
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Java EE 6
Pocket Guide

Arun Gupta

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Java EE 6 Pocket Guide
by Arun Gupta

Copyright © 2012 Arun Gupta. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Copyeditor: Emily Quill
Production Editor: Kristen Borg
Proofreader: Kiel Van Horn
Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2012: First Edition.

Revision History for the First Edition:
2012-09-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449336684 for release de-
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. Java EE 6 Pocket Guide, the
image of a jellyfish (Favonia octonema), and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-33668-4

[M]

1347298110

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449336684
http://www.allitebooks.org

To Menka,
my lovely wife and
best friend. Your

support and encour-
agement make our

lives fun and
meaningful.

To
Aditya and Mihir,

my two joyful boys,
for playing with me

and keeping me
charged.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface ix

Chapter 1: Java Platform, Enterprise Edition 1
Introduction 1

Deliverables 4

What’s New in Java EE 6 8

Chapter 2: Managed Beans 13
Define and Use a Managed Bean 14

Lifecycle Callback 15

Chapter 3: Servlets 17
Servlets 17

Servlet Filters 23

Event Listeners 25

Asynchronous Support 29

Web Fragments 31

Security 33

Resource Packaging 35

Error Mapping 37

Handling Multipart Requests 37

v

www.allitebooks.com

http://www.allitebooks.org

Chapter 4: Java Persistence API 39
Entities 40

Persistence Unit, Persistence Context, and Entity Manager 43

Create, Read, Update, and Delete Entities 46

Validating the Entities 50

Transactions and Locking 52

Caching 54

Chapter 5: Enterprise JavaBeans 57
Stateful Session Beans 58

Stateless Session Beans 60

Singleton Session Beans 62

Message-Driven Beans 64

Portable Global JNDI Names 66

Transactions 67

Asynchronous 70

Timers 71

Embeddable API 76

EJB.Lite 77

Chapter 6: Contexts and Dependency Injection 79
Injection Points 80

Qualifier and Alternative 81

Producer and Disposer 84

Interceptors and Decorators 86

Scopes and Contexts 90

Stereotypes 92

Events 94

Portable Extensions 95

Chapter 7: JavaServer Faces 99
Facelets 100

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Resource Handling 104

Composite Components 105

Ajax 110

HTTP GET 113

Server and Client Extension Points 115

Navigation Rules 118

Chapter 8: SOAP-Based Web Services 121
Web Service Endpoints 123

Provider-Based Dynamic Endpoints 126

Endpoint-Based Endpoints 128

Web Service Client 129

Dispatch-Based Dynamic Client 132

Handlers 134

Chapter 9: RESTful Web Services 137
Simple RESTful Web Services 138

Binding HTTP Methods 140

Multiple Resource Representations 143

Binding Request to a Resource 144

Mapping Exceptions 147

Chapter 10: Java Message Service 149
Sending a Message 152

Quality of Service 155

Receiving a Message Synchronously 156

Receiving a Message Asynchronously 158

Temporary Destinations 159

Chapter 11: Bean Validation 161
Built-in Constraints 162

Defining a Custom Constraint 165

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Validation Groups 169

Integration with JPA 172

Integration with JSF 174

A:  Getting Started with Java EE 6 Development and
Deployment 177

B:  Further Reading 179

Index 183

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

The Java EE 6 platform has taken ease-of-development in en-
terprise Java programming to new heights. This book is direc-
ted towards the audience who wants to get a quick overview
of the platform and to keep coming back to learn the basics.

This book provides an overview of the key specifications in the
Java EE 6 platform (one specification per chapter). The main
concepts from the different specifications are explained and
accompanied by code samples. No prior knowledge of earlier
versions of the platform is required. However, some basic un-
derstanding of Java is required to understand the code.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

ix

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing
a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “Java EE 6 Pocket Guide by Arun Gupta (O’Reilly).
Copyright 2012 Arun Gupta, 978-1-449-33668-4.”

If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribookson
line.com) is an on-demand digital library that
delivers expert content in both book and video
form from the world’s leading authors in tech-
nology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Online as their primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of product mixes and pricing
programs for organizations, government agencies, and indi-
viduals. Subscribers have access to thousands of books,
training videos, and prepublication manuscripts in one fully
searchable database from publishers like O’Reilly Media, Pren-
tice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Red-
books, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology,
and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at http://oreil.ly/javaEE6-pocketguide.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Preface | xi

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/javaEE6-pocketguide
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book was not possible without support from a multitude
of people.

First and foremost, many thanks to O’Reilly for trusting in me
and providing an opportunity to write this book. Their team
provided excellent support throughout the editing, reviewing,
proofreading, and publishing process.

At O’Reilly, Michael Loukides helped me with bootstrapping
the book. Meghan Blanchette provided excellent editorial help
throughout all the stages, helping with interim reviews, pro-
viding feedback on styling, arranging technical reviews, and
connecting me with the rest of the team when required. Jessica
Hosman helped me in getting started and guided the authoring
process.

Emily Quill and Kristen Borg helped with copyediting and
making sure to provide the finishing touches. And thanks to
the rest of the O'Reilly team with whom I did not interact di-
rectly, but were helping in many other ways.

The detailed proofreading and technical review by Markus
Eisele (@myfear, http://blog.eisele.net), John Yeary (@jyeary,
http://javaevangelist.blogspot.com), and Bert Ertman (@Bert
Ertman, http://bertertman.wordpress.com) ensured that the rel-
evant content was covered accurately. Their vast experience
and knowledge showed in the depth of their comments.

I am grateful for the numerous discussions with developers
around the world that helped me understand the technology
better. Thanks to my colleagues at Oracle and the JSR specifi-
cation leads for explaining the intended use cases of different
technologies. And thanks to everybody else in my life, who
provided much-needed breaks from book writing.

xii | Preface

http://www.youtube.com/oreillymedia
http://blog.eisele.net
http://javaevangelist.blogspot.com
http://bertertman.wordpress.com

CHAPTER 1

Java Platform,
Enterprise Edition

Introduction
The Java Platform, Enterprise Edition (Java EE) provides a
standards-based platform for developing web and enterprise
applications. These applications are typically designed as
multitier applications, with a frontend tier consisting of web
frameworks, a middle tier providing security and transactions,
and a backend tier providing connectivity to a database or a
legacy system. The Java EE platform defines APIs for different
components in each tier, and also provides some additional
services such as naming, injection, and resource management
that span across the platform. Each component is defined in a
separate specification that also describes the API, javadocs, and
expected behavior.

The Java Platform, Enterprise Edition 6 (Java EE 6) was re-
leased in December 2009 and provides a simple, easy-to-use,
and complete stack for building such applications. The previ-
ous version of the platform, Java EE 5, took the first step in
providing a simplified developer experience. The Java EE 6
platform further improves upon the developer productivity
features and also adds a lot more functionality.

1

The three main goals of the platform are:

Ease of use
The Java EE 6 platform takes ease of use to new heights
by extensively using convention over configuration and
heavy use of annotations on a Plain Old Java Object
(POJO). Adding @Stateless, @Stateful, or @Singleton to
a POJO makes it an Enterprise JavaBean. Further, this
could be easily packaged in a WAR file instead of a special
packaging of JAR or EAR. Servlets are POJOs as well, an-
notated with @WebServlet. Deployment descriptors like
web.xml and faces-config.xml are optional in most cases;
the information typically specified in deployment descrip-
tors is now captured in annotations. There are default
rules of navigation from one page of JSF to another. Pub-
lishing a POJO as a RESTful web service is equivalent to
adding an @Path annotation on a POJO.

Making deployment descriptors optional, using conven-
tion over configuration, and relying heavily on annota-
tions makes the Java EE 6 platform easy to use and, above
all, less verbose.

Lightweight
There are 31 component specifications in the Java EE 6
platform, as listed in Appendix EE.6 of the platform spec-
ification. These components include Enterprise JavaBeans
(EJB), Servlets, JavaServer Faces (JSF), Java API for REST-
ful Web Services (JAX-RS), and many others. Building a
typical enterprise application may not require all the com-
ponents. Also, some of the technologies like Java API for
XML Registries (JAXR) or Java API for XML-based RPC
(JAX-RPC) were very relevant when introduced in the
platform. Now they have either been replaced by better
components, such as Java API for XML Web Services
(JAX-WS), or are no longer used.

The Java SE Expert Group defined a two-step process for
removing features from the platform. In this process,
known as pruning, a feature is marked as optional (re-
ferred to as proposed optional) in one release, and then a

2 | Chapter 1: Java Platform, Enterprise Edition

subsequent release can decide to either remove the fea-
ture, retain it as a required component, or leave it in the
proposed removal state. The Java EE Expert Group used
that process and targeted some features for pruning. This
is analogous to trimming rose bushes in the beginning of
each year so that fresh blossoms can grow. Pruning un-
used features ensures that even with new feature addi-
tions, the platform will remain simple and lightweight.

The Java EE platform also introduces the notion of pro-
files. A profile represents a configuration of the platform
suited to a particular class of applications. A profile may
be a subset or superset of the technologies in the platform.
The Java EE 6 Web Profile is defined as a separate speci-
fication in the platform, and is defined as a subset of tech-
nologies contained in the platform and targeted toward
the developers of modern web applications. This breaks
away from the “one size fits all” approach of previous re-
leases. And although it’s a proper subset, it still offers a
reasonably complete stack composed of standard APIs,
and it’s capable out-of-the-box for addressing a wide va-
riety of web applications. The web profile allows devel-
opers to build web applications quickly and prevents the
proliferation of custom web stacks for easier maintaina-
bility. Additional profiles can be defined by following the
rules of the Java Community Process (JCP).

Together, pruning and web profiles make the Java EE 6
platform lightweight and simple to maintain.

Extensibility
The platform provides a rich set of functionality to create
enterpise applications. However, it’s a common practice
to include third-party frameworks to supplement or com-
plement functionality in the platform. These frameworks
require registration of a ServletListener, ServletFilter,
or similar component so that they are recognized by the
runtime. The Servlet specification defines a web frag-
ment mechanism by which these entry points to the frame-
work are defined in the framework library. The Servlet

Introduction | 3

containers then register the framework, relieving the de-
veloper of the burden. This allows these frameworks to be
treated as first-class citizens of the platform.

In addition, the Contexts and Dependency Injection
(CDI) specification defines a portable extension mecha-
nism that allows you to extend the capabilities of the plat-
form in different ways, for example by providing certain
predefined scopes. A new scope can be easily defined and
included with any Java EE 6–compliant application server
using the portable extensions method.

Specifications like CDI, JavaServer Faces 2, Java API for REST-
ful Services, Java Persistence API 2, and Servlets 3 make the
Java EE 6 platform more powerful. This book will provide an
overview of the main technologies included in the platform,
and easy-to-understand code samples will be used throughout
to demonstrate improvements in Java EE 6.

Deliverables
The Java EE 6 platform was developed as Java Specification
Request 316 or JSR 316 (http://jcp.org/en/jsr/detail?id=316) fol-
lowing Java Community Process (JCP) 2.7. The JCP process
defines three key deliverables for any JSR:

Specification
A formal document that describes the proposed compo-
nent and its features.

Reference Implementation (RI)
Binary implementation of the proposed specification. The
RI helps to ensure that the proposed specifications can be
implemented in a binary form and provides constant feed-
back to the specification process.

Technology Compliance Kit (TCK)
A set of tests that verify that the RI is in compliance with
the specification. This allows multiple vendors to provide
compliant implementations.

4 | Chapter 1: Java Platform, Enterprise Edition

http://jcp.org/en/jsr/detail?id=316

Java EE 6 consists of the platform specification that defines
requirements across the platform. It also consists of the fol-
lowing component specifications:

Web Technologies

• JSR 45: Debugging Support for Other Languages

• JSR 52: Standard Tag Library for JavaServer Pages
(JSTL)1.2

• JSR 245: JavaServer Pages (JSP) 2.2 and Expression
Language (EL) 1.2

• JSR 314: JavaServer Faces (JSF) 2.0

• JSR 315: Servlet 3.0

Enterprise Technologies

• JSR 250: Common Annotations for the Java
Platform 1.1

• JSR 299: Contexts and Dependency Injection (CDI)
for the Java EE Platform 1.0

• JSR 303: Bean Validation 1.0

• JSR 316: Managed Beans 1.0

• JSR 317: Java Persistence API (JPA) 2.0

• JSR 318: Enterprise JavaBeans (EJB) 3.1

• JSR 318: Interceptors 1.1

• JSR 322: Java EE Connector Architecture 1.6

• JSR 330: Dependency Injection for Java 1.0

• JSR 907: Java Transaction API (JTA) 1.1

• JSR 914: Java Message Server (JMS) 1.1

• JSR 919: JavaMail 1.4

Web Service Technologies

• JSR 67: Java APIs for XML Messaging (JAXM) 1.3

• JSR 93: Java API for XML Registries (JAXR) 1.0

• JSR 101: Java API for XML-based RPC (JAX-
RPC) 1.1

• JSR 109: Implementing Enterprise Web Services 1.3

Deliverables | 5

• JSR 173: Streaming API for XML (StAX) 1.0

• JSR 181: Web Services Metadata for the Java Plat-
form 2.0

• JSR 222: Java Architecture for XML Binding
(JAXB) 2.2

• JSR 224: Java API for XML Web Services (JAX-
WS) 2.2

• JSR 311: Java API for RESTful Web Services (JAX-
RS) 1.1

Management and Security Technologies

• JSR 77: J2EE Management API 1.1

• JSR 88: Java Platform EE Application Deployment
API 1.2

• JSR 115: Java Authorization Contract and Contain-
ers (JACC) 1.3

• JSR 196: Java Authentication Service Provider Inte-
face for Containers (JASPIC) 1.0

The different components work together to provide an inte-
grated stack, as shown in Figure 1-1.

Figure 1-1. Java EE 6 architecture

6 | Chapter 1: Java Platform, Enterprise Edition

In Figure 1-1:

• JPA, JTA, and JMS provide the basic services such as da-
tabase access, transactions, and messaging.

• Managed Beans and EJB provide a simplified program-
ming model using POJOs to use the basic services.

• CDI, Interceptors, and Common Annotations provide
concepts that are applicable to a wide variety of compo-
nents, such as type-safe dependency injection, addressing
cross-cutting concerns using interceptors, and a common
set of annotations.

• CDI Extensions allow you to extend the platform beyond
its existing capabilities in a standard way.

• Web services using JAX-RS and JAX-WS, JSF, JSP, and EL
define the programming model for web applications. Web
Fragments allow automatic registration of third-party web
frameworks in a very natural way.

• Bean Validation provides a standard means to declare
constraints and validate them across different
technologies.

JAX-RPC (JSR 101), JAXR (JSR 93), EJB Entity Beans (part of
JSR 153), and Java EE Application Deployment (JSR 88) are
marked for pruning in this version of the platform.

The RI of Java EE 6 is built in the GlassFish Community. The
GlassFish Server Open Source Edition provides a full Java
EE 6–compliant, free, and open source application server. It is
also available in a Web Profile distribution and can be down-
loaded from http://glassfish.org. The application server is easy
to use (zip installer and NetBeans/Eclipse/IntelliJ integration),
lightweight (downloads starting at 30 MB, small disk/memory
footprint), and modular (OSGi-based, containers start on
demand). It also provides clustering with high availability and
centralized administration using CLI, web-based administra-
tion console, and REST management/monitoring APIs. The
Oracle GlassFish Server is Oracle’s commercially supported
GlassFish server distribution and can be downloaded from

Deliverables | 7

http://glassfish.org

http://oracle.com/goto/glassfish. As of this writing, there are 17
Java EE 6–compliant application servers. The complete list is
available at http://www.oracle.com/technetwork/java/javaee/
overview/compatibility-jsp-136984.html.

The TCK is available to all Java EE licensees for testing their
respective implementations.

What’s New in Java EE 6
Some new specifications have been added to improve the func-
tionality and richness of the platform. Several existing compo-
nent specifications were revised to make them simple and easy
to use.

The main features of the key specifications are described.

Managed Beans

• POJO-based managed component.

• Provides common set of services such as lifecycle re-
source injection, callbacks, and interceptors.

Enterprise JavaBeans

• An EJB can be created with a single source file per
bean and annotated with @Stateless, @Stateful, or
@Singleton.

• EJBs can be packaged in a .war for local access using
@Local and ejb-jar for local and remote access.

• EJBs can be accessed using a portable global JNDI
name.

• A method of a session bean may be marked to be
invoked asynchronously. These methods allow the
client to retrieve the result value later, or use the fire-
and-forget pattern.

• Time-based events can be scheduled using cron-like
syntax by specifying @Schedule on bean methods.

8 | Chapter 1: Java Platform, Enterprise Edition

http://oracle.com/goto/glassfish
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

• The Embeddable EJB API allows client code and its
corresponding enterprise beans to run within the
same JVM and the class loader.

Servlets

• Annotation-driven Servlet (@WebServlet), Filter (@Web
Filter), and Listener (@WebListener). The web.xml
descriptor becomes optional in most of the common
cases.

• Servlets, filters, and listeners can be programmati-
cally registered using ServletContext.

• Asynchronous servlets allow the control (or thread)
to return back to the container to perform other tasks
while waiting for the long-running process to
complete.

• Framework libraries can be integrated in a modular
way using web-fragment.xml.

• Servlet security can be specified using @ServletSecu
rity, @HttpConstraint, and @HttpMethodConstraint in
addition to <security-constraint>.

Java API for RESTful Web Services

• POJO-based and annotation-driven way of publish-
ing RESTful web services.

• Standard set of HTTP protocol methods such as
GET, POST, PUT, and DELETE are supported.

• Each resource can be represented in multiple for-
mats; custom types are supported as well.

• Client-side content negotiation supported using
HTTP Accept: header.

SOAP-Based Web Services

• Publish SOAP-based web services using a POJO and
annotations. Finer grained control over the messages
using Source, DataSource, and SOAPMessage.

• Client-side API to invoke a SOAP-based web service.

What’s New in Java EE 6 | 9

• Well-defined extension points for pre/post process-
ing of request/response messages on client and
server.

• Standard Java-to-WSDL and WSDL-to-Java
mapping.

JavaServer Faces

• Facelets is defined as the preferred templating lan-
guage for the page. This allows composite compo-
nents to be easily defined, enabling true abstraction.

• Support for Ajax using JavaScript APIs and declara-
tive Ajax using f:ajax.

• Most of the elements in faces-config.xml have an al-
ternative annotation. Default navigation rules are de-
fined following convention-over-configuration.

• HTTP GET support and bookmarkable URLs.

• Integration with Bean Validation.

Java Persistence API

• An improved object/relational mapping to provide
more intuitive Java mapping. An expanded and
richer JPQL to support the improved mapping and
some new functionality.

• The Metamodel captures a metamodel of the persis-
tent state and relationships of the managed classes of
a persistence unit. This abstract persistence schema
is then used to author the type-safe queries using
Criteria API.

• Pessimistic locking is supported in addition to opti-
mistic locking by the addition of new locking modes.

• Standard configuration options using javax.persis
tence properties.

10 | Chapter 1: Java Platform, Enterprise Edition

Interceptors

• Interpose on invocations and lifecycle events that
occur on an associated target class.

• Interceptors can be applied using annotations such
as @Interceptors or in a type-safe manner using a de-
ployment descriptor such as beans.xml.

Contexts and Dependency Injection

• Standards-based type-safe dependency injection.

• Provides strong typing by specifying all dependencies
using Java type system. Provides loose coupling with
Events, Interceptors, and Decorators.

• Provides an integration with Expression Language.

• Defines an extensible scope and context manage-
ment mechanism.

• Bridges transactional tier (EJB) and presentation tier
(JSF) in the platform.

Bean Validation

• Class-level constraint declaration and validation fa-
cility for POJOs.

• Provides a built-in set of constraint definitions such
as @NotNull, @Min, @Max, and @Size.

• Custom constraints can be declared using META-
INF/validation.xml in addition to annotations.

What’s New in Java EE 6 | 11

CHAPTER 2

Managed Beans

Managed Beans is defined as part of JSR 316, and the complete
specification can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr316/index.html.

A managed bean is a POJO that is treated as a managed com-
ponent by a Java EE container. It provides a common founda-
tion for different kinds of components that exist in the Java EE
platform. In addition, the specification also defines a small set
of basic services such as resource injection, lifecycle callbacks,
and interceptors on these beans.

Different component specifications can add other characteris-
tics to this managed bean. The specification even defines well-
known extension points to modify some aspects. For example,
Contexts and Dependency Injection (CDI) relaxes the require-
ment to have a POJO with a no-args constructor, and allows
constructors with more complex signatures. CDI also adds
support for lifecycle scopes and events. Similarly, Enterprise
JavaBeans is a managed bean and adds support for transactions
and other services. This allows the developer to start light and
create a more powerful component such as an EJB or CDI bean
if and when the need arises.

Typically, a managed bean is not used by itself in a Java EE
application. However, the concepts defined are very relevant

13

http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html

to Java EE and allow you to build other component specifica-
tions on it.

Define and Use a Managed Bean
A managed bean is a POJO with a no-args constructor with the
class-level annotation javax.annotation.ManagedBean:

@javax.annotation.ManagedBean("myBean")
public class MyManagedBean {
 //. . .
}

This bean can be injected in any other managed component in
three different ways:

1. Using @Resource annotation as:

@Resource
MyManagedBean bean;

2. Using @Inject annotation as:

@Inject
MyManagedBean bean;

3. Using the JNDI reference java:app/ManagedBean/myBean
or java:module/myBean where ManagedBean is the name of
the deployed archive (.war in this case):

InitialContext ic = new InitialContext();
MyManagedBean bean = (MyManagedBean)ic.lookup
 ("java:module/myBean");

There is no default name for the managed bean, so it’s
important to provide a name in order for the JNDI refer-
ence to work. EJB and CDI specifications extend this rule
and provide default naming rules.

Once the bean is injected, its business methods can be invoked
directly. As part of Java EE 6, all EJB and CDI beans are defined
as managed beans, and so:

@Stateless
public class FooBean {

14 | Chapter 2: Managed Beans

 //. . .
}

and:

@Named
public class BarBean {
 //. . .
}

are implicitly managed beans as well.

No other beans in the Java EE platform are currently implicitly
defined as managed beans. However, JAX-RS resources can
also be defined as EJB and CDI beans, in which case the JAX-
RS resources will be implicit managed beans as well. A future
version of different component specifications may discuss
whether it makes sense to align other Java EE POJO elements
with the Managed Beans specification.

Lifecycle Callback
The standard annotations javax.annotation.PostConstruct
and javax.annotation.PreDestroy from JSR 250 can be applied
to any methods in the managed bean to perform resource ini-
tialization or cleanup:

@ManagedBean("myBean")
public class MyManagedBean {
 @PostConstruct
 public void setupResources() {
 //. . .
 }

 @PreDestroy
 public void cleanupResources() {
 //. . .
 }

 public String sayHello() {
 return "Hello " + name;
 }
}

Lifecycle Callback | 15

The setupResources method is where any resources required
during business method execution can be acquired, and the
cleanupResources method is where those resources are closed
or released. The lifecycle callback methods are invoked after
the no-args constructor.

16 | Chapter 2: Managed Beans

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Servlets

Servlets are defined as JSR 315, and the complete specification
can be downloaded from http://jcp.org/aboutJava/community
process/final/jsr315/index.html.

A servlet is a web component hosted in a servlet container and
generates dynamic content. The web clients interact with a
servlet using a request/response pattern. The servlet container
is responsible for the lifecycle of the servlet, receives requests
and sends responses, and performs any other encoding/
decoding required as part of that.

Servlets
A servlet is defined using the @WebServlet annotation on a
POJO, and must extend the javax.servlet.http.HttpServlet
class.

Here is a sample servlet definition:

@WebServlet("/account")
public class AccountServlet
 extends javax.servlet.http.HttpServlet {
 //. . .
}

17

http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html

The fully qualified class name is the default servlet name, and
may be overridden using the name attribute of the annotation.
The servlet may be deployed at multiple URLs:

@WebServlet(urlPatterns={"/account", "/accountServlet"})
public class AccountServlet
 extends javax.servlet.http.HttpServlet {
 //. . .
}

The @WebInitParam can be used to specify an initialization
parameter:

@WebServlet(urlPatterns="/account",
 initParams={
 @WebInitParam(name="type", value="checking")
 }
)
public class AccountServlet
 extends javax.servlet.http.HttpServlet {
 //. . .
}

The Servlet interface has one doXXX method to handle each
of HTTP GET, POST, PUT, DELETE, HEAD, OPTIONS, and TRACE re-
quests. Typically the developer is concerned with overriding
the doGet and doPost methods. The code below shows a servlet
handling the GET request:

@WebServlet("/account")
public class AccountServlet
 extends javax.servlet.http.HttpServlet {
 @Override
 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response) {
 //. . .
 }
}

In this code:

• The HttpServletRequest and HttpServletResponse cap-
ture the request/response with the web client.

18 | Chapter 3: Servlets

• The request parameters, HTTP headers, different parts of
the path such as host, port, and context, and much more
information is available from HttpServletRequest.

The HTTP cookies can be set and retrieved as well. The devel-
oper is responsible for populating the HttpServletResponse,
and the container then transmits the captured HTTP headers
and/or the message body to the client.

This code shows how a HTTP GET request received by a servlet
displays a simple response to the client:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 try (PrintWriter out = response.getWriter()) {
 out.println("<html><head>");
 out.println("<title>MyServlet</title>");
 out.println("</head><body>");
 out.println("<h1>My First Servlet</h1>");
 //. . .
 out.println("</body></html>");
 } finally {
 //. . .
 }
}

Request parameters may be passed in GET and POST requests.
In a GET request, these parameters are passed in the query
string as name/value pairs. A sample URL to invoke the servlet
explained earlier with request parameters can look like:

. . ./account?tx=10

In a POST request, the request parameters can also be passed
in the posted data that is encoded in the body of the request.
In both GET and POST requests, these parameters can be ob-
tained from HttpServletRequest:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 String txValue = request.getParameter("tx");
 //. . .
}

Request parameters can differ for each request.

Servlets | 19

Initialization parameters, also known as init params, may be
defined on a servlet to store startup and configuration infor-
mation. As explained earlier, @WebInitParam is used to specify
init params for a servlet:

String type = null;

@Override
public void init(ServletConfig config)
 throws ServletException {
 type = config.getInitParameter("type");
 //. . .
}

The default behavior of the servlet’s lifecycle call methods may
be manipulated by overriding init, service, and destroy meth-
ods of the javax.servlet.Servlet interface. Typically, data-
base connections are initialized in init and released in destroy.

A servlet may also be defined using the servlet and servlet-
mapping element in the deployment descriptor of the web ap-
plication, web.xml. The AccountServlet may be defined using
web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <servlet>
 <servlet-name>AccountServlet</servlet-name>
 <servlet-class>org.sample.AccountServlet
</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>AccountServlet</servlet-name>
 <url-pattern>/account</url-pattern>
 </servlet-mapping>
</web-app>

The annotations cover most of the common cases, so
web.xml is not required in those cases. But some cases, such as
ordering of servlets, can only be done using web.xml. If the

20 | Chapter 3: Servlets

metadata-complete element in web.xml is true, then the anno-
tations in the class are not processed.

The values defined in the deployment descriptor override the
values defined using annotations.

A servlet is packaged in a web application in a .war file. Mul-
tiple servlets may be packaged together, and they all share a
servlet context. The ServletContext provides detail about the
execution environment of the servlets and is used to commu-
nicate with the container, for example by reading a resource
packaged in the web application, writing to a log file, or dis-
patching a request.

The ServletContext can be obtained from HttpServletRequest:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 ServletContext context = request.getServletContext();
 //. . .
}

A servlet can send an HTTP cookie, named JSESSIONID, to the
client for session tracking. This cookie may be marked as
HttpOnly, which ensures that the cookie is not exposed to
client-side scripting code, and thus helps mitigate certains
kinds of cross-site scripting attacks:

SessionCookieConfig config = request.getServletContext().
 getSessionCookieConfig();
config.setHttpOnly(true);

Alternatively, URL rewriting may be used by the servlet as a
basis for session tracking. The ServletContext#getSession
CookieConfig method returns SessionCookieConfig, which can
be used to configure different properties of the cookie.

The HttpSession interface can be used to view and manipulate
information about a session such as the session identifier and
creation time, and to bind objects to the session. A new session
object may be created:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 HttpSession session = request.getSession(true);

Servlets | 21

 //. . .
}

The session.setAttribute and session.getAttribute methods
are used to bind objects to the session.

A servlet may forward a request to another servlet if further
processing is required. This can be achieved by dispatching the
request to a different resource using RequestDispatcher,
which can be obtained from HttpServletRequest.getRequest
Dispatcher or ServletContext.getRequestDispatcher. The for-
mer can accept a relative path, whereas the latter can accept a
path relative to the current context only:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 request.getRequestDispatcher("bank").
 forward(request, response);
 //. . .
}

In this code, bank is another servlet deployed in the same
context.

