
be put together in suitable ways to support more expansive conversational patterns as
needed.

82 | Chapter 3: SOAP Handling



Although a SOAP message is intended for an ultimate receiver, the SOAP messaging
architecture allows for SOAP intermediaries, which are nonterminal recipients or
nodes along the route from the sender to the ultimate receiver. An intermediary may
inspect and even manipulate an incoming SOAP message before sending the message
on its way toward the ultimate receiver. Figure 3-2 depicts a SOAP sender, two inter-
mediaries, and an ultimate receiver.

Intermediary 1 Intermediary 2Sender Receiver

Figure 3-2. Sender, intermediaries, and receiver

Recall that a SOAP envelope has a required body, which may be empty, and an optional
header. An intermediary should inspect and process only the elements in the SOAP
header rather than anything in the SOAP body, which carries whatever cargo the sender
intends for the ultimate receiver alone. The header, by contrast, is meant to carry what-
ever meta-information is appropriate for either the ultimate receiver or intermediaries.
For example, the header might contain the sender’s digital signature as a voucher or
include a timestamp that indicates when the information in the message’s body be-
comes obsolete. XML elements within the optional header are header blocks in SOAP
speak. Example 3-1 shows a SOAP message with a SOAP 1.1 header, which in turn
contains a header block tagged uddi.

Example 3-1. A sample SOAP header

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
   <S:Header>
      <uuid xmlns="http://ch03.fib"
            xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
            SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
         ca12fd33-16e1-4a95-b17e-3ef6744babdc
      </uuid>
   </S:Header>
   <S:Body>
      <ns2:countRabbits xmlns:ns2="http://ch03.fib">
         <arg0>45</arg0>
      </ns2:countRabbits>
   </S:Body>
</S:Envelope>

The header block tagged with uddi contains a UUID (Universally Unique IDentifier)
value, which is a 128-bit number formatted as a string with hexadecimal numerals. As
the name suggests, a UDDI is meant to be a statistically unique identifier, in this case
an identifier for this particular request against the RabbitCounter web service, which is
introduced shortly. The assumption in this example is that every request against the
RabbitCounter service would have its own UUID, which might be logged with other
information for later analysis.

SOAP: Hidden or Not? | 83



The header block with the uddi tag has an attribute, SOAP-ENV:actor, whose value ends
with next. The next actor, in this scheme, is the next recipient on the path from the
message sender to the ultimate receiver; hence, each intermediary (and the ultimate
receiver) acts in a next role. A next actor is expected to inspect header blocks in some
application-appropriate way. If a node cannot process the header block, then the node
should throw a fault. In SOAP 1.2, this expectation can be made explicit by setting the
mustUnderstand attribute of a header block to true, which means that a node must throw
a fault if the node cannot process the header block.

The SOAP specification does not explain exactly how an intermediate or final node
must process a header block, as this is an application-specific rather than a SOAP
requirement. In this example, the next node might check whether the UUID value is
well-formed under an application-mandated algorithm such as SHA-1 (Secure Hash
Algorithm-1). If the value cannot be verified as well-formed, then the node should
throw a fault to signal this fact.

Of interest here is how a header such as the one in Example 3-1 can be generated. By
default, JWS generates a SOAP request message without a header. The next section
examines how application code can generate the SOAP message in Example 3-1.

Programming in the JWS Handler Framework
JWS provides a handler framework that allows application code to inspect and manip-
ulate outgoing and incoming SOAP messages. A handler can be injected into the frame-
work in two steps:

1. One step is to create a handler class, which implements the Handler interface in the
javax.xml.ws.handler package. JWS provides two Handler subinterfaces,
LogicalHandler and SOAPHandler. As the names suggest, the LogicalHandler is
protocol-neutral but the SOAPHandler is SOAP-specific. A LogicalHandler has access
only to the message payload in the SOAP body, whereas a SOAPHandler has access
to the entire SOAP message, including any optional headers and attachments. The
class that implements either the LogicalHandler or the SOAPHandler interface needs
to define three methods for either interface type, including handleMessage, which
gives the programmer access to the underlying message. The other two shared
methods are handleFault and close. The SOAPHandler interface requires the imple-
mentation to define a fourth method, getHeaders. These methods are explained
best through code examples.

2. The other step is to place a handler within a handler chain. This is typically done
through a configuration file, although handlers also can be managed through code.
An example follows shortly.

Once injected into the handler framework, a programmer-written handler acts as a
message interceptor that has access to every incoming and outgoing message. Under
the request/response message exchange pattern (MEP), for instance, a client-side

84 | Chapter 3: SOAP Handling



handler has access to the outgoing request message after the message has been created
but before the message is sent to the web service. The same client-side handler has
access to the incoming response message from the web service. A service-side handler
under this MEP has access to the incoming request message and to the outgoing re-
sponse message after the response message has been created.

The JWS handler framework thus encourages the chain of responsibility pattern, which
Java servlet programmers encounter when using filters. The underlying idea is to dis-
tribute responsibility among various handlers so that the overall application is highly
modular and, therefore, more easily maintainable.

The RabbitCounter Example
Now we can drill down into the details with an example, which introduces constructs
that will be useful in later examples. Following is a summary of what the example does:

• The RabbitCounter service has one operation, countRabbits, that expects a single
integer argument and returns an integer. The operation computes the Fibonacci
numbers, which are relevant in botany, engineering, computer science, aesthetics,
market trading, and even rabbit breeding. The sample operation needs to be par-
ameterized so that SOAP faults can be illustrated. In this example, a SOAP fault is
thrown if the argument is a negative integer. The example thus provides a first look
at SOAP faults.

• The service, its clients, and any intermediaries along the route from client to service
are expected to process SOAP headers. In particular, a client injects a header block
into an outgoing (that is, request) message and any intermediary and the ultimate
receiver validate the information in the header block, generating a SOAP fault if
necessary. In later examples, header blocks will be used to carry credentials such
as digital signatures. For now, the details of injecting and processing header blocks
are of primary interest.

• JWS has two different ways to throw SOAP faults and the example illustrates both.
The simplest way is to extend the Exception class (for example, with a class named
FibException) and to throw the exception in a @WebMethod whenever appropriate.
JWS then automatically maps the Java exception to a SOAP fault. The other way,
which takes more work, is to throw a fault from a handler. In this case, a
SOAPFaultException is created and then thrown.

The following sections flesh out the details.

Injecting a Header Block into a SOAP Header
The header block in Example 3-1 comes from the client-side handler shown in Exam-
ple 3-2.

SOAP: Hidden or Not? | 85



Example 3-2. A handler that injects a SOAP header block

package fibC;

import java.util.UUID;
import java.util.Set;
import java.util.logging.Logger;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPHeaderElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPConstants;
import java.io.IOException;

public class UUIDHandler implements SOAPHandler<SOAPMessageContext> {
    private static final String LoggerName = "ClientSideLogger";
    private Logger logger;
    private final boolean log_p = true; // set to false to turn off
    public UUIDHandler() { 
       logger = Logger.getLogger(LoggerName);
    }

    public boolean handleMessage(SOAPMessageContext ctx) {
       if (log_p) logger.info("handleMessage");

       // Is this an outbound message, i.e., a request?
       Boolean request_p = (Boolean) 
          ctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

       // Manipulate the SOAP only if it's a request
       if (request_p) {
          // Generate a UUID and a timestamp to place in the message header.
          UUID uuid = UUID.randomUUID();

          try {
             SOAPMessage msg = ctx.getMessage();
             SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
             SOAPHeader hdr = env.getHeader();
             // Ensure that the SOAP message has a header.
             if (hdr == null) hdr = env.addHeader();

             QName qname = new QName("http://ch03.fib", "uuid");
             SOAPHeaderElement helem = hdr.addHeaderElement(qname);

             helem.setActor(SOAPConstants.URI_SOAP_ACTOR_NEXT); // default
             helem.addTextNode(uuid.toString());
             msg.saveChanges();

             // For tracking, write to standard output.
             msg.writeTo(System.out);
          }

86 | Chapter 3: SOAP Handling



          catch(SOAPException e) { System.err.println(e); }
          catch(IOException e) { System.err.println(e); }
       }
        return true; // continue down the chain
    }
    
    public boolean handleFault(SOAPMessageContext ctx) {
       if (log_p) logger.info("handleFault");
       try {
          ctx.getMessage().writeTo(System.out);
       }
       catch(SOAPException e) { System.err.println(e); }
       catch(IOException e) { System.err.println(e); }
       return true; 
    } 
 
    public Set<QName> getHeaders() { 
       if (log_p) logger.info("getHeaders");
       return null;
    }     

    public void close(MessageContext messageContext) { 
       if (log_p) logger.info("close");
    }
}

Because the UUIDHandler is a client-side handler and the MEP is request/response, the
handleMessage method is invoked by the framework after the underlying SOAP request
message has been constructed but before the request message has been sent to the
service. Suppose that this handler is configured to work with TestClient, which is the
client of a SOAP-based service TestService. The details of the configuration will be
given shortly. For now, here is a summary of what happens given a TestClient against
a TestService and a client-side UUIDHandler:

1. Whenever the TestClient generates a request against the TestService, the client-
side JWS libraries create a SOAP message that serves as the request.

2. Once the SOAP message has been created but before the message is sent, the
UUIDHandler callbacks are invoked. In particular, the callback handleMessage has
access to the full SOAP message because the encapsulating class UUIDHandler is a
SOAPHandler rather than a LogicalHandler, which would have access only to the
message payload. The handleMessage callback injects a UUID value into the header
of the SOAP message.

3. After the UUIDHandler has done its work, the SOAP request message with the in-
jected header block is sent on its way to the ultimate receiver, which in this case is
the TestService.

Here are some additional details about the process. The same UUIDHandler has access
to the incoming or response message. The method handleMessage has an argument
SOAPMessageContext, which gives access to the underlying SOAP message. Accordingly,

SOAP: Hidden or Not? | 87



the handleMessage callback first checks whether the SOAP is outgoing (that is, a request
from the client’s perspective). For an outgoing message, the handler generates a UUID
value to place in a header block. One problem is that the SOAP header is optional under
either SOAP 1.1 or SOAP 1.2. So the handler checks whether the already-created SOAP
message has a header and, if not, adds a header to the SOAP envelope. Next, an instance
of a SOAPHeaderElement, the Java implementation of a header block, is added to the
SOAP header, and the actor attribute is added using a set method. Here is the code
segment:

SOAPHeaderElement helem = hdr.addHeaderElement(qname);
helem.setActor(SOAPConstants.URI_SOAP_ACTOR_NEXT); // the default   

The UUID value is added to the header as an XML text node and the overall changes
to the SOAP message are saved. The outgoing SOAP message reflects the changes. Here,
for review, is the relevant segment of the SOAP header after the handler executes and
the additions have been saved:

<S:Header>
   <uuid xmlns="http://ch03.fib"
         xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
         SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
      ca12fd33-16e1-4a95-b17e-3ef6744babdc
   </uuid>
</S:Header>

For now, the UUIDHandler in Example 3-2 happens to be the only handler in the handler
chain (that is, the sequence of handlers) active in the service client, FibClient. There
could be other handlers, each with a position within the chain. Although the handler
chain can be set up in code, it is cleaner to describe the chain in a deployment file.
Example 3-3 is the deployment file handler-chain.xml, although any name will do.

Example 3-3. A handler deployment file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<javaee:handler-chains 
     xmlns:javaee="http://java.sun.com/xml/ns/javaee" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <javaee:handler-chain>
    <javaee:handler>
      <javaee:handler-class>fibC.UUIDHandler</javaee:handler-class>
    </javaee:handler>
  </javaee:handler-chain>
</javaee:handler-chains>      

If there were other handlers, any mix of LogicalHandler and SOAPHandler implementa-
tions, these would be listed before or after the listing of fibC.UUIDHandler, the fully
qualified name of the class in Example 3-2. Handler methods of one type (for instance,
handleMessage methods in SOAPHandlers) execute in order, from top to bottom, unless
one of the executing handler methods halts handler processing altogether. A handler
method halts execution of the remaining handlers in the chain as follows. The methods
handleMessage and handleFault return boolean values. A returned true means continue

88 | Chapter 3: SOAP Handling



message processing by executing the next handler in the chain, whereas a returned
false means stop message processing. If a handler stops processing on an outgoing
message (for instance, a client request message or a service response message), then the
message is not sent.

The top-to-bottom sequence of the handlers in the configuration file determines the
order in which handler methods of one type (e.g., SOAPHandler) execute. The runtime
ordering may differ from the order given in the configuration file. Here is the reason:

• For an outbound message (for instance, a client request under the request/response
MEP), the handleMessage method or handleFault method in a LogicalHandler code
execute before their counterparts in a SOAPHandler.

• For an inbound message, the handleMessage method or handleFault method in a
SOAPHandler code execute before their counterparts in a LogicalHandler.

For example, suppose that a handler configuration file lists SOAP handlers (SH) and
logical handlers (LH) in this order, top to bottom:

SH1
LH1
SH2
SH3
LH2

Despite the order in the configuration file, the handlers execute in this order, top to
bottom, on an outgoing message:

LH1
LH2
SH1
SH2
SH3

On an incoming message, the handlers execute in this order, top to bottom:

SH1
SH2
SH3
LH1
LH2

Figure 3-3 depicts the runtime ordering of logical and SOAP handlers. This runtime
ordering makes sense because the LogicalHandler has access only to the body of the
SOAP message, whereas the SOAPHandler has access to the entire SOAP message. For
an outgoing message, then, the logical handlers should be able to process the payload,
the SOAP body, before the SOAP handlers process the entire SOAP message. If the
application does not need to process SOAP headers or SOAP attachments, then a
LogicalHandler is the way to go.

SOAP: Hidden or Not? | 89



L
o
g
i
c
a
l

H
a
n
d
l
e
r
s

Sender

M
e
s
s
a
g
e

H
a
n
d
l
e
r
s

Receiver

L
o
g
i
c
a
l

H
a
n
d
l
e
r
s

M
e
s
s
a
g
e

H
a
n
d
l
e
r
s

Figure 3-3. Organization of logical and message handlers

The deployment file, in this case handler-chain.xml, can be located anywhere on the
classpath. In this example, the file is in the fibC subdirectory, which is the named
package for the wsimport-generated stubs. The compiled client, FibClient.class, is in
the parent directory of fibC. The reasons for this layout are given in the next section.
In any case, here is the FibClient code:

import fibC.RabbitCounterService;
import fibC.RabbitCounter;

class FibClient {
    public static void main(String[ ] args) {
        RabbitCounterService service = new RabbitCounterService();
        RabbitCounter port = service.getRabbitCounterPort();
        try {
            int n = -45;
            System.out.println("fib(" + n + ") = " + port.countRabbits(n));
        }
        catch(Exception e) { System.err.println(e); }
    }
}      

The call to the web service method countRabbits occurs in a try block because this
method throws a SOAP fault on a negative argument, as in this case. Otherwise, the
client pattern is quite familiar by now.

Finally, the UUIDHandler also is used to provide a wire-level dump of the outgoing SOAP
message. In Java, SOAP handlers are thus an alternative to a dump utility such as
tcpmon or tcpdump.

90 | Chapter 3: SOAP Handling



Configuring the Client-Side SOAP Handler
The FibClient sends requests to the ch03.fib.RabbitCounter web service, as shown in
Example 3-4.

Example 3-4. The RabbitCounter service

package ch03.fib;  

import java.util.Map;
import java.util.HashMap;
import java.util.Collections;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;
import javax.jws.soap.SOAPBinding.Use;
import javax.jws.soap.SOAPBinding.ParameterStyle;

@WebService(targetNamespace = "http://ch03.fib")
@SOAPBinding(style          = SOAPBinding.Style.DOCUMENT,
             use            = SOAPBinding.Use.LITERAL,
             parameterStyle = SOAPBinding.ParameterStyle.WRAPPED)
public class RabbitCounter {
    // stores previously computed values
    private Map<Integer, Integer> cache = 
       Collections.synchronizedMap(new HashMap<Integer, Integer>());

    @WebMethod
    public int countRabbits(int n) throws FibException {
        // Throw a fault if n is negative.
        if (n < 0) throw new FibException("Neg. arg. not allowed.", n + " < 0");

        // Easy cases.
        if (n < 2) return n;

        // Return cached values if present.
        if (cache.containsKey(n)) return cache.get(n);
        if (cache.containsKey(n - 1) &&
            cache.containsKey(n - 2)) {
           cache.put(n, cache.get(n - 1) + cache.get(n - 2));
           return cache.get(n);
        }

        // Otherwise, compute from scratch, cache, and return.
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        cache.put(n, fib); // cache value for later lookup
        return fib;
    }
}  

SOAP: Hidden or Not? | 91



The service has only one operation, countRabbits. The Fibonacci numbers can be
computed using recursion, but this technique is inefficient. Although this recursive
definition of the Fibonacci numbers:

         undefined if n < 0
fib(n) = n if 0 <= n < 2
         fib(n - 1) + fib(n - 2) otherwise

converts straightforwardly into a Java method:

int fib(int n) {
   if (n < 0) throw new RuntimeException("Undefined for negative values.");
   if (n < 2) return n;                  // base case
   else return fib(n - 1) + fib(n - 2);  // recursive calls
}      

the recursive implementation repeats computations. For instance, the call to fib(5)
computes fib(2) three separate times under the recursive implementation. The base
case for the recursive definition of the fib function occurs when n = 1. If n >= 2, then
fib(n) computes the base case fib(n - 1) times, which is highly inefficient for large
values of n. Although the RabbitCounter service may be whimsical, there are common-
sensical applications of the Fibonacci numbers. Suppose, for instance, that someone is
able to take a normal step of 1 meter and a jump step of 2 meters. How many ways can
this person traverse, say, a 100 meters? The answer is fib(100): 3,314,859,971.

The web service operation countRabbits does not recompute any values in computing
fib(n). Further, this implementation caches previously computed values so that these
may be looked up rather than computed from scratch in subsequent calls.

Our real interest is in the client-side handlers, which intercept the request SOAP
messages sent to the RabbitCounterService and the response SOAP messages returned
from this service. The next step is to indicate where the configuration file for the
handler chain is to be found. The wsimport-generated stub for the service,
fibC.RabbitCounterService, is an obvious place to point to the configuration file. Here
is the @HandlerChain annotation added to the stub:

import javax.jws.HandlerChain;
@WebServiceClient(name = "RabbitCounterService", 
                  targetNamespace = "http://ch03.fib", 
                  wsdlLocation = "http://localhost:8888/fib?wsdl")
@HandlerChain(file = "handler-chain.xml")
public class RabbitCounterService extends Service {

The configuration file can be anywhere on the classpath; hence, it is convenient to place
it in the same fibC subdirectory that holds the wsimport-generated files.

Adding a Handler Programmatically on the Client Side
Managing handlers through a configuration file is the preferred way but not the only
way. It is preferred because this way keeps the client or service code relatively clean.
Handlers are at the edge of application logic rather than at the center; hence, they are

92 | Chapter 3: SOAP Handling



usually managed best through metadata files such as handler-chain.xml in the current
example. Nonetheless, it is not hard to manage handlers programmatically.

Example 3-5 is a revised client against the RabbitCounter service.

Example 3-5. A client that configures a handler programmatically

import fibC.RabbitCounterService;
import fibC.RabbitCounter;
import fibC.UUIDHandler;
import fibC.TestHandler; 

import java.util.List;
import java.util.ArrayList;
import javax.xml.ws.handler.Handler;
import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.PortInfo;

class FibClientHR {
    public static void main(String[ ] args) {
        RabbitCounterService service = new RabbitCounterService();
        service.setHandlerResolver(new ClientHandlerResolver());
        RabbitCounter port = service.getRabbitCounterPort();

        try {
           int n = 27;
           System.out.printf("fib(%d) = %d\n", n, port.countRabbits(n));
        }
        catch(Exception e) { System.err.println(e); }
    }
}
class ClientHandlerResolver implements HandlerResolver {
    public List<Handler> getHandlerChain(PortInfo port_info) {
        List<Handler> hchain = new ArrayList<Handler>();
        hchain.add(new UUIDHandler());
        hchain.add(new TestHandler()); // for illustration only
    }
}

The file FibClientHR.java has two classes, FibClientHR and ClientHandlerResolver. The
HandlerResolver interface declares only one method, getHandlerChain, which the run-
time invokes to get a list of the handlers. In FibClientHR, the setHandlerResolver
method is invoked on the service object:

service.setHandlerResolver(new ClientHandlerResolver());

As a result, the configuration file handle-chain.xml now plays no role in the handler
configuration. Instead, the code takes on this management role. The example adds a
second handler, TestHandler, to illustrate the intuitive ordering. The UUIDHandler comes
first in the handler chain and so is executed first. By the way, the TestHandler simply
prints the SOAP message to the standard output for tracking purposes.

SOAP: Hidden or Not? | 93



Generating a Fault from a @WebMethod
The RabbitCounter service includes a customized exception that the @WebMethod named
countRabbits throws if the method is invoked with a negative integer as an argument.
Here is the code segment in the method definition:

@WebMethod
public int countRabbits(int n) throws FibException {
  // Throw a fault if n is negative.
  if (n < 0) throw new FibException("Negative args not allowed.", n + " < 0");

And here is the customized exception class:

package ch03.fib;

public class FibException extends Exception {
    private String details;
    public FibException(String reason, String details) {
      super(reason);
      this.details = details;
    }
    public String getFaultInfo() { return details; }
}

If a FibException is thrown in the countRabbits operation, a fault message rather than
an output message becomes the service’s response to the client. For example, here is
the response from a call with -999 as the argument:

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
   <S:Header/>
   <S:Body>
      <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/" 
                 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
         <ns3:Code><ns3:Value>ns3:Receiver</ns3:Value></ns3:Code>
         <ns3:Reason>
            <ns3:Text xml:lang="en">Negative args not allowed.</ns3:Text>
         </ns3:Reason>
         <ns3:Detail>
            <ns2:FibException xmlns:ns2="http://ch03.fib">
               <faultInfo>-999 < 0</faultInfo>
               <message>Negative args not allowed.</message>
            </ns2:FibException>
         </ns3:Detail>
         ...
      </ns3:Fault>
   </S:Body>
</S:Envelope>     

The SOAP fault message includes the Reason, which is the first argument in the con-
structor call:

new FibException("Negative args not allowed.", n + " < 0");  

94 | Chapter 3: SOAP Handling



and additional Detail, which is the second argument in the constructor call. The re-
sponse fault message is large, with a wealth of detail. The segment shown above con-
tains the essentials.

When the service is published, the generated WSDL likewise reflects that the service
can throw a SOAP fault. The WSDL includes a message to implement the exception
and the portType section includes a fault message together with the usual input and
output messages. Here are the relevant WSDL segments:

<message name="FibException">
   <part name="fault" element="tns:FibException"/>
</message>
<portType name="RabbitCounter">
   <operation name="countRabbits">
     <input message="tns:countRabbits"/>
     <output message="tns:countRabbitsResponse"/>
     <fault message="tns:FibException" name="FibException"/>
   </operation>
</portType>      

Throwing a SOAP fault from a @WebMethod is straightforward. The Exception-based class
that implements the SOAP fault in Java should have a constructor with two arguments,
the first of which gives the reason for the fault (a negative argument, in this example)
and the second of which provides additional details about the fault. The Exception-
based class should define a getFaultInfo method that returns the fault details. The
corresponding SOAP fault message includes the reason and the details.

Adding a Logical Handler for Client Robustness
The RabbitCounter service throws a SOAP fault if the method countRabbits is called
with a negative argument. A LogicalHandler on the client side could intercept the out-
going request, check the argument to countRabbits, and change the argument if it is
negative. The ArgHandler in Example 3-6 does just this.

Example 3-6. A logical handler for robustness

package fibC;

import javax.xml.ws.LogicalMessage;
import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.LogicalMessageContext;
import javax.xml.ws.handler.MessageContext;
import java.util.logging.Logger;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;

public class ArgHandler implements LogicalHandler<LogicalMessageContext> {
    private static final String LoggerName = "ArgLogger";
    private Logger logger;
    private final boolean log_p = true; // set to false to turn off 

SOAP: Hidden or Not? | 95



    public ArgHandler() { 
        logger = Logger.getLogger(LoggerName);
    }

    // If outgoing message argument is negative, make non-negative.
    public boolean handleMessage(LogicalMessageContext ctx) {
        Boolean outbound_p = (Boolean)
            ctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
        if (outbound_p) {
           if (log_p) logger.info("ArgHandler.handleMessage");
           LogicalMessage msg = ctx.getMessage();

           try {
              JAXBContext jaxb_ctx = JAXBContext.newInstance("fibC");
              Object payload = msg.getPayload(jaxb_ctx);
              if (payload instanceof JAXBElement) {
                 Object obj = ((JAXBElement) payload).getValue();
                 CountRabbits obj_cr = (CountRabbits) obj;
                 int n = obj_cr.getArg0();       // current value
                 if (n < 0) {                    // negative argument?
                    obj_cr.setArg0(Math.abs(n)); // make non-negative

                    // Update the message.
                    ((JAXBElement) payload).setValue(obj_cr);
                    msg.setPayload(payload, jaxb_ctx);
                 }
              }
           }
           catch(JAXBException e) { }
        }
        return true;
    }  
    public boolean handleFault(LogicalMessageContext ctx) { return true; }    
    public void close(MessageContext ctx) { }
}      

The ArgHandler uses a JAXBContext to extract the payload from the LogicalHandler. This
payload is the body of the outgoing SOAP message. There is also a no-argument version
of the LogicalHandler method getPayload, which returns an XML Source object. The
XML from this source could be unmarshaled into a Java object. For the one-argument
version of getPayload used here, the argument can be either a class or, as in this example,
the names of one or more packages. (Recall that fibC is the package name for the
wsimport-generated artifacts.) In any case, the message’s payload is extracted as a
JAXBElement, which represents in XML a CountRabbits object, where CountRabbits is
one of the wsimport-generated artifacts that supports the client code. In particular, the
fibC.CountRabbits class is the Java type that corresponds to a SOAP request for
the web service operation exposed as countRabbits.

The CountRabbits class has two methods, getArg0 and setArg0, that give access to the
argument passed to the countRabbits operation. If this argument is a negative integer,
then the logical handler produces the nonnegative value with a call to Math.abs, updates

96 | Chapter 3: SOAP Handling



the JAXBElement to reflect this change, and finally updates the message body with a call
to setPayload. This handler makes clients more robust by intercepting SOAP requests
that otherwise would cause the service to throw a SOAP fault.

The handler deployment file handler-chain.xml is updated to reflect a second handler
in the chain. Here is the revised configuration file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<javaee:handler-chains 
     xmlns:javaee="http://java.sun.com/xml/ns/javaee" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <javaee:handler-chain>
    <javaee:protocol-bindings>##SOAP12_HTTP</javaee:protocol-bindings> 
    <javaee:handler>
      <javaee:handler-class>fibC.UUIDHandler</javaee:handler-class>
    </javaee:handler>
    <javaee:handler>
      <javaee:handler-class>fibC.ArgHandler</javaee:handler-class>
    </javaee:handler>
  </javaee:handler-chain>
</javaee:handler-chains>      

The ArgHandler is listed deliberately after the UUIDHandler to underscore that, whatever
the configuration sequence, the handleMessage or handleFault methods in a logical
handler always execute before the corresponding methods in a SOAP handler on out-
going messages. For incoming messages, these SOAP handler methods execute before
their logical handler counterparts.

The RabbitCounter service still checks for negative arguments and throws a SOAP fault
if there is one, as the service obviously cannot count on the client-side logical handler.
Of course, the web service itself might convert negative arguments to nonnegative ones,
but the current service design lets us explore how JWS handlers can be put to good use
on the client side.

Adding a Service-Side SOAP Handler
The client-side UUIDHandler inserts a header block with the actor attribute set to next.
This setting means that any intermediary along the message path from sender to receiver
should process the header block and, if appropriate, throw a fault. A fault is appropriate
just in case the intermediary cannot process the header block in some way that the
application requires. The SOAP specification does not explain the details of what pro-
cessing an application may require of intermediaries and ultimate receivers; the speci-
fication merely allows senders to signal that application-specific processing of header
blocks is expected along the path to the receiver. In this messaging architecture, the
ultimate receiver also counts as a next actor and is likewise expected to process the
header block and throw a fault, if needed. To complete the example, then, we need a
service-side SOAP handler to process the header block that the client-side application
inserts into the outgoing SOAP message. The service-side handler illustrates how an
intermediary or the ultimate receiver might process the header block. The specific

SOAP: Hidden or Not? | 97



processing logic is less important than the processing itself. With client-side and service-
side handlers in place, the sample application shows the basics of the JWS handler
framework on the sender side and on the intermediary/receiver side.

The UUIDValidator (see Example 3-7) validates an incoming message on the service
side. The validator needs access to the entire SOAP message rather than just its body;
hence, the validator must be implemented as a SOAPMessageHandler rather than as a
LogicalMessageHandler.

Example 3-7. A service-side handler for request validation

package ch03.fib;

import java.util.UUID;
import java.util.Set;
import java.util.Iterator;
import java.util.Locale;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPConstants;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPHeaderElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.Node;
import javax.xml.ws.soap.SOAPFaultException;
import javax.xml.soap.SOAPFault;
import java.io.IOException;

public class UUIDValidator implements SOAPHandler<SOAPMessageContext> {
    private static final boolean trace = false; // make true to see message

    public boolean handleMessage(SOAPMessageContext ctx) {
       Boolean response_p = (Boolean)
            ctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

       // Handle the SOAP only if it's incoming.
       if (!response_p) {
          try {
             SOAPMessage msg = ctx.getMessage();
             SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
             SOAPHeader hdr = env.getHeader();

             // Ensure that the SOAP message has a header.
             if (hdr == null) 
                generateSOAPFault(msg, "No message header.");

             // Get UUID value from header block if it's there.
             Iterator it = 
                hdr.extractHeaderElements(SOAPConstants.URI_SOAP_ACTOR_NEXT);

98 | Chapter 3: SOAP Handling



             if (it == null || !it.hasNext()) 
                generateSOAPFault(msg, "No header block for next actor.");
             Node next = (Node) it.next();
             String value = (next == null) ? null : next.getValue();
             if (value == null) 
                generateSOAPFault(msg, "No UUID in header block.");

             // Reconstruct a UUID object to check some properties.
             UUID uuid = UUID.fromString(value.trim());
             if (uuid.variant() != UUIDvariant ||
                 uuid.version() != UUIDversion) 
                generateSOAPFault(msg, "Bad UUID variant or version.");

             if (trace) msg.writeTo(System.out);
          }
          catch(SOAPException e) { System.err.println(e); }
          catch(IOException e) { System.err.println(e); }
       }
        return true; // continue down the chain
    }
    
    public boolean handleFault(SOAPMessageContext ctx) {
        return true;
    }
    public Set<QName> getHeaders() { return null; }     
    public void close(MessageContext messageContext) { }

    private void generateSOAPFault(SOAPMessage msg, String reason) {
       try {
          SOAPBody body = msg.getSOAPPart().getEnvelope().getBody();
          SOAPFault fault = body.addFault();
          fault.setFaultString(reason);
          // wrapper for a SOAP 1.1 or SOAP 1.2 fault
          throw new SOAPFaultException(fault); 
       }
       catch(SOAPException e) { }
    }
    private static final int UUIDvariant = 2; // layout
    private static final int UUIDversion = 4; // version 
}      

First, the validator checks whether the incoming message even has a header and, if so,
whether the header has the appropriate header block, in this case a header block marked
in the SOAP role of next. Here is the code segment, without most of the comments, for
the first validation check:

if (hdr == null) // hdr refers to the SOAPHeader
   generateSOAPFault(msg, "No message header.");
Iterator it = hdr.extractHeaderElements(SOAPConstants.URI_SOAP_ACTOR_NEXT);
if (it == null || !it.hasNext()) 
   generateSOAPFault(msg, "No header block for next actor.");
Node next = (Node) it.next();
String value = (next == null) ? null : next.getValue();
if (value == null) 
   generateSOAPFault(msg, "No UUID in header block.");   

SOAP: Hidden or Not? | 99



If the first validation check succeeds, the validator then checks whether the UUID has
the expected properties. In this example, the validator checks for the UUID version
number, which should be 4, and the variant number, which should be 2. (The variant
controls the format of the UUID value as a string.) Here is the code segment:

UUID uuid = UUID.fromString(value.trim());
if (uuid.variant() != UUIDvariant || uuid.version() != UUIDversion) 
   generateSOAPFault(msg, "Bad variant or version.");      

If any step in the validation fails, the validator throws a SOAPFaultException, which is
a wrapper for SOAP 1.1 and SOAP 1.2 faults. This fault wrapper lets us ignore differ-
ences between the two SOAP versions. Here is the code segment that generates the fault:

private void generateSOAPFault(SOAPMessage msg, String reason) {
    try {
       SOAPBody body = msg.getSOAPPart().getEnvelope().getBody();
       SOAPFault fault = body.addFault();
       fault.setFaultString(reason);
       throw new SOAPFaultException(fault); 
    }
    catch(SOAPException e) { }
}      

The UUIDValidator handler is annotated with @HandlerChain and deployed through a
configuration file. Here is the code segment that shows the revision to the
RabbitCounter SIB:

@HandlerChain(file = "handler-chain.xml")
public class RabbitCounter {

The files handler-chain.xml and UUIDValidator.class reside in the ch03/fib subdirectory
of the working directory.

Various tests might be run against the validator. To begin, the line:

helem.addTextNode(uuid.toString());      

in fibC.UUIDValidator could be commented out so that the UUID value is not inserted
into the header. In this case, the following fault message is generated and picked up by
the handleFault method in the UUIDValidator handler:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
  <S:Header/>
    <S:Body>
      <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/" 
                 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
        <faultcode>ns2:Server</faultcode>
        <faultstring>No UUID in header block.</faultstring>
        ...
        <message>No UUID in header block.</message>
        ...
      </ns2:Fault>
    </S:Body>
</S:Envelope>

100 | Chapter 3: SOAP Handling



The full fault message is large and includes a stack trace.

A more subtle test is to provide a UUID that differs in the expected properties. For this
test, the assignment to the uuid object reference in UUIDHandler on the client side can
be changed from:

UUID uuid = UUID.randomUUID();       

to:

uuid = new UUID(new java.util.Random().nextLong(),   // lower 64 bits
                new java.util.Random().nextLong());  // upper 64 bits

The two-argument constructor generates a UUID with different properties than the
randomUUID method does, a difference that the validator recognizes. With this change
the fault message reads:

Bad UUID variant or version.      

Summary of the Handler Methods
The Handler interface declares three methods: handleMessage, handleFault, and close.
The SOAPHandler extension of this interface adds one more declaration: getHeaders,
which returns a set of the QNames for SOAP header blocks. This method could be used,
for example, to insert security information into a SOAP header, as an example in
Chapter 5 shows. In the current example, the method simply returns null. The other
three methods have a MessageContext parameter that provides access to the underlying
SOAP message.

To illustrate the flow of control, here is the handler-chain.xml configuration file for the
client-side handlers that execute when the FibClient is invoked:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<javaee:handler-chains 
     xmlns:javaee="http://java.sun.com/xml/ns/javaee" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <javaee:handler-chain>
    <javaee:handler>
      <javaee:handler-class>fibC.TestHandler</javaee:handler-class>
    </javaee:handler>
    <javaee:handler>
      <javaee:handler-class>fibC.UUIDHandler</javaee:handler-class>
    </javaee:handler>
    <javaee:handler>
      <javaee:handler-class>fibC.ArgHandler</javaee:handler-class>
    </javaee:handler>
  </javaee:handler-chain>
</javaee:handler-chains>      

The TestHandler and UUIDHandler are SOAPMessageHandlers and the ArgHandler is a
LogicalMessageHandler. Recall that, for outgoing messages such as requests from the
FibClient, the logical handlers execute before the SOAP handlers. In this example, the
order of execution is:

SOAP: Hidden or Not? | 101



1. The getHeaders method in the TestHandler and then in the UUIDHandler, both of
which are SOAP handlers, execute first.

2. The handleMessage in the logical handler ArgHandler executes first among the
methods with this name.

3. The handleMessage in the SOAP handler TestHandler executes next, as this handler
is listed first in the configuration file.

4. The handleMessage in the SOAP handler UUIDHandler executes next.

5. The close method in the SOAP handler UUIDHandler executes to signal that UUID
Handler processing is now done.

6. The close method in the SOAP handler TestHandler executes to signal that the
TestHandler processing is now done.

7. The close method in the logical handler ArgHandler executes, which completes the
chain on the outgoing message.

The JWS handler framework gives the programmer hooks into the message-processing
pipeline so that incoming and outgoing messages can be intercepted and processed in
an application-suitable way. The callback handleMessage is especially convenient, pro-
viding access to either the entire SOAP message (in a SOAPMessageHandler) or to the
payload of a SOAP message (in a LogicalMessageHandler).

The RabbitCounter As a SOAP 1.2 Service
It takes just a few steps to transform the RabbitCounter from a SOAP 1.1 to a SOAP 1.2
service. The critical step is to add a @BindingType annotation to the SIB:

import javax.xml.ws.BindingType;
@BindingType(value = "http://java.sun.com/xml/ns/jaxws/2003/05/soap/bindings/HTTP/")
public class RabbitCounter { 

JWS does have a constant:

javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_BINDING    

for the standard SOAP 1.2 binding, but the Endpoint publisher cannot generate a WSDL
using the standard binding. The workaround is to use the nonstandard binding value
shown above. When the service is published, Endpoint issues the nonfatal warning:

com.sun.xml.internal.ws.server.EndpointFactory generateWSDL
WARNING: Generating non-standard WSDL for the specified binding    

The wsgen utility is used in the same way as before, but the wsimport utility is now
invoked with the -extension flag to indicate that the client stubs are generated from a
nonstandard WSDL:

% wsimport -keep -extension -p fibC2 http://localhost:8888/fib?wsdl

102 | Chapter 3: SOAP Handling



The UUIDValidator can be changed to exhibit a SOAP 1.2 feature, namely, use of the
mustUnderstand attribute in a SOAP 1.2 header. Here is the change, immediately below
the setActor call from the SOAP 1.1 version:

helem.setActor(SOAPConstants.URI_SOAP_ACTOR_NEXT);
helem.setMustUnderstand(true);  // SOAP 1.2    

Here is the resulting request message, with the inserted header block in bold:

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
   <S:Header>
     <uuid xmlns="http://ch03.fib" 
           xmlns:env="http://www.w3.org/2003/05/soap-envelope" 
           env:mustUnderstand="true"
           env:role="http://schemas.xmlsoap.org/soap/actor/next">
        b50064b5-24e8-42bc-9716-10537c86bbd8
     </uuid>
   </S:Header>
   <S:Body>
      <ns2:countRabbits xmlns:ns2="http://ch03.fib">
         <arg0>-45</arg0>
      </ns2:countRabbits>
   </S:Body>
</S:Envelope>

The mustUnderstand makes explicit that any intermediary node and the final receiver
are expected to process the header block in an application-appropriate way. Even in
SOAP 1.1, of course, such processing may occur, but SOAP 1.1 does not offer a way
to make the expectation explicit.

The binding section in the Endpoint-generated WSDL reflects the change from the
SOAP 1.1 to SOAP 1.2:

<binding name="RabbitCounterPortBinding" type="tns:RabbitCounter">
  <soap12:binding transport="http://www.w3.org/2003/05/soap/bindings/HTTP/" 
                  style="document"/>
  <operation name="countRabbits">
    <soap12:operation soapAction=""/>
       <input>
          <soap12:body use="literal"/>
       </input>
      <output>
         <soap12:body use="literal"/>
      </output>
      <fault name="FibException">
         <soap12:fault name="FibException" use="literal"/>
      </fault>
  </operation>
</binding>

Given the relatively minor differences between SOAP 1.1 and SOAP 1.2 and the status
of SOAP 1.1 as the de facto standard, it makes sense to stick with SOAP 1.1 unless there
is a compelling reason to use SOAP 1.2. Finally, SOAP 1.2 is backward compatible with
SOAP 1.1.

The RabbitCounter As a SOAP 1.2 Service | 103



The MessageContext and Transport Headers
This section considers how the JWS level of a service interacts with the transport level.
The focus is on the MessageContext, which is normally accessed in handlers: the sub-
types SOAPMessageContext and LogicalMessageMessageContext are the parameter types,
for example, in the handleMessage callbacks of SOAP and logical handlers, respectively.

The notion of context is a familiar one in modern programming systems, including Java.
Servlets have a ServletContext, EJBs have an EJBContext (with appropriate subtypes
such as SessionContext), and web services have a WebServiceContext. Seen in an archi-
tectural light, a context is what gives an object (a servlet, an EJB, a web service) access
to its underlying container (servlet container, EJB container, web service container). 
Containers, in turn, provide the under-the-hood support for the object. Seen in a pro-
gramming light, a context is a Map<String, Object>, that is, a key/value collection in
which the keys are strings and the values are arbitrary objects.

It makes sense that the application level of a @WebService (that is, the SEI and the SIB)
usually take the underlying MessageContext for granted, treating it as unseen infra-
structure. At the handler level, the MessageContext is appropriately exposed as the data
type of callback parameters so that a SOAP or a logical handler can access the SOAP
messages and their payloads, respectively. This section examines the more unusual
situation in which the MessageContext is accessed outside of handlers; that is, in the
application’s main components: the service implementation bean (SIB) and its clients.

SOAP messages are delivered predominantly over HTTP. At issue, then, is how much
of the HTTP infrastructure is exposed through the MessageContext in Java-based web
services. What holds for HTTP also holds for alternative transports such as SMTP or
even JMS.

In a handler or SIB, Java provides access to HTTP messages in a MessageContext. In a
Java-based client, Java likewise gives access to the HTTP level but in this case through
the BindingProvider and the request/response contexts, which are exposed as
BindingProvider properties. The code examples illustrate application-level as opposed
to handler-level access to transport messages.

An Example to Illustrate Transport-Level Access
The Echo service in Example 3-8 merely echoes a client’s text message back to the client.
It is best to keep the service simple so that focus is on the transport layer. Throughout
the example, the assumption is that transport is SOAP over HTTP.

Example 3-8. A service with access to the message context

package ch03.mctx;

import java.util.Map;
import java.util.Set;
import javax.annotation.Resource;

104 | Chapter 3: SOAP Handling



import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.jws.HandlerChain;

/** 
 * A minimalist service to explore the MessageContext.
 * The operation takes a string and echoes it together 
 * with transport information back to the client.
 */
@WebService
@HandlerChain(file = "handler-chain.xml")
public class Echo {
    // Enable 'dependency injection' on web service context
    @Resource 
    WebServiceContext ws_ctx;

    @WebMethod
    public String echo(String from_client) {
       MessageContext ctx = ws_ctx.getMessageContext();
       Map req_headers = (Map) ctx.get(MessageContext.HTTP_REQUEST_HEADERS);
       MapDump.dump_map((Map) ctx, "");
       String response = "Echoing your message: " + from_client;
       return response;
    }
}

The Echo class has a field named ws_ctx of type WebServiceContext, which is annotated
with @Resource. This annotation is used to request dependency injection, a notion as-
sociated with AOP (Aspect-Oriented Programming). As with any uninitialized field,
ws_ctx has a default value of null. Yet, in the first line of the echo method, the method
getMessageContext is invoked on the object to which ws_ctx now, as if by magic, refers.
There is no magic, of course. The JWS container injects a WebServiceContext object
into the application and makes ws_ctx refer to this object. The WebServiceContext then
is used to access the MessageContext, which in turn is used to get a Map of the underlying
transport (typically HTTP) headers. The dump_map method in the utility class MapDump:

package ch03.mctx;

import java.util.Map;
import java.util.Set;
public class MapDump {
    public static void dump_map(Map map, String indent) {
       Set keys = map.keySet();
       for (Object key : keys) {
          System.out.println(indent + key + " ==> " + map.get(key));
          if (map.get(key) instanceof Map)
             dump_map((Map) map.get(key), indent += "   ");
       }
    }
}

The MessageContext and Transport Headers | 105



is then invoked to dump the HTTP headers. Example 3-9 shows the relevant part of
the dump from a sample client call against the Echo service.

Example 3-9. A dump of a sample HTTP message context

javax.xml.ws.wsdl.port ==> {http://mctx.ch03/}EchoPort
javax.xml.ws.soap.http.soapaction.uri ==> "echo"
com.sun.xml.internal.ws.server.OneWayOperation ==> null
javax.xml.ws.http.request.pathinfo ==> null
com.sun.xml.internal.ws.api.message.packet.outbound.transport.headers ==> 
  com.sun.net.httpserver.Headers@0
   com.sun.xml.internal.ws.client.handle ==> null
   javax.xml.ws.wsdl.service ==> {http://mctx.ch03/}EchoService
   javax.xml.ws.reference.parameters ==> [ ]
   javax.xml.ws.http.request.headers ==> 
      sun.net.httpserver.UnmodifiableHeaders@2c47bd03
      Host ==> [localhost:9797]
      Content-type ==> [text/xml; charset=utf-8]
      Accept-encoding ==> [gzip]
      Content-length ==> [198]
      Connection ==> [keep-alive]
      Greeting ==> [Hello, world!]
      User-agent ==> [Java/1.6.0_06]
      Accept ==> [text/xml, multipart/related, text/html, image/gif,
                  image/jpeg, *; q=.2, */*; q=.2]
      Soapaction ==> ["echo"]
      ...
javax.xml.ws.http.request.method ==> POST

Near the end in bold are the HTTP request headers from the client’s invocation of the
echo operation. On the client side, the underlying libraries insert some standard key/
value pairs into the HTTP headers; for instance, the pairs:

Host ==> [localhost:9797]
Content-type ==> [text/xml; charset=utf-8]      

In standard HTTP, a colon separates the key from the value; in the Java rendering, the
arrow ==> is used for clarity. In this example, two of the entries are from an Echo client:

Accept-encoding ==> [gzip]
Greeting ==> [Hello, world!]      

The first pair uses a standard HTTP key, Accept-encoding, with a value of gzip to signal
that the client is willing to accept a gzip-compressed SOAP envelope as the body of the
HTTP response. The second key/value pair is whimsical: it uses the nonstandard key
Greeting. HTTP 1.1, the current version, allows arbitrary key/value pairs to be inserted
into the HTTP header.

Another entry in the HTTP header merits special attention:

Soapaction ==> ["echo"]      

106 | Chapter 3: SOAP Handling



For a Java client, the default value for the Soapaction attribute would be the empty
string. The string echo occurs here as the value because the client inserts this value into
the header of the HTTP request.

The JWS runtime processes the transport-layer headers that client or service code in-
serts. In this example, the EchoClient shown below uses the key Accept-Encoding
(uppercase E in Encoding), which the JWS runtime changes to Accept-encoding (low-
ercase e in encoding). Example 3-10 shows the sample client.

Example 3-10. A client that manipulates the message context

import java.util.Map;
import java.util.Set;
import java.util.List;
import java.util.Collections;
import java.util.HashMap;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import echoC.EchoService;
import echoC.Echo;

class EchoClient {
   public static void main(String[ ] args) {
      EchoService service = new EchoService();
      Echo port = service.getEchoPort();

      Map<String, Object> req_ctx = ((BindingProvider) port).getRequestContext();

      // Sample invocation: 
      //
      // % java EchoClient http://localhost:9797 echo
      //
      // 1st command-line argument ends with service location port number
      // 2nd command-line argument is the service operation
      if (args.length >= 2) { 
         // Endpoint address becomes: http://localhost:9797/echo
         req_ctx.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, 
                         args[0] + "/" + args[1]);
         // SOAP action becomes: echo
         req_ctx.put(BindingProvider.SOAPACTION_URI_PROPERTY, args[1]);
      }
      // Add some application-specific HTTP headers
      Map<String, List<String>> my_header = new HashMap<String, List<String>>();
      my_header.put("Accept-Encoding", Collections.singletonList("gzip"));
      my_header.put("Greeting", Collections.singletonList("Hello, world!"));

      // Insert customized headers into HTTP message headers
      req_ctx.put(MessageContext.HTTP_REQUEST_HEADERS, my_header);

      dump_map(req_ctx, "");
      System.out.println("\n\nRequest above, response below\n\n");

      // Invoke service operation to generate an HTTP response.
      String response = port.echo("Have a nice day :)");

The MessageContext and Transport Headers | 107



      Map<String, Object> res_ctx = ((BindingProvider) port).getResponseContext();
      dump_map(res_ctx, "");

      Object response_code = res_ctx.get(MessageContext.HTTP_RESPONSE_CODE);
   }

   private static void dump_map(Map map, String indent) {
      Set keys = map.keySet();
      for (Object key : keys) {
        System.out.println(indent + key + " ==> " + map.get(key));
        if (map.get(key) instanceof Map)
          dump_map((Map) map.get(key), indent += "   ");
      }
   }
}

Here is the client invocation that resulted in the dump just shown:

% java EchoClient http://localhost:9797/ echo

The two command-line arguments are concatenated in the EchoClient application to
generate the service’s endpoint location. The second command-line argument, the
name of the operation echo, also is inserted into the HTTP request header as the value
of SOAPACTION_URI_PROPERTY.

The EchoClient application gains access to the HTTP request headers through the
port object reference, which is first cast to a BindingProvider so that the method
getRequestContext can be invoked. This method returns a Map into which two entries
are made: the first, as just noted, sets the SOAPACTION_URI_PROPERTY to the string echo;
the second entry sets the ENDPOINT_ADDRESS_PROPERTY to the URL http://localhost:9797/
echo, thus illustrating how the service’s endpoint location could be set dynamically in
a client application.

The client also creates an empty map, with my_header as the reference, that accepts
String keys and Object values. The Object values are of subtype List<String>, instances
of which the Collections utility method singletonList generates. The extra key/value
pairs are inserted into the HTTP request header. Although the service operation echo
is invoked only once in the client, every invocation thereafter would result in an HTTP
request with the augmented headers.

Near the end of the EchoClient application, the port object reference is cast again to
BindingProvider so that the method getResponseContext can be invoked to gain access
to the HTTP response context, which is also a Map. The MessageContext class has various
constants such as HTTP_RESPONSE_CODE, which are helpful in extracting information from
the HTTP response headers.

The Echo service includes the SOAP handler shown Example 3-11. It is noteworthy that
the service, the sample client, and the SOAP handler all have access to the underlying
message context, although the syntax for accessing this context differs slightly among
the three.

108 | Chapter 3: SOAP Handling

http://localhost:9797/echo
http://localhost:9797/echo


Example 3-11. A service-side handler with access to the message context

package ch03.mctx;

import java.util.Map;
import java.util.Set;
import java.util.Locale;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

public class EchoHandler implements SOAPHandler<SOAPMessageContext> {
    public boolean handleMessage(SOAPMessageContext ctx) {
       // Is this an inbound message, i.e., a request?
       Boolean response_p = (Boolean) 
          ctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

       // Manipulate the SOAP only if it's incoming.
       if (!response_p) MapDump.dump_map((Map) ctx, "");
       return true; // continue down the chain
    }
    public boolean handleFault(SOAPMessageContext ctx) { return true; }
    public Set<QName> getHeaders() { return null; }     
    public void close(MessageContext messageContext) { }
}

Later examples return to the theme of application-level access to the transport level, in
particular to HTTP or equivalent message headers. For example, HTTP headers are
one place to store credentials in a service that requires authentication from its clients.

Web Services and Binary Data
In the examples so far, the underlying SOAP messages contain text that is converted,
as needed, to service-appropriate types. The type conversion is mostly automatic, oc-
curring in the JWS infrastructure without application intervention. For instance, here
is the body of a SOAP request message to the countRabbits operation. The argument
45 occurs as text in the message:

<S:Body>
   <ns2:countRabbits xmlns:ns2="http://ch03.fib">
      <arg0>45</arg0>
   </ns2:countRabbits>
</S:Body>    

but is converted automatically to an int so that the service method countRabbits:

@WebMethod
public int countRabbits(int n) throws FibException {

can compute and return the Fibonacci number for integer argument n. Neither the
FibClient application nor the RabbitCounter service does any explicit type conversion.

Web Services and Binary Data | 109



By contrast, some explicit type conversions occur at the handler level. For instance, the
UUIDHandler on the client side and the UUIDValidator on the service side do explicit, if
simple, type conversions. The UUIDHandler converts the UUID object to a string:

helem.addTextNode(uuid.toString());    

and the UUIDValidator does the opposite conversion:

UUID uuid = UUID.fromString(value.trim());    

The client-side ArgHandler does the most work with respect to type conversion. This
logical handler uses JAX-B in this code segment:

JAXBContext jaxb_ctx = JAXBContext.newInstance("fibC");
Object payload = msg.getPayload(jaxb_ctx);
if (payload instanceof JAXBElement) {
   Object obj = ((JAXBElement) payload).getValue();
   CountRabbits obj_cr = (CountRabbits) obj;
   int n = obj_cr.getArg0();       // current value
   if (n < 0) {                    // negative argument?
      obj_cr.setArg0(Math.abs(n)); // make non-negative

      // Update the message.
      ((JAXBElement) payload).setValue(obj_cr);
      msg.setPayload(payload, jaxb_ctx);
   }
}    

to obtain a CountRabbits object from an XML element; invokes the getArg0 method
and possibly the setArg0 method on the object to ensure that the argument passed to
the countRabbits operation is nonnegative; and then, with the call to setPayload,
changes the CountRabbits object back to an XML element.

Type conversions come to the forefront in the issue of how binary data such as images,
movies, and the like can be arguments passed to or values returned from web service
operations. SOAP-based web services are not limited to text, but their use of binary
data raises important efficiency issues.

There are two general approaches to handling arbitrary binary data in SOAP-based web
services:

• The binary data can be encoded using a scheme such as base64 and then trans-
mitted as the payload of the SOAP body. For instance, a service operation that
returns an image to a requester simply could return a java.awt.Image, which is a
Java wrapper for image bytes. The image’s bytes then would be encoded and trans-
mitted as the body of a SOAP message. The downside is that base64 and similar
encoding schemes result in payloads that are at least a third larger in size than the
original, unencoded binary data. In short, byte encoding such as base64 results in
data bloat.

• The binary data can be transmitted as one or more attachments to a SOAP message.
Recall that a SOAP message consists of a SOAP part, which is the SOAP envelope

110 | Chapter 3: SOAP Handling



with an optional header and a possibly empty body. A SOAP message also may
have attachments, which can carry data of any MIME type, including multimedia
types such as audio/x-wav, video/mpeg, and image/jpeg. JAX-B provides the re-
quired mappings between MIME and Java types: the MIME types image/* map to
Image, and the remaining multimedia types map to DataHandler.

The attachments option is preferable because it avoids data bloat—raw rather than
encoded bytes go from sender to receiver. The downside is that the receiver then must
deal with the raw bytes, for example, by converting them back into multimedia types
such as images and sounds.

Three Options for SOAP Attachments
There are basically three options for SOAP attachments: SwA (SOAP with Attach-
ments), the original SOAP specification for attachments; DIME (Direct Internet
Message Encapsulation), a lightweight but by now old-fashioned encoding scheme for
attachments; and MTOM (Message Transmission Optimization Mechanism), which is
based on XOP (XML-Binary Optimized Packaging). JWS has a DIME extension whose
main purpose is to interoperate with Microsoft clients. Up until the release of Microsoft
Office 2003, a web service client written in Visual Basic for Applications (VBA) could
handle only DIME rather than MTOM attachments. The SwA approach has draw-
backs. For one, it is hard to use SwA with a document-style service, which is now the
norm. Further, frameworks such as DotNet do not support SwA. MTOM has the W3C
stamp of approval and enjoys widespread support; hence, MTOM is the efficient,
modern, interoperable way to transmit binary data in SOAP-based web services. Before
considering MTOM, let’s take a quick look at base64 encoding of binary data, which
might be used for small binary payloads.

Using Base64 Encoding for Binary Data
The SkiImageService in Example 3-12 has two operations: getImage returns a named
image of a skier and getImages returns a list of the available images. Example 3-12 shows
the source code.

Example 3-12. A service that provides images as responses

package ch03.image;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.Map;
import java.util.HashMap;
import java.util.Set;
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
import java.awt.Image;

Web Services and Binary Data | 111



import java.io.FileInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.imageio.stream.ImageInputStream;
import javax.imageio.ImageReader;
import javax.jws.HandlerChain;

@WebService(serviceName = "SkiImageService") 
@HandlerChain(file = "handler-chain.xml") // for message tracking
public class SkiImageService {
    // Returns one image given the image's name.
    @WebMethod
    public Image getImage(String name) { return createImage(name);  }

    // Returns a list of all available images.
    @WebMethod
    public List<Image> getImages() { return createImageList(); }

    public SkiImageService() {
       photos = new HashMap<String, String>();
       photos.put("nordic", "nordic.jpg");
       photos.put("alpine", "alpine.jpg");
       photos.put("telemk", "telemk.jpg");
       default_key = "nordic";
    }
    
    // Create a named image from the raw bytes.
    private Image createImage(String name) {
       byte[ ] bytes = getRawBytes(name);
       ByteArrayInputStream in = new ByteArrayInputStream(bytes);
       Iterator iterators = ImageIO.getImageReadersByFormatName("jpeg");
       ImageReader iterator = (ImageReader) iterators.next();
       try {
          ImageInputStream iis = ImageIO.createImageInputStream(in);
          iterator.setInput(iis, true);
          return iterator.read(0);        
       }
       catch(IOException e) { 
          System.err.println(e);
          return null; 
       }
    }

    // Create a list of all available images.
    private List<Image> createImageList() {
       List<Image> list = new ArrayList<Image>();
       Set<String> key_set = photos.keySet();
       for (String key : key_set) {
          Image image = createImage(key);
          if (image != null) list.add(image);
       }
       return list;
    }

112 | Chapter 3: SOAP Handling



    // Read the bytes from the file for one image.
    private byte[ ] getRawBytes(String name) {
       ByteArrayOutputStream out = new ByteArrayOutputStream();
       try {
          String cwd = System.getProperty ("user.dir");
          String sep = System.getProperty ("file.separator");
          String base_name = cwd + sep + "jpegs" + sep;
          String file_name = base_name + name + ".jpg";
          FileInputStream in = new FileInputStream(file_name);
 
          // Send default image if there's none with this name.
          if (in == null) in = new FileInputStream(base_name + "nordic.jpg");
          byte[ ] buffer = new byte[2048];
          int n = 0;
          while ((n = in.read(buffer)) != -1) 
             out.write(buffer, 0, n); // append to ByteArrayOutputStream
          in.close();
       }
       catch(IOException e) { System.err.println(e); }
       return out.toByteArray();
    }
    private static final String[ ] names = {
       "nordic.jpg", "tele.jpg", "alpine.jpg" };
    private Map<String, String> photos;
    private String default_key;
}

Most of the service code is in utility methods that read the image’s bytes from a local
file and then create an Image from these bytes. The images are stored in a subdirectory
of the working directory. The two service operations, getImage and getImages, are un-
complicated. The getImage operation returns a java.awt.Image, and the getImages op-
eration returns a List<Image>. Of interest here is that the return types are high level
rather than byte arrays.

A quick look at the binding section of the WSDL:

<binding name="SkiImageServicePortBinding" type="tns:SkiImageService">
  <soap:binding transport="http://schemas.xmlsoap.org/soap/http" 
                style="document"></soap:binding>
  <operation name="getImage">
    <soap:operation soapAction=""></soap:operation>
      <input>
        <soap:body use="literal"></soap:body>
      </input>
      <output>
        <soap:body use="literal"></soap:body>
      </output>
  </operation>
  <operation name="getImages">
    <soap:operation soapAction=""></soap:operation>
      <input>
        <soap:body use="literal"></soap:body>
      </input>

Web Services and Binary Data | 113



      <output>
        <soap:body use="literal"></soap:body>
      </output>
  </operation>
</binding>

shows that the service is document style with literal encoding. Two segments from the
associated XSD provide more information:

<xs:complexType name="getImagesResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary" 
                minOccurs="0" maxOccurs="unbounded"></xs:element>
    </xs:sequence>
</xs:complexType>

<xs:complexType name="getImageResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary" minOccurs="0"></xs:element>
  </xs:sequence>
</xs:complexType>

The XSD indicates that the style is indeed wrapped document, with getImageResponse
as one of the wrapper types. The XSD type for this wrapper is the expected
base64Binary.

Here is the truncated SOAP response envelope from a request for one of the skiing
images:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
   <S:Body>
     <ns2:getImageResponse xmlns:ns2="http://image.ch03/">
       <return>iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAIAAABi1X...</return>
     </ns2:getImageResponse>
   </S:Body>
</S:Envelope>

The entire image or list of images is returned as a base64 character encoding in the body
of the SOAP envelope.

The SkiImageClient is shown here:

import skiC.SkiImageService_Service;
import skiC.SkiImageService;
import java.util.List;
class SkiImageClient {
    public static void main(String[ ] args) {
       // wsimport-generated artifacts
       SkiImageService_Service service = new SkiImageService_Service();
       SkiImageService port = service.getSkiImageServicePort();
       // Note the return types: byte[ ] and List<byte[ ]>
       byte[ ] image = port.getImage("nordic");
       List<byte[ ]> images = port.getImages();
       /* Transform the received bytes in some useful way :) */
    }
}

114 | Chapter 3: SOAP Handling



This client uses wsimport-generated stubs to invoke the service operations. However,
the client gets either an array of bytes or a list of these as return values because the XSD
type base64Binary maps to the Java type byte[]. The client receives the base64 encoding
of images as byte arrays and then must transform these encodings back into images.
This is inconvenient, to say the least.

The fix is to edit the WSDL so that the service is friendlier to clients. After saving the
WSDL and its XSD to local files (for instance, ski.wsdl and ski.xsd), the following
changes should be made:

1. Edit the XSD document. In particular, make the two additions shown in bold:

<xs:complexType name="getImagesResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary" 
                minOccurs="0" maxOccurs="unbounded"
                xmime:expectedContentTypes="image/jpeg"
                  xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
    </xs:element>
  </xs:sequence>
</xs:complexType>

<xs:complexType name="getImageResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary" 
                minOccurs="0"
                xmime:expectedContentTypes="image/jpeg" 
                  xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
    </xs:element>
  </xs:sequence>
</xs:complexType>      

The attribute expectedContentTypes is set to the MIME type image/jpeg so that the
wsimport utility can generate versions of the operations getImage and getImages
that return the Java types Image and List<Image>, respectively.

2. In the SkiImageService, the @WebService annotation should be changed to:

@WebService(serviceName = "SkiImageService",
            wsdlLocation = "ch03/image/ski.wsdl")  

to reflect the new location of the WSDL.

3. The WSDL should then be changed to reflect the new location of XSD document:

<types>
  <xsd:schema>
    <xsd:import namespace="http://image.ch03/" 
                schemaLocation="ski.xsd">
    </xsd:import>
  </xsd:schema>
</types>         

4. From the working directory (in this case, the parent of the subdirectory ch03), the
wsimport utility is run to generate the new artifacts:

Web Services and Binary Data | 115



% wsimport -keep -p skiC2 ch03/image/ski.wsdl        

With these changes, the client now can work with the Java types Image and
List<Image> instead of the bytes from the base64 encoding of images. Here is the revised
client:

import skiC2.SkiImageService_Service;
import skiC2.SkiImageService;
import java.awt.Image;
import java.util.List;

class SkiImageClient2 {
    public static void main(String[ ] args) {
       SkiImageService_Service service = new SkiImageService_Service();
       SkiImageService port = service.getSkiImageServicePort();

       Image image = port.getImage("telemk");
       List<Image> images = port.getImages();
       /* Process the images in some appropriate way. */
    }
}

The revised SkiImageService and the corresponding wsimport-generated artifacts let
clients receive high-level types such as the java.awt.Image instead of arrays of raw bytes.
These revisions do not remedy the data bloat of base64 encoding, however. The next
subsection gives an example that avoids base64 encoding altogether by working with
raw rather than encoded bytes.

Using MTOM for Binary Data
This section adapts the SkiImageService to use MTOM. Several things need to be
changed, but each change is relatively minor.

In the XSD, the expectedContentTypes attribute occurs twice. The changes are in bold:

<xs:complexType name="getImagesResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary"
              minOccurs="0" maxOccurs="unbounded"
              xmime:expectedContentTypes="application/octet-stream"
                xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
    </xs:element>
  </xs:sequence>
</xs:complexType>

<xs:complexType name="getImageResponse">
  <xs:sequence>
    <xs:element name="return" type="xs:base64Binary"
                minOccurs="0"
                xmime:expectedContentTypes="application/octet-stream"
                  xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
    </xs:element>
  </xs:sequence>
</xs:complexType>    

116 | Chapter 3: SOAP Handling



The MIME subtype name application/octet-stream captures the optimization that
recommends MTOM—the image bytes will be streamed unencoded to the service cli-
ent. The bloat of base64 or comparable encoding is thereby avoided.

For emphasis, the SkiImageService is annotated to show that MTOM may come into
play:

import javax.xml.ws.soap.SOAPBinding;
@WebService(serviceName = "SkiImageService")
// This binding value is enabled by default but put here for emphasis.
@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING)
@HandlerChain(file = "handler-chain.xml") // for message tracking
public class SkiImageService {

The binding value is the default, hence optional, but it is included for emphasis.

The next change is important. Here is the revised publisher, with the work now divided
among several methods for clarity:

package ch03.image;

import javax.xml.ws.Endpoint;
import javax.xml.ws.soap.SOAPBinding;
public class SkiImagePublisher {
    private Endpoint endpoint;

    public static void main(String[ ] args) {
        SkiImagePublisher me = new SkiImagePublisher();
        me.create_endpoint();
        me.configure_endpoint();
        me.publish();
    }

    private void create_endpoint() {
        endpoint = Endpoint.create(new SkiImageService());
    }

    private void configure_endpoint() {
        SOAPBinding binding = (SOAPBinding) endpoint.getBinding();
        binding.setMTOMEnabled(true);
    }

    private void publish() {
        int port = 9999;
        String url = "http://localhost:" + port + "/ski";
        endpoint.publish(url);
        System.out.println(url);
    }
}

The service endpoint enables MTOM for responses to the client. Although the service
still uses a SOAP handler to dump the response message, this dump is misleading be-
cause it shows the images as base64-encoded values in the SOAP body. The MTOM

Web Services and Binary Data | 117



optimization occurs after the handler executes; hence, a utility such as tcpdump offers
a better picture of what is really going on.

The last change is to the sample client, now SkiImageClient3, after the wsimport utility
has been run yet again to generate the artifacts in directory skiC3:

import skiC3.SkiImageService_Service;
import skiC3.SkiImageService;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPBinding;
import java.util.List;
import java.io.IOException;
import javax.activation.DataHandler;

class SkiImageClient3 {
    public static void main(String[ ] args) {
       SkiImageService_Service service = new SkiImageService_Service();
       SkiImageService port = service.getSkiImageServicePort();

       DataHandler image = port.getImage("nordic");
       List<DataHandler> images = port.getImages();
       dump(image);
       for (DataHandler hd : images)
          dump(hd);
    }
    private static void dump(DataHandler dh) {
       System.out.println();
       try {
          System.out.println("MIME type: " + dh.getContentType());
          System.out.println("Content:   " + dh.getContent());
       }
       catch(IOException e) { System.err.println(e); }
    }
}

The service operations now return a DataHandler or a List of these. This change is
reflected in the JAX-B artifacts created with the wsimport utility. For instance, here is
a segment from the GetImageResponse artifact with an @XmlMimeType annotation that
reflects the service’s revised XSD and also indicates that the service now returns a
DataHandler:

@XmlElement(name = "return")
@XmlMimeType("application/octet-stream")
protected DataHandler _return;

It is now up to the client to reconstruct the appropriate objects from the optimized byte
stream sent from the service. The tradeoff is clear: MTOM optimizes the transmission
by avoiding data bloat, but the message receiver is forced to deal with raw bytes. Here
is the output from the dump method on a sample run:

MIME type: application/octet-stream
Content:   java.io.ByteArrayInputStream@210b5b

118 | Chapter 3: SOAP Handling



MIME type: application/octet-stream
Content:   java.io.ByteArrayInputStream@170888e

MIME type: application/octet-stream
Content:   java.io.ByteArrayInputStream@11563ff
...      

The input streams provide access to the underlying bytes from which the Image instan-
ces can be restored. The service’s createImage method could be used on the client side
for this purpose.

If the client needed to send large amounts of binary data to the web service, then the
client, too, could enable MTOM. This revised SkiImageClient2 shows how by using the
Binding method setMTOMEnable:

SkiImageService port = service.getSkiImageServicePort();

// Enable MTOM for client transmissions
BindingProvider bp = (BindingProvider) port;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true); 

MTOM does come at a cost, which the receiver pays by having to deal with the raw
bytes available through a returned DataHandler’s input stream. Yet the gains in effi-
ciency for large data sets may easily offset this cost. As the example shows, enabling
MTOM is relatively straightforward on the service side and on the client side.

What’s Next?
There is much to like about SOAP-based web services in general and @WebServices in
particular. Such services are built upon industry-standard, vendor-independent proto-
cols such as HTTP, XML, and SOAP itself. These services represent a language-neutral
approach to building and deploying distributed software systems. The WSDL and as-
sociated tools such as Java’s wsimport ease the task of writing service clients and even
services themselves in some preferred language. SOAP as a language-agnostic messag-
ing system and XML Schema as a language-neutral type system promote service inter-
operability and API standardization.

Yet SOAP-based services are complicated, especially if the developer has to drill down
into the infrastructure for any reason whatsoever. Even at the application level, the APIs
for SOAP-based web services have become quite rich. There are various standards
bodies involved in SOAP and SOAP-based web services, including the W3C, OASIS
(Organization for the Advancement of Structured Information Services), IETF (Inter-
national Engineering Task Force), and WS-I (Web Services Interoperability Organiza-
tion). There are specification initiatives in areas as broad and varied as interoperability,
business process, presentation, security, metadata, reliability, resources, messaging,
XML, management, transactions, and SOAP itself. Each area has subareas. For

What’s Next? | 119



instance, the security area has 10 subareas, the interoperability area likewise has 10
subareas, the metadata area has 9 subareas, and the messaging area also has 9 subareas.

It is not uncommon to hear complaints about how SOAP and SOAP-based web services
have been over-engineered. The JAX-WS framework reflects this complexity with its
wealth of annotations and tools. This complexity explains, at least in part, the current
popularity of REST-style or RESTful approaches to web services. The next chapter
focuses on RESTful Web services.

120 | Chapter 3: SOAP Handling



CHAPTER 4

RESTful Web Services

What Is REST?
Roy Fielding (http://roy.gbiv.com) coined the acronym REST in his Ph.D. dissertation.
Chapter 5 of his dissertation lays out the guiding principles for what have come to be
known as REST-style or RESTful web services. Fielding has an impressive resume. He
is, among other things, a principal author of the HTTP specification and a cofounder
of the Apache Software Foundation.

REST and SOAP are quite different. SOAP is a messaging protocol, whereas REST is a
style of software architecture for distributed hypermedia systems; that is, systems in
which text, graphics, audio, and other media are stored across a network and inter-
connected through hyperlinks. The World Wide Web is the obvious example of such
a system. As our focus is web services, the World Wide Web is the distributed hyper-
media system of interest. In the Web, HTTP is both a transport protocol and a mes-
saging system because HTTP requests and responses are messages. The payloads of
HTTP messages can be typed using the MIME type system, and HTTP provides re-
sponse status codes to inform the requester about whether a request succeeded and, if
not, why.

REST stands for REpresentation State Transfer, which requires clarification because
the central abstraction in REST—the resource—does not occur in the acronym. A re-
source in the RESTful sense is anything that has an URI; that is, an identifier that
satisfies formatting requirements. The formatting requirements are what make URIs
uniform. Recall, too, that URI stands for Uniform Resource Identifier; hence, the no-
tions of URI and resource are intertwined.

In practice, a resource is an informational item that has hyperlinks to it. Hyperlinks use
URIs to do the linking. Examples of resources are plentiful but likewise misleading in
suggesting that resources must have something in common other than identifiability
through URIs. The gross national product of Lithuania in 2001 is a resource, as is the
Modern Jazz Quartet. Ernie Bank’s baseball accomplishments count as a resource, as
does the maximum flow algorithm. The concept of a resource is remarkably broad but,
at the same time, impressively simple and precise.

121

http://roy.gbiv.com


As Web-based informational items, resources are pointless unless they have at least one
representation. In the Web, representations are MIME-typed. The most common type
of resource representation is probably still text/html, but nowadays resources tend to
have multiple representations. For example, there are various interlinked HTML pages
that represent the Modern Jazz Quartet, but there are also audio and audiovisual rep-
resentations of this resource.

Resources have state. For example, Ernie Bank’s baseball accomplishments changed
during his career with the Chicago Cubs from 1953 through 1971 and culminated in
his 1977 induction into the Baseball Hall of Fame. A useful representation must capture
a resource’s state. For example, the current HTML pages on Ernie at the Baseball Ref-
erence website (http://www.baseball-reference.com) need to represent all of his major
league accomplishments, from his rookie year in 1953 through his induction into the
Hall of Fame.

In a RESTful request targeted at a resource, the resource itself remains on the service
machine. The requester typically receives a representation of the resource if the request
succeeds. It is the representation that transfers from the service machine to the requester
machine. In different terms, a RESTful client issues a request that involves a resource,
for instance, a request to read the resource. If this read request succeeds, a typed rep-
resentation (for instance, text/html) of the resource is transferred from the server that
hosts the resource to the client that issued the request. The representation is a good
one only if it captures the resource’s state in some appropriate way.

In summary, RESTful web services require not just resources to represent but also
client-invoked operations on such resources. At the core of the RESTful approach is
the insight that HTTP, despite the occurrence of Transport in its name, is an API and
not simply a transport protocol. HTTP has its well-known verbs, officially known as
methods. Table 4-1 shows the HTTP verbs that correspond to the CRUD (Create, Read,
Update, Delete) operations so familiar throughout computing.

Table 4-1. HTTP verbs and CRUD operations

HTTP verb Meaning in CRUD terms

POST Create a new resource from the request data

GET Read a resource

PUT Update a resource from the request data

DELETE Delete a resource

Although HTTP is not case-sensitive, the HTTP verbs are traditionally written in
uppercase. There are additional verbs. For example, the verb HEAD is a variation on
GET that requests only the HTTP headers that would be sent to fulfill a GET request.
There are also TRACE and INFO verbs.

Figure 4-1 is a whimsical depiction of a resource with its identifying URI, together with
a RESTful client and some typed representations sent as responses to HTTP requests

122 | Chapter 4: RESTful Web Services

http://www.baseball-reference.com
http://www.baseball-reference.com
http://www.baseball-reference.com


for the resource. Each HTTP request includes a verb to indicate which CRUD operation
should be performed on the resource. A good representation is precisely one that
matches the requested operation and captures the resource’s state in some appropriate
way. For example, in this depiction a GET request could return my biography as a
hacker as either an HTML document or a short video summary. The video would fail
to capture the state of the resource if it depicted, say, only the major disasters in my
brother’s career rather than those in my own. A typical HTML representation of the
resource would include hyperlinks to other resources, which in turn could be the target
of HTTP requests with the appropriate CRUD verbs.

Resource:  My life as a hacker

RESTful client

Identifying URL:  http://my.life.job/hacker

HTTP responses
   MIME-typed representations of the resource such as:
   GET:  HTML page with my hacker’s bio
   GET:  Short video of major disasters
   PUT:  Plain text acknowledgement of update
   POST:  Fancy HTML acknowledgement of resource creation

HTTP requests
   GET:  Read
   POST:  Create
   PUT:  Update
   DELETE:  Delete

Figure 4-1. A small slice of a RESTful system

HTTP also has standard response codes, such as 404 to signal that the requested re-
source could not be found, and 200 to signal that the request was handled successfully.
In short, HTTP provides request verbs and MIME types for client requests and status
codes (and MIME types) for service responses.

Modern browsers generate only GET and POST requests. Moreover, many applications
treat these two types of requests interchangeably. For example, Java HttpServlets have
callback methods such as doGet and doPost that handle GET and POST requests, re-
spectively. Each callback has the same parameter types, HttpServletRequest (the key/
value pairs from the requester) and HttpServletResponse (a typed response to the re-
quester). It is common to have the two callbacks execute the same code (for instance,
by having one invoke the other), thereby conflating the original HTTP distinction be-
tween read and create. A key guiding principle of the RESTful style is to respect the
original meanings of the HTTP verbs. In particular, any GET request should be side
effect-free (or, in jargon, idempotent) because a GET is a read rather than a create,
update, or delete operation. A GET as a read with no side effects is called a safe GET.

The REST approach does not imply that either resources or the processing needed to
generate adequate representations of them are simple. A REST-style web service might
be every bit as subtle and complicated as a SOAP-based service. The RESTful approach

What Is REST? | 123



tries to simplify matters by taking what HTTP, with its MIME type system, already
offers: built-in CRUD operations, uniformly identifiable resources, and typed repre-
sentations that can capture a resource’s state. REST as a design philosophy tries to
isolate application complexity at the endpoints, that is, at the client and at the service.
A service may require lots of logic and computation to maintain resources and to gen-
erate adequate representation of resources—for instance, large and subtly formatted
XML documents—and a client may require significant XML processing to extract the
desired information from the XML representations transferred from the service to the
client. Yet the RESTful approach keeps the complexity out of the transport level, as a
resource representation is transferred to the client as the body of an HTTP response
message. By contrast, a SOAP-based service inevitably complicates the transport level
because a SOAP message is encapsulated as the body of a transport message; for in-
stance, an HTTP or SMTP message. SOAP requires messages within messages, whereas
REST does not.*

Verbs and Opaque Nouns
A URI is meant to be opaque, which means that the URI:

http://bedrock/citizens/fred

has no inherent connection to the URI:

http://bedrock/citizens

although Fred happens to be a citizen of Bedrock. These are simply two different, in-
dependent identifiers. Of course, a good URI designer will come up with URIs that are
suggestive about what they are meant to identify. The point is that URIs have no in-
trinsic hierarchical structure. URIs can and should be interpreted, but these interpre-
tations are imposed on URIs, not inherent in them. Although URI syntax looks like the
syntax used to navigate a hierarchical file system, this resemblance is misleading. A URI
is an opaque identifier, a logically proper name that denotes exactly one resource.

In RESTful services, then, URIs act as identifying nouns and HTTP methods act as
verbs that specify operations on the resources identified by these nouns. For reference,
here is the HTTP start line from a client’s request against the TimeServer service in
Chapter 1:

POST http://127.0.0.1:9876/ts HTTP/ 1.1      

The HTTP verb comes first, then the URI, and finally the requester’s version of HTTP.
This URI is, of course, a URL that locates the web service. Table 4-2 uses simplified
URIs to summarize the intended meanings of HTTP/URI combinations.

* For a thorough coverage of REST-style web services, see Leonard Richardson and Sam Ruby’s book RESTful
Web Services (O’Reilly).

124 | Chapter 4: RESTful Web Services



Table 4-2. Sample HTTP verb/URI pairs

HTTP verb/URI Intended CRUD meaning

POST emps Create a new employee from the request data

GET emps Read a list of all employees

GET emps?id=27 Read a singleton list of employee 27

PUT emps Update the employee list with the request data

DELETE emps Delete the employee list

DELETE emps?id=27 Delete employee 27

These verb/URI pairs are terse, precise, and uniform in style. The pairs illustrate that
RESTful conventions can yield simple, clear expressions about which operation should
be performed on which resource. The POST and PUT verbs are used in requests that
have an HTTP body; hence, the request data are housed in the HTTP message body.
The GET and DELETE verbs are used in requests that have no body; hence, the request
data are sent as query string entries.

For the record, RESTful web services are Turing complete; that is, these services are
equal in power to any computational system, including a system that consists of SOAP-
based web services. Yet the decision about whether to be RESTful in a particular ap-
plication depends, as always, on practical matters. This first section has looked at REST
from on high; it is now time to descend into details through examples.

From @WebService to @WebServiceProvider
The @WebService annotation signals that the messages exchanged between the service
and its clients will be SOAP envelopes. The @WebServiceProvider signals that the ex-
changed messages will be XML documents of some type, a notion captured in the
phrase raw XML. Of course, a @WebServiceProvider could process and generate SOAP
on its own, but this approach is not recommended. (A later example illustrates, how-
ever.) The obvious way to provide a SOAP-based web service is to use the annotation
@WebService.

In a RESTful request/response service, the service response is raw XML but the in-
coming request might not be XML at all. A GET request does not have a body; hence,
arguments sent as part of the request occur as attributes in the query string, a collection
of key/value pairs. Here is a sample:

http://www.onlineparlor.com/bets?horse=bigbrown&jockey=kent&amount=25

The question mark (?) begins the query string, and the attributes are key/value pairs
separated by ampersands (&). The order of attributes in the query string is arbitrary; for
instance, the jockey attribute could occur first in the query string without changing the
meaning of the request. By contrast, a POST request does have a body, which can be
an arbitrary XML document instead of a SOAP envelope.

From @WebService to @WebServiceProvider | 125



A service annotated with @WebServiceProvider implements the Provider interface,
which requires that the invoke method:

public Source invoke(Source request)

be defined. This method expects a Source of bytes (for instance, the bytes in an XML
document that represents the service request) and returns a Source of bytes (the bytes
in the XML response). When a request arrives, the infrastructure dispatches the request
to the invoke method, which handles the request in some service-appropriate way.
These points can be illustrated with an example.

A RESTful Version of the Teams Service
The first RESTful service revises the Teams SOAP-based service from Chapter 1. The
teams in question are comedy groups such as the Marx Brothers. To begin, the RESTful
service honors only GET requests, but the service will be expanded to support the other
HTTP verbs associated with the standard CRUD operations.

The WebServiceProvider Annotation
Example 4-1 is the source code for the initial version of the RestfulTeams service.

Example 4-1. The RestfulTeams web service

package ch04.team;

import javax.xml.ws.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import javax.xml.ws.BindingType;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.http.HTTPBinding;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList;
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.beans.XMLEncoder;
import java.beans.XMLDecoder;

126 | Chapter 4: RESTful Web Services



// The class below is a WebServiceProvider rather than the more usual
// SOAP-based WebService. The service implements the generic Provider 
// interface rather than a customized SEI with designated @WebMethods.
@WebServiceProvider

// There are two ServiceModes: PAYLOAD, the default, signals that the service
// wants access only to the underlying message payload (e.g., the
// body of an HTTP POST request); MESSAGE signals that the service wants
// access to entire message (e.g., the HTTP headers and body). 
@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)

// The HTTP_BINDING as opposed, for instance, to a SOAP binding.
@BindingType(value = HTTPBinding.HTTP_BINDING)
public class RestfulTeams implements Provider<Source> {
    @Resource
    protected WebServiceContext ws_ctx;

    private Map<String, Team> team_map; // for easy lookups
    private List<Team> teams;           // serialized/deserialized
    private byte[ ] team_bytes;         // from the persistence file

    private static final String file_name = "teams.ser";

    public RestfulTeams() {
        read_teams_from_file(); // read the raw bytes from teams.ser
        deserialize();          // deserialize to a List<Team>
    }

    // This method handles incoming requests and generates the response.
    public Source invoke(Source request) {
        if (ws_ctx == null) throw new RuntimeException("DI failed on ws_ctx.");

        // Grab the message context and extract the request verb.
        MessageContext msg_ctx = ws_ctx.getMessageContext();
        String http_verb = (String)
           msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
        http_verb = http_verb.trim().toUpperCase();

        // Act on the verb. To begin, only GET requests accepted.
        if (http_verb.equals("GET")) return doGet(msg_ctx);
        else throw new HTTPException(405); // method not allowed
    }

    private Source doGet(MessageContext msg_ctx) {
        // Parse the query string.
        String query_string = (String) msg_ctx.get(MessageContext.QUERY_STRING);

        // Get all teams.
        if (query_string == null)
            return new StreamSource(new ByteArrayInputStream(team_bytes));
        // Get a named team.
        else {
            String name = get_value_from_qs("name", query_string);

A RESTful Version of the Teams Service | 127



            // Check if named team exists.
            Team team = team_map.get(name);
            if (team == null) throw new HTTPException(404); // not found
            // Otherwise, generate XML and return.
            ByteArrayInputStream stream = encode_to_stream(team);
            return new StreamSource(stream);
        }
    }

    private ByteArrayInputStream encode_to_stream(Object obj) {
        // Serialize object to XML and return
        ByteArrayOutputStream stream = new ByteArrayOutputStream();
        XMLEncoder enc = new XMLEncoder(stream);
        enc.writeObject(obj);
        enc.close();
        return new ByteArrayInputStream(stream.toByteArray());
    }

    private String get_value_from_qs(String key, String qs) {
        String[ ] parts = qs.split("=");
        // Check if query string has form: name=<team name>
        if (!parts[0].equalsIgnoreCase(key))
            throw new HTTPException(400); // bad request
        return parts[1].trim();
    }

    private void read_teams_from_file() {
        try {
            String cwd = System.getProperty ("user.dir");
            String sep = System.getProperty ("file.separator");
            String path = get_file_path();
            int len = (int) new File(path).length();
            team_bytes = new byte[len];
            new FileInputStream(path).read(team_bytes);
        }
        catch(IOException e) { System.err.println(e); }
    }

    private void deserialize() {
        // Deserialize the bytes into a list of teams
        XMLDecoder dec = new XMLDecoder(new ByteArrayInputStream(team_bytes));
        teams = (List<Team>) dec.readObject();

        // Create a map for quick lookups of teams.
        team_map = Collections.synchronizedMap(new HashMap<String, Team>());
        for (Team team : teams) team_map.put(team.getName(), team);
    }

    private String get_file_path() {
        String cwd = System.getProperty ("user.dir");
        String sep = System.getProperty ("file.separator");
        return cwd + sep + "ch04" + sep + "team" + sep + file_name;
    }
}

128 | Chapter 4: RESTful Web Services



The JWS annotations indicate the shift from a SOAP-based to a REST-style service.
The main annotation is now @WebServiceProvider instead of @WebService. In the next
two annotations:

@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)
@BindingType(value = HTTPBinding.HTTP_BINDING)      

the @ServiceMode annotation overrides the default value of PAYLOAD in favor of the value
MESSAGE. This annotation is included only to highlight it, as the RestfulTeams service
would work just as well with the default value. The second annotation announces that
the service deals with raw XML over HTTP instead of SOAP over HTTP.

The RESTful revision deals with raw XML rather than with SOAP. The comedy teams
are now stored on the local disk, in a file named teams.ser, as an XML document gen-
erated using the XMLEncoder class. Here is a segment of the file:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_06" class="java.beans.XMLDecoder">
 <object class="java.util.ArrayList">
  <void method="add">
   <object class="ch04.team.Team">
    <void property="name">
     <string>BurnsAndAllen</string>
    </void>
    <void property="players">
     <object class="java.util.ArrayList">
      <void method="add">
       <object class="ch04.team.Player">
        <void property="name">
         <string>George Burns</string>
        </void>
        <void property="nickname">
         <string>George</string>
        </void>
       </object>
      </void>
      ...
</java>

An XMLDecoder is used to deserialize this stored XML document into a List<Team>. For
convenience, the service also has a Map<String, Team> so that individual teams can be
accessed by name. Here is the code segment:

private void deserialize() {
     // Deserialize the bytes into a list of teams
     XMLDecoder dec = new XMLDecoder(new ByteArrayInputStream(team_bytes));
     teams = (List<Team>) dec.readObject();

     // Create a map for quick lookups of teams.
     team_map = Collections.synchronizedMap(new HashMap<String, Team>());
     for (Team team : teams) team_map.put(team.getName(), team);
}

A RESTful Version of the Teams Service | 129



The RestfulTeams service is published using the by-now-familiar Endpoint publisher,
the same publisher used for SOAP-based services under JWS:

package ch04.team;

import javax.xml.ws.Endpoint;

class TeamsPublisher {
    public static void main(String[ ] args) {
        int port = 8888;
        String url = "http://localhost:" + port + "/teams";
        System.out.println("Publishing Teams restfully on port " + port);
        Endpoint.publish(url, new RestfulTeams());
    }
}     

Of the four HTTP verbs that correspond to CRUD operations, only GET has no side
effects on the resource, which is the list of classic comedy teams. For now, then, there
is no need to serialize a changed List<Team> to the file teams.ser.

The JWS runtime dispatches client requests against the RestfulTeams service to the
invoke method:

public Source invoke(Source request) {
    if (ws_ctx == null) throw new RuntimeException("Injection failed on ws_ctx.");

    // Grab the message context and extract the request verb.
    MessageContext msg_ctx = ws_ctx.getMessageContext();
    String http_verb = (String) msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
    http_verb = http_verb.trim().toUpperCase();

    // Act on the verb. For now, only GET requests accepted.
    if (http_verb.equals("GET")) return doGet(msg_ctx); 
    else throw new HTTPException(405); // method not allowed
}       

This method extracts the HTTP request verb from the MessageContext and then invokes
a verb-appropriate method such as doGet to handle the request. If the request verb is
not GET, then an HTTPException is thrown with the status code 405 to signal method
not allowed. Table 4-3 shows some of the many HTTP status codes.

Table 4-3. Sample HTTP status codes

HTTP status code Official reason Meaning

200 OK Request OK.

400 Bad request Request malformed.

403 Forbidden Request refused.

404 Not found Resource not found.

405 Method not allowed Method not supported.

415 Unsupported media type Content type not recognized.

500 Internal server error Request processing failed.

130 | Chapter 4: RESTful Web Services



In general, status codes in the range of 100–199 are informational; those in the range
of 200–299 are success codes; codes in the range of 300–399 are for redirection; those
in the range of 400–499 signal client errors; and codes in the range of 500–599 indicate
server errors.

There are two types of GET (and, later, DELETE) requests handled in the service. If
the GET request comes without a query string, the RestfulTeams service treats this as
a request for the entire list of teams and responds with a copy of the XML document
in the file teams.ser. If the GET request has a query string, this should be in the
form ?name=<team name>, for instance, ?name=MarxBrothers. In this case, the doGet
method gets the named team and encodes this team as an XML document using the
XMLEncoder in the method encode_to_stream. Here is the body of the doGet method:

if (query_string == null) // get all teams
     // Respond with list of all teams
     return new StreamSource(new ByteArrayInputStream(team_bytes));
else { // get the named team
     String name = get_name_from_qs(query_string);

     // Check if named team exists.
     Team team = team_map.get(name);
     if (team == null) throw new HTTPException(404); // not found

     // Respond with named team.
     ByteArrayInputStream stream = encode_to_stream(team);
     return new StreamSource(stream);
}      

The StreamSource is a source of bytes that come from the XML document and are made
available to the requesting client. On a request for the Marx Brothers, the doGet method
returns, as a byte stream, an XML document that begins:

<java version="1.6.0_06" class="java.beans.XMLDecoder">
 <object class="ch04.team.Team">
  <void property="name">
   <string>MarxBrothers</string>
  </void>
  <void property="players">
   <object class="java.util.ArrayList">
    <void method="add">
     <object class="ch04.team.Player">
      <void property="name">
       <string>Leonard Marx</string>
      </void>
      <void property="nickname">
       <string>Chico</string>
      ...

A RESTful Version of the Teams Service | 131



Language Transparency and RESTful Services
As evidence of language transparency, the first client against the RestfulTeams service
is not in Java but rather in Perl. The client sends two GET requests and performs ele-
mentary processing on the responses. Here is the initial Perl client:

#!/usr/bin/perl

use strict;
use LWP;
use XML::XPath;

# Create the user agent.
my $ua = LWP::UserAgent->new;

my $base_uri = 'http://localhost:8888/teams';

# GET teams?name=MarxBrothers
my $request = $base_uri . '?name=MarxBrothers';
send_GET($request);

sub send_GET {
    my ($uri, $qs_flag) = @_;

    # Send the request and get the response.
    my $req = HTTP::Request->new(GET => $uri);
    my $res = $ua->request($req);

    # Check for errors.
    if ($res->is_success) {
        parse_GET($res->content, $qs_flag); # Process raw XML on success
    }
    else {
        print $res->status_line, "\n";      # Print error code on failure
    }
}

# Print raw XML and the elements of interest.
sub parse_GET {
    my ($raw_xml) = @_;
    print "\nThe raw XML response is:\n$raw_xml\n;;;\n";

    # For all teams, extract and print out their names and members
    my $xp = XML::XPath->new(xml => $raw_xml);
    foreach my $node ($xp->find('//object/void/string')->get_nodelist) {
        print $node->string_value, "\n";
    }
}

The Perl client issues a GET request against the URI http://localhost:8888/teams, which
is the endpoint location for the Endpoint-published service. If the request succeeds, the
service returns an XML representation of the teams, in this case the XML generated
from a call to the XMLEncoder method writeObject. The Perl client prints the raw XML
and performs a very simple parse, using an XPath package to get the team names

132 | Chapter 4: RESTful Web Services

http://localhost:8888/teams


together with the member names and nicknames. In a production environment the
XML processing would be more elaborate, but the basic logic of the client would be
the same: issue an appropriate request against the service and process the response in
some appropriate way. On a sample client run, the output was:

The GET request is: http://localhost:8888/teams
The raw XML response is:
<java version="1.6.0_06" class="java.beans.XMLDecoder">
 <object class="java.util.ArrayList">
  <void method="add">
   <object class="ch04.team.Team">
    <void property="name">
     <string>BurnsAndAllen</string>
    </void>
    <void property="players">
     <object class="java.util.ArrayList">
      <void method="add">
       <object class="ch04.team.Player">
        <void property="name">
         <string>George Burns</string>
        </void>
        <void property="nickname">
         <string>George</string>
        </void>
       </object>
      </void>
      <void method="add">
       <object class="ch04.team.Player">
        <void property="name">
         <string>Gracie Allen</string>
        </void>
        <void property="nickname">
         <string>Gracie</string>
        </void>
       </object>
      </void>
     </object>
    </void>
   </object>
  </void>
  ...
</java>
;;;

BurnsAndAllen
George Burns
George
Gracie Allen
Gracie
AbbottAndCostello
William Abbott
Bud
Louis Cristillo
Lou
MarxBrothers

A RESTful Version of the Teams Service | 133



Leonard Marx
Chico
Julius Marx
Groucho
Adolph Marx
Harpo

The output below the semicolons consists of the extracted team names, together with
the member names and nicknames.

Here is a Java client against the RestfulTeams service:

import java.util.Arrays;
import java.net.URL;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URLEncoder;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.ByteArrayInputStream;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.ParserConfigurationException;

class TeamsClient {
    private static final String endpoint = "http://localhost:8888/teams";

    public static void main(String[ ] args) {
        new TeamsClient().send_requests();
    }

    private void send_requests() {
        try {
            // GET requests
            HttpURLConnection conn = get_connection(endpoint, "GET");
            conn.connect();
            print_and_parse(conn, true);

            conn = get_connection(endpoint + "?name=MarxBrothers", "GET");
            conn.connect();
            print_and_parse(conn, false);
        }
        catch(IOException e) { System.err.println(e); }
        catch(NullPointerException e) { System.err.println(e); }
    }

    private HttpURLConnection get_connection(String url_string,
                                             String verb) {
        HttpURLConnection conn = null;
        try {
            URL url = new URL(url_string);

134 | Chapter 4: RESTful Web Services



            conn = (HttpURLConnection) url.openConnection();
            conn.setRequestMethod(verb);
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
        return conn;
    }

    private void print_and_parse(HttpURLConnection conn, boolean parse) {
        try {
            String xml = "";
            BufferedReader reader =
                new BufferedReader(new InputStreamReader(conn.getInputStream()));
            String next = null;
            while ((next = reader.readLine()) != null)
                xml += next;
            System.out.println("The raw XML:\n" + xml);

            if (parse) {
                SAXParser parser =SAXParserFactory.newInstance().newSAXParser();
                parser.parse(new ByteArrayInputStream(xml.getBytes()),
                             new SaxParserHandler());
            }
        }
        catch(IOException e) { System.err.println(e); }
        catch(ParserConfigurationException e) { System.err.println(e); }
        catch(SAXException e) { System.err.println(e); }
    }

    static class SaxParserHandler extends DefaultHandler {
        char[ ] buffer = new char[1024];
        int n = 0;

        public void startElement(String uri, String lname,
                                 String qname, Attributes attributes) {
            clear_buffer();
        }

        public void characters(char[ ] data, int start, int length) {
            System.arraycopy(data, start, buffer, 0, length);
            n += length;
        }

        public void endElement(String uri, String lname, String qname) {
            if (Character.isUpperCase(buffer[0]))
                System.out.println(new String(buffer));
            clear_buffer();
        }

        private void clear_buffer() {
            Arrays.fill(buffer, '\0');
            n = 0;
        }
    }
}

A RESTful Version of the Teams Service | 135



The Java client issues two GET requests and uses a SAX (Simple API for XML) parser
to process the returned XML. Java offers an assortment of XML-processing tools and
the code examples illustrate several. A SAX parser is stream-based and event-driven—
the parser receives a stream of bytes, invoking callbacks (such as the methods named
startElement and characters shown above) to handle specific events, in this case the
occurrence of XML start tags and character data in between start and end tags,
respectively.

Summary of the RESTful Features
This first restricted example covers some key features of RESTful services but also
ignores one such feature. Following is a summary of the example so far:

• In a request, the pairing of an HTTP verb such as GET with a URI such as http://.../
teams specifies a CRUD operation against a resource; in this example, a request to
read available information about comedy teams.

• The service uses HTTP status codes such as 404 (resource not found) and 405
(method not allowed) to respond to bad requests.

• If the request is a good one, the service responds with an XML representation that
captures the state of the requested resource. So far, the service honors only GET
requests, but the other CRUD verbs will be added in the forthcoming revision.

• The service does not take advantage of MIME types. A client issues a request for
either a named team or a list of all teams but does not indicate a preference for the
type of representation returned (for instance, text/plain as opposed to text/xml
or text/html). A later example does illustrate typed requests and responses.

• The RESTful service implementation is not constrained in the same way as a SOAP-
based service precisely because there is no formal service contract. The implemen-
tation is flexible but, of course, likewise ad hoc. This issue will be raised often.

The next section extends the service to handle requests issued with the POST, PUT,
and DELETE verbs.

Implementing the Remaining CRUD Operations
The remaining CRUD operations—create (POST), update (PUT), and delete
(DELETE)—have side effects, which requires that the RestfulTeams service update the
in-memory data structures (in this case, the list and the map of teams) and the persis-
tence store (in this case, the local file teams.ser). The service follows an eager rather
than a lazy strategy for updating teams.ser—this file is updated on every successful
POST, PUT, and DELETE request. A lazier and more efficient strategy might be fol-
lowed in a production environment.