The ServletContext.getContext method can be used to obtain
ServletContext for foreign contexts. It can then be used to ob-
tain a RequestDispatcher, which can dispatch requests in that
context.

A servlet response may be redirected to another resource by
calling the HttpServletResponse.sendRedirect method. This
sends a temporary redirect response to the client and the client
issues a new request to the specified URL. Note that in this case
the original request object is not available to the redirected
URL. The redirect may also be marginally slower because it
entails two requests from the client, whereas forward is per-
formed within the container:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 //. . .
 response.sendRedirect(
 "http://example.com/SomeOtherServlet");
}

22 | Chapter 3: Servlets

Here the response is redirected to the http://example.com/Some
OtherServlet URL. Note that this URL could be on a different
host/port and may be relative or absolute to the container.

In addition to declaring servlets using @WebServlet and
web.xml, they may also be defined programmatically using
ServletContext.addServlet methods. This can be done from
the ServletContainerInitializer.onStartup or ServletContext
Listener.contextInitialized method. You can read more
about this in “Event Listeners” on page 25.

The ServletContainerInitializer.onStartup method is in-
voked when the application is starting up for the given
ServletContext. The addServlet method returns ServletRegis
tration.Dynamic, which can then be used to create URL map-
pings, set security roles, set initialization parameters, and other
configuration items:

public class MyInitializer
 implements ServletContainerInitializer {
 @Override
 public void onStartup
 (Set<Class<?>> clazz, ServletContext context) {
 ServletRegistration.Dynamic reg =
context.addServlet("MyServlet", "org.example.MyServlet");
 reg.addMapping("/myServlet");
 }
}

Servlet Filters
A servlet filter may be used to update the request and response
payload and header information from and to the servlet. It is
important to realize that filters do not create the response—
they only modify or adapt the requests and responses. Authen-
tication, logging, data compression, and encryption are some
typical use cases for filters. The filters are packaged along with
a servlet and act upon the dynamic or static content.

Servlet Filters | 23

http://example.com/SomeOtherServlet
http://example.com/SomeOtherServlet

Filters can be associated with a servlet or with a group of serv-
lets and static content by specifying a URL pattern. A filter is
defined using @WebFilter annotation:

@WebFilter("/*")
public class LoggingFilter
 implements javax.servlet.Filter {
 public void doFilter(HttpServletRequest request,
 HttpServletResponse response) {
 //. . .
 }
}

In the code shown, the LoggingFilter is applied to all the serv-
lets and static content pages in the web application.

The @WebInitParam may be used to specify initialization pa-
rameters here as well.

A filter and the target servlet always execute in the same invo-
cation thread. Multiple filters may be arranged in a filter chain.

A filter may also be defined using <filter> and <filter-
mapping> elements in the deployment descriptor:

<filter>
 <filter-name>LoggingFilter</filter-name>
 <filter-class>org.sample.LoggingFilter</filter-class>
</filter>
 . . .
<filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

In addition to declaring filters using @WebFilter and web.xml,
they may also be defined programmatically using ServletCon
text.addFilter methods. This can be done from the Servlet
ContainerInitializer.onStartup method or the ServletCon
textListener.contextInitialized method. The addFilter

method returns ServletRegistration.Dynamic, which can then
be used to add mapping for URL patterns, set initialization
parameters, and other configuration items:

public class MyInitializer
 implements ServletContainerInitializer {

24 | Chapter 3: Servlets

 public void onStartup
 (Set<Class<?>> clazz, ServletContext context) {
 FilterRegistration.Dynamic reg =
context.addServlet("LoggingFilter",
 "org.example.LoggingFilter");
 reg.addMappingForUrlPatterns(null, false, "/");
 }
}

Event Listeners
Event listeners provide lifecycle callback events for ServletCon
text, HttpSession, and ServletRequest objects. These listeners
are classes that implement an interface that supports event no-
tifications for state changes in these objects. Each class is an-
notated with @WebListener, declared in web.xml, or registered
via one of the ServletContext.addListener methods. A typical
example of these listeners is where an additional servlet is reg-
istered programmatically without an explicit need for the pro-
grammer to do so, or a database connection is initialized and
restored back at the application level.

There may be multiple listener classes listening to each event
type, and they may be specified in the order in which the con-
tainer invokes the listener beans for each event type. The lis-
teners are notified in the reverse order during application
shutdown.

Servlet context listeners listen to the events from resources in
that context:

@WebListener
public class MyContextListener
 implements ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent sce) {
 ServletContext context = sce.getServletContext();
 //. . .
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {

Event Listeners | 25

 //. . .
 }
}

The ServletContextAttributeListener is used to listen for at-
tribute changes in the context:

public class MyServletContextAttributeListener
 implements ServletContextAttributeListener {

 @Override
 public void attributeAdded
 (ServletContextAttributeEvent event) {
 //. . . event.getName();
 //. . . event.getValue();
 }

 @Override
 public void attributeRemoved(
 ServletContextAttributeEvent event) {
 //. . .
 }

 @Override
 public void attributeReplaced(
 ServletContextAttributeEvent event) {
 //. . .
 }

}

The HttpSessionListener listens to events from resources in
that session:

@WebListener
public class MySessionListener
 implements HttpSessionListener {

 @Override
 public void sessionCreated(HttpSessionEvent hse) {
 HttpSession session = hse.getSession();
 //. . .
 }

 @Override
 public void sessionDestroyed(HttpSessionEvent hse) {
 //. . .

26 | Chapter 3: Servlets

 }
}

The HttpSessionActivationListener is used to listen for events
when the session is passivated or activated:

public class MyHttpSessionActivationListener
 implements HttpSessionActivationListener {

 @Override
 public void sessionWillPassivate(HttpSessionEvent hse) {
 // ... hse.getSession();
 }

 @Override
 public void sessionDidActivate(HttpSessionEvent hse) {
 // ...
 }
}

The HttpSessionAttributeListener is used to listen for at-
tribute changes in the session:

public class MyHttpSessionAttributeListener
 implements HttpSessionAttributeListener {

 @Override
 public void attributeAdded(
 HttpSessionBindingEvent event) {
 HttpSession session = event.getSession();
 //. . . event.getName();
 //. . . event.getValue();
 }

 @Override
 public void attributeRemoved(
 HttpSessionBindingEvent event) {
 //. . .
 }

 @Override
 public void attributeReplaced(
 HttpSessionBindingEvent event) {
 //. . .
 }
}

Event Listeners | 27

The HttpSessionBindingListener is used to listen to events
when an object is bound to or unbound from a session:

public class MyHttpSessionBindingListener
 implements HttpSessionBindingListener {

 @Override
 public void valueBound(HttpSessionBindingEvent event) {
 HttpSession session = event.getSession();
 //. . . event.getName();
 //. . . event.getValue();
 }

 @Override
 public void valueUnbound(HttpSessionBindingEvent event)
{
 //. . .
 }
}

The ServletRequestListener listens to the events from resour-
ces in that request:

@WebListener
public class MyRequestListener
 implements ServletRequestListener {
 @Override
 public void requestDestroyed(ServletRequestEvent sre) {
 ServletRequest request = sre.getServletRequest();
 //. . .
 }

 @Override
 public void requestInitialized(ServletRequestEvent sre) {
 //. . .
 }
}

The ServletRequestAttributeListener is used to listen for at-
tribute changes in the request.

There is also AsyncListener, which is used to manage async
events such as completed, timed out, or an error.

In addition to declaring listeners using @WebListener and
web.xml, they may also be defined programmatically using
ServletContext.addListener methods. This can be done from

28 | Chapter 3: Servlets

the ServletContainerInitializer.onStartup or ServletContext
Listener.contextInitialized method.

The ServletContainerInitializer.onStartup method is in-
voked when the application is starting up for the given
ServletContext:

public class MyInitializer
 implements ServletContainerInitializer {
 public void onStartup(
 Set<Class<?>> clazz, ServletContext context) {
 context.addListener("org.example.MyContextListener");
 }
}

Asynchronous Support
Server resources are valuable and should be used conserva-
tively. Consider a servlet that has to wait for a JDBC connection
to be available from the pool, receiving a JMS message or
reading a resource from the file system. Waiting for a “long-
running” process to return completely blocks the thread—
waiting, sitting, and doing nothing—not an optimal usage of
your server resources. This is where the server can be asyn-
chronously processed such that the control (or thread) is re-
turned back to the container to perform other tasks while
waiting for the long-running process to complete. The request
processing continues in the same thread after the response
from the long-running process is returned, or may be dis-
patched to a new resource from within the long-running pro-
cess. A typical use case for long-running process is a chat
application.

The asynchronous behavior needs to be explicitly enabled on
a servlet. This is achieved by adding the asyncSupported at-
tribute on @WebServlet:

@WebServlet(urlPatterns="/async", asyncSupported=true)
public class MyAsyncServlet extends HttpServlet {
 //. . .
}

Asynchronous Support | 29

It can also be enabled by specifying the <async-supported>
element to true in web.xml or calling ServletRegistration
.setAsyncSupported(true) during programmatic registration.

The asynchronous processing can then be started in a separate
thread using the startAsync method on the request. This
method returns AsyncContext, which represents the execution
context of the asynchronous request. The asynchronous
request can then be completed by calling AsyncContext.com
plete (explicit) or dispatching to another resource (implicit).
The container completes the invocation of the asynchronous
request in the latter case.

Let’s say the long-running process is implemented:

class MyAsyncService implements Runnable {
 AsyncContext ac;

 public MyAsyncService(AsyncContext ac) {
 this.ac = ac;
 }

 @Override
 public void run() {
 //. . .
 ac.complete();
 }
}

This service may be invoked from the doGet method:

@Override
protected void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 AsyncContext ac = request.startAsync();
 ac.addListener(new AsyncListener() {
 public void onComplete(AsyncEvent event)
 throws IOException {
 //. . .
 }

 public void onTimeout(AsyncEvent event)
 throws IOException {
 //. . .
 }
 //. . .

30 | Chapter 3: Servlets

 });

 ScheduledThreadPoolExexcutor executor =
 new ScheduledThreadPoolExexcutor(10);
 executor.execut(new MyAsyncService(ac));
}

In this code, the request is put into asynchronous mode.
AsyncListener is registered to listen for events when the request
processing is complete, timed out, and other required behav-
ior. The long-running service is invoked in a separate thread
and calls AsyncContext.complete, signalling the completion of
request processing.

A request may be dispatched from an asynchronous servlet to
synchronous, but the other way around is illegal.

The asynchronous behavior is available in the servlet filter as
well.

Web Fragments
A web fragment is part or all of the web.xml included in a library
or framework JAR’s META-INF directory. If this framework is
bundled in the WEB-INF/lib directory, the container will pick
up and configure the framework without requiring the devel-
oper to do it explicitly.

It can include almost all of the elements that can be specified
in web.xml. However, the top-level element must be
web-fragment and the corresponding file must be called web-
fragment.xml. This allows logical partitioning of the web
application:

<web-fragment>
 <filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>org.example.MyFilter</filter-class>
 <init-param>
 <param-name>myInitParam</param-name>
 <param-value>...</param-value>
 </init-param>
 </filter>

Web Fragments | 31

 <filter-mapping>
 <filter-name>MyFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-fragment>

The developer can specify the order in which the resources
specified in web.xml and web-fragment.xml need to be loaded.
The <absolute-ordering> element in web.xml is used to specify
the exact order in which the resources should be loaded, and
the <ordering> element within web-fragment.xml is used to
specify relative ordering. The two orders are mutually exclu-
sive, and absolute ordering overrides relative.

The absolute ordering contains one or more <name> elements
specifying the name of the resources and the order in which
they need to be loaded. Specifying <others/> allows for the
other resources not named in the ordering to be loaded:

<web-app>
 <name>MyApp</name>
 <absolute-ordering>
 <name>MyServlet</name>
 <name>MyFilter</name>
 </absolute-ordering>
</web-app>

In this code, the resources specified in web.xml are loaded first
and followed by MyServlet and MyFilter.

Zero or one <before> and <after> elements in <ordering> are
used to specify the resources that need to be loaded before and
after the resource named in the web-fragment is loaded:

<web-fragment>
 <name>MyFilter</name>
 <ordering>
 <after>MyServlet</after>
 </ordering>
</web-fragment>

This code will require the container to load the resource
MyFilter after the resource MyServlet (defined elsewhere) is
loaded.

32 | Chapter 3: Servlets

If web.xml has metadata-complete set to true, then the web-
fragment.xml is not processed. The web.xml has the highest
precedence when resolving conflicts between web.xml and
web-fragment.xml.

If a web-fragment.xml does not have an <ordering> element and
web.xml does not have an <absolute-ordering> element, the
resources are assumed to not have any ordering dependency.

Security
Servlets are typically accessed over the Internet, and thus hav-
ing a security requirement is common. The servlet security
model, including roles, access control, and authentication re-
quirements, can be specified using annotations or in web.xml.

@ServletSecurity is used to specify security constraints on the
servlet implementation class for all methods or a specific
doXXX method. The container will enforce that the correspond-
ing doXXX messages can be invoked by users in the specified
roles:

@WebServlet("/account")
@ServletSecurity(
 value=@HttpConstraint(rolesAllowed = {"R1"}),
 httpMethodConstraints={
 @HttpMethodConstraint(value="GET",
 rolesAllowed="R2"),
 @HttpMethodConstraint(value="POST",
 rolesAllowed={"R3", "R4"})
 }
)
public class AccountServlet
 extends javax.servlet.http.HttpServlet {
 //. . .
}

In this code, @HttpMethodConstraint is used to specify that the
doGet method can be invoked by users in the R2 role, and the
doPost method can be invoked by users in the R3 and R4 roles.
The @HttpConstraint specifies that all other methods can be

Security | 33

invoked by users in the role R1. The roles are mapped to security
principals or groups in the container.

The security constraints can also be specified using the
<security-constraint> element in web.xml. Within it, a <web-
resource-collection> element is used to specify constraints on
HTTP operations and web resources, <auth-constraint> is
used to specify the roles permitted to access the resource, and
<user-data-constraint> indicates how data between the client
and server should be protected by the subelement <transport-
guarantee>:

<security-constraint>
 <web-resource-collection>
 <url-pattern>/account/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>INTEGRITY</transport-guarantee>
 </user-data-constraint>
</security-constraint>

This deployment descriptor requires that the doGet method can
only be accessed by a user in manager role with a requirement
for content integrity.

@RolesAllowed, @DenyAll, @PermitAll, and @Transport

Protected provide an alternative set of annotations to specify
security roles on a particular resource or method of the re-
source:

@RolesAllowed("R2")
protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
 //. . .
}

If an annotation is specified on both the class and the method
level, the one specified on the method overrides the one speci-
fied on the class.

34 | Chapter 3: Servlets

At most, one of @RolesAllowed, @DenyAll, or @PermitAll may be
specified on a target. The @TransportProtected annotation may
occur in combination with either the @RolesAllowed or
@PermitAll annotations.

The servlets can be configured for HTTP Basic, HTTP Digest,
HTTPS Client, and form-based authentication:

<form method="POST" action="j_security_check">
 <input type="text" name="j_username">
 <input type="password" name="j_password">
 <input type="button" value="submit">
</form>

This code shows how form-based authentication can be
achieved. The login form must contain fields for entering a
username and a password. These fields must be named j_user
name and j_password, respectively. The action of the form is
always j_security_check.

The HttpServletRequest also provides programmatic security
with the login, logout, and authenticate methods.

The login method validates the provided username and pass-
word in the password validation realm (specific to a container)
configured for the ServletContext. This ensures that getUser
Principal, getRemoteUser, and getAuthType methods return
valid values. The login method can be used as a replacement
for form-based login.

The authenticate method uses the container login mechanism
configured for the ServletContext to authenticate the user
making this request.

Resource Packaging
Resources bundled in the .war file are accessible using Servlet
Context.getResource and .getResourceAsStream methods. The
resource path is specified as String with a leading “/.” This path
is resolved relative to the root of the context or relative to the
META-INF/resources directory of the JAR files bundled in
the WEB-INF/lib directory:

Resource Packaging | 35

myApplication.war
 WEB-INF
 lib
 library.jar

library.jar has the following structure:

library.jar
 MyClass1.class
 MyClass2.class
 stylesheets
 common.css
 images
 header.png
 footer.png

If the resources bundled in the stylesheets and images directo-
ries need to be accessed in the servlet, they need to be manually
extracted in the root of the web application. The library can
package the resources in the META-INF/resources directory:

library.jar
 MyClass1.class
 MyClass2.class
 META-INF
 resources
 stylesheets
 common.css
 images
 header.png
 footer.png

In this case, the resources need not be extracted to the root of
the application and can be accessed directly instead. This al-
lows resources from third-party JARs bundled in META-INF/
resources to be accessed directly instead of extracting them
manually.

Resources are always looked for in the root of the application
before scanning through the JARs bundled in the WEB-INF/
lib directory. The order of scanning JAR files in the WEB-
INF/lib directory is undefined.

36 | Chapter 3: Servlets

www.allitebooks.com

http://www.allitebooks.org

Error Mapping
An HTTP error code or an exception thrown by a serlvet can
be mapped to a resource bundled with the application to cus-
tomize the appearance of content when a servlet generates an
error. This allows fine-grained mapping of errors from your
web application to custom pages. These pages are defined us-
ing <error-page>:

<error-page>
 <error-code>404</error-code>
 <location>/error-404.jsp</location>
</error-page>

Adding the above fragment to web.xml will display
the /error-404.jsp page to the client if a nonexisting resource
is accessed. This mapping can be easily done for other HTTP
status codes as well by adding other <error-page> elements.

The <exception-type> element is used to map an exception
thrown by a servlet to a resource in the web application:

<error-page>
 <exception-type>org.example.MyException</exception-type>
 <location>/error.jsp</location>
</error-page>

Adding the above fragment to web.xml will display
the /error.jsp page to the client if the servlet throws the
org.example.MyException exception. This mapping can be
easily done for other exceptions as well by adding other <error-
page> elements.

The <error-page> declaration must be unique for each class
name and HTTP status code.

Handling Multipart Requests
@MultipartConfig may be specified on a servlet indicating that
it expects a request of type multipart/form-data. The
HttpServletRequest.getParts and .getPart methods then
make the various parts of the multipart request available:

Handling Multipart Requests | 37

@WebServlet(urlPatterns = {"/FileUploadServlet"})
@MultipartConfig(location="/tmp")
public class FileUploadServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 for (Part part : request.getParts()) {
 part.write("myFile");
 }
 }
}

In this code:

• @MultipartConfig is specified on the class indicating the
doPost method will receive a request of type multipart/
form-data

• location attribute is used to specify the directory location
where the files are stored

• getParts method provides a Collection of parts for this
multipart request

• part.write is used to write this uploaded part to disk

This servlet can be invoked from a JSP page:

<form action="FileUploadServlet"
 enctype="multipart/form-data"
 method="POST">
 <input type="file" name="myFile">

 <input type="Submit" value="Upload File">

</form>

In this code, the form is POSTed to FileUploadServlet with en-
coding multipart/form-data.

38 | Chapter 3: Servlets

CHAPTER 4

Java Persistence API

The Java Persistence API (JPA) is defined as JSR 317, and the
complete specification can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr317/index.html.

JPA defines an API for the management of persistence and ob-
ject/relational mapping using a Java domain model.

A database table, typically with multiple columns, stores the
persistent state of an application. Multiple rows are stored in
the database table to capture different states. A single column
or combination of columns may define the uniqueness of each
row using primary key constraint. Typically, an application
accesses and stores data to multiple tables. These tables gen-
erally have relationships defined among them using foreign key
constraint.

JPA defines a standard mapping between a database table and
a POJO. It defines syntax to capture primary and foreign key
constraints and how these rows can be created, read, updated,
and deleted using these POJOs. Transactions, caching, valida-
tion, and other similar capabilities required by an application
accessing a database are also defined by JPA.

This chapter will discuss the key concepts of JPA.

39

http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html

Entities
A POJO with a no-arg public constructor is used to define the
mapping with one or more relational database tables. Each
such class is annotated with @Entity, and the instance variables
that follow JavaBeans-style properties represent the persistent
state of the entity. The mapping between the table column and
the field name is derived following reasonable defaults and can
be overridden by annotations. For example, the table name is
the same as the class name, and the column names are the same
as the persistent field names.

Here is a simple entity definition describing a student:

@Entity
public class Student implements Serializable {
 @Id
 private int id;
 private String name;
 private String grade;
 @Embedded
 private Address address;

 @ElementCollection
 @CollectionTable("StudentCourse")
 List<Course> courses;

 //. . .
}

A few things to observe in this code:

• This class has a no-arg constructor by default, as no other
constructors are defined.

• The entity’s persistent state is defined by four fields; the
identity is defined by the field id and is annotated with
@Id. A composite primary key may also be defined where
the primary key corresponds to one or more fields of the
entity class.

• The class implements a Serializable interface, and that
allows it to be passed by value through a remote interface.

40 | Chapter 4: Java Persistence API

• Address is a POJO class that does not have a persistent
identity of its own and exclusively belongs to the
Student class. This class is called as an embeddable class
and is identified by @Embedded on the field in the entity class
and annotated with @Embeddable in the class definition:

@Embeddable
public class Address {
 private String street;
 private String city;
 private String zip;
 //. . .
}

This allows the database structure to be more naturally
mapped in Java.

• The @ElementCollection annotation signifies that a stu-
dent’s courses are listed in a different table. By default, the
table name is derived by combining the name of the
owning class, the string “_,” and the field name.
@CollectionTable can be used to override the default name
of the table, and @AtttributeOverrides can be used to
override the default column names. @ElementCollection
can also be applied to an embeddable class.

The persistent fields or properties of an entity may be of the
following types: Java primitive types, java.lang.String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date,
java.util.Calendar, java.sql.Date, java.sql.Time, java.sql
.Timestamp, byte[], Byte[], char[], Character[], enums and
other Java serializable types, entity types, collections of entity
types, embeddable classes, and collections of basic and em-
beddable classes. The @Temporal annotation may be specified
on fields of type java.util.Date and java.util.Calendar to
specify the temporal type of the field.

An entity may inherit from a superclass that provides persistent
entity state and mapping information, but which itself may or
may not be an entity. An entity superclass is abstract and
cannot be directly instantiated but can be used to create poly-
morphic queries.

Entities | 41

The @Inheritance and @Discriminator annotations are used to
specify the inheritance from an entity superclass. The @Mapped
Superclass annotation is used to designate a nonentity super-
class and captures state and mapping information that is com-
mon to multiple entity classes. Such a class has no separate
table defined for it, so the mappings will only apply to its sub-
classes. An entity may inherit from a superclass that provides
inheritance of behavior only. Such a class does not contain any
persistent state.

The relationships between different entities are defined using
@OneToOne, @OneToMany, @ManyToOne, and @ManyToMany annota-
tion on the corresponding field of the referencing entity. A
unidirectional relationship requires the owning side to specify
the annotation. A bidirectional relationship also requires the
nonowning side to refer to its owning side by use of the map
pedBy element of the OneToOne, OneToMany, or ManyToMany
annotation.

The FetchType.EAGER annotation may be specified on an entity
to eagerly load the data from the database. The Fetch

Type.LAZY annotation may be specified as a hint that the data
should be fetched lazily when it is first accessed.

The entities may display a collection of elements and entity
relationships as java.util.Map collections. The map key may
be the primary key or a persistent field or property of the entity.
@MapKey is used to specify the key for the association. For ex-
ample, all the Courses by a Student can be modeled as:

public class Student {
 @MapKey
 private Map<Integer, Course> courses;
 //. . .
}

In this code, specifying @MapKey on the Map indicates that the
map key is the primary key as well.

The map key can be a basic type, an embeddable class, or
an entity. If a persistent field or property other than the primary
key is used as a map key, then it is expected to have a

42 | Chapter 4: Java Persistence API

uniqueness constraint associated with it. In this case, @MapKey
Column is used to specify the mapping for the key column of the
map:

public class Student {
 @MapKeyColumn(name="year")
 private Map<Integer, Course> courses;
 //. . .
}

In this code, Map represents all the Courses taken by a Student
in a year. If the name element is not specified, it defaults to the
concatenation of the following: the name of the referencing
relationship field or property, “_,” and “KEY.” In this case, the
default name will be COURSES_KEY.

@MapKeyClass can be used to specify the map key for the asso-
ciation. If the value is an entity, then @OneToMany and @ManyTo
Many may be used to specify the mapping:

public class Student {
 @OneToMany
 @MapKeyClass(PhoneType.class)
 private Map<PhoneType, Phone> phones;
 //. . .
}

@MapKeyClass and @MapKey are mutually exclusive.

If the value is a basic type or embeddable class, then @Element
Collection is used to specify the mapping.

Persistence Unit, Persistence Context, and
Entity Manager
An entity is managed within a persistence context. Each entity
has a unique instance for any persistent entity identity within
the context. Within the persistence context, the entity
instances and their lifecycles are managed by the entity man-
ager. The entity manager may be container-managed or
application-managed.

Persistence Unit, Persistence Context, and Entity Manager | 43

A container-managed entity manager is obtained by the appli-
cation directly through dependency injection or from JNDI:

@PersistenceContext
EntityManager em;

The persistence context is propagated across multiple trans-
actions for a container-managed entity manager, and the con-
tainer is responsible for managing the lifecycle of the entity
manager.

An application-managed entity manager is obtained by the ap-
plication from an entity manager factory:

@PersistenceUnit
EntityManagerFactory emf;
//. . .
EntityManager em = emf.createEntityManager();

A new isolated persistence context is created when a new entity
manager is requested, and the application is responsible for
managing the lifecycle of the entity manager.

A container-managed entity manager is typically used in a Java
EE environment. The application-managed entity manager is
typically used in a Java SE environment and will not be dis-
cussed here.

An entity manager and persistence context are not required to
be threadsafe. This requires an entity manager to be obtained
from an entity manager factory in Java EE components that are
not required to be threadsafe, such as servlets.

The entity managers, together with their configuration infor-
mation, the set of entities managed by the entity managers, and
metadata that specifies mapping of the classes to the database,
are packaged together as a persistence unit. A persistence unit
is defined by a persistence.xml and is contained within an
ejb-jar, .war, .ear, or application-client JAR. Multiple persis-
tence units may be defined within a persistence.xml.

A sample persistence.xml for the entity can be defined:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

44 | Chapter 4: Java Persistence API

 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="MyPU" transaction-type="JTA">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <jta-data-source>jdbc/sample</jta-data-source>
 <exclude-unlisted-classes>
 false
 </exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.ddl-generation"
 value="create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

In this code:

• Persistence unit’s name is "MyPU".

• transaction-type attribute’s value of JTA signifies that a
JTA data source is provided.

• <provider> element is optional and specifies the name of
the persistence provider.

• jta-data-source element defines the global JNDI name of
the JTA data source defined in the container. In a Java EE
environment, this ensures that all the database configu-
ration information, such as host, port, username, and
password, are specified in the container, and just the JTA
data source name is used in the application.

• Explicit list of entity classes to be managed can be speci-
fied using multiple class elements, or all the entities may
be included (as above) by specifying the exclude-unlist
ed-classes element.

• properties element is used to specify both standard and
vendor-specific properties. In this case, the eclipse

link.ddl-generation property is specified and the prop-
erty value indicates to generate the tables using the

Persistence Unit, Persistence Context, and Entity Manager | 45

mappings defined in the entity class. The following
standard properties may be specified: javax.persistence
.jdbc.driver, javax.persistence.jdbc.url, javax.persis
tence.jdbc.user, javax.persistence.jdbc.password.

By default, a container-managed persistence context is scoped
to a single transaction, and entities are detached at the end of
a transaction. For stateful session beans, the persistence con-
text may be marked to span multiple transactions and is
called extended persistence context. The entities stay managed
across multiple transactions in this case. An extended persis-
tence context can be created:

@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager em;

Create, Read, Update, and Delete Entities
An entity goes through create, read, update, and delete
(CRUD) operations during its lifecycle. A create operation
means a new entity is created and persisted in the database. A
read operation means querying for an entity from the database
based upon a selection criteria. An update operation means
updating the state of an existing entity in the database. And a
delete operation means removing an entity from the database.
Typically, an entity is created once, read and updated a few
times, and deleted once.

The JPA specification allows the following ways to perform the
CRUD operations:

Java Persistence Query Language (JPQL)
The Java Persistence Query Language is a string-based ty-
ped query language used to define queries over entities
and their persistent state. The query language uses an
SQL-like syntax and uses the abstract persistence schema
of entities as its data model. This portable query language
syntax is translated into SQL queries that are executed
over the database schema where the entities are mapped.
The EntityManager.createNamedXXX methods are used to

46 | Chapter 4: Java Persistence API

create the JPQL statements. The query statements can be
used to select, update, or delete rows from the database.