The RestfulTeams implementation of the invoke method changes only slightly to ac-
commodate the new request possibilities. Here is the change:

136 | Chapter 4: RESTful Web Services



MessageContext msg_ctx = ws_ctx.getMessageContext();
String http_verb = (String) msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
http_verb = http_verb.trim().toUpperCase();

// Act on the verb.
if      (http_verb.equals("GET"))    return doGet(msg_ctx);
else if (http_verb.equals("DELETE")) return doDelete(msg_ctx);
else if (http_verb.equals("POST"))   return doPost(msg_ctx);
else if (http_verb.equals("PUT"))    return doPut(msg_ctx);
else throw new HTTPException(405);   // method not allowed      

The doPost method expects that the request contains an XML document with infor-
mation about the new team to be created. Following is a sample:

<create_team>
   <name>SmothersBrothers</name>
   <player>
     <name>Thomas</name>
     <nickname>Tom</nickname>
   </player>
   <player>
     <name>Richard</name>
     <nickname>Dickie</nickname>
   </player>
</create_team>      

Of course, an XML Schema that describes precisely this layout could be distributed to
clients. In this example, the doPost does not validate the request document against a
schema but rather parses the document to find required information such as the team’s
name and the players’ names. If required information is missing, an HTTP status code
of 500 (internal error) or 400 (bad request) is sent back to the client. Here is the added
doPost method:

private Source doPost(MessageContext msg_ctx) {
    Map<String, List> request = (Map<String, List>)
      msg_ctx.get(MessageContext.HTTP_REQUEST_HEADERS);

    List<String> cargo = request.get(post_put_key);
    if (cargo == null) throw new HTTPException(400); // bad request

    String xml = "";
    for (String next : cargo) xml += next.trim();
    ByteArrayInputStream xml_stream = new ByteArrayInputStream(xml.getBytes());
    String team_name = null;

    try {
        // Set up the XPath object to search for the XML elements.
        DOMResult dom = new DOMResult();
        Transformer trans = TransformerFactory.newInstance().newTransformer();
        trans.transform(new StreamSource(xml_stream), dom);
        URI ns_URI = new URI("create_team");

        XPathFactory xpf = XPathFactory.newInstance();
        XPath xp = xpf.newXPath();
        xp.setNamespaceContext(new NSResolver("", ns_URI.toString()));

A RESTful Version of the Teams Service | 137



        team_name = xp.evaluate("/create_team/name", dom.getNode());
        List<Player> team_players = new ArrayList<Player>();
        NodeList players = (NodeList) xp.evaluate("player", dom.getNode(),
                                                  XPathConstants.NODESET);

        for (int i = 1; i <= players.getLength(); i++) {
            String name = xp.evaluate("name", dom.getNode());
            String nickname = xp.evaluate("nickname", dom.getNode());
            Player player = new Player(name, nickname);
            team_players.add(player);
        }

        // Add new team to the in-memory map and save List to file.
        Team t = new Team(team_name, team_players);
        team_map.put(team_name, t);
        teams.add(t);
        serialize();
    }
    catch(URISyntaxException e) { throw new HTTPException(500); }
    catch(TransformerConfigurationException e) { throw new HTTPException(500); }
    catch(TransformerException e) { throw new HTTPException(500); }
    catch(XPathExpressionException e) { throw new HTTPException(400); }
    // Send a confirmation to requester.
    return response_to_client("Team " + team_name + " created.");
}     

Java API for XML Processing
In parsing the request XML document, the doPost method in this example uses inter-
faces and classes from the javax.xml.transform package, which are part of JAX-P (Java
API for XML-Processing). The JAX-P tools were designed to facilitate XML processing,
which addresses the needs of a RESTful service. In this example, the two key pieces are
the DOMResult and the XPath object. In the Java TeamsClient shown earlier, a SAX parser
is used to process the list of comedy teams returned from the RestfulTeams service on
a successful GET request with no query string. A SAX parser is stream-based and in-
vokes programmer-supplied callbacks to process various parsing events such as the
occurrence of an XML start tag. By contrast, a DOM (Document Object Model) parser
is tree-based in that the parser constructs a tree representation of a well-formed XML
document. The programmer then can use a standard API, for example, to search the
tree for desired elements. JAX-P uses the XSLT (eXtensible Stylesheet Language Trans-
formations) verb transform to describe the process of transforming an XML source (for
instance, the request bytes from a client) into an XML result (for instance, a DOM tree).
Here is the statement in doPost that does just this:

trans.transform(new StreamSource(xml_stream), dom);

The xml_stream refers to the bytes from the client in a ByteArrayInputStream, and dom
refers to a DOMResult. A DOM tree can be processed in various ways. In this case, an
XPath object is used to search for relatively simple patterns. For instance, the statement:

138 | Chapter 4: RESTful Web Services



NodeList players = (NodeList) xp.evaluate("player", dom.getNode(),
                                          XPathConstants.NODESET);

gets a list of elements tagged with player from the DOM tree. The statements:

String name = xp.evaluate("name", dom.getNode());
String nickname = xp.evaluate("nickname", dom.getNode());                                         

then extract the player’s name and nickname from the DOM tree.

The doPost method respects the HTTP verb from which the method gets its name. After
the name of the new team has been extracted from the request XML document, a check
is made:

team_name = xp.evaluate("/create_team/name", dom.getNode());
if (team_map.containsKey(team_name)) throw new HTTPException(400); // bad request

to determine whether a team with that name already exists. Because a POST request
signals a create operation, an already existing team cannot be created but instead must
be updated through a PUT request.

Once the needed information about the new team has been extracted from the request
XML document, the data structures Map<String, Team> and List<Team> are updated to
reflect a successful create operation. The list of teams is serialized to the persistence file.

The two remaining CRUD operations, update and delete, are implemented as the meth-
ods doPut and doDelete, respectively. The RestfulTeams service requires that a DELETE
request have a query string to identify a particular team; the deletion of all teams at
once is not allowed. For now, a PUT request can update only a team’s name, although
this easily could be expanded to allow updates to the team’s members and their names
or nicknames. Here are the implementations of doPut and doDelete:

private Source doDelete(MessageContext msg_ctx) {
    String query_string = (String) msg_ctx.get(MessageContext.QUERY_STRING);

    // Disallow the deletion of all teams at once.
    if (query_string == null) throw new HTTPException(403); // illegal operation
    else {
        String name = get_value_from_qs("name", query_string);
        if (!team_map.containsKey(name)) throw new HTTPException(404);

        // Remove team from Map and List, serialize to file.
        Team team = team_map.get(name);
        teams.remove(team);
        team_map.remove(name);
        serialize();

        // Send response.
        return response_to_client(name + " deleted.");
    }
}      

private Source doPut(MessageContext msg_ctx) {
    // Parse the query string.
    String query_string = (String) msg_ctx.get(MessageContext.QUERY_STRING);

A RESTful Version of the Teams Service | 139



    String name = null;
    String new_name = null;

    // Get all teams.
    if (query_string == null) throw new HTTPException(403); // illegal operation
    // Get a named team.
    else {
        // Split query string into name= and new_name= sections
        String[ ] parts = query_string.split("&");
        if (parts[0] == null || parts[1] == null) throw new HTTPException(403);

        name = get_value_from_qs("name", parts[0]);
        new_name = get_value_from_qs("new_name", parts[1]);
        if (name == null || new_name == null) throw new HTTPException(403);

        Team team = team_map.get(name);
        if (team == null) throw new HTTPException(404);
        team.setName(new_name);
        team_map.put(new_name, team);
        serialize();
    }

    // Send a confirmation to requester.
    return response_to_client("Team " + name + " changed to " + new_name);
}

Each of the do methods has a similar style, and the application logic has been kept as
simple as possible to focus attention on RESTful character of the service. Here, for
reference, is the all of the source code for the service:

package ch04.team;

import javax.xml.ws.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import javax.xml.ws.BindingType;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.http.HTTPBinding;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList;
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.BufferedOutputStream;

140 | Chapter 4: RESTful Web Services



import java.beans.XMLEncoder;
import java.beans.XMLDecoder;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;
import java.net.URI;
import java.net.URISyntaxException;
import org.w3c.dom.NodeList;

// The class below is a WebServiceProvider rather than
// the more usual SOAP-based WebService. As a result, the
// service implements the generic Provider interface rather
// than a customized SEI with designated @WebMethods.
@WebServiceProvider

// There are two ServiceModes: PAYLOAD, the default, signals that the service
// wants access only to the underlying message payload (e.g., the
// body of an HTTP POST request); MESSAGE signals that the service wants
// access to entire message (e.g., the HTTP headers and body). In this
// case, the MESSAGE mode lets us check on the request verb.
@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)

// The HTTP_BINDING as opposed, for instance, to a SOAP binding.
@BindingType(value = HTTPBinding.HTTP_BINDING)

// The generic, low-level Provider interface is an alternative
// to the SEI (service endpoint interface) of a SOAP-based
// web service. A Source is a source of the bytes. The invoke
// method expects a source and returns one.
public class RestfulTeams implements Provider<Source> {
    @Resource
    protected WebServiceContext ws_ctx;

    private Map<String, Team> team_map; // for easy lookups
    private List<Team> teams;           // serialized/deserialized
    private byte[ ] team_bytes;         // from the persistence file

    private static final String file_name = "teams.ser";
    private static final String post_put_key = "Cargo";

    public RestfulTeams() {
        read_teams_from_file();
        deserialize();
    }

    // Implementation of the Provider interface method: this
    // method handles incoming requests and generates the
    // outgoing response.
    public Source invoke(Source request) {

A RESTful Version of the Teams Service | 141



        if (ws_ctx == null)
            throw new RuntimeException("Injection failed on ws_ctx.");

        if (request == null) System.out.println("null request");
        else System.out.println("non-null request");

        // Grab the message context and extract the request verb.
        MessageContext msg_ctx = ws_ctx.getMessageContext();
        String http_verb = (String)
            msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
        http_verb = http_verb.trim().toUpperCase();

        // Act on the verb.
        if      (http_verb.equals("GET"))    return doGet(msg_ctx);
        else if (http_verb.equals("DELETE")) return doDelete(msg_ctx);
        else if (http_verb.equals("POST"))   return doPost(msg_ctx);
        else if (http_verb.equals("PUT"))    return doPut(msg_ctx);
        else throw new HTTPException(405);   // bad verb exception
    }

    private Source doGet(MessageContext msg_ctx) {
        // Parse the query string.
        String query_string = (String)
            msg_ctx.get(MessageContext.QUERY_STRING);

        // Get all teams.
        if (query_string == null)
            return new StreamSource(new ByteArrayInputStream(team_bytes));
        // Get a named team.
        else {
            String name = get_value_from_qs("name", query_string);

            // Check if named team exists.
            Team team = team_map.get(name);
            if (team == null) throw new HTTPException(404); // not found

            // Otherwise, generate XML and return.
            ByteArrayInputStream stream = encode_to_stream(team);
            return new StreamSource(stream);
        }
    }

    private Source doPost(MessageContext msg_ctx) {
        Map<String, List> request = (Map<String, List>)
            msg_ctx.get(MessageContext.HTTP_REQUEST_HEADERS);

        List<String> cargo = request.get(post_put_key);
        if (cargo == null) throw new HTTPException(400); // bad request

        String xml = "";
        for (String next : cargo) xml += next.trim();
        ByteArrayInputStream xml_stream = new ByteArrayInputStream(xml.getBytes());
        String team_name = null;

142 | Chapter 4: RESTful Web Services



        try {
            // Set up the XPath object to search for the XML elements.
            DOMResult dom = new DOMResult();
            Transformer trans =
                TransformerFactory.newInstance().newTransformer();
            trans.transform(new StreamSource(xml_stream), dom);
            URI ns_URI = new URI("create_team");

            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            xp.setNamespaceContext(new NSResolver("", ns_URI.toString()));

            team_name = xp.evaluate("/create_team/name", dom.getNode());

            if (team_map.containsKey(team_name))
                throw new HTTPException(400); // bad request

            List<Player> team_players = new ArrayList<Player>();

            NodeList players = (NodeList)
                xp.evaluate("player",
                            dom.getNode(),
                            XPathConstants.NODESET);

            for (int i = 1; i <= players.getLength(); i++) {
                String name = xp.evaluate("name", dom.getNode());
                String nickname = xp.evaluate("nickname", dom.getNode());
                Player player = new Player(name, nickname);
                team_players.add(player);
            }
            // Add new team to the in-memory map and save List to file.
            Team t = new Team(team_name, team_players);
            team_map.put(team_name, t);
            teams.add(t);
            serialize();
        }
        catch(URISyntaxException e) {
            throw new HTTPException(500);   // internal server error
        }
        catch(TransformerConfigurationException e) {
            throw new HTTPException(500);   // internal server error
        }
        catch(TransformerException e) {
            throw new HTTPException(500);   // internal server error
        }
        catch(XPathExpressionException e) {
            throw new HTTPException(400);   // bad request
        }

        // Send a confirmation to requester.
        return response_to_client("Team " + team_name + " created.");
    }

A RESTful Version of the Teams Service | 143



    private Source doPut(MessageContext msg_ctx) {
        // Parse the query string.
        String query_string = (String) msg_ctx.get(MessageContext.QUERY_STRING);
        String name = null;
        String new_name = null;

        // Get all teams.
        if (query_string == null)
            throw new HTTPException(403); // illegal operation
        // Get a named team.
        else {
            // Split query string into name= and new_name= sections
            String[ ] parts = query_string.split("&");
            if (parts[0] == null || parts[1] == null)
                throw new HTTPException(403);

            name = get_value_from_qs("name", parts[0]);
            new_name = get_value_from_qs("new_name", parts[1]);
            if (name == null || new_name == null)
                throw new HTTPException(403);

            Team team = team_map.get(name);
            if (team == null) throw new HTTPException(404);
            team.setName(new_name);
            team_map.put(new_name, team);
            serialize();
        }

        // Send a confirmation to requester.
        return response_to_client("Team " + name + " changed to " + new_name);
    }

    private Source doDelete(MessageContext msg_ctx) {
        String query_string = (String)
            msg_ctx.get(MessageContext.QUERY_STRING);

        // Disallow the deletion of all teams at once.
        if (query_string == null)
            throw new HTTPException(403);     // illegal operation
        else {
            String name = get_value_from_qs("name", query_string);
            if (!team_map.containsKey(name))
                throw new HTTPException(404); // not found

            // Remove team from Map and List, serialize to file.
            Team team = team_map.get(name);
            teams.remove(team);
            team_map.remove(name);
            serialize();

            // Send response.
            return response_to_client(name + " deleted.");
        }
    }

144 | Chapter 4: RESTful Web Services



    private StreamSource response_to_client(String msg) {
        HttpResponse response = new HttpResponse();
        response.setResponse(msg);
        ByteArrayInputStream stream = encode_to_stream(response);
        return new StreamSource(stream);
    }

    private ByteArrayInputStream encode_to_stream(Object obj) {
        // Serialize object to XML and return
        ByteArrayOutputStream stream = new ByteArrayOutputStream();
        XMLEncoder enc = new XMLEncoder(stream);
        enc.writeObject(obj);
        enc.close();
        return new ByteArrayInputStream(stream.toByteArray());
    }

    private String get_value_from_qs(String key, String qs) {
        String[ ] parts = qs.split("=");

        // Check if query string has form: name=<team name>
        if (!parts[0].equalsIgnoreCase(key))
            throw new HTTPException(400); // bad request
        return parts[1].trim();
    }

    private void read_teams_from_file() {
        try {
            String cwd = System.getProperty ("user.dir");
            String sep = System.getProperty ("file.separator");
            String path = get_file_path();
            int len = (int) new File(path).length();
            team_bytes = new byte[len];
            new FileInputStream(path).read(team_bytes);
        }
        catch(IOException e) { System.err.println(e); }
    }

    private void deserialize() {
        // Deserialize the bytes into a list of teams
        XMLDecoder dec =
            new XMLDecoder(new ByteArrayInputStream(team_bytes));
        teams = (List<Team>) dec.readObject();

        // Create a map for quick lookups of teams.
        team_map = Collections.synchronizedMap(new HashMap<String, Team>());
        for (Team team : teams)
            team_map.put(team.getName(), team);
    }

    private void serialize() {
        try {
            String path = get_file_path();
            BufferedOutputStream out =
                new BufferedOutputStream(new FileOutputStream(path));

A RESTful Version of the Teams Service | 145



            XMLEncoder enc = new XMLEncoder(out);
            enc.writeObject(teams);
            enc.close();
            out.close();
        }
        catch(IOException e) { System.err.println(e); }
    }

    private String get_file_path() {
        String cwd = System.getProperty ("user.dir");
        String sep = System.getProperty ("file.separator");
        return cwd + sep + "ch04" + sep + "team" + sep + file_name;
    }
}

The revised Perl client shown below tests the service by generating a series of requests.
Here is the complete Perl client:

#!/usr/bin/perl

use strict;
use LWP;
use XML::XPath;
use Encode;
use constant true   =>  1;
use constant false  =>  0;

# Create the user agent.
my $ua = LWP::UserAgent->new;

my $base_uri = 'http://localhost:8888/teams';

# GET teams
send_GET($base_uri, false); # false means no query string

# GET teams?name=MarxBrothers
send_GET($base_uri . '?name=MarxBrothers', true);

$base_uri = $base_uri;
send_POST($base_uri);

# Check that POST worked
send_GET($base_uri . '?name=SmothersBrothers', true);
send_DELETE($base_uri . '?name=SmothersBrothers');

# Recreate the Smothers Brothers as a check.
send_POST($base_uri);

# Change name and check.
send_PUT($base_uri . '?name=SmothersBrothers&new_name=SmuthersBrothers');
send_GET($base_uri . '?name=SmuthersBrothers', true);

sub send_GET {
    my ($uri, $qs_flag) = @_;

146 | Chapter 4: RESTful Web Services



    # Send the request and get the response.
    my $req = HTTP::Request->new(GET => $uri);
    my $res = $ua->request($req);

    # Check for errors.
    if ($res->is_success) {
        parse_GET($res->content, $qs_flag); # Process raw XML on success
    }
    else {
        print $res->status_line, "\n";      # Print error code on failure
    }
}

sub send_POST {
    my ($uri) = @_;

    my $xml = <<EOS;
      <create_team>
         <name>SmothersBrothers</name>
         <player>
           <name>Thomas</name>
           <nickname>Tom</nickname>
         </player>
         <player>
           <name>Richard</name>
           <nickname>Dickie</nickname>
         </player>
      </create_team>
EOS
    # Send request and capture response.
    my $bytes = encode('iso-8859-1', $xml); # encoding is Latin-1
    my $req = HTTP::Request->new(POST => $uri, ['Cargo' => $bytes]);
    my $res = $ua->request($req);

    # Check for errors.
    if ($res->is_success) {
        parse_SIMPLE("POST", $res->content); # Process raw XML on success
    }
    else {
        print $res->status_line, "\n";        # Print error code on failure
    }
}

sub send_DELETE {
    my $uri = shift;

    # Send the request and get the response.
    my $req = HTTP::Request->new(DELETE => $uri);
    my $res = $ua->request($req);

    # Check for errors.
    if ($res->is_success) {
        parse_SIMPLE("DELETE", $res->content);   # Process raw XML on success
    }

A RESTful Version of the Teams Service | 147



    else {
        print $res->status_line, "\n"; # Print error code on failure
    }
}

sub send_PUT {
    my $uri = shift;

    # Send the request and get the response.
    my $req = HTTP::Request->new(PUT => $uri);
    my $res = $ua->request($req);

    # Check for errors.
    if ($res->is_success) {
        parse_SIMPLE("PUT", $res->content);   # Process raw XML on success
    }
    else {
        print $res->status_line, "\n"; # Print error code on failure
    }
}

sub parse_SIMPLE {
    my $verb = shift;
    my $raw_xml = shift;
    print "\nResponse on $verb: \n$raw_xml;;;\n";
}     

sub parse_GET {
    my ($raw_xml) = @_;
    print "\nThe raw XML response is:\n$raw_xml\n;;;\n";

    # For all teams, extract and print out their names and members
    my $xp = XML::XPath->new(xml => $raw_xml);
    foreach my $node ($xp->find('//object/void/string')->get_nodelist) {
        print $node->string_value, "\n";
    }
}

The Provider and Dispatch Twins
In the RestfulTeams service, the clients send request information to the service through
the HTTP start line (for instance, in a GET request) and optionally through an inserted
HTTP header (for instance, in a POST request). Recall that GET and DELETE requests
result in HTTP messages that have no body, whereas POST and PUT requests result
in HTTP messages with bodies. Clients of the RestfulTeams service do not use the HTTP
body at all. Even in a POST or PUT request, information about the new team to create
or the existing team to update is contained in the HTTP header rather than in the body.

The approach in the RestfulTeams service illustrates the flexibility of REST-style serv-
ices. The revision in this section shows how the HTTP body can be used in a POST
request by introducing the Dispatch interface, which is the client-side twin of the server-
side Provider interface. The RestfulTeams service already illustrates that a Provider on

148 | Chapter 4: RESTful Web Services



the service side can be used without a Dispatch on the client side; and a later example
shows how a Dispatch can be used on the client side regardless of how the RESTful
service is implemented. Nonetheless, the Provider and Dispatch interfaces are a natural
pair.

A RESTful Provider implements the method:

public Source invoke(Source request)

and a Dispatch object, sometimes described as a dynamic service proxy, provides an
implementation of this method on the client side. Recall that a Source is a source of an
XML document suitable as input to a Transform, which then generates a Result that is
typically an XML document as well. The Dispatch to Provider relationship supports a
natural exchange of XML documents between client and service:

• The client invokes the Dispatch method invoke, with an XML document as the
Source argument. If the request does not require an XML document, then the
Source argument can be null.

• The service-side runtime dispatches the client request to the Provider method
invoke whose Source argument corresponds to the client-side Source.

• The service transforms the Source into some appropriate Result (for instance, a
DOM tree), processes this Result in an application-appropriate way, and returns
an XML source to the client. If no response is needed, null can be returned.

• The Dispatch method invoke returns a Source, sent from the service, that the client
then transforms into an appropriate Result and processes as needed.

The fact that the Provider method invoke and the Dispatch method invoke have the
same signature underscores the natural fit between them.

A Provider/Dispatch Example
The RabbitCounterProvider is a RESTful service that revises the SOAP-based version
of Chapter 3. The RESTful revision honors POST, GET, and DELETE requests from
clients. A POST request, as a CRUD create operation, creates a list of Fibonacci num-
bers that the service caches for subsequent read or delete operations. The doPost method
responds to a POST request and the method expects a Source argument, which is the
source of an XML document such as:

<fib:request xmlns:fib = 'urn:fib'>[1, 2, 3, 4]</fib:request>

The XML document is thus a list of integers whose Fibonacci values are to be computed.
The doGet and doDelete methods handle GET and PUT requests, respectively, neither
of which has an HTTP body; hence, the doGet and doDelete methods do not have a
Source parameter. All three methods return a Source value, which is the source of an
XML confirmation. For example, doPost returns a confirmation XML document such
as:

<fib:response xmlns:fib = 'urn:fib'>POSTed[1, 1, 2, 3]</fib:response>

The Provider and Dispatch Twins | 149



The other two methods return operation-specific confirmations.

Here is the source code for the RabbitCounterProvider:

package ch04.dispatch;

import java.util.Collections;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;
import java.util.Collection;
import javax.xml.ws.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import javax.xml.ws.BindingType;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.http.HTTPBinding;
import java.io.ByteArrayInputStream;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;

// The RabbitCounter service implemented as REST style rather than SOAP based.
@WebServiceProvider
@BindingType(value = HTTPBinding.HTTP_BINDING)

public class RabbitCounterProvider implements Provider<Source> {
    @Resource
    protected WebServiceContext ws_ctx;

    // stores previously computed values
    private Map<Integer, Integer> cache = 
       Collections.synchronizedMap(new HashMap<Integer, Integer>());

    private final String xml_start = "<fib:response xmlns:fib = 'urn:fib'>";
    private final String xml_stop = "</fib:response>";
    private final String uri = "urn:fib";

    public Source invoke(Source request) {
        // Filter on the HTTP request verb
        if (ws_ctx == null) throw new RuntimeException("DI failed on ws_ctx.");

150 | Chapter 4: RESTful Web Services



        // Grab the message context and extract the request verb.
        MessageContext msg_ctx = ws_ctx.getMessageContext();
        String http_verb = (String) msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
        http_verb = http_verb.trim().toUpperCase();

        // Act on the verb.
        if      (http_verb.equals("GET"))    return doGet();
        else if (http_verb.equals("DELETE")) return doDelete();
        else if (http_verb.equals("POST"))   return doPost(request);
        else throw new HTTPException(405);   // bad verb exception
    }

    private Source doPost(Source request) {
        if (request == null) throw new HTTPException(400); // bad request

        String nums = extract_request(request);
        // Extract the integers from a string such as: "[1, 2, 3]"
        nums = nums.replace('[', '\0');
        nums = nums.replace(']', '\0');
        String[ ] parts = nums.split(",");
        List<Integer> list = new ArrayList<Integer>();
        for (String next : parts) {
            int n = Integer.parseInt(next.trim());
            cache.put(n, countRabbits(n));
            list.add(cache.get(n));
        }
        String xml = xml_start + "POSTed: " + list.toString() + xml_stop;
        return make_stream_source(xml);
    }

    private Source doGet() {
        Collection<Integer> list = cache.values();
        String xml = xml_start + "GET: " + list.toString() + xml_stop;
        return make_stream_source(xml);
    }

    private Source doDelete() {
        cache.clear();
        String xml = xml_start + "DELETE: Map cleared." + xml_stop;
        return make_stream_source(xml);
    }

    private String extract_request(Source request) {
        String request_string = null;
        try {
            DOMResult dom_result = new DOMResult();
            Transformer trans = TransformerFactory.newInstance().newTransformer();
            trans.transform(request, dom_result);

            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            xp.setNamespaceContext(new NSResolver("fib", uri));
            request_string = xp.evaluate("/fib:request", dom_result.getNode());
        }

The Provider and Dispatch Twins | 151



        catch(TransformerConfigurationException e) { System.err.println(e); }
        catch(TransformerException e) { System.err.println(e); }
        catch(XPathExpressionException e) { System.err.println(e); }

        return request_string;
    }

    private StreamSource make_stream_source(String msg) {
        System.out.println(msg);
        ByteArrayInputStream stream = new ByteArrayInputStream(msg.getBytes());
        return new StreamSource(stream);
    }

    private int countRabbits(int n) {
        if (n < 0) throw new HTTPException(403); // forbidden

        // Easy cases.
        if (n < 2) return n;

        // Return cached values if present.
        if (cache.containsKey(n)) return cache.get(n);
        if (cache.containsKey(n - 1) && cache.containsKey(n - 2)) {
          cache.put(n, cache.get(n - 1) + cache.get(n - 2));
          return cache.get(n);
        }

        // Otherwise, compute from scratch, cache, and return.
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        cache.put(n, fib);
        return fib;
    }
}

The code segment:

XPathFactory xpf = XPathFactory.newInstance();
XPath xp = xpf.newXPath();
xp.setNamespaceContext(new NSResolver("fib", uri));
request_string = xp.evaluate("/fib:request", dom_result.getNode());      

deserves a closer look because the NSResolver also is used in the RestfulTeams service.
The call to xp.evaluate, shown in bold above, takes two arguments: an XPath pattern,
in this case /fib:request, and the DOMResult node that contains the desired string data
between the start tag <fib:request> and the corresponding end tag </fib:request>.
The fib in fib:request is a proxy or alias for a namespace URI, in this case urn:fib.
The entire start tag in the request XML document is:

<fib:request xmlns:fib = 'urn:fib'>      

152 | Chapter 4: RESTful Web Services



The NSResolver class (NS is short for namespace) provides mappings from fib to
urn:fib and vice-versa. Here is the code:

package ch04.dispatch;

import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.Iterator;
import javax.xml.namespace.NamespaceContext;

public class NSResolver implements NamespaceContext {
    private Map<String, String> prefix2uri;
    private Map<String, String> uri2prefix;
    public NSResolver() {
        if (prefix2uri == null) prefix2uri = 
          Collections.synchronizedMap(new HashMap<String, String>());
        if (uri2prefix == null) uri2prefix = 
          Collections.synchronizedMap(new HashMap<String, String>());
    }

    public NSResolver(String prefix, String uri) {
        this();
        prefix2uri.put(prefix, uri);
        uri2prefix.put(uri, prefix);
    }

    public String getNamespaceURI(String prefix) { return prefix2uri.get(prefix); }
    public String getPrefix(String uri) { return uri2prefix.get(uri); }
    public Iterator getPrefixes(String uri) { return uri2prefix.keySet().iterator(); }
}

The NSResolver provides the namespace context for the XPath searches; that is, the
resolver binds together a namespace URI and its proxies or aliases. For the application
to work correctly, a client and the service must use the same namespace URI; in this
case the structurally simple URI urn:fib.

More on the Dispatch Interface
The Dispatch-based client of the RESTful RabbitCounterProvider service has features
reminiscent of a client for a SOAP-based service. The client creates identifying QName
instances for a service and a port, creates a service object and adds a port, and then
creates a Dispatch proxy associated with the port. Here is the code segment:

QName service_name = new QName("rcService", ns_URI.toString()); // uri is urn:fib
QName port = new QName("rcPort", ns_URI.toString());
String endpoint = "http://localhost:9876/fib";
// Now create a service proxy or dispatcher.
Service service = Service.create(service_name);
service.addPort(port, HTTPBinding.HTTP_BINDING, endpoint);
Dispatch<Source> dispatch = 
   service.createDispatch(port, Source.class, Service.Mode.PAYLOAD);   

The Provider and Dispatch Twins | 153



This client-side dispatch object can dispatch XML documents as requests to the service
as XML Source instances. A document is sent to the service through an invocation of
the invoke method. Here are two code segments. In the first, an XML document is
prepared as the body of a POST request:

String xml_start = "<fib:request xmlns:fib = 'urn:fib'>";
String xml_end = "</fib:request>";
List<Integer> nums = new ArrayList<Integer>();
for (int i = 0; i < 12; i++) nums.add(i + 1);
String xml = xml_start + nums.toString() + xml_end;

In the second, the request XML document is wrapped in Source and then sent to the
service through an invocation of invoke:

StreamSource source = null;
if (data != null) source = make_stream_source(data.toString()); // data = XML doc
Source result = dispatch.invoke(source);
display_result(result, uri); // do an XPath search of the resturned XML

The GET and DELETE operations do not require XML documents; hence, the
Source argument to invoke is null in both cases. Here is a client-side trace of the requests
sent to the service and the responses received in return:

Request: <fib:request xmlns:fib = 'urn:fib'>
           [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
         </fib:request>
POSTed: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

Request: null
GET: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

Request: null
DELETE: Map cleared.

Request: null
GET: [ ]

Request: <fib:request xmlns:fib = 'urn:fib'>
            [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...,20, 21, 22, 23, 24]
         </fib:request>
POSTed: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,..., 10946, 17711, 28657, 46368]

Request: null
GET: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,..., 10946, 6765, 28657, 17711, 46368]

Finally, here is the source code for the entire DispatchClient:

import java.net.URI;
import java.net.URISyntaxException;
import java.io.ByteArrayInputStream;
import java.util.Map;
import java.util.List;
import java.util.ArrayList;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;

154 | Chapter 4: RESTful Web Services



import javax.xml.ws.http.HTTPBinding;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;
import javax.xml.ws.handler.MessageContext;
import org.w3c.dom.NodeList;
import ch04.dispatch.NSResolver;

class DispatchClient {
    public static void main(String[ ] args) throws Exception {
        new DispatchClient().setup_and_test();
    }

    private void setup_and_test() {
        // Create identifying names for service and port.
        URI ns_URI = null;
        try {
            ns_URI = new URI("urn:fib");
        }
        catch(URISyntaxException e) { System.err.println(e); }

        QName service_name = new QName("rcService", ns_URI.toString());
        QName port = new QName("rcPort", ns_URI.toString());
        String endpoint = "http://localhost:9876/fib";

        // Now create a service proxy or dispatcher.
        Service service = Service.create(service_name);
        service.addPort(port, HTTPBinding.HTTP_BINDING, endpoint);
        Dispatch<Source> dispatch =
            service.createDispatch(port, Source.class, Service.Mode.PAYLOAD);

        // Send some requests.
        String xml_start = "<fib:request xmlns:fib = 'urn:fib'>";
        String xml_end = "</fib:request>";

        // To begin, a POST to create some Fibonacci numbers.
        List<Integer> nums = new ArrayList<Integer>();
        for (int i = 0; i < 12; i++) nums.add(i + 1);
        String xml = xml_start + nums.toString() + xml_end;
        invoke(dispatch, "POST", ns_URI.toString(), xml);

        // GET request to test whether the POST worked.
        invoke(dispatch, "GET", ns_URI.toString(), null);

        // DELETE request to remove the list
        invoke(dispatch, "DELETE", ns_URI.toString(), null);

The Provider and Dispatch Twins | 155



        // GET to test whether the DELETE worked.
        invoke(dispatch, "GET", ns_URI.toString(), null);

        // POST to repopulate and a final GET to confirm
        nums = new ArrayList<Integer>();
        for (int i = 0; i < 24; i++) nums.add(i + 1);
        xml = xml_start + nums.toString() + xml_end;
        invoke(dispatch, "POST", ns_URI.toString(), xml);
        invoke(dispatch, "GET", ns_URI.toString(), null);
    }

    private void invoke(Dispatch<Source> dispatch,
                        String verb,
                        String uri,
                        Object data) {
        Map<String, Object> request_context = dispatch.getRequestContext();
        request_context.put(MessageContext.HTTP_REQUEST_METHOD, verb);

        System.out.println("Request: " + data);

        // Invoke
        StreamSource source = null;
        if (data != null) source = make_stream_source(data.toString());
        Source result = dispatch.invoke(source);
        display_result(result, uri);
    }

   private void display_result(Source result, String uri) {
        DOMResult dom_result = new DOMResult();
        try {
            Transformer trans = TransformerFactory.newInstance().newTransformer();
            trans.transform(result, dom_result);

            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            xp.setNamespaceContext(new NSResolver("fib", uri));
            String result_string = 
               xp.evaluate("/fib:response", dom_result.getNode());
            System.out.println(result_string);
        }
        catch(TransformerConfigurationException e) { System.err.println(e); }
        catch(TransformerException e) { System.err.println(e); }
        catch(XPathExpressionException e) { System.err.println(e); }
    }

    private StreamSource make_stream_source(String msg) {
        ByteArrayInputStream stream = new ByteArrayInputStream(msg.getBytes());
        return new StreamSource(stream);
    }
}

156 | Chapter 4: RESTful Web Services



A Dispatch Client Against a SOAP-based Service
The Dispatch client is flexible in that it may be used to issue requests against any service,
REST-style or SOAP-based. This section illustrates how a SOAP-based service can be
treated as if it were REST style. This use of Dispatch underscores that SOAP-based web
services delivered over HTTP, as most are, represent a special case of REST-style serv-
ices. What the SOAP libraries spare the programmer is the need to process XML directly
on either the service or the client side, with handlers as the exception to this rule.

The DispatchClientTS application uses a Dispatch proxy to submit a request against
the SOAP-based TimeServer service of Chapter 1. The TimeServer supports two oper-
ations: one supplies the current time as a human-readable string, whereas the other
supplies the time as the elapsed milliseconds from the Unix epoch. Here is the source
code for DispatchClientTS:

import java.util.Map;
import java.net.URI;
import java.net.URISyntaxException;
import java.io.ByteArrayInputStream;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;
import javax.xml.ws.handler.MessageContext;
import ch04.dispatch.NSResolver;

// Dispatch client against the SOAP-based TimeServer service
class DispatchClientTS {
    public static void main(String[ ] args) throws Exception {
        new DispatchClientTS().send_and_receive_SOAP();
    }

    private void send_and_receive_SOAP() {
        // Create identifying names for service and port.
        URI ns_URI = null;
        try {
            ns_URI = new URI("http://ts.ch01/");      // from WSDL
        }
        catch(URISyntaxException e) { System.err.println(e); }

The Provider and Dispatch Twins | 157



        QName service_name = new QName("tns", ns_URI.toString());
        QName port = new QName("tsPort", ns_URI.toString());
        String endpoint = "http://localhost:9876/ts"; // from WSDL
        // Now create a service proxy or dispatcher.
        Service service = Service.create(service_name);
        service.addPort(port, HTTPBinding.HTTP_BINDING, endpoint);
        Dispatch<Source> dispatch =
            service.createDispatch(port, Source.class, Service.Mode.PAYLOAD);
        // Send a request.
        String soap_request =
            "<?xml version='1.0' encoding='UTF-8'?> " +
            "<soap:Envelope " +
               "soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' " +
               "xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' " +
               "xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/' " +
               "xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' " +
               "xmlns:tns='http://ts.ch01/' " +
               "xmlns:xsd='http://www.w3.org/2001/XMLSchema'> " +
            "<soap:Body>" +
            "<tns:getTimeAsElapsed xsi:nil='true'/>" +
            "</soap:Body>" +
            "</soap:Envelope>";

        Map<String, Object> request_context = dispatch.getRequestContext();
        request_context.put(MessageContext.HTTP_REQUEST_METHOD, "POST");
        StreamSource source = make_stream_source(soap_request);
        Source result = dispatch.invoke(source);
        display_result(result, ns_URI.toString());
    }

    private void display_result(Source result, String uri) {
        DOMResult dom_result = new DOMResult();
        try {
            Transformer trans = TransformerFactory.newInstance().newTransformer();
            trans.transform(result, dom_result);

            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            xp.setNamespaceContext(new NSResolver("tns", uri));
            // In original version, "//time_result" instead
            String result_string = xp.evaluate("//return", dom_result.getNode());
            System.out.println(result_string);
        }
        catch(TransformerConfigurationException e) { System.err.println(e); }
        catch(TransformerException e) { System.err.println(e); }
        catch(XPathExpressionException e) { System.err.println(e); }
    }

    private StreamSource make_stream_source(String msg) {
        ByteArrayInputStream stream = new ByteArrayInputStream(msg.getBytes());
        return new StreamSource(stream);
    }
}

158 | Chapter 4: RESTful Web Services



The SOAP request document is hardcoded as a string. The rest of the setup is straight-
forward. After a service object is created and a port added with the TimeServer’s end-
point, a Dispatch proxy is created with a Service.Mode.PAYLOAD so that the SOAP request
document becomes an XML Source transported to the service in the body of the HTTP
request. The SOAP-based service responds with a SOAP envelope, which an XPath
object then searches for the integer value that gives the elapsed milliseconds. On a
sample run, the output was 1,214,514,573,623 (with commas added for readability)
on a RESTful call to getTimeAsElapsed.

Implementing RESTful Web Services As HttpServlets
Here is a short review of servlets with emphasis on their use to deliver RESTful services.
The class HttpServlet extends the class GenericServlet, which in turn implements the
Servlet interface. All three are in the package javax.servlet, which is not included in
core Java. The Servlet interface declares five methods, the most important of which is
the service method that a web container invokes on every request to a servlet. The
service method has a ServletRequest and a ServletResponse parameter. The request
is a map that contains the request information from a client, and the response provides
a network connection back to the client. The GenericServlet class implements the
Service methods in a transport-neutral fashion, whereas its HttpServlet subclass im-
plements these methods in an HTTP-specific way. Accordingly, the service parame-
ters in the HttpServlet have the types HttpServletRequest and HttpServletResponse.
The HttpServlet also provides request filtering: the service method dispatches an in-
coming GET request to the method doGet, an incoming POST request to the method
doPost, and so on. Figure 4-2 depicts a servlet container with several servlets.

s1

Servlet Container

s2 s3 . . . sn

Figure 4-2. A servlet container with instances of various servlets

In the HttpServlet class, the do methods are no-ops (that is, methods with empty bod-
ies) that can be overridden as needed in a programmer-derived subclass. For example,
if the class MyServlet extends HttpServlet and overrides doGet but not doPost, then
doPost remains a no-op in MyServlet instances.

HttpServlets are a natural, convenient way to implement RESTful web services for two
reasons. First, such servlets provide methods such as doGet and doDelete that match
up with HTTP verbs, and these methods execute as callbacks that the web container
invokes as needed. Second, the HttpServletRequest and HttpServletResponse are
the same two arguments to every do method, which encourages a uniform pattern of
request processing: client-supplied data are read from the HttpServletRequest map and

Implementing RESTful Web Services As HttpServlets | 159



processed as required; then a response is sent back to the client through the output
stream associated with the HttpServletResponse.

The RabbitCounterServlet
The RabbitCounterServlet that follows is a RESTful, servlet-based version of the SOAP-
based RabbitCounter service of Chapter 3. The service has a deliberately simple logic
to keep focus on what makes the servlet such an attractive implementation of a RESTful
service. Here is the source code:

package ch04.rc;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.http.HTTPException;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.Collection;
import java.util.List;
import java.util.ArrayList;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.OutputStream;
import java.beans.XMLEncoder;

public class RabbitCounterServlet extends HttpServlet {
    private Map<Integer, Integer> cache;

    // Executed when servlet is first loaded into container.
    public void init() {
        cache = Collections.synchronizedMap(new HashMap<Integer, Integer>());
    }
    public void doGet(HttpServletRequest request, HttpServletResponse response) {
        String num = request.getParameter("num");
        
        // If no query string, assume client wants the full list
        if (num == null) {
            Collection<Integer> fibs = cache.values();
            send_typed_response(request, response, fibs);
        }
        else {
            try {
                Integer key = Integer.parseInt(num.trim());
                Integer fib = cache.get(key);
                if (fib == null) fib = -1;
                send_typed_response(request, response, fib);
            }

160 | Chapter 4: RESTful Web Services



            catch(NumberFormatException e) {
                send_typed_response(request, response, -1);
            }
        }
    }

    public void doPost(HttpServletRequest request, HttpServletResponse response) {
        String nums = request.getParameter("nums");
        if (nums == null)
            throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);

        // Extract the integers from a string such as: "[1, 2, 3]"
        nums = nums.replace('[', '\0');
        nums = nums.replace(']', '\0');
        String[ ] parts = nums.split(", ");
        List<Integer> list = new ArrayList<Integer>();
        for (String next : parts) {
            int n = Integer.parseInt(next.trim());
            cache.put(n, countRabbits(n));
            list.add(cache.get(n));
        }
        send_typed_response(request, response, list + " added.");
    }

    public void doDelete(HttpServletRequest request, HttpServletResponse response) {
        String key = request.getParameter("num");
        // Only one Fibonacci number may be deleted at a time.
        if (key == null)
            throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
        try {
            int n = Integer.parseInt(key.trim());
            cache.remove(n);
            send_typed_response(request, response, n + " deleted.");
        }
        catch(NumberFormatException e) {
            throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
        }
    }
    public void doPut(HttpServletRequest req, HttpServletResponse res) {
        throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
    }

    public void doInfo(HttpServletRequest req, HttpServletResponse res) {
        throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
    }

    public void doHead(HttpServletRequest req, HttpServletResponse res) {
        throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
    }

    public void doOptions(HttpServletRequest req, HttpServletResponse res) {
        throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
    }

Implementing RESTful Web Services As HttpServlets | 161



    private void send_typed_response(HttpServletRequest request,
                                     HttpServletResponse response,
                                     Object data) {
        String desired_type = request.getHeader("accept");

        // If client requests plain text or HTML, send it; else XML.
        if (desired_type.contains("text/plain"))
            send_plain(response, data);
        else if (desired_type.contains("text/html"))
            send_html(response, data);
        else
            send_xml(response, data);
    }

    // For simplicity, the data are stringified and then XML encoded.
    private void send_xml(HttpServletResponse response, Object data) {
        try {
            XMLEncoder enc = new XMLEncoder(response.getOutputStream());
            enc.writeObject(data.toString());
            enc.close();
        }
        catch(IOException e) {
            throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
        }
    }
    private void send_html(HttpServletResponse response, Object data) {
        String html_start =
            "<html><head><title>send_html response</title></head><body><div>";
        String html_end = "</div></body></html>";
        String html_doc = html_start + data.toString() + html_end;
        send_plain(response, html_doc);
    }

    private void send_plain(HttpServletResponse response, Object data) {
        try {
            OutputStream out = response.getOutputStream();
            out.write(data.toString().getBytes());
            out.flush();
        }
        catch(IOException e) {
            throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
        }
    }

    private int countRabbits(int n) {
        if (n < 0) throw new HTTPException(403);

        // Easy cases.
        if (n < 2) return n;
        // Return cached value if present.
        if (cache.containsKey(n)) return cache.get(n);
        if (cache.containsKey(n - 1) && cache.containsKey(n - 2)) {
           cache.put(n, cache.get(n - 1) + cache.get(n - 2));
           return cache.get(n);
        }

162 | Chapter 4: RESTful Web Services



        // Otherwise, compute from scratch, cache, and return.
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        cache.put(n, fib); 
        return fib;
    }
}     

Compiling and Deploying a Servlet
The RabbitCounterServlet cannot be compiled using only core Java. The container
Apache Tomcat, typically shortened to Tomcat, is the reference implementation for
servlet containers and is available for free download at http://tomcat.apache.org. The
current version is 6.x. For simplicity, assume that TOMCAT_HOME is the install di-
rectory. Immediately under TOMCAT_HOME are three subdirectories of interest:

TOMCAT_HOME/bin
This subdirectory contains startup and shutdown scripts for Unix and Windows.
To start Tomcat, execute the startup script. To test whether Tomcat started, open
a browser to the URL http://localhost:8080.

TOMCAT_HOME/logs
Tomcat maintains various log files, which are helpful for determining whether a
servlet deployed successfully.

TOMCAT_HOME/webapps
Servlets are deployed as WAR (Web ARchive) files, which are JAR files with
a .war extension. To deploy a servlet, copy its WAR file to this directory. A detailed
explanation follows.

The source code for the RabbitCounterServlet is in the package ch04.rc. Here are the
steps for compiling, packaging, and deploying the servlet. The compilation command
occurs at the working directory, which has ch04 as a subdirectory:

• The servlet must be compiled with various packages that Tomcat supplies. Here
is the command from the working directory:

% javac -cp .:TOMCAT_HOME/lib/servlet-api.jar ch04/rc/*.java

On Unix-like systems, it is $TOMCAT_HOME and on Windows systems, it is
%TOMCAT_HOME%. Also, Unix-like systems use the colon to separate items on the
classpath, whereas Windows uses the semicolon.

• In a deployed WAR file, Tomcat expects to find .class files such as the compiled
RabbitCounterServlet in the tree rooted at WEB-INF/classes. In the working di-
rectory, create the subdirectory WEB-INF/classes/ch04/rc and then copy the
compiled servlet into this subdirectory.

Implementing RESTful Web Services As HttpServlets | 163

http://tomcat.apache.org
http://localhost:8080


• Almost every production-grade servlet has a configuration file named WEB-INF/
web.xml, although technically this is no longer a requirement. Here is the config-
uration file for this example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app
     xmlns="http://java.sun.com/xml/ns/j2ee"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
         http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
         version="2.4">
  <display-name>RabbitCounter Servlet</display-name>
    <servlet>
        <servlet-name>rcounter</servlet-name>
        <servlet-class>
          ch04.rc.RabbitCounterServlet
        </servlet-class>
        <load-on-startup>0</load-on-startup>
    </servlet>
    <servlet-mapping>
        <servlet-name>rcounter</servlet-name>
        <url-pattern>/fib</url-pattern>
    </servlet-mapping>
</web-app>

Of interest now is the url-pattern section, which gives /fib as the pattern. Assume
that the servlet resides in the WAR file rc.war, as will be shown shortly. In this
case, the URL for the servlet is http://localhost:8080/rc/fib. The configuration
document recommends that Tomcat not load a servlet instance when the servlet
is first deployed but rather to wait until the first client request.

• The servlet is now ready to be packaged and deployed. From the working directory,
the command:

% jar cvf rc.war WEB-INF

creates the WAR file, which holds the configuration file web.xml and the compiled
servlet. Then deploy the WAR file by copying it to TOMCAT_HOME/webapps. A
Tomcat log file can be inspected to see whether the deployment succeeded, or a
browser can be opened to URL http://localhost:8080/rc/fib.

The RabbitCounterServlet overrides the init method, which the servlet container in-
vokes when the servlet is first loaded. The method constructs the map that stores the
Fibonacci numbers computed on a POST request. The other supported HTTP verbs
are GET and DELETE. A GET request without a query string is treated as a request to
read all of the numbers available, whereas a GET request with a query string is treated
as a request for a specific Fibonacci number. The service allows the deletion of only
one Fibonacci number at a time; hence, a DELETE request must have a query string
that specifies which number to delete. The service does not implement the remaining
CRUD operation, update; hence, the doPut method, like the remaining do methods,
throws an HTTP 405 exception using the constant:

HttpServletResponse.SC_METHOD_NOT_ALLOWED

164 | Chapter 4: RESTful Web Services

http://localhost:8080/rc/fib
http://localhost:8080/rc/fib


for clarity. There are similar constants for the other HTTP status codes.

Requests for MIME-Typed Responses
The RabbitCounterServlet differs from the first RESTful example in being implemented
as a servlet instead of as a @WebServiceProvider. The RESTful servlet differs in a second
way as well; that is, by honoring the request that a response be of a specified MIME
type. Here is a client against the servlet:

import java.util.List;
import java.util.ArrayList;
import java.net.URL;
import java.net.HttpURLConnection;
import java.net.URLEncoder;
import java.net.MalformedURLException;
import java.net.URLEncoder;
import java.io.IOException;
import java.io.DataOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;

class ClientRC {
    private static final String url = "http://localhost:8080/rc/fib";

    public static void main(String[ ] args) {
        new ClientRC().send_requests();
    }

    private void send_requests() {
        try {
            HttpURLConnection conn = null;

            // POST request to create some Fibonacci numbers.
            List<Integer> nums = new ArrayList<Integer>();
            for (int i = 1; i < 15; i++) nums.add(i);
            String payload = URLEncoder.encode("nums", "UTF-8") + "=" +
                URLEncoder.encode(nums.toString(), "UTF-8");

            // Send the request
            conn = get_connection(url, "POST");
            conn.setRequestProperty("accept", "text/xml");
            DataOutputStream out = new DataOutputStream(conn.getOutputStream());
            out.writeBytes(payload);
            out.flush();
            get_response(conn);

            // GET to test whether POST worked
            conn = get_connection(url, "GET");
            conn.addRequestProperty("accept", "text/xml");
            conn.connect();
            get_response(conn);

            conn = get_connection(url + "?num=12", "GET");
            conn.addRequestProperty("accept", "text/plain");

Implementing RESTful Web Services As HttpServlets | 165



            conn.connect();
            get_response(conn);

            // DELETE request
            conn = get_connection(url + "?num=12", "DELETE");
            conn.addRequestProperty("accept", "text/xml");
            conn.connect();
            get_response(conn);

            // GET request to test whether DELETE worked
            conn = get_connection(url + "?num=12", "GET");
            conn.addRequestProperty("accept", "text/html");
            conn.connect();
            get_response(conn);
        }
        catch(IOException e) { System.err.println(e); }
        catch(NullPointerException e) { System.err.println(e); }
    }

    private HttpURLConnection get_connection(String url_string, String verb) {
        HttpURLConnection conn = null;
        try {
            URL url = new URL(url_string);
            conn = (HttpURLConnection) url.openConnection();
            conn.setRequestMethod(verb);
            conn.setDoInput(true);
            conn.setDoOutput(true);
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
        return conn;
    }
    private void get_response(HttpURLConnection conn) {
        try {
            String xml = "";
            BufferedReader reader =
                new BufferedReader(new InputStreamReader(conn.getInputStream()));
            String next = null;
            while ((next = reader.readLine()) != null)
                xml += next;
            System.out.println("The response:\n" + xml);
        }
        catch(IOException e) { System.err.println(e); }
    }
}     

The client sends POST, GET, and DELETE requests, each of which specifies the desired
MIME type of the response. For example, in the POST request the statement:

conn.setRequestProperty("accept", "text/xml");

requests that the response be an XML document. The value of the accept key need not
be a single MIME type. For instance, the request statement could be:

conn.setRequestProperty("accept", "text/xml, text/xml, application/soap");

166 | Chapter 4: RESTful Web Services



Indeed, the listed types can be prioritized and weighted for the service’s consideration.
This example sticks with single MIME types such as text/html.