Criteria API
The Criteria API is an object-based, type-safe API and op-
erates on a metamodel of the entities. Typically, the static
metamodel classes are generated using an annotation pro-
cessor, and model the persistent state and relationships
of the entities. The javax.persistence.criteria and
javax.persistence.metamodel APIs are used to create the
strongly typed queries. The Criteria API allows only
querying the entities.

Native SQL statement
Create a native SQL query specific to a database.
@SQLResultSetMapping is used to specify the mapping of
the result of a native SQL query. The EntityManager.crea
teNativeXXX methods are used to create native queries.

A new entity can be persisted in the database using an entity
manager:

Student student = new Student();
student.setId(1234);
//. . .
em.persist(student);

In this code, em is an entity manager obtained as explained ear-
lier. The entity is persisted to the database at transaction
commit.

A simple JPQL statement to query all the Student entities and
retrieve the results looks like:

em.createNamedQuery("SELECT s FROM Student s").
 getResultList();

@NamedQuery and @NamedQueries are used to define a mapping
between a static JPQL query statement and a symbolic name.
This follows the “Don’t Repeat Yourself” design pattern and
allows you to centralize the JPQL statements:

@NamedQuery(
 name="findStudent"
 value="SELECT s FROM Student s WHERE p.grade = :grade")

Create, Read, Update, and Delete Entities | 47

//. . .
Query query = em.createNamedQuery("findStudent");
List<Student> list = (List<Student>)query
 .setParameter("grade", "4")
 .getResultList();

This code will query the database for all the students in grade
4 and return the result as List<Student>.

The usual WHERE, GROUP BY, HAVING, and ORDER BY
clauses may be specified in the JPQL statements to restrict the
results returned by the query. Other SQL keywords such as
JOIN and DISTINCT and functions like ABS, MIN, SIZE,
SUM, and TRIM are also permitted. The KEY, VALUE, and
ENTRY operators may be applied where map-valued associa-
tions or collections are returned.

The return type of the query result list may be specified:

TypedQuery<Student> query = em.createNamedQuery(
 "findStudent",
 Student.class);
List<Student> list = query
 .setParameter("grade", "4")
 .getResultList();

Typically a persistence provider will precompile the static
named queries. A dynamic JPQL query may be defined by di-
rectly passing the query string to the corresponding create
Query methods:

TypedQuery<Student> query = em.createQuery(
 "SELECT s FROM Student s",
 Student.class);

The query string is dynamically constructed in this case.

JPA also allows dynamic queries to be constructed using a type-
safe Criteria API. Here is sample code that explains how to use
the Criteria API to query the list of Students:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaQuery criteria = builder.createQuery
 (Student.class);

Root<Student> root = criteria.from(Student.class);
criteria.select(root);

48 | Chapter 4: Java Persistence API

TypedQuery<Student> query = em.createQuery(criteria);
List<Student> list = query.getResultList();

The static @NamedQuery may be more appropriate for simple use
cases. In a complex query where SELECT, FROM, WHERE,
and other clauses are defined at runtime, the dynamic JPQL
may be more error prone, typically because of string concate-
nation. The type-safe Criteria API offers a more robust way of
dealing with such queries. All the clauses can be easily specified
in a type-safe manner, providing the advantages of compile-
time validation of queries.

The JPA2 metamodel classes capture the metamodel of the
persistent state and relationships of the managed classes of a
persistence unit. This abstract persistence schema is then used
to author the type-safe queries using the Criteria API. The can-
onical metamodel classes can be generated statically using an
annotation processor following the rules defined by the speci-
fication. The good thing is that no extra configuration is re-
quired to generate these metamodel classes.

To update an existing entity, you need to first find it, change
the fields, and call the EntityManager.merge method:

Student student = (Student)query
 .setParameter("id", "1234")
 .getSingleResult();
//. . .
student.setGrade("5");
em.merge(student);

The entity may be updated using JPQL:

Query query = em.createQuery("UPDATE Student s"
+ "SET s.grade = :grade WHERE s.id = :id");
query.setParameter("grade", "5");
query.setParameter("id", "1234");
query.executeUpdate();

To remove an existing entity, you need to find it and then call
the EntityManager.remove method:

Student student = em.find(Student.class, 1234);
em.remove(student);

Create, Read, Update, and Delete Entities | 49

The entity may be deleted using JPQL:

Query query = em.createQuery("DELETE FROM Student s"
+ "WHERE s.id = :id");
query.setParameter("id", "1234");
query.executeUpdate();

Removing an entity removes the corresponding record from
the underlying datastore as well.

Validating the Entities
Bean Validation 1.0 is a new specification in the Java EE 6
platform that allows you to specify validation metadata on
JavaBeans. For JPA, all managed classes (entities, managed su-
perclasses, and embeddable classes) may be configured to in-
clude Bean Validation constraints. These constraints are then
enforced when the entity is persisted, updated, or removed in
the database. Bean Validation has some predefined constraints
like @Min, @Max, @Pattern, and @Size. A custom constraint can
be easily defined by using the mechanisms defined in the Bean
Validation specification and explained in this book.

The automatic validation is achieved by delegating validating
to the Bean Validation implementation in the pre-persist, pre-
update, and pre-remove lifecycle callback methods. Alterna-
tively, the validation can also be achieved by the application
by calling the Validator.validate method upon an instance of
a managed class. The lifecycle event validation only occurs
when a Bean Validation provider exists in the runtime.

The Student entity with validation constraints can be defined
as:

@Entity
public class Student implements Serializable {
 @NotNull
 @Id private int id;

 @Size(max=30)
 private String name;

50 | Chapter 4: Java Persistence API

 @Size(min=2, max=5)
 private String grade;

 //. . .
}

This ensures that the id field is never null, the size of the name
field is at most 30 characters with a default minimum of 0, and
the size of the grade field is a minimum of 2 characters and a
maximum of 5. With these constraints, attempting to add the
following Student to the database will throw a ConstraintVio
lationException, as the grade field must be at least 2 characters
long:

Student student = new Student();
student.setId(1234);
student.setName("Joe Smith");
student.setGrade("1");
em.persist(student);

Embeddable attributes are validated only if the Valid annota-
tion has been specified on them. So the updated Address class
will look like:

@Embeddable
@Valid
public class Address {
 @Size(max=20)
 private String street;

 @Size(max=20)
 private String city;

 @Size(max=20)
 private String zip;
 //. . .
}

By default, the validation of entity beans is automatically
turned on. The behavior can be controlled using the valida
tion-mode element in the persistence.xml file. This element can
take the values AUTO, CALLBACK, or NONE. If the entity manager is
created using Persistence.createEntityManager, the valida-
tion mode can be specified using the javax.persistence.vali
dation.mode property.

Validating the Entities | 51

By default, all the entities in a web application are in the
Default validation group. This ensures that constraints are
enforced when a new entity is inserted or updated, while no
validation takes place by default if an entity is deleted. This
default behavior can be overridden by specifying the target
groups using the following validation properties in persis-
tence.xml:

• javax.persistence.validation.group.pre-persist

• javax.persistence.validation.group.pre-update

• javax.persistence.validation.group.pre-remove

A new validation group can be defined by declaring a new
interface:

public interface MyGroup { }

A field in the Student entity can be targeted to this validation
group:

@Entity
public class Student implements Serializable {
 @Id @NotNull int id;

 @AssertTrue(groups=MyGroup.class)
 private boolean canBeDeleted;

}

And persistence.xml needs to have the following property
defined:

//. . .
<property
 name="javax.persistence.validation.group.pre-remove"
 value="org.sample.MyGroup"/>

Transactions and Locking
The EntityManager.persist, .merge, .remove, and .refresh
methods must be invoked within a transaction context when
an entity manager with a transaction-scoped persistence con-
text is used. The transactions are controlled either through JTA

52 | Chapter 4: Java Persistence API

or through the use of the resource-local EntityTransaction API.
A container-managed entity manager must use JTA and is the
typical way of having transactional behavior in a Java EE
container. A resource-local entity manager is typically used in
a Java SE environment.

A transaction for a JTA entity manager is started and commit-
ted external to the entity manager:

@Stateless
public class StudentSessionBean {
 @PersistenceContext
 EntityManager em;

 public void addStudent(Student student) {
 em.persist(student);
 }
}

In this Enterprise JavaBean, a JTA transaction is started before
the addStudent method and committed after the method is
completed. The transaction is automatically rolled back if an
exception is thrown in the method.

The resource-local EntityTransaction API can be used:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("student");
em.getTransaction().begin();
Student student = new Student();
//. . .
em.persist(student);
em.getTransaction().commit();
em.close();
emf.close();

The transaction may be rolled back using the EntityTransac
tion.rollback method.

In addition to transactions, an entity may be locked when the
transaction is active. By default, optimistic concurrency con-
trol is assumed. The @Version attribute on an entity’s field is
used by the persistence provider to perform optimistic locking.
A pessimistic lock is configured using PessimisticLockScope
and LockModeType enums. In addition, the javax.persistence

Transactions and Locking | 53

.lock.scope and javax.persistence.lock.timeout properties
may be used to configure pessimistic locking.

Caching
JPA provides two levels of caching. The entities are cached by
the entity manager at the first level in the persistence context.
The entity manager guarantees that within a single persistence
context, for any particular database row, there will only be one
object instance. However, the same entity could be managed
in another transaction, so appropriate locking should be used
as explained above.

Second-level caching by the persistence provider can be en-
abled by the value of the shared-cache-mode element in
persistence.xml. This element can have the values defined in
Table 4-1.

Table 4-1. shared-cache-mode values in persistence.xml

Value Description

ALL All entities and entity-related state are cached.

NONE No entities or entity-related state is cached.

ENABLE_SELECTIVE Only cache entities marked with @Cacheable(true).

DISABLE_SELECTIVE Only cache entities that are not marked

@Cacheable(false).

UNSPECIFIED Persistence provider specific defaults apply.

The exact value can be specified:

<shared-cache-element>ALL</shared-cache-element>

This allows entity state to be shared across multiple persistence
contexts.

54 | Chapter 4: Java Persistence API

The Cache interface can be used to interface with the second-
level cache as well. This interface can be obtained from
EntityManagerFactory. It can be used to check whether
a particular entity exists in the cache or invalidate a particular
entity, an entire class, or the entire cache:

@PersistenceUnit
EntityMangagerFactory emf;

public void myMethod() {
 //. . .
 Cache cache = emf.getCache();
 boolean inCache = cache.contains(Student.class, 1234);
 //. . .
}

A specific entity can be cleared:

cache.evict(Student.class, 1234);

All entities of a class can be invalidated:

cache.evict(Student.class);

And the complete cache can be invalidated as:

cache.evictAll();

A standard set of query hints are also available to allow re-
freshing or bypassing the cache. The query hints are specified
as javax.persistence.cache.retrieveMode and javax.persiste
nce.cache.storeMode properties on the Query object. The first
property is used to specify the behavior when data is retrieved
by the find methods and by queries. The second property is
used to specify the behavior when data is read from the data-
base and committed into the database:

Query query = em.createQuery("SELECT s FROM Student s");
query.setHint("javax.persistence.cache.storeMode",
 CacheStoreMode.BYPASS);

The property values are defined on CacheRetrieveMode and
CacheStoreMode enums and explained in Table 4-2.

Caching | 55

Table 4-2. CacheStoreMode and CacheRetrieveMode values

Cache query hint Description

CacheStore

Mode.BYPASS

Don’t insert into cache.

CacheStore

Mode.REFRESH

Insert/update entity data into cache when read from

database and when committed into database.

CacheStoreMode.USE Insert/update entity data into cache when read from

database and when committed into database; this is the

default behavior.

CacheRetrieve

Mode.BYPASS

Bypass the cache: get data directly from the database.

CacheRetrieve

Mode.USE

Read entity data from the cache; this is the default

behavior.

56 | Chapter 4: Java Persistence API

CHAPTER 5

Enterprise JavaBeans

Enterprise JavaBeans (EJB) is defined as JSR 318, and the com-
plete specification can be downloaded from http://jcp.org/
aboutJava/communityprocess/mrel/jsr318/index.html.

Enterprise JavaBeans are used for the development and de-
ployment of component-based distributed applications that
are scalable, transactional, and secure. An EJB typically con-
tains the business logic that operates on the enterprise’s data.
The service information, such as transaction and security at-
tributes, may be specified in the form of metadata annotations,
or separately in an XML deployment descriptor.

A bean instance is managed at runtime by a container. The
bean is accessed on the client and is mediated by the container
in which it is deployed. The client can also be on the server in
the form of a managed bean, a CDI bean, or a servlet of some
sort. In any case, the EJB container provides all the plumbing
required for an enterprise application. This allows the appli-
cation developer to focus on the business logic and not worry
about low-level transaction and state management details, re-
moting, concurrency, multithreading, connection pooling, or
other complex low-level APIs.

57

http://jcp.org/aboutJava/communityprocess/mrel/jsr318/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr318/index.html

There are three types of enterprise beans:

• Session beans

• Message-driven beans

• Entity beans

Entity beans are marked for pruning in the EJB 3.1 version of
the specification and thus will not be discussed here. It is rec-
ommended to use the Java Persistence API for all the persis-
tence and object/relational mapping functionality.

Stateful Session Beans
A stateful session bean contains conversational state for a spe-
cific client. The state is stored in the session bean instance’s
field values, its associated interceptors and their instance field
values, and all the objects and their instances’ field values
reachable by following Java object references.

A simple stateful session bean can be defined by using
@Stateful:

package org.sample;

@Stateful
public class Cart {
 List<String> items;

 public ShoppingCart() {
 items = new ArrayList<Item>();
 }

 public void addItem(String item) {
 items.add(item);
 }

 public void removeItem(String item) {
 items.remove(item);
 }

 public void purchase() {
 //. . .
 }

58 | Chapter 5: Enterprise JavaBeans

 @Remove
 public void remove() {
 items = null;
 }
}

This is a POJO marked with the @Stateful annotation. That’s
all it takes to convert a POJO to a stateful session bean. All
public methods of the bean may be invoked by a client. The
method remove is marked with the @Remove annotation and is
called before the bean is removed. This method is called by the
container when a bean is removed and is not expected to be
called by a client. Removing a stateful session bean means that
the instance state specific for that client is gone.

This style of bean declaration is called as a no-interface view.
Such a bean is only locally accessible to clients packaged in the
same archive. If the bean needs to be remotely accessible, it
must define a separate business interface annotated with
@Remote:

@Remote
public interface Cart {
 public void addItem(String item);
 public void removeItem(String item);
 public void purchase();
}

@Stateful
public class CartBean implements Cart {
 public float addItem(String item) {
 //. . .
 }

 public void removeItem(String item) {
 //. . .
 }

 //. . .
}

Now the bean is injected using the interface:

@EJB Cart cart;

Stateful Session Beans | 59

A client of this stateful session bean can access this bean:

@EJB ShoppingCart cart;

cart.addItem("Apple");
cart.addItem("Mango");
cart.addItem("Kiwi");
cart.purchase();

The PostConstruct and PreDestroy lifecycle callback methods
are available for stateful session beans.

An EJB container may decide to passivate a stateful session
bean to some form of secondary storage and then activate it
again. The container takes care of saving and restoring the state
of the bean. However, if there are nonserializable objects such
as open sockets or JDBC connections, they need to be explicitly
closed and restored back as part of that process. The
@PrePassivate lifecycle callback method is invoked to clean up
resources before the bean is passivated, and the PostActivate
callback method is invoked to restore the resources.

Stateless Session Beans
A stateless session bean does not contain any conversational
state for a specific client. All instances of a stateless bean are
equivalent, so the container can choose to delegate a client-
invoked method to any available instance. Since stateless ses-
sion beans do not contain any state, they don’t need to be
passivated.

A simple stateless session bean can be defined by using
@Stateless:

package org.sample;

@Stateless
public class AccountSessionBean {
 public float withdraw() {
 //. . .
 }

 public void deposit(float amount) {

60 | Chapter 5: Enterprise JavaBeans

 //. . .
 }
}

This is a POJO marked with the @Stateless annotation. That’s
all it takes to convert a POJO to a stateless session bean. All
public methods of the bean may be invoked by a client.

This stateless session bean can be accessed by using @EJB:

@EJB AcountSessionBean account;
account.withdraw();

This style of bean declaration is called as a no-interface view.
Such a bean is only locally accessible to clients packaged in the
same archive. If the bean needs to be remotely accessible, it
must define a separate business interface annotated with
@Remote:

@Remote
public interface Account {
 public float withdraw();
 public void deposit(float amount);
}

@Stateless
public class AccountSessionBean implements Account {
 public float withdraw() {
 //. . .
 }

 public void deposit(float amount) {
 //. . .
 }
}

Now the bean is injected using the interface:

@EJB Account account;

The PostConstruct and PreDestroy lifecycle callbacks are sup-
ported for stateless session beans.

The PostConstruct callback method is invoked after the no-
args constructor is invoked and all the dependencies have been
injected, and before the first business method is invoked on the

Stateless Session Beans | 61

bean. This method is typically where all the resources required
for the bean are initialized.

The PreDestroy lifecycle callback is called before the instance
is removed by the container. This method is where all the re-
sources acquired during PostConstruct are released.

As stateless beans do not store any state, the container can pool
the instances and all of them are treated equally from a client’s
perspective. Any instance of the bean can be used to service the
client’s request.

Singleton Session Beans
A singleton session bean is a session bean component that is
instantiated once per application and provides easy access to
shared state. If the container is distributed over multiple virtual
machines, each application will have one instance of the sin-
gleton for each JVM. A singleton session bean is explicitly de-
signed to be shared and supports concurrency.

A simple singleton session bean can be defined by using
@Singleton:

@Singleton
public class MySingleton {
 //. . .
}

The container is responsible for when to initialize a singleton
bean instance. However, the bean may be optionally marked
for eager initialization by annotating with @Startup:

@Startup
@Singleton
public class MySingleton {
 //. . .
}

The container now initializes all such startup-time singletons,
executing the code marked in @PostConstruct, before the ap-
plication becomes available and any client request is serviced.

62 | Chapter 5: Enterprise JavaBeans

An explicit initialization of singleton session beans may be
specified using @DependsOn:

@Singleton
public class Foo {
 //. . .
}

@DependsOn("Foo")
@Singleton
public class Bar {
 //. . .
}

The container ensures that Foo bean is initialized before Bar
bean.

A singleton bean supports PostConstruct and PreDestroy life-
cycle callback methods.

A singleton bean always supports concurrent access. By default
a singleton bean is marked for container-managed concur-
rency, but alternatively may be marked for bean-managed
concurrency.

Container-managed concurrency is based on method-level
locking metadata where each method is associated with either a
Read (shared) or Write (exclusive) lock. A Read lock allows con-
current invocations of the method. A Write lock waits for the
processing of one invocation to complete before allowing the
next invocation to proceed.

By default, a Write lock is associated with each method of the
bean. The @Lock(LockType.READ) and @Lock(LockType.WRITE)
annotations are used to specify concurrency locking attributes.
These annotations may be specified on the class, a business
method of the class, or both. A value specified on a method
overrides a value specified on the bean.

Bean-managed concurrency requires the developer to manage
concurrency using Java language–level synchronization prim-
itives such as synchronized and volatile.

Singleton Session Beans | 63

Message-Driven Beans
A message-driven bean (MDB) is a container-managed bean
that is used to process messages asynchronously. An MDB can
implement any messaging type, but is most commonly used to
process Java Message Service (JMS) messages. These beans are
stateless and are invoked by the container when a JMS message
arrives at the destination. A session bean can receive a JMS
message synchronously, but a message-driven bean can receive
a message asynchronously.

A POJO can be converted to a message-driven bean by using
@MessageDriven:

@MessageDriven(mappedName = "myDestination")
public class MyMessageBean implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 // process the message
 } catch (JMSException ex) {
 //. . .
 }
 }
}

In this code, @MessageDriven defines the bean to be a message-
driven bean. The mappedName attribute specifies the JNDI name
of the JMS destination from which the bean will consume the
message. The bean must implement the MessageListener in-
terface that provides only one method, onMessage. This method
is called by the container whenever a message is received by
the message-driven bean and contains the application-specific
business logic.

This code shows how a message received by the onMessage
method is a text message and the message body can be retrieved
and displayed:

public void onMessage(Message message) {
 try {
 TextMessage tm = (TextMessage)message;

64 | Chapter 5: Enterprise JavaBeans

 System.out.println(tm.getText());
 } catch (JMSException ex) {
 //. . .
 }
}

Even though a message-driven bean cannot be invoked directly
by a session bean, it can still invoke other session beans. A
message-driven bean can also send JMS messages.

@MessageDriven can take additional attributes to configure the
bean. For example, the activationConfig property can take an
array of ActivationConfigProperty that provides information
to the deployer about the configuration of the bean in its op-
erational environment.

Table 5-1 defines the standard set of configuration properties
that are supported.

Table 5-1. Message-driven bean ActivationConfig properties

Property name Description

acknowledgeMode Specifies JMS acknowledgment mode for the mes-

sage delivery when bean-managed transaction de-

marcation is used. Supported values are

Auto_acknowledge (default) or

Dups_ok_acknowledge.

messageSelector Specifies JMS message selector to be used in deter-

mining which messages an MDB receives.

destinationType Specifies whether the MDB is to be used with a Queue

or Topic. Supported values are

javax.jms.Queue or javax.jms.Topic.

subscriptionDurability If MDB is used with a Topic, specifies whether a du-

rable or nondurable subscription is used. Supported

values are Durable or NonDurable.

A single message-driven bean can process messages from mul-
tiple clients concurrently. Just like stateless session beans, the
container can pool the instances and allocate enough bean in-
stances to handle the number of messages at a given time. All
instances of the bean are treated equally.

Message-Driven Beans | 65

A message is delivered to a message-driven bean within a trans-
action context, so all operations within the onMessage method
are part of a single transaction. The transaction context is
propagated to the other methods invoked from within
onMessage.

MessageDrivenContext may be injected in a message-driven
bean. This provides access to the runtime message-driven con-
text that is associated with the instance for its lifetime:

@Resource
MessageDrivenContext mdc;

public void onMessage(Message message) {
 try {
 TextMessage tm = (TextMessage)message;
 System.out.println(tm.getText());
 } catch (JMSException ex) {
 mdc.setRollbackOnly();
 }
}

Portable Global JNDI Names
A session bean can be packaged in an ejb-jar file or within a
web application module (.war). An optional EJB deployment
descriptor, ejb-jar.xml, providing additional information
about the deployment may be packaged in an ejb-jar or .war
file. The ejb-jar.xml file can be packaged as either WEB-INF/
ejb-jar.xml or as META-INF/ejb-jar.xml within one of the
WEB-INF/lib JAR files, but not both.

A local or no-interface bean packaged in the .war file is acces-
sible only to other components within the same .war file, but
a bean marked with @Remote is remotely accessible independent
of its packaging. The ejb-jar file may be deployed by itself or
packaged within an .ear file. The beans packaged in this ejb-
jar can be accessed remotely.

This EJB can also be accessed using a portable global JNDI
name using the following syntax:

66 | Chapter 5: Enterprise JavaBeans

java:global[/<app-name>]
 /<module-name>
 /<bean-name>
 [!<fully-qualified-interface-name>]

<app-name> applies only if the session bean is packaged with
an .ear file.

<module-name> is the name of the module in which the session
bean is packaged.

<bean-name> is the ejb-name of the enterprise bean.

If the bean exposes only one client interface (or alternatively
has only a no-interface view), the bean is also exposed with an
additional JNDI name using the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>

The stateless session bean is also available through the
java:app and java:module namespaces.

If the AccountSessionBean is packaged in bank.war, then the
following JNDI entries are exposed:

java:global/bank/AccountSessionBean
java:global/bank/AccountSessionBean
 !org.sample.AccountSessionBean
java:app/AccountSessionBean
java:app/AccountSessionBean!org.sample.AccountSessionBean
java:module/AccountSessionBean
java:module/AccountSessionBean!org.sample
.AccountSessionBean

Transactions
A bean may use programmatic transaction in the bean code,
and is called a bean-managed transaction. Alternatively, a de-
clarative transaction may be used in which the transactions are
managed automatically by the container, and is called a
container-managed transaction. Container-managed transac-
tion is the default. The @TransactionManagement annotation is
used to declare whether the session bean or message-driven
bean uses a bean-managed or container-managed transaction.

Transactions | 67

The value of this annotation is either CONTAINER (the default) or
BEAN.

Bean-managed transaction requires you to specify
@TransactionManagement(BEAN) on the class and use the
javax.transaction.UserTransaction interface. Within the
business method, a transaction is started using UserTransac
tion.begin and committed with UserTransaction.commit:

@Stateless
@TransactionManagement(BEAN)
public class AccountSessionBean {
 @Resource javax.transaction.UserTransaction tx;

 public float deposit() {
 //. . .
 tx.begin();
 //. . .
 tx.commit();
 //. . .
 }
}

Container-managed transaction is the default and does not re-
quire you to specify any additional annotations on the class.
The EJB container implements all the low-level transaction
protocols, such as the two-phase commit protocol between a
transaction manager and a database system or messaging pro-
vider, to honor the transactional semantics. The changes to the
underlying resources are all committed or rolled back.

A stateless session bean using a container-managed transaction
can use @TransactionAttribute to specify transaction
attributes on the bean class or the method. Specifying the
TransactionAttribute on a bean class means that it applies to
all applicable methods of the bean. The absence of
TransactionAttribute on the bean class is equivalent to the
specification of TransactionAttribute(REQUIRED) on the bean.

A bean class using a container-managed transaction looks like:

@Stateless
public class AccountSessionBean {

68 | Chapter 5: Enterprise JavaBeans

 public float deposit() {
 //. . .
 }
}

There are no additional annotations specified on the bean class
or the method.

The @TransactionAttribute values and meaning are defined in
Table 5-2.

Table 5-2. @TransactionAttribute values

Value Description

MANDATORY Always called in client’s transaction context. If the client calls with

a transaction context then it behaves as REQUIRED. If the client

calls without a transaction context, then the container throws the

javax.ejb.EJBTransactionRequiredException.

REQUIRED If the client calls with a transaction context, then it is propagated

to the bean. Otherwise container starts a new transaction before

delegating a call to the business method and attempts to commit

the transaction when the business process has completed.

REQUIRES_NEW The container always starts a new transaction context before del-

egating a call to the business method and attempts to commit the

transaction when the business process has completed. If the client

calls with a transaction context, then the suspended transaction

is resumed after the new transaction has committed.

SUPPORTS If the client calls with a transaction context, then it behaves as

REQUIRED. If the client calls without a transaction context, then

it behaves as NOT_SUPPORTED.

NOT_SUPPORTED If the client calls with a transaction context, then the container

suspends and resumes the association of transaction context

before and after the business method is invoked. If the client calls

without a transaction context, then no new transaction context is

created.

NEVER Client is required to call without a transaction context. If the client

calls with a transaction context, then the container throws

javax.ejb.EJBException. If the client calls without a trans-

action context, then it behaves as NOT_SUPPORTED.

Transactions | 69

The container-transaction element in the deployment de-
scriptor may be used instead of annotations to specify
the transaction attributes. The values specified in the deploy-
ment descriptor override or supplement the transaction at-
tributes specified in the annotation.

Only the NOT_SUPPORTED and REQUIRED transaction attributes
may be used for message-driven beans. A JMS message is de-
livered to its final destination after the transaction is commit-
ted, so the client will not receive the reply within the same
transaction.

Asynchronous
Each method of a session bean is invoked synchronously (i.e.,
the client is blocked until the server-side processing is complete
and the result returned). A session bean may tag a method for
asynchronous invocation, and a client can then invoke that
method asynchronously.

This allows control to return to the client before the container
dispatches the instance to a bean. The asynchronous opera-
tions must have a return type of void or Future<V>. The meth-
ods with a void return type are used for a fire and forget pattern.
The other version allows the client to retrieve a result value,
check for exceptions, or attempt to cancel any in-progress
invocations.

The @Asynchronous annotation is used to mark a
specific method (method level) or all methods (class level) of
the bean as asynchronous. Here is an example of a stateless
session bean that is tagged as asynchronous at the class level:

@Stateless
@Asynchronous
public class MyAsyncBean {
 public Future<Integer> addNumbers(int n1, int n2) {
 Integer result;
 result = n1 + n2;
 // simulate a long running query
 . . .

70 | Chapter 5: Enterprise JavaBeans

 return new AsyncResult(result);
 }
}

The method signature returns Future<Integer> and the return
type is AsyncResult(Integer). AsyncResult is a new class intro-
duced in EJB 3.1 that wraps the result of an asynchronous
method as a Future object. Behind the scenes, the value is re-
trieved and sent to the client. Adding any new methods to this
class will automatically make them asynchronous as well.

This session bean can be injected and invoked in any Java EE
component:

@EJB MyAsyncBean asyncBean;

Future<Integer> future = asyncBean.addNumbers(10, 20);

The methods on the Future API are used to query the availa-
bility of a result with isDone or cancel the execution with
cancel(boolean mayInterruptIfRunning).