The RabbitCounterServlet can send responses of MIME types text/xml (the default),
text/html, and text/plain. Here is the client’s output, slightly formatted and docu-
mented for readability:

The response: // from the initial POST request to create some Fibonacci numbers
<?xml version="1.0" encoding="UTF-8"?> 
<java version="1.6.0_06" class="java.beans.XMLDecoder"> 
<string>
   [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377] added.
</string> 
</java>

The response: // from a GET request to confirm that the POST worked
<?xml version="1.0" encoding="UTF-8"?> 
<java version="1.6.0_06" class="java.beans.XMLDecoder"> 
<string>[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]</string> 
</java>

The response: // from a GET request with text/plain as the desired type
144

The response: // from a DELETE request
<?xml version="1.0" encoding="UTF-8"?> 
<java version="1.6.0_06" class="java.beans.XMLDecoder"> 
<string>12 deleted.</string> 
</java>

The response: // from a GET to confirm the DELETE with HTML as the desired type
<html><head><title>send_html response</title></head>
<body><div>-1</div></body>
</html>

In the last response, the returned value of –1 signals that the Fibonacci number for 12
is not available. The XML and HTML formats are simple, of course, but they illustrate
how RESTful services can generate typed responses that satisfy requests.

Java Clients Against Real-World RESTful Services
There are many RESTful services available from well-known players such as Yahoo!,
Amazon, and eBay, although controversy continues around the issue of what counts
as a truly RESTful service. This section provides sample clients against some of these
commercial REST-style services.

The Yahoo! News Service
Here HTTP verb is a client against Yahoo!’s RESTful service that summarizes the cur-
rent news on a specified topic. The request is an HTTP GET with a query string:

Java Clients Against Real-World RESTful Services | 167



import java.net.URI;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.ws.handler.MessageContext;
import org.w3c.dom.NodeList;
import yahoo.NSResolver;

// A client against the Yahoo! RESTful news summary service.
class YahooClient {
    public static void main(String[ ] args) throws Exception {
        if (args.length < 1) {
            System.err.println("YahooClient <your AppID>");
            return;
        }
        String app_id = "appid=" + args[0];
        
        // Create a name for a service port.
        URI ns_URI = new URI("urn:yahoo:yn");
        QName serviceName = new QName("yahoo", ns_URI.toString());
        QName portName = new QName("yahoo_port", ns_URI.toString());

        // Now create a service proxy
        Service s = Service.create(serviceName);

        String qs = app_id + "&type=all&results=10&" +
                    "sort=date&language=en&query=quantum mechanics";

        // Endpoint address
        URI address = new URI("http",                  // HTTP scheme
                              null,                    // user info
                              "api.search.yahoo.com",  // host
                              80,                      // port
                              "/NewsSearchService/V1/newsSearch", // path
                              qs,                      // query string
                              null);                   // fragment

        // Add the appropriate port
        s.addPort(portName, HTTPBinding.HTTP_BINDING, address.toString());

        // From the service, generate a Dispatcher
        Dispatch<Source> d =
            s.createDispatch(portName, Source.class, Service.Mode.PAYLOAD);
        Map<String, Object> request_context = d.getRequestContext();
        request_context.put(MessageContext.HTTP_REQUEST_METHOD, "GET");

168 | Chapter 4: RESTful Web Services



        // Invoke
        Source result = d.invoke(null);
        DOMResult dom_result = new DOMResult();
        Transformer trans = TransformerFactory.newInstance().newTransformer();
        trans.transform(result, dom_result);

        XPathFactory xpf = XPathFactory.newInstance();
        XPath xp = xpf.newXPath();
        xp.setNamespaceContext(new NSResolver("yn", ns_URI.toString()));
        NodeList resultList = (NodeList)
            xp.evaluate("/yn:ResultSet/yn:Result",
                        dom_result.getNode(),
                        XPathConstants.NODESET);

        int len = resultList.getLength();
        for (int i = 1; i <= len; i++) {
            String title = 
                xp.evaluate("/yn:ResultSet/yn:Result(" + i + ")/yn:Title",
                            dom_result.getNode());
            String click =
                xp.evaluate("/yn:ResultSet/yn:Result(" + i + ")/yn:ClickUrl",
                            dom_result.getNode());
            System.out.printf("(%d) %s (%s)\n", i, title, click);
        }
    }
}   

This client application expects, as a command-line argument, the user’s application
identifier. The news service is free but requires this identifier. (Signup is available at
http://www.yahoo.com.) In this example, the client requests a maximum of 10 results
on the topic of quantum gravity. Here is a segment of the raw XML that the Yahoo!
service returns:

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="urn:yahoo:yn"
   xsi:schemaLocation="urn:yahoo:yn
    http://api.search.yahoo.com/NewsSearchService/V1/NewsSearchResponse.xsd"
   totalResultsAvailable="9" totalResultsReturned="9"
   firstResultPosition="1">
<Result>
  <Title>Cosmic Log: Private space age turns 4</Title>
   <Summary>Science editor Alan Boyle's Weblog: Four years after the first 
            private-sector spaceship crossed the 62-mile mark, some space-age 
            dreams have been slow to rise while others have paid off.
   </Summary>
   <Url>
     http://cosmiclog.msnbc.msn.com/archive/2008/06/20/1158681.aspx
   </Url>
   <ClickUrl>
     http://cosmiclog.msnbc.msn.com/archive/2008/06/20/1158681.aspx
   </ClickUrl>
   <NewsSource>MSNBC</NewsSource>
   <NewsSourceUrl>http://www.msnbc.msn.com/</NewsSourceUrl>
   <Language>en</Language>

Java Clients Against Real-World RESTful Services | 169

http://www.yahoo.com


    <PublishDate>1213998337</PublishDate>
    <ModificationDate>1213998338</ModificationDate>
</Result>
...
</ResultSet>

Here is the parsed output that the YahooClient produces:

(1) Cosmic Log: Private space age turns 4 (http://cosmiclog.msnbc.msn.com/...
(2) Neutrino experiment shortcuts from novel to real world...
(3) There Will Be No Armageddon (http://www.spacedaily.com/reports/...
(4) TSX Venture Exchange Closing Summary for June 19, 2008 (http://biz.yahoo.com...
(5) Silver Shorts Reported (http://news.goldseek.com/GoldSeeker/1213848000.php)
(6) There will be no Armageddon (http://en.rian.ru/analysis/20080618/...
(7) New Lunar Prototype Vehicles Tested (Gallery)...
(8) World's Largest Quantum Bell Test Spans Three Swiss Towns...
(9) Creating science (http://www.michigandaily.com/news/2008/06/16/...

The client uses a Dispatch object to issue the request and an XPath object to search the
DOM result for selected elements. The output above includes the Summary and the
ClickURL elements from the raw XML. As quantum gravity is not a hot news topic, there
were only 9 results from a request for 10.

The Yahoo! example underscores that clients of RESTful services assume the burden
of processing the response document, which is typically XML, in some way that is
appropriate to the application. Although there generally is an XML Schema that speci-
fies how the raw XML is formatted, there is no service contract comparable to the
WSDL used in SOAP-based services.

The Amazon E-Commerce Service: REST Style
Yahoo! exposes only RESTful web services, but Amazon provides its web services in
two ways, as SOAP-based and as REST-style. The AmazonClientREST application that
follows issues a read request against the Amazon E-Commerce service for books about
the Fibonacci numbers. The client uses a Dispatch object and an HTTP GET request
with a query string that specifies the details of the request:

import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;

170 | Chapter 4: RESTful Web Services



import javax.xml.ws.handler.MessageContext;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import ch04.dispatch.NSResolver;

class AmazonClientREST {
    private final static String uri =
        "http://webservices.amazon.com/AWSECommerceService/2005-03-23";

    public static void main(String[ ] args) throws Exception {
        if (args.length < 1) {
            System.err.println("Usage: AmazonClientREST <access key>");
            return;
        }
        new AmazonClientREST().item_search(args[0].trim());
    }

    private void item_search(String access_key) {
        QName service_name = new QName("awsREST", uri);
        QName port = new QName("awsPort", uri);

        String base_url = "http://ecs.amazonaws.com/onca/xml";
        String qs = "?Service=AWSECommerceService&" +
            "Version=2005-03-23&" +
            "Operation=ItemSearch&" +
            "ContentType=text%2Fxml&" +
            "AWSAccessKeyId=" +  access_key + "&" +
            "SearchIndex=Books&" +
            "Keywords=Fibonacci";
        String endpoint = base_url + qs;

        // Now create a service proxy dispatcher.
        Service service = Service.create(service_name);
        service.addPort(port, HTTPBinding.HTTP_BINDING, endpoint);
        Dispatch<Source> dispatch =
            service.createDispatch(port, Source.class, Service.Mode.PAYLOAD);

        // Set HTTP verb.
        Map<String, Object> request_context = dispatch.getRequestContext();
        request_context.put(MessageContext.HTTP_REQUEST_METHOD, "GET");

        Source result = dispatch.invoke(null); // null payload: GET request
        display_result(result);
    }

    private void display_result(Source result) {
        DOMResult dom_result = new DOMResult();
        try {
            Transformer trans = TransformerFactory.newInstance().newTransformer();
            trans.transform(result, dom_result);
            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            xp.setNamespaceContext(new NSResolver("aws", uri));

Java Clients Against Real-World RESTful Services | 171



            NodeList authors = (NodeList)
                xp.evaluate("//aws:ItemAttributes/aws:Author",
                            dom_result.getNode(),
                            XPathConstants.NODESET);

            NodeList titles = (NodeList)
                xp.evaluate("//aws:ItemAttributes/aws:Title",
                            dom_result.getNode(),
                            XPathConstants.NODESET);

            int len = authors.getLength();
            for (int i = 0; i < len; i++) {
                Node author = authors.item(i);
                Node title  = titles.item(i);
                if (author != null && title != null) {
                    String a_name = author.getFirstChild().getNodeValue();
                    String t_name = title.getFirstChild().getNodeValue();
                    System.out.printf("%s: %s\n", a_name, t_name);
                }
            }
        }
        catch(TransformerConfigurationException e) { System.err.println(e); }
        catch(TransformerException e) { System.err.println(e); }
        catch(XPathExpressionException e) { System.err.println(e); }
    }
}      

The response document is now raw XML rather than a SOAP envelope. However, the
raw XML conforms to the very same XML Schema document that is used in the
E-Commerce WSDL contract for the SOAP-based version of the service. In effect, then,
the only difference is that the raw XML is wrapped in a SOAP envelope in the case of
the SOAP-based service, but is simply the payload of the HTTP response in the case of
the REST-style service. Here is a segment of the raw XML:

<?xml version="1.0" encoding="UTF-8"?>
<ItemSearchResponse 
    xmlns="http://webservices.amazon.com/AWSECommerceService/2005-03-23">
   ...
  <ItemSearchRequest>
    <Keywords>Fibonacci</Keywords>
    <SearchIndex>Books</SearchIndex>
  </ItemSearchRequest>
  ...
  <TotalResults>177</TotalResults>
  <TotalPages>18</TotalPages>
  ...
  <Items>
    <Item>
      <ItemAttributes>
        <Author>Carolyn Boroden</Author>
        <Manufacturer>McGraw-Hill</Manufacturer>
        <ProductGroup>Book</ProductGroup>
        <Title>Fibonacci Trading: How to Master Time and Price Advantage</Title>
      </ItemAttributes>

172 | Chapter 4: RESTful Web Services



    </Item>
  ...
  </Items>   
</ItemSearchResponse>      

For variety, the AmazonClientREST parses the raw XML in a slightly different way than
in earlier examples. In particular, the client uses XPath to get separate lists of authors
and book titles:

NodeList authors = (NodeList) xp.evaluate("//aws:ItemAttributes/aws:Author",
                                dom_result.getNode(), XPathConstants.NODESET);
NodeList titles = (NodeList)  xp.evaluate("//aws:ItemAttributes/aws:Title",
                                dom_result.getNode(), XPathConstants.NODESET);

and then loops through the lists to extract the author and the title using the DOM API.
Here is the loop:

int len = authors.getLength();
for (int i = 0; i < len; i++) {
   Node author = authors.item(i);
   Node title  = titles.item(i);
   if (author != null && title != null) {
     String a_name = author.getFirstChild().getNodeValue();
     String t_name = title.getFirstChild().getNodeValue();
     System.out.printf("%s: %s\n", a_name, t_name);
   }
}

that produced, on a sample run, the following output:

Carolyn Boroden: Fibonacci Trading: How to Master Time and Price Advantage
Kimberly Elam: Geometry of Design: Studies in Proportion and Composition
Alfred S. Posamentier: The Fabulous Fibonacci Numbers
Ingmar Lehmann: Math for Mystics: From the Fibonacci sequence to Luna's Labyrinth...
Renna Shesso: Breakthrough Strategies for Predicting any Market...
Jeff Greenblatt: Wild Fibonacci: Nature's Secret Code Revealed
Joy N. Hulme: Fibonacci Analysis (Bloomberg Market Essentials: Technical Analysis)
Constance Brown: Fibonacci Fun: Fascinating Activities With Intriguing Numbers
Trudi Hammel Garland: Fibonacci Applications and Strategies for Traders
Robert Fischer: New Frontiers in Fibonacci Trading: Charting Techniques,...

The Amazon Simple Storage Service, known as Amazon S3, is a pay-for service also
accessible through a SOAP-based or a RESTful client. As the name indicates, the service
allows users to store and retrieve individual data objects, each of up to 5G in size. S3
is often cited as a fine example of a useful web service with a very simple interface.

The RESTful Tumblr Service
Perhaps the Tumblr service is best known for the associated term tumblelog or tlog, a
variation on the traditional blog that emphasizes short text entries with associated
multimedia such as photos, music, and film. It is common for tumblelogs to be artistic
endeavors. The service is free but the full set of RESTful operations requires a user
account, which can be set up at http://www.tumblr.com.

Java Clients Against Real-World RESTful Services | 173

http://www.tumblr.com


The TumblrClient that follows uses an HttpURLConnection to send a GET and a POST
request against the Tumblr RESTful service. In this case, the HttpURLConnection is a
better choice than Dispatch because a POST request to Tumblr does not contain an
XML document but rather the standard key/value pairs. Here is the client code:

import java.net.URL;
import java.net.HttpURLConnection;
import java.net.URLEncoder;
import java.net.MalformedURLException;
import java.net.URLEncoder;
import java.io.IOException;
import java.io.DataOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.dom.DOMResult;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;
import java.io.ByteArrayInputStream;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

class TumblrClient {
    public static void main(String[ ] args) {
        if (args.length < 2) {
            System.err.println("Usage: TumblrClient <email> <passwd>");
            return;
        }
        new TumblrClient().tumble(args[0], args[1]);
    }

    private void tumble(String email, String password) {
        try {
            HttpURLConnection conn = null;

            // GET request.
            String url = "http://mgk-cdm.tumblr.com/api/read";
            conn = get_connection(url, "GET");
            conn.setRequestProperty("accept", "text/xml");
            conn.connect();
            String xml = get_response(conn);
            if (xml.length() > 0) {
                System.out.println("Raw XML:\n" + xml);
                parse(xml, "\nSki photo captions:", "//photo-caption");
            }

            // POST request
            url = "http://www.tumblr.com/api/write";
            conn = get_connection(url, "POST");

174 | Chapter 4: RESTful Web Services



            String title = "Summer thoughts up north";
            String body = "Craigieburn Ski Area, NZ";
            String payload =
                URLEncoder.encode("email", "UTF-8") + "=" +
                URLEncoder.encode(email, "UTF-8") + "&" +
                URLEncoder.encode("password", "UTF-8") + "=" +
                URLEncoder.encode(password, "UTF-8") + "&" +
                URLEncoder.encode("type", "UTF-8") + "=" +
                URLEncoder.encode("regular", "UTF-8") + "&" +
                URLEncoder.encode("title", "UTF-8") + "=" +
                URLEncoder.encode(title, "UTF-8") + "&" +
                URLEncoder.encode("body", "UTF-8") + "=" +
                URLEncoder.encode(body, "UTF-8");
            DataOutputStream out = new DataOutputStream(conn.getOutputStream());
            out.writeBytes(payload);
            out.flush();
            String response = get_response(conn);
            System.out.println("Confirmation code: " + response);
        }
        catch(IOException e) { System.err.println(e); }
        catch(NullPointerException e) { System.err.println(e); }
    }

    private HttpURLConnection get_connection(String url_s, String verb) {
        HttpURLConnection conn = null;
        try {
            URL url = new URL(url_s);
            conn = (HttpURLConnection) url.openConnection();
            conn.setRequestMethod(verb);
            conn.setDoInput(true);
            conn.setDoOutput(true);
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
        return conn;
    }

    private String get_response(HttpURLConnection conn) {
        String xml = "";
        try {
            BufferedReader reader =
                new BufferedReader(new InputStreamReader(conn.getInputStream()));
            String next = null;
            while ((next = reader.readLine()) != null) xml += next;
        }
        catch(IOException e) { System.err.println(e); }
        return xml;
    }

    private void parse(String xml, String msg, String pattern) {
        StreamSource source =
            new StreamSource(new ByteArrayInputStream(xml.getBytes()));
        DOMResult dom_result = new DOMResult();
        System.out.println(msg);

Java Clients Against Real-World RESTful Services | 175



        try {
            Transformer trans = TransformerFactory.newInstance().newTransformer();
            trans.transform(source, dom_result);
            XPathFactory xpf = XPathFactory.newInstance();
            XPath xp = xpf.newXPath();
            NodeList list = (NodeList)
                xp.evaluate(pattern, dom_result.getNode(), XPathConstants.NODESET);
            int len = list.getLength();
            for (int i = 0; i < len; i++) {
                Node node = list.item(i);
                if (node != null) 
                  System.out.println(node.getFirstChild().getNodeValue());
            }
        }
        catch(TransformerConfigurationException e) { System.err.println(e); }
        catch(TransformerException e) { System.err.println(e); }
        catch(XPathExpressionException e) { System.err.println(e); }
    }
}      

The URL for the GET request is:

http://mgk-cdm.tumblr.com/api/read

which is the URL for my Tumblr account’s site with api/read appended. The request
returns all of my public (that is, unsecured) postings. Here is part of the raw XML
returned as the response:

<?xml version="1.0" encoding="UTF-8"?>
<tumblr version="1.0">
  <tumblelog name="mgk-cdm" timezone="US/Eastern" title="Untitled"/>
  <posts start="0" total="5">
    <post id="40130991" url="http://mgk-cdm.tumblr.com/post/40130991" type="photo"
         date-gmt="2008-06-28 03:09:29 GMT" date="Fri, 27 Jun 2008 23:09:29"
         unix-timestamp="1214622569">
     <photo-caption>Trying the new skis, working better than I am.</photo-caption>
     <photo-url max-width="500">
       http://media.tumblr.com/awK1GiaTRar6p46p6Xy13mBH_500.jpg
     </photo-url>
    </post>
    ...
    <post id="40006745" url="http://mgk-cdm.tumblr.com/post/40006745" type="regular"
          date-gmt="2008-06-27 04:12:53 GMT" date="Fri, 27 Jun 2008 00:12:53"
          unix-timestamp="1214539973">
      <regular-title>Weathering the weather</regular-title>
      <regular-body>miserable, need to get fully wet or not at all</regular-body>
    </post>
    ...
    <post id="40006638" url="http://mgk-cdm.tumblr.com/post/40006638" type="regular"
          date-gmt="2008-06-27 04:11:34 GMT" date="Fri, 27 Jun 2008 00:11:34"
          unix-timestamp="1214539894">
      <regular-title>tumblr. API</regular-title>
      <regular-body>Very restful</regular-body>
    </post>

176 | Chapter 4: RESTful Web Services



  </posts>
</tumblr>      

The raw XML has a very simple structure, dispensing even with namespaces. The
TumblrClient uses XPath to extract a list of the photo captions:

Ski photo captions:
Trying the new skis, working better than I am.
Very tough day on the trails; deep snow, too deep for skating.
Long haul up, fun going down.

The client then sends a POST request, which adds a new entry in my Tumblr posts.
The URL now changes to the main Tumblr site, http://www.tumblr.com, with /api/
write appended. My email and password must be included in the POST request’s pay-
load, which the following code segment handles:

String payload =
   URLEncoder.encode("email", "UTF-8") + "=" +
   URLEncoder.encode(email, "UTF-8") + "&" +
   URLEncoder.encode("password", "UTF-8") + "=" +
   URLEncoder.encode(password, "UTF-8") + "&" +
   URLEncoder.encode("type", "UTF-8") + "=" +
   URLEncoder.encode("regular", "UTF-8") + "&" +
   URLEncoder.encode("title", "UTF-8") + "=" +
   URLEncoder.encode(title, "UTF-8") + "&" +
   URLEncoder.encode("body", "UTF-8") + "=" +
   URLEncoder.encode(body, "UTF-8");
DataOutputStream out = new DataOutputStream(conn.getOutputStream());
out.writeBytes(payload);
out.flush();

The documentation for the Tumblr API is a single page. The API supports the CRUD
read and create operations through the /api/read and the /api/write suffixes. As usual,
a read operation is done through a GET request, and a create operation is done through
a POST request. Tumblr does support some variation. For example, the suffix /api/
read/json causes the response to be JSON (JavaScript Object Notation) instead of XML.
An HTTP POST to the Tumblr site can be used to upload images, audio, and film in
addition to text postings, and multimedia may be uploaded as either unencoded bytes
or as standard URL-encoded payloads in the POST request’s body.

The simplicity of the Tumblr API encourages the building of graphical interfaces and
plugins that, in turn, allow Tumblr to interact easily with other sites such as Facebook.
The Tumblr API is a fine example of how much can be done with so little.

WADLing with Java-Based RESTful Services
In SOAP-based web services, the WSDL document is a blessing to programmers be-
cause this service contract can be used to generate client-side artifacts and, indeed, even
a service-side interface. RESTful services do not have an official or even widely accepted
counterpart to the WSDL, although there are efforts in that direction. Among them is

WADLing with Java-Based RESTful Services | 177

http://www.tumblr.com


the WADL initiative (https://wadl.dev.java.net). WADL stands for Web Application
Description Language.

The WADL download includes the wadl2java utility, a library of required JAR files,
and a sample WADL file named YahooSearch.wadl. The download also has Ant,
Maven, and command-line scripts for convenience. To begin, here is a Yahoo! client
that uses wadl2java-generated artifacts:

import com.yahoo.search.ResultSet;
import com.yahoo.search.ObjectFactory;
import com.yahoo.search.Endpoint;
import com.yahoo.search.Endpoint.NewsSearch;
import com.yahoo.search.Type;
import com.yahoo.search.Result;
import com.yahoo.search.Sort;
import com.yahoo.search.ImageType;
import com.yahoo.search.Output;
import com.yahoo.search.Error;
import com.yahoo.search.SearchErrorException;
import javax.xml.bind.JAXBException;
import java.io.IOException;
import java.util.List;

class YahooWADL {
    public static void main(String[ ] args) {
        if (args.length < 1) {
            System.err.println("Usage: YahooWADL <app id>");
            return;
        }
        String app_id = args[0];
        try {
            NewsSearch service = new NewsSearch();
            String query = "neutrino";

            ResultSet result_set = service.getAsResultSet(app_id, query);
            List<Result> list = result_set.getResultList();
            int i = 1;
            for (Result next : list) {
                String title = next.getTitle();
                String click = next.getClickUrl();
                System.out.printf("(%d) %s %s\n", i++, title, click);
            }
        }
        catch(JAXBException e) { System.err.println(e); }
        catch(SearchErrorException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
    }
}    

The code is cleaner than my original YahooClient. The wadl2java-generated code hides
the XML processing and other grimy details such as the formatting of an appropriate
query string for a GET request against the Yahoo! News Service. The client-side artifacts
also include utility classes for getting images from the Yahoo! service. On a sample run,

178 | Chapter 4: RESTful Web Services

https://wadl.dev.java.net
https://wadl.dev.java.net


the YahooWADL client produced this output on a request for articles that include the
keyword neutrino:

(1) Congress to the rescue for Fermi jobs http://www.dailyherald.com/story/...
(2) AIP FYI #69: Senate FY 2009 National Science Foundation Funding Bill...
(3) Linked by Thom Holwerda on Wed 12th Sep 2007 11:51 UTC...
(4) The World's Nine Largest Science Projects http://science.slashdot.org/...
(5) Funding bill may block Fermi layoffs http://www.suntimes.com/business/...
(6) In print http://www.sciencenews.org/view/generic/id/33654/title/For_Kids...
(7) Recent Original Stories http://www.osnews.com/thread?284017
(8) Antares : un télescope pointé vers le sol qui utilise la terre comme filtre...
(9) Software addresses quality of hands-free car phone audio...
(10) Planetary science: Tunguska at 100 http://www.nature.com/news/2008/...

Here is the WADL document used to generate the client-side artifacts:

<?xml version="1.0"?>
<!--
The contents of this file are subject to the terms of the Common Development and 
Distribution License (the "License").  You may not use this file except in  
compliance with the License. You can obtain a copy of the license at 
     http://www.opensource.org/licenses/cddl1.php
See the License for the specific language governing
permissions and limitations under the License.
-->
<application xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             xmlns:yn="urn:yahoo:yn"
             xmlns:ya="urn:yahoo:api"
             xmlns:html="http://www.w3.org/1999/xhtml"
             xmlns="http://research.sun.com/wadl/2006/10">
  <grammars>
    <include href="NewsSearchResponse.xsd"/>
    <include href="NewsSearchError.xsd"/>
  </grammars>

  <resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
    <resource path="newsSearch">
      <doc xml:lang="en" title="Yahoo News Search Service">
        The <html:i>Yahoo News Search</html:i> service provides online 
                    searching of news stories from around the world.
      </doc>
      <param name="appid" type="xsd:string" required="true" style="query">
        <doc>The application ID. See 
         <html:a href="http://developer.yahoo.com/faq/index.html#appid">
           Application IDs
         </html:a> for more information.
        </doc>
      </param>
      <method href="#search"/>
    </resource>
  </resources>

  <method name="GET" id="search">
    <doc xml:lang="en" title="Search news stories by keyword"/>
    <request>
      <param name="query" type="xsd:string" required="true" style="query">

WADLing with Java-Based RESTful Services | 179



        <doc xml:lang="en" title="Space separated keywords to search for"/>
      </param>
      <param name="type" type="xsd:string" default="all" style="query">
        <doc xml:lang="en" title="Keyword matching"/>
        <option value="all">
          <doc>All query terms.</doc>
        </option>
        <option value="any">
          <doc>Any query terms.</doc>
        </option>
        <option value="phrase">
          <doc>Query terms as a phrase.</doc>
        </option>
      </param>
      <param name="results" type="xsd:int" default="10" style="query">
        <doc xml:lang="en" title="Number of results"/>
      </param>
      <param name="start" type="xsd:int" default="1" style="query">
        <doc xml:lang="en" title="Index of first result"/>
      </param>
      <param name="sort" type="xsd:string" default="rank" style="query">
        <doc xml:lang="en" title="Sort by date or rank"/>
        <option value="rank"/>
        <option value="date"/>
      </param>
      <param name="language" type="xsd:string" style="query">
        <doc xml:lang="en" title="Language filter, omit for any language"/>
      </param>
      <param name="output" type="xsd:string" default="xml" style="query">
        <doc>The format for the output. If <html:em>json</html:em> is requested, 
             the results will be returned in 
             <html:a href="http://developer.yahoo.com/common/json.html">
                  JSON
             </html:a> format. If <html:em>php</html:em> is requested, the 
             results will be returned in 
              <html:a href="http://developer.yahoo.com/common/phpserial.html">
                 Serialized PHP
              </html:a> format.
        </doc>
        <option value="xml"/>
        <option value="json"/>
        <option value="php"/>
      </param>
      <param name="callback" type="xsd:string" style="query">
        <doc>The name of the callback function to wrap around the JSON data. 
             The following characters are allowed: A-Z a-z 0-9 . 
             [ ] and _. If output=json has not been requested, this 
             parameter has no effect. More information on the callback can be 
             found in the 
             <html:a href="http://developer.yahoo.com/common/json.html
             #callbackparam">Yahoo! Developer Network JSON 
             Documentation</html:a>.
      </doc>
      </param>
    </request>

180 | Chapter 4: RESTful Web Services



    <response>
      <representation mediaType="application/xml" element="yn:ResultSet">
        <doc xml:lang="en" title="A list of news items matching the query"/>
      </representation>
      <fault id="SearchError" status="400" mediaType="application/xml"
             element="ya:Error"/>
    </response>
  </method>
</application>  

The WADL document begins with references to two XSD documents, one of which is
the grammar for error documents and the other of which is the grammar for normal
response documents from the service. Next comes a list of available resources, in this
case only the news search service. The methods section describes the HTTP verbs and,
by implication, the CRUD operations that can be used against the service. In the case
of the Yahoo! news service, only GET requests are allowed. The remaining sections
provide details about the parameters that can accompany requests and responses. XSD
type information of the sort found in WSDL documents occurs throughout the WADL
as well.

Executing the wadl2java utility on the YahooSearch.wadl file generates 11 Java source
files, the most important of which for the client-side programmer is Endpoint.java. The
Endpoint class encapsulates the static class NewsSearch, an instance of which has utility
methods such as getAsResultSet. For reference, here is the main segment of the client
YahooWADL shown earlier. The WADL artifacts allow the code to be short and clear:

NewsSearch service = new NewsSearch();
String query = "neutrino";

ResultSet result_set = service.getAsResultSet(app_id, query);
List<Result> list = result_set.getResultList();
int i = 1;
for (Result next : list) {
   String title = next.getTitle();
   String click = next.getClickUrl();
   System.out.printf("(%d) %s %s\n", i++, title, click);
}    

The search string, given in this case with the object reference query, is just a list of
keywords separated by blanks. The NewsSearch object has properties for specifying sort
order, the maximum number of items to return, and the like. The generated artifacts
do lighten the coding burden.

WADL has stirred interest and discussion but remains, for now, a Java-centric initiative.
The critical issue is whether REST-style services can be standardized to the extent that
utilities such as wadl2java and perhaps java2wadl can measure up to the utilities now
available for SOAP-based services. If it is fair to criticize SOAP-based services for being
over-engineered, it is also fair to fault REST-style services for being under-engineered.

WADLing with Java-Based RESTful Services | 181



Problems in the wadl2java-Generated Code

Among the files that the wadl2java utility generates are Error.java and
ObjectFactory.java. In each file, any occurrences of urn:yahoo:api
should be changed to urn:yahoo:yn. In the 1.0 distribution, there were
two occurrences in each source file. Without these changes, a JAX-B
exception is thrown when the results from the Yahoo! search are un-
marshaled into Java objects. The changes could be made to the XSD
document and the WADL document that the wadl2java utility uses.

JAX-RS: WADLing Through Jersey
Jersey is the centerpiece project for the recent JAX-RS (Java API for XML-RESTful Web
Services). Jersey applications can be deployed through familiar commercial-grade
containers such as standalone Tomcat and GlassFish, but Jersey also provides the
lightweight Grizzly container that is well suited for learning the framework. Jersey
works well with Maven. A deployed Jersey service automatically generates a WADL,
which is then available through a standard GET request. A good place to start is https:
//jersey.dev.java.net.

A Jersey service adheres to REST principles. A service accepts the usual RESTful re-
quests for CRUD operations specified with the standard HTTP verbs GET, POST,
DELETE, and PUT. A request is targeted at a Jersey resource, which is a POJO. Here
is the MsgResource class to illustrate:

package msg.resources; 

import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.FormParam;
import javax.ws.rs.Produces;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.DELETE;
import java.beans.XMLEncoder;
import java.io.ByteArrayOutputStream;

// This is the base path, which can be extended at the method level.
@Path("/")
public class MsgResource {
    private static String msg = "Hello, world!";

    @GET
    @Produces("text/plain")
    public String read() {
        return msg + "\n";
    }

    @GET
    @Produces("text/plain")
    @Path("{extra}")

182 | Chapter 4: RESTful Web Services

https://jersey.dev.java.net
https://jersey.dev.java.net


    public String personalized_read(@PathParam("extra") String cus) {
        return this.msg + ": " + cus + "\n";
    }

    @POST
    @Produces("text/xml")
    public String create(@FormParam("msg") String new_msg ) {
        this.msg = new_msg;

        ByteArrayOutputStream stream = new ByteArrayOutputStream();
        XMLEncoder enc = new XMLEncoder(stream);
        enc.writeObject(new_msg);
        enc.close();
        return new String(stream.toByteArray()) + "\n";
    }

    @DELETE
    @Produces("text/plain")
    public String delete() {
        this.msg = null;
        return "Message deleted.\n";
    }
}

The class has intuitive annotations, including the ones for the HTTP verbs and the
response MIME types. The @Path annotation right above the MsgResource class decla-
ration is used to decouple the resource from any particular base URL. For example, the
MsgResource might be available at the base URL http://foo.bar.org:1234, at the base URL
http://localhost:9876, and so on. The @GET, @POST, and @DELETE annotations specify the
appropriate HTTP verb for a particular service operation. The @Produces annotation
specifies the MIME type of the response, in this case either text/plain for the GET and
DELETE operations or text/xml for the POST operation. Each method annotated as a
MsgResource is responsible for generating the declared response type.

The MsgResource class could be put in a WAR file along with the supporting Jersey JAR
files and then deployed in a servlet container such as Tomcat. There is, however, a
quick way to publish a Jersey service during development. Here is the publisher class
to illustrate:

import com.sun.jersey.api.container.grizzly.GrizzlyWebContainerFactory;
import java.util.Map;
import java.util.HashMap;

class JerseyPublisher {
    public static void main(String[ ] args) {
        final String base_url = "http://localhost:9876/";
        final Map<String, String> config = new HashMap<String, String>();

        config.put("com.sun.jersey.config.property.packages",
                   "msg.resources"); // package with resource classes

        System.out.println("Grizzly starting on port 9876.\n" +
                           "Kill with Control-C.\n");

JAX-RS: WADLing Through Jersey | 183

http://foo.bar.org:1234
http://localhost:9876


        try {
            GrizzlyWebContainerFactory.create(base_url, config);
        }
        catch(Exception e) { System.err.println(e); }
    }
}

Grizzly requires configuration information about the package, in this case named
msg.resources, that contains the resources available to clients. In this example, the
package houses only the single class MsgResource but could house several resources. On
each incoming request, the Grizzly container surveys the available resources to deter-
mine which method should handle the request. RESTful routing is thus in effect. For
example, a POSTed request is delegated only to a method annotated with @POST.

Compiling and executing the resource and the publisher requires that several Jersey
JAR files be on the classpath. Here is the list of five under the current release:

asm-3.1.jar  
grizzly-servlet-webserver-1.8.3.jar  
jersey-core-0.9-ea.jar  
jersey-server-0.9-ea.jar  
jsr311-api-0.9.jar

All of these JAR files, together with others for a Maven-centric version of Jersey, are
available at the Jersey home page cited earlier.

Once the JerseyPublisher has been started, a browser or a utility such as curl can be
used to access the resource. For example, the curl command:

% curl http://localhost:9876/

issues a GET request against the service, which causes the @GET-annotated read method
to execute. The response is the default message:

Hello, world! 

By contrast, the curl command:

% curl -d msg='Goodbye, cruel world!' http://localhost:9876/echo/fred

issues a POST request against the service, which in turn causes the @POST-annotated
create method to execute. (A REST purist might argue that a PUT operation would be
more appropriate here, as the create method arguably updates an existing message
rather than creates a message.) The create method uses the @FormParam annotation so
that the POSTed data are available as the method’s argument. The @FormParam param-
eter, in this case the string msg, need not be the same as the method parameter, in this
case new_msg. The output is:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_06" class="java.beans.XMLDecoder">
 <string>Hello, world!</string>
</java>      

184 | Chapter 4: RESTful Web Services



because the @Produces annotation on the create method specifies text/xml as the re-
sponse type. The method generates this response type with the XMLEncoder.

In addition to the read method, there is a second method, personalized_read, annotated
with @GET. The method also has the annotation @Path("{extra}"). For example, the
request:

% curl http://localhost:9876/bye

causes this method to be invoked with bye as the argument. The braces surrounding
extra signal that extra is simply a placeholder rather than a literal. A method-level
@Path is appended to the class-level @Path. In this example, the class-level @Path is
simply /.

The Grizzly publisher automatically generates a WADL document, which is available
at:

http://localhost:9876/application.wadl

Here is the automatically generated WADL for the MsgResource:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
    <doc xmlns:jersey="http://jersey.dev.java.net/" 
         jersey:generatedBy="Jersey: 0.9-ea 08/22/2008 04:48 PM"/>
    <resources base="http://localhost:9876/">
        <resource path="/">
            <method name="DELETE" id="delete">
                <response>
                    <representation mediaType="text/plain"/>
                </response>
            </method>
            <method name="GET" id="read">
                <response>
                    <representation mediaType="text/plain"/>
                </response>
            </method>
            <method name="POST" id="create">
                <request>
                    <param xmlns:xs="http://www.w3.org/2001/XMLSchema" 
                           type="xs:string" name="msg"/>
                </request>
                <response>
                    <representation mediaType="text/xml"/>
                </response>
            </method>
            <resource path="{extra}">
                <param xmlns:xs="http://www.w3.org/2001/XMLSchema" 
                       type="xs:string" style="template" name="extra"/>
                <method name="GET" id="personalized_read">
                    <response>
                        <representation mediaType="text/plain"/>
                    </response>
                </method>
            </resource>

JAX-RS: WADLing Through Jersey | 185



        </resource>
    </resources>
</application>

The WADL captures that the MsgResource supports two GET operations, a POST op-
eration, and a DELETE operation. The WADL also describes the MIME type of the
response representation for each operation. Of course, this WADL document could be
used as input to the wadl2java utility.

Jersey is an appropriately lightweight framework that honors the spirit of RESTful
services. The Grizzly publisher is attractive for development, automatically generating
a WADL document to describe the published services. For production, the move to a
web container, standalone or embedded in an application server, is straightforward
because Jersey resources are simply annotated POJOs. The entire JSR-311 API, the
Jersey core, comprises only 3 packages and roughly 50 interfaces and classes.

For now, JAX-WS and JAX-RS are separate frameworks. It would not be surprising if,
in the future, the two frameworks merged.

The Restlet Framework
Several web frameworks have embraced REST, perhaps none more decisively than Rails
with its ActiveResource type, which implements a resource in the RESTful sense. Rails
also emphasizes a RESTful style in routing, with CRUD request operations specified
as standard HTTP verbs. Grails is a Rails knockoff implemented in Groovy, which
in turn is a Ruby knockoff with access to the standard Java packages. Apache Sling
(http://incubator.apache.org/sling/site/index.html) is a Java-based web framework with
a RESTful orientation.

The restlet framework (http://www.restlet.org) adheres to the REST architectural style
and draws inspiration from other lightweight but powerful frameworks such as Net-
Kernel (http://www.1060.org) and Rails. As the name indicates, a restlet is a RESTful
alternative to the traditional Java servlet. The restlet framework has a client and a service
API. The framework is well designed, relatively straightforward, professionally imple-
mented, and well documented. It plays well with existing technologies. For example,
a restlet can be deployed in a servlet container such as Tomcat or Jetty. The restlet
distribution includes integration support for the Spring framework and also comes with
the Simple HTTP engine (http://www.simpleframework.org), which can be embedded
in Java applications. The sample restlet in this section is published with the Simple
HTTP engine.

The FibRestlet application reprises the Fibonacci example yet again. The service, pub-
lished with the Simple HTTP engine, illustrates key constructs in a restlet. Here is the
source code:

186 | Chapter 4: RESTful Web Services

http://incubator.apache.org/sling/site/index.html
http://incubator.apache.org/sling/site/index.html
http://www.restlet.org
http://www.restlet.org
http://www.1060.org
http://www.1060.org
http://www.1060.org
http://www.simpleframework.org
http://www.simpleframework.org


package ch04.restlet;

import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.Collection;
import java.util.List;
import java.util.ArrayList;
import org.restlet.Component;
import org.restlet.Restlet;
import org.restlet.data.Form;
import org.restlet.data.MediaType;
import org.restlet.data.Method;
import org.restlet.data.Parameter;
import org.restlet.data.Protocol;
import org.restlet.data.Request;
import org.restlet.data.Response;
import org.restlet.data.Status;

public class FibRestlet {
    private Map<Integer, Integer> cache = 
       Collections.synchronizedMap(new HashMap<Integer, Integer>());
    private final String xml_start = "<fib:response xmlns:fib = 'urn:fib'>";
    private final String xml_stop = "</fib:response>";

    public static void main(String[ ] args) {
        new FibRestlet().publish_service();
    }

    private void publish_service() {
        try {
            // Create a component to deploy as a service.
            Component component = new Component();

            // Add an HTTP server to connect clients to the component.
            // In this case, the Simple HTTP engine is the server.
            component.getServers().add(Protocol.HTTP, 7777);

            // Attach a handler to handle client requests. (Note the
            // similarity of the handle method to an HttpServlet
            // method such as doGet or doPost.)
            Restlet handler = new Restlet(component.getContext()) {
                @Override
                public void handle(Request req, Response res) {
                    Method http_verb = req.getMethod();

                    if (http_verb.equals(Method.GET)) {
                        String xml = to_xml();
                        res.setStatus(Status.SUCCESS_OK);
                        res.setEntity(xml, MediaType.APPLICATION_XML);
                    }
                    else if (http_verb.equals(Method.POST)) {
                        // The HTTP form contains key/value pairs.
                        Form form = req.getEntityAsForm();
                        String nums = form.getFirstValue("nums");

The Restlet Framework | 187



                        if (nums != null) {
                            // nums should be a list in the form: "[1, 2, 3]"
                            nums = nums.replace('[', '\0');
                            nums = nums.replace(']', '\0');
                            String[ ] parts = nums.split(",");
                            List<Integer> list = new ArrayList<Integer>();
                            for (String next : parts) {
                                int n = Integer.parseInt(next.trim());
                                cache.put(n, countRabbits(n));
                                list.add(cache.get(n));
                            }
                            String xml =
                              xml_start + "POSTed: " + list.toString() + xml_stop;
                            res.setStatus(Status.SUCCESS_OK);
                            res.setEntity(xml, MediaType.APPLICATION_XML);
                        }
                    }
                    else if (http_verb.equals(Method.DELETE)) {
                        cache.clear(); // remove the resource
                        String xml =
                            xml_start + "Resource deleted" + xml_stop;
                        res.setStatus(Status.SUCCESS_OK);
                        res.setEntity(xml, MediaType.APPLICATION_XML);

                    }
                    else // only GET, POST, and DELETE supported
                        res.setStatus(Status.SERVER_ERROR_NOT_IMPLEMENTED);
                }};

            // Publish the component as a service and start the service.
            System.out.println("FibRestlet at: http://localhost:7777/fib");
            component.getDefaultHost().attach("/fib", handler);
            component.start();
        }
        catch (Exception e) { System.err.println(e); }
    }

    private String to_xml() {
        Collection<Integer> list = cache.values();
        return xml_start + "GET: " + list.toString() + xml_stop;
    }

    private int countRabbits(int n) {
        n = Math.abs(n); // eliminate possibility of a negative argument

        // Easy cases.
        if (n < 2) return n;

        // Return cached values if present.
        if (cache.containsKey(n)) return cache.get(n);
        if (cache.containsKey(n - 1) &&
            cache.containsKey(n - 2)) {
           cache.put(n, cache.get(n - 1) + cache.get(n - 2));
           return cache.get(n);
        }

188 | Chapter 4: RESTful Web Services



        // Otherwise, compute from scratch, cache, and return.
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        cache.put(n, fib);
        return fib;
    }
}    

As the source code shows, the restlet framework provides easy-to-use Java wrappers
such as Method, Request, Response, Form, Status, and MediaType for HTTP and MIME
constructs. The framework supports virtual hosts for commercial-grade applications.

The restlet download includes a subdirectory RESTLET_HOME/lib that houses the
various JAR files for the restlet framework itself and for interoperability with Tomcat,
Jetty, Spring, Simple, and so forth. For the sample restlet service in this section, the
JAR files com.noelios.restlet.jar, org.restlet.jar, and org.simpleframework.jar must be on
the classpath.

A restlet client could be written using a standard class such as HttpURLConnection, of
course. The following client illustrates the restlet API on the client side, an API that
could be used independently of the service API:

import org.restlet.Client;
import org.restlet.data.Form;
import org.restlet.data.Method;
import org.restlet.data.Protocol;
import org.restlet.data.Request;
import org.restlet.data.Response;
import java.util.List;
import java.util.ArrayList;
import java.io.IOException;

class RestletClient {
    public static void main(String[ ] args) {
        new RestletClient().send_requests();
    }

    private void send_requests() {
        try {
            // Setup the request.
            Request request = new Request();
            request.setResourceRef("http://localhost:7777/fib");

            // To begin, a POST to create some service data.
            List<Integer> nums = new ArrayList<Integer>();
            for (int i = 0; i < 12; i++) nums.add(i);
            
            Form http_form = new Form();
            http_form.add("nums", nums.toString());

The Restlet Framework | 189



            request.setMethod(Method.POST);
            request.setEntity(http_form.getWebRepresentation());

            // Generate a client and make the call.
            Client client = new Client(Protocol.HTTP);

            // POST request
            Response response = get_response(client, request);
            dump(response);

            // GET request to confirm POST
            request.setMethod(Method.GET);
            request.setEntity(null);
            response = get_response(client, request);
            dump(response);

            // DELETE request
            request.setMethod(Method.DELETE);
            request.setEntity(null);
            response = get_response(client, request);
            dump(response);

            // GET request to confirm DELETE
            request.setMethod(Method.GET);
            request.setEntity(null);
            response = get_response(client, request);
            dump(response);
        }
        catch(Exception e) { System.err.println(e); }
    }

    private Response get_response(Client client, Request request) {
        return client.handle(request);
    }

    private void dump(Response response) {
        try {
            if (response.getStatus().isSuccess())
                response.getEntity().write(System.out);
            else
                System.err.println(response.getStatus().getDescription());
        }
        catch(IOException e) { System.err.println(e); }
    }
}    

The client API is remarkably clean. In this example, the client issues POST and DELETE
requests with GET requests to confirm that the create and delete operations against the
service were successful.

190 | Chapter 4: RESTful Web Services



The restlet framework is a quick study. Its chief appeal is its RESTful orientation, which
results in a lightweight but powerful software environment for developing and con-
suming RESTful services. The chief issue is whether the restlet framework can gain the
market and mind share to become the standard environment for RESTful services in
Java. The Jersey framework has the JSR seal of approval, which gives this framework
a clear advantage.

What’s Next?
Web services, whether SOAP based or REST style, likely require security. The term
security is broad and vague. The next chapter clarifies the notion and explores the
technologies available for securing web services. The emphasis is on user authentication
and authorization, mutual challenge, and message encryption and decryption.

What’s Next? | 191





CHAPTER 5

Web Services Security

Overview of Web Services Security
Web services security covers a lot of territory, which cannot be explored all at once.
The territory is sufficiently broad that it needs to be divided into smaller, more man-
ageable chunks. Here is a sketch of how this chapter and the next cover this territory:

Wire-level security
Security begins at the transport or wire level; that is, with basic protocols that
govern communications between a web service, whether SOAP-based or REST-
style, and its clients. Security at this level typically provides three services. First,
the client and service need transport-level assurance that each is communicating
with the other rather than with some impostor. Second, the data sent from one
side to the other needs to be encrypted strongly enough so that an interceptor
cannot decrypt the data and thus gain access to the secrets carried therein. Third,
each side needs assurance that the received message is the same as the sent message.
This chapter covers the basics of wire-level security with code examples.

User authentication and authorization
Web services provide clients with access to resources. If a resource is secured, then
a client needs the appropriate credentials to gain access. The credentials are pre-
sented and verified through a process that usually has two phases. In the first phase,
a client (user) presents information such as a username together with a credential
such as a password. If the credential is not accepted, access to the requested re-
source is denied. The first phase is known as user authentication. The second phase,
which is optional, consists of fine-tuning the authenticated user’s access rights. For
example, a stock-picking web service might provide all paying customers with a
username and password, but the service might divide the customers into categories,
for instance, regular and premier. Access to certain resources might be restricted
to premier clients. The second phase is known as role authorization. This chapter
introduces users-role security, a common name for the two-phase process, and the
next chapter builds on the introduction.

193



WS-Security
WS-Security, or WSS for short, is a collection of protocols that specify how different
levels of security can be enforced on messaging in SOAP-based web services. For
example, WSS specifies how digital signatures and encryption information can be
inserted into SOAP headers. Recall that SOAP-based services are designed to be
transport-neutral. Accordingly, WSS is meant to provide comprehensive end-to-
end security regardless of the underlying transport. This chapter introduces WS-
Security with an example published with Endpoint, and the next chapter builds on
the introduction by examining WSS in an application server such as GlassFish.

Wire-Level Security
Consider a pay-for web service such as Amazon’s S3 storage service. This service needs
to authenticate requests to store and retrieve data so that only the paying clients have
access to the service and that, moreover, a particular client has privileged access to its
paid-for storage. In the RESTful version of S3, Amazon uses a customization of keyed
HMAC (Hash Message Authentication Code) to authenticate client requests. Here is a
summary of how the authentication works:

• Parts of the request are concatenated together to form a single string, which be-
comes the input value for a hash computation. This string is the input message.

• The AWS (Amazon Web Services) secret access key, a unique bit string that Am-
azon provides to each paying client, is used to compute the hash value of the input
message (see Figure 5-1). A hash value is also called a message digest, which is a
fixed-length digest of arbitrarily many input bits. Amazon uses the SHA-1 (Secure
Hash Algorithm-1) version of HMAC, which produces a 160-bit digest no matter
what the bit length of the input may be. Amazon calls this hash value the signa-
ture because the value functions like a digital signature, although technically a
digital signature is an encrypted message digest. What Amazon calls the signature
is not encrypted.

Message digest engine Fixed-length digest of input bitsN input bits

Figure 5-1. A message digest

• The Amazon signature is added to the request in the HTTP 1.1 Authorization
header.

• Upon receipt of the request, the Amazon S3 first validates the Amazon signature
and then honors the request only if the validation succeeds.

What prevents a client’s request to Amazon S3 from being intercepted and the value
of its Authorization header, the Amazon authentication signature, from being pirated?

194 | Chapter 5: Web Services Security



Amazon assumes that the request is sent over the secure communications channel that
HTTPS (HyperText Transport Protocol over Secure Socket Layer) provides. HTTPS is
HTTP with an added security layer. Netscape did the original work in the design and
implementation of this security layer and called it SSL (Secure Sockets Layer). The
IETF (International Engineering Task Force) has taken over SSL and renamed it to
TLS (Transport Layer Security). Although SSL and TLS differ in version numbers and
in a few technical details, they are fundamentally the same. It is therefore common to
use SSL, TLS, and SSL/TLS interchangeably.

Java has various packages that support SSL/TLS in general and HTTPS in particular.
JSSE (Java Secure Sockets Extension) has been part of core Java since JDK 1.4. Of
interest here is that higher levels of security, such as user authentication, usually require
wire-level security of the kind that HTTPS provides. Accordingly, the discussion of web
services security begins with HTTPS.

HTTPS Basics
HTTPS is easily the most popular among the secure versions of HTTP. HTTPS provides
three critical security services over and above the transport services that HTTP provides.
Following is a summary of the three, with Figure 5-2 as a reference. In the figure, Alice
needs to send a secret message to Bob. Eve, however, may be eavesdropping. Eve may
even try to dupe Alice and Bob into believing that they are communicating with one
another when, in fact, each is communicating instead with Eve. This variation is known
as the MITM (Man In The Middle) attack. For secure communications, Alice and Bob
thus need these three services:

Peer authentication
Alice needs Bob to authenticate himself so that she is sure about who is on the
receiving end before she sends the secret message. Bob, too, needs Alice to au-
thenticate herself so that he knows that the secret message is from her rather than
an impostor such as Eve. This step also is described as mutual authentication or
mutual challenge.

Confidentiality
Once Alice and Bob have authenticated each other, Alice needs to encrypt the secret
message in such a way that only Bob can decrypt it. Even if Eve intercepts the
encrypted message, she should not be able to decrypt the message because doing
so requires enormous computational power or incredibly good luck.

Integrity
The message that Alice sends should be identical to the one that Bob receives. If
not, an error condition should be raised. The received message might differ from
the sent one for various reasons; for instance, noise in the communications channel
or deliberate tampering by Eve. Any difference between the sent and the received
message should be detected.

Wire-Level Security | 195



Bob
(intended receiver)

Alice
(sender)

Eve
(eavesdropper)

Figure 5-2. A secret message from Bob to Alice despite Eve

These features can be implemented in different ways, of course. Before considering how
HTTPS implements the three features, it will be useful to look briefly at data encryption
and decryption.

Symmetric and Asymmetric Encryption/Decryption
Modern approaches to encryption follow two different approaches, symmetric and
asymmetric. Under either approach, the bits to be encrypted (plain bits) are one input
to an encryption engine and an encryption key is the other input (see Figure 5-3). The
encrypted bits are the cipher bits. If the input bits represent text, then they are the
plaintext and the output bits are the ciphertext. The cipher bits are one input to
the decryption engine, and a decryption key is the other input. The decryption produces
the original plain bits. In the symmetric approach, the same key—called the secret
key or the single key—is used to encrypt and decrypt (see Figure 5-4). The symmetric
approach has the advantage of being relatively fast, but the disadvantage of what is
known as the key distribution problem. How is the secret key itself to be distributed
to the sender and the receiver?

Decryption
engine

Original
plain bits

Cipher
(encrypted) bits

Encryption
engine

Plain
(unencrypted) bits

Encryption key Decryption key

Figure 5-3. Basic encryption and decryption

Decryption
Cipher

bits
Encryption

Plain
bits

Single key

Plain
bits

Figure 5-4. Single key encryption and decryption

196 | Chapter 5: Web Services Security



In the asymmetric approach, the starting point is a key pair, which consists of a private
key and a public key. As the names suggest, the private key should not be distributed
but safeguarded by whoever generated the key pair. The public key can be distributed
freely and publicly. If message bits are encrypted with the public key, they can be de-
crypted only with the private key, and vice-versa. Figure 5-5 illustrates. The asymmetric
approach solves the key distribution problem, but asymmetric encryption and decryp-
tion are roughly a thousand times slower than their symmetric counterparts.

Decryption
Cipher

bits
Encryption

Plain
bits

Key pair

Plain
bits

Public key Private key

Figure 5-5. Public key encryption and decryption

The public key approach solves the confidentiality problem for Alice and Bob. If Alice
encrypts the message with the public key from Bob’s key pair, and Bob has the only
copy of the private key from this pair, then only Bob can decrypt the message. Even if
Eve intercepts Alice’s message, she cannot decrypt it with Bob’s public key.

How HTTPS Provides the Three Security Services
Of the three required security services—peer authentication, confidentiality, and
integrity—the last is the most straightforward. The message sent over HTTPS includes
a digest, which the receiver recomputes. If the sent digest differs from the digest that
the receiver computes, then the message was altered during transmission, either by
accident or design. If the sent digest itself is altered during transmission, this likewise
counts as integrity failure.

HTTPS handles peer authentication through the exchange of digital certificates. In
many cases, however, it is only the client that challenges the server. Consider a typical
web application in which a shopper finalizes an order for the contents of his shopping
cart by submitting a credit card number to the vendor. Here is a summary of what
typically happens when the client-side browser and the web server negotiate to set up
an HTTPS connection:

• The customer’s browser challenges the vendor’s web server to authenticate itself,
and the server responds by sending one or more digital certificates to the browser.

• The browser checks the web server’s digital certificates against the browser’s trust-
store, which is a database of digital certificates that the browser trusts. The

Wire-Level Security | 197



browser’s validation of an incoming certificate can be and, for practical reasons,
typically is indirect. For example, suppose that the browser receives a certificate
from Amazon but does not have such a certificate in its truststore. Suppose further
that the Amazon certificate contains a vouching signature from VeriSign, a well-
known certificate authority (CA). If the browser’s truststore has a VeriSign certif-
icate, then the browser can use the VeriSign certificate to validate the VeriSign
signature on the Amazon certificate. The point of interest is that the browser’s
truststore is its repository of certificates that are used to verify incoming certificates.
If the browser cannot validate an incoming certificate against its truststore, then
the browser typically asks the user whether the certificate should be trusted this
time only or permanently. If the user selects permanently, the browser adds the
certificate to its truststore.

• The web server typically does not challenge the browser. For one thing, the web
application is interested in the shopper’s credit card rather than in the identity of
the user agent (in this case, the browser) that the shopper happens to be using.

The usually one-sided authentication challenge, with the client challenging the server
but not the other way around, shows up in Tomcat’s configuration file, server.xml.
Here is the entry for HTTPS:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
           maxThreads="150" scheme="https" secure="true"
           clientAuth="false" sslProtocol="TLS" />    

The clientAuth attribute is set to false, thereby indicating that Tomcat does not chal-
lenge the client. The default client behavior is to challenge the server.

For authentication and confidentiality, HTTPS relies on digital certificates, which are
widely used in public key cryptography precisely because the exchange of secret keys
is so difficult among many users. Here is a summary of how HTTPS authentication is
intertwined with HTTPS confidentiality. The process is sometimes described as the
handshake between client and server that culminates in a secure network connection.
In this scenario, the client might be a browser or an application functioning as a web
service client. For convenience, the term web server covers both a standard web appli-
cation server such as Tomcat, an Endpoint publisher of a web service, or a full-bodied
Java Application Server such as BEA WebLogic, GlassFish, JBoss, or WebSphere:

• The client challenges the web server, which sends one or more digital certificates
as authentication. Modern digital certificates usually follow the X.509 format. The
current X.509 version is named v3.

• An X.509 certificate is a public key certificate that serves as an identity certificate by
binding the public key from a key pair to an identity such as a person (for instance,
Alice) or an organization (for instance, Bob’s employer). The certificate contains
the digital signature of a CA such as a VeriSign, although certificates can be self-
signed for testing purposes. In signing a digital certificate, a CA endorses the cer-
tificate and thereby verifies that the certificate’s public key is bound to a particular

198 | Chapter 5: Web Services Security



identity. For instance, VeriSign signs Alice’s certificate and thereby verifies that the
certificate’s public key belongs to Alice’s key pair.

• The client can determine whether to accept the server’s digital certificates by
checking these against its truststore.

• The server has the option of challenging the client.

• Once the challenge phase is over, the client begins the process of generating a secret
key. The process begins with the client’s generation of a pre-master secret, a string,
that is shared with the server. The pre-master is then used on each side to generate
the same master secret key, which is used to encrypt and decrypt the traffic between
the client and the server. At issue here is how the pre-master secret is sent securely
from the client to the server.

• The client encrypts the 48-bit pre-master secret with the server’s public key, avail-
able on the server’s digital certificate downloaded during the peer authentication
phase. The encrypted pre-master secret is sent to the server, which decrypts the
secret. If everything is still in order, each side confirms that encryption of traffic
between them is to begin. The public key/private key pair is thus critical in solving
the key distribution problem for secret keys.

• At any point, either the client or the server may insist on starting the entire process
all over again. For example, if either Alice or Bob suspects that Eve is up to no
good, either Alice or Bob can restart the handshake process.

A secret key is used to encrypt and decrypt traffic for several reasons. First, symmetric
encryption has relatively high performance. Second, if the server does not challenge the
client, then the server does not have the client’s public key to encrypt messages to the
client. The server cannot encrypt messages with its own private key, as any receiver (for
instance, Eve) with access to the server’s public key then could decrypt the message.
Finally, encrypting and decrypting with two separate key pairs is inherently trickier
than using a single secret key.

The challenge is to get the pre-master secret securely from the client to the server; and
the server’s public key, available to the client in the server’s digital certificate after the
mutual challenge phase, fits the bill perfectly. The master secret key is generated only
after the client and the server have agreed upon which cipher suite, or set of crypto-
graphic algorithms, should be used. A cipher suite includes a key-pair algorithm and a
hash algorithm.

Although digital certificates now play a dominant role in mutual challenge scenarios,
they are not the only game in town. For example, SRP (Secure Remote Protocol)
implements mutual challenge but without digital certificates. For more on SRP, see
http://srp.stanford.edu.

Wire-Level Security | 199

http://srp.stanford.edu


The HttpsURLConnection Class
It is time to flesh out these architectural sketches with a code example. The
HttpsURLConnection class, which extends HttpURLConnection, supports HTTPS connec-
tions. The SunClient application shown below uses an HttpsURLConnection to issue a
GET request under HTTPS against the Java home site. Note that the port number in
the URL is 443, the standard port for HTTPS connections:

import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
import java.net.MalformedURLException;
import java.security.cert.Certificate;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

// Send a GET request over HTTPS to the Java home site and
// display information about the security artifacts that come back.
class SunClient {
    private static final String url_s = "https://java.sun.com:443";

    public static void main(String[ ] args) {
        new SunClient().do_it();
    }
    private void do_it() {
        try {
            URL url = new URL(url_s);
            HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
            conn.setDoInput(true);
            conn.setRequestMethod("GET");
            conn.connect();
            dump_features(conn);
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
    }
    private void dump_features(HttpsURLConnection conn) {
        try {
            print("Status code:  " + conn.getResponseCode());
            print("Cipher suite: " + conn.getCipherSuite());
            Certificate[ ] certs = conn.getServerCertificates();
            for (Certificate cert : certs) {
                print("\tCert. type: " + cert.getType());
                print("\tHash code:  " + cert.hashCode());
                print("\tAlgorithm:  " + cert.getPublicKey().getAlgorithm());
                print("\tFormat:     " + cert.getPublicKey().getFormat());
                print("");
            }
        }
        catch(Exception e) { System.err.println(e); }
    }
    private void print(String s) { System.out.println(s); }
}     

200 | Chapter 5: Web Services Security



Here is the output from a sample run:

Status code:  200
Cipher suite: SSL_RSA_WITH_RC4_128_MD5
        Cert. type: X.509
        Hash code:  23073427
        Algorithm:  RSA
        Format:     X.509

        Cert. type: X.509
        Hash code:  32560810
        Algorithm:  RSA
        Format:     X.509

        Cert. type: X.509
        Hash code:  8222443
        Algorithm:  RSA
        Format:     X.509      

The status code of 200 signals that the GET request was successful. The SSL cipher
suite can be read as follows:

RSA
This is the public key cryptography algorithm, named after Rivest, Shamir, and
Adleman, the former MIT professors who designed it. RSA is the most commonly
used public key algorithm. It is used to encrypt the pre-master that is sent from the
client to the server.

RC4_128
The stream cipher algorithm, which is used to encrypt and decrypt the bit traffic
between client and server, has a key length of 128 bits. The R is for Rivest in RSA,
and the C is for cipher. (Sometimes RC is said to be shorthand for Ron’s Code, as
Rivest’s first name is Ron.) RC4 is the most commonly used stream cipher.
RC4_128 is used to encrypt the data traffic once the handshake is completed.

MD5
The certificate’s 128-bit identifying hash, also called its fingerprint, is generated
with the Message Digest algorithm 5. MD5 supplies what is officially known as the
cryptographic hash function. Rivest designed MD5 as an improvement over MD4.
Although MD5 is not fatally flawed, it is gradually losing ground to alternatives
such as the Secure Hash Algorithm (SHA) family of hash algorithms.

The Sun server sent three digital certificates during the mutual challenge phase. Each
is an X.509 certificate generated with the RSA algorithm. Each of the distinct MD5
digests is 128 bits in length. The format of each X.509 certificate understandably follows
the X.509 specification.

The three X.509 digital certificates sent to the SunClient application can be validated
against the client’s default truststore, which is JAVA_HOME/jre/lib/security/cacerts. In
development phase, however, it may be useful to turn off validation because, for ex-
ample, the truststore has does not contain the appropriate certificates.

Wire-Level Security | 201



The SunTrustingClient application below revises the SunClient application by turning
off certificate validation:

import java.net.URL;
import java.security.SecureRandom;
import java.security.cert.X509Certificate;
import javax.net.ssl.SSLContext;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.net.MalformedURLException;
import java.security.cert.Certificate;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

class SunTrustingClient {
    private static final String url_s = "https://java.sun.com:443";

    // Send a GET request and print the response status code.
    public static void main(String[ ] args) {
        new SunTrustingClient().do_it();
    }
    private void do_it() {
        try {
          // Configure HttpsURLConnection so that it doesn't check certificates.
          SSLContext ssl_ctx = SSLContext.getInstance("SSL");
          TrustManager[ ] trust_mgr = get_trust_mgr();
          ssl_ctx.init(null,                // key manager
                       trust_mgr,           // trust manager
                       new SecureRandom()); // random number generator
          HttpsURLConnection.setDefaultSSLSocketFactory(ssl_ctx.getSocketFactory());
          URL url = new URL(url_s);
          HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
          conn.setDoInput(true);
          conn.setRequestMethod("GET");
          conn.connect();
          dump_features(conn);
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
        catch(Exception e) { System.err.println(e); }
    }
    private TrustManager[ ] get_trust_mgr() {
        // No exceptions thrown in the three overridden methods.
        TrustManager[ ] certs = new TrustManager[ ] {
          new X509TrustManager() {
            public X509Certificate[ ] getAcceptedIssuers() { return null; }
            public void checkClientTrusted(X509Certificate[ ] c, String t) { }
            public void checkServerTrusted(X509Certificate[ ] c, String t) { }
          }
        };
        return certs;
    }

202 | Chapter 5: Web Services Security



    private void dump_features(HttpsURLConnection conn) {
        try {
            print("Status code:  " + conn.getResponseCode());
            print("Cipher suite: " + conn.getCipherSuite());
            Certificate[ ] certs = conn.getServerCertificates();
            for (Certificate cert : certs) {
                print("\tCert. type: " + cert.getType());
                print("\tHash code:  " + cert.hashCode());
                print("\tAlgorithm:  " + cert.getPublicKey().getAlgorithm());
                print("\tFormat:     " + cert.getPublicKey().getFormat());
                print("");
            }

        }
        catch(Exception e) { System.err.println(e); }
    }

    private void print(String s) {
        System.out.println(s);
    }
}      

The revised application constructs its own TrustManager to override the default. A trust
manager validates certificates. The output for the SunClient and the output for the
SunTrustingClient is essentially the same, however, because even the trusting version
still receives three certificates from the Sun server.

Securing the RabbitCounter Service
The Endpoint.publish method does not support HTTPS connections. However, core
Java 6 includes an HttpServer class and its subclass HttpsServer, which can be used to
publish a service under HTTPS. (The Endpoint publisher, in fact, uses the HttpServer
class under the hood.) The HttpsServer can be used by itself to publish a RESTful service
such as the RabbitCounter. Here is a revised publisher for the RabbitCounter service, a
publisher that accepts HTTPS connections:

package ch05.rc;

import java.net.InetSocketAddress;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLParameters;
import javax.net.ssl.SSLEngine;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.security.cert.X509Certificate;
import java.security.SecureRandom;
import java.security.KeyStore;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.TrustManagerFactory;
import java.io.FileInputStream;
import javax.xml.ws.http.HTTPException;
import java.io.OutputStream;

Securing the RabbitCounter Service | 203



import java.io.InputStream;
import java.io.IOException;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import java.util.Collection;
import java.util.List;
import java.util.ArrayList;
import com.sun.net.httpserver.HttpContext;
import com.sun.net.httpserver.HttpHandler;
import com.sun.net.httpserver.HttpsServer;
import com.sun.net.httpserver.HttpsConfigurator;
import com.sun.net.httpserver.HttpExchange;
import com.sun.net.httpserver.HttpsParameters;

public class RabbitCounterPublisher {
    private Map<Integer, Integer> fibs;

    public RabbitCounterPublisher() {
        fibs = Collections.synchronizedMap(new HashMap<Integer, Integer>());
    }

    public static void main(String[ ] args) {
        new RabbitCounterPublisher().publish();
    }

    public Map<Integer, Integer> getMap() { return fibs; }

    private void publish() {
        int port = 9876;
        String ip = "https://localhost:";
        String path = "/fib";
        String url_string = ip + port + path;

        HttpsServer server = get_https_server(ip, port, path);
        HttpContext http_ctx = server.createContext(path);

        System.out.println("Publishing RabbitCounter at " + url_string);
        if (server != null) server.start();
        else System.err.println("Failed to start server. Exiting.");
    }

    private HttpsServer get_https_server(String ip, int port, String path) {
        HttpsServer server = null;
        try {
            InetSocketAddress inet = new InetSocketAddress(port);
            // 2nd arg = max number of client requests to queue
            server = HttpsServer.create(inet, 5);

            SSLContext ssl_ctx = SSLContext.getInstance("TLS");
            // password for keystore
            char[ ] password = "qubits".toCharArray();
            KeyStore ks = KeyStore.getInstance("JKS");
            FileInputStream fis = new FileInputStream("rc.keystore");
            ks.load(fis, password);

204 | Chapter 5: Web Services Security



            KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
            kmf.init(ks, password);
            TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
            tmf.init(ks);
            ssl_ctx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

            // Create SSL engine and configure HTTPS to use it.
            final SSLEngine eng = ssl_ctx.createSSLEngine();
            server.setHttpsConfigurator(new HttpsConfigurator(ssl_ctx) {
                    public void configure(HttpsParameters parms) {
                        parms.setCipherSuites(eng.getEnabledCipherSuites());
                        parms.setProtocols(eng.getEnabledProtocols());
                    }
                });
            server.setExecutor(null); // use default

            HttpContext http_context = 
               server.createContext(path, new MyHttpHandler(this));
        }
        catch(Exception e) { System.err.println(e); }
        return server;
    }
}

// The handle method is called on a particular request context,
// in this case on any request to the server that ends with /fib.
class MyHttpHandler implements HttpHandler {
    private RabbitCounterPublisher pub;
    public MyHttpHandler(RabbitCounterPublisher pub) { this.pub = pub; }

    public void handle(HttpExchange ex) {
        String verb = ex.getRequestMethod().toUpperCase();
        if (verb.equals("GET"))         doGet(ex);
        else if (verb.equals("POST"))   doPost(ex);
        else if (verb.equals("DELETE")) doDelete(ex);
        else throw new HTTPException(405);
    }

    private void respond_to_client(HttpExchange ex, String res) {
        try {
            ex.sendResponseHeaders(200, 0); // 0 means: arbitrarily many bytes
            OutputStream out = ex.getResponseBody();
            out.write(res.getBytes());
            out.flush();
            ex.close(); // closes all streams
        }
        catch(IOException e) { System.err.println(e); }
    }
    private void doGet(HttpExchange ex) {
        Map<Integer, Integer> fibs = pub.getMap();
        Collection<Integer> list = fibs.values();
        respond_to_client(ex, list.toString());
    }

Securing the RabbitCounter Service | 205



    private void doPost(HttpExchange ex) {
        Map<Integer, Integer> fibs = pub.getMap();
        fibs.clear(); // clear to create a new map
        try {
            InputStream in = ex.getRequestBody();
            byte[ ] raw_bytes = new byte[4096];
            in.read(raw_bytes);
            String nums = new String(raw_bytes);
            nums = nums.replace('[', '\0');
            nums = nums.replace(']', '\0');
            String[ ] parts = nums.split(",");
            List<Integer> list = new ArrayList<Integer>();
            for (String next : parts) {
                int n = Integer.parseInt(next.trim());
                fibs.put(n, countRabbits(n));
                list.add(fibs.get(n));
            }
            Collection<Integer> coll = fibs.values();
            String res = "POSTed: " + coll.toString();
            respond_to_client(ex, res);
        }
        catch(IOException e) { }
    }
    private void doDelete(HttpExchange ex) {
        Map<Integer, Integer> fibs = pub.getMap();
        fibs.clear();
        respond_to_client(ex, "All entries deleted.");
    }
    private int countRabbits(int n) {
        n = Math.abs(n);
        if (n < 2) return n; // easy cases

        Map<Integer, Integer> fibs = pub.getMap();
        // Return cached values if present.
        if (fibs.containsKey(n)) return fibs.get(n);
        if (fibs.containsKey(n - 1) &&
            fibs.containsKey(n - 2)) {
           fibs.put(n, fibs.get(n - 1) + fibs.get(n - 2));
           return fibs.get(n);
        }

        // Otherwise, compute from scratch, cache, and return.
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        fibs.put(n, fib);
        return fib;
    }
}

206 | Chapter 5: Web Services Security



Creating an HttpsServer instance is straightforward:

HttpsServer server = null;
try {
   InetSocketAddress inet = new InetSocketAddress(port);
   server = HttpsServer.create(inet, 5);

The second argument to create, in this case 5, is the maximum number of requests that
should be queued. A value of 0 signals that the system default should be used.

The code to configure an HttpsServer is trickier than the code to create one. There are
several important features of the configuration, which centers on an SSLContext that is
associated with a specific protocol such as TLS. In this example, the SSLContext is used
for two configurations. The first configuration manages the keystore and truststore.
Recall that the keystore, on the server side, contains the server’s digital certificates that
can be sent to the client during peer authentication; on the client side, the keystore
contains the client’s digital certificates for the same purpose. There is no default key-
store. Here is the command used to generate the keystore file rc.keystore (the name is
arbitrary):

% keytool -genkey -keyalg RSA -keystore rc.keystore 

The command creates a single self-signed X.509 certificate and places this certificate
in the file rc.keystore. The keytool utility, which comes with core Java 6, prompts for
information that is used to build the X.509 certificate. The utility also asks for a pass-
word, in this case qubits. At runtime the keystore’s contents will be loaded into the
application so that, during the TLS handshake, any digital certificates therein can be
sent to the client.

Next, the truststore, the database of trusted digital certificates, is configured. (Recall
that there is a default truststore: JAVA_HOME/jre/lib/security/cacerts.) Once the key-
store and truststore configuration is ready, the statement:

ssl_ctx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

makes these configurations part of the SSLContext. The third argument above, null,
signals that the system should use the default SecureRandom number generator. The
keystore and truststore configuration also could be done through -D command-line
options or by setting various system properties in the code.

The last configuration step is to use the SSLContext to get an SSLEngine, which in turn
provides the protocols and cipher suites available for establishing a secure connection.
In this example, the system defaults are taken and no additional protocols or cipher
suites are added to the already available mix.

The last setup step before starting the server is to establish an HttpContext, which con-
sists of a path (in this case, /fibs) and an HttpHandler whose handle method is called
back on every request for the resource at /fibs. The handler is associated with the
HttpsServer. In effect, the HTTPS server delegates request processing to the specified

Securing the RabbitCounter Service | 207



handle method. An elaborate HttpsServer might have many HttpContext instances and
separate handlers for each.

Here is the MyHttpHandler’s implementation of the HttpHandler method handle:

public void handle(HttpExchange ex) {
     String verb = ex.getRequestMethod().toUpperCase();
     if (verb.equals("GET"))         doGet(ex);
     else if (verb.equals("POST"))   doPost(ex);
     else if (verb.equals("DELETE")) doDelete(ex);
     else throw new HTTPException(405); // bad verb
}

The HttpExchange argument encapsulates methods to access an input stream, which
can be used to read client POST requests, and an output stream, which can be used to
generate the body of a response to the client. There are methods to set the response’s
status code and the like. For example, here is the respond_to_client method that han-
dles responses to GET, POST, and DELETE requests:

private void respond_to_client(HttpExchange ex, String res) {
    try {
        ex.sendResponseHeaders(200, 0); // 0 means: arbitrarily many bytes
        OutputStream out = ex.getResponseBody();
        out.write(res.getBytes());
        out.flush();
        ex.close(); // closes all streams
    }
    catch(IOException e) { System.err.println(e); }
}

The HTTPS client against the HTTPS RabbitCounter service differs only slightly from
the SunClient and the SunTrustingClient shown earlier. An HttpsURLConnection is used
again and, for simplicity, is configured not to check the digital certificates sent from
the server. The one change involves a HostnameVerifier, which allows the client to
decide explicitly about whether it is all right to set up an HTTPS connection with a
specified server. Here is the code segment, with conn as the reference to the
HttpsURLConnection object:

conn.setHostnameVerifier(new HostnameVerifier() {
          public boolean verify(String host, SSLSession sess) {
              if (host.equals("localhost")) return true;
              else return false;
          }});

The verify method can be coded to handle whatever connection logic is appropriate
to the application. In this case, HTTPS connections to a server running on localhost
are allowed, but attempted connections to any other server result in an exception.
Following is the source code for the client, which sends a test POST request to the
server:

import java.util.List;
import java.util.ArrayList;
import java.net.URL;

208 | Chapter 5: Web Services Security



import java.security.SecureRandom;
import java.security.cert.X509Certificate;
import javax.net.ssl.SSLContext;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import java.net.HttpURLConnection;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.net.MalformedURLException;
import java.security.cert.Certificate;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

class SecureClientRC {
    private static final String url_s = "https://localhost:9876/fib";

    public static void main(String[ ] args) {
        new SecureClientRC().do_it();
    }

    private void do_it() {
        try {
            // Create a context that doesn't check certificates.
            SSLContext ssl_ctx = SSLContext.getInstance("TLS");
            TrustManager[ ] trust_mgr = get_trust_mgr();
            ssl_ctx.init(null,                // key manager
                         trust_mgr,           // trust manager
                         new SecureRandom()); // random number generator
            HttpsURLConnection.setDefaultSSLSocketFactory(ssl_ctx.getSocketFactory());

            URL url = new URL(url_s);
            HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();

            // Guard against "bad hostname" errors during handshake.
            conn.setHostnameVerifier(new HostnameVerifier() {
                    public boolean verify(String host, SSLSession sess) {
                        if (host.equals("localhost")) return true;
                        else return false;
                    }
                });

            // Test request
            List<Integer> nums = new ArrayList<Integer>();
            nums.add(3); nums.add(5); nums.add(7);

            conn.setDoInput(true);
            conn.setDoOutput(true);
            conn.setRequestMethod("POST");
            conn.connect();
            OutputStream out = conn.getOutputStream();
            out.write(nums.toString().getBytes());

Securing the RabbitCounter Service | 209



            byte[ ] buffer = new byte[4096];
            InputStream in = conn.getInputStream();
            in.read(buffer);
            System.out.println(new String(buffer));
            dump_features(conn);
            conn.disconnect();
        }
        catch(MalformedURLException e) { System.err.println(e); }
        catch(IOException e) { System.err.println(e); }
        catch(Exception e) { System.err.println(e); }
    }

    private TrustManager[ ] get_trust_mgr() {
        TrustManager[ ] certs = new TrustManager[ ] {
            new X509TrustManager() {
                public X509Certificate[ ] getAcceptedIssuers() { return null; }
                public void checkClientTrusted(X509Certificate[ ] certs, String t) { }
                public void checkServerTrusted(X509Certificate[ ] certs, String t) { }
            }
        };
        return certs;
    }

    private void dump_features(HttpsURLConnection conn) {
        try {
            print("Status code:  " + conn.getResponseCode());
            print("Cipher suite: " + conn.getCipherSuite());
            Certificate[ ] certs = conn.getServerCertificates();
            for (Certificate cert : certs) {
                print("\tCert. type: " + cert.getType());
                print("\tHash code:  " + cert.hashCode());
                print("\tAlgorithm:  " + cert.getPublicKey().getAlgorithm());
                print("\tFormat:     " + cert.getPublicKey().getFormat());
                print("");
            }
        }
        catch(Exception e) { System.err.println(e); }
    }

    private void print(String s) { System.out.println(s); }
}

Here is the output:

POSTed: [2, 5, 13]
Status code:  200
Cipher suite: SSL_RSA_WITH_RC4_128_MD5
        Cert. type: X.509
        Hash code:  1992213
        Algorithm:  RSA
        Format:     X.509

210 | Chapter 5: Web Services Security



The server’s keystore, the file rc.keystore, contains just one self-signed X.509 certificate,
but the cipher suite is the same as in the two Sun examples shown earlier. The key-
tool utility allows other cipher suites to be specified.

As proof of concept, here is a Perl client invoked against the RabbitCounter service after
the Java client has posted the values shown previously:

#!/usr/bin/perl -w

use Net::SSLeay qw(get_https);
use strict;

my ($type, $start_line, $misc, $extra) = get_https('localhost', 9876, '/fib');
print "Type/value:  $type\n";
print "Start line:  $start_line\n";
print "Misc:        $misc => $extra\n";

By default, the Perl client does not verify the server’s certificates, although this feature
can be turned on easily. The Perl function get_https returns a list of four items.

The output was:

Type/value:  a [2, 5, 13]

Start line:  HTTP/1.1 200 OK
Misc:        TRANSFER-ENCODING => chunked

In the first line, the character a indicates that the service returns an array.

Adding User Authentication
To begin, here is a quick review of the jargon introduced earlier. User authentication
is the first phase in a two-phase process known popularly as users-roles security. In the
first phase, a user presents credentials such as a password in order to become an
authenticated subject. More sophisticated credentials such as a smart card or biometric
data (from, for instance, a fingerprint or even a retinal scan) might be used in user
authentication.

The second phase, authorization, is optional and normally occurs only if the first phase
succeeds. This phase determines which authorization roles an authenticated subject
may play. Authorization roles can be customized as needed. For instance, Unix-based
operating systems distinguish between users and superusers, which are authorization
roles that determine levels of access to system resources and which privileged actions
accompany a role. An IT organization might have authorization roles such as program-
mer, senior database administrator, software engineer, systems analyst, and so on. In
large organizations, digital certificates may be used to determine authorization roles.
For example, a system based on users-roles security may require Fred Flintstone to
provide his username and password to become an authenticated subject but then check
a database for a certificate that authorizes Fred as a crane operator.

Securing the RabbitCounter Service | 211



HTTP BASIC Authentication
With a few minor changes, the RabbitCounter service can support what is known as
HTTP BASIC Authentication. JAX-WS provides two convenient constants to look up
usernames and passwords. The changes are local to the HttpHandler implementation.
The handle method now invokes the authenticate method, which throws an HTTP
401 (Unauthorized) exception if the authentication fails and otherwise does nothing.
See Example 5-1.

Example 5-1. Adding basic authentication to the RabbitCounter service

public void handle(HttpExchange ex) {
    authenticate(ex);
    String verb = ex.getRequestMethod().toUpperCase();
    if (verb.equals("GET"))         doGet(ex);
    else if (verb.equals("POST"))   doPost(ex);
    else if (verb.equals("DELETE")) doDelete(ex);
    else throw new HTTPException(405);
}

private void authenticate(HttpExchange ex) {
    // Extract the header entries.
    Headers headers = ex.getRequestHeaders();
    List<String> ulist = headers.get(BindingProvider.USERNAME_PROPERTY);
    List<String> plist = headers.get(BindingProvider.PASSWORD_PROPERTY);

    // Extract username/password from the two singleton lists.
    String username = ulist.get(0);
    String password = plist.get(0);
    if (!username.equals("fred") || !password.equals("rockbed"))
        throw new HTTPException(401); // authentication error
}

In production mode, of course, the username and password might be checked against
a database. This change to the source also requires two additional import statements,
one for BindingProvider and another for Headers.

On the client side, the change is also minor. The username and password are added to
the HTTP request before the connect method is invoked on the HttpsURLConnection.
In this code segment, conn is the reference to the HttpsURLConnection instance:

conn.addRequestProperty(BindingProvider.USERNAME_PROPERTY, "fred");
conn.addRequestProperty(BindingProvider.PASSWORD_PROPERTY, "rockbed");

The key point is that the authentication information is sent to the RabbitCounter service
with wire-level security, in particular data encryption.

Container-Managed Security for Web Services
This most recent version of the RabbitCounter service does provide user authentication,
but not in a way that scales. A better approach would be to use a web service container

212 | Chapter 5: Web Services Security



that provides not only user authentication but also wire-level security. Tomcat, the
reference implementation for a Java web container, can provide both. Chapter 4
showed how Tomcat can be used to publish RESTful web services as servlets. Tomcat
also can publish SOAP-based services. Tomcat can publish either a @WebService or a
@WebServiceProvider.

The example to illustrate how Tomcat provides container-managed security is built in
two steps. The first step publishes a SOAP-based service with Tomcat, and the second
step adds security. A later example is a secured @WebServiceProvider under Tomcat.

Deploying a @WebService Under Tomcat
The SOAP-based service is organized in the usual way. Here is the code for the
TempConvert SEI:

package ch05.tc;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public interface TempConvert {
    @WebMethod float c2f(float c);
    @WebMethod float f2c(float f);
}

And here is the code for the corresponding SIB:

package ch05.tc;
import javax.jws.WebService;

@WebService(endpointInterface = "ch05.tc.TempConvert")
public class TempConvertImpl implements TempConvert {
    public float c2f(float t) { return 32.0f + (t * 9.0f / 5.0f); }
    public float f2c(float t) { return (5.0f / 9.0f) * (t - 32.0f); }
}

For deployment under Tomcat, the service requires a deployment descriptor, the
web.xml file. This configuration file informs the servlet container about how requests
for the service are to be handled. In particular, the web.xml refers to two special classes
that come with JAX-WS 2.1: WSServlet and WSServletContainerListener. This segment
of the web.xml:

<servlet>
   <servlet-name>TempConvertWS</servlet-name>
   <servlet-class>
     com.sun.xml.ws.transport.http.servlet.WSServlet
   </servlet-class>
</servlet>
<servlet-mapping>
  <servlet-name>TempConvertWS</servlet-name>
  <url-pattern>/tc</url-pattern>
</servlet-mapping>

Container-Managed Security for Web Services | 213



delegates requests whose URLs end with the path /tc to a WSServlet instance, which
in turn is linked to the JWS runtime. Tomcat provides the WSServlet instance.

The web.xml segment:

<listener>
  <listener-class>
     com.sun.xml.ws.transport.http.servlet.WSServletContextListener
  </listener-class>
</listener>

specifies a WSServletContextListener instance that will parse a second, Sun-specific
configuration file named sun-jaxws.xml, which provides the web service’s endpoint by
connecting the WSServlet instance to the service’s implementation class. Here is the
sun-jaxws.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime" version="2.0">
  <endpoint
     name="TempConvertWS"
     implementation="ch05.tc.TempConvertImpl"
     url-pattern="/tc"/>
</endpoints>      

The name TempConvertWS is the name of the WSSerlvet in the web.xml file. As the syntax
indicates, the configuration file could specify multiple service endpoints but, in this
case, specifies only one.

In the deployed WAR file, the web.xml and sun-jaxws.xml files reside in the WEB-
INF directory. For reference, here is the entire web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app
     xmlns="http://java.sun.com/xml/ns/j2ee"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
                         http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
     version="2.4">
   <listener>
     <listener-class>
        com.sun.xml.ws.transport.http.servlet.WSServletContextListener
     </listener-class>
   </listener>
   <servlet>
      <servlet-name>TempConvertWS</servlet-name>
      <servlet-class>
        com.sun.xml.ws.transport.http.servlet.WSServlet
      </servlet-class>
   </servlet>
   <servlet-mapping>
     <servlet-name>TempConvertWS</servlet-name>
     <url-pattern>/tc</url-pattern>
   </servlet-mapping>
</web-app>      

214 | Chapter 5: Web Services Security



The service is deployed as if it were a standard Tomcat web application. Copies of the
compiled SEI and SIB need to reside in the WEB-INF/classes/ch05/tc directory, and the
two configuration files need to reside in the WEB-INF directory. Note that the service
is, by default, document-literal; hence, the wsgen utility can be run:

% wsgen -cp . WEB-INF.classes.ch05.tc.TempConvertImpl      

to generate the required JAX-B artifacts.

The WAR file, whose name is arbitrary, is then built:

% jar cvf tempc.war WEB-INF

and copied to the TOMCAT_HOME/webapps directory for deployment. The success
of the deployment can be confirmed by checking a Tomcat log file or by opening a
browser to the URL http://localhost:8080/tempc/tc?wsdl.

The wsimport utility now can be employed in the usual way to generate client-side
artifacts from the WSDL:

% wsimport -keep -p tcClient http://localhost:8080/tempc/tc?wsdl

Here is a sample client, ClientTC, coded with the wsimport artifacts:

import tcClient.TempConvertImplService;
import tcClient.TempConvert;

class ClientTC {
   public static void main(String args[ ]) throws Exception {
       TempConvertImplService service = new TempConvertImplService();
       TempConvert port = service.getTempConvertImplPort();

       System.out.println("f2c(-40.1) ==> " + port.f2C(-40.1f));
       System.out.println("c2f(-40.1) ==> " + port.c2F(-40.1f));
       System.out.println("f2c(+98.7) ==> " + port.f2C(+98.7f));
   }
}

The output is:

f2c(-40.1) ==> -40.055557
c2f(-40.1) ==> -40.18
f2c(+98.7) ==> 37.055557

Securing the @WebService Under Tomcat
The TempConvert service does not need to be changed at all. This is the obvious benefit
of having the container, Tomcat, rather than the application manage the security.

The first step is to ensure that the Tomcat connector for SSL/TLS is enabled. A connector
is an endpoint for client requests. In the main Tomcat configuration file conf/
server.xml, the section:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" 
           scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" />

Container-Managed Security for Web Services | 215

http://localhost:8080/tempc/tc?wsdl


may have to be uncommented. If the section is commented out, then Tomcat has to be
restarted after the editing change. By default, Tomcat awaits HTTPS requests on port
8443, although this port number can be changed.

When a client sends an HTTPS request to Tomcat, Tomcat will need a digital certificate
to send back during the mutual challenge phase. The command:

% keytool -genkey -alias tomcat -keyalg RSA

generates a self-signed certificate. The keytool utility will prompt for various pieces of
information, including a password, which should be set to changeit because this is what
Tomcat expects. By default, the certificate is placed in a file named .keystore in the
user’s home directory, although the -keystore option can be used with the keytool
utility to specify a different file name for the keystore.

On the local system, the user account that starts Tomcat needs to have a keystore file
in the account’s home directory. However, the Tomcat configuration file server.xml
also can specify the location of the keystore file—and this seems the safest choice. Here
is the amended entry for the HTTPS entry on my machine:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" 
           scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" 
           keystoreFile="/home/mkalin/.keystore" />

Tomcat now can be restarted and tested by entering the URL https://localhost:8443 in
a browser. Because the browser does not have the newly minted, self-signed certificate
in its own truststore, the browser will prompt about whether to accept the certificate
and, if so, whether to accept it permanently; that is, as an addition to the browser’s
truststore. Once the browser receives all of the required yes answers, it will display the
Tomcat home page.

On the client side, the ClientTC application needs to be modified slightly. This client
uses the wsimport-generated artifacts, in particular the class tcClient.TempConvertImpl
Service, which has the endpoint URL set to http://localhost:8080/tempc/tc?wsdl. There
is no reason to change the endpoint, as the WSDL document is still available at this
URL. Yet the client needs to connect to https://localhost:8443 rather than http://local
host:8080. The adjustment can be made in the client code using the BindingProvider.
Here is the revised client:

import tcClient.TempConvertImplService;
import tcClient.TempConvert;
import javax.xml.ws.BindingProvider;
import java.util.Map;

class ClientTCSecure {
    private static final String endpoint = "https://localhost:8443/tempc/tc";
    public static void main(String args[ ]) {
        TempConvertImplService service = new TempConvertImplService();
        TempConvert port = service.getTempConvertImplPort();

        Map<String, Object> req_ctx = ((BindingProvider) port).getRequestContext();
        req_ctx.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpoint);

216 | Chapter 5: Web Services Security

https://localhost:8443
http://localhost:8080/tempc/tc?wsdl
https://localhost:8443
http://localhost:8080
http://localhost:8080


        System.out.println("f2c(-40.1) ==> " + port.f2C(-40.1f));
        System.out.println("c2f(-40.1) ==> " + port.c2F(-40.1f));
        System.out.println("f2c(+98.7) ==> " + port.f2C(+98.7f));
    }
}

By default, Tomcat does not challenge the client during the peer authentication phase,
but this could change. The client, in any case, cannot count on not being challenged
and so must have a keystore with an identifying digital certificate. Further, the client
needs a truststore against which to compare the certificate from Tomcat. Although the
keystore and the truststore serve different purposes, each is a database of certificates
with the same file format. To simplify the example, the Tomcat keystore will do triple
duty by serving as the client keystore and truststore as well. The point of interest is the
security architecture rather than the particular truststores and keystores. Here is the
command to invoke the client, with the -D options to set the keystore and truststore
information:

% java -Djavax.net.ssl.trustStore=/home/mkalin/.keystore \
       -Djavax.net.ssl.trustStorePassword=changeit       \
       -Djavax.net.ssl.keyStore=/home/mkalin/.keystore   \
       -Djavax.net.ssl.keyStorePassword=changeit ClientTC

The command is sufficiently complicated that an Ant or equivalent script might be used
in production. The output is the same as before, of course.

Application-Managed Authentication
The next step in securing the TempConvert service is to add authentication and author-
ization. These additions can be done at the application level (that is, in the web service
code itself) or at the container level by using shared resources such as a database of
usernames and passwords. Container-managed authentication has the obvious appeal
of letting Tomcat handle all of the security so that the service can focus on application
logic. Container-managed authentication leads to cleaner code by adhering to the AOP
practice of having the container—rather than the many different applications it
contains—provide the security aspect.

Authentication at the application level does not involve much code but does muddy
up the code with a mix of security concerns and business logic. Perhaps the most
straightforward approach at the application level is to follow the idiom shown earlier
in Example 5-1 by passing the username and password as part of the request context.
Here is the revised ClientTC code:

import tcClient.TempConvertImplService;
import tcClient.TempConvert;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import java.util.Map;
import java.util.HashMap;
import java.util.Collections;

Container-Managed Security for Web Services | 217



import java.util.List;

class ClientTC {
    private static final String endpoint = "https://localhost:8443/tempc/tc";

    public static void main(String args[ ]) {
        TempConvertImplService service = new TempConvertImplService();
        TempConvert port = service.getTempConvertImplPort();

        Map<String, Object> req_ctx = ((BindingProvider) port).getRequestContext();
        req_ctx.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpoint);

        // Place the username/password in the HTTP request headers,
        // which a non-Java client can do as well.
        Map<String, List<String>> hdr = new HashMap<String, List<String>>();
        hdr.put("Username", Collections.singletonList("fred"));
        hdr.put("Password", Collections.singletonList("rockbed"));
        req_ctx.put(MessageContext.HTTP_REQUEST_HEADERS, hdr);

        // Invoke service methods.
        System.out.println("f2c(-40.1) ==> " + port.f2C(-40.1f));
        System.out.println("c2f(-40.1) ==> " + port.c2F(-40.1f));
        System.out.println("f2c(+98.7) ==> " + port.f2C(+98.7f));
    }
}

The revised ClientTC now places the username and password in the HTTP headers to
underscore that there is nothing Java-specific in this approach. For clarity, the username
and password are hardcoded, although they presumably would be entered as
command-line arguments.

The change to the TempConvert service is also relatively minor. The additional method
authenticated checks the username and password. In production, of course, the check
would likely go against values stored in a database:

package ch05.tc;

import javax.jws.WebService;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import java.util.Map;
import java.util.List;

@WebService(endpointInterface = "ch05.tc.TempConvert")
public class TempConvertImpl implements TempConvert {
    @Resource
    WebServiceContext ws_ctx;

    public float c2f(float t) {
        if (authenticated()) return 32.0f + (t * 9.0f / 5.0f);
        else throw new HTTPException(401); // authorization error
    }

218 | Chapter 5: Web Services Security



    public float f2c(float t) {
        if (authenticated()) return (5.0f / 9.0f) * (t - 32.0f);
        else throw new HTTPException(401); // authorization error
    }

    private boolean authenticated() {
        MessageContext mctx = ws_ctx.getMessageContext();
        Map http_headers = (Map) mctx.get(MessageContext.HTTP_REQUEST_HEADERS);
        List ulist = (List) http_headers.get("Username");
        List plist = (List) http_headers.get("Password");

        // proof of concept authentication
        if (ulist.contains("fred") && plist.contains("rockbed")) return true;
        else return false;
    }
}

The downside of handling the authentication in the application code is evident. The
web service operations, in this case f2c and c2f, are now a mix of application logic and
security processing, however minor in this example. The authenticated method needs
to access the MessageContext, the kind of low-level processing best left to handlers. The
example is small enough that the mix is not overwhelming, but the example likewise
suggests how complicated the intermix of application logic and security could become
in a real-world service. Further, this approach does not scale well. If Fred needs to access
other services that require authentication, then these services will have to replicate the
kind of code shown here. An attractive option to the approach taken in this example
is to let the container handle the authentication.

Container-Managed Authentication and Authorization
Tomcat provides container-managed authentication and authorization. The concept
of a realm plays a central role in the Tomcat approach. A realm is a collection of re-
sources, including web pages and web services, with a designated authentication and
authorization facility. The Tomcat documentation describes a realm as being akin to a
Unix group with respect to access rights. A realm is an organizational tool that allows
a collection of resources to be under a single policy for access control.

Tomcat provides five standard plugins, with Realm in the names, to manage commu-
nications between the container and authentication/authorization store. Here are the
five plugins with a short description of each:

JDBCRealm
The authentication information is stored in a relational database accessible through
a standard Java JDBC driver.

DataSourceRealm
The authentication information again is stored in a relational database and acces-
sible through a Java JDBC DataSource, which in turn is available through a JNDI
(Java Naming and Directory Interface) lookup service.

Container-Managed Security for Web Services | 219



JNDIRealm
The authentication information is stored in an LDAP-based (Lightweight Directory
Access Protocol) directory service, which is available through a JNDI provider.

MemoryRealm
The authentication information is read into the container at startup from the file
conf/tomcat-users.xml. This is the simplest choice and the default.

JAASRealm
The authentication information is available through a JAAS (Java Authentication
and Authorization Service) provider, which in turn is available in a Java Application
Server such as BEA WebLogic, GlassFish, JBoss, or WebSphere.

Under any of these choices, it is the Tomcat container rather than the application that
becomes the security provider.

Configuring Container-Managed Security Under Tomcat
The Tomcat approach to security also is declarative rather than programmatic; that is,
details about the security realm are specified in a configuration file rather than in code.
The configuration file is the web.xml document included in the deployed WAR file.

Here is the web.xml for the next revision to the TempConvert service, which uses the
Tomcat MemoryRealm:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
                        http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">
   <listener>
     <listener-class>
        com.sun.xml.ws.transport.http.servlet.WSServletContextListener
     </listener-class>
   </listener>
   <servlet>
      <servlet-name>TempConvertWS</servlet-name>
      <servlet-class>
        com.sun.xml.ws.transport.http.servlet.WSServlet
      </servlet-class>
   </servlet>

   <security-role>
     <description>The Only Secure Role</description>
     <role-name>bigshot</role-name>
   </security-role>

   <security-constraint>
      <web-resource-collection>
        <web-resource-name>Users-Roles Security</web-resource-name>
        <url-pattern>/tcauth</url-pattern>
      </web-resource-collection>

220 | Chapter 5: Web Services Security



      <auth-constraint>
        <role-name>bigshot</role-name>
      </auth-constraint>
      <user-data-constraint>
          <transport-guarantee>CONFIDENTIAL</transport-guarantee>
      </user-data-constraint>
   </security-constraint>

   <login-config>
      <auth-method>BASIC</auth-method>
   </login-config>

   <servlet-mapping>
     <servlet-name>TempConvertWS</servlet-name>
     <url-pattern>/tcauth</url-pattern>
   </servlet-mapping>
</web-app>

In the revised web.xml, there are four points of interest:

• The resources to be secured are specified as a web-resource-collection. In this
case, the collection includes any resource available through the path /tcauth, which
is the path to TempConvert service deployed in a WAR file. The security thus covers
the service’s two encapsulated operations, f2c and c2f. This path likewise includes
the WSDL, as the URL for the WSDL ends with the path /tcauth?wsdl.

• Access to resources on the path /tcauth is restricted to authenticated users in the
role of bigshot. If Fred is to invoke, say, the f2c method, then Fred must have a
valid username/password and be authorized to play the role of bigshot.

• The HTTP authentication method is BASIC rather than one of the other standard
HTTP methods: DIGEST, FORM, and CLIENT-CERT. Each of these will be clari-
fied shortly. The term authorization is used here in the broad sense to cover both
user authentication and role authorization.

• The transport is guaranteed to be CONFIDENTIAL, which covers the standard HTTPS
services of peer authentication, data encryption, and message integrity. If a user
tried to access the resource through an HTTP-based URL such as http://localhost:
8080/tc/tcauth, Tomcat would then redirect this request to the HTTPS-based URL
https://localhost:8443/tc/tcauth. (The redirect URL is one of the configuration
points specified in conf/server.xml.)