The client transaction context does not propagate to the asyn-
chronous business method. This means that the semantics of
the REQUIRED transaction attribute on an asynchronous method
are exactly the same as REQUIRES_NEW.

The client security principal propagates to the asynchronous
business method. This means the security context propagation
behaves the same way for synchronous and asynchronous
method execution.

Timers
The EJB Timer Service is a container-managed service that al-
lows callbacks to be scheduled for time-based events. These
events are scheduled according to a calendar-based schedule
at a specific time, after a specific elapsed duration, or at specific
recurring intervals.

There are multiple ways time-based events can be scheduled:

Timers | 71

• Automatic timers based upon the metadata specified
using @Schedule

• Programmatically using Timer Service

• Methods marked with @Timeout

• Deployment descriptors

The first way to execute time-based methods is by marking any
method of the bean with @Schedule:

@Stateless
public class MyTimer {

 @Schedule(hour="*", minute="*", second="*/10"),
 public void printTime() {
 //. . .
 }
}

In this code, the printTime method is called every 10th second
of every minute of every hour. @Schedule also takes year and
month fields, with a default value of * indicating to execute this
method each month of all years.

The EJB container reads the @Schedule annotations and auto-
matically creates timers.

Table 5-3 shows some samples that can be specified using
@Schedule and their meanings.

Table 5-3. @Schedule expressions and meanings

@Schedule Meaning

hour="1,2,20" 1 am, 2 am, and 10 pm on all days of the year

dayOfWeek="Mon-Fri" Monday, Tuesday, Wednesday, Thursday, and Fri-

day, at midnight (based upon the default values of

hour, minute, and second)

minute="30", hour="4",

timezone="America/

Los_Angeles"

Every morning at 4:30 US Pacific Time

dayOfMonth="-1,Last" One day before the last day and the last day of the

month at midnight

72 | Chapter 5: Enterprise JavaBeans

@Schedules may be used to specify multiple timers.

Note that there is no need for an, @Startup annotation here, as
lifecycle callback methods are not required. Each re-deploy of
the application will automatically delete and re-create all the
schedule-based timers.

Interval timers can be easily created by using ScheduleExpres
sion.start() and end() methods. The single-action timer can
be easily created by specifying fixed values for each field:

@Schedule(year="A",
 month="B",
 dayOfMonth="C",
 hour="D",
 minute="E",
 second="F")

Timers are not for real time, as the container interleaves the
calls to a timeout callback method with the calls to the business
methods and the lifecycle callback methods of the bean. So the
timed-out method may not be invoked at exactly the time
specified at timer creation.

The Timer Service allows for programmatic creation and can-
cellation of timers. Programmatic timers can be created using
createXXX methods on TimerService. The method to be invoked
at the scheduled time may be the ejbTimeout method from
TimedObject:

package org.sample;

@Singleton
@Startup
public class MyTimer implements TimedObject {
 @Resource TimerService timerService;

 @PostConstruct
 public void initTimer() {
 if (timerService.getTimers() != null) {
 for (Timer timer : timerService.getTimers()) {
 timer.cancel();
 }
 }
 timerService.createCalendarTimer(

Timers | 73

 new ScheduleExpression().
 hour("*").
 minute("*").
 second("*/10"),
 new TimerConfig("myTimer", true)
);

 @Override
 public void ejbTimeout(Timer timer) {
 //. . .

 }
}

The initTimer method is a lifecycle callback method that
cleans up any previously created timers and then creates a new
timer that triggers every 10th second. The ejbTimeout method,
implemented from the TimedObject interface, is invoked every
time the timeout occurs. The timer parameter in this method
can be used to cancel the timer, can get information on when
the next timeout will occur, information about the timer itself,
and other relevant data.

Note that the timers are created in the lifecycle callback meth-
ods, thus ensuring that they are ready before any business
method on the bean is invoked.

The third way to create timers is for a method to have the fol-
lowing signatures:

void <METHOD>() {
 //. . .
}
void <METHOD>(Timer timer) {
 //. . .
}

The method needs to be marked with @Timeout:

public class MyTimer {

 //. . .

 @Timeout
 public void timeout(Timer timer) {
 //. . .

74 | Chapter 5: Enterprise JavaBeans

 }
}

The fourth way to create timers is where a method can be tag-
ged for execution on a timer expiration using ejb-jar.xml. Let’s
say the method looks like:

public class MyTimer {
 public void timeout(Timer timer) {
 //. . .
 }
}

The method timeout can be converted into a timer method by
adding the following fragment to ejb-jar.xml:

<enterprise-beans>
 <session>
 <ejb-name>MyTimer</ejb-name>
 <ejb-class>org.sample.MyTimer</ejb-class>
 <session-type>Stateless</session-type>
 <timer>
 <schedule>
 <second>*/10</second>
 <minute>*</minute>
 <hour>*</hour>
 <month>*</month>
 <year>*</year>
 </schedule>
 <timeout-method>
 <method-name>timeout</method-name>
 <method-params>
 <method-param>
 javax.ejb.Timer
 </method-param>
 </method-params>
 </timeout-method>
 </timer>
 </session>
</enterprise-beans>

Timers can be created in stateless session beans, singleton ses-
sion beans, and message-driven beans, but not stateful session
beans. This functionality may be added to a future version of
the specification.

Timers | 75

Timers are persistent by default, and need to made nonpersis-
tent programmatically (TimerConfig.setPersistent(false)) or
automatically (by adding persistent=false on @Schedule).

The timer-based events can only be scheduled in stateless ses-
sion beans and singleton session beans.

Embeddable API
The Embeddable EJB API allows client code and its corre-
sponding enterprise beans to run within the same JVM and
class loader. The client uses the bootstrapping API from the
javax.ejb package to start the container and identify the set of
enterprise bean components for execution. This provides bet-
ter support for testing, offline processing, and executing EJB
components within a Java SE environment.

The sample code below shows how to write a test case that
starts the embeddable EJB container, looks up the loaded EJB
using Portable Global JNDI Name, and invokes a method on it:

public void testEJB() throws NamingException {
 EJBContainer ejbC = EJBContainer.createEJBContainer();
 Context ctx = ejbC.getContext();
 MyBean bean = (MyBean) ctx.lookup
 ("java:global/classes/org/sample/MyBean");
 assertNotNull(bean);
 //. . .
 ejbC.close();
}

The embeddable EJB container uses the JVM classpath to scan
for the EJB modules to be loaded. The client can override this
behavior during setup by specifying an alternative set of target
modules:

Properties props = new Properties();
props.setProperty(EJBContainer.EMBEDDABLE_MODULES_PROPERTY,
 "bar");
EJBContainer ejbC = EJBContainer.createEJBContainer(props);

This code will load only the bar EJB module in the embeddable
container.

76 | Chapter 5: Enterprise JavaBeans

Table 5-4 explains the properties that may be used to configure
the EJB container.

Table 5-4. Embeddable EJB container initialization properties

Name Type Purpose

javax.ejb.embedda

ble.initial or

EJBContainer.EMBEDDA

BLE_INITIAL_PROPERTY

String Fully qualified name of em-

beddable container provider

class to be used for this

application.

javax.ejb.embedda

ble.modules or

EJBContainer.EMBEDDA

BLE_MODULES_PROPERTY

String or

String[]

java.io.File or

java.io.File[]

Modules to be initialized. If

included in the classpath,

specified as String or

String[]. If not in the

classpath, specified as File

or File[] where each ob-

ject is referring to an ejb-jar

or exploded ejb-jar directory.

javax.ejb.embedda

ble.appName or

EJBContainer.EMBEDDA

BLE_APP_NAME_PROP

ERTY

String Application name for an EJB

module. It corresponds to

the<app-name> portion of

the Portable Global JNDI

Name syntax.

The embeddable container implementation may support ad-
ditional properties.

EJB.Lite
The full set of EJB functionality may not be required for all
enterprise applications. As explained earlier, the web profile
offers a reasonably complete stack composed of standard APIs,
and is capable out-of-the-box for addressing a wide variety of
web applications. The applications targeted toward web pro-
files will want to use transactions, security, and other func-
tionality defined in the EJB specification. EJB.Lite was created
to meet that need.

EJB.Lite | 77

EJB.Lite is a minimum set of the complete EJB functionality.
No new functionality is defined as part of EJB.Lite; it is merely
a proper subset of the full functionality. This allows the EJB
API to be used in applications that may have much smaller
installation and runtime footprints than a typical full Java EE
implementation.

Table 5-5 highlights the difference between EJB 3.1 Lite and
EJB 3.1 Full API.

Table 5-5. Difference between EJB 3.1 Lite and EJB 3.1 Full API

 EJB 3.1 Lite EJB 3.1 Full API

Session beans ✔ ✔
Message-Driven beans ✘ ✔
2.x/1.x/CMP/BMP Entity beans ✘ ✔
Java persistence 2.0 ✔ ✔
Local / No-interface ✔ ✔
3.0 Remote ✘ ✔
2.x Remote / Home component ✘ ✔
JAX-WS Web service endpoint ✘ ✔
JAX-RPC Web service endpoint ✘ ✔
EJB Timer service ✘ ✔
Asynchronous session bean invocations ✘ ✔
Interceptors ✔ ✔
RMI-IIOP Interoperability ✘ ✔
Container-managed transactions /

Bean-managed transactions

✔ ✔

Declarative and programmatic security ✔ ✔
Embeddable API ✔ ✔

Functionality defined by EJB.Lite is available in a Java EE web
profile–compliant application server. A full Java EE–compliant
application server is required to implement the complete set of
functionality.

78 | Chapter 5: Enterprise JavaBeans

CHAPTER 6

Contexts and Dependency
Injection

Contexts and Dependency Injection (CDI) is defined as
JSR 299, and the complete specification can be downloaded
from http://jcp.org/aboutJava/communityprocess/final/jsr299/
index.html.

CDI defines a type-safe dependency injection mechanism in
the Java EE platform. A bean specifies only the type and se-
mantics of other beans it depends upon, without a string name
and using the type information available in the Java object
model. This allows compile-time validation in addition to de-
ployment. It also provides for easy refactoring.

The injection request need not be aware of the actual lifecycle,
concrete implementation, threading model, or other clients of
the bean. This “strong typing, loose coupling” makes your
code easier to maintain. The bean so injected has a well-defined
lifecycle and is bound to lifecycle contexts. The injected bean
is also called a contextual instance because it is always injected
in a context.

Almost any POJO can be injected as a CDI bean. This includes
EJBs, JNDI resources, entity classes, and persistence units and
contexts. Even the objects that were earlier created by a factory
method can now be easily injected. Specifically, CDI allows

79

http://jcp.org/aboutJava/communityprocess/final/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr299/index.html

EJB components to be used as JSF managed beans, thus bridg-
ing the gap between the transactional and the web tier. It is also
integrated with Unified Expression Language (UEL), allowing
any contextual object to be used directly within a JSF or JSP
page.

Injection Points
A bean may be injected at field, method, or constructor using
@Inject.

The following code shows a Greeting interface, a POJO
SimpleGreeting as its implementation, and injection of the in-
terface as a field in GreetingService:

public interface Greeting {
 public String greet(String name);
}

public class SimpleGreeting implements Greeting {
 public String greet(String name) {
 return "Hello" + name;
 }
}

@Stateless
public class GreetingService {
 @Inject Greeting greeting;

 public String greet(String name) {
 return greeting.greet(name);
 }
}

@Inject specifies the injection point, Greeting specifies what
needs to be injected, and greeting is the variable that gets the
injection.

A bean may define one or more methods as targets of injection
as well:

80 | Chapter 6: Contexts and Dependency Injection

Greeting greeting;

@Inject
public setGreeting(Greeting greeting) {
 this.greeting = greeting;
}

Finally, a bean can have at most one constructor marked
with @Inject:

Greeting greeting;

@Inject
public SimpleGreeting(Greeting greeting) {
 this.greeting = greeting;
}

All method parameters are then automatically injected. This
constructor may have any number of parameters, and all of
them are injection points. A constructor marked with
@Inject need not have public access. This allows a bean with
constructor injection to be immutable.

Here is the bean initialization sequence:

1. Default constructor or the one annotated with @Inject.

2. All fields of the bean annotated with @Inject.

3. All methods of the bean annotated with @Inject (the call
order is not portable, though).

4. @PostConstruct method, if any.

Qualifier and Alternative
Qualifier allows you to uniquely specify a bean to be injected
among its multiple implementations. For example, this code
declares a new qualifier, @Fancy:

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Fancy {
}

Qualifier and Alternative | 81

This defines a new implementation of the Greeting interface:

@Fancy
public class FancyGreeting implements Greeting {
 public String greet(String name) {
 return "Nice to meet you, hello" + name;
 }
}

and injects it in the GreetingService by specifying @Fancy as the
qualifer:

@Stateless
public class GreetingService {
 @Inject @Fancy Greeting greeting;

 public String sayHello(String name) {
 return greeting.greet(name);
 }
}

This removes any direct dependency to any particular imple-
mentation of the interface. Qualifiers may take parameters for
further discrimination. Multiple qualifiers may be specified at
an injection point.

Table 6-1 lists the built-in qualifiers and their meanings.

Table 6-1. Built-in CDI qualifiers

Qualifier Description

@Named String-based qualifier, required for usage in Expression Language

@Default Default qualifier on all beans without an explicit qualifier, except @Named

@Any Default qualifier on all beans except @New

@New Allows the application to obtain a new instance independent of the

declared scope

Using the SimpleGreeting and FancyGreeting implementations
defined earlier, the injection points are explained below:

@Inject Greeting greeting;
@Inject @Default Greeting greeting;
@Inject @Any @Default Greeting greeting;

82 | Chapter 6: Contexts and Dependency Injection

The three injection points are equivalent, as each bean has
@Default and @Any (except for @New) qualifiers and specifying
them does not provide any additional information. The Simple
Greeting bean is injected in each statement. Thus:

@Inject @Any @Fancy Greeting greeting;

will inject FancyGreeting implementation. This is because spec-
ifying @Fancy on FancyGreeting means it does not have the
@Default qualifier. This statement:

@Inject @Any Greeting greeting;

will result in ambiguous dependency and require further quali-
fication of the bean by specifying @Default or @Fancy.

The use of @Named as an injection point qualifier is not recom-
mended, except in the case of integration with legacy code that
uses string-based names to identify beans.

The beans marked with @Alternative are unavailable for in-
jection, lookup, or EL resolution. They need to be explicitly
enabled in beans.xml using <alternatives>:

@Alternative
public class SimpleGreeting implements Greeting {
 //. . .
}

@Fancy @Alternative
public class FancyGreeting implements Greeting {
 //. . .
}

Now the following injection will give an error about unresolved
dependency:

@Inject Greeting greeting;

because both the beans are disabled for injection. This error
can be resolved by explicitly enabling one of the beans in
beans.xml:

 <beans
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="

Qualifier and Alternative | 83

 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <alternatives>
 <class>org.sample.FancyGreeting</class>
 </alternatives>
</beans>

@Alternative allows multiple implementations of a bean with
the same qualifiers to be packaged in the .war file and selec-
tively enabled by changing the deployment descriptor based
upon the environment. For example, this can allow you to
target separate beans for injection in development, testing,
and production environments by enabling the classes in
beans.xml. This provides deployment-type polymorphism.

Producer and Disposer
@Inject and @Qualifier provide static injection of a bean (i.e.,
the concrete type of the bean to be injected is known). How-
ever, this may not always be possible. The producer methods
provide runtime polymorphism where the concrete type of the
bean to be injected may vary at runtime, the injected object
may not even be a bean, and objects may require custom ini-
tialization. This is similar to the well-known factory pattern.

Here is an example that shows how List<String> can be made
available as a target for injection:

@Produces
public List<String> getGreetings() {
 List<String> response = new ArrayList<String>();
 //. . .
 return response;
}

In this code, the getGreetings method can populate
List<String> from a DataSource or by invoking some other ex-
ternal operation.

And now it can be injected as:

@Inject List<String> list;

84 | Chapter 6: Contexts and Dependency Injection

By default, a bean is injected in @Dependent scope, but it can be
changed by explicitly specifying the required scope. Let’s say
Connection is a bean that encapsulates a connection to a re-
source, for example a database accessible using JDBC, and
User provides credentials to the resource. The following code
shows how a Connection bean is available for injection in re-
quest scope:

@Produces @RequestScoped
Connection connect(User user) {
 return createConnection(user.getId(),
user.getPassword());
}

Here is another example of how PersistenceContext may be
exposed as a type-safe bean. This is the typical code of how an
EntityManager is injected:

@PersistenceContext(unitName="...")
EntityManager em;

All such references can be unified in a single file as:

@Produces
@PersistenceContext(unitName="...")
@CustomerDatabase
EntityManager em;

where CustomerDatabase is a qualifier. The EntityManager can
now be injected as:

@Inject @CustomerDatabase
EntityManager em;

Similarly, JMS factories and destinations can be injected in a
type-safe way.

Some objects that are made available for injection using
@Produces may require explicit destruction. For example, the
JMS factories and destinations need to be closed. Here is a code
example that shows how the Connection produced earlier may
be closed:

void close(@Disposes Connection connection) {
 connection.close();
}

Producer and Disposer | 85

Interceptors and Decorators
Interceptors are used to implement cross-cutting concerns,
such as logging, auditing, and security, from the business logic.

The specification is not entirely new, as the concept already
existed in the EJB 3.0 specification. However, it is now
abstracted at a higher level so that it can be more generically
applied to a broader set of specifications in the platform. In-
terceptors do what they say—they intercept on invocations
and lifecycle events on an associated target class. Basically, an
interceptor is a class whose methods are invoked when busi-
ness methods on a target class are invoked, lifecycle events such
as methods that create/destroy the bean occur, or an EJB time-
out method occurs. The CDI specification defines a type-safe
mechanism for associating interceptors to beans using inter-
ceptor bindings.

An interceptor binding type needs to be defined in order to in-
tercept a business method. This can be done by specifying the
@InterceptorBinding meta-annotation:

@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD,TYPE})
public @interface Logging {
}

@Target defines the program element to which this interceptor
can be applied. In this case, the annotation @Logging can be
applied to a method or a type (class, interface, or enum).

The interceptor is implemented:

@Interceptor
@Logging
public class LoggingInterceptor {
 @AroundInvoke
 public Object log(InvocationContext context)
 throws Exception {
 Logger.getLogger(getClass().getName().
 info(context.getMethod().getName());
 Logger.getLogger(getClass().getName().
 info(context.getParameters());

86 | Chapter 6: Contexts and Dependency Injection

www.allitebooks.com

http://www.allitebooks.org

 return context.proceed();
 }
}

Adding the @Interceptor annotation marks this class as an in-
terceptor, and @Logging specifies that this is an implementation
of the earlier defined interceptor binding type. @AroundInvoke
indicates that this interceptor method interposes on business
methods. Only one method of an interceptor may be marked
with this annotation. InvocationContext provides context in-
formation about the intercepted invocation and operations and
can be used to control the behavior of the invocation chain.

This method is printing the name of the business method being
invoked and the parameters passed to it.

This interceptor may be attached to any managed bean:

@Logging
public class SimpleGreeting {
 //. . .
}

Alternatively, individual methods may be logged by attaching
the interceptor:

public class SimpleGreeting {
 @Logging
 public String greet(String name) {
 //. . .
 }
}

Multiple interceptors may be defined using the same intercep-
tor binding.

By default, all interceptors are disabled and need to be explic-
itly enabled by specifying them in beans.xml:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <interceptors>
 <class>org.sample.LoggingInterceptor</class>
 </interceptors>
</beans>

Interceptors and Decorators | 87

Note that the actual interceptor implementation class is men-
tioned here.

Defining interceptor bindings provides one level of indirection,
but removes the dependency from the actual interceptor
implementation class. It also allows you to vary the actual
interceptor implementation based upon the deployment envi-
ronment as well, and to provide a central ordering of intercep-
tors for that archive. The interceptors are invoked in the order
in which they are specified inside the <interceptors> element.

Interceptors also support dependency injection. An interceptor
that adds basic transactional behavior to a managed bean may
be defined:

@Interceptor
@Transactional
public class TransactionInterceptor {
 @Resource UserTransaction tx;

 @AroundInvoke
 public Object manageTransaction(
 InvocationContext context) {
 tx.begin()
 Object response = context.proceed();
 tx.commit();
 return response;
 }
}

UserTransaction is injected in the interceptor and is then used
to start and commit the transaction in the interceptor method.
@Transactional is a standard interceptor binding type and can
be specified on any managed bean or a method thereof to in-
dicate the transactional behavior.

A lifecycle callback interceptor can be implemented:

public class LifecycleInterceptor {
 @PostConstruct
 public void init(InvocationContext context) {
 //. . .
 }
}

88 | Chapter 6: Contexts and Dependency Injection

An EJB timeout interceptor can be implemented:

public class TimeoutInterceptor {
 @AroundTimeout
 public Object timeout(InvocationContext context) {
 //. . .
 }
}

Decorators are used to implement business concerns. Inter-
ceptors are unaware of the business semantics of the invoked
bean and thus are more widely applicable; decorators comple-
ment interceptors as they are semantic-aware of the business
method and applicable to beans of a particular type. A deco-
rator is a bean that implements the bean it decorates and is
annotated with @Decorator stereotype:

@Decorator
class MyDecorator implements Greeting {
 public String greet(String name) {
 //. . .
 }
}

The decorator class may be abstract, as it may not be imple-
menting all methods of the bean.

A decorator class has a delegate injection point that is an injec-
tion point for the same type as the beans they decorate. The
delegate injection point follows the normal rules for injection
and therefore must be an injected field, initializer method pa-
rameter, or bean constructor method parameter. This delegate
injection point specifies that the decorator is bound to all beans
that implement Greeting:

@Inject @Delegate @Any Greeting greeting;

A delegate injection point may specify qualifiers, and the dec-
orator is then bound to beans with the same qualifiers.

By default, all decorators are disabled and need to be explicitly
enabled by specifying them in beans.xml:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

Interceptors and Decorators | 89

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <decorators>
 <class>org.sample.MyDecorator</class>
 </decorators>
</beans>

Just like interceptors, this allows you to specify a central or-
dering of decorators for that archive and vary the set of deco-
rators based upon the deployment environment.

In order of execution, the interceptors for a method are called
before the decorators that apply to the method.

Scopes and Contexts
A bean is said to be in a scope and is associated with a con-
text. The associated context manages the lifecycle and visibility
of all beans in that scope. A bean is created once per scope and
then reused. When a bean is requested in a particular scope, a
new instance is created if it does not exist already. If it does
exist, that instance is returned instead. The runtime makes sure
the bean in the right scope is created, if required; the client does
not have to be scope-aware. This provides loose coupling be-
tween the client and the bean to be injected.

There are four predefined scopes and one default scope, as
shown in Table 6-2.

Table 6-2. Predefined scopes in CDI

Scope Description

@RequestScoped A bean is scoped to a request. The bean is available during

a single request and destroyed when the request is

complete.

@SessionScoped A bean is scoped to a session. The bean is shared between

all requests that occur in the same HTTP session, holds state

throughout the session, and is destroyed when the HTTP

session times out or is invalidated.

@ApplicationScoped A bean is scoped to an application. The bean is created

when the application is started, holds state throughout

90 | Chapter 6: Contexts and Dependency Injection

Scope Description

the application, and is destroyed when the application is

shut down.

@Conversa

tionScoped

A bean is scoped to a conversation and is of two types:

transient or long-running. By default, a bean in this scope

is transient, is created with a JSF request, and is destroyed

at the end of the request. A transient conversation can be

converted to a long-running one using Conversa

tion.begin. This long-running conversation can be

ended using Conversation.end. All long-running

conversations are scoped to a particular HTTP servlet ses-

sion and may be propagated to other JSF requests. Multiple

parallel conversations can run within a session, each

uniquely identified by a string-valued identifier that is

either set by the application or generated by the container.

This allows multiple tabs in a browser to hold state corre-

sponding to a conversation, unike session cookies that are

shared across tabs.

@Dependent A bean belongs to the dependent pseudoscope. This is the

default scope of the bean that does not explicitly declare

a scope.

A contextual reference to the bean is not a direct reference to
the bean (unless it is in @Dependent scope). Instead, it is a client
proxy object. This client proxy is responsible for ensuring that
the bean instance that receives a method invocation is the in-
stance that is associated with the current context. This allows
you to invoke the bean in the current context instead of using
a stale reference.

If the bean is in @Dependent scope, then the client holds a direct
reference to its instance. A new instance of the bean is bound
to the lifecycle of the newly created object. A bean in @Depen
dent scope is never shared between multiple injection points.
If an @Dependent-scoped bean is used in an EL expression, then
an instance of the bean is created for each EL expression. So
a wider lifecycle context, such as @RequestScoped or
@SessionScoped, needs to be used if the values evaluated by the
EL expression need to be accessible in other beans.

Scopes and Contexts | 91

A new scope can be defined using the extensible context model
(@Contextual, @CreationalContext, @Context interfaces), but
that is generally not required by an application developer.

Stereotypes
A stereotype encapsulates architectural patterns or common
metadata for beans that produce recurring roles in a central
place. It encapsulates scope, interceptor bindings, qualifiers,
and other properties of the role.

A stereotype is a meta-annotation annotated with @Stereotype:

@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
//. . .
public @interface MyStereotype { }

A stereotype that adds transactional behavior can be defined
as:

@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
@Transactional
public @interface MyStereotype { }

In this code, an interceptor binding defined earlier,
@Transactional, is used to define the stereotype. A single in-
terceptor binding defines this stereotype instead of the inter-
ceptor binding. However, it allows you to update the
stereotype definition later with other scopes, qualifiers, and
properties, and those values are then automatically applied on
the bean.

It can be specified on a target bean like any other annotation:

@MyStereotype
public class MyBean {
 //. . .
}

92 | Chapter 6: Contexts and Dependency Injection

The metadata defined by the stereotype are now applicable on
the bean.

A stereotype may declare the default scope of a bean:

@Stereotype
@RequestScoped
@Retention(RUNTIME)
@Target(TYPE)
public @interface MyStereotype { }

Specifying this stereotype on a bean marks it to have
@RequestScoped unless the bean explicitly specifies the scope.
A stereotype may declare at most one scope.

A stereotype may declare zero, one, or multiple interceptor
bindings:

@Stereotype
@Transactional
@Logging
@Retention(RUNTIME)
@Target(TYPE)
public @interface MyStereotype { }

Adding @Alternative to the stereotype definition marks all the
target beans to be alternatives.

Stereotypes can be stacked together to create new stereotypes
as well.

@Interceptor, @Decorator, and @Model are predefined stereo-
types. The @Model stereotype is predefined:

@Named
@RequestScoped
@Stereotype
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Model {}

This stereotype provides a default name for the bean and marks
it @RequestScoped. Adding this stereotype on a bean will enable
it to pass values from a JSF view to a controller, say an EJB.

Stereotypes | 93

Events
Events provide an annotation-based event model based upon
the observer pattern. Event producers raise events that are con-
sumed by observers. The event object, typically a POJO, carries
state from producer to consumer. The producer and the ob-
server are completely decoupled from each other and only
communicate using the state.

A producer bean will fire an event using the Event interface:

@Inject @Any Event<Customer> event;
//. . .
event.fire(customer);

An observer bean with the following method signature will re-
ceive the event:

void onCustomer(@Observes Customer event) {
 //. . .
}

In this code, Customer is carrying the state of the event.

The producer bean can specify a set of qualifiers when injecting
the event:

@Inject @Any @Added Event<Customer> event;

The observer bean’s method signature has to match with the
exact set of qualifiers in order to receive the events fired by this
bean:

void onCustomer(@Observes @Added Customer event) {
 //. . .
}

Qualifiers with parameters and multiple qualifiers may be
specified to further narrrow the scope of an observer bean.

By default, an existing instance of the bean or a new instance
of the bean is created in the current context to deliver the event.
This behavior can be altered so that the event is delivered only
if the bean already exists in the current scope:

void onCustomer(
 @Observes(

94 | Chapter 6: Contexts and Dependency Injection

 notifyObserver= Reception.IF_EXISTS)
 @Added Customer event){
 //. . .
}

Transactional observer methods receive their event notifica-
tions during the before or after completion phase of the trans-
action in which the event was fired. TransactionPhase identifies
the kind of transactional observer methods, as defined in
Table 6-3.