The web.xml configuration allows settings per HTTP verb, if needed. For example, tight
security could be set on POST requests, but security could be lifted altogether for GET
requests.

The web service implementation is straightforward:

package ch05.tcauth;

import javax.jws.WebService;

@WebService(endpointInterface = "ch05.tcauth.TempConvertAuth")

Container-Managed Security for Web Services | 221

http://localhost:8080/tc/tcauth
http://localhost:8080/tc/tcauth
https://localhost:8443/tc/tcauth


public class TempConvertAuthImpl implements TempConvertAuth {
    public float c2f(float t) { return 32.0f + (t * 9.0f / 5.0f); }
    public float f2c(float t) { return (5.0f / 9.0f) * (t - 32.0f); }
}

Equally straightforward is this sample client against the service:

import tcauthClient.TempConvertAuthImplService;
import tcauthClient.TempConvertAuth;
import javax.xml.ws.BindingProvider;

class ClientAuth {
    public static void main(String args[ ]) {
        TempConvertAuthImplService service = new TempConvertAuthImplService();
        TempConvertAuth port = service.getTempConvertAuthImplPort();
        BindingProvider prov = (BindingProvider) port;

        prov.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "fred");
        prov.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "rockbed");

        System.out.println("f2c(-40.1) ==> " + port.f2C(-40.1f));
        System.out.println("c2f(-40.1) ==> " + port.c2F(-40.1f));
        System.out.println("f2c(+98.7) ==> " + port.f2C(+98.7f));
    }
}

There is one tricky aspect to the client: the use of the wsimport utility to generate the
artifacts in the tcauthClient package. The problem is that the web service’s WSDL is
also secured and therefore requires authentication for access. There are workarounds,
of course. One option is to generate the WSDL locally by using the wsgen utility on the
SIB. Another option is to get the WSDL from a nonsecure version of the service. The
locally saved WSDL and its XSD are then fed into wsimport to generate the artifacts.

The client application ClientAuth uses the BindingProvider constants as keys for the
username and password. Tomcat expects the lookup keys for the username and pass-
word to be the strings:

javax.xml.ws.security.auth.username
javax.xml.ws.security.auth.password

These are the values of the BindingProvider constant USERNAME_PROPERTY and the con-
stant PASSWORD_PROPERTY, respectively.

When Tomcat receives the request for the secured resource, Tomcat knows from the
WAR file’s configuration document, web.xml, that the requester needs to be authen-
ticated and authorized. Tomcat then checks the submitted username and the associated
password credential against data stored in the default MemoryRealm, which contains the
usernames, passwords, and authorization roles from the file conf/tomcat-users.xml.
Here is the file for this example:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
  <role rolename="tomcat"/>
  <role rolename="bigshot"/>

222 | Chapter 5: Web Services Security



  <user username="tomcat" password="tomcat" roles="tomcat"/>
  <user username="fred" password="rockbed" roles="bigshot""/>
</tomcat-users>

Using a Digested Password Instead of a Password
In addition to BASIC authentication, HTTP 1.1 also supports DIGEST, FORM, and
CLIENT-CERT authentication. The FORM method of authentication is the best prac-
tice in browser-based web applications. The gist is that the web application itself rather
than the browser provides the input form for a username and a password. The CLIENT-
CERT method, of course, authenticates the client with a digital certificate but encoun-
ters serious practical problems. Imagine, for example, that a client has a good certificate
on one machine but unexpectedly must access the secured website from a different
machine, which does not have a copy of the certificate.

Tomcat also supports the DIGEST method of authentication. A careful user will be
understandably concerned about having a copy of a password on a remote host, in this
case the machine that hosts the secured web service. If the remote host is compromised,
so is the user’s password. A digest of the password avoids this problem so long as the
digest is generated with a one-way hash function; that is, a function that is easy to
compute but hard to invert. For example, given the digest of a password and the algo-
rithm used to compute the digest (for instance, MD5 or SHA-1), it is still a computa-
tionally intractable task to derive the original password from the digest produced by a
one-way hash function used in MD5 or SHA-1.

Switching from BASIC to DIGEST authentication is not hard. Technically, the
web.xml entry:

<login-config>
   <auth-method>BASIC</auth-method>
</login-config>

should be changed to:

<login-config>
   <auth-method>DIGEST</auth-method>
</login-config>

and a comparable change should be made in the conf/tomcat-users.xml file for a web
service secured with the MemoryRealm, as in this example. However, there is a simpler
approach that can be summarized as follows:

• Tomcat provides a digest utility, in TOMCAT_HOME/bin, that can be used to
generate message digests using the standard algorithms such as MD5 and SHA.
Here is the command to digest Fred’s password rockbed:

% digest.sh -a SHA rockbed

There is a digest.bat for Windows. The output is a 20-byte digest, in this case:

4b177c8995e6b0fa796581ac191f256545f0b8c5

Container-Managed Security for Web Services | 223



• The digested password now replaces the password in tomcat-users.xml, which
becomes:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
  <role rolename="tomcat"/>
  <role rolename="bigshot"/>
  <user username="tomcat" password="tomcat" roles="tomcat"/>
  <user username="fred" 
        password="4b177c8995e6b0fa796581ac191f256545f0b8c5" roles="bigshot"/>
</tomcat-users>

• A client such as Fred now needs to generate the same digest. Tomcat provides a
RealmBase.Digest method, which the Tomcat digest utility uses. Here is the revised
client:

import tcauthClient.TempConvertAuthImplService;
import tcauthClient.TempConvertAuth;
import javax.xml.ws.BindingProvider;
import org.apache.catalina.realm.RealmBase;

// Revised to send a digested password.
class ClientAuth {
    public static void main(String args[ ]) {
        TempConvertAuthImplService service = new TempConvertAuthImplService();
        TempConvertAuth port = service.getTempConvertAuthImplPort();
        BindingProvider prov = (BindingProvider) port;

        String digest = RealmBase.Digest("rockbed", // password
                                         "SHA",     // digest algorithm
                                         null);     // default char. encoding

        prov.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "fred");
        prov.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, digest);

        System.out.println("f2c(-40.1) ==> " + port.f2C(-40.1f));
        System.out.println("c2f(-40.1) ==> " + port.c2F(-40.1f));
        System.out.println("f2c(+98.7) ==> " + port.f2C(+98.7f));
    }
}

The revised client needs to be executed with the JAR files bin/tomcat-juli.jar and
lib/catalina.jar on the classpath. The compiler needs only the catalina.jar file on
the classpath.

Sending a digested password in place of the real thing requires only a little extra work.

A Secured @WebServiceProvider
Tomcat can deploy both a @WebService and a @WebServiceProvider. Here is the revised
TempConvert but now as a RESTful service:

224 | Chapter 5: Web Services Security



package ch05.authrest;

import javax.xml.ws.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import javax.xml.ws.BindingType;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.http.HTTPBinding;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.beans.XMLEncoder;
import java.util.List;
import java.util.ArrayList;

@WebServiceProvider
@BindingType(value = HTTPBinding.HTTP_BINDING)
public class TempConvertR implements Provider<Source> {
    @Resource
    protected WebServiceContext ws_ctx;

    public Source invoke(Source request) {
        // Grab the message context and extract the request verb.
        MessageContext msg_ctx = ws_ctx.getMessageContext();
        String http_verb = (String)
            msg_ctx.get(MessageContext.HTTP_REQUEST_METHOD);
        http_verb = http_verb.trim().toUpperCase();

        if (http_verb.equals("GET")) return doGet(msg_ctx);
        else throw new HTTPException(405); // bad verb exception
    }
    private Source doGet(MessageContext msg_ctx) {
        String query_string = (String) msg_ctx.get(MessageContext.QUERY_STRING);
        if (query_string == null) throw new HTTPException(400); // bad request

        String temp = get_value_from_qs("temp", query_string);
        if (temp == null) throw new HTTPException(400); // bad request
        
        List<String> converts = new ArrayList<String>();
        try {
            float f = Float.parseFloat(temp.trim());
            float f2c = f2c(f);
            float c2f = c2f(f);
            converts.add(f2c + "C");
            converts.add(c2f + "F");
        }
        catch (NumberFormatException e) { throw new HTTPException(400); }

        // Generate XML and return.
        ByteArrayInputStream stream = encode_to_stream(converts);
        return new StreamSource(stream);
    }

Container-Managed Security for Web Services | 225



    private String get_value_from_qs(String key, String qs) {
        String[ ] parts = qs.split("=");
        if (!parts[0].equalsIgnoreCase(key))
            throw new HTTPException(400); // bad request
        return parts[1].trim();
    }

    private ByteArrayInputStream encode_to_stream(Object obj) {
       // Serialize object to XML and return
        ByteArrayOutputStream stream = new ByteArrayOutputStream();
        XMLEncoder enc = new XMLEncoder(stream);
        enc.writeObject(obj);
        enc.close();
        return new ByteArrayInputStream(stream.toByteArray());
    }
    private float c2f(float t) { return 32.0f + (t * 9.0f / 5.0f); }
    private float f2c(float t) { return (5.0f / 9.0f) * (t - 32.0f); }
}

Nothing in the code indicates that authentication and authorization are in play, as these
security tasks again have delegated to the Tomcat container. The code implements only
application logic. The web.xml and sun-jaxws.xml deployment files are are not changed
in any important way.

The revised client against the @WebServiceProvider takes the same approach as the
original client against the @WebService—the username and digested password are in-
serted into the request context with the keys that Tomcat expects:

import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;
import javax.xml.ws.http.HTTPBinding;
import org.xml.sax.InputSource;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathFactory;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.BindingProvider;
import org.apache.catalina.realm.RealmBase;

class DispatchClientTC {
    public static void main(String[ ] args) throws Exception {
        QName service_name = new QName("TempConvert");
        QName port_name = new QName("TempConvertPort");
        String endpoint = "https://localhost:8443/tempcR/authRest";

        // Now create a service proxy or dispatcher.
        Service service = Service.create(service_name);
        service.addPort(port_name, HTTPBinding.HTTP_BINDING, endpoint);
        Dispatch<Source> dispatch =
            service.createDispatch(port_name, Source.class, Service.Mode.PAYLOAD);

226 | Chapter 5: Web Services Security



        String digest = RealmBase.Digest("rockbed", // password
                                         "SHA",     // digest algorithm
                                         null);     // default encoding

        dispatch.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
                                     "fred");
        dispatch.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
                                     digest);
        dispatch.getRequestContext().put(MessageContext.HTTP_REQUEST_METHOD, "GET");
        dispatch.getRequestContext().put(MessageContext.QUERY_STRING, "temp=-40.1");

        StreamSource result = (StreamSource) dispatch.invoke(null);
        InputSource source = new InputSource(result.getInputStream());
        String expression = "//object";
        XPath xpath = XPathFactory.newInstance().newXPath();
        String list = xpath.evaluate(expression, source);
        System.out.println(list);
    }
}

The output is:

-40.055557C
-40.18F

WS-Security
WS-Security is a family of specifications (see Figure 5-6) designed to augment wire-
level security by providing a unified, transport-neutral, end-to-end framework for
higher levels of security such as authentication and authorization.

WS-Secure
Conversation

WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP

Figure 5-6. The WS-Security specifications

The layered blocks above WS-Security in Figure 5-6 can be clarified briefly as follows.
The first layer consists of WS-Policy, WS-Trust, and WS-Privacy. The second layer of
WS-SecureConversation, WS-Federation, and WS-Authorization builds upon this first
layer. The architecture is thus modular but also complicated. Here is a short description
of each specification, starting with the first layer:

WS-Security | 227



WS-Policy
This specification describes general security capabilities, constraints, and policies.
For example, a WS-Policy assertion could stipulate that a message requires security
tokens or that a particular encryption algorithm be used.

WS-Trust
This specification deals primarily with how security tokens are to be issued, re-
newed, and validated. In general, the specification covers broker trust relation-
ships, which are illustrated later in a code example.

WS-Privacy
This specification explains how services can state and enforce privacy policies. The
specification also covers how a service can determine whether a requester intends
to follow such policies.

WS-SecureConversation
This specification covers, as the name indicates, secure web service conversations
across different sites and, therefore, across different security contexts and trust
domains. The specification focuses on how a security context is created and how
security keys are derived and exchanged.

WS-Federation
This specification addresses the challenge of managing security identities across
different platforms and organizations. At the heart of the challenge is how to main-
tain a single, authenticated identity (for example, Alice’s security identity) in a
heterogeneous security environment.

WS-Authorization
This specification covers the management of authorization data such as security
tokens and underlying policies for granting access to secured resources.

WS-Security is often associated with federated security in the broad sense, which has
the goal of cleanly separating web service logic from the high-level security concerns,
in particular authentication/authorization, that challenge web service deployment.
This separation of concerns is meant to ease collaboration across computer systems
and trust realms.

Recall that SOAP-based web services are meant to be transport-neutral. Accordingly,
SOAP-based services cannot depend simply on the reliable transport that HTTP and
HTTPS provide, although most SOAP messages are transported over HTTP. HTTP
and HTTPS rest on TCP/IP (Transmission Control Protocol/Internet Protocol), which
supports reliable messaging. What if TCP/IP infrastructure is not available? The WS-
ReliableMessaging specification addresses precisely the issue of delivering SOAP-based
services over unreliable infrastructure.

A SOAP-based service cannot rely on the authentication/authorization support that a
web container such as Tomcat or an application server such as BEA WebLogic, JBoss,
GlassFish, or WebSphere may provide. The WS-Security specifications therefore ad-
dress issues of high-level security as part of SOAP itself rather than as the part of the

228 | Chapter 5: Web Services Security



infrastructure that happens to be in place for a particular SOAP-based service. The goals
of WS-Security are often summarized with the phrase end-to-end security, which means
that security matters are not delegated to the transport level but rather handled directly
through an appropriate security API. A framework for end-to-end security needs to
cover the situation in which a message is routed through intermediaries, each of which
may have to process the message, before reaching the ultimate receiver. Accordingly,
end-to-end security focuses on message content rather than on the underlying
transport.

Securing a @WebService with WS-Security Under Endpoint
Herein is the source code for a barebones service that will be secured with WS-Security:

package ch05.wss;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.ws.WebServiceContext;
import javax.annotation.Resource;

@WebService
public class Echo {
    @Resource
    WebServiceContext ws_ctx;

    @WebMethod
    public String echo(String msg) {
        return "Echoing: " + msg;
    }
}

Nothing in the code hints at WSS security. The publisher code provides the first hint:

package ch05.wss;

import javax.xml.ws.Endpoint;
import javax.xml.ws.Binding;
import javax.xml.ws.soap.SOAPBinding;
import java.util.List;
import java.util.LinkedList;
import javax.xml.ws.handler.Handler;

public class EchoPublisher {
    public static void main(String[ ] args) {
        Endpoint endpoint = Endpoint.create(new Echo());
        Binding binding = endpoint.getBinding();
        List<Handler> hchain = new LinkedList<Handler>();
        hchain.add(new EchoSecurityHandler());
        binding.setHandlerChain(hchain);
        endpoint.publish("http://localhost:7777/echo");
        System.out.println("http://localhost:7777/echo");
    }
}

WS-Security | 229



Note that there is a programmatically added handler. Here is the code:

package ch05.wss;

import java.util.Set;
import java.util.HashSet;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import java.io.FileInputStream;
import java.io.File;
import com.sun.xml.wss.ProcessingContext;
import com.sun.xml.wss.SubjectAccessor;
import com.sun.xml.wss.XWSSProcessorFactory;
import com.sun.xml.wss.XWSSProcessor;
import com.sun.xml.wss.XWSSecurityException;

public class EchoSecurityHandler implements SOAPHandler<SOAPMessageContext> {
    private XWSSProcessor xwss_processor = null;
    private boolean trace_p;

    public EchoSecurityHandler() {
        XWSSProcessorFactory fact = null;
        try {
            fact = XWSSProcessorFactory.newInstance();
        }
        catch(XWSSecurityException e) { throw new RuntimeException(e); }

        FileInputStream config = null;
        try {
            config =  new FileInputStream(new File("META-INF/server.xml"));
            xwss_processor =
                fact.createProcessorForSecurityConfiguration(config, new Verifier());
            config.close();
        }
        catch (Exception e) { throw new RuntimeException(e); }
        trace_p = true; // set to true to enable message dumps
    }

    public Set<QName> getHeaders() {
        String uri = "http://docs.oasis-open.org/wss/2004/01/" +
                     "oasis-200401-wss-wssecurity-secext-1.0.xsd";
        QName security_hdr = new QName(uri, "Security", "wsse");
        HashSet<QName> headers = new HashSet<QName>();
        headers.add(security_hdr);
        return headers;
    }

    public boolean handleMessage(SOAPMessageContext msg_ctx) {
        Boolean outbound_p = (Boolean)
           msg_ctx.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
        SOAPMessage msg = msg_ctx.getMessage();

230 | Chapter 5: Web Services Security



        if (!outbound_p.booleanValue()) {
            // Validate the message.
            try {
              ProcessingContext p_ctx =  xwss_processor.createProcessingContext(msg);
              p_ctx.setSOAPMessage(msg);
              SOAPMessage verified_msg = xwss_processor.verifyInboundMessage(p_ctx);
              msg_ctx.setMessage(verified_msg);

              System.out.println(SubjectAccessor.getRequesterSubject(p_ctx));
              if (trace_p) dump_msg("Incoming message:", verified_msg);
            }
            catch (XWSSecurityException e) { throw new RuntimeException(e); }
            catch(Exception e) { throw new RuntimeException(e); }
        }
        return true;
    }

    public boolean handleFault(SOAPMessageContext msg_ctx) { return true; }
    public void close(MessageContext msg_ctx) { }

    private void dump_msg(String msg, SOAPMessage soap_msg) {
        try {
            System.out.println(msg);
            soap_msg.writeTo(System.out);
            System.out.println();
        }
        catch(Exception e) { throw new RuntimeException(e); }
    }
}

Two sections of the EchoSecurityHandler are of special interest. The first callback is the
getHeaders, which the runtime invokes before invoking the handleMessage callback. The
getHeaders method generates a security header block that complies with OASIS (Or-
ganization for the Advancement of Structured Information Standards) standards, in
particular the standards for WSS (Web Services Security). The security processor vali-
dates the security header.

The second section of interest is, of course, the handleMessage callback that does most
of the work. The incoming SOAP message (that is, the client’s request) is verified by
authenticating the client with a username/password check. The details will follow
shortly. If the verification succeeds, the verified SOAP message becomes the new re-
quest message. If the verification fails, a XWSSecurityException is thrown as a SOAP fault.
The code segment is:

try {
    ProcessingContext p_ctx =  xwss_processor.createProcessingContext(msg);
    p_ctx.setSOAPMessage(msg);
    SOAPMessage verified_msg = xwss_processor.verifyInboundMessage(p_ctx);
    msg_ctx.setMessage(verified_msg);

WS-Security | 231



    System.out.println(SubjectAccessor.getRequesterSubject(p_ctx));
    if (trace_p) dump_msg("Incoming message:", verified_msg);
}
catch (XWSSecurityException e) { throw new RuntimeException(e); }

On a successful verification, the print statement outputs:

Subject:
   Principal: CN=fred
   Public Credential: fred

where Fred is the authenticated subject with a principal, which is a specific identity
under users/roles security. (The CN stands for Common Name.) Fred’s name acts as
the public credential, but his password remains secret.

Publishing a WS-Security Service with Endpoint
Web services that use WS-Security require packages that currently do not ship with
core Java 6. It is easier to develop and configure such services with an IDE such as
NetBeans and to deploy the services with an application server such as GlassFish, an
approach taken in Chapter 6.

It is possible to publish a WSS-based service with the Endpoint publisher, as this section
illustrates. Here are the setup steps:

• The JAR file xws-security-3.0.jar should be downloaded, as the packages therein
are not currently part of core Java 6. A convenient site for downloading is http://
fisheye5.cenqua.com/browse/xwss/repo/com.sun.xml.wss. For convenience, this
JAR file can be placed in METRO_HOME/lib.

• For compilation and execution, two JAR files should be on the classpath: jaxws-
tools.jar and xws-security-3.0.jar.

• The configuration files for a WSS-based service usually are housed in a META-
INF subdirectory of the working directory; that is, the directory in which the serv-
ice’s publisher and the client are invoked. In this case, the working directory is the
parent directory of the ch05 subdirectory. There are two configuration files used
in this example: server.xml and client.xml. The two files are identical to keep the
example as simple as possible; in production, of course, they likely would differ.

Once the web service is deployed, wsimport can be used to generate the usual client-
side artifacts. The Metro runtime kicks in automatically to generate the wsgen artifacts;
hence, wsgen need not be run manually.

The example illustrates the clean separation of security concerns and application logic.
All of the WS-Security code is confined to handlers on the client side and the service
side.

The EchoSecurityHandler has a no-argument constructor that creates a security pro-
cessor from information in the configuration file, in this case server.xml. Here is the
constructor:

232 | Chapter 5: Web Services Security

http://fisheye5.cenqua.com/browse/xwss/repo/com.sun.xml.wss
http://fisheye5.cenqua.com/browse/xwss/repo/com.sun.xml.wss


public EchoSecurityHandler() {
    XWSSProcessorFactory fact = null;
    try {
        fact = XWSSProcessorFactory.newInstance();
    }
    catch(XWSSecurityException e) { throw new RuntimeException(e); }

    FileInputStream config = null;
    try {
       config =  new FileInputStream(new File("META-INF/server.xml"));
       xwss_processor =
        fact.createProcessorForSecurityConfiguration(config, new Verifier());
       config.close();
    }
    catch (Exception e) { throw new RuntimeException(e); }
    trace_p = true; // set to true to enable message dumps
}

The Verifier object in the highlighted line does the actual validation. The configuration
file is very simple:

<!-- Copyright 2004 Sun Microsystems, Inc. All rights reserved.
     SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. -->
<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" 
                            dumpMessages="true" >
    <xwss:RequireUsernameToken passwordDigestRequired="false"/>
</xwss:SecurityConfiguration>

and usually is stored in a META-INF directory. In this example, the configuration file
stipulates that messages to and from the web service should be dumped for inspection
and that the password rather than a password digest is acceptable in the request mes-
sage. The Verifier object handles the low-level details of authenticating the request by
validating the incoming username and password. Here is the code:

package ch05.wss;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import com.sun.xml.wss.impl.callback.PasswordCallback;
import com.sun.xml.wss.impl.callback.PasswordValidationCallback;
import com.sun.xml.wss.impl.callback.UsernameCallback;

// Verifier handles service-side callbacks for password validation.
public class Verifier implements CallbackHandler {
    // Username/password hard-coded for simplicity and clarity.
    private static final String _username = "fred";
    private static final String _password = "rockbed";

    // For password validation, set the validator to the inner class below.
    public void handle(Callback[ ] callbacks) throws UnsupportedCallbackException {
        for (int i = 0; i < callbacks.length; i++) {
            if (callbacks[i] instanceof PasswordValidationCallback) {
               PasswordValidationCallback cb=(PasswordValidationCallback)callbacks[i];
               if (cb.getRequest() instanceof

WS-Security | 233



                   PasswordValidationCallback.PlainTextPasswordRequest)
                   cb.setValidator(new PlainTextPasswordVerifier());
            }
            else
               throw new UnsupportedCallbackException(null, "Not needed");
        }
    }

    // Encapsulated validate method verifies the username/password.
    private class PlainTextPasswordVerifier
                      implements PasswordValidationCallback.PasswordValidator {
        public boolean validate(PasswordValidationCallback.Request req)
            throws PasswordValidationCallback.PasswordValidationException {

            PasswordValidationCallback.PlainTextPasswordRequest plain_pwd =
                (PasswordValidationCallback.PlainTextPasswordRequest) req;
            if (_username.equals(plain_pwd.getUsername()) &&
                _password.equals(plain_pwd.getPassword())) {
                return true;
            }
            else
                return false;
        }
    }
}

The authentication succeeds with a username of fred and a password of rockbed but
fails otherwise. The security processor created in the EchoSecurityHandler constructor
is responsible for invoking the handle callback in the Verifier. To keep the example
simple, the username and password are hardcoded rather than retrieved from a data-
base. Further, the password is plain text.

A client-side SOAPHandler generates and inserts the WSS artifacts that the Echo service
expects. Here is the source code:

package ch05.wss;

import java.util.Set;
import java.util.HashSet;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import java.io.FileInputStream;
import java.io.File;
import com.sun.xml.wss.ProcessingContext;
import com.sun.xml.wss.SubjectAccessor;
import com.sun.xml.wss.XWSSProcessorFactory;
import com.sun.xml.wss.XWSSProcessor;
import com.sun.xml.wss.XWSSecurityException;

public class ClientHandler implements SOAPHandler<SOAPMessageContext> {
    private XWSSProcessor xwss_processor;
    private boolean trace_p;

234 | Chapter 5: Web Services Security



    public ClientHandler() {
        XWSSProcessorFactory fact = null;
        try {
            fact = XWSSProcessorFactory.newInstance();
        }
        catch(XWSSecurityException e) { throw new RuntimeException(e); }

        // Read client configuration file and configure security.
        try {
            FileInputStream config =
                new FileInputStream(new File("META-INF/client.xml"));
            xwss_processor =
                fact.createProcessorForSecurityConfiguration(config, new Prompter());
            config.close();
        }
        catch (Exception e) { throw new RuntimeException(e); }
        trace_p = true; // set to true to enable message dumps
    }

    // Add a security header block
    public Set<QName> getHeaders() {
        String uri = "http://docs.oasis-open.org/wss/2004/01/" +
            "oasis-200401-wss-wssecurity-secext-1.0.xsd";
        QName security_hdr = new QName(uri, "Security", "wsse");
        HashSet<QName> headers = new HashSet<QName>();
        headers.add(security_hdr);
        return headers;
    }

    public boolean handleMessage(SOAPMessageContext msg_ctx) {
        Boolean outbound_p = (Boolean)
            msg_ctx.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
        SOAPMessage msg = msg_ctx.getMessage();

        if (outbound_p.booleanValue()) {
            // Create a message that can be validated.
            ProcessingContext p_ctx = null;
            try {
                p_ctx = xwss_processor.createProcessingContext(msg);
                p_ctx.setSOAPMessage(msg);
                SOAPMessage secure_msg = xwss_processor.secureOutboundMessage(p_ctx);
                msg_ctx.setMessage(secure_msg);

                if (trace_p) dump_msg("Outgoing message:", secure_msg);
            }
            catch (XWSSecurityException e) { throw new RuntimeException(e); }
        }
        return true;
    }

    public boolean handleFault(SOAPMessageContext msg_ctx) { return true; }
    public void close(MessageContext msg_ctx) { }

WS-Security | 235



    private void dump_msg(String msg, SOAPMessage soap_msg) {
        try {
            System.out.println(msg);
            soap_msg.writeTo(System.out);
            System.out.println();
        }
        catch(Exception e) { throw new RuntimeException(e); }
    }
}

The Prompter and the Verifier
On the service side, the security processor uses a Verifier object to authenticate the
request. On the client side, the security processor uses a Prompter object to get the
username and password, which then are inserted into the outgoing SOAP message. Just
as the service-side security processor generates a validated SOAP message if the au-
thentication succeeds, so the client-side security processor generates a secured SOAP
message if the Prompter works correctly. Here is the Prompter code:

package ch05.wss;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import com.sun.xml.wss.impl.callback.PasswordCallback;
import com.sun.xml.wss.impl.callback.PasswordValidationCallback;
import com.sun.xml.wss.impl.callback.UsernameCallback;
import java.io.BufferedReader;
import java.io.InputStreamReader;

// Prompter handles client-side callbacks, in this case
// to prompt for and read username/password.
public class Prompter implements CallbackHandler {
    // Read username or password from standard input.
    private String readLine() {
        String line = null;
        try {
            line = new BufferedReader(new InputStreamReader(System.in)).readLine();

        }
        catch(IOException e) { }
        return line;
    }

    // Prompt for and read the username and the password.
    public void handle(Callback[ ] callbacks) throws UnsupportedCallbackException {
        for (int i = 0; i < callbacks.length; i++) {
            if (callbacks[i] instanceof UsernameCallback) {
                UsernameCallback cb = (UsernameCallback) callbacks[i];
                System.out.print("Username: ");
                String username = readLine();

236 | Chapter 5: Web Services Security



                if (username != null) cb.setUsername(username);
            }
            else if (callbacks[i] instanceof PasswordCallback) {
                PasswordCallback cb = (PasswordCallback) callbacks[i];
                System.out.print("Password: ");
                String password = readLine();
                if (password != null) cb.setPassword(password);
            }
        }
    }
}

The security processor interacts with the Prompter through a UsernameCallback and a
PasswordCallback, which prompt for, read, and store the client’s username and
password.

The Secured SOAP Envelope
The client-side security processor generates a SOAP message with all of the WSS in-
formation in the SOAP header. The SOAP body is indistinguishable from one in an
unsecured SOAP message. Here is the SOAP message that the client sends:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
   <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
                              oasis-200401-wss-wssecurity-secext-1.0.xsd" 
                  S:mustUnderstand="1">
   <wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
                                  oasis-200401-wss-wssecurity-utility-1.0.xsd" 
                       wsu:Id="XWSSGID-1216851209528949783553">
      <wsse:Username>fred</wsse:Username>
      <wsse:Password 
         Type="http://docs.oasis-open.org/wss/2004/01/
               oasis-200401-wss-username-token-profile-1.0#PasswordText">
           rockbed
      </wsse:Password>
      <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/
                            oasis-200401-wss-soap-message-security-1.0#Base64Binary">
           Vyg90XUn/rl2F4m6lSFIZCoU
      </wsse:Nonce>
      <wsu:Created>2008-07-23T22:13:33.001Z</wsu:Created>
   </wsse:UsernameToken>
   </wsse:Security>
</S:Header>
<S:Body>
   <ns2:echo xmlns:ns2="http://wss.ch05/">
      <arg0>Hello, world!</arg0>
   </ns2:echo>
</S:Body>
</S:Envelope>

In addition to the username and the password, the SOAP header includes a nonce,
which is a randomly generated, statistically unique cryptographic token inserted into

WS-Security | 237



the message. A nonce is added to safeguard against message theft and replay attacks in
which an unsecured credential such as a password is retransmitted to perform an un-
authorized operation. For example, if Eve were to intercept Alice’s password from a
SOAP message that transfers funds from one of Alice’s bank accounts to another of
Alice’s accounts, then Eve might replay the scenario at a later time using the pirated
password to transfer Alice’s funds into Eve’s account. If the message receiver requires
not only the usual credentials such as a password but also a nonce with certain secret
attributes, then Eve would need more than just the pirated password—Eve also would
need to replicate the nonce, which should be computationally intractable.

The SOAP message from the Echo service to the client has no WSS artifacts at all:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
   <S:Header/>
   <S:Body>
     <ns2:echoResponse xmlns:ns2="http://wss.ch05/">
       <return>Echoing: Hello, world!</return>
     </ns2:echoResponse>
   </S:Body>
</S:Envelope>

Summary of the WS-Security Example
This first example of WS-Security introduces the API but has the obvious drawback of
sending the client’s username and password, together with the nonce, over an unsecure
channel. The reason, of course, is that the Endpoint publisher does not support HTTPS
connections. A quick fix would be to use the HttpsServer illustrated earlier.

Yet the example does meet the goal of illustrating how WS-Security itself, without any
support from a transport protocol such as HTTP or a container such as Tomcat, sup-
ports authentication and authorization. The example likewise shows that WS-Security
encourages a clean separation of security concerns from web service logic. Chapter 6
drills deeper into the details of WS-Security and provides a production-grade example.

What’s Next?
So far all of the sample web services have been deployed using either Endpoint,
HttpsServer, or Tomcat. This low-fuss approach has the benefit of keeping the focus
on Java’s web service API. In a production environment, a lightweight web container
such as Tomcat or a heavyweight application server such as BEA WebLogic, GlassFish,
JBoss, or WebSphere would be the likely choice for deploying SOAP-based and REST-
style services. The next chapter looks at GlassFish, which includes Metro and is the
reference implementation of a Java web services container.

238 | Chapter 5: Web Services Security



CHAPTER 6

JAX-WS in Java Application Servers

Overview of a Java Application Server
In previous chapters, SOAP-based and REST-style web services have been deployed
using mostly the Endpoint publisher or the Tomcat web container. This chapter illus-
trates how web services can be deployed using a Java Application Server (JAS), the
software centerpiece of enterprise Java. The current version of enterprise Java is Java
EE 5, which includes EJB 3.0. To begin, here is a sketch of the software bundled into
a JAS:

Web container
A web container deploys servlets and web services. A traditional web application
in Java is a mix of static HTML pages, servlets, higher-level servlet generators
such as JSP (Java Server Pages) and JSF (Java Server Faces) scripts, backend Java-
Beans for JSP and JSF scripts, and utility classes. Tomcat is the reference imple-
mentation (RI) for a web container. Tomcat, like other web containers, can be
embedded in an application server. Web components are deployed in the web
container as WAR files, which typically contain the standard configuration docu-
ment web.xml and may contain vendor-specific configuration documents as well
(e.g., sun-jaxws.xml). To host web services, a web container relies on a servlet
interceptor (in the case of Tomcat, a WSServlet instance) that mediates between
the client and the web service SIB.

Message-oriented middleware
The message-oriented middleware supports JMS (Java Message Service), which
provides the store-and-forward technologies lumped together under the term mes-
saging. JMS supports synchronous and asynchronous messaging styles and two
types of message repository: topics, which are akin to bulletin boards in that a
read operation does not automatically remove a posted message, and queues,
which are FIFO (First In, First Out) lists in which a read operation, by default,
removes the read item from the queue. In JMS, a publisher publishes messages to
a topic and a sender sends messages to a queue. A subscriber to a topic or a re-
ceiver on a queue receives such messages either synchronously through a blocking

239



read operation or asynchronously through the JMS notification mechanism. JMS
topics implement the publisher/subscriber model of messaging, whereas JMS
queues implement the point-to-point model.

Enterprise Java Bean (EJB) container
The EJB container holds EJB instances, which are of three types: Session, Entity,
and Message-Driven. Session and traditional Entity EJBs are built on a Java RMI
(Remote Method Invocation) foundation, whereas Message-Driven EJBs are built
on a JMS foundation.

The Message-Driven EJB is a JMS MessageListener implemented as an EJB. A lis-
tener receives an event notification whenever a new message arrives at a topic or a
queue to which the listener has subscribed.

A Session EJB typically implements an enterprise application’s business logic and
interacts as needed with other application components, either local (for instance,
other EJBs in the same container) or remote (for instance, clients on a different
host). As the name suggests, a Session EJB is designed to maintain a client session.
A Session EJB is either stateless or stateful. A stateless Session EJB is, in effect, a
collection of mutually independent instance methods that should operate only on
data passed in as arguments. The EJB container assumes that a stateless Session
EJB instance does not maintain state information in instance fields. Suppose, for
example, that a Session EJB encapsulates two instance methods, m1 and m2. If this
EJB were deployed as stateless, then the EJB container would assume that a par-
ticular client, C, could invoke m1 in one EJB instance and m2 in another EJB instance
because the two methods do not share state. If the same Session EJB were deployed
as stateful, then the EJB container would have to ensure that C’s invocation of m1
and m2 involved the same EJB instance because the two methods presumably share
state. As this summary implies, an EJB container automatically manages a pool of
EJB instances for all types of EJB. A SOAP-based web service can be implemented
as a stateless Session EJB by annotating the SIB with @Stateless.

Prior to Java EE 5, an Entity EJB instance was the preferred way to provide an
enterprise application with an in-memory cache of database objects such as a table
row. The Entity EJB was the persistence construct that brought ORM (Object Re-
lational Mapping) capabilities to the application. A traditional Entity EJB could be
deployed with either BMP (Bean Managed Persistence) or CMP (Container Man-
aged Persistence). At issue was whether the programmer or the EJB container
maintained coherence between the data source (for instance, a table row) and the
EJB instance. In the early days of EJB containers, the case could be made that BMP
was more efficient. Yet the EJB containers quickly improved to the point that CMP
became the obvious choice. Indeed, CMP emerged as a major inducement for and
benefit of using traditional Entity EJBs. An EJB deployed with CMP also had to
deploy with CMT (Container Managed Transactions).

Prior to EJB 3.0, EJBs in general and Entity EJBs in particular were very difficult
to code and to configure. The coding was tricky and the configuration required a

240 | Chapter 6: JAX-WS in Java Application Servers



large, complicated XML document known affectionately as the DD (Deployment
Descriptor). All of this changed with Java EE 5, which extended the capabilities of
the original Entity EJB to POJO classes annotated with @Entity. In effect, the
@Entity annotation let Java programmers enjoy the benefits of the traditional Entity
EJB without enduring the pain of configuring and programming this kind of EJB.
The @Entity annotation is at the center of the Java Persistence API (JPA), which
integrates features from related technologies such as Hibernate, Oracle’s TopLink,
Java Data Objects, and traditional Entity EJBs. The @Entity is now the preferred
way to handle persistence. An @Entity, unlike an Entity EJB, can be used in either
core Java or enterprise Java applications.

EJBs, unlike servlets, are thread-safe because the EJB container assumes responsi-
bility for thread synchronization. (As in the case of servlets, each client request
against an EJB executes as a separate thread.) Even in a traditional browser-based
web application, EJBs are thus well suited as backend support for servlets. For
instance, a servlet might pass a request along to a Session EJB, which in turn might
use instances of various @Entity classes as persisted data sources (see Figure 6-1).

Servlet

JSP/JSF

Web container

Client

HTTP request

HTTP response

(HTML doc)

Session EJB

@Entity

RDBMS

EJB container

Figure 6-1. Architecture of an enterprise application

JNDI service provider
A JNDI (Java Naming and Directory Interface) provider maintains, at the least, a
naming service in which names (for instance, the deployed name of an EJB or a
message queue) are bound to entities (in this case, the deployed EJB or the queue).
If the JNDI provider supports directory services as well, then the name of an entity
binds to the entity and its attributes. In the simple case, a JNDI provider maintains
a hierarchical database of name/entity pairs. Any component dropped into a JAS
container is automatically registered with the naming service and thereafter avail-
able for lookup by potential clients. In Java EE 5, the JNDI provider is largely
unseen infrastructure.

Security provider
The security provider provides high-level security services for components de-
ployed in any of the containers. Among these services are, of course, authentication

Overview of a Java Application Server | 241



and authorization. The security provider has to be JAAS (Java Authentication and
Authorization Service) compliant. Nowadays a security provider typically has plu-
gins for providers such as an LDAP (Lightweight Directory Access Protocol) pro-
vider. The security in an application server is usually integrated. For instance, the
container-managed security that the web container provides is integrated into the
default JAAS-based security that the EJB container provides.

Relational Database Management System
An application server usually includes an RDMS (Relational Database Manage-
ment System), which is the default persistence store for @Entity instances and may
be accessed programatically and directly from other components such as web serv-
ices and servlets. A modern application server makes it easy to plug in the database
system of choice if the provided system is not the preferred one. The GlassFish
application server introduced in this chapter ships with Java DB, Sun’s supported
distribution of the Apache Derby relational database management system
(RDBMS) (http://db.apache.org/derby).

Client container
The client container consists of the software libraries that a client requires to in-
teract with deployed components such as message topics or EJBs and to use services
such as JNDI and security.

On the web tier, a JAS supports both traditional interactive websites and web services.
The model-view-controller (MVC) architecture is popular in modern interactive web-
sites. A model maintains state information about the site and is responsible for persis-
tence; a view provides an appropriate representation of a model; and a controller is a
request endpoint that implements the business logic that coordinates a model and a
view. In enterprise and even in core Java, an @Entity instance is a natural way to im-
plement a model with persistence. In interactive web applications, JSP or JSF scripts
can generate an HTML view of a model, and either a servlet or a Session EJB is a natural
way to implement a controller. For Java-based web services deployed in an application
server such as GlassFish, @Entity instances are likewise a natural way to implement
models. The web service is the controller that exposes business logic in @WebMethod code
and interacts, as appropriate, with models. The web service can be deployed in a WAR
file, which amounts to a servlet-based deployment, or in an EAR (Enterprise ARchive)
file, which is an EJB-based deployment. The distinction between servlet-based and EJB-
based deployment will be discussed again later.

As a bundle of so many features and services, an application server is inherently com-
plicated software. At issue among Java programmers is whether the benefits that come
with an application server offset the complexity of using it. This complexity stems, in
large part, from the fact that so many APIs come into play in an application server. An
application that incorporates servlets, JSP scripts, JSF scripts, messaging, and EJBs
must deal with at least five distinct APIs. Integrating web components such as servlets
with EJBs remains nontrivial. This state of affairs accounts for recent efforts among
vendors to provide seamless integration of Java EE components, which presumably

242 | Chapter 6: JAX-WS in Java Application Servers

http://db.apache.org/derby
http://db.apache.org/derby
http://db.apache.org/derby


would result in a lighter-weight, more programmer-friendly framework for doing en-
terprise Java. JBoss Seam is one such effort. It should be noted, however, that Java EE
5 is significantly easier to use than its predecessor, J2EE 1.4. Java EE is definitely moving
down the road that lighter frameworks such as Spring cut out for enterprise Java.

The GlassFish application server is open source and the reference implementation. (To
be legalistic, a particular snapshot of GlassFish is the RI.) The current production release
can be downloaded from https://glassfish.dev.java.net. This release is also bundled into
the NetBeans IDE download, available at http://www.netbeans.org. The examples in
this chapter are deployed under GlassFish, and some are developed or refined using
NetBeans. No example requires the use of a particular IDE, including NetBeans,
however.

GlassFish Basics
Assume that AS_HOME points to the GlassFish install directory. In the bin subdirectory
is a script named asadmin that can be used to start GlassFish:

% asadmin start-domain domain1

For Windows, the script is asadmin.bat. When the application server starts, it prints
the ports on which it listens for requests. For example, port 8080 or port 8081 may
be given as the HTTP port. To confirm that GlassFish has started, open a browser to
http://localhost:8080, assuming that 8080 is among the listed HTTP ports. The welcome
page should appear with links to GlassFish documentation and the like. The command:

% asadmin stop-domain domain1

stops deployment from domain1, whereas the command:

% asadmin stop-appserv

stops the application server as a whole.

The URL http://localhost:4848 is for the administrative console, which has various util-
ities for inspecting and managing deployed components, including web services. The
default username for the administrative console is admin, and the default password is
adminadmin. The administrative console is helpful in testing newly deployed web serv-
ices. For any @WebMethod that can be invoked through HTTP, GlassFish generates an
interactive web page from which the method can be tested with sample arguments.
Request and response SOAP messages are displayed. The WSDL and other XML docu-
ments are likewise available for inspection.

Deploying a web service is easy. Suppose that a @WebService with an SIB class named
Hi has been packaged in a WAR file named hello.war. (The packaging details are the
same as for Tomcat but will be reviewed in the first example later.) To deploy the
application, the WAR file is copied to AS_HOME/domains/domain1/autodeploy. If
the deployment succeeds, a second file named hello.war_deployed appears in a second
or so in the autodeploy directory. If the deployment fails, then the empty file
hello.war_deployedFailed appears instead. On a failed deployment, the domains/
domain1/logs/server.log file contains the details. If the deployment succeeds, the WSDL

Overview of a Java Application Server | 243

https://glassfish.dev.java.net
http://www.netbeans.org
http://localhost:8080
http://localhost:4848


can be inspected by opening a browser to http://localhost:8080/hello/HiService?wsdl.
The default name of the service, HiService, follows the JWS convention of appending
Service to the SIB name Hi.

The Java DB database system can be started with the command:

% asadmin start-database

This command starts the Derby RDBMS, which then runs independently of the appli-
cation server. The database is stopped with the command:

% asadmin stop-database

Deploying @WebServices and @WebServiceProviders
The SOAP-based Teams web service from Chapter 1 has four classes: Player, Team,
TeamsUtility, and the SIB Teams. For this example, the four files reside in the directory
ch06/team and all are in the Java package ch06.team. For review, here is the original SIB
but in the new package:

package ch06.team;

import java.util.List;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class Teams {
    private TeamsUtility utils;
    public Teams() { utils = new TeamsUtility(); }

    @WebMethod
    public Team getTeam(String name) { return utils.getTeam(name); }
    @WebMethod
    public List<Team> getTeams() { return utils.getTeams(); }
}

After compilation, the .class files are copied to the directory ch06/team/WEB-INF/
classes/ch06/team because Tomcat, the web container for GlassFish, expects compiled
classes to reside in the WEB-INF/classes tree. A WAR file is created with the command:

% jar cvf team.war WEB-INF

and the WAR file then is copied to AS_HOME/domains/domain1/autodeploy. Although
the Teams service is document-style, there is no need to generate manually, using
wsgen, the JAX-B artifacts that such a service requires. GlassFish ships with the current
Metro release, which automatically generates these artifacts.

The client-side wsimport artifacts are generated in the usual way:

% wsimport -keep -p clientC http://localhost:8081/team/TeamsService?wsdl

244 | Chapter 6: JAX-WS in Java Application Servers

http://localhost:8080/hello/HiService?wsdl


Here is a sample client that uses the wsimport-generated artifacts:

import teamsC.TeamsService;
import teamsC.Teams;
import teamsC.Team;
import teamsC.Player;
import java.util.List;

class TeamsClient {
    public static void main(String[ ] args) {
        TeamsService service = new TeamsService();
        Teams port = service.getTeamsPort();

        List<Team> teams = port.getTeams();
        for (Team team : teams) {
            System.out.println("Team name: " + team.getName() +
                               " (roster count: " + team.getRosterCount() + ")");
            for (Player player : team.getPlayers())
                System.out.println("  Player: " + player.getNickname());
        }
    }
}

The output is:

Team name: Abbott and Costello (roster count: 2)
  Player: Bud
  Player: Lou
Team name: Marx Brothers (roster count: 3)
  Player: Chico
  Player: Groucho
  Player: Harpo
Team name: Burns and Allen (roster count: 2)
  Player: George
  Player: Gracie

In addition to the WSDL, GlassFish automatically generates the deployment artifacts,
including a webservices.xml document and a sun-web.xml document. These can be
inspected in the administrative console.

Deploying @WebServiceProviders
Deploying a @WebServiceProvider is slightly more complicated in that the WAR file
requires a web.xml and sun-jaxws.xml. Here is source code for a RESTful service that
does temperature conversions and computes Fibonacci numbers:

package ch06.rest;

import javax.xml.ws.Provider;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.Source;
import javax.xml.transform.Result;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.stream.StreamSource;

Deploying @WebServices and @WebServiceProviders | 245



import javax.xml.transform.stream.StreamResult;
import javax.annotation.Resource;
import javax.xml.ws.BindingType;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPException;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.http.HTTPBinding;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.StringWriter;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

@WebServiceProvider
@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)
@BindingType(value = HTTPBinding.HTTP_BINDING)
public class RestfulProviderD implements Provider<Source> {
    @Resource
    protected WebServiceContext ws_context;
    protected Document document; // DOM tree
    public Source invoke(Source request) {
        try {
           if (ws_context == null) throw new RuntimeException("No ws_context.");
           MessageContext msg_context = ws_context.getMessageContext();
           // Check the HTTP request verb. In this case, only POST is supported.
           String http_verb = (String) 
               msg_context.get(MessageContext.HTTP_REQUEST_METHOD);
           if (!http_verb.toUpperCase().trim().equals("POST"))
               throw new HTTPException(405); // bad verb exception
           build_document(request);
           String operation = extract_node("operation").trim();
           String operand = extract_node("operand").trim();
           if (operation.equals("fib"))      return fib_response(operand);
           else if (operation.equals("c2f")) return c2f_response(operand);
           else if (operation.equals("f2c")) return (f2c_response(operand));
           throw new HTTPException(404); // client error
        }
        catch(Exception e) { throw new HTTPException(500); }
    }
    // Build a DOM tree from the XML source for later lookups.
    private void build_document(Source request) {
        try {
           Transformer transformer = TransformerFactory.newInstance().newTransformer();
           this.document =
               DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
           Result result = new DOMResult(this.document);
           transformer.transform(request, result);
        }
        catch(Exception e) { this.document = null; }
    }

246 | Chapter 6: JAX-WS in Java Application Servers



    // Extract a node's value from the DOM tree given the node's tag name.
    private String extract_node(String tag_name) {
        try {
            NodeList nodes = this.document.getElementsByTagName(tag_name);
            Node node = nodes.item(0);
            return node.getFirstChild().getNodeValue().trim();
        }
        catch(Exception e) { return null; }
    }

    // Prepare a response Source in which obj refers to the return value.
    private Source prepare_source(Object obj) {
        String xml =
            "<uri:restfulProvider xmlns:uri = 'http://foo.bar.baz'>" +
            "<return>" + obj + "</return>" +
            "</uri:restfulProvider>";
        return new StreamSource(new ByteArrayInputStream(xml.getBytes()));
    }

    private Source fib_response(String num) {
        try {
           int n = Integer.parseInt(num.trim());
           int fib = 1;
           int prev = 0;

           for (int i = 2; i <= n; ++i) {
               int temp = fib;
               fib += prev;
               prev = temp;
           }
           return prepare_source(fib);
        }
        catch(Exception e) { throw new HTTPException(500); }
    }

    private Source c2f_response(String num) {
        try {
           float c = Float.parseFloat(num.trim());
           float f = 32.0f + (c * 9.0f / 5.0f);
           return prepare_source(f);
        }
        catch(Exception e) { throw new HTTPException(500); }
    }

    // Compute f2c(c)
    private Source f2c_response(String num) {
        try {
           float f = Float.parseFloat(num.trim());
           float c = (5.0f / 9.0f) * (f - 32.0f);
           return prepare_source(c);
        }
        catch(Exception e) { throw new HTTPException(500); }
    }
}

Deploying @WebServices and @WebServiceProviders | 247



If the compiled code in WEB-INF/classes/ch06/rest were put into a WAR file and de-
ployed without a web.xml document and a sun-jaxws.xml document, as in the example
just shown, a client would get an HTTP 404 (Not Found) error on a request for the
service. The @WebServiceProvider must be deployed with the two configuration docu-
ments. Following is the web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
         http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
  <display-name>RestfulProvider Service</display-name>
  <listener>
    <listener-class>
       com.sun.xml.ws.transport.http.servlet.WSServletContextListener
    </listener-class>
  </listener>
  <servlet>
    <display-name>RestfulProviderD</display-name>
    <servlet-name>RestfulProviderD</servlet-name>
    <servlet-class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>
  </servlet>
  <servlet-mapping>
    <servlet-name>RestfulProviderD</servlet-name>
    <url-pattern>/restful/*</url-pattern>
  </servlet-mapping>
</web-app>

And here is the sun-jaxws.xml:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime" version="2.0">
    <endpoint name="RestfulProviderD"
        implementation="ch06.rest.RestfulProviderD"
        binding="http://www.w3.org/2004/08/wsdl/http"
        url-pattern='/restful/*'/>
</endpoints>

These are essentially the same XML configuration files, with respect to structure, that
were used to deploy SOAP-based and REST-style services under Tomcat. GlassFish
automatically recognizes a @WebService even without the configuration files but does
not similarly recognize a @WebServiceProvider; hence, the configuration documents are
needed in the second case.