Table 6-3. Transactional observers

Transactional observers Description

IN_PROGRESS Default behavior, observers are called immediately

BEFORE_COMPLETION Observers are called during the before completion phase of

the transaction

AFTER_COMPLETION Observers are called during the after completion phase of

the transaction

AFTER_FAILURE Observers are called during the after completion phase of

the transaction, only when the transaction fails

AFTER_SUCCESS Observers are called during the after completion phase of

the transaction, only when the transaction succeeds

For example, the following observer method will be called after
the transaction has successfully completed:

void onCustomer(
 @Observes(
 during= TransactionPhase.AFTER_SUCCESS)
 @Added Customer event) {
 //. . .
}

Portable Extensions
CDI exposes an Service Provider Interface (SPI) allowing
portable extensions to extend the functionality of the container
easily. A portable extension may integrate with the container
by:

Portable Extensions | 95

• Providing its own beans, interceptors, and decorators to
the container

• Injecting dependencies into its own objects using the de-
pendency injection service

• Providing a contextual implementation for a custom
scope

• Augmenting or overriding the annotation-based metadata
with metadata from some other source

Here is a simple extension:

public class MyExtension implements Extension {

 <T> void processAnnotatedType(
 @Observes ProcessAnnotatedType<T> pat) {
 Logger.global.log(Level.INFO,
 "processing annotation: {0}",
 pat.
 getAnnotatedType().
 getJavaClass().
 getName());
 }
}

This extension prints the list of annotations on a bean pack-
aged in a web application.

The extension needs to implement the Extension marker in-
terface. This extension then needs to be registered using the
service provider mechanism by creating a file named META-
INF/services/javax.enterprise.inject.spi.Extension. This file
contains the fully qualified name of the class implementing the
extension:

org.sample.MyExtension

The bean can listen to a variety of container lifecycle events, as
listed in Table 6-4.

96 | Chapter 6: Contexts and Dependency Injection

Table 6-4. CDI container lifecycle events

Event When fired ?

BeforeBeanDiscovery Before the bean discovery process begins

AfterBeanDiscovery After the bean discovery process is complete

AfterDeployment

Validation

After no deployment problems are found and before con-

texts are created and requests processed

BeforeShutdown After all requests are finished processing and all contexts

destroyed

ProcessAnnotated

Type

For each Java class or interface discovered in the applica-

tion, before the annotations are read

ProcessInjection

Target

For every Java EE component class supporting injection

ProcessProducer For each producer method or field of each enabled bean

Each of these events allows a portable extension to integrate
with the container initialization. For example, Before

BeanDiscovery can be used to add new interceptors, qualifiers,
scope, and stereotypes on an existing bean.

BeanManager provides operations for obtaining contextual
references for beans, along with many other operations of use
to portable extensions. It can be injected into the observer
methods:

<T> void processAnnotatedType(
 @Observes ProcessAnnotatedType<T> pat,
 BeanManager bm) {
 //. . .
}

BeanManager is also available for field injection and can be
looked up using the name java:comp/BeanManager.

Portable Extensions | 97

CHAPTER 7

JavaServer Faces

JavaServer Faces (JSF) is defined as JSR 314, and the complete
specification can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr314/index.html.

JavaServer Faces is a server-side user interface (UI) framework
for Java-based web applications. JSF allows you to:

• Create a web page with a set of reusable UI components
following the Model-View-Controller (MVC) design
pattern.

• Bind components to a server-side model. This allows a
two-way migration of application data with the UI.

• Handle page navigation in response to UI events and
model interactions.

• Manage UI component state across server requests.

• Provide a simple model for wiring client-generated events
to server-side application code.

• Easily build and reuse custom UI components.

A JSF application consists of:

• A set of web pages in which the UI components are laid
out.

• A set of managed beans. One set of beans binds compo-
nents to a server-side model (typically CDI beans or

99

http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html

Managed Beans) and another set acts as Controller (typi-
cally EJB or CDI beans).

• An optional deployment descriptor, web.xml.

• An optional configuration file, faces-config.xml.

• An optional set of custom objects such as converters and
listeners, created by the application developer.

Facelets
Facelets is the view declaration language (aka view handler) for
JSF. It is the replacement for JSP, which is now retained only
for backward compatibility. New features introduced in ver-
sion 2 of the JSF specification, such as composite components
and Ajax, are only exposed to page authors using facelets. Key
benefits of facelets include a powerful templating system, reuse
and ease-of-development, better error reporting (including line
numbers), and designer-friendliness.

Facelets pages are authored using XHTML 1.0 and Cascading
Style Sheets (CSS). An XHTML 1.0 document is a reformula-
tion of an HTML 4 document following the rules of XML 1.0.
The pages must conform with the XHTML-1.0-Transitional
DTD as described at http://www.w3.org/TR/xhtml1/#a_dtd
_XHTML-1.0-Transitional.

A simple Facelets page can be defined using XHTML:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>My Facelet Page Title</title>
 </h:head>
 <h:body>
 Hello from Facelets
 </h:body>
</html>

100 | Chapter 7: JavaServer Faces

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

In this code, an XML prologue is followed by a document type
declaration (DTD). The root element of the page is html in the
namespace http://www.w3.org/1999/xhtml. An XML name-
space is declared for the tag library used in the web page. Face-
lets HTML tags (those beginning with h:) and regular HTML
tags are used to add components.

Table 7-1 shows the standard set of tag libraries supported by
Facelets.

Table 7-1. Standard tag libraries supported by Facelets

Prefix URI Examples

h http://java.sun.com/jsf/html h:head, h:inputText

f http://java.sun.com/jsf/core f:facet, f:actionListener

c http://java.sun.com/jsp/jstl/core c:forEach, c:if

fn http://java.sun.com/jsp/jstl/func

tions

fn:toUpperCase, fn:contains

ui http://java.sun.com/jsf/facelets ui:component, ui:insert

By convention, web pages built with XHTML have a .xhtml
extension.

Facelets provides Expression Language (EL) integration. This
allows two-way data binding between the backing beans and
the UI:

Hello from Facelets, my name is #{name.value}!

In this code, #{name} is an EL that refers to the value field of a
request-scoped CDI bean:

@Named
@RequestScoped
public class Name {
 private String value;

 //. . .
}

Facelets | 101

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsf/facelets

It’s important to add @Named on a CDI bean to enable its injec-
tion in an EL. It is highly recommended to use CDI-compatible
beans instead of beans annotated with @javax.faces

.bean.ManagedBean.

Similarly, an EJB can be injected in an EL expression:

@Stateless
@Named
public class CustomerSessionBean {
 public List<Name> getCustomerNames() {
 //. . .
 }
}

This is a stateless session bean and has a business method that
returns a list of customer names. @Named marks it for injection
in an EL. It can be used in Facelets EL:

<h:dataTable value="#{customerSessionBean.customerNames}"
 var="c">
 <h:column>#{c.value}</h:column>
</h:dataTable>

In this code, the list of customer names returned is displayed
in a table. Notice how the getCustomerNames method is avail-
able as a property in the EL.

Facelets also provides compile-time EL validation.

In addition, Facelets provides a powerful templating system
that allows you to provide a consistent look-and-feel across
multiple pages in a web application. A base page, called a tem-
plate, is created using Facelets templating tags. This page de-
fines a default structure of the page, including placeholders for
the content that will be defined in the pages using the template.
A template client page uses the template and provides actual
content for the placeholders defined in the template.

Table 7-2 lists some of the common tags used in template and
template client pages.

102 | Chapter 7: JavaServer Faces

Table 7-2. Common Facelets tags for a template

Tag Description

ui:composition Defines a page layout that optionally uses a template. If the

template attribute is used, the children of this tag define the

template layout. If not, it’s just a group of elements as a compo-

sition that can be inserted anywhere. Content outside of this tag

is ignored.

ui:insert Used in a template page and defines the placeholder for inserting

content into a template. A matching ui:define tag in the

template client page replaces the content.

ui:define Used in a template client page; defines content that replaces the

content defined in a template with a matching ui:insert tag.

ui:component Inserts a new UI component into the JSF component tree. Any

component or content fragment outside this tag is ignored.

ui:fragment Similar to ui:component, but does not disregard content

outside this tag.

ui:include Includes the document pointed to by the “src” attribute as part

of the current Facelets page.

A template page looks like:

<h:body>

 <div id="top">
 <ui:insert name="top">
 <h1>Facelets are Cool!</h1>
 </ui:insert>
 </div>

 <div id="content" class="center_content">
 <ui:insert name="content">Content</ui:insert>
 </div>

 <div id="bottom">
 <ui:insert name="bottom">
 <center>Powered by GlassFish</center>
 </ui:insert>
 </div>

</h:body>

Facelets | 103

In this code, the page defines the structure using <div> and CSS
(not shown here). ui:insert defines the content that gets re-
placed by a template client page.

A template client page looks like:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">

 <body>

 <ui:composition template="./template.xhtml">

 <ui:define name="content">
 <h:dataTable
 value="#{customerSessionBean.customerNames}"
 var="c">
 <h:column>#{c.value}</h:column>
 </h:dataTable>
 </ui:define>

 </ui:composition>

 </body>
</html>

In this code, ui:insert with top and bottom names are not
defined, and so those sections are used from the template page.
There is a ui:define element with a name matching the
ui:insert element in the template, and so the contents are
replaced.

Resource Handling
JSF defines a standard way of handling resources, such as im-
ages, CSS, or JavaScript files. These resources are required by
a component to be rendered properly.

Such resources can be packaged in /resources in the web ap-
plication or in /META-INF/resources in the classpath. The re-
sources may also be localized, versioned, and collected into
libraries.

104 | Chapter 7: JavaServer Faces

A resource can be referenced in EL:

click here

In this code, header.jpg is bundled in the standard resources
directory.

If a resource is bundled in a library corp (a folder at the location
where resources are packaged), then it can be accessed using
the library attribute:

<h:graphicImage library="corp" name="header.jpg" />

JavaScript may be included:

<h:outputScript
 name="myScript.js"
 library="scripts"
 target="head"/>

In this code, myScript.js is a JavaScript resource packaged in
the scripts directory in the standard resources directory.

A CSS stylesheet can be included:

<h:outputStylesheet name="myCSS.css" library="css" />

The ResourceHandler API provides a programmatic way to
serve these resources as well.

Composite Components
Using features of Facelets and Resource Handling, JSF defines
a composite component as a component that consists of one
or more JSF components defined in a Facelets markup file.
This .xhtml file resides inside of a resource library. This allows
you to create a reusable component from an arbitrary region
of a page.

The composite component is defined in the defining page and
used in the using page. The defining page defines the metadata
(or parameters) using <cc:interface> and the implementation
using <cc:implementation>, where cc is the prefix for the http:
//java.sun.com/jsf/composite/ namespace. Future versions of

Composite Components | 105

http://java.sun.com/jsf/composite/
http://java.sun.com/jsf/composite/

the JSF specification may relax the requirement to specify met-
adata, as it can be derived from the implementation itself.

A composite component can be defined using JSF 1.2 as well,
but it requires a much deeper understanding of the JSF lifecycle
and also authoring multiple files. JSF2 really simplifies the au-
thoring of composite components using just an XHTML file.

Let’s say a Facelet has the following code fragment to display
a login form:

<h:form>
 <h:panelGrid columns="3">
 <h:outputText value="Name:" />
 <h:inputText value="#{user.name}" id="name"/>
 <h:message for="name" style="color: red" />
 <h:outputText value="Password:" />
 <h:inputText value="#{user.password}"
 id="password"/>
 <h:message for="password" style="color: red" />
 </h:panelGrid>

 <h:commandButton actionListener=
 "#{userService.register}"
 id="loginButton"
 action="status"
 value="submit"/>
</h:form>

This code renders a table with two rows and three columns, as
shown in Figure 7-1.

Figure 7-1. JSF Facelets page output in a browser

The first column displays a prompt for the field to be entered;
the second column displays an input text box where the data
can be entered; and the third column (which shows empty to
begin with) is for displaying a message for the corresponding

106 | Chapter 7: JavaServer Faces

field. The first row binds the input value to the User.name
field, and the second row binds the input value to the
User.password field. There is also a command button, and
clicking the button invokes the register method of the User
Service bean.

If this login form is to be displayed in multiple pages, then
instead of repeating this code everywhere it is beneficial to
convert this fragment into a composite component. This re-
quires the code fragment to be copied to an .xhtml file, and the
file itself is copied in a library in the standard resources direc-
tory. Via convention-over-configuration, the fragment is then
automatically assigned a namespace and a tag name.

If the fragment shown earlier is copied to login.xhtml in the
resources/mycomp directory, the defining page looks like:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://java.sun.com/jsf/composite"
 xmlns:h="http://java.sun.com/jsf/html">

 <!-- INTERFACE -->
 <cc:interface>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 <h:form>
 <h:panelGrid columns="3">
 <h:outputText value="Name:" />
 <h:inputText value="#{user.name}" id="name"/>

 <!-- . . . -->

 </h:form>
</cc:implementation>
</html>

Composite Components | 107

In this code, cc:interface defines metadata that describes
the characteristics of the component, such as supported at-
tributes, facets, and attach points for event listeners.
cc:implementation contains the markup substituted for the
composite component.

The namespace of the composite component is constructed by
concatenating http://java.sun.com/jsf/composite/ and mycomp.
The tag name is the filename without the .xhtml suffix in the
using page:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:mc="http://java.sun.com/jsf/composite/mycomp"

 <!-- . . . -->
 <mc:login/>

</html>

Let’s say that the code fragment needs to pass different value
expressions (instead of #{user.name}) and invoke a different
method (instead of #{userService.register}) when the submit
button is clicked in a different using page. The defining page
can then pass the values:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="name"/>
 <cc:attribute name="password"/>
 <cc:attribute name="actionListener"
 method-signature=
 "void action(javax.faces.event.Event)"
 targets="ccForm:loginButton"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:form id="ccForm">
 <h:panelGrid columns="3">
 <h:outputText value="Name:" />
 <h:inputText value="#{cc.attrs.name}" id="name"/>
 <h:message for="name" style="color: red" />
 <h:outputText value="Password:" />
 <h:inputText value="#{cc.attrs.password}"
 id="password"/>

108 | Chapter 7: JavaServer Faces

http://java.sun.com/jsf/composite/

 <h:message for="password" style="color: red" />
 </h:panelGrid>

 <h:commandButton id="loginButton"
 action="status"
 value="submit"/>
 </h:form>
</cc:implementation>

In this code, all the parameters are explicitly specified in
cc:interface for clarity. The third parameter has a targets at-
tribute referring to ccForm:loginButton.

In cc:implementation:

• The h:form has an id attribute. This is required so that the
button within the form can be explicitly referenced.

• h:inputText is now using #{cc.attrs.xxx} instead of
#{user.xxx}. #{cc.attrs} is a default EL expression that is
available for composite component authors and provides
access to attributes of the current composite component.
In this case #{cc.attrs} has name and password defined as
attributes.

• actionListener is an attach point for event listener. It is
defined as a method-signature and describes the signature
of the method.

• h:commandButton has an id attribute so that it can be clearly
identified within the h:form.

The user, password, and actionListener are then passed as re-
quired attributes in the using page:

<ez:login
 name="#{user.name}"
 password="#{user.password}"
 actionListener="#{userService.register}"/>

Now the using page can pass different backing beans, and dif-
ferent business methods can be invoked when the submit but-
ton is clicked.

Overall, the composite component provides the following
benefits:

Composite Components | 109

• Follows the Don’t Repeat Yourself (DRY) design pattern
and allows you to keep code that can be repeated at mul-
tiple places in a single file.

• Allows developers to author new components without
any Java code or XML configuration.

Ajax
JSF provides native support for adding Ajax capabilities to web
pages. It allows partial view processing, where only some com-
ponents from the view are used for processing the response. It
also enables partial page rendering, where selective compo-
nents from the page, as opposed to the complete page, are
rendered.

There are two ways this support can be enabled:

• Programmatically using JavaScript resources

• Declaratively using f:ajax

Programmatic Ajax integration is enabled using the resource
handling mechanism. jsf.js is a predefined resource in the
javax.faces library. This resource contains the JavaScript API
that facilitates Ajax interaction with JSF pages. It can be made
available in pages using the outputscript tag:

<h:body>
<!-- . . . -->
<h:outputScript
 name="jsf.js"
 library="javax.faces"
 target="body"/>
<!-- . . . -->
</h:body>

An asynchronous request to the server can be made:

<h:form prependId="false">
 <h:inputText value="#{user.name}" id="name"/>
 <h:inputText value="#{user.password}" id="password"/>
 <h:commandButton value="Login"
 type="button"
 actionListener="#{user.login}"

110 | Chapter 7: JavaServer Faces

 onclick="jsf.ajax.request(this, event, {execute:
'name password', render: 'status'}); return false;"/>

 <h:outputText value="#{user.status}" id="status"/>
</h:form>

In this code:

• Two input text fields accept username and password, and
the third output field displays the status (whether the user
is logged in or not).

• The form has prependId set to false to ensure that the id
of each element is preserved as mentioned in the form.
Otherwise, JSF prepends the form’s id to the id of its
children.

• The command button has an actionListener identifying
the method in the backing bean to be invoked when the
button is clicked. Instead of the usual response rendering
and displaying a different page, jsf.ajax.request is used
to send an asynchronous request to the server. This re-
quest is made on the command button’s onclick event.
execute and render provide a space-separated identifier of
the components. execute is the list of input components
whose bean setters are invoked, and render is the list of
components that needs to be rendered after the asynchro-
nous response is received.

The ability to process only part of the view (name and pass
word elements in this case) is referred to as partial view
processing. Similarly, rendering only part of the output
page (the status element in this case) is referred to as par-
tial output rendering.

Table 7-3 lists the possible values of the render attribute.

Table 7-3. Values for the render attribute in f:ajax

Value Description

@all All components on the page

@none No components on the page; this is the default value

@this Element that triggered the request

Ajax | 111

Value Description

@form All components within the enclosing form

IDs Space-separated identifiers of the components

EL expression EL expression that resolves to a collection of strings

The execute attribute takes a similar set of values, but the
default value for the execute attribute is @this.

• The User bean has fields, setters/getters, and a simple
business method:

@Named
@SessionScoped
public class User implements Serializable {
 private String name;
 private String password;
 private String status;

 . . .

 public void login(ActionEvent evt) {
 if (name.equals(password))
 status = "Login successful";
 else
 status = "Login failed";
 }
}

Note the signature of the login method. It must return
void and take javax.faces.event.ActionEvent as the only
parameter.

Declarative Ajax integration is enabled by using f:ajax. This
tag may be nested within a single component (enabling Ajax
for a single component), or it may be “wrapped” around mul-
tiple components (enabling Ajax for many components).

The code shown above can be updated to use this style of Ajax:

<h:form prependId="false">
 <h:inputText value="#{user.name}"
 id="name"/>
 <h:inputText value="#{user.password}"
 id="password"/>

112 | Chapter 7: JavaServer Faces

 <h:commandButton value="Login"
 type="button"
 actionListener="#{user.login}">
 <f:ajax execute="name password"
 render="status"/>
 </h:commandButton>

 <h:outputText value="#{user.status}"
 id="status"/>
</h:form>

In this code, f:ajax is used to specify the list of input elements
using the execute attribute, and the output elements to be ren-
dered using the render attribute. By default, if f:ajax is nested
within a single component and no event is specified, the asyn-
chronous request is fired based upon the default event for the
parent component (the onclick event in the case of a command
button).

The f:ajax tag may be wrapped around multiple
components:

<f:ajax listener="#{user.checkFormat}">
 <h:inputText value="#{user.name}" id="name"/>
 <h:inputText value="#{user.password}" id="password"/>
</f:ajax>

In this code, f:ajax has a listener attribute and the corre-
sponding Java method:

public void checkFormat(AjaxBehaviorEvent evt) {
 //. . .
}

This listener method is invoked for the default event for the
child elements (the valueChange event for h:inputText in this
case). Additional Ajax functionality may be specified on
the child elements using a nested f:ajax.

HTTP GET
JSF provides support for mapping URL parameters in HTTP
GET requests to an EL. It also provides support to generate
GET-friendly URLs.

HTTP GET | 113

View parameters can be used to map URL parameters in GET
requests to an EL. This can be done by adding the following
fragment to a Facelets page:

<f:metadata>
 <f:viewParam name="name" value="#{user.name}"/>
</f:metadata>

Accessing a web application at index.xhtml?name=jack will:

• Get the request parameter by the name name.

• Convert and validate if necessary. This is achieved by a
nested f:converter and f:validator, just like with any
h:inputText. This can be done as shown:

<f:metadata>
 <f:viewParam name="name" value="#{user.name}">
 <f:validateLength minimum="1" maximum="5"/>
 </f:viewParam>
</f:metadata>

• If successful, bind it to #{user.name}.

The view parameters can be post-processed before the page is
rendered using f:event:

<f:metadata>
 <f:viewParam name="name" value="#{user.name}">
 <f:validateLength minimum="1" maximum="5"/>
 </f:viewParam>
 <f:event type="preRenderView"
 listener="#{user.process}"/>
</f:metadata>

In this code, the method identified by #{user.process} can be
used to perform any initialization required prior to rendering
the page.

GET-friendly URLs are generated using h:link and h:button.
The desired Facelets page is specified instead of manually con-
structing the URL:

<h:link value="Login" outcome="login"/>

This is translated to the following HTML tag:

Login

114 | Chapter 7: JavaServer Faces

View parameters can be easily specified:

<h:link value="Login" outcome="login">
 <f:param name="name" value="#{user.name}"/>
</h:link>

In this code, if #{user.name} is bound to “Jack” then this frag-
ment is translated to the following HTML tag:

Login

Similarly, h:button can be used to specify the outcome:

<h:button value="login"/>

This code will generate the following HTML tag:

<input
 type="button"
 onclick="window.location.href=
'/JSFSample/faces/index.xhtml'; return false;"
 value="login" />

Server and Client Extension Points
Converters, validators, and listeners are server-side attached
objects that add more functionality to the components on a
page. Behaviors are client-side extension points that can en-
hance a component’s rendered content with behavior-defined
scripts.

A converter converts the data entered in a component from one
format to another (e.g., string to number). JSF provides several
built-in converters such as f:convertNumber and f:convert
DateTime. They can be applied to any editable component:

<h:form>
 Age: <h:inputText value="#{user.age}" id="age">
 <f:convertNumber integerOnly="true"/>
 </h:inputText>
 <h:commandButton value="Submit"/>
</h:form>

In this code, the text entered in the text box will be converted
to an integer if possible. An error message is thrown if the text
cannot be converted.

Server and Client Extension Points | 115

A custom converter can be easily created:

@FacesConverter("myConverter")
public class MyConverter implements Converter {

 @Override
 public Object getAsObject(
 FacesContext context,
 UIComponent component,
 String value) {
 //. . .
 }

 @Override
 public String getAsString(
 FacesContext context,
 UIComponent component,
 Object value) {
 //. . .
 }
}

In this code, the methods getAsObject and getAsString per-
form object-to-string and string-to-object conversions between
model data objects and a string representation of those objects
that is suitable for rendering. The POJO implements the
Converter interface and is also marked with @FacesConverter.
This converter can then be used in a JSF page:

<h:inputText value="#{user.age}" id="age">
 <f:converter converterId="myConverter"/>
</h:inputText>

The value attribute of @FacesConverter must match the value
of the converterId attribute here.

A validator is used to validate data that is received from the
input components. JSF provides several built-in validators
such as f:validateLength and f:validateDoubleRange. These
validators can be applied to any editable component:

<h:inputText value="#{user.name}" id="name">
 <f:validateLength min="1" maximum="10"/>
</h:inputText>

116 | Chapter 7: JavaServer Faces

In this code, the length of the entered text is validated to be
between 1 and 10 characters. An error message is thrown if the
length is outside the specified range.

A custom validator can be easily created:

@FacesValidator("nameValidator")
public class NameValidator implements Validator {

 @Override
 public void validate(
 FacesContext context,
 UIComponent component,
 Object value)
 throws ValidatorException {
 //. . .
 }

}

In this code, the method validate returns if the value is suc-
cessfully validated. Otherwise a ValidatorException is thrown.
This validator can be applied to any editable component:

<h:inputText value="#{user.name}" id="name">
 <f:validator id="nameValidator"/>
</h:inputText>

The value attribute of @FacesValidator must match the value
of the id attribute of f:validator here.

JSF also provides built-in integration with constraints defined
using Bean Validation. Other than placing annotation con-
straints on the bean, no additional work is required by the de-
veloper. Any error messages because of constraint violation are
automatically converted to a FacesMessage and displayed to
the end user. f:validateBean may be used to specify
validationGroups to indicate which validation groups should
be taken into consideration when validating a particular com-
ponent. This is explained in detail in the Bean Validation
chapter.

A listener listens for events on a component. The event can be
a change of value, a click of a button, a click on a link, or

Server and Client Extension Points | 117

something else. A listener can be a method in a managed bean
or a class by itself.

A ValueChangeListener can be registered on any editable
component:

<h:inputText value="#{user.age}"
 id="age"
 valueChangeListener="#{user.nameUpdated}">

In this code, the nameUpdated method in the User bean is called
when the associated form is submitted. A class-level listener
can be created by implementing the ValueChangeListener
interface and specified in the page using the f:valueChangeLis
tener tag.

Unlike converters, validators, and listeners, a behavior enhan-
ces client-side functionality of a component by declaratively
attaching scripts to it. For example, f:ajax is defined as a client-
side behavior. This also allows you to perform client-side val-
idation and client-side logging, show tooltips, and other similar
functionality.

Custom behaviors can be defined by extending ClientBehav
iorBase and marking with @FacesBehavior.

Navigation Rules
JSF defines implicit and explicit navigation rules.

Implicit navigation rules look for the outcome of an action
(e.g., a click on a link or a button). If a Facelets page matching
the action outcome is found, that page is then rendered:

<h:commandButton action="login" value="Login"/>

In this code, clicking on the button will render the page
login.xhtml in the same directory.

Explicit navigation can be specified using <navigation-rule>
in faces-config.xml. Conditional navigation may be specified
using <if>:

118 | Chapter 7: JavaServer Faces

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/login.xhtml</to-view-id>
 <if>#{user.isPremium}</if>
 </navigation-case>
</navigation-rule>

In this code, the page navigation from index.xhtml to
login.xhtml only occurs if the user is a premium customer.

Navigation Rules | 119

CHAPTER 8

SOAP-Based Web Services

SOAP-Based Web Services are defined as JSR 224, and the
complete specification can be downloaded from http://jcp.org/
aboutJava/communityprocess/mrel/jsr224/index4.html.

SOAP is an XML-based messaging protocol used as a data for-
mat for exchanging information over web services. The SOAP
specification defines an envelope that represents the contents
of a SOAP message and encoding rules for data types. It also
defines how SOAP messages may be sent over different trans-
port protocols, such as exchanging messages as the payload of
HTTP POST. The SOAP protocol provides a way to commu-
nicate among applications running on different operating sys-
tems, with different technologies, and different programming
languages.

Java API for XML-Based Web Services (JAX-WS) hides the
complexity of the SOAP protocol and provides a simple API
for development and deployment of web service endpoints and
clients. The developer writes a web service endpoint as a Java
class. The JAX-WS runtime publishes the web service and
its capabilities using Web Services Description Language
(WSDL). Tools provided by a JAX-WS implementation, such
as wscompile by the JAX-WS Reference Implementation, are
used to generate proxy to the service and invoke methods on
it from the client code. The JAX-WS runtime converts the API

121

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html

calls to and from SOAP messages and sends them over HTTP,
as shown in Figure 8-1.

Figure 8-1. JAX-WS client and server

In addition to sending SOAP messages over HTTP, JAX-WS
also provides XML-over-HTTP protocol binding and is exten-
sible to other protocols and transports. The XML-over-HTTP
binding use case is better served by JAX-RS and will not be
discussed here.

Data mapping between Java and XML is defined using Java API
for XML Binding (JAXB).

The JAX-WS specification defines mapping from WSDL 1.1 to
Java. This mapping defines how different WSDL constructs
such as wsdl:service, wsdl:portType, and wsdl:operation are
mapped to Java. This mapping is used when generating web
service interfaces for clients and endpoints from a WSDL 1.1
description.

Java to WSDL 1.1 mapping is also defined by this specification.
This mapping defines how Java packages, classes, interfaces,
methods, parameters, and other parts of a web service end-
point are mapped to WSDL 1.1 constructs. This mapping is
used when generating web service endpoints from existing Java
interfaces.

JAX-WS uses technologies defined by the W3C: HTTP, SOAP,
and WSDL. It also requires compliance with the WS-I Basic
Profile, the WS-I Simple SOAP Binding Profile, and the WS-I

122 | Chapter 8: SOAP-Based Web Services

Attachments Profile that promotes interoperability between
web services. This allows a JAX-WS endpoint to be invoked by
a client on another operating system written in another pro-
gramming language and vice versa.

JAX-WS also facilitates, using a nonstandard programming
model, the publishing and invoking of a web service that uses
WS-* specifications such as WS-Security, WS-Secure Conver-
sation, and WS-Reliable Messaging. Some of these specifica-
tions are already implemented in the JAX-WS implementation
bundled as part of GlassFish. However, this particular usage
of JAX-WS will not be discussed here. More details about it
can be found at http://metro.java.net.