Here is a sample client against the service. For variety, the client does a DOM parse but
without using XPath:

import javax.xml.ws.Service;
import javax.xml.namespace.QName;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.Dispatch;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;

248 | Chapter 6: JAX-WS in Java Application Servers



import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
import javax.xml.ws.handler.MessageContext;
import java.net.URL;
import java.util.Map;
import java.io.StringReader;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

class DispatchClient {
    private static String xml =
        "<?xml version = '1.0' encoding = 'UTF-8' ?>" + "\n" +
        "<uri:RequestDocument xmlns:uri = 'urn:RequestDocumentNS'>" + "\n" +
        "  <operation>f2c</operation>" + "\n" +
        "  <operand>-40</operand>" + "\n" +
        "</uri:RequestDocument>" + "\n";

    public static void main(String[ ] args) throws Exception {
        QName qname = new QName("", "");
        String url_string = "http://127.0.0.1:8080/restfulD/restful/";
        URL url = new URL(url_string);

        // Create the service and add a port
        Service service = Service.create(qname);
        service.addPort(qname, HTTPBinding.HTTP_BINDING, url_string);

        Dispatch<Source> dispatcher = service.createDispatch(qname,
                                                Source.class,
                                                javax.xml.ws.Service.Mode.MESSAGE);
        Map<String, Object> rc = dispatcher.getRequestContext();
        rc.put(MessageContext.HTTP_REQUEST_METHOD, "POST");
        Source result = dispatcher.invoke(new StreamSource(new StringReader(xml)));
        parse_response(result);
    }

    private static void parse_response(Source res) throws Exception {
        Transformer transformer = TransformerFactory.newInstance().newTransformer();
        ByteArrayOutputStream bao = new ByteArrayOutputStream();
        StreamResult sr = new StreamResult(bao);
        transformer.transform(res, sr);
        ByteArrayInputStream bai = new ByteArrayInputStream(bao.toByteArray());
        DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder();
        Document root = db.parse(bai);
        NodeList nodes = root.getElementsByTagName("return");
        Node node = nodes.item(0); // should be only one <return> element
        System.out.println("Request document:\n" + xml);
        System.out.println("Return value: " + node.getFirstChild().getNodeValue());
    }
}

Deploying @WebServices and @WebServiceProviders | 249



The output is:

Request document:
<?xml version = '1.0' encoding = 'UTF-8' ?>
<uri:RequestDocument xmlns:uri = 'urn:RequestDocumentNS'>
  <operation>f2c</operation>
  <operand>-40</operand>
</uri:RequestDocument>

Return value: -40.0

The deployment of a @WebService and that of a @WebServiceProvider differ slightly under
GlassFish, although the two deployments are the same under either Endpoint or stand-
alone Tomcat. The next section illustrates how a deployed web service can be invoked
from a JSP or JSF script.

Integrating an Interactive Website and a Web Service
A Web service client is usually not interactive and, in particular, not a browser. This
section illustrates, as proof of concept, how a browser-based client might be used with
a SOAP-based web service. The @WebService is simple and familiar:

package ch06.tc;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class TempConvert {
    @WebMethod
    public float c2f(float t) { return 32.0F + (t * 9.0F / 5.0F); }
    @WebMethod
    public float f2c(float t) { return (5.0F / 9.0F) * (t - 32.0F); }
}

After the compiled TempConvert is copied to the ch06/tc/WEB-INF/classes/ch06/tc di-
rectory, the WAR file is created and copied as usual to the domains/domain1/autode
ploy directory under AS_HOME.

The next step is to write the interactive web application, which in this case consists of
an HTML document, two small JSP scripts, and a vanilla web.xml document. Here is
the HTML form for a user to enter a temperature to be converted:

<html><body>
   <form method = 'post' action = 'temp_convert.jsp'>
      Temperature to convert: <input type = 'text' name = 'temperature'><br/><hr/>
      <input type = 'submit' value = ' Click to submit '/>
   </form>
</body></html>   

And here is the JSP script that invokes the TempConvert web service to do the temperature
conversion:

250 | Chapter 6: JAX-WS in Java Application Servers



<%@ page errorPage = 'error.jsp' %>
<%@ page import = 'client.TempConvert' %>
<%@ page import = 'client.TempConvertService' %>
<html><body>
<%! private float f2c, c2f, temp; %>
<%
   String temp_str = request.getParameter("temperature");
   if (temp_str != null) temp = Float.parseFloat(temp_str.trim());

   TempConvertService service =  new TempConvertService();
   TempConvert port = service.getTempConvertPort();
   f2c = port.f2C(temp);
   c2f = port.c2F(temp);
%>
<p><%= this.temp %>F = <%= this.f2c %>C</p>
<p><%= this.temp %>C = <%= this.c2f %>F</p>
<a href = 'index.html'>Try another</a>
</body></html>

The two imported classes, client.TempConvert and client.TempConvertService, are
wsimport-generated artifacts in the WEB-INF/classes/client subdirectory of the direc-
tory that holds the HTML document and the two JSP scripts. For completeness, here
is the error.jsp script:

<%@ page isErrorPage = "true" %>
<html>
<% response.setStatus(400); %>
<body>
<h2><%= exception.toString() %></h2>
<p>Bad data: please try again.</p>
<p><a href = "index.html">Return to home page</a></p>
</body></html>    

The web.xml deployment document is also short:

<?xml version = '1.0' encoding = 'ISO-8859-1'?>
<web-app xmlns = 'http://java.sun.com/xml/ns/javaee'
         xmlns:xsi = 'http://www.w3.org/2001/XMLSchema-instance'
         xsi:schemaLocation = 'http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd'
         version = '2.5'>
   <description>JSP frontend to TempConvert service</description>
   <error-page>
      <exception-type>java.lang.NumberFormatException</exception-type>
      <location>/error.jsp</location>
   </error-page>
   <welcome-file-list>
      <welcome-file>index.html</welcome-file>
   </welcome-file-list>
</web-app>  

Integrating an Interactive Website and a Web Service | 251



The HTML page and the JSP scripts together with the compiled classes and web.xml
are then put into a WAR file:

% jar cvf tcJSP.war index.html *.jsp WEB-INF

for deployment in the GlassFish autodeploy subdirectory. For testing, a browser can be
opened to the URL http://localhost:8081/tcJSP.

A @WebService As an EJB
The EJB container is programmer-friendly in handling issues such as thread safety,
instance pooling, and transaction-guarded persistence. This section illustrates how a
@WebService can take advantage of these benefits by being implemented as a stateless
Session EJB. The example is in two steps. The first step quickly covers the details of
deploying a @WebService as a stateless Session EJB. The second step adds database
persistence by introducing an @Entity into the application. The example is kept simple
so that the EJB and @Entity details stand out.

Implementation As a Stateless Session EJB
Here is the SEI for the FibEJB service to be implemented as a stateless Session EJB:

package ch06.ejb;

import java.util.List;
import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;

@Stateless
@WebService
public interface Fib {
    @WebMethod int fib(int n);
    @WebMethod List getFibs();
}

The main change is that the annotation @Stateless occurs. The same annotation occurs
in the SIB:

package ch06.ejb;

import java.util.List;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService(endpointInterface = "ch06.ejb.Fib")
public class FibEJB implements Fib {
    public int fib(int n) {
        int fib = 1, prev = 0;

252 | Chapter 6: JAX-WS in Java Application Servers

http://localhost:8081/tcJSP


        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        return fib;
    }
    public List getFibs() { return new ArrayList(); } // for now, empty list
}

In the spirit of a stateless Session EJB, the implementing class consists of self-contained
methods that do not rely on any instance fields. This first version of the getFibs oper-
ation returns the empty list, but the next version returns the rows in a database table.

The packaging of the EJB implementation of the service differs from the standard WAR
packaging. To begin, all of the required classes are placed in a JAR file whose name is
arbitrary. In this case, the command:

% jar cvf rc.jar ch06/ejb/*.class

creates the file. There is no configuration document; hence, GlassFish will generate one
automatically. This JAR file is then enclosed in another:

% jar cvf fib.ear rc.jar

The EAR (Enterprise ARchive) extension is traditional for EJBs. GlassFish expects that
a deployed EAR file contains at least one EJB or @Entity POJO, although a production-
level EAR file typically contains several EJBs. In any case, an EAR file holds one JAR
file per EJB and may hold WAR files as well. The entire EAR file constitutes a single
enterprise application, with the particular JAR files therein housing the various appli-
cation components. In this example, there is one component: the stateless Session EJB
in its own JAR file.

Once the EAR file is deployed in the usual way by being copied to domains/domain1/
autodeploy directory, the administrative console can be used to inspect the application,
which is listed appropriately under the WebServices section in the console. GlassFish
automatically generates various deployment artifacts, including the WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Published by JAX-WS RI at http://jax-ws.dev.java.net. 
     RI's version is JAX-WS RI 2.1.3.1-hudson-417-SNAPSHOT. -->
<!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net. 
     RI's version is JAX-WS RI 2.1.3.1-hudson-417-SNAPSHOT. -->
<definitions 
 xmlns:wsu=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://ejb.ch06/" 
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
 xmlns="http://schemas.xmlsoap.org/wsdl/" 
 targetNamespace="http://ejb.ch06/" 
 name="FibEJBService">

A @WebService As an EJB | 253



<ns1:Policy xmlns:ns1="http://www.w3.org/ns/ws-policy" 
            wsu:Id="FibEJBPortBinding_getFibs_WSAT_Policy">
<ns1:ExactlyOne>
<ns1:All>
<ns2:ATAlwaysCapability xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/10/wsat">
</ns2:ATAlwaysCapability>
<ns3:ATAssertion xmlns:ns4="http://schemas.xmlsoap.org/ws/2002/12/policy" 
    xmlns:ns3="http://schemas.xmlsoap.org/ws/2004/10/wsat" 
    ns1:Optional="true" 
    ns4:Optional="true">
</ns3:ATAssertion>
</ns1:All>
</ns1:ExactlyOne>
</ns1:Policy>
<ns5:Policy xmlns:ns5="http://www.w3.org/ns/ws-policy" 
            wsu:Id="FibEJBPortBinding_fib_WSAT_Policy">
<ns5:ExactlyOne>
<ns5:All>
<ns6:ATAlwaysCapability xmlns:ns6="http://schemas.xmlsoap.org/ws/2004/10/wsat">
</ns6:ATAlwaysCapability>
<ns7:ATAssertion xmlns:ns8="http://schemas.xmlsoap.org/ws/2002/12/policy" 
                 xmlns:ns7="http://schemas.xmlsoap.org/ws/2004/10/wsat" 
                 ns5:Optional="true" ns8:Optional="true">
</ns7:ATAssertion>
</ns5:All>
</ns5:ExactlyOne>
</ns5:Policy>

<types>
<xsd:schema>
<xsd:import namespace="http://ejb.ch06/" 
            schemaLocation="http://localhost:8080/FibEJBService/FibEJB?xsd=1">
</xsd:import>
</xsd:schema>
</types>
<message name="fib">
<part name="parameters" element="tns:fib"></part>
</message>
<message name="fibResponse">
<part name="parameters" element="tns:fibResponse"></part>
</message>
<message name="getFibs">
<part name="parameters" element="tns:getFibs"></part>
</message>
<message name="getFibsResponse">
<part name="parameters" element="tns:getFibsResponse"></part>
</message>

<portType name="Fib">
<operation name="fib">
<ns9:PolicyReference xmlns:ns9="http://www.w3.org/ns/ws-policy" 
              URI="#FibEJBPortBinding_fib_WSAT_Policy"></ns9:PolicyReference>
<input message="tns:fib"></input>
<output message="tns:fibResponse"></output>
</operation>

254 | Chapter 6: JAX-WS in Java Application Servers



<operation name="getFibs">
<ns10:PolicyReference xmlns:ns10="http://www.w3.org/ns/ws-policy" 
              URI="#FibEJBPortBinding_getFibs_WSAT_Policy"></ns10:PolicyReference>
<input message="tns:getFibs"></input>
<output message="tns:getFibsResponse"></output>
</operation>
</portType>
<binding name="FibEJBPortBinding" type="tns:Fib">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" 
              style="document">
</soap:binding>
<operation name="fib">
<ns11:PolicyReference xmlns:ns11="http://www.w3.org/ns/ws-policy" 
              URI="#FibEJBPortBinding_fib_WSAT_Policy"></ns11:PolicyReference>
<soap:operation soapAction=""></soap:operation>

<input>
<soap:body use="literal"></soap:body>
</input>
<output>
<soap:body use="literal"></soap:body>
</output>
</operation>
<operation name="getFibs">
<ns12:PolicyReference xmlns:ns12="http://www.w3.org/ns/ws-policy" 
              URI="#FibEJBPortBinding_getFibs_WSAT_Policy"></ns12:PolicyReference>
<soap:operation soapAction=""></soap:operation>
<input>
<soap:body use="literal"></soap:body>
</input>
<output>
<soap:body use="literal"></soap:body>
</output>
</operation>
</binding>
<service name="FibEJBService">
<port name="FibEJBPort" binding="tns:FibEJBPortBinding">
<soap:address location="http://localhost:8080/FibEJBService/FibEJB"></soap:address>
</port>
</service>
</definitions>

This WSDL is unlike any of the previous ones in that it contains a section at the top on
WS-Policy, which is a language for describing web service capabilities and client re-
quirements. GlassFish includes the current Metro release, which supports WS-Policy
and related WS-* initiatives that promote web services interoperability: WSIT in Metro
speak. The policy templates are laid out at the top of the WSDL and then referenced
throughout the rest of the document. However, all of the policy templates are marked
as merely optional. The underlying idea is that a web service and its potential consumers
should be able to articulate policies about security and other service-related matters.
For example, there is a set of policies on reliable messaging that belongs to the WS-
ReliableMessaging specification. Under this specification, a WSDL could advertise that
any message is to be sent exactly once and, therefore, must never be duplicated. If an

A @WebService As an EJB | 255



intermediary along the path from the sender to the receiver encounters a problem in
delivering a message, the appropriate fault must be raised and the message must not
be resent. Another WS-ReliableMessaging policy stipulates that messages will be re-
ceived in the same order in which they are sent, a feature that the TCP infrastructure
of HTTP/HTTPS already guarantees. Yet because SOAP-based web services are de-
signed to be transport neutral, there is a specification on reliable messaging, several on
security, and so on.

The Endpoint URL for an EBJ-Based Service
The endpoint URL for the EJB-based web service differs from WAR examples seen so
far. For one thing, the name of the EAR file does not occur in the path as does the name
of a WAR file. There are two pieces in the path section of the URL: the first is the SIB
name with Service appended, giving FibEJBService in this example; the second is the
SIB name, in this case FibEJB. The combination is shown in the URL below for the
sample Perl client:

#!/usr/bin/perl -w
use SOAP::Lite;
use strict;
my $url = 'http://localhost:8081/FibEJBService/FibEJB?wsdl';
my $service = SOAP::Lite->service($url);
print $service->fib(7), "\n";

For convenience and simplicity, this example uses only defaults. For example, the EJB
is deployed with the name FibEJBService and the path /FibEJBService/FibEJB. These
defaults can be overridden by adding attributes in an annotation or by entries in a
deployment descriptor. The good news is that there are defaults.

The next step is to add a database table as the persistence store and an @Entity to
automate the interaction between the web service and the database. This step requires
only modest additions to the service.

Database Support Through an @Entity
The SEI interface Fib stays the same, but the SIB FibEJB changes to the following:

package ch06.ejb;
import java.util.List;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@WebService(endpointInterface = "ch06.ejb.Fib")
public class FibEJB implements Fib {
    @PersistenceContext(unitName = "FibServicePU")
    private EntityManager em;

256 | Chapter 6: JAX-WS in Java Application Servers



    public int fib(int n) {
        // Computed already? If so, return.
        FibNum fn = em.find(FibNum.class, n); // read from database
        if (fn != null) return fn.getF();

        int f = compute_fib(Math.abs(n));
        fn = new FibNum();
        fn.setN(n);
        fn.setF(f);
        em.persist(fn);                       // write to database
        return f;
    }

    public List getFibs() {
        Query query = em.createNativeQuery("select * from FibNum");
        // fib_nums is a list of pairs: N and Fibonacci(N)
        List fib_nums = query.getResultList(); // read from database
        List results = new ArrayList();
        for (Object next : fib_nums) {
            List list = (List) next;
            for (Object n : list) results.add(n);
        }
        return results; // N, fib(N), K, fib(K),...
    }

    private int compute_fib(int n) {
        int fib = 1, prev = 0;
        for (int i = 2; i <= n; i++) {
            int temp = fib;
            fib += prev;
            prev = temp;
        }
        return fib;
    }
}

On a client request for a particular Fibonacci number, the service now does a find
operation against the database. If the value is not stored in the database, then the value
is computed and stored there. If the client requests a list of all Fibonacci numbers
computed so far, the service executes a query against the database to get the list, which
is returned. This overview now can be fleshed out with details.

The FibEJB SIB uses dependency injection to get a reference to an EntityManager that,
as the name indicates, manages any @Entity within a given PersistenceContext. The
@Entity in this case is a FibNum:

package ch06.ejb;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Column;
import java.io.Serializable;

A @WebService As an EJB | 257



// A FibNum is a pair: an integer N and its Fibonacci value.
@Entity
public class FibNum implements Serializable {
    private int n;
    private int f;

    public FibNum() { }

    @Id
    public int getN() { return n; }
    public void setN(int n) { this.n = n; }

    public int getF() { return f; }
    public void setF(int f) { this.f = f; }
}

A FibNum has two properties, one for an integer N and another for the Fibonacci value
of N. In the corresponding database table, the integer N serves as the primary key; that
is, as the @Id. How the database is created will be explained shortly. First, though, a bit
more on the EntityManager is in order.

By default in the EJB container, a PersistenceContext includes transaction support
through a JTA (Java Transaction API) manager; hence, transactions are automatic be-
cause the container introduces and manages them. Again by default in this example,
the scope of the transaction is a single read or write operation against the database. The
method fib invokes the EntityManager method find to retrieve a FibNum from the da-
tabase, with each FibNum as one row in the table. If a particular FibNum is not in the table,
then a new @Entity instance is created and persisted with a call to the EntityManager
method persist.

The methods encapsulated in an EntityManager such as find and persist are not in-
herently thread-safe. These methods become thread-safe in this example because the
EntityManager instance is a field in an EJB and, therefore, enjoys the thread safety that
the EJB container bestows.

The Persistence Configuration File
Nothing in the Web service code or the support code explicitly references the database
or the table therein. These details are handled through a configuration document,
META-INF/persistence.xml:

<persistence>
    <persistence-unit name="FibServicePU" transaction-type="JTA">
        <description>
            This unit manages Fibonacci number persistence.
        </description>
        <jta-data-source>jdbc/__default</jta-data-source>
        <properties>
          <!--Use the java2db feature -->
          <property name="toplink.ddl-generation" value="drop-and-create-tables"/>
          <!-- Generate the sql specific to Derby database -->

258 | Chapter 6: JAX-WS in Java Application Servers



          <property name="toplink.platform.class.name"
               value="oracle.toplink.essentials.platform.database.DerbyPlatform"/>
        </properties>
        <class>ch06.ejb.FibNum</class>
    </persistence-unit>
</persistence>

Each JAR file with an @Entity should have a META-INF directory with a file named
persistence.xml. The lines in bold need explanation.

GlassFish comes with several JDBC resources, including the one with the JNDI name
jdbc/__default used here. The administrative console has a utility for creating new
databases. As noted earlier, GlassFish also ships with the Apache Derby database sys-
tem, which in turn includes the TopLink utility called java2db that generates a table
schema from a Java class, in this case the class FibNum. Recall that FibNum is annotated
as an @Entity and has two properties, one for an integer N (the primary key) and another
for the Fibonacci value of N. Under the hood the java2db utility generates the corre-
sponding database table with two columns, one for N and another for its Fibonacci
value. If desired, the names of the database table and the columns can be specified with
the @Table and @Column annotations, respectively.

In the FibEJB service, the @WebMethod named fib invokes the find method whose ar-
gument is the primary key for the desired FibNum pair. By contrast, the method with the
name getFibs relies on a query to retrieve all of the rows in the database. These rows
are returned as a list of pair lists, in effect as ((1,1), (2,1), (3,2),...). The getFibs method
uses a native as opposed to a JPQL (Java Persistence Query Language) query to retrieve
the rows and then creates a simple list of integers to return to the requester. The returned
list looks like (1, 1, 2, 1, 3, 2,...), with N and its Fibonacci value as adjacent values.

Here is a sample client against the FibEJB service:

import clientEJB.FibEJBService;
import clientEJB.Fib;
import java.util.List;

class ClientEJB {
   public static void main(String args[ ]) {
      FibEJBService service = new FibEJBService();
      Fib port = service.getFibEJBPort();

      final int n=8;
      for (int i=1; i<n; i++) System.out.println("Fib(" + i + ") == "+port.fib(i));

      List fibs = port.getFibs();
      for (Object next : fibs) System.out.println(next);
   }
}

The output is:

Fib(1) == 1
Fib(2) == 1
Fib(3) == 2

A @WebService As an EJB | 259



Fib(4) == 3
Fib(5) == 5
Fib(6) == 8
Fib(7) == 13
1
1
2
1
3
2
4
3
5
5
6
8
7
13

The EJB Deployment Descriptor
The FibEJB service is implemented as an EJB and packaged in an EAR file without a
deployment descriptor (DD), which is an XML document in the file ejb-jar.xml. In an
EAR file, each EJB occurs in its own JAR file that optionally has a DD for the EJB. Here
is the DD that GlassFish generates for FibEJB:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         metadata-complete="true" version="3.0" 
         xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
                             http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
  <enterprise-beans>
    <session>
      <display-name>Fib</display-name>
      <ejb-name>Fib</ejb-name>
      <ejb-class>ch06.ejb.Fib</ejb-class>
      <session-type>Stateless</session-type>
      <transaction-type>Container</transaction-type>
      <security-identity>
        <use-caller-identity/>
      </security-identity>
    </session>
    <session>
      <display-name>FibEJB</display-name>
      <ejb-name>FibEJB</ejb-name>
      <business-local>ch06.ejb.Fib</business-local>
      <service-endpoint>ch06.ejb.Fib</service-endpoint>
      <ejb-class>ch06.ejb.FibEJB</ejb-class>
      <session-type>Stateless</session-type>
      <transaction-type>Container</transaction-type>
      <persistence-context-ref>
        <persistence-context-ref-name>ch06.ejb.FibEJB/em
        </persistence-context-ref-name>

260 | Chapter 6: JAX-WS in Java Application Servers



        <persistence-unit-name>FibServicePU</persistence-unit-name>
        <persistence-context-type>Transaction</persistence-context-type>
        <injection-target>
          <injection-target-class>ch06.ejb.FibEJB</injection-target-class>
          <injection-target-name>em</injection-target-name>
        </injection-target>
      </persistence-context-ref>
      <security-identity>
        <use-caller-identity/>
      </security-identity>
    </session>
  </enterprise-beans>
</ejb-jar>

There are two <session> sections, one at the top for the SEI Fib and another at the
bottom for the SIB FibEJB. Each section indicates that the Session EJB is deployed as
stateless with container-managed transactions. The SIB section provides additional
details about persistence, including the reference em that refers to the EntityManager
used in FibEJB. The key point is that the persistence context is transaction-based, with
the EJB container responsible for transaction management.

Servlet and EJB Implementations of Web Services
GlassFish allows web services to be deployed in either WAR or EAR files. In the first
case, GlassFish characterizes the implementation as servlet-based because, as seen in
the examples with standalone Tomcat, a WSServlet instance intercepts that web service
requests and passes these on to the web service packaged in the WAR file. In the second
case, the web service is a stateless Session EJB that the EJB container manages. In the
servlet implementation, the web container handles requests against the web service; in
the EJB implementation, the EJB container handles requests against the web service.
A given web service thus can be implemented in two different ways. At issue, then, are
the tradeoffs between the two implementations of a web service.

The main advantage of the EJB implementation is that the EJB container provides more
services than does the servlet container. For one thing, a web service implemented as
an EJB is thereby thread-safe, whereas the operationally identical service implemented
as a POJO is not thread-safe. In the FibEJB example, the web operation fib does a
read and a possible write against the database, and the operation getFibs does a read.
The EJB container also automatically wraps these database operations in transactions,
which remain transparent. The EJB container manages the persistence so that the ap-
plication does not have to do so. In a servlet-based or Endpoint-based service, the
application would take on these responsibilities.

Prior to EJB 3.0, a strong case could be made that EJBs in general, including even Session
EJBs, were simply too much work for too little reward. The case is no longer so strong.
As the FibEJB example shows, the EJB implementation of a SOAP-based service requires
only one additional annotation, @Stateless, and the packaging of an EJB-based service

A @WebService As an EJB | 261



in an EAR file is arguably no harder than packaging the same service in a WAR file with
its WEB-INF/classes structure.

Java Web Services and Java Message Service
GlassFish, like any full-feature application server, includes a JMS provider that supports
publish/subscribe (topic-based) and point-to-point (queue-based) messaging. Topics
and queues are persistent stores. For example, one application can send a message to
a JMS queue, and another application, at some later time, can retrieve the message from
the queue. However, the JMS does not specify how long an implementation needs to
persist messages. This section illustrates the basics of JWS/JMS interaction with two
web services. The MsgSender service has a send operation that inserts a message in a
queue, and the MsgReceiver service has a receive operation that retrieves a message
from the front of the queue (see Figure 6-2).

JMS message queue

Back Front

MsgSender service MsgReceiver service

Send Receive

Figure 6-2. Integrating JAX-WS and JMS

Here is the source code for the MsgSender service:

package ch06.jms;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.Session;
import javax.jms.JMSException;
import javax.annotation.Resource;

// A web service that sends a message to a queue.
@WebService
public class MsgSender {
    // name and mappedName can differ; mappedName is the JNDI lookup name
    @Resource(name="qcf", mappedName="qcf")
    private QueueConnectionFactory qf;

262 | Chapter 6: JAX-WS in Java Application Servers



    @Resource(name="jmsQ", mappedName="jmsQ")
    private Queue queue;

    private QueueConnection conn;

    @WebMethod
    public void send(String msg) {
        try {
            if (conn == null) conn = (QueueConnection) qf.createConnection();
            Session session =
                conn.createSession(false, // no transaction support
                                   Session.AUTO_ACKNOWLEDGE);

            // Wrap the string in a TextMessage for sending.
            TextMessage tmsg = session.createTextMessage(msg);
            session.createProducer(queue).send(tmsg);
            session.close();
        }
        catch(JMSException e) { throw new RuntimeException(e); }
    }
}

Setting Up GlassFish Queues and Topics
The asadmin utility in the AS_HOME/bin directory can be used to check whether the
JMS provider is up and running. The command is:

% asadmin jms-ping

A status report such as:

JMS Ping Status = RUNNING
Command jms-ping executed successfully.

indicates whether the JMS provider is running. The JMS provider should start auto-
matically when GlassFish starts, although it is possible to configure GlassFish so that
the JMS provider must be started separately.

The GlassFish administrative console has a Resources tab and a JMS Resources subtab
for creating named Connection Factories for a topic or a queue and named Destination
Resources, which are topics or queues. In the code that follows, the name of a connec-
tion factory and the name of a queue are used with @Resource annotations.

The MsgSender service relies on dependency injection, enabled through the @Resource
annotation, to get the connection factory and the queue created through the GlassFish
administrative console. Sending the message requires a connection to the JMS provider,
a session with the provider, and a message producer that encapsulates the send method.
JMS has several message types, including the TextMessage type used here. Once the
message is sent to the queue, the session is closed but the connection to the JMS pro-
vider remains open for subsequent operations against the queue.

The MsgReceiver service uses the same dependency injection code. The setup is also
similar except that a QueueSession replaces a generic Session object. To show some of

Java Web Services and Java Message Service | 263



the variety in the JMS API, a QueueReceiver is introduced. The invocation of the
QueueConnection method start completes the setup phase and enables the message at
the front of queue, if there is one, to be retrieved. Here is the code:

package ch06.jms;

import java.util.List;
import java.util.ArrayList;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.Session;
import javax.jms.Queue;
import javax.jms.QueueSession;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.QueueSession;
import javax.jms.QueueReceiver;
import javax.jms.JMSException;
import javax.annotation.Resource;

@WebService
public class MsgReceiver {
    // name and mappedName can differ
    @Resource(name="qcf", mappedName="qcf")
    private QueueConnectionFactory qf;
    @Resource(name="jmsQ", mappedName="jmsQ")
    private Queue queue;

    private QueueConnection conn;

    @WebMethod
    public String receive() {
        String cliche = null;
        try {
            if (conn == null) conn = qf.createQueueConnection();
            QueueSession session =
                conn.createQueueSession(false,
                                        Session.AUTO_ACKNOWLEDGE);
            QueueReceiver receiver = session.createReceiver(queue);
            conn.start();

            Message msg = receiver.receiveNoWait();
            if (msg != null && msg instanceof TextMessage ) {
                TextMessage tmsg = (TextMessage) msg;
                cliche = tmsg.getText().trim();
            }
        }
        catch(JMSException e) { throw new RuntimeException(e); }
        return cliche;
    }
}

264 | Chapter 6: JAX-WS in Java Application Servers



There are three JMS methods for retrieving a message from a queue. This example uses
receiveNoWait, which behaves as the name indicates: the method returns the message
at the front of the queue, if there is one, but immediately returns null, if the queue is
empty. There is also an overloaded receives method. The no-argument version blocks
until there is a message to retrieve, whereas the one-argument version blocks only n
milliseconds, for n > 0, if the queue is currently empty.

JMS also has a MessageListener interface, which declares an onMessage(Message)
method. A message consumer such a QueueReceiver has a setMessageListener method
whose argument is an instance of a class that implements the MessageListener interface.
The onMessage method then behaves as a callback that is invoked whenever a message
arrives for consumption.

Within the Java community, there is ongoing interest in the interaction between JWS
and JMS. For example, there is a third-party initiative to provide a SOAP over JMS
binding. Even without this initiative, of course, a SOAP envelope could be encapsulated
as the body of a JMS message; or a JMS message could be encapsulated as the cargo of
a SOAP envelope. There also are packages for converting between JMS and SOAP. The
example in this section emphasizes the store-and-forward capabilities of JMS and
shows how these might be integrated with SOAP-based web services.

WS-Security Under GlassFish
The Echo service example in Chapter 5 shows that WS-Security can be used with
Endpoint by using the Metro packages. WS-Security is easier under GlassFish precisely
because the current Metro release is part of the GlassFish distribution. This section
illustrates the point.

Making an HTTP Dump Automatic Under GlassFish
In any GlassFish deployment domain such as domain1, there is a subdirectory config
with various files, including domain.xml. This configuration file has a section for JVM
options, each of which has the start tag <jvm-options>. To enable an automatic HTTP
dump of the SOAP messages and their security artifacts, two JVM options should be
added:

<jvm-options>
  -Dcom.sun.xml.ws.transport.http.HttpAdapter.dump=true
</jvm-options>
<jvm-options>
  -Dcom.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true
</jvm-options>      

If the application server is already running, it must be restarted for the new configura-
tion to take effect. The dump is to the domains/domain1/logs/server.log file.

The first example focuses on peer authentication using digital certificates.

WS-Security Under GlassFish | 265



Mutual Challenge with Digital Certificates
In a typical browser-based web application, the browser challenges the web server to
authenticate itself when the browser tries to establish an HTTPS connection with the
server. As discussed earlier in Chapter 5, the web server typically does not challenge
the client. For instance, the default behavior of Tomcat is not to challenge a client.
GlassFish as a whole has the same default behavior. In the administrative console, under
the Security tab, this default behavior can be changed so that GlassFish, including
embedded Tomcat, challenges the client automatically. The approach in this example
is to force the challenge at the application level rather than for the JAS as a whole. In
any case, a challenged party may respond with digital certificates that vouch for its
identity. This section illustrates mutual challenge using digital certificates, a scenario
that the acronym MCS (Mutual Certificates Security) captures.

Recall the scenario in which Alice wants to send a message securely to Bob, with each
of the two relying upon digital certificates to authenticate the identity of the other.
Alice’s keystore holds her own digital certificates, which she can send to Bob, whereas
Alice’s truststore holds digital certificates that establish her trust in Bob. Alice’s trust-
store may contain earlier verified certificates from Bob or certificates from a CA that
vouch for Bob’s certificates. For convenience in testing, the keystore and truststore
could be the same file.

There are two ways to do an MCS application. One way is to rely directly on HTTPS,
which incorporates mutual challenge as part of the setup phase in establishing a secure
communications channel between the client and the web service. On the client side,
CLIENT-CERT can be used instead of BASIC or DIGEST authentication so that the
client, like the server, presents a digital certificate to vouch for its identity. The second
way is to be transport-agnostic and rely instead on mutual challenge with Metro’s WSIT
support. (Recall that the I in WSIT is for Interoperability, which includes transport
neutrality.) Each way is illustrated with an example. The HTTPS example implements
the web service with an EJB endpoint, whereas the WSIT example implements the web
service with a servlet endpoint.

MCS Under HTTPS
The source code for the web service is neutral with respect to security and so could be
deployed under either HTTP or HTTPS:

package ch06.sslWS;

import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService
public class EchoSSL {
    public String echo(String msg) { return "Echoing: " + msg; }
}

266 | Chapter 6: JAX-WS in Java Application Servers



The EchoSSL service is first deployed without any security to underscore that a secured
version does not require changes to the source code. The wsimport artifacts can be
generated in the usual way from the unsecured version or, using wsgen, from the secured
version. In any case, GlassFish awaits HTTPS connections on port 8181.

Security for the EchoSSL service is imposed with a GlassFish-specific configuration
file, sun-ejb-jar.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//
          DTD Sun ONE Application Server 8.0 EJB 2.1//EN'
          'http://www.sun.com/software/sunone/appserver/
          dtds/sun-ejb-jar_2_1-0.dtd'>
<sun-ejb-jar>
  <enterprise-beans>
    <ejb>
      <ejb-name>EchoSSL</ejb-name>
      <webservice-endpoint>
        <port-component-name>EchoSSL</port-component-name>
        <login-config>
          <auth-method>CLIENT-CERT</auth-method>
          <realm>certificate</realm>
        </login-config>
        <transport-guarantee>CONFIDENTIAL</transport-guarantee>
      </webservice-endpoint>
    </ejb>
  </enterprise-beans>
</sun-ejb-jar>

The security section of this configuration file is essentially the same as the security-
constraint section of a web.xml file. Two sections of interest are the login-config
section, which sets the authentication to CLIENT-CERT, and the transport-guarantee
section, which calls for data confidentiality across the communications channel. This
configuration file is included in the JAR file that holds the compiled web service, in this
example echoSSL.jar. The name of the JAR file is arbitrary, but the file sun-ejb-
jar.xml must be in the META-INF directory within the JAR file. Here, then, is the layout
of the JAR file:

META-INF/sun-ejb-jar.xml
ch06/sslWS/EchoSSL.class      

The JAR file with the configuration document and the stateless EJB is then put in an
EAR file as usual. As earlier examples show, an EAR file does not require a configuration
document, but the standard configuration document is named application.xml. Here,
for illustration, is the configuration document used in this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Micro., Inc.//DTD J2EE Application 1.3//EN" 
          "http://java.sun.com/dtd/application_1_3.dtd">
<application>
  <display-name>EchoSSL</display-name>
  <module>
    <ejb>echoSSL.jar</ejb>

WS-Security Under GlassFish | 267



  </module>
</application>      

The META-INF/application.xml file is a manifest that lists each JAR file within the EAR
file as a module that belongs to the application as a whole. In this case, then, the appli-
cation consists of the stateless EJB in echoSSL.jar. Once created, the EAR file is deployed
as usual by being copied to domains/domain1/autodeploy.

The client code, like the service code, provides no hint that the client must connect
over HTTPS:

import clientSSL.EchoSSLService;
import clientSSL.EchoSSL;

class EchoSSLClient {
    public static void main(String[ ] args) {
       try {
          EchoSSLService service = new EchoSSLService();
          EchoSSL port = service.getEchoSSLPort();
          System.out.println(port.echo("Goodbye, cruel world!"));
       } 
       catch(Exception e) { System.err.println(e); }
    }
}  

Although the client code is straightforward, its execution requires information about
the client’s keystore and truststore. GlassFish itself provides a default keystore and
truststore for development mode. The keystore and the truststore for domain1 are in
domains/domain1/config and are named keystore.jks and cacerts.jks, respectively. The
keystore contains a self-signed certificate. In production mode, of course, a CA-signed
certificate presumably would be used. To make testing as easy as possible, the client is
simply invoked with the GlassFish keystore and truststore. Here is the execution com-
mand with the output:

% java -Djavax.net.ssl.trustStore=cacerts.jks \
       -Djavax.net.ssl.trustStorePassword=changeit \
       -Djavax.net.ssl.keyStore=keystore.jks \
       -Djavax.net.ssl.keyStorePassword=changeit EchoSSLClient
Echoing: Goodbye, cruel world!      

The underlying SOAP messages are also indistinguishable from those sent over HTTP:

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
  <S:Body>
     <ns2:echo xmlns:ns2="http://sslWS.ch06/">
        <arg0>Goodbye, cruel world!</arg0>
     </ns2:echo>
  </S:Body>
</S:Envelope>

The security does not show up at the SOAP level because the security is provided at
the transport level; that is, through HTTPS. Only the configuration documents indicate

268 | Chapter 6: JAX-WS in Java Application Servers



that MCS is in play. In the WSIT example that follows, the SOAP messages will change
dramatically because the security occurs at the SOAP level.

MCS Under WSIT
For variety, the MCS client is now a servlet that receives a text input from a browser or
the equivalent and invokes the EchoService method echo with this string as the argu-
ment. The servlet responds to the browser with the string returned from the echo
method. HTTP comes into play only in connecting the client’s browser to the servlet
container. Within the servlet container, the EchoService and the EchoClient servlet do
exchange SOAP messages, but not over HTTP (see Figure 6-3).

EchoClient servlet

EchoService WS
index.html

HTTP

Web containerClient browser

Figure 6-3. Mutual challenge under WS-Security

WSIT MCS is introduced into the application through configuration files. These files
are sufficiently complicated that it may be best to generate them with a tool. The Net-
Beans IDE suits the purpose by producing the configuration files and the related Ant
scripts that handle compilation, packaging, and deployment. It should be emphasized
again, however, that this and any other WSIT application can be done without the
NetBeans IDE.

The @WebService is now servlet rather than EJB-based, although this change by itself
plays no role in the MCS. Here is the source:

package ch06.mcs;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class Echo {
    @WebMethod
    public String echo(String msg) { return "Echoing: " + msg; }
}

The client is a servlet that uses the usual wsimport-generated artifacts:

package ch06.mcs.client;

import java.io.PrintWriter;
import java.io.IOException;
import java.io.Closeable;
import javax.annotation.Resource;

WS-Security Under GlassFish | 269



import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.soap.SOAPFaultException;

public class EchoClient extends HttpServlet {
    @WebServiceRef(wsdlLocation = "http://localhost:8080/echoMCS/EchoService?wsdl")
    public EchoService service;

    public void doGet(HttpServletRequest req, HttpServletResponse res) {
        res.setContentType("text/html;charset=UTF-8");
        PrintWriter out = null;
        try {
            out = res.getWriter();
            out.println("<h3>EchoServlet: " + req.getContextPath() + "</h3>");

            // Get the port reference and invoke echo method.
            Echo port = service.getEchoPort();
            String result = port.echo(req.getParameter("msg"));

            // If there's no SOAP fault so far, authentication worked.
            out.println("<h3>Authentication OK</h3><br/>");
            out.println(result);
            out.flush();
            ((Closeable) port).close(); // close connection to service
        }
        catch (SOAPFaultException e) {
            out.println("Authentication failure: " + e);
        }
        catch (Exception e) { out.println(e); }
        finally { out.close(); }
    }

    public void doPost(HttpServletRequest req, HttpServletResponse res) {
        try {
            this.doGet(req, res); // shouldn't happen but just in case :)
        }
        catch(Exception e) { throw new RuntimeException("doPost"); }
    }
}

The servlet container honors the @WebServiceRef annotation, shown in bold, and ini-
tializes the EchoService reference service. Once the web service operation echo has
been invoked and the response sent back to the browser, the EchoClient closes the port
to signal to the container that further access to the web service is not required on this
request.

The EchoClient servlet is invoked on each submission of the simple HTML form in
which a client enters a phrase to be echoed. For completeness, here is the form:

270 | Chapter 6: JAX-WS in Java Application Servers



<html>
    <head/>
    <body>
        <h3>EchoService Client</h3>
        <form action = 'EchoServlet' method = 'GET'><br/>
            <input type = 'text' name = 'msg'/><br/>
            <p><input type = 'submit' value = 'Send message'/></p>
        </form>
    </body>
</html>

Nothing so far indicates that MCS is in play. It is the configuration documents alone
that introduce MCS into the application. Each side, the Echo web service and the
EchoClient servlet, has a small sun-web.xml that provides the container with the context
root, which is the name of the deployed WAR file. Following is the document for the
EchoClient:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC
     "-//Sun Microsystems, Inc.//DTD Application Server 9.0 Servlet 2.5//EN"
     "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app error-url="">
  <context-root>/echoClient</context-root>
</sun-web-app>      

The sun-web.xml documents reside in the WEB-INF directory of each deployed WAR
file. There is a second configuration document, which is considered next.

The major MCS configuration document for the service and its client begins with wsit-:
wsit-ch06.mcs.Echo.xml in the case of the web service and wsit-client.xml in the case of
the client. Each document has the structure of a WSDL. (However, wsit-client.xml
imports another document, which contains most of the configuration information.)
On the web service side, the document resides in the WEB-INF directory; on the client
side, the document resides in the WEB-INF/classes/META-INF directory. Here is the
service-side wsit-ch06.mcs.Echo.xml:

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 name="EchoService"
 targetNamespace="http://mcs.ch06/"
 xmlns:tns="http://mcs.ch06/"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
            utility-1.0.xsd"
 xmlns:wsaws="http://www.w3.org/2005/08/addressing"
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"
 xmlns:sc="http://schemas.sun.com/2006/03/wss/server"
 xmlns:wspp="http://java.sun.com/xml/ns/wsit/policy" >
    <message name="echo"/>
    <message name="echoResponse"/>

WS-Security Under GlassFish | 271



    <portType name="Echo">
       <wsdl:operation name="echo">
           <wsdl:input message="tns:echo"/>
           <wsdl:output message="tns:echoResponse"/>
       </wsdl:operation>
    </portType>
    <binding name="EchoPortBinding" type="tns:Echo">
       <wsp:PolicyReference URI="#EchoPortBindingPolicy"/>
       <wsdl:operation name="echo">
           <wsdl:input>
             <wsp:PolicyReference URI="#EchoPortBinding_echo_Input_Policy"/>
           </wsdl:input>
           <wsdl:output>
             <wsp:PolicyReference URI="#EchoPortBinding_echo_Output_Policy"/>
           </wsdl:output>
       </wsdl:operation>
    </binding>
    <service name="EchoService">
        <wsdl:port name="EchoPort" binding="tns:EchoPortBinding"/>
    </service>
    <wsp:Policy wsu:Id="EchoPortBindingPolicy">
       <wsp:ExactlyOne>
           <wsp:All>
              <wsaws:UsingAddressing 
                 xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
              <sp:SymmetricBinding>
                 <wsp:Policy>
                     <sp:ProtectionToken>
                         <wsp:Policy>
                             <sp:X509Token
                                 sp:IncludeToken="http://schemas.xmlsoap.org/ws/
                                       2005/07/securitypolicy/IncludeToken/Never">
                                <wsp:Policy>
                                    <sp:WssX509V3Token10/>
                                </wsp:Policy>
                             </sp:X509Token>
                         </wsp:Policy>
                     </sp:ProtectionToken>
                     <sp:Layout>
                         <wsp:Policy>
                             <sp:Strict/>
                         </wsp:Policy>
                     </sp:Layout>
                     <sp:IncludeTimestamp/>
                     <sp:OnlySignEntireHeadersAndBody/>
                     <sp:AlgorithmSuite>
                         <wsp:Policy>
                             <sp:Basic128/>
                         </wsp:Policy>
                     </sp:AlgorithmSuite>
                 </wsp:Policy>
             </sp:SymmetricBinding>
             <sp:Wss11>
                 <wsp:Policy>
                     <sp:MustSupportRefKeyIdentifier/>

272 | Chapter 6: JAX-WS in Java Application Servers



                     <sp:MustSupportRefIssuerSerial/>
                     <sp:MustSupportRefThumbprint/>
                     <sp:MustSupportRefEncryptedKey/>
                 </wsp:Policy>
             </sp:Wss11>
             <sp:SignedSupportingTokens>
                 <wsp:Policy>
                     <sp:UsernameToken
                          sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/
                                securitypolicy/IncludeToken/AlwaysToRecipient">
                         <wsp:Policy>
                             <sp:WssUsernameToken10/>
                         </wsp:Policy>
                     </sp:UsernameToken>
                 </wsp:Policy>
             </sp:SignedSupportingTokens>
             <sc:KeyStore wspp:visibility="private" alias="xws-security-server"/>
         </wsp:All>
     </wsp:ExactlyOne>
 </wsp:Policy>
 <wsp:Policy wsu:Id="EchoPortBinding_echo_Input_Policy">
     <wsp:ExactlyOne>
         <wsp:All>
             <sp:EncryptedParts>
                 <sp:Body/>
             </sp:EncryptedParts>
             <sp:SignedParts>
                 <sp:Body/>
                 <sp:Header Name="To" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="From" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="FaultTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="ReplyTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="MessageID" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="RelatesTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="Action" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="AckRequested" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
                 <sp:Header Name="SequenceAcknowledgement" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
                 <sp:Header Name="Sequence" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
             </sp:SignedParts>
         </wsp:All>
     </wsp:ExactlyOne>
 </wsp:Policy>
 <wsp:Policy wsu:Id="EchoPortBinding_echo_Output_Policy">
     <wsp:ExactlyOne>
         <wsp:All>

WS-Security Under GlassFish | 273



             <sp:EncryptedParts>
                 <sp:Body/>
             </sp:EncryptedParts>
             <sp:SignedParts>
                 <sp:Body/>
                 <sp:Header Name="To" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="From" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="FaultTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="ReplyTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="MessageID" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="RelatesTo" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="Action" 
                            Namespace="http://www.w3.org/2005/08/addressing"/>
                 <sp:Header Name="AckRequested" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
                 <sp:Header Name="SequenceAcknowledgement" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
                 <sp:Header Name="Sequence" 
                            Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
             </sp:SignedParts>
         </wsp:All>
     </wsp:ExactlyOne>
 </wsp:Policy>
</definitions>

The detail is overwhelming. Of interest here is that much of this detail pertains to areas
in the SOAP header that need to be encrypted and digitally signed. In any case, a docu-
ment as complicated as this is best generated using a tool such as the one embedded in
the NetBeans IDE rather than written by hand.

The client version, the document WEB-INF/classes/META-INF/EchoService.xml, is less
complicated:

<?xml version="1.0" encoding="UTF-8"?>
<definitions
  xmlns:wsu=
  "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
  xmlns:tns="http://mcs.ch06/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns="http://schemas.xmlsoap.org/wsdl/"
  targetNamespace="http://mcs.ch06/"
  name="EchoService"
  xmlns:sc="http://schemas.sun.com/2006/03/wss/client"
  xmlns:wspp="http://java.sun.com/xml/ns/wsit/policy">
    <wsp:UsingPolicy></wsp:UsingPolicy>
    <types>
       <xsd:schema>

274 | Chapter 6: JAX-WS in Java Application Servers



         <xsd:import
           namespace="http://mcs.ch06/"
           schemaLocation="http://localhost:8080/echoMCS/EchoService?xsd=1">
        </xsd:import>
       </xsd:schema>
    </types>
    <message name="echo">
        <part name="parameters" element="tns:echo"></part>
    </message>
    <message name="echoResponse">
        <part name="parameters" element="tns:echoResponse"></part>
    </message>
    <portType name="Echo">
        <operation name="echo">
            <input message="tns:echo"></input>
            <output message="tns:echoResponse"></output>
        </operation>
    </portType>
    <binding name="EchoPortBinding" type="tns:Echo">
        <wsp:PolicyReference URI="#EchoPortBindingPolicy"/>
        <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
                      style="document"></soap:binding>
        <operation name="echo">
            <soap:operation soapAction=""></soap:operation>
            <input>
                <soap:body use="literal"></soap:body>
            </input>
            <output>
                <soap:body use="literal"></soap:body>
            </output>
        </operation>
    </binding>
    <service name="EchoService">
        <port name="EchoPort" binding="tns:EchoPortBinding">
          <soap:address
            location="http://localhost:8080/echoMCS/EchoService"></soap:address>
        </port>
    </service>
    <wsp:Policy wsu:Id="EchoPortBindingPolicy">
        <wsp:ExactlyOne>
            <wsp:All>
                <sc:CallbackHandlerConfiguration wspp:visibility="private">
                    <sc:CallbackHandler default="wsitUser" name="usernameHandler"/>
                    <sc:CallbackHandler default="changeit" name="passwordHandler"/>
                </sc:CallbackHandlerConfiguration>
                <sc:TrustStore wspp:visibility="private" 
                                  peeralias="xws-security-server"/>
            </wsp:All>
        </wsp:ExactlyOne>
    </wsp:Policy>
</definitions>

The section in bold gives the username, in this case wsitUser, and the password for
accessing the server’s file-based security realm. The GlassFish command:

% asadmin list-file-users

WS-Security Under GlassFish | 275



can be used to get a list of authorized users. The output should include wsitUser for
the mutual challenge to succeed.

The servlet-based Echo web service and its servlet client EchoClient are packaged in
separate WAR files and deployed as usual. Here is a dump of each WAR file, starting
with the service’s echoMCS.war (the leftmost column is the file size in bytes):

  71 META-INF/MANIFEST.MF
2488 WEB-INF/web.xml
2506 WEB-INF/sun-web.xml
6704 WEB-INF/wsit-ch06.mcs.Echo.xml
 558 WEB-INF/classes/ch06/mcs/Echo.class

Although the MCS configuration document has the structure of a WSDL, GlassFish
generates the WSDL available to clients in the usual way. The WSDL is essentially the
same as wsit-ch06.mcs.Echo.xml, but the two do differ in some minor details.

Here is the structure of the client WAR file, echoClient.war:

  71 META-INF/MANIFEST.MF
 698 WEB-INF/web.xml
 305 WEB-INF/sun-web.xml
 745 WEB-INF/classes/ch06/mcs/client/Echo.class
1583 WEB-INF/classes/ch06/mcs/client/ObjectFactory.class
 646 WEB-INF/classes/ch06/mcs/client/Echo_Type.class
 734 WEB-INF/classes/ch06/mcs/client/EchoResponse.class
 237 WEB-INF/classes/ch06/mcs/client/package-info.class
1484 WEB-INF/classes/ch06/mcs/client/EchoService.class
2042 WEB-INF/classes/ch06/mcs/client/EchoClient.class
 381 WEB-INF/classes/META-INF/wsit-client.xml
2590 WEB-INF/classes/META-INF/EchoService.xml

The WAR file includes the wsimport-generated classes. The wsit-client.xml file does
little more than import EchoService.xml.

The Dramatic SOAP Envelopes
MCS requires relatively large and complicated SOAP envelopes precisely because the
security is now at the SOAP message level rather than at the transport level. The SOAP
envelope under MCS needs to include information about encryption algorithms, mes-
sage digest algorithms, digital signature algorithms, security tokens, time stamps, and
so on. All of this information is packaged in a SOAP header block, which is marked
with mustUnderstand set to true; hence, intermediaries and the ultimate receiver must
be able to process the header block in some application-appropriate way or else throw
a SOAP fault. Here, for dramatic effect, is the request SOAP envelope from a sample
EchoClient request against the EchoService:

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" 
            xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
                  oasis-200401-wss-wssecurity-secext-1.0.xsd" 
            xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

276 | Chapter 6: JAX-WS in Java Application Servers



                  oasis-200401-wss-wssecurity-utility-1.0.xsd" 
            xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 
            xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" 
            xmlns:exc14n="http://www.w3.org/2001/10/xml-exc-c14n#">
  <S:Header>
    <To xmlns="http://www.w3.org/2005/08/addressing" wsu:Id="_5006">
        http://localhost:8080/echoMCS/EchoService
    </To>
    <Action xmlns="http://www.w3.org/2005/08/addressing" 
            wsu:Id="_5005">http://mcs.ch06/Echo/echoRequest
    </Action>
    <ReplyTo xmlns="http://www.w3.org/2005/08/addressing" wsu:Id="_5004">
      <Address>http://www.w3.org/2005/08/addressing/anonymous</Address>
    </ReplyTo>
    <MessageID xmlns="http://www.w3.org/2005/08/addressing" 
               wsu:Id="_5003">uuid:b85e5024-85c6-4482-b118-3d00d8ebff17
    </MessageID>
    <wsse:Security S:mustUnderstand="1">
      <wsu:Timestamp xmlns:ns10="http://www.w3.org/2003/05/soap-envelope" 
           xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
           wsu:Id="_3">
        <wsu:Created>2008-08-14T02:06:32Z</wsu:Created>
        <wsu:Expires>2008-08-14T02:11:32Z</wsu:Expires>
      </wsu:Timestamp>
      <xenc:EncryptedKey xmlns:ns10="http://www.w3.org/2003/05/soap-envelope" 
             xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
             Id="_5002">
        <xenc:EncryptionMethod 
                          Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
        <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                  xsi:type="keyInfo">
          <wsse:SecurityTokenReference>
            <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01/
                    oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeyIdentifier" 
                    EncodingType="http://docs.oasis-open.org/wss/2004/01/
                    oasis-200401-wss-soap-message-security-1.0#Base64Binary">
              dVE29ysyFW/iD1la3ddePzM6IWo=
            </wsse:KeyIdentifier>
          </wsse:SecurityTokenReference>
        </ds:KeyInfo>
        <xenc:CipherData>
          <xenc:CipherValue>UIz4WopejXJGmw2yg0M0pIf8hEomI7vI...</xenc:CipherValue>
        </xenc:CipherData>
      </xenc:EncryptedKey>
      <xenc:ReferenceList 
         xmlns:ns17="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
         xmlns:ns16="http://www.w3.org/2003/05/soap-envelope" 
         xmlns="">
        <xenc:DataReference URI="#_5008"></xenc:DataReference>
        <xenc:DataReference URI="#_5009"></xenc:DataReference>
      </xenc:ReferenceList>
      <xenc:EncryptedData xmlns:ns10="http://www.w3.org/2003/05/soap-envelope" 
           xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
           Type="http://www.w3.org/2001/04/xmlenc#Element" 
           Id="_5009">

WS-Security Under GlassFish | 277



        <xenc:EncryptionMethod 
           Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
        <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                    xsi:type="keyInfo">
          <wsse:SecurityTokenReference>
            <wsse:Reference ValueType="http://docs.oasis-open.org/wss/
                                 oasis-wss-soap-message-security-1.1#EncryptedKey" 
                                 URI="#_5002"/>
          </wsse:SecurityTokenReference>
        </ds:KeyInfo>
        <xenc:CipherData>
          <xenc:CipherValue>0GCRGwFKlLfnRYnQd...</xenc:CipherValue>
        </xenc:CipherData>
      </xenc:EncryptedData>
      <ds:Signature xmlns:ns10="http://www.w3.org/2003/05/soap-envelope" 
            xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
            Id="_1">
        <ds:SignedInfo>
          <ds:CanonicalizationMethod 
                                Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
            <exc14n:InclusiveNamespaces PrefixList="wsse S"/>
          </ds:CanonicalizationMethod>
          <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
          <ds:Reference URI="#_5003">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="S"/>
             </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>NI9i+HGoWeYAsu8K1eOcmmSn+SY=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#_5004">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="S"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            ds:DigestValue>5Ab1ebo4/FraGgck/A8iDx1J9+I=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#_5005">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="S"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>Qso/D/tFg2kzZnb0J7tOzqRW84M=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#_5006">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
              <exc14n:InclusiveNamespaces PrefixList="S"/>
              </ds:Transform></ds:Transforms>

278 | Chapter 6: JAX-WS in Java Application Servers



              <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
              <ds:DigestValue>DQsOAHfFqRDBiV4MqOLwbMRLXcc=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#_5007">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="S"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>9vpXDjjwI7bLNBAVe5n1jcpHou4=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#_3">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>9NwWEZNcMLby0fEQlrwbJ6fVGQA=</ds:DigestValue>
          </ds:Reference>
          <ds:Reference URI="#uuid_e2da395f-b9bc-4d52-9cb8-57bafe97ac25">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
                <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>nRSRynHPET8TPA4DvAR9iB6OG1E=</ds:DigestValue>
         </ds:Reference>
       </ds:SignedInfo>
       <ds:SignatureValue>QDgHtRo7NYLsmzKIPDd5RZ/a7hk=</ds:SignatureValue>
       <ds:KeyInfo>
           <wsse:SecurityTokenReference 
                       wsu:Id="uuid_5b05ed00-1333-49c3-9f03-0225ea41d3da">
             <wsse:Reference ValueType="http://docs.oasis-open.org/wss/
                             oasis-wss-soap-message-security-1.1#EncryptedKey" 
                             URI="#_5002"/>
           </wsse:SecurityTokenReference>
       </ds:KeyInfo>
      </ds:Signature>
    </wsse:Security>
  </S:Header>
  <S:Body wsu:Id="_5007">
    <xenc:EncryptedData xmlns:ns10="http://www.w3.org/2003/05/soap-envelope" 
          xmlns:ns11="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" 
          Type="http://www.w3.org/2001/04/xmlenc#Content" Id="_5008">
      <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
      <ds:KeyInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                  xsi:type="keyInfo">
        <wsse:SecurityTokenReference>
          <wsse:Reference 
              ValueType=
                  "http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.
              1#EncryptedKey" URI="#_5002"/>

WS-Security Under GlassFish | 279



        </wsse:SecurityTokenReference>
      </ds:KeyInfo>
      <xenc:CipherData>
        <xenc:CipherValue>p2TQL4JqgBCWh9Jiv6PWikJ0beMuNDvj1wH...</xenc:CipherValue>
      </xenc:CipherData>
    </xenc:EncryptedData>
  </S:Body>
</S:Envelope>

A summary of the under-the-hood steps that produce this SOAP request document
should help to clarify the document:

• GlassFish includes a Secure Token Service (STS), which is at the center of the mu-
tual authentication between the EchoService and its EchoClient. The STS receives
client requests for security tokens. If a request is honored, the STS sends a SAML
(Security Assertion Markup Language) token back to the client. SAML is an XML
language customized for security assertions. The client can use this token to au-
thenticate itself to a web service. In this example, the EchoClient servlet requires a
registered username (in this case, wsitUser) in order to get a SAML token from the
GlassFish STS. This first step establishes trust among the servlet client, the STS,
and the web service.

• The servlet client and web service exchange X.509 digital certificates in the process
of mutual challenge or authentication. Recall that these certificates include a digital
signature, typically from a certificate authority. In test mode, the certificate may
be self-signed. The X.509 certificate also includes the public key from the owner’s
key pair. The role of the digital signature is to vouch for the identity of the public
key. This second step establishes a secure conversation between the client and the
web service, as each side is now confident about the identity of the other.

• The data exchanged between the client and the web service are packaged, of course,
in SOAP envelopes and must be encrypted for confidentiality. In the SOAP request
shown earlier, the encrypted data are shown in bold and occur in elements tagged
as xenc:CipherData

The complexity makes sense given that WSIT cannot rely on the transport level (in
particular, HTTPS) for any aspect of the overall security. Instead, WSIT must use the
SOAP messages themselves in support of trust, secure conversation, and data confi-
dentiality between the client and the web service. This example drives home the point
because the servlet client and the web service do not communicate over HTTPS.

Benefits of JAS Deployment
For Java web services, Endpoint is a lightweight publisher; a standalone web container
such as Tomcat is a middleweight publisher; and an application server such as GlassFish
is a heavyweight publisher. Throughout software, heavyweight connotes complicated;
hence, it may be useful to wind up with a review of what recommends a full application
server despite the complications that come with this choice. Here is a short review of

280 | Chapter 6: JAX-WS in Java Application Servers



the advantages that an application server offers for deploying web services, SOAP-based
or REST-style:

• A web service can be implemented as stateless EJB. The EJB container offers serv-
ices, in particular thread safety and container-managed transactions, that neither
Endpoint nor a web container offer as is. A production-grade web service is likely
to rely on a data store accessible through @Entity instances; and EntityManager
methods such as find and persist are not inherently thread-safe but become so if
the EntityManager is instantiated as an EJB field.

• A JAS typically furnishes a web interface to inspect the WSDL and to test any
@WebMethod. GlassFish provides these and other development tools in its adminis-
trative console.

• An application server includes an RDBMS, which is Java DB in the case of Glass-
Fish. Other database systems can be plugged in as preferred.

• An enterprise application deployed in an application server can contain an arbitrary
mix of components, which may include interactive servlet-based web applications,
EJBs, message topics/queues and listeners, @Entity classes, and web services.
Components packaged in the same EAR file share an ENC (Enterprise Naming
Context), which makes JNDI lookups straightforward.

• Application servers typically provide extensive administrative support, which in-
cludes support for logging and debugging. The GlassFish administrative console
is an example.

• GlassFish in particular is the reference implementation of an application server and
includes Metro with all of the attendant support for web services interoperability.

• A deployed web service, like any other enterprise component, can be part of a
clustered application.

What’s Next?
The debate over SOAP-based and REST-style web services is often heated. Each ap-
proach has its merits and represents a useful tool in the modern programmer’s toolbox.
Most SOAP-based services are delivered over HTTP or HTTPS and, as earlier examples
show, therefore qualify as a special type of REST-style service. There is no need to pick
sides between SOAP and REST. The next and final chapter takes a short look back into
the recent history of distributed systems to gain a clearer view of the choices in devel-
oping web services.

What’s Next? | 281





CHAPTER 7

Beyond the Flame Wars

The debate within the web services community is often heated and at times intemperate
as the advocates of SOAP-based and REST-style services tout the merits of one ap-
proach and rail against the demerits of the other. Whatever the dramatic appeal of a
SOAP versus REST conflict, the two approaches can coexist peacefully and produc-
tively. There is no hard choice here—no either one or the other but not both. Each
approach has its appeal, and either is better than legacy approaches to distributed soft-
ware systems. A quick look at the history of distributed systems is one way to gain
perspective on the matter.

A Very Short History of Web Services
Web services evolved from the RPC (Remote Procedure Call) mechanism in DCE (Dis-
tributed Computing Environment), a framework for software development that
emerged in the early 1990s. DCE included a distributed file system (DCE/DFS) and a
Kerberos-based authentication system. Although DCE has its origins in the Unix world,
Microsoft quickly did its own implementation known as MSRPC, which in turn served
as the infrastructure for interprocess communication in Windows. Microsoft’s COM/
OLE (Common Object Model/Object Linking and Embedding) technologies and serv-
ices were built on a DCE/RPC foundation. The first-generation frameworks for dis-
tributed-object systems, CORBA (Common Object Request Broker Architecture) and
Microsoft’s DCOM (Distributed COM), are anchored in the DCE/RPC procedural
framework. Java RMI also derives from DCE/RPC, and the method calls in the original
EJB types, Session and Entity, are Java RMI calls. Java EE and Microsoft’s .NET, the
second-generation frameworks for distributed-object systems, likewise trace their an-
cestry back to DCE/RPC. Various popular system utilities (for instance, the Samba file
and print service for Windows clients) use DCE/RPC.

DCE/RPC has the familiar client/server architecture in which a client invokes a proce-
dure that executes on the server. Arguments can be passed from the client to the server
and return values can be passed from the server to the client. The framework is
language-neutral in principle, although strongly biased toward C/C++ in practice.

283



DCE/RPC includes utilities for generating client and server artifacts (stubs and skele-
tons, respectively) and software libraries that hide the transport details. Of interest now
is the IDL (Interface Definition Language) document that acts as the service contract
and is an input to utilities that generate artifacts in support of the DCE/RPC calls.

The Service Contract in DCE/RPC
Here is a simple IDL file:

/* echo.idl */
[uuid(2d6ead46-05e3-11ca-7dd1-426909beabcd), version(1.0)]
interface echo
{
    const long int ECHO_SIZE = 512;
    void echo(
        [in]             handle_t h,
        [in,  string]    idl_char from_client[ ],
        [out, string]    idl_char from_server[ECHO_SIZE]
    );
}

The interface, identified with a machine-generated UUID, declares a single function of
three arguments, two of which are in parameters (that is, inputs to the remote proce-
dure) and one of which is an out parameter (that is, an output from the remote
procedure). The first argument, of defined type handle_t, is required and points to an
RPC binding structure. The function echo could but does not return a value because
the echoed string is returned instead as an out parameter. The IDL, though obviously
not in XML format, is functionally akin to a WSDL.

The IDL file is passed through an IDL compiler (for instance, the Windows midl utility)
to generate the appropriate client-side or server-side artifacts. Here is a C client that
invokes the echo procedure remotely:

#include <stdio.h>   /* standard C header file */
#include <dce/rpc.h> /* DCE/RPC header file */

int main(int argc, char* argv[ ]) {
    /* DCE/RPC data types */
    rpc_ns_handle_t import_context;
    handle_t        binding_h;
    error_status_t  status;
    idl_char        reply[ECHO_SIZE + 1];

    char* msg = "Hello, world!";

    /* Set up RPC. */
    rpc_ns_binding_import_begin(rpc_c_ns_syntax_default,
                                (unsigned_char_p_t) argv[1], /* server id */
                                 echo_v1_0_c_ifspec,
                                 0,
                                 &import_context,
                                 &status);

284 | Chapter 7: Beyond the Flame Wars



    check_status_maybe_die(status, "import_begin"); /* code not shown */

    rpc_ns_binding_import_next(import_context,
                               &binding_h,
                               &status);
    check_status_maybe_die(status, "import_next");

    /* Make the remote call.  */
    echo(binding_h, (idl_char*) msg, reply);
    printf("%s echoed from server: %s\n", msg, reply);

    return 0;
}

The setup code at the start is a bit daunting, but the call itself is straightforward.

The IDL file plays a central role in Microsoft’s ActiveX technology. An ActiveX control
is basically a DLL (Dynamic Link Library) with an embedded typelib, which is a com-
piled IDL file. So an ActiveX control is a DLL that carries along its own RPC interface,
which means that the control can be embedded dynamically in a host application (for
instance, a browser) that can consume the typelib to determine how to invoke the calls
implemented in the DLL. This is a preview of how the client of a SOAP-based web
service will consume a WSDL.

DCE/RPC is an important step toward language-agnostic distributed systems but has
some obvious, if understandable, drawbacks. For one, DCE/RPC uses a proprietary
transport, which is understandable in a pioneering technology that predates HTTP by
almost a decade. My point is not to evaluate DCE/RPC but rather to highlight simi-
larities between it and its descendant, SOAP-based web services. To that end, XML-
RPC is the next SOAP ancestor to consider.

XML-RPC
Dave Winer of UserLand Software developed XML-RPC in the late 1990s. XML-RPC
is a very lightweight RPC system with support for elementary data types (basically, the
built-in C types together with a boolean and a datetime type) and a few simple com-
mands. The original specification is about seven pages in length. The two key features
are the use of XML marshaling/unmarshaling to achieve language neutrality and reli-
ance on HTTP (and, later, SMTP) for transport. The O’Reilly open-wire Meerkat serv-
ice is an XML-RPC application.

As an RPC technology, XML-RPC follows the request/response pattern. Here is the
XML request from an invocation of the Fibonacci function with an argument of 11,
which is passed as a four-byte integer:

<?xml version="1.0"?>
<methodCall><methodName>ch07.fib</methodName>
  <params><param><value><i4>11</i4></value></param></params>
</methodCall>

A Very Short History of Web Services | 285



XML-RPC is deliberately low fuss and very lightweight. For an XML-RPC fan, SOAP
is XML-RPC after a prolonged eating binge.

Standardized SOAP
Perhaps the most compelling way to contrast the simplicity of XML-RPC with the
complexity of SOAP is to list the categories for SOAP-related standards initiatives and
the number of initiatives in each category. (An amusing poster of these standards is
available at http://www.innoq.com/resources/ws-standards-poster.) Table 7-1 shows the
list.

Table 7-1. Standards for SOAP-based web services

Category Number of standard initiatives

Interoperability 10

Security 10

Metadata 9

Messaging 9

Business Process 7

Resource 7

Translation 7

XML 7

Management 4

SOAP 3

Presentation 1

The total of 74 distinct but related initiatives helps explain the charge that SOAP-based
web services are over-engineered. Some of the standards (for instance, those in the
Business Process category) represent an effort to make web services more useful and
practical. Others (for instance, those in the categories of Interoperability, Security,
Metadata, and SOAP itself) underscore the goal of language, platform, and transport
neutrality for SOAP-based services. Recall the examples in Chapter 6 of mutual chal-
lenge security (MCS) using digital certificates. If the MCS is done under HTTPS, the
setup is minimal and the exchanged SOAP envelopes carry no security information
whatever. If the MCS is done under WSIT, the setup is tricky and the exchanged SOAP
envelopes have relatively large, complicated header blocks that encapsulate security
credentials and supporting materials. However, WSIT complexity can be avoided, in
this case, by letting HTTPS transport carry the MCS load. Despite the complexities,
even SOAP-based services are an evolutionary advance.

286 | Chapter 7: Beyond the Flame Wars

http://www.innoq.com/resources/ws-standards-poster


SOAP-Based Web Services Versus Distributed Objects
Java RMI (including the Session and Entity EJB constructs built on it) and .NET Re-
moting are examples of second-generation distributed object systems. Consider what
a Java RMI client requires to invoke a method declared in a service interface such as this:

package ch07.doa;  // distributed object architecture
import java.util.List;
public interface BenefitsService extends java.rmi.Remote {
   public List<EmpBenefits> getBenefits(Emp emp) throws RemoteException;
}

The client needs a Java RMI stub, an instance of a class that implements the interface
BenefitsService. The stub is downloaded automatically to the client through seriali-
zation over the socket that connects the client and the service. The stub class requires
the programmer-defined Emp and EmpBenefits types, which in turn may nest other pro-
grammer-defined types, e.g., Department, BusinessCertification, and ClientAccount:

public class Emp {
   private Department                   department;
   private List<BusinessCertification>  certifications;
   private List<ClientAccount>          accounts;
   ...
}

The standard Java types such as List already are available on the client side, as the
client is, by assumption, a Java application. The challenge involves the programmer-
defined types such as Emp and EmpBenefits that are needed to support the client-side
invocation of a remotely executed method, as this code segment illustrates:

List<EmpBenefit> fred_benefits = remote_object.getBenefits(fred);  

Under Java RMI, programmer-defined types required on the client side are loaded re-
motely and automatically. Yet the remote loading of Java classes is inherently compli-
cated and, of course, the format of Java’s .class files is proprietary. The point is that
lots of stuff needs to come down from the server to the client before the client can invoke
a method remotely. The arguments passed to the Java RMI service (in this example,
the Emp instance to which fred refers) are serialized on the client side and deserialized
on the service side. The returned value, in this case a list of EmpBenefits, is serialized
by the service and deserialized by the client. The client and service communicate
through binary rather than text streams, and the structure of the binary streams is
specific to Java.

SOAP-based web services simplify matters. For one thing, the client and service now
exchange XML documents: text in the form of SOAP envelopes. (In special cases, raw
bytes can be exchanged instead.) The exchanged text can be inspected, validated,
transformed, persisted, and otherwise processed using readily available and often free
tools. Each side, client and service, simply needs a local software library that binds
language-specific types such as the Java String to XML Schema (or comparable)
language-neutral types, in this case xsd:string. Given these bindings, relatively simple

SOAP-Based Web Services Versus Distributed Objects | 287



library modules can serialize and deserialize. Processing on the client side, as on the
service side, requires only locally available libraries and utilities. The complexities can
be isolated at the endpoints and need not seep into the exchanged SOAP messages.

As noted repeatedly, the client and the service need not be coded in the same language
or even in the same style of language. Clients and services can be implemented in object-
oriented, procedural, functional, and other language styles. The languages on either
end may be statically typed (for instance, Java and C#) or dynamically typed (for ex-
ample, Perl and Ruby), although it is easier to generate a WSDL from a service coded
in a statically typed language. Further, SOAP insulates the client and the service from
platform-specific details. Life gets simpler and proportionately better with the move
from distributed objects to SOAP-based web services.

SOAP and REST in Harmony
From a programmer’s standpoint, there are two profoundly different ways to do SOAP-
based web services. The first way, which dominates in practice, is to assume HTTP/
HTTPS transport and to let the transport carry as much of the load as possible. In this
approach, the transport handles requirements such as reliable messaging, peer authen-
tication, and confidentiality. The second way, which accounts for much of the com-
plexity in the WS-* initiatives, requires the programmer to deal with the many APIs that
address transport-neutral services.

The first way is certainly my preferred way. If HTTP/HTTPS is assumed as transport,
then SOAP-based web services in the predominant request/response pattern are just a
special case of RESTful services: a client request is a POSTed SOAP envelope, and a
service response is likewise a SOAP envelope. The very good news is that the SOAP
envelopes are mostly transparent to the programmer, who does not have to generate
the XML on the sending side or to parse the XML on the receiving side. The client
examples in Chapter 4, on RESTful services, illustrate the point. In every client, the
bulk of the code is devoted to XML processing. Transparent XML sounds like an empty
slogan only to someone who has not had to deal directly with large and complicated
XML dcouments.

From the programmer’s viewpoint, the SOAP-based approach also has the enormous
appeal of a service contract, a WSDL, that can be used to generate client-side artifacts
that standardize the task of writing the client. Indeed, the major drawback of RESTful
services in general is the lack of a uniform service contract that facilitates coding the
client. An XML Schema is a grammar, not a service contract. Of course, the grammar
can guide the programmer in parsing a response XML document to extract the items
of interest; but this is little consolation to the programmer if every RESTful service has
its own idiosyncratic response document, not to mention its own distinctive invocation
syntax. The next big step for the RESTful community is to agree on a format, such as
the WADL document, to act as a service contract. Imagine the boost that the RESTful

288 | Chapter 7: Beyond the Flame Wars



style would enjoy from a lightweight service contract that could be used to generate
client-side artifacts.

SOAP-based and REST-style services present different challenges but likewise offer
different opportunities. The SOAP-based approach mostly hides the XML, whereas the
REST-style approach typically requires that the XML be front and center. The SOAP-
based approach does not take direct advantage of what HTTP offers, although the
SOAP in SOAP-based services is almost always delivered over HTTP/HTTPS. The
RESTful approach obviously exploits what HTTP/HTTPS offers but, so far, does little
to ease the task of processing the XML payloads.

Let’s hope that a unified approach to RESTful services will be forthcoming. Until then
my two cents still will be spent on RESTful services—and on SOAP-based ones deliv-
ered over HTTP/HTTPS.

SOAP and REST in Harmony | 289





Index

A
Accept key, 12
Accept-Encoding key, 107
access keys (Amazon), 46
actor attribute, 97
Amazon (E-Commerce Web Service), 46–59

asynchronous, 57–59
REST style, 170

AOP (Aspect-Oriented Programming), 105
APIs (SOAP), 18–23
application-managed authentication, 217–219
artifacts (client-support code), 32
asadmin script, 243, 263
Aspect-Oriented Programming (AOP), 105
asymmetric encryption/decryption, 196
asynchronous (nonblocking) clients, 57
asynchronous E-Commerce clients, 57–59
authenticated subjects, 211
authentication, 217–219

container-managed, 219
authorization (user), 211, 217–219

container-managed, 219
AWS (Amazon Web Services), 194

B
-b flag (wsimport), 54
base cases, 92
base64Binary wrapper, 114
BEA WebLogic, 6
Bean Managed Persistence (BMP), 240
BigDecimal data type, 67
binary data, 109–119
binding section (WSDL), 37
@BindingType, 102

blocking (synchronous) calls, 57
BMP (Bean Managed Persistence), 240
broker trust relationships, 228
browsers, testing web services with, 7–10
byte data type, 67

C
C programming language, 3
C# programming language, 2
C++ programming language, 3
callbacks, 82
Carriage Return Line Feed (CRLF), 12
certificates, 198

digital, 266
chain of responsibility pattern, 85
char data type, 67
cipher bits, 196
client containers, 242
CLIENT-CERT method, 223
client-side SOAP handlers, 91
client-support code, generating, 32
client.TempServerImplService class, 34
close method, 84, 101
CMP (Container Managed Persistence), 240
CMT (Container Managed Transactions), 240
code-first approach, 69, 76–79
COM/OLE (Common Object Model/Object

Linking and Embedding), 283
connectors (Tomcat), 215
Container Managed Persistence (CMP), 240
Container Managed Transactions (CMT), 240
containers, 104
context in programming, 104
contract-aware approach, 76–79
contract-first approach, 69–76

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

291



CRLF (Carriage Return Line Feed), 12
CRUD (Create, Read, Update, Delete), 122

implementing operations, 136–138
curl program, 9

D
data types, 23–27, 67
databases, supporting through @Entitites,

256
DataSourceRealm, 219
DCE (Distributed Computing Environment),

283
DCOM (Distributed COM), 283
DD (deployment descriptor), 260
declarative security, 220
DELETE HTTP verb, 122, 136
deployment descriptor (DD), 260
deserialization, 62
DIGEST method, 223
digested passwords, 223
digital certificates, 266
DIME (Direct Internet Message

Encapsulation), 111
dispatch client, 148–159

SOAP-based services and, 157–159
Distributed COM (DCOM), 283
Distributed Computing Environment (DCE),

283
distributed systems, 3
document elements, 12

JAX-B and, 62
document elements (WSDL), 37
document style

wsgen utility and, 60
document style services, 39–42

rpc styles and, 55
wrapped/unwrapped document styles, 43

document-style services, 39–42
doDelete method, 159
doGet method, 159
DOM trees, 139

E
E-Commerce Web Services (Amazon), 46–59

asynchronous, 57
REST style, 170–173

EAR (Enterprise ARchive) files, 242, 253, 260
echo operation, 106

EJB (Enterprise Java Bean), 4
element XML wrapper, 57
Endpoint publisher, 102, 229–236
Enterprise ARchive files (see EAR files)
Enterprise Java Bean (see EJB)
@Entity, 241, 252, 256
envelope (SOAP), 12, 44

secured, 237
eXtensible Markup Language (see XML)
-extension flag (wsimport), 73, 102

F
federated security, 228
fibC package, 96
Fibonacci numbers, 109, 258
Fielding, Roy, 2, 121
FIFO (First In, First Out), 239
File Transfer Protocol (FTP), 17
fingerprints (certificates), 201
First In, First Out (FIFO), 239
FORM authentication, 223
FTP (File Transfer Protocol), 17

G
GenericServlet class, 159
GET HTTP verb, 122
get method, 28, 64
getHeaders method, 84
getTimeAsElapsed method, 40
getTimeAsElapsedResponse class, 41
getTimeAsString method, 40, 43, 78
GlassFish, 6, 182, 243, 259

JMS and, 262
MCS under HTTPS and, 267
servlet/EJB implementations and, 261
WS-Security, 265–280

Grails, 186
Groovy, 186

H
handleFault method, 84, 89, 101
handleMessage method, 84, 87, 89, 101, 104
handler chain, 88
handler framework, 84
handlers, 82

adding programmatically on the client side,
92

client-side SOAP, 91

292 | Index



logical, adding, 95–97
methods, 101
service-side (SOAP), adding, 97–101

handshakes between clients/servers, 198
Hash Message Authentication Code (HMAC),

194
header blocks, 83, 97

SOAP headers, injecting into, 85–91
headers

HTTP, 12
SOAP, 22

HMAC (Hash Message Authentication Code),
194

HTTP (HyperText Transport Protocol), 1
BASIC authentication, 212
headers, 12, 106
requests, 11

status codes, 130
verbs, 122
wire-tracking of, 14–16

start lines, 12
HTTPException type, 130
HTTPS (HyperText Transport Protocol over

Secure Socket Layer), 195
MCS and, 266–269

HttpServlet class, 159–167
HttpServletRequest type, 123, 159
HttpServletResponse type, 123, 159
HttpsURLConnection class, 200–203, 212
hyperlinks, 121
HyperText Transport Protocol (see HTTP)

I
idempotent requests, 123
identity certificates, 198
IDL (Interface Definition Language), 284
IETF (International Engineering Task Force),

119, 195
ifconfig command, 15
INFO HTTP verb, 122
input for web services, 9
input messages, 194
int data type, 67
intermediaries (SOAP), 83
interoperability, 2
ItemSearch wrapper, 50

J
JAAS (Java Authentication and Authorization

Service), 220
security providers, 242

JAASRealm, 220
JAS (Java Application Server), 239–281, 280
Java 6 (Java Standard Edition 6), 4
Java API for XML-Binding (see JAX-B)
Java Application Server (see JAS)
Java Authentication and Authorization Service

(see JAAS)
Java Message Service (JMS), 17
Java Naming and Directory Interface (see JNDI)
Java Persistence API (JPA), 241
Java Server Pages (see JSP)
Java Transaction API (JTA), 258
java.awt.Image type, 113
java.lang.String type, 67
java.util.Calendar type, 67
java2wsdl utility, 9
javax.servlet package, 159
javax.xml.transform package, 138
javax.xml.ws.handler package, 84
JAX-B (Java API for XML-Binding), 30

Java/Schema types and, 67
wsgen utility and, 59–69

JAX-P (Java API for XML-Processing), 138
JAX-RS (Java API for XML-RESTful Web

Services), 182–186
JAX-WS (Java API for XML-Web Services), 4,

239–281
HTTP BASIC authentication and, 212

jaxws-ri directory, 5, 15
JBoss, 6
JDBCRealm, 219
Jetty, 186
JMS (Java Message Service), 17, 262–265
JNDI (Java Naming and Directory Interface),

219
service providers and, 241

JNDIRealm, 220
JPA (Java Persistence API), 241
JSON (JavaScript Object Notation), 177
JSP (Java Server Pages), 239
JSSE (Java Secure Sockets Extension), 195
JTA (Java Transaction API), 258
JWS (Java Web Services), 4

Index | 293



K
-keep option (wsimport), 32
key pairs, 197
key/value collections in containers, 104
keytool utility, 216

L
language transparency, 2, 10

RESTful services and, 132–136
language-neutral theme of SOAP, 70
LDAP (Lightweight Directory Access Protocol),

220
security providers, 242

LH (logical handlers), 89
Lightweight Directory Access Protocol (see

LDAP)
literal encodings, 55
local names (SOAP bodies), 12
localhost networks, 15
locations (URL), 14
logical handlers (LH), 89
LogicalHandler, 84, 95

M
Man In The Middle (MITM) attack, 195
marshaling, 62

wsgen utility and, 65–67
MCS (Mutual Certificates Security), 266

HTTPS and, 266–269
WSIT and, 269–276

MD5 (Message Digest algorithm 5), 201
MemoryRealm, 220
MEP (message exchange pattern), 1, 16, 82–

84
message digest, 194
message exchange pattern (see MEP)
Message Transmission Optimization

Mechanism (MTOM), 111
binary data, using for, 116–119

message-oriented middleware, 239
MessageContext, 104–109
MessageListener, 240
messages section (WSDL), 37
messaging, 239
Metro Web Services Stack, 4, 15, 68
METRO_HOME environment variable, 15
MIME (Multiple Internet Mail Extension), 12

responses, requests for, 165–167

MITM (Man In The Middle) attack, 195
modular designs, 3
MSRPC, 283
MTOM (Message Transmission Optimization

Mechanism), 111
binary data, using for, 116–119

Multiple Internet Mail Extension (see MIME)
multithreading, 27
mustUnderstand attribute, 103
mutual authentication, 195
mutual challenge, 195

N
namespaces (XML), 14
NetBeans IDE, 269
NetKernal, 186
NetSniffer, 15
nodes (SOAP), 83
nonblocking (asynchronous) clients, 57

O
OASIS (Organization for the Advancement of

Structured Information Services),
119, 231

Object Relational Mapping (ORM), 240
opaque nouns, 124
open infrastructures, 2
ORM (Object Relational Mapping), 240

P
-p option (wsimport), 32, 47
passwords, 223
PASSWORD_PROPERTY constant, 222
peer authentication, 195
Perl, 2, 146

endpoint URLs and, 256
language transparency/RESTful services

and, 132
requesters of web services, 10–11
WSDL and, 31

persistence configuration files, 258
plain bits, 196
Plain Old Java Object (POJO), 4
point-to-point messaging, 262
POJO (Plain Old Java Object), 4
portType section (WSDL), 37
POST HTTP verb, 122, 136
pre-master secret, 199

294 | Index



primitive data types, 67
private keys, 197
programmatic security, 220
public keys, 197

certificates, 198
cryptography algorithms, 201

publish/subscribe messaging, 262
publishers, 239
publishing web services, 6
PUT HTTP verb, 122, 136

Q
QName constructor, 31, 34
qualified names (XML), 14
query strings, 125
queue-based messaging, 262

R
Rails, 186
raw XML, 125, 177
RC4_128, 201
RDMS (Relational Database Management

System), 242
realms, 219
receivers, 239
reference implementation (RI), 5, 239
Relational Database Management System

(RDMS), 242
Remote Method Invocation (RMI), 240, 287
Remote Procedure Call (see rpc style)
REpresentational State Transfer (see REST)
requesters

Java, 13
Perl/Ruby, 10–11

@Resource, 263
REST (REpresentational State Transfer), 2,

121–191
Amazon Associates Web Service and, 46
HttpServlet class, 159–167
language transparency and, 132–136

RESTful web services, 121–191
(see also REST)

Restlet framework, 186–191
RI (reference implementation), 239
Rivest, Shamir, Adleman (RSA), 201
RMI (Remote Method Invocation), 240, 287
Ron’s Code, 201
root elements (WSDL), 37

rpc attribute (SOAP), 38
rpc style, 41, 42, 283

document styles and, 55
wsgen utility and, 60

RSA (Rivest, Shamir, Adleman), 201
Ruby, 2, 14

requesters of web services, 10–11

S
SAML (Security Assertion Markup Language),

280
SAX (Simple API for XML), 136
Schema (XML), 37

Java types and, 67
SOAP messages, validating, 42

secret access keys, 46
secret keys, 196
Secure Hash Algorithm-1 (SHA-1), 84
Secure Token Service (STS), 280
security, 193–238

providers, 241
WS-Security and, 227–238

Security Assertion Markup Language (SAML),
280

SEI (Service Endpoint Interface), 4
client-support code and, 32

serialization, 62
service contract, 17
Service Endpoint Interface (see SEI)
service endpoints, 9
service implementation (UDDI), 79
service implementation bean (see SIB)
service interface (UDDI), 79
service section (WSDL), 38
service-side SOAP handlers, 97
Service.create method, 31
Service.Mode.PAYLOAD, 159
servlet-based implementations, 261
set method, 28, 64
SH (SOAP handlers), 89
SHA-1 (Secure Hash Algorithm-1), 84
SIB (service implementation bean), 31

MessageContext and, 104
Simple Mail Transfer Protocol (SMTP), 17, 37
Simple Object Access Protocol (see SOAP)
single (secret) key, 196
SMP (symmetric multiprocessor), 28
SMTP (Simple Mail Transfer Protocol), 17, 37
snap lengths, 16

Index | 295



SOAP (Simple Object Access Protocol), 1, 81–
120

1.1 and 1.2, 81, 102
API, 18–23
dispatch clients and, 157–159
document-style services and, 39–42
envelopes, 276–280 (see envelope (SOAP))
MEP architecture, 82
MessageContext and transport headers,

104–109
validating against XML Schema, 42
wire-level tracking of, 14–16

SOAP handlers (SH), 89
SOAP over HTTP, 38
SOAP::Lite Perl module, 10
@SOAPBinding, 78
@SOAPBinding.ParameterStyle.BARE, 54
SOAPHandler, 84
SOAPscope, 15
SRP (Secure Remote Protocol), 199
SSL (Secure Sockets Layer), 195
start lines (HTTP), 12
stateless Session EJBs, 240, 252–262
status codes (HTTP), 130
stream cipher algorithm, 201
structure (WSDL), 36–46
STS (Secure Token Service), 280
style attribute (SOAP), 38
subelements (XML), 44
subscribers, 239
superusers, using tcpdump, 15
symmetric encryption/decryption, 196
symmetric multiprocessor (SMP), 28
synchronous (blocking) calls, 57

T
TCP/IP (Transmission Control Protocol/

Internet Protocol), 228
tcpdump utility, 15
tcpmon utility, 15
tcptrace utility, 15
tight coupling, 56
TLS (Transport Layer Security), 195
Tomcat, 182, 239

container-managed security, 220–223
@WebServices

deploying, 213–215
securing, 215

topic-based messaging, 262

TRACE HTTP verb, 122
transparency (language), 2
transport attribute (SOAP), 38
transport headers, 104–109
Transport Layer Security (TLS), 195
truststores (browsers), 197
Tumblr services, 173–177
type systems, 17
types section (WSDL), 37

document style and, 56
rpc style and, 55

U
UDDI (Universal Description Discovery and

Integration), 79, 83
Uniform Resource Identifiers (see URIs)
unwrapped style, 36, 43–46

E-Commerce clients in, 52–55
URIs (Uniform Resource Identifiers), 14

REST and, 121
WSDL and, 32

URLs (Uniform Resource Locators)
endpoint, for EBJ services, 256
WSDL, using, 32

user authentication, 193, 211
UserLand Software, 285
USERNAME_PROPERTY constant, 222
users-roles security, 211
UUID (Universally Unique IDentifier), 83
UUIDValidator, 98

V
validation, using XML Schema against SOAP

messages, 42
verbs (HTTP), 122, 124
Verifier objects, 236

W
W3C (World Wide Consortium), 2
wadl2java utility, 178, 186
WADLing, 177–182

JAX-RS, 182–186
WCF (Windows Communication Foundation),

4
web containers, 239
Web Service Definition Language (see WSDL)
web services, 1
Web Services Interoperability (WS-I), 39

296 | Index



Web Services Interoperability Technologies
(WSIT), 4

web-resource-collection, 221
webified applications, 1
@WebMethods, 40, 43

generating faults from, 94–95
rpc style and, 55

WebParam.Mode.OUT, 52
@WebResult annotation, 35
@WebServiceProviders, 125, 213

deploying, 244–250
securing, 224–227

@WebServices, 125
deploying, 244–250
EJBs and, 252–262
MessageContext and transport headers,

104
Tomcat

deploying, 213–215
securing, 215–217

WS-Security, securing with Endpoint, 229–
236

WebSphere, 6
Windows Communication Foundation (WCF),

4
WinDump, 15
Winer, Dave, 285
wire-level security, 193, 194–203
wire-level tracking of HTTP/SOAP, 14–16
Wireshark, 15
World Wide Consortium (W3C), 2
wrapped style, 36, 43–47

document style and, 56
E-Commerce clients in, 47–52

wrappers, 45
WS-Authorization, 228
WS-Federation, 228
WS-I (Web Services Interoperability), 39, 119
WS-Policy, 228
WS-Privacy, 228
WS-SecureConversation, 228
WS-Security, 194, 227–238

GlassFish, using under, 265–280
@WebServices, securing under Endpoint,

229–236
WS-Trust, 228
WSDL (Web Service Definition Language), 7–

10, 31–80
limitations of, 79

structure, 36–46
bindings, 38
document-style services and, 39–42
E-Commerce Web Services (Amazon),

46–59
wsgen utility and JAX-B artifacts, 59–69

wsdl2java utility, 9
wsgen utility, 26, 30, 39, 41

JAX-B artifacts and, 59–69
marshaling and, 65
SOAP 1.1 and 1.2, 102
WSDL, generating, 68

wsimport utility, 9, 26, 30, 46
contract-first and, 70
SOAP 1.1 and 1.2, 102
unwrapped styles and, 53
WS-Security and, 232
WSDL, client-support code from, 32–35

WSIT (Web Services Interoperability
Technologies), 4

MCS and, 269–276
WSS (Web Services Security), 194, 231

X
XML (eXtensible Markup Language), 1

document style services, 39
Java types/schema types, 67
qualified names and namespaces, 14

XML Schema Definition (XSD), 17, 37
XML-Binary Optimized Packaging (XOP), 111
XML-RPC, 285
@XmlRootElement, 60
@XmlType, 62, 65
XOP (XML-Binary Optimized Packaging), 111
XPath, 138
XSD (XML Schema Definition), 17, 37
xsd:byte XML Schema type, 67
xsd:date XML Schema type, 67
xsd:dateTime XML Schema type, 67
xsd:decimal XML Schema type, 67
xsd:int XML Schema type, 67
xsd:int XSD type, 67
xsd:long type, 40
xsd:string type, 40
xsd:unsignedShort XSD type, 67

Y
Yahoo! news service, 167–170

Index | 297





About the Author
Martin Kalin has a Ph.D. from Northwestern University and is a professor in the
College of Computing and Digital Media at DePaul University. He has cowritten a series
of books on C and C++ and has written a book on Java for programmers. He enjoys
commercial programming and has codeveloped large distributed systems in process
scheduling and product configuration.

Colophon
The animal on the cover of Java Web Services: Up and Running is a great cormorant
(Phalacrocorax carbo). This bird is a common member of the Phalacrocoracidae family,
which consists of about 40 species of cormorants and shags—large seabirds with
hooked bills, colored throats, and stiff tail feathers. The name “cormorant” is derived
from the Latin corvus marinus, or sea raven, because of its black plumage.

An adult cormorant is about 30 inches long and has a wingspan of 60 inches. It has a
long neck, a yellow throat, and a white chin patch. The cormorant has a distinctive way
of spreading its wings as it perches, which many naturalists believe is a way of drying
its feathers, although this explanation is disputed. The cormorant lives mainly near
Atlantic waters, on western European and eastern North American coasts, and partic-
ularly on the Canadian maritime provinces. It breeds on cliffs or in trees, building nests
out of twigs and seaweed.

The cormorant is an excellent fisher, able to dive to great depths. In China and Japan,
among other places, fishermen have trained this bird using a centuries-old method, in
which they tie cords around the throats of the birds—to prevent them from
swallowing—and send them out from boats. The cormorants then catch fish in their
mouths, return to the boats, and the fishermen retrieve their catch. Alhough once a
successful industry, today cormorant fishing is primarily used for tourism.

The cover image is from Cassell’s Popular Natural History, Vol. III: Birds. The cover
font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.




	Table of Contents
	Preface
	Code-Driven Approach
	Chapter-by-Chapter Overview
	Freedom of Choice: The Tools/IDE Issue
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Java Web Services Quickstart
	What Are Web Services?
	What Good Are Web Services?

	A First Example
	The Service Endpoint Interface and Service Implementation Bean
	A Java Application to Publish the Web Service
	Testing the Web Service with a Browser

	A Perl and a Ruby Requester of the Web Service
	The Hidden SOAP
	A Java Requester of the Web Service
	Wire-Level Tracking of HTTP and SOAP Messages
	What’s Clear So Far?
	Key Features of the First Code Example

	Java’s SOAP API
	An Example with Richer Data Types
	Publishing the Service and Writing a Client

	Multithreading the Endpoint Publisher
	What’s Next?

	Chapter 2. All About WSDLs
	What Good Is a WSDL?
	Generating Client-Support Code from a WSDL
	The @WebResult Annotation

	WSDL Structure
	A Closer Look at WSDL Bindings
	Key Features of Document-Style Services
	Validating a SOAP Message Against a WSDL’s XML Schema
	The Wrapped and Unwrapped Document Styles

	Amazon’s E-Commerce Web Service
	An E-Commerce Client in Wrapped Style
	An E-Commerce Client in Unwrapped Style
	Tradeoffs Between the RPC and Document Styles
	An Asynchronous E-Commerce Client

	The wsgen Utility and JAX-B Artifacts
	A JAX-B Example
	Marshaling and wsgen Artifacts
	An Overview of Java Types and XML Schema Types
	Generating a WSDL with the wsgen Utility

	WSDL Wrap-Up
	Code First Versus Contract First
	A Contract-First Example with wsimport
	A Code-First, Contract-Aware Approach
	Limitations of the WSDL

	What’s Next?

	Chapter 3. SOAP Handling
	SOAP: Hidden or Not?
	SOAP 1.1 and SOAP 1.2
	SOAP Messaging Architecture
	Programming in the JWS Handler Framework
	The RabbitCounter Example
	Injecting a Header Block into a SOAP Header
	Configuring the Client-Side SOAP Handler
	Adding a Handler Programmatically on the Client Side
	Generating a Fault from a @WebMethod
	Adding a Logical Handler for Client Robustness
	Adding a Service-Side SOAP Handler
	Summary of the Handler Methods

	The RabbitCounter As a SOAP 1.2 Service
	The MessageContext and Transport Headers
	An Example to Illustrate Transport-Level Access

	Web Services and Binary Data
	Three Options for SOAP Attachments
	Using Base64 Encoding for Binary Data
	Using MTOM for Binary Data

	What’s Next?

	Chapter 4. RESTful Web Services
	What Is REST?
	Verbs and Opaque Nouns

	From @WebService to @WebServiceProvider
	A RESTful Version of the Teams Service
	The WebServiceProvider Annotation
	Language Transparency and RESTful Services
	Summary of the RESTful Features
	Implementing the Remaining CRUD Operations
	Java API for XML Processing

	The Provider and Dispatch Twins
	A Provider/Dispatch Example
	More on the Dispatch Interface
	A Dispatch Client Against a SOAP-based Service

	Implementing RESTful Web Services As HttpServlets
	The RabbitCounterServlet
	Requests for MIME-Typed Responses

	Java Clients Against Real-World RESTful Services
	The Yahoo! News Service
	The Amazon E-Commerce Service: REST Style
	The RESTful Tumblr Service

	WADLing with Java-Based RESTful Services
	JAX-RS: WADLing Through Jersey
	The Restlet Framework
	What’s Next?

	Chapter 5. Web Services Security
	Overview of Web Services Security
	Wire-Level Security
	HTTPS Basics
	Symmetric and Asymmetric Encryption/Decryption
	How HTTPS Provides the Three Security Services
	The HttpsURLConnection Class

	Securing the RabbitCounter Service
	Adding User Authentication
	HTTP BASIC Authentication

	Container-Managed Security for Web Services
	Deploying a @WebService Under Tomcat
	Securing the @WebService Under Tomcat
	Application-Managed Authentication
	Container-Managed Authentication and Authorization
	Configuring Container-Managed Security Under Tomcat
	Using a Digested Password Instead of a Password
	A Secured @WebServiceProvider

	WS-Security
	Securing a @WebService with WS-Security Under Endpoint
	The Prompter and the Verifier
	The Secured SOAP Envelope
	Summary of the WS-Security Example

	What’s Next?

	Chapter 6. JAX-WS in Java Application Servers
	Overview of a Java Application Server
	Deploying @WebServices and @WebServiceProviders
	Deploying @WebServiceProviders

	Integrating an Interactive Website and a Web Service
	A @WebService As an EJB
	Implementation As a Stateless Session EJB
	The Endpoint URL for an EBJ-Based Service
	Database Support Through an @Entity
	The Persistence Configuration File
	The EJB Deployment Descriptor
	Servlet and EJB Implementations of Web Services

	Java Web Services and Java Message Service
	WS-Security Under GlassFish
	Mutual Challenge with Digital Certificates
	MCS Under HTTPS
	MCS Under WSIT
	The Dramatic SOAP Envelopes

	Benefits of JAS Deployment
	What’s Next?

	Chapter 7. Beyond the Flame Wars
	A Very Short History of Web Services
	The Service Contract in DCE/RPC
	XML-RPC
	Standardized SOAP

	SOAP-Based Web Services Versus Distributed Objects
	SOAP and REST in Harmony

	Index