Web Service Endpoints
A POJO can be converted to a SOAP-based web service end-
point by adding @WebService annotation:

@WebService
public class SimpleWebService {

 public String sayHello(String name) {
 return "Hello " + name;
 }
}

All public methods of the class are exposed as web service
operations.

This is called a Service Endpoint Interface (SEI)–based end-
point. Even though the name contains Interface, an interface
is not required when building a JAX-WS endpoint. The web
service implementation class implicitly defines an SEI. This
approach of starting with a POJO is also called the code first
approach. The other approach is where you start with a WSDL
and generate Java classes from it, called the contract first
approach.

There are reasonable defaults for wsdl:service name,
wsdl:portType name, wsdl:port name, and other elements in

Web Service Endpoints | 123

http://metro.java.net

the generated WSDL. The @WebService annotation has several
attributes to override the defaults, as defined in Table 8-1.

Table 8-1. @WebService attributes

Attributes Description

endpointInterface Fully qualified class name of the service endpoint interface

defining the service’s abstract web service contract

name Name of the web service (wsdl:portType)

portName Port name of the web service (wsdl:port)

serviceName Namespace for the web service (targetNamespace)

targetNamespace Service name of the web service (wsdl:service)

wsdlLocation Location of a predefined WSDL describing the service

The @WebMethod annotation can be used on each method to
override the corresponding default values:

@WebMethod(operationName="hello")
public String sayHello(String name) {
 return "Hello " + name;
}

Specifying this annotation overrides the default name of the
wsdl:operation matching this method.

Additionally, if any method is annotated with @WebMethod, all
other methods of the class are implicitly not available at the
SEI endpoint. Any additional methods are required to be
annotated.

If there are multiple methods in the POJO and a particular
method needs to be excluded from the web service description,
the exclude attribute can be used:

@WebMethod(exclude=true)
public String sayHello(String name) {
 return "Hello " + name;
}

124 | Chapter 8: SOAP-Based Web Services

The mapping of an individual parameter of a method to WSDL
can be customized using @WebParam, and the mapping of the
return value using @WebResult.

The mapping of Java programming language types to and from
XML definitions is delegated to JAXB. It follows the default
Java-to-XML and XML-to-Java mapping for each method pa-
rameter and return type. The usual JAXB annotations can be
used to customize the mapping to the generated schema:

@WebService
public class ShoppingCart {
 public void purchase(List<Item> items) {
 //. . .
 }
 //. . .
}

@XmlRootElement
class Item {
 private String name;
 //. . .
}

In this code, @XmlRootElement allows the Item class to be con-
verted to XML and vice versa.

By default, the generated WSDL uses the document/literal
style of binding. This can be changed by specifying the @SOAP
Binding annotation on the class:

@WebService
@SOAPBinding(style= SOAPBinding.Style.RPC)
public class SimpleWebService {
 //. . .
}

The business methods can throw a service-specific exception:

@WebMethod
public String sayHello(String name)
 throws InvalidNameException {
 //. . .
}

Web Service Endpoints | 125

public class InvalidNameException extends Exception {
 //. . .
}

If this exception is thrown in the business method on the server
side, it is propagated to the client side. If the exception is de-
clared as an unchecked exception, it is mapped to
SOAPFaultException on the client side. The @WebFault annota-
tion may be used to customize the mapping of wsdl:fault in
the generated WSDL.

By default, a message follows the request response design pat-
tern where a response is received for each request. A method
may follow the fire and forget design pattern by specifying the
@Oneway annotation on it so that a request can be sent from the
message but no response is received. Such a method must have
a void return type and must not throw any checked exceptions:

@Oneway
public void doSomething() {
 //. . .
}

A WebServiceContext may be injected in an endpoint imple-
mentation class:

@Resource
WebServiceContext context;

This provides information about message context (using the
getMessageContext method) and security information (using
the getUserPrincipal and isUserInRole methods) relative to a
request being served.

Provider-Based Dynamic Endpoints
A Provider-based endpoint provides a dynamic alternative to
the SEI-based endpoint. Instead of just the mapped Java types,
the complete protocol message or protocol message payload is
available as Source, DataSource, or SOAPMessage at the endpoint.
The response message also needs to be prepared using these
APIs as well.

126 | Chapter 8: SOAP-Based Web Services

The endpoint needs to implement the Provider<Source>,
Provider<SOAPMessage>, or Provider<DataSource> interface:

@WebServiceProvider
public class MyProvider implements Provider<Source> {

 @Override
 public Source invoke(Source request) {
 //. . .
 }

}

In this code, the SOAP body payload is available as a Source.
@WebServiceProvider is used to associate the class with a
wsdl:service and a wsdl:port element in the WSDL document.

Table 8-2 describes the attributes that can be used to provide
additional information about the mapping.

Table 8-2. @WebServiceProvider attributes

Attribute Description

portName Port name

serviceName Service name

targetNamespace Target namespace for the service

wsdlLocation Location of the WSDL for the service

By default, only the message payload (i.e., the SOAP body in
the case of the SOAP protocol) is received at the endpoint and
sent in a response. The ServiceMode annotation can be used to
override this if the provider endpoint wishes to send and re-
ceive the entire protocol message:

@ServiceMode(ServiceMode.Mode.MESSAGE)
public class MyProvider implements Provider<Source> {
 //. . .
}

In this code, the complete SOAP message is received and sent
from the endpoint.

Provider<Source> is the most commonly used Provider-based
endpoint. A Provider<SOAP message> in PAYLOAD mode is not

Provider-Based Dynamic Endpoints | 127

valid because the entire SOAP message is received, not just the
payload that corresponds to the body of the SOAP message.

The runtime catches the exception thrown by a Provider end-
point and converts it to a protocol-specific exception (e.g.,
SOAPFaultException for the SOAP protocol).

Endpoint-Based Endpoints
An Endpoint-based endpoint offers a lightweight alternative to
create and publish an endpoint. This is a convenient way of
deploying a JAX-WS-based web service endpoint from Java SE
applications.

A code-first endpoint can be published:

@WebService
public class SimpleWebService {

 public String sayHello(String name) {
 return "Hello " + name;
 }
}

//. . .

Endpoint endpoint =
 Endpoint.publish("http://localhost:8080" +
 "/example/SimpleWebService",
 new SimpleWebService());

In this code, a POJO annotated with @WebService is used as
the endpoint implementation. The address of the endpoint is
passed as an argument to Endpoint.publish. This method call
publishes the endpoint and starts accepting incoming requests.

The endpoint can be taken down and stop receiving incoming
requests:

endpoint.stop();

The endpoint implementation can be a Provider-based end-
point as well.

128 | Chapter 8: SOAP-Based Web Services

A mapped WSDL is automatically generated by the underlying
runtime in this case.

A contract-first endpoint can be published by packaging the
WSDL and specifying the wsdl:port and wsdl:service as part
of the configuration:

Endpoint endpoint = Endpoint.create
(new SimpleWebService());

List<Source> metadata = new ArrayList<Source>();
Source source = new StreamSource(new InputStream(...));
metadata.add(source);
endpoint.setMetadata(metadata);

Map<String, Object> props = new HashMap<String, Object>();
props.put(Endpoint.WSDL_PORT, new QName(...));
props.put(Endpoint.WSDL_SERVICE, new QName(...));
endpoint.setProperties(props);

endpoint.publish("http://localhost:8080" +
 "/example.com/SimpleWebService");

An Executor may be set on the endpoint to gain better control
over the threads used to dispatch incoming requests:

ThreadPoolExecutor executor = new
ThreadPoolExecutor(4, 10, 100,
 TimeUnit.MILLISECONDS, new PriorityBlockingQueue());
endpoint.setExecutor(executor);

EndpointContext allows multiple endpoints in an application
to share any information.

Web Service Client
The contract between the web service endpoint and a client is
defined using WSDL. Like an SEI-based web service endpoint,
a high-level web service client can be easily generated by im-
porting the WSDL. Such tools follow the WSDL-to-Java map-
ping defined by the JAX-WS specification and generate the
corresponding classes.

Web Service Client | 129

Table 8-3 describes the mapped Java artifact names generated
for some of the WSDL elements.

Table 8-3. WSDL-to-Java mappings

WSDL element Java class

wsdl:service Service class extending javax.xml.ws.Service;

provides the client view of a web service.

wsdl:portType Service endpoint interface.

wsdl:operation Java method in the corresponding SEI.

wsdl:input Wrapper or nonwrapper style Java method parameters.

wsdl:output Wrapper or nonwrapper style Java method return value.

wsdl:fault Service-specific exception.

XML schema elements in

wsdl:types

As defined by XML-to-Java mapping in the JAXB

specification.

A new instance of the proxy can be generated by calling one of
the getPort methods on the generated Service class:

@WebServiceClient(name="...",
 targetNamespace="...",
 wsdlLocation="...")
public class SimpleWebServiceService
 extends Service {

 URL wsdlLocation = ...
 QName serviceQName = ...

 public SimpleWebService() {
 super(wsdlLocation, serviceQName);
 }

 //. . .

 public SimpleWebService getSimpleWebServicePort() {
 return super.getPort(portQName,
 SimpleWebService.class);
 }
}

130 | Chapter 8: SOAP-Based Web Services

A client will then invoke a business method on the web service:

SimpleWebServiceService service =
 new SimpleWebServiceService();
SimpleWebServicePort port =
 service.getSimpleWebServicePort();
port.sayHello("Duke");

A more generic getPort method may be used to obtain the
endpoint:

SimpleWebServiceService service =
 new SimpleWebServiceService();
SimpleWebServicePort port = service.getPort(
 SimpleWebService.class);
port.sayHello("Duke");

Each generated proxy implements the BindingProvider inter-
face. Table 8-4 describes the properties that may be set on the
provider.

Table 8-4. BindingProvider properties

Property name Description

ENDPOINT_ADDRESS_PROPERTY Target service endpoint address.

USERNAME_PROPERTY Username for HTTP basic authentication.

PASSWORD_PROPERTY Password for HTTP basic authentication.

SESSION_MAINTAIN_PROPERTY Boolean property to indicate whether the client

is participating in a session with service end-

point.

SOAPACTION_USE_PROPERTY Controls whether SOAPAction HTTP header is

used in SOAP/HTTP requests; default value is

false.

SOAPACTION_URI_PROPERTY Value of SOAPAction HTTP header; default

value is empty string.

Typically, a generated client has an endpoint address precon-
figured based upon the value of the soap:address element in
the WSDL. The ENDPOINT_ADDRESS_PROPERTY can be used to tar-
get the client to a different endpoint:

BindingProvider provider = (BindingProvider)port;
port.getRequestContext().put(

Web Service Client | 131

 BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com/NewWebServiceEndpoint");

Dispatch-Based Dynamic Client
A Dispatch-based endpoint provides a dynamic alternative to
the generated proxy-based client. Instead of just the mapped
Java types, the complete protocol message or protocol message
payload is prepared using XML APIs.

The client can be implemented using Dispatch<Source>, Dis
patch<SOAPMessage>, Dispatch<DataSource>, or Dispatch<JAXB
Object>:

QName serviceQName = new QName("http://example.com",
 "SimpleWebServiceService");
Service service = Service.create(serviceQName);

QName portQName = new QName("http://example.com",
 "SimpleWebService");
Dispatch<Source> dispatch = service.createDispatch(
 portQName,
 Source.class,
 Service.Mode.PAYLOAD);
//. . .
Source source = new StreamSource(...);
Source response = dispatch.invoke(source);

In this code, a Service is created by specifying the fully qualified
QName, a port is created from the service, a Dispatch<Source> is
created, and the web service endpoint is invoked. The business
method invoked on the service endpoint is dispatched based
upon the received SOAP message.

A pregenerated Service object, generated by a tool following
WSDL-to-Java mapping, may be used to create the Dispatch
client as well.

A Dispatch<SOAPMessage> can be created:

Dispatch<SOAPMessage> dispatch =
 service.createDispatch(portQName,
 SOAPMessage.class,
 Service.Mode.MESSAGE);

132 | Chapter 8: SOAP-Based Web Services

The value of Service.Mode must be MESSAGE for Dispatch<SOAP
Message>.

JAXB objects generated from XML-to-Java mapping may be
used to create and manipulate XML representations. Such a
Dispatch client can be created:

Dispatch<Object> dispatch =
 service.create(portQName,
 jaxbContext,
 Service.Mode.MESSAGE);

In this code, jaxbContext is the JAXBContext used to marshall
and unmarshall messages or message payloads.

A Dispatch client can also be invoked asynchronously:

Response<Source> response = dispatch.invoke(...);

The Response object can then be used to query (using the
isDone method), cancel (using the cancel method), or obtain
the results from (using get methods) the method invocation.
The asynchronous invocation may be converted into a block-
ing request by invoking response.get right after obtaining the
response object.

An asynchronous request may be made using a callback:

Future<?> response =
 dispatch.invokeAsync(source, new MyAsyncHandler());

//. . .

class MyAsyncHandler implements AysnchHandler<Source> {
 @Override
 public void handleResponse(Response<Source> res) {
 //. . .
 }
}

A new class, MyAsyncHandler, registers a callback class that re-
ceives when the response is received from the endpoint. The
response can be used to check if the web service invocation has
completed, wait for its completion, or retrieve the result. The
handleResponse method of the callback is used to process the
response received.

Dispatch-Based Dynamic Client | 133

A one-way request using a Dispatch-based client may be made:

dispatch.invokeOneWay(source);

Handlers
Handlers are well-defined extension points that perform addi-
tional processing of the request and response messages. They
can be easily plugged into the JAX-WS runtime. There are two
types of handlers:

Logical handler
Logical handlers are protocol-agnostic and cannot change
any protocol-specific parts of a message (such as headers).
Logical handlers act only on the payload of the message.

Protocol handler
Protocol handlers are specific to a protocol and may access
or change the protocol-specific aspects of a message.

Logical handlers can be written by implementing Logical
Handler:

public class MyLogicalHandler implements LogicalHandler {
 @Override
 public boolean handleMessage(MessageContext context) {
 Source source =
 ((LogicalMessageContext)context)
 .getMessage()
 .getPayload();
 //. . .
 return true;
 }

 @Override
 public boolean handleFault(MessageContext context) {
 //. . .
 }

 @Override
 public void close(MessageContext context) {
 //. . .
 }
}

134 | Chapter 8: SOAP-Based Web Services

In this code, the handler has implemented the handleMessage,
handleFault, and close methods. The handleMessage method
is called for inbound and outbound message processing and
the handleFault method is invoked for fault processing. The
handleMessage and the handleFault messages return true to
continue further processing and false to block processing.

MessageContext provides a context about the message that is
currently being processed by the handler instance. It provides
a predefined set of properties that can be used to communicate
among different handlers. Properties are scoped to
APPLICATION or HANDLER.

The message payload may be obtained as a JAXB object:

LogicalMessage message = context.getMessage();
Object jaxbObject = message.getPayload(jaxbContext);
// Update the JAXB Object
message.setPayload(modifiedJaxbObject,jaxbContext);

In this code, jaxbObject is obtained as the payload, updated,
and then sent back explicitly as the payload on the message.

Protocol handlers, specific to the SOAP protocol, are called by
the SOAP handler:

public class MySOAPHandler implements SOAPHandler {

 @Override
 public Set getHeaders() {
 //. . .
 }

 @Override
 public boolean handleMessage(MessageContext context) {
 SOAPMessage message =
 ((SOAPMessageContext) context).getMessage();
 //. . .
 return true;
 }

 @Override
 public boolean handleFault(MessageContext context) {
 //. . .
 }

Handlers | 135

 @Override
 public void close(MessageContext context) { }
}

In this code, the handler has implemented the handleMessage,
handleFault, close, and getHeaders methods. SOAP handlers
are generally used to process SOAP-specific information, such
as SOAP headers. The getHeaders method returns the set of
SOAP headers processed by this handler instance.

Handlers can be organized in a handler chain. The handlers
within a handler chain are invoked each time a message is sent
or received. Inbound messages are processed by handlers prior
to dispatching a request to the service endpoint or returning a
response to the client. Outbound messages are processed by
handlers after a request is sent from the client or a response is
returned from the service endpoint.

During runtime, the handler chain is reordered such that log-
ical handlers are executed before the SOAP handlers on an
outbound message and SOAP handlers are executed before
logical handlers on an inbound message.

The sequence of logical and SOAP handlers during a request
and response is shown in Figure 8-2.

Figure 8-2. JAX-WS logical and SOAP handlers

136 | Chapter 8: SOAP-Based Web Services

CHAPTER 9

RESTful Web Services

RESTful web services are defined as JSR 311, and the complete
specification can be downloaded from http://jcp.org/aboutJava/
communityprocess/mrel/jsr311/index.html.

REST is an architectural style of services that utilizes web
standards. Web services designed using REST are called REST-
ful web services. The main principles of RESTful web services
are:

• Everything can be identified as a resource and each re-
source is uniquely identifiable using a URI.

• A resource can be represented in multiple formats, defined
by a media type. The media type will provide enough in-
formation on how the requested format needs to be gen-
erated. Standard methods are defined for the client and
server to negotiate on the content type of the resource.

• Use standard HTTP methods to interact with the re-
source: GET to retrieve a resource, POST to create a re-
source, PUT to update a resource, and DELETE to remove
a resource.

• Communication between the client and the endpoint is
stateless. All the associated state required by the server is
passed by the client in each invocation.

Java API for RESTful web services (JAX-RS) defines a standard
annotation-driven API that helps developers build a RESTful

137

http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html

web service in Java. The standard principles of REST, such as
identifying a resource as a URI, a well-defined set of methods
to access the resource, and multiple representation formats of
a resource, can be easily marked in a POJO using annotations.

Simple RESTful Web Services
A simple RESTful web service can be defined using @Path:

@Path("orders")
public class Orders {
 @GET
 public List<Order> getAll() {
 //. . .
 }

 @GET
 @Path("{oid}")
 public Order getOrder(@PathParam("oid")int id) {
 //. . .
 }
}

@XmlRootElement
public class Order {
 int id;
 //. . .
}

In this code:

• Orders is a POJO class and is published as a RESTful re-
source at orders path by adding the class-level @Path
annotation.

• The Order class is marked with the @XmlRootElement an-
notation, allowing a conversion between Java and XML.

• The getAll resource method, providing a list of all orders,
is invoked when this resource is accessed using the HTTP
GET method; this is identified by specifying the @GET an-
notation on the method.

• The @Path annotation on the getOrder resource method
marks it as a subresource and accessible at orders/{oid}.

138 | Chapter 9: RESTful Web Services

• The curly braces around oid identifies it as a template pa-
rameter, and binds its value at runtime to the id parameter
of the getOrder resource method.

• The @PathParam can also be used to bind template param-
eters to a resource class field as well.

Typically, a RESTful resource is bundled in a .war file along
with other classes and resources. The Application class and
@ApplicationPath annotation is used to specify the base path
for all the RESTful resources in the packaged archive. The
Application class also provides additional metadata about the
application.

Let’s say this POJO is packaged in the store.war file, deployed
at localhost:8080, and the Application class is defined:

@ApplicationPath("webresources")
public class ApplicationConfig extends Application {
}

A list of all the orders is accessible by issuing a GET request to:

http://localhost:8080/store/webresources/orders

A specific order can be obtained by issuing a GET request to:

http://localhost:8080/store/webresources/orders/1

Here, the value 1 will be passed to getOrder’s method param-
eter id. The resource method will locate the order with the
correct order number and return back the Order class. Having
@XmlRootElement annotation ensures that an XML representa-
tion of the resource is returned back.

A URI may pass HTTP query parameters using name/value
pairs. These can be mapped to resource method parameters or
fields using @QueryParam annotation. If the resource method
getAll is updated such that the returned results start from a
specific order number, the number of orders returned can also
be specified:

public List<Order> getAll(@QueryParam("start")int from,
 @QueryParam("page")int page) {
 //. . .
}

Simple RESTful Web Services | 139

http://localhost:8080/store/webresources/orders
http://localhost:8080/store/webresources/orders/1

And the resource is accessed as:

http://localhost:8080/store/webresources/orders?
 start=10&page=20

Then 10 is mapped to the from parameter and 20 is mapped to
the page parameter.

Binding HTTP Methods
JAX-RS provides support for binding standard HTTP GET,
POST, PUT, DELETE, HEAD, and OPTIONS methods using
the corresponding annotations described in Table 9-1.

Table 9-1. HTTP methods supported by JAX-RS

HTTP method JAX-RS annotation

GET @GET

POST @POST

PUT @PUT

DELETE @DELETE

HEAD @HEAD

OPTIONS @OPTIONS

Let’s take a look at how @POST is used. Consider the following
HTML form, which takes the order identifier and customer
name and creates an order by posting the form to
webresources/orders/create:

<form method="post" action="webresources/orders/create">
 Order Number: <input type="text" name="id"/>

 Customer Name: <input type="text" name="name"/>

 <input type="submit" value="Create Order"/>
</form>

The updated resource definition uses the following
annotations:

@POST
@Path("create")
@Consumes("application/x-www-form-urlencoded")

140 | Chapter 9: RESTful Web Services

public Order createOrder(@FormParam("id")int id,
 @FormParam("name")String name) {
 Order order = new Order();
 order.setId(id);
 order.setName(name);
 return order;
}

The @FormParam annotation binds the value of an HTML form
parameter to a resource method parameter or a field. The
name attribute in the HTML form and the value of the
@FormParam annotation are exactly the same to ensure the bind-
ing. Clicking the submit button in this form will return the
XML representation of the created Order. A Response object
may be used to create a custom response.

The following code shows how @PUT is used:

@PUT
@Path("{id}")
@Consumes("*/xml")
public Order putXml(@PathParam("id")int id,
 String content) {
 Order order = findOrder(id);
 // update order from "content"
 . . .
 return order;
}

The resource method is marked as a subresource and {id} is
bound to the resource method parameter id. The contents of
the body can be any XML media type as defined by
@Consumes and are bound to the content method parameter. A
PUT request to this resource may be issued as:

curl -i -X PUT -d "New Order"
 http://localhost:8080/store/webresources/orders/1

The content method parameter will have the value New Order.

Similarly, an @DELETE resource method can be defined:

@DELETE
@Path("{id}")
public void putXml(@PathParam("id")int id) {
 Order order = findOrder(id);

Binding HTTP Methods | 141

 // delete order
}

The resource method is marked as a subresource and {id} is
bound to the resource method parameter id. A DELETE re-
quest to this resource may be issued as:

curl -i -X DELETE
 http://localhost:8080/store/webresources/orders/1

The content method parameter will have the value New Order.

The HEAD and OPTIONS methods receive automated sup-
port from JAX-RS.

The HTTP HEAD method is identical to GET except that no
response body is returned. This method is typically used to
obtain meta-information about the resource without request-
ing the body. The set of HTTP headers in response to a HEAD
request is identical to the information sent in response to a GET
request. If no method is marked with @HEAD, an equivalent
@GET method is called and the response body is discarded. The
@HEAD annotation is used to mark a method serving HEAD
requests:

@HEAD
@Path("{id}")
public void headOrder(@PathParam("id")int id) {
 System.out.println("HEAD");
}

This method is often used for testing hypertext links for valid-
ity, accessibility, and recent modification. A HEAD request to
this resource may be issued as:

curl -i -X HEAD
 http://localhost:8080/store/webresources/orders/1

The HTTP response header contains HTTP/1.1 204 No Con
tent and no content body.

The HTTP OPTIONS method requests for communication
options available on the request/response identified by the
URI. If no method is designated with @OPTIONS, the JAX-RS
runtime generates an automatic response using the annota-
tions on the matching resource class and methods. The default

142 | Chapter 9: RESTful Web Services

response typically works in most cases. @OPTIONS may be used
to customize the response to the OPTIONS request:

@OPTIONS
@Path("{id}")
 public Response options() {
 // create a custom Response and return
}

An OPTIONS request to this resource may be issued as:

curl -i -X OPTIONS
 http://localhost:8080/store/webresources/orders/1

The HTTP Allow response header provides information about
the HTTP operations permitted. The Content-Type header is
used to specify the media type of the body, if any is included.

In addition to the standard set of methods supported with cor-
responding annotations, HttpMethod may be used to build ex-
tensions such as WebDAV.

Multiple Resource Representations
By default, a RESTful resource is published or consumed with
/ MIME type. A RESTful resource can restrict the media
types supported by request and response using the @Consumes
and @Produces annotations, respectively. These annotations
may be specified on the resource class or a resource method.
The annotation specified on the method overrides any on the
resource class.

Here is an example showing how Order can be published using
multiple MIME types:

@GET
@Path("{oid}")
@Produces({"application/xml", "application/json"})
public Order getOrder(@PathParam("oid")int id) { . . . }

The resource method can generate an XML or JSON represen-
tation of Order. The exact return type of the response is deter-
mined by the HTTP Accept header in the request.

Multiple Resource Representations | 143

Wildcard pattern matching is supported as well. The following
resource method will be dispatched if the HTTP Accept header
specifies any application MIME type such as application/
xml, application/json, or any other media type:

@GET
@Path("{oid}")
@Produces("application/*")
public Order getOrder(@PathParam("oid")int id) { . . . }

Here is an example of how multiple MIME types may be con-
sumed by a resource method:

@POST
@Path("{oid}")
@Consumes({"application/xml", "application/json"})
public Order getOrder(@PathParam("oid")int id) { . . . }

The resource method invoked is determined by the HTTP Con
tent-Type header of the request.

A mapping between a custom representation and a corre-
sponding Java type can be defined by implementing the
MessageBodyReader and MessageBodyWriter interfaces and an-
notating with @Provider.

Binding Request to a Resource
By default, a new resource is created for each request to access
the resource. The resource method parameters, fields, or bean
properties are bound using xxxParam annotations during object
creation time. In addition to @PathParam and @QueryParam, the
following annotations can be used to bind different parts of the
request to a resource method parameter, field, or bean
property:

• @CookieParam binds the value of a cookie:

public Order getOrder(
 @CookieParam("JSESSIONID")String sessionid) {
 //. . .
}

144 | Chapter 9: RESTful Web Services

This code binds the value of the "JSESSIONID" cookie to
the resource method parameter sessionid.

• @HeaderParam binds the value of an HTTP header:

public Order getOrder(
 @HeaderParam("Accept")String accept) {
 //. . .
}

• @FormParam binds the value of a form parameter contained
within a request entity body. Its usage is displayed in an
earlier section.

• @MatrixParam binds the name/value parameters in the URI
path:

public List<Order> getAll(
 @MatrixParam("start")int from,
 @MatrixParam("page")int page) {
 //. . .
}

And the resource is accessed as:

http://localhost:8080/store/webresources/orders;
start=10;
page=20

Then 10 is mapped to the from parameter and 20 is mapped
to the page parameter.

More details about the application deployment context and the
context of individual requests can be obtained using the
@Context annotation.

Here is an updated resource definition where more details
about the request context are displayed before the method is
invoked:

@Path("orders")
public class Orders {

 @Context Application app;
 @Context UriInfo uri;
 @Context HttpHeaders headers;
 @Context Request request;

Binding Request to a Resource | 145

 @Context SecurityContext security;
 @Context Providers providers;

 @GET
 @Produces("application/xml")
 public List<Order> getAll(@QueryParam("start")int from,
 @QueryParam("end")int to) {
 //. . .(app.getClasses());
 //. . .(uri.getPath());
 //. . .(headers.getRequestHeader(
 HttpHeaders.ACCEPT));
 //. . .(headers.getCookies());
 //. . .(request.getMethod());
 //. . .(security.isSecure());
 //. . .
 }
}

In this code:

• UriInfo provides access to application and request URI
information.

• Application provides access to application configuration
information.

• HttpHeaders provides access to HTTP header information
either as a Map or convenience methods. Note that
@HeaderParam can also be used to bind an HTTP header
to a resource method parameter, field, or bean property.

• Request provides a helper to request processing and is
typically used with Response to dynamically build the re-
sponse.

• SecurityContext provides access to security-related infor-
mation of the current request.

• Providers supplies information about runtime lookup of
provider instances based on a set of search criteria.

146 | Chapter 9: RESTful Web Services

Mapping Exceptions
An application-specific exception may be thrown from within
the resource method and propagated to the client. The
application can supply checked or exception mapping to an
instance of the Response class. Let’s say the application throws
the following exception if an order is not found:

public class OrderNotFoundException
 extends RuntimeException {

 public OrderNotFoundException(int id) {
 super(id + " order not found");
 }

}

The method getOrder may look like:

@Path("{id}")
public Order getOrder(@PathParam("id")int id) {
 Order order = null;
 if (order == null) {
 throw new OrderNotFoundException(id);
 }
 //. . .
 return order;
}

The exception mapper will look like:

@Provider
public class OrderNotFoundExceptionMapper
 implements ExceptionMapper<OrderNotFoundException> {

 @Override
 public Response toResponse(
OrderNotFoundException exception) {
 return Response
 .status(Response.Status.PRECONDITION_FAILED)
 .entity("Response not found")
 .build();
 }

}

Mapping Exceptions | 147

This ensures that the client receives a formatted response in-
stead of just the exception being propagated from the resource.

148 | Chapter 9: RESTful Web Services

CHAPTER 10

Java Message Service

Java Message Service is defined as JSR 914, and the complete
specification can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr914/index.html.

Message-oriented middleware (MOM) allows sending and re-
ceiving messages between distributed systems. Java Message
Service (JMS) is a MOM that provides a way for Java programs
to create, send, receive, and read an enterprise messaging sys-
tem’s messages.

JMS defines the following concepts:

JMS Provider
An implementation of the JMS interfaces, included in a
Java EE implementation.

JMS Client
An application or process that produces and/or receives
messages. Any Java EE application component can act as
a JMS client.

JMS Message
An object that contains the data transferred between JMS
clients. A JMS producer/publisher creates and sends mes-
sages. A JMS consumer/subscriber receives and consumes
messages.

149

http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html

Administered Objects
Objects created and preconfigured by an administrator.
Typically refer to JMS Destinations and Connection Fac-
tories identified by a JNDI name.

JMS supports two messaging models: Point-to-Point and
Publish-Subscribe.

In the Point-to-Point model, a publisher sends a message to a
specific destination, called a queue, targeted to a subscriber.
Multiple publishers can send messages to the queue, but each
message is delivered and consumed by one consumer only.
Queues retain all messages sent to them until the messages are
consumed or expire.

In the Publish-Subscribe model, a publisher publishes a mes-
sage to a particular destination, called a topic, and a subscriber
registers interest by subscribing to that topic. Multiple pub-
lishers can publish messages to the topic, and multiple sub-
scribers can subscribe to the topic. By default, a subscriber will
receive messages only when it is active. However, a subscriber
may establish a durable connection, so that any messages pub-
lished while the subscriber is not active are redistributed when-
ever it reconnects.

The publisher and subscriber are loosely coupled from each
other; in fact, they have no knowledge of each other’s exis-
tence. They only need to know the destination and the message
format.

Different levels of quality-of-service, such as missed or dupli-
cate messages or deliver-once, can be configured. The mess-
sages may be received synchronously or asynchronously.

A JMS message is composed of three parts:

Header
is a required part of the message and is used to identify
and route messages. All messages have the same set of
header fields. Some fields are initialized by JMS provider
and others are initialized by the client on a per-message
basis.

150 | Chapter 10: Java Message Service

The standard header fields are defined in Table 10-1.

Table 10-1. JMS header fields

Message header field Description

JMSDestination Destination to which the message is sent.

JMSDeliveryMode Delivery mode is PERSISTENT (for durable topics) or

NON_PERSISTENT.

JMSMessageID String value with the prefix “ID:” that uniquely identi-

fies each message sent by a provider.

JMSTimestamp Time the message was handed off to a provider to be

sent. This value may be different from the time the

message was actually transmitted.

JMSCorrelationID Used to link one message to another (e.g., a response

message with its request message).

JMSReplyTo Destination supplied by a client where a reply message

should be sent.

JMSRedelivered Set by the provider if the message was delivered but

not acknowledged in the past.

JMSType Message type identifier; may refer to a message defi-

nition in the provider’s respository.

JMSExpiration Expiration time of the message.

JMSPriority Priorty of the message.

Properties
are optional header fields added by the client. Just like
standard header fields, these are name/value pairs. The
value can be boolean, byte, short, int, long, float,
double, and String. Producer/publisher can set these val-
ues and consumer/subscriber can use these values as se-
lection criteria to fine-tune the selection of messages to be
processed.

Properties may be either application-specific, (standard
properties defined by JMS), or provider-specific. JMS-
defined properties are prefixed JMSX, and provider-specific
properties are prefixed with JMS_<vendor_name>.

Java Message Service | 151

Body
is the actual payload of the message, which contains the
application data.

Different types of body messages are shown in Table 10-2.

Table 10-2. JMS message types

Message type Description

StreamMessage Payload is a stream of Java primitive types, written and read

sequentially.

MapMessage Payload is a set of name/value pairs; order of the entries is

undefined, can be accessed randomly or sequentially.

TextMessage Payload is a String.

ObjectMessage Payload is a serializable Java object.

ByteMessage Payload is a stream of uninterpreted bytes.

Sending a Message
A JMS message can be sent from a stateless session bean:

@Resource(lookup = "myConnection")
ConnectionFactory connectionFactory;

@Resource(lookup = "myQueue")
Destination inboundQueue;

public void sendMessage(String text) {
 try {
 Connection connection =
 connectionFactory.createConnection();
 Session session =
 connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer =
 session.createProducer(inboundQueue);
 TextMessage textMessage =
 session.createTextMessage(text);
 messageProducer.send(textMessage);
 } catch (JMSException ex) {
 //. . .
 }
}

152 | Chapter 10: Java Message Service

In this code:

• ConnectionFactory is a JMS-administered object and is
used to create a connection with a JMS provider. Queue
ConnectionFactory or TopicConnectionFactory may be in-
jected instead to perform Queue- or Topic-specific opera-
tions, respectively. Destination is also an administered
object and encapsulates a provider-specific address. A
Queue or Topic may be injected here instead. Both of these
objects are injected using @Resource and specifying the
JNDI name of the resource.

• A Connection is created that represents an active connec-
tion to the provider. The connection must be closed
explicitly.

• A Session object is created from the connection that pro-
vides a transaction in which the producers and consumers
send and receive messages as an atomic unit of work. The
first argument to the method indicates whether the session
is transacted; the second argument indicates whether the
consumer or the client will acknowledge any messages it
receives, and is ignored if the session is transacted.

If the session is transacted, as indicated by a true value in
the first parameter, then an explicit call to Session.com
mit is required in order for the produced messages to be
sent and for the consumed messages to be acknowledged.
A transaction rollback, initiated by Session.rollback,
means that all produced messages are destroyed, and con-
sumed messages are recovered and redelivered unless they
have expired.

The second argument indicates the acknowledgment
mode of the received message. The permitted values are
defined in Table 10-3.

Sending a Message | 153

Table 10-3. JMS message acknowledgment mode

Acknowledgment mode Description

Session.AUTO_ACKNOWLEDGE Session automatically acknowl-

edges a client’s receipt of a message

either when the session has suc-

cessfully returned from a call to

receive or when the Message

Listener session has called to

process the message returns suc-

cessfully.

Session.CLIENT_ACKNOWLEDGE Client explicitly calls the

Message.acknowledge

method to acknowledge all con-

sumed messages for a session.

Session.DUPS_OK_ACKNOWLEDGE Instructs the session to lazily ac-

knowledge the delivery of mes-

sages. This will likely result in the

delivery of some duplicate mes-

sages (with the JMSRedeliv

ered message header set to

true). However, it can reduce the

session overhead by minimizing the

work the session does to prevent

duplicates.

The session must be explicitly closed.

• Use the session and the injected Destination object,
inboundQueue in this case, to create a MessageProducer to
send messages to the specified destination. A Topic or
Queue may be used as the parameter to this method, as
both inherit from Destination.

• Use one of the Session.createXXXMessage methods to cre-
ate an appropriate message.

• Send the message using messageProducer.send(...).

This code can be used to send messages using both messaging
models.

154 | Chapter 10: Java Message Service

Quality of Service
By default, a JMS provider ensures that a message is not lost in
transit in case of a provider failure. This is called a durable
publisher/producer. The messages are logged to stable storage
for recovery from a provider failure. However, this has perfor-
mance overheads and requires additional storage for persisting
the messages. If a receiver can afford to miss the messages,
NON_PERSISTENT delivery mode may be specified. This does not
require the JMS provider to store the message or otherwise
guarantee that it is not lost if the provider fails.

This delivery mode can be specified:

messageProducer.setDeliveryMode(
 DeliveryMode.NON_PERSISTENT);

All messages sent by this messageProducer follow the semantics
defined by NON_PERSISTENT delivery mode.

Delivery mode may alternatively be specified for each message:

messageProducer.send(textMessage,
 DeliveryMode.NON_PERSISTENT, 6, 5000);

In this code, textMessage is the message to be sent with the
NON_PERSISTENT delivery mode. The third argument defines the
priority of the message and the last argument defines the ex-
piration time.

JMS defines priority of a message on a scale of 0 (lowest) to
9 (highest). By default, the priority of a message is 4
(Message.DEFAULT_PRIORITY). Message priority may also be
changed by invoking the Message.setJMSPriority method.

By default, a message never expires, as defined by
Message.DEFAULT_TIME_TO_LIVE. This can be changed by calling
the Message.setJMSExpiration method.

Quality of Service | 155

Receiving a Message Synchronously
A JMS message can be received synchronously:

@Resource(lookup = "myConnection")
ConnectionFactory connectionFactory;

@Resource(lookup = "myQueue")
Destination inboundQueue;

public void receiveMessage() {
 try {
 Connection connection =
 connectionFactory.createConnection();
 Session session =
 connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer =
 session.createConsumer(inboundQueue);
 connection.start();
 while (true) {
 Message m = consumer.receive();
 // process the message
 }
 } catch (JMSException ex) {
 //. . .
 }
}

In this code:

• ConnectionFactory and Destination are administered ob-
jects and are injected by the container by using the speci-
fied JNDI name. This is similar to what is done during
message sending.

• As done during message sending, a Connection object and
a Session object are created. Instead of creating Message
Producer, a MessageConsumer is created from session and
is used for receiving a message.

• In an infinite loop, consumer.receive waits for a synchro-
nous receipt of the message.

156 | Chapter 10: Java Message Service

There are multiple publishers and subscribers to a topic. The
subscribers receive the message only when they are active.
However, a durable subscriber may be created that receives
messages published while the subscriber is not active:

@Resource(lookup = "myTopicConnection")
TopicConnectionFactory topicConnectionFactory;

@Resource(lookup = "myTopic")
Topic myTopic;

public void receiveMessage() {
 TopicConnection connection =
 topicConnectionFactory.createTopicConnection();
 TopicSession session =
 connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 TopicSubscriber subscriber =
 session.createDurableSubscriber(myTopic, "myID");
 //. . .
}

In this code, TopicConnectionFactory and Topic are injected
using @Resource. TopicConnection is created from the
factory, which is then used to create TopicSession.
TopicSession.createDurableSubscriber creates a durable sub-
scriber. This method takes two arguments: the first is the du-
rable Topic to subscribe to, and the second is the name used to
uniquely identify this subscription. A durable subscription can
have only one active subscriber at a time. The JMS provider
retains all the messages until they are received by the subscriber
or expire.

A client may use QueueBrowser to look at messages on a queue
without removing them:

QueueBrowser browser = session.createBrowser(inboundQueue);
Enumeration messageEnum = browser.getEnumeration();
while (messageEnum.hasMoreElements()) {
 Message message = (Message)messageEnum.nextElement();
 //. . .
}

Receiving a Message Synchronously | 157

Receiving a Message Asynchronously
A JMS message can be received asynchronously using a
message-driven bean:

@MessageDriven(mappedName = "myDestination")
public class MyMessageBean implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 // process the message
 } catch (JMSException ex) {
 //. . .
 }
 }
}

In this code:

• @MessageDriven defines the bean to be a message-driven
bean.

• The mappedName attribute specifies the JNDI name of the
JMS destination from which the bean will consume the
message. This is the same destination to which the mes-
sage was targeted from the producer.

• The bean must implement the MessageListener interface,
which provides only one method, onMessage. This method
is called by the container whenever a message is received
by the message-driven bean and contains the application-
specific business logic.

This code shows how a message received by the onMessage
method is a text message, and how the message body can be
retrieved and displayed:

public void onMessage(Message message) {
 try {
 TextMessage tm = (TextMessage)message;
 System.out.println(tm.getText());
 } catch (JMSException ex) {
 //. . .
 }
}

158 | Chapter 10: Java Message Service

Even though a message-driven bean cannot be invoked directly
by a session bean, it can still invoke other session beans. A
message-driven bean can also send JMS messages.

Temporary Destinations
Typically, JMS Destination objects (i.e., Queue and Topic) are
administered objects and identified by a JNDI name. These
objects can also be created dynamically, where their scope is
bound to the Connection from which they are created:

TopicConnection connection =
 topicConnectionFactory.createTopicConnection();
TopicSession session =
 connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
TemporaryTopic tempTopic =
 session.createTemporaryTopic();

Similarly, a TemporaryQueue can be created:

QueueConnection connection =
 queueConnectionFactory.createQueueConnection();
QueueSession session =
 connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
TemporaryQueue tempQueue =
 session.createTemporaryQueue();

These temporary destinations are automatically closed, de-
leted, and their contents lost when the connection is closed.
They can also be explicitly deleted by calling the Temporary
Queue.delete or TemporaryTopic.delete method.

These temporary destinations can be used to simulate a
request-reply design pattern by using JMSReplyTo and JMSCor
relationID header field.

Temporary Destinations | 159

CHAPTER 11

Bean Validation

Bean Validation is defined as JSR 303, and the complete spec-
ification can be downloaded from http://jcp.org/aboutJava/com
munityprocess/final/jsr303/index.html.

Bean Validation provides a class-level constraint declaration
and validation facility for Java applications.

The constraints can be declared in the form of annotations
placed on a field, property, method parameter, or class. Con-
straints can be defined on interfaces or superclasses. Specifying
a constraint on an interface ensures the constraint is enforced
on classes implementing the interface. Similarly, all classes in-
heriting from a superclass inherit the validation behavior as
well. Constraints declared on an interface or superclass are va-
lidated along with any constraints defined on the implement-
ing or overriding class.

Validation constraints and configuration information can also
be defined through XML validation descriptors in META-INF/
validation.xml. The descriptors override and extend the meta-
data defined using annotations. This chapter will cover anno-
tations-based constraint validations only.

A constraint metadata repository and an ability to query it is
also available. This is primarily targeted toward tool developers
as well as integration with other frameworks and libraries.

161

http://jcp.org/aboutJava/communityprocess/final/jsr303/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr303/index.html

Built-in Constraints
A built-in set of constraint definitions are available that can be
used on beans. Multiple constraints can be specified on a bean
to ensure different validation requirements are met. These con-
straints can also be used for composing other constraints.

All built-in constraints are defined in the javax.validation.
constraints package and are explained below:

@Null

Annotated element must be null and can be applied to
any type:

@Null
String httpErrorCode;

The httpErrorCode field is capturing the HTTP status code
from a RESTful endpoint.

@NotNull

Annotated element must not be null and can be applied
to any type:

@NotNull
String name;

name is capturing the name of, say, a customer. Specifying
@NotNull will trigger a validation error if the instance vari-
able is assigned a null value.

@AssertTrue

Annotated element must be true and can be applied to
boolean or Boolean types only:

@AssertTrue
boolean isConnected;

isConnected can be a field in a class managing resource
connections.

@AssertFalse

Annotated element must be false and can be applied to
boolean or Boolean types only:

162 | Chapter 11: Bean Validation

@AssertFalse
Boolean isWorking;

isWorking can be a field in an Employee class.

@Min, @DecimalMin
Annotated element must be a number whose value is
higher or equal to the specified minimum. byte, short,
int, long, Byte, Short, Integer, Long, BigDecimal, and
BigInteger are supported types:

@Min(10)
int quantity;

quantity can be a field in a class storing the quantity of
stock.

@Max, @DecimalMax
Annotated element must be a number whose value is
lower or equal to the specified maximum. byte, short,
int, long, Byte, Short, Integer, Long, BigDecimal, and
BigInteger are supported types:

@Max(20)
int quantity;

quantity can be a field in a class storing the quantity of
stock.

Multiple constraints may be specified on the same field:

@Min(10)
@Max(20)
int quantity;

@Size

Annotated element size must be between the specified
boundaries. String, Collection, Map, Array are supported
types:

@Size(min=5, max9)
String zip;

zip can be a field capturing the zip code of a city. Length
of the string is used for validation critieria. min and max
define the length of the targeted field, specified values in-
cluded. By default, min is 0 and max is 2147483647.

Built-in Constraints | 163

Another example is:

@Size(min=1)
@List<Item> items;

The List.size method is used for validation in this case.

@Digits

Annotated element must be a number within the accepted
range. byte, short, int, long, Byte, Short, Integer, Long,
BigDecimal, BigInteger, and String are supported types:

@Digits(integer=3,fraction=0)
int age;

integer defines the maximum number of integral digits
and fraction defines the number of fractional digits for
this number. So 1, 28, 262, and 987 are valid values. Spec-
ifying multiple constraints may make this field more
meaningful:

@Min(18)
@Max(25)
@Digits(integer=3,fraction=0)
int age;

@Past

Annotated element must be a date in the past. Present time
is defined as the current time according to the virtual ma-
chine. Date and Calendar are supported:

@Past
Date dob;

dob captures the date of birth.

@Future

Annotated element must be a date in the future. Present
time is defined as the current time according to the virtual
machine. Date and Calendar are supported:

@Future
Date retirementDate;

retirementDate stores the retirement date of an employee.

164 | Chapter 11: Bean Validation

@Pattern

Annotated string must match the specified regular
expression:

@Pattern(regexp="[0-9]*")
String zip;

zip stores the zip code of a city. The regular expression
says that only digits from 0 to 9 are permitted. This field
can be made more meaningful by adding the @Size
constraint:

@Pattern(regexp="[0-9]*")
@Size(min=5, max=5)
String zip;

Each constraint declaration can also override the message,
group, and payload fields.

message is used to override the default error message when the
constraint is violated. group is used to override the default val-
idation group, explained later. payload is used to associate
metadata with the constraint.

Defining a Custom Constraint
Custom constraints designed to meet specific validation crite-
ria can be defined by the combination of a constraint annota-
tion and a list of custom validation implementations.

This code shows custom constraint annotation to validate a zip
code:

@Documented
@Target({ ElementType.ANNOTATION_TYPE,
 ElementType.METHOD,
 ElementType.FIELD,
 ElementType.CONSTRUCTOR,
 ElementType.PARAMETER })
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy=ZipCodeValidator.class)
@Size(min=5, message="{org.sample.zipcode.min_size}")
@Pattern(regexp="[0-9]*")
@NotNull(message="{org.sample.zipcode.cannot_be_null}")

Defining a Custom Constraint | 165

public @interface ZipCode {
 String message() default
 "{org.sample.zipcode.invalid_zipcode}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 Country country() default Country.US;
 public enum Country {
 US,
 CANADA,
 MEXICO,
 BRASIL
 }
}

In this code:

• @Target defines that this constraint can be declared
on types, methods, fields, constructors, and method
parameters.

• @Constraint marks the annotation to be a constraint def-
inition. It also creates a link with its constraint validation
implementation, defined by the attribute validatedBy.
ZipCodeValidator.class provides the validation imple-
mentation in this case. Multiple validator implementa-
tions may be specified as an array of classes.

• @Size, @Pattern, and @NotNull are primitive constraints
used to create this composite custom constraint. Anno-
tating an element with @ZipCode (the composed annota-
tion) is equivalent to annotating it with @Size, @Pattern,
and @NotNull (the composing annotations) and @ZipCode.

By default, each violation of a composing annotation
raises an individual error report. All the error reports are
collected together and each violation reported. However,
@ReportAsSingleViolation on constraint annotation can
be used to suppress the error reports generated by the
composing annotations. In this case, the error report from
the composed annotation is generated instead.

166 | Chapter 11: Bean Validation

• message’s value is used to create the error message. In this
case, the message value is a resource bundle key that ena-
bles internationalization.

• group specifies a validation group. This is used to perform
partial validation of the bean or control the order in which
constraints are evaluated. By default, the value is an empty
array and belongs to the Default group.

• payload is used to associate metadata information with a
constraint.

• country is defined as an additional element to parameter-
ize the constraint. The possible set of values for this
parameter is defined as an enum with the constraint defi-
nition. A default value of the parameter, Country.US, is
also specified.

A simple zip code constraint validator implementation looks
like:

public class ZipCodeValidator
 implements ConstraintValidator<ZipCode, String> {

 List<String> zipcodes;

 @Override
 public void initialize(ZipCode constraintAnnotation) {
 zipcodes = new ArrayList<String>();
 switch (constraintAnnotation.country()) {
 case US:
 zipcodes.add("95054");
 zipcodes.add("95051");
 zipcodes.add("94043");
 break;
 case CANADA:
 //
 break;
 case MEXICO:
 //
 break;
 case BRASIL:
 //
 break;
 }
 }

Defining a Custom Constraint | 167

 @Override
 public boolean isValid(
 String value,
 ConstraintValidatorContext context) {
 return zipcodes.contains(value);
 }
}

In this code:

• The constraint validator implementation class imple-
ments the ConstraintValidator interface. A given con-
straint can apply to multiple Java types. This requires
defining multiple constraint validator implementations,
one each for a specific type. This validator can only be
applied to string types:

@ZipCode
String zip;

• The initialize method initializes any resources or data
structures used for validation. This code initializes the ar-
ray of valid zip codes for a specific country. The values of
the country attribute and other attributes are available
from the constraintAnnotation parameter. This method
is guaranteed to be called before any use of this instance
for validation.

• The isValid method implements the validation logic.
The method returns true if the constraint is valid, false
otherwise. The value parameter is the object to validate
and ConstraintValidatorContext provides the context in
which the constraint is executed. This method’s imple-
mentation must be thread-safe. This code returns true if
the zip code exists in the array of valid zip codes.

If a bean X contains a field of type Y, by default the validation
of type X does not trigger the validation of type Y. However,
annotating the field of type Y with @Valid will be cascaded
along with the validation of X.

@Valid also provides polymorphic validation. If field Y is an
interface or an abstract class, then the validation constraints

168 | Chapter 11: Bean Validation

applied at runtime are from the actual implementing class or
subtype.

Any Iterable fields and properties may also be decorated with
@Valid to ensure all elements of the iterator are validated.
@Valid is applied recursively, so each element of the iterator is
validated as well:

public class Order {
 @Pattern(...)
 String orderId;

 @Valid
 private List<OrderItem> items;
}

In this code, the list of order items is recursively validated along
with the orderId field, because @Valid has been specified on
items. If @Valid is not specified, only the orderId field is vali-
dated when the bean is validated.

Validation Groups
By default, all constraints are defined in the Default validation
group. Also by default, all validation constraints are executed
and in no particular order. A constraint may be defined in an
explicitly created validation group in order to perform partial
validation of the bean or control the order in which constraints
are evaluated.

A validation group is defined as an interface:

public interface ZipCodeGroup {
}

This validation group can now be assigned to a constraint
definition:

@ZipCode(groups=ZipCodeGroup.class)
String zip;

In this code, zip will be validated only when the Zip

CodeGroup validation group is targeted for validation.

Validation Groups | 169

By default, the Default validation group is not included if an
explicit set of groups is specified:

@ZipCode(groups={Default.class,ZipCodeGroup.class})
String zip;

Groups can inherit other groups by using interface inheritance.
A new group may be defined that consists of Default and Zip
CodeGroup:

public interface DefaultZipCodeGroup
 extends Default, ZipCodeGroup {
}

This new validation group can now be specified as part of the
constraint, and is semantically equivalent to specifying two
groups separately:

@ZipCode(groups=DefaultZipCodeGroup.class)
String zip;

Partial validation of a bean may be required when validation
of certain fields is optional or resource intensive. For example,
entering data in a multipage HTML form requires only the field
values entered in each page to be validated. Validating previ-
ously validated fields will be redundant, and validating fields
that do not yet have a value assigned will throw a validation
error. This can be achieved by creating a validation group for
each page:

public interface Page1Group {
}

public interface Page2Group {
}

public interface Page3Group {
}

Assign the group to the corresponding fields:

@Size(min=4, groups=Page1Group.class)
private String name;

@Digits(integer=3,fraction=0, groups=Page2Group.class)
int age;

170 | Chapter 11: Bean Validation

@ZipCode(groups={Page3Group.class})
private String zipcode;

And finally, pass the validation group in the JSF page using
f:validateBean:

<h:form>
 Name: <h:inputText value="#{person.name}" id="name">
 <f:validateBean
 validationGroups="org.sample.Page1Group"/>
 </h:inputText>
 <h:commandButton action="index2" value="Next >"/>
</h:form>

The fully qualified class name of the validation group needs to
be specified in the validationGroups attribute of f:validate
Bean. Other pages will specify the corresponding validation
group.

Multiple validation groups can be specified using a comma-
separated list:

<h:form>
 Name:
 <h:inputText value="#{person.name}" id="name">
 <f:validateBean
 validationGroups="org.sample.Page1Group,
 org.sample.OtherGroup"/>
 </h:inputText>
 <h:commandButton action="index2" value="Next >"/>
</h:form>

@GroupSequence is used to define a sequence of groups in which
the groups must be validated. This can be useful where simple
validation constraints such as @NotNull or @Size can be valida-
ted before more complex constraints are enforced:

@GroupSequence({Simple.class, Complex.class})

In this code, Simple and Complex are validation groups that are
specified on simple and complex validators of a bean. The def-
initions of simple and complex will depend upon the business
domain, of course.

If one of the groups from the sequence generates a constraint
violation, the subsequent groups are not processed.

Validation Groups | 171

Specifying @GroupSequence on a class changes the default vali-
dation group for that class.

Integration with JPA
JPA-managed classes (entities, mapped superclasses, and em-
beddable classes) may be configured to include validation con-
straints. By default, all such constraints are validated during
pre-persist, pre-update, and pre-remove lifecycle events.

A JPA entity with validation constraints may be defined:

@Entity
public class Name {
 @NotNull
 @Size(4)
 private String name;

 @Min(16)
 @Max(25)
 private int age;

 //. . .
}

The default validation behavior can be changed by specifying
the validation-mode element in persistence.xml. Its values are
defined in Table 11-1.

Table 11-1. Values for validation-mode in persistence.xml

validation-mode Description

auto Automatic validation of entities; this is the default behavior. No

validation takes place if no Bean Validation provider is found.

callback Lifecycle validation of entities occur. An error is reported if no Bean

Validation provider is found.

none No validation is performed.

This attribute can be specified in persistence.xml:

<persistence-unit name="MySamplePU" transaction-type="JTA">
 <jta-data-source>jdbc/sample</jta-data-source>
 <exclude-unlisted-classes>

172 | Chapter 11: Bean Validation

 false
 </exclude-unlisted-classes>
 <validation-mode>CALLBACK</validation-mode>
 <properties/>
</persistence-unit>

These values can also be specified using the javax.persis
tence.validation.mode property if the entity manager factory
is created using Persistence.createEntityManagerFactory:

Map props = new HashMap();
props.put("javax.persistence.validation.mode", "callback");
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("MySamplePU",
 props);

By default, each entity exists in the Default validation group.
The Default group is targeted in pre-persist and pre-update
events, and no groups are targeted in pre-remove events. So the
constraints are validated when an entity is persisted or upda-
ted, but not when it is deleted.

Different validation groups may be specified for these lifecycle
events using the following properties:

• javax.persistence.validation.group.per-persist

• javax.persistence.validation.group.pre-update

These properties are used in persistence.xml:

• javax.persistence.validation.group.pre-remove

<persistence-unit name="BeanValidationPU"
 transaction-type="JTA">
 <jta-data-source>jdbc/sample</jta-data-source>
 <exclude-unlisted-classes>
 false
 </exclude-unlisted-classes>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name=
 "javax.persistence.validation.group.pre-persist"
 value="org.sample.MyPrePersistGroup"/>
 <property name=
 "javax.persistence.validation.group.pre-update"
 value="org.sample.MyPreUpdateGroup"/>

Integration with JPA | 173

 <property name=
 "javax.persistence.validation.group.pre-remove"
 value="org.sample.MyPreRemoveGroup"/>
 </properties>
</persistence-unit>

These properties can also be passed to Persistence.create
EntityManagerFactory in a Map.

If a constraint is violated, the current transaction is marked for
rollback.

Integration with JSF
A JSF application typically consists of multiple Facelets pages
and corresponding backing beans to capture the data from
these pages. Any constraints defined on such a backing bean
are automatically validated during the process validations
phase.

The javax.faces.Bean standard validator also ensures that
every constraint violation that resulted in attempting to vali-
date the model data is wrapped in a FacesMessage and added
to the FacesContext. This message is then displayed to the user
as other validator messages are handled.

One or more validation groups can be associated with an input
tag:

Name:
<h:inputText value="#{person.name}" id="name">
 <f:validateBean validationGroups=
 "org.sample.Page1Group,
 org.sample.OtherGroup"/>
 </h:inputText>
 <h:commandButton action="index2" value="Next >"/>

This can also be used to create validation across multiple pages,
as explained earlier in this chapter.

174 | Chapter 11: Bean Validation

The validation groups can also be associated with a group of
input tags:

<f:validateBean validationGroups="org.sample.MyGroup">
 <h:inputText value="#{person.name}"/>
 <h:inputText value="#{person.age}"/>
</f:validateBean>

In this code, the constraints are validated for the fields identi-
fied by #{person.name} and #{person.age}.

Integration with JSF | 175

APPENDIX A

Getting Started with Java EE 6
Development and

Deployment

This appendix provides a reference on how to get started with
Java EE 6 programming using NetBeans IDE and GlassFish.

NetBeans IDE provides an open source, easy-to-use, and com-
prehensive development environment for Java EE 6 applica-
tions. GlassFish is an open source, lightweight, modular, and
Java EE 6–compliant application server. Together, NetBeans
and GlassFish provide a seamless out-of-the-box experience
for developing, deploying, and running Java EE 6 applications.

NetBeans can be downloaded from http://netbeans.org. Glass-
Fish Open Source Edition can be downloaded from http://glass
fish.org. Note that NetBeans comes in different packaging bun-
dles based upon the functionality available. “All” and “Java
EE” bundles come prepackaged with GlassFish.

Go to http://netbeans.org/kb/trails/java-ee.html for an extensive
list of articles, blogs, and videos to get you started with Java
EE and NetBeans. The following articles will get you started
with Java EE 6 development and deployment:

177

http://netbeans.org
http://glassfish.org
http://glassfish.org
http://netbeans.org/kb/trails/java-ee.html

• Key to the Java EE 6 Platform: NetBeans IDE 7.1: http://
www.oracle.com/technetwork/articles/java/unlocking
-1540042.html

• Getting Started with Java EE 6 Applications: http://net
beans.org/kb/docs/javaee/javaee-gettingstarted.html

• Introduction to JavaServer Faces 2.0: http://netbeans.org/
kb/docs/web/jsf20-intro.html

• Getting Started with Contexts and Dependency Injection
and JSF 2.0: http://netbeans.org/kb/docs/javaee/cdi-intro
.html

• Working with Injection and Qualifiers in CDI: http://net
beans.org/kb/docs/javaee/cdi-inject.html

• Working with Events in CDI: http://netbeans.org/kb/docs/
javaee/cdi-events.html

• Creating an Enterprise Application with EJB 3.1: http://
netbeans.org/kb/docs/javaee/javaee-entapp-ejb.html

• Creating an Enterprise Application Using Maven: http://
netbeans.org/kb/docs/javaee/maven-entapp.html

• Dependency Injection with Stateless Session Beans: http:
//netbeans.org/kb/samples/javaee-stateless.html

NetBeans-related questions can be asked in NetBeans Forums
at http://forums.netbeans.org/.

GlassFish-related questions can be asked in GlassFish Forums
at http://www.java.net/forums/glassfish/glassfish.

178 | Appendix A: Getting Started with Java EE 6 Development and
Deployment

http://www.oracle.com/technetwork/articles/java/unlocking-1540042.html
http://www.oracle.com/technetwork/articles/java/unlocking-1540042.html
http://www.oracle.com/technetwork/articles/java/unlocking-1540042.html
http://netbeans.org/kb/docs/javaee/javaee-gettingstarted.html
http://netbeans.org/kb/docs/javaee/javaee-gettingstarted.html
http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/javaee/cdi-intro.html
http://netbeans.org/kb/docs/javaee/cdi-intro.html
http://netbeans.org/kb/docs/javaee/cdi-inject.html
http://netbeans.org/kb/docs/javaee/cdi-inject.html
http://netbeans.org/kb/docs/javaee/cdi-events.html
http://netbeans.org/kb/docs/javaee/cdi-events.html
http://netbeans.org/kb/docs/javaee/javaee-entapp-ejb.html
http://netbeans.org/kb/docs/javaee/javaee-entapp-ejb.html
http://netbeans.org/kb/docs/javaee/maven-entapp.html
http://netbeans.org/kb/docs/javaee/maven-entapp.html
http://netbeans.org/kb/samples/javaee-stateless.html
http://netbeans.org/kb/samples/javaee-stateless.html
http://forums.netbeans.org/
http://www.java.net/forums/glassfish/glassfish

APPENDIX B

Further Reading

This appendix provides a reference to the specifications for
different technologies included in the Java EE 6 platform.

Web Technology Specifications
• JSR 45: Debugging Support for Other Languages: http://

jcp.org/en/jsr/detail?id=45

• JSR 52: Standard Tag Library for JavaServer Pages
(JSTL)1.2: http://www.jcp.org/en/jsr/detail?id=52

• JSR 245: JavaServer Pages (JSP) 2.2 and Expression Lan-
guage (EL) 1.2: http://jcp.org/en/jsr/detail?id=245

• JSR 314: JavaServer Faces (JSF) 2.0: http://jcp.org/en/jsr/
detail?id=314

• JSR 315: JavaServlet 3.0: http://jcp.org/en/jsr/detail?id=
315

Enterprise Technology Specifications
• JSR 250: Common Annotations for the Java Platform 1.1:

http://jcp.org/en/jsr/detail?id=250

• JSR 299: Contexts and Dependency Injection (CDI) for
the Java EE Platform 1.0: http://jcp.org/en/jsr/detail?id=
299

179

http://jcp.org/en/jsr/detail?id=45
http://jcp.org/en/jsr/detail?id=45
http://www.jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=314
http://jcp.org/en/jsr/detail?id=314
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

• JSR 303: Bean Validation 1.0: http://jcp.org/en/jsr/detail?id
=303

• JSR 316: Managed Beans 1.0: http://jcp.org/en/jsr/detail?id
=316

• JSR 317: Java Persistence API (JPA) 2.0: http://jcp.org/en/
jsr/detail?id=317

• JSR 318: Enterprise JavaBeans (EJB) 3.1: http://jcp.org/en/
jsr/detail?id=318

• JSR 318: Interceptors 1.1: http://jcp.org/en/jsr/detail?id=
318

• JSR 322: Java EE Connector Architecture 1.6: http://jcp
.org/en/jsr/detail?id=322

• JSR 330: Dependency Injection for Java 1.0: http://www
.jcp.org/en/jsr/detail?id=330

• JSR 907: Java Transaction API (JTA) 1.1: http://jcp.org/en/
jsr/detail?id=907

• JSR 914: Java Message Server (JMS) 1.1: http://www.jcp
.org/en/jsr/detail?id=914

• JSR 919: JavaMail 1.4: http://jcp.org/en/jsr/detail?id=919

Web Service Technologies
• JSR 67: Java APIs for XML Messaging (JAXM) 1.3: http://

jcp.org/en/jsr/detail?id=67

• JSR 93: Java API for XML Registries (JAXR) 1.0: http://jcp
.org/en/jsr/detail?id=93

• JSR 101: Java API for XML-based RPC (JAX-RPC) 1.1:
http://jcp.org/en/jsr/detail?id=101

• JSR 109: Implementing Enterprise Web Services 1.3: http:
//jcp.org/en/jsr/detail?id=109

• JSR 173: Streaming API for XML (StAX) 1.0: http://www
.jcp.org/en/jsr/detail?id=173

• JSR 181: Web Services Metadata for the Java Platform 2.0:
http://jcp.org/en/jsr/detail?id=181

180 | Appendix B: Further Reading

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://www.jcp.org/en/jsr/detail?id=330
http://www.jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=907
http://www.jcp.org/en/jsr/detail?id=914
http://www.jcp.org/en/jsr/detail?id=914
http://jcp.org/en/jsr/detail?id=919
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=93
http://jcp.org/en/jsr/detail?id=93
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=181

• JSR 222: Java Architecture for XML Binding (JAXB) 2.2:
http://jcp.org/en/jsr/detail?id=222

• JSR 224: Java API for XML Web Services (JAX-WS) 2.2:
http://jcp.org/en/jsr/detail?id=224

• JSR 311: Java API for RESTful Web Services (JAX-RS) 1.1:
http://jcp.org/en/jsr/detail?id=311

Management and Security Technologies
• JSR 77: J2EE Management API 1.1: http://jcp.org/en/jsr/

detail?id=77

• JSR 88: Java Platform EE Application Deployment API
1.2: http://jcp.org/en/jsr/detail?id=88

• JSR 115: Java Authorization Contract and Containers
(JACC) 1.3: http://jcp.org/en/jsr/detail?id=115

• JSR 196: Java Authentication Service Provider Interface
for Containers (JASPIC) 1.0: http://jcp.org/en/jsr/detail?id
=196

Management and Security Technologies | 181

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=77
http://jcp.org/en/jsr/detail?id=77
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196

Index

Symbols
/ MIME type, 143

A
Accept header (HTTP), 144
AccountServlet class, 20
ActionEvent class, 112
@ActivationConfigProperty

annotation, 65
AfterBeanDiscovery event, 97
AfterDeploymentValidation

event, 97
Ajax technologies, 110–113
Allow header (HTTP), 143
@Alternative annotation, 83, 93
ambiguous dependency, 83
annotations (see specific

annotations)
@Any annotation, 82
Application class, 139, 146
@ApplicationPath annotation,

139
@ApplicationScoped annotation,

90
@AroundInvoke annotation, 87
@AssertFalse annotation, 162

@AssertTrue annotation, 162
AsyncContext.complete method,

30
AsyncHandler.handleResponse

method, 133
@Asynchronous annotation, 70
asynchronous communication

Dispatch-based dynamic
clients and, 133

receiving JMS messages, 158
servlets, 29–31
session beans, 70

AsyncListener interface, 28, 31
AsyncResult class, 71
@AttributeOverrides annotation,

41
authentication, 35

B
Bean Validation

about, 11, 161
built-in constraints, 162–165
defining custom constraints,

165–169
JPA and, 172–174
JSF and, 117, 174
validating entities, 50–52

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

183

validation groups, 169–172,
173, 174

bean-managed transactions, 67–
70

BeanManager interface, 97
beans.xml file, 83, 87, 89
BeforeBeanDiscovery event, 97
BeforeShutdown event, 97
binding

HTTP methods, 140
requests to resources, 144–

146
BindingProvider interface, 131

C
c: prefix, 101
Cache interface, 55
CacheRetrieveMode

enumeration, 55
CacheStoreMode eumeration, 55
caching entities, 54–56
Cascading Style Sheets (CSS),

100
cc: prefix, 105–109
cc:implementation tag, 105–109
cc:interface tag, 105–109
CDI (Contexts and Dependency

Injection)
about, 4, 11, 79
events, 94–95
injection points, 80, 102
interceptors and decorators,

86–90
portable extensions, 95–97
producers and disposers, 84
qualifiers and alternatives,

81–84
scopes and contexts, 90
stereotypes, 92–93

cleanupResources method, 16
client proxy objects, 91
client-side extension points, 115–

118
ClientBehaviorBase class, 118
code first approach, 123

@CollectionTable annotation,
41

component specifications
about, 2, 5–7
revised, 8–11

composite components, 105
Connection interface, 85, 153,

156, 159
ConnectionFactory interface,

153, 156
@Constraint annotation, 166
constraints

built-in, 162–165
custom, 165–169
JPA considerations, 172–174
JSF considerations, 174
validation groups and, 169–

172, 173, 174
zip code, 167

ConstraintValidator interface
initialized method, 168
isValid method, 168

ConstraintValidatorContext
interface, 168

ConstraintViolationException
class, 51

@Consumes annotation, 141,
143

container-managed transactions,
67–70

Content-Type header (HTTP),
143, 144

@Context annotation, 92, 145
context, defined, 90
Contexts and Dependency

Injection (see CDI)
@Contextual annotation, 92
contract first approach, 123
@ConversationScoped

annotation, 91
Converter interface, 116
converters, defined, 115
@CookieParam annotation, 144
@CreationalContext annotation,

92
Criteria API, 47–50

184 | Index

CRUD operations on entities, 46–
50

CSS (Cascading Style Sheets),
100

D
@DecimalMax annotation, 163
@DecimalMin annotation, 163
@Decorator annotation, 89, 93
decorators, 86–90
@Default annotation, 82
Default validation group, 167,

169, 173
defining page, 105
delegate injection point, 89
@DELETE annotation, 140, 141
DELETE method (HTTP), 18,

140
@DenyAll annotation, 34
@Dependent annotation, 85, 91
@DependsOn annotation, 63
Destination interface

receiving messages, 156
sending messages, 153, 154
temporary destinations, 159

@Digits annotation, 164
@Discriminator annotation, 42
Dispatch interface, 132–134
DRY (Don’t Repeat Yourself)

design pattern, 110

E
EJB (Enterprise JavaBeans)

about, 8, 57
annotations and, 2
asynchronous support, 70
Embeddable API, 76
injecting in EL expressions,

102
message-driven beans, 64
portal global JNDI names, 66
singleton session beans, 62–

63
stateful session beans, 58–60
stateless session beans, 60–62

Timer Service, 71–76
transactions and, 67–70

@EJB annotation, 61
ejb-jar.xml file

about, 66
container-transaction

element, 70
timer method, 75

EJB.Lite, 77
EL (Expression Language)

CDI beans and, 83, 91
facelets and, 101
referencing resources, 105

@ElementCollection annotation,
41, 43

@Embeddable annotation, 41
embeddable classes, 41
Embeddable EJB API, 76
@Embedded annotation, 41
Endpoint class, 128
EndpointContext class, 129
endpoints

Endpoint-based, 128
Provider-based, 126
SOAP-based Web Services,

123–126
Enterprise JavaBeans (see EJB)
Enterprise Technologies, 5, 179
entities

about, 40–43
caching, 54–56
CRUD operations on, 46–50
inheriting from superclasses,

41, 161
persistence unit, persistence

context, and entity
manager, 43–46

transactions and locking, 52
validating, 50–52

@Entity annotation, 40
entity manager, 43–46
EntityManager interface

createNamedXXX methods,
46

createNativeXXX methods,
47

Index | 185

injecting, 85
merge method, 49
remove method, 49

EntityManagerFactory interface,
55

EntityTransaction interface
merge method, 52
persist method, 52
refresh method, 52
remove method, 52
rollback method, 53

error mapping, 37, 147
Event interface, 94
event listeners, 25–29
events

container lifecycle, 96
producers and observers, 94–

95
exceptions, mapping, 147
Expression Language (see EL)
extended persistence context, 46
extension points, client-side,

115–118

F
f: prefix, 101
f:ajax tag

about, 110–113
execute attribute, 112
listener attribute, 113
render attribute, 111

f:convertDateTime tag, 115
f:converter tag, 114
f:convertNumber tag, 115
f:event tag, 114
f:validateBean tag, 117, 171
f:validateDoubleRange tag, 116
f:validateLength tag, 116
f:validator tag, 114, 117
f:valueChangeListener tag, 118
facelets, 10, 100–104
faces-config.xml file, 118
@FacesBehavior annotation, 118
FacesContext class, 174

@FacesConverter annotation,
116

FacesMessage class, 117, 174
@FacesValidator annotation,

117
factory pattern, 84
FetchType enumeration, 42
filtering servlets, 23–24
fire and forget pattern, 70, 126
fn: prefix, 101
@FormParam annotation, 141,

145
@Future annotation, 164
Future API, 71

G
@GET annotation, 138, 140
GET method (HTTP), 18, 140
GlassFish Server, 7, 177
groups, validation, 169–172, 173,

174
@GroupSequence annotation,

171

H
h: prefix, 101, 109
h:button tag, 114
h:inputText tag, 114
h:link tag, 114
handler chains, 136
handlers, 134
@HEAD annotation, 140, 142
HEAD method (HTTP), 18, 140,

142
@HeaderParam annotation, 145,

146
HTTP methods

binding, 140
error mapping, 37
JSF and, 113–115
Servlet interface and, 18

HttpHeaders interface, 146
@HttpMethodConstraint

annotation, 33
HttpServlet class

186 | Index

doGet method, 18, 30
doPost method, 18, 38
extending, 17

HttpServletRequest interface
about, 18
authenticate method, 35
getAuthType method, 35
getPart method, 37
getParts method, 37
getRemoteUser method, 35
getRequestDispatcher

method, 22
getUserPrincipal method, 35
login method, 35
logout method, 35

HttpServletResponse interface
about, 18
sendRedirect method, 22

HttpSession interface
about, 21, 25
getAttribute method, 22
setAttribute method, 22

HttpSessionActivationListener
interface, 27

HttpSessionAttributeListener
interface, 27

HttpSessionBindingListener
interface, 28

HttpSessionListener interface, 26

I
@Id annotation, 40
inheritance

from other groups, 170
from superclasses, 41, 161

@Inheritance annotation, 42
initTimer lifecycle callback

method, 74
@Inject annotation, 14, 80
injection points, 80, 102
@Interceptor annotation, 87, 93
interceptor binding types, 86
@InterceptorBinding annotation,

86
interceptors, 11, 86–90

InvocationContext interface, 87

J
Java API for RESTful Web

Services (see JAX-RS)
Java API for XML Binding (JAXB),

122, 125
Java API for XML-Based Web

Services (see JAX-WS)
Java Community Process (JCP), 3,

4
Java EE 6

about, 1–4
component specifications, 2
deliverables, 4–7
new specifications, 8–11

Java EE 6 Web Profile, 3
Java Message Service (see JMS)
Java Naming and Directory

interface (JNDI), 66
Java Persistence API (see JPA)
Java Persistence Query Language

(JPQL), 46–50
Java primitive types, 41
Java Specification Request (JSR),

4–7
JavaServer Faces (see JSF)
javax.annotation package, 14, 15
javax.ejb package, 76
javax.faces package, 110
javax.persistence.criteria

package, 47
javax.persistence.metamodel

package, 47
javax.servlet package, 20
javax.servlet.http package, 17
javax.validation.constraints

package, 162
JAX-RS (Java API for RESTful

Web Services)
about, 9, 137
binding HTTP methods, 140
binding requests to resources,

144–146
mapping exceptions, 147

Index | 187

multiple resource
representations, 143

JAX-WS (Java API for XML-Based
Web Services), 121–123

Endpoint-based endpoints,
128

handlers and, 134
web service clients, 129
web service endpoints, 123

JAXB (Java API for XML Binding),
122, 125

JAXBContext class, 133
JCP (Java Community Process), 3,

4
JMS (Java Message Service)

about, 149–152
message-driven beans and, 64
quality of service, 150, 155
receiving messages

asynchronously, 158
receiving messages

synchronously, 156–
157

sending messages, 152–154
temporary destinations, 159

JMS clients, 149
JMS messages

acknowledgment mode, 153
body component, 152
defined, 149
header component, 151
property component, 151
receiving asynchronously,

158
receiving synchronously, 156–

157
sending, 152–154

JMS providers
defined, 149
quality of service and, 155

JNDI (Java Naming and Directory
interface), 14, 66

JPA (Java Persistence API)
about, 10, 39
caching entities, 54–56

CRUD operations on entities,
46–50

entities, 40–43
entity transactions and

locking, 52
persistence unit, persistence

context, and entity
manager, 43–46

validating entities, 50–52
validation constraints and,

172–174
JPQL (Java Persistence Query

Language), 46–50
JSF (JavaServer Faces)

about, 10, 99
Ajax and, 110–113
composite components, 105
facelets, 10, 100–104
HTTP methods, 113–115
navigation rules, 118
resource handling, 104
server and client extension

points, 115–118
validation constraints and,

174
jsf.js file, 110
JSR (Java Specification Request),

4–7
JSR 45, 5, 179
JSR 52, 5, 179
JSR 67, 5, 180
JSR 77, 6, 181
JSR 88, 6, 7, 181
JSR 93, 5, 7, 180
JSR 101, 5, 7, 180
JSR 109, 5, 180
JSR 115, 6, 181
JSR 153, 7
JSR 173, 6, 180
JSR 181, 6, 180
JSR 196, 6, 181
JSR 222, 6, 181
JSR 224, 6, 121, 181
JSR 245, 5, 179
JSR 250, 5, 15, 179
JSR 299, 5, 79, 179

188 | Index

JSR 303, 5, 161, 180
JSR 311, 6, 137, 181
JSR 314, 5, 99, 179
JSR 315, 5, 17, 179
JSR 316, 5, 13, 180
JSR 317, 5, 39, 180
JSR 318, 5, 180
JSR 322, 5, 180
JSR 330, 5, 180
JSR 907, 5, 180
JSR 914, 5, 149, 180
JSR 919, 5, 180

L
lifecycle callback methods

managed beans, 15
servlets, 20
validating entities, 50, 52
validation constraints and,

172
listeners, defined, 117
@Lock annotation, 63
locking entities, 52
LockModeType enumeration, 53
@Logging annotation, 86
logical handlers, 134–136
LogicalHandler interface

close method, 135
handleFault method, 135
handleMessage method, 135

M
managed beans

about, 8, 13
defining and using, 14
lifecycle callback, 15

@ManagedBean annotation, 14
Management and Security

Technologies, 6, 181
@ManyToMany annotation, 42
@ManyToOne annotation, 42
@MapKey annotation, 42
@MapKeyClass annotation, 43
@MappedSuperclass annotation,

42

mapping errors, 37, 147
@MatrixParam annotation, 145
@Max annotation, 50, 163
MDBs (message-driven beans),

64, 158
message-oriented middleware

(MOM), 149
Message.setJMSExpiration

method, 155
MessageBodyReader interface,

144
MessageBodyWriter interface,

144
MessageConsumer interface, 156
MessageContext interface, 135
@MessageDriven annotation, 64,

158
MessageDrivenContext interface,

66
MessageListener.onMessage

method, 64, 158
MessageProducer interface, 154,

155, 156
messages (see JMS messages)
META-INF directory, 31, 35
@Min annotation, 50, 163
@Model annotation, 93
Model-View-Controller (MVC),

99
MOM (message-oriented

middleware), 149
@MultipartConfig annotation,

37
MVC (Model-View-Controller),

99

N
@Named annotation, 82, 102
@NamedQueries annotation, 47
@NamedQuery annotation, 47,

49
namespaces

composite component, 108
declaring for tag libraries,

101

Index | 189

navigation rules, JSF, 118
NetBeans IDE, 177
@New annotation, 82
no-interface view, 59, 61
@NotNull annotation, 162, 166,

171
@Null annotation, 162

O
observers, defined, 94
@OneToMany annotation, 42
@OneToOne annotation, 42
@Oneway annotation, 126
optimistic concurrency control,

53
@OPTIONS annotation, 140,

143
OPTIONS method (HTTP), 140,

142

P
partial page rendering, 110
partial view processing, 110
@Past annotation, 164
@Path annotation, 2, 138
@PathParam annotation, 139,

144
@Pattern annotation, 50, 165,

166
@PermitAll annotation, 34
persistence (see JPA)
Persistence class

createEntityManager method,
51

createEntityManagerFactory
method, 173, 174

persistence context, 43–46
persistence unit, 43–46
persistence.xml file

about, 44
shared-cache-mode element,

54
validation-mode element, 51,

172

@PersistenceContext annotation,
85

pessimistic lock, 53
PessimisticLockScope

enumeration, 53
Point-to-Point messaging model,

150
portable global JNDI names, 66,

76
@POST annotation, 140
POST method (HTTP), 18, 140
@PostActivate annotation, 60
@PostConstruct annotation

about, 15
singleton session beans and,

63
stateful session beans and, 60
stateless session beans and,

61
pre-persist lifecycle callback

method, 50, 52, 172
pre-remove lifecycle callback

method, 50, 52, 172
pre-update lifecycle callback

method, 50, 52, 172
@PreDestroy annotation

about, 15
singleton session beans and,

63
stateful session beans and, 60
stateless session beans and,

61
@PrePassivate annotation, 60
primitive types (Java), 41
ProcessAnnotatedType event, 97
ProcessInjectionTarget event, 97
ProcessProducer event, 97
producers

consumers and, 153
disposers and, 84
observers and, 94

@Produces annotation, 85, 143
profiles, defined, 3
protocol handlers, 134, 135
@Provider annotation, 144
Provider interface, 126

190 | Index

Providers interface, 146
pruning process, 2, 7
Publish-Subscribe messaging

model, 150
@PUT annotation, 140
PUT method (HTTP), 18, 140

Q
@Qualifier annotation, 81–84
quality of service (JMS), 150, 155
@QueryParam annotation, 139,

144
Queue interface, 154
QueueBrowser interface, 157
QueueConnectionFactory

interface, 153
queues, defined, 150

R
Read locks, 63
Reference Implementation (RI), 4,

7
@Remote annotation, 59
@Remove annotation, 59
@ReportAsSingleViolation

annotation, 166
Request interface, 146
request response design pattern,

126
RequestDispatcher interface, 22
@RequestScoped annotation, 90,

93
@Resource annotation, 14, 157
resources

binding requests to, 144–146
handling, 104
multiple representations, 143
packaging, 35

Response class, 133, 141
RESTful Web Services, 137–140,

137
(see also JAX-RS)

RI (Reference Implementation), 4,
7

@RolesAllowed annotation, 34

S
@Schedule annotation, 72
ScheduleExpression class

end method, 73
start method, 73

scope, defined, 90
security considerations for

servlets, 33–35
SecurityContext interface, 146
SEI (Service Endpoint Interface)-

based endpoints, 123
Serializable interface, 40
server-side attached objects, 115–

118
Service Endpoint Interface (SEI)-

based endpoints, 123
Service.getPort method, 130
Service.Mode enumeration, 132
@ServiceMode annotation, 127
Servlet interface

about, 18
destroy method, 20
init method, 20
service method, 20

ServletContainerInitializer.onSta
rtup method, 23, 24, 29

ServletContext interface
about, 21, 25
addFilter method, 24
addListener method, 25, 28
addServlet method, 23
getContext method, 22
getRequestDispatcher

method, 22
getResource method, 35
getResourceAsStream

method, 35
getSessionCookieConfig

method, 21
ServletContextAttributeListener

interface, 26
ServletContextListener.contextIn

itialized method, 23, 24
ServletRegistration.setAsyncSup

ported method, 30

Index | 191

ServletRequest interface
about, 25
startAsync method, 30

ServletRequestAttributeListener
interface, 28

ServletRequestListener interface,
28

servlets
about, 3, 9, 17–23
asynchronous support, 29–31
authentication and, 35
error mapping, 37
event listeners and, 25–29
filtering, 23–24
handling multipart requests,

37
resource packaging, 35
security considerations, 33–

35
web fragments and, 31–33

@ServletSecurity annotation, 33
session beans

asynchronous support, 70
EJB Timer Service, 71–76
message-driven beans and, 65,

159
portal global JNDI names, 66
singleton, 62–63
stateful, 58–60
stateless, 60–62, 102, 152
transactions and, 67

Session interface
commit method, 153
createXXXMessage methods,

154
receiving message

synchronously, 156
rollback method, 153

@SessionScoped annotation, 90
setupResources method, 16
@Singleton annotation, 2, 62
singleton session beans, 62–63
@Size annotation, 50, 163, 166,

171
SOAP handler, 135
SOAP-based Web Services

about, 9, 121–123
Dispatch-based client, 132–

134
Endpoint-based endpoints,

128
endpoints, 123–126
handlers and, 134
Provider-based endpoints,

126
web service clients, 129–131

soap:address element, 131
@SOAPBinding annotation, 125
SOAPFaultException class, 126,

128
specifications

component, 2, 5–7, 8–11
defined, 4

SQL queries, 47–50
@SQLResultSetMapping

annotation, 47
@Startup annotation, 62
@Stateful annotation, 2, 58
stateful session beans, 58–60
@Stateless annotation, 2, 60
stateless session beans, 60–62,

102, 152
@Stereotype annotation, 92
stereotypes, 92–93
superclasses, entities inheriting

from, 41, 161
synchronous communication

(JMS), 156–157

T
tag libraries, facelets and, 101
@Target annotation, 86, 166
TCK (Technology Compliance

Kit), 4, 8
templating system, 10, 100, 102
@Temporal annotation, 41
TemporaryQueue.delete method,

159
TemporaryTopic.delete method,

159

192 | Index

TimedObject.ejbTimeout
method, 73

@Timeout annotation, 74
Timer Service (EJB), 71–76
TimerConfig.setPersistent

method, 76
TimerService.createXXX

methods, 73
Topic interface, 154, 157
TopicConnection interface, 157
TopicConnectionFactory

interface, 153, 157
topics, defined, 150
TopicSession.createDurableSubs

criber method, 157
TRACE method (HTTP), 18
@TransactionAttribute

annotation, 68
@TransactionManagement

annotation, 67
TransactionPhase enumeration,

95
transactions

committing, 153
EJB, 67–70
entity, 52
rolling back, 153

@TransportProtected
annotation, 34

U
UEL (Unified Expression

Language), 80
ui: prefix, 101
ui:component tag, 103
ui:composition tag, 103
ui:define tag, 103, 104
ui:fragment tag, 103
ui:include tag, 103
ui:insert tag, 103, 104
Unified Expression Language

(UEL), 80
unresolved dependency, 83
UriInfo interface, 146
User interface

about, 85
nameUpdated method, 118

UserTransaction interface
begin method, 68
commit method, 68

using page, 105

V
@Valid annotation, 51, 168, 169
validating entities, 50–52, 50

(see also Bean Validation)
validation groups, 169–172, 173,

174
validation.xml file, 161
Validator.validate method, 50
ValidatorException class, 117
validators, defined, 116
ValueChangeListener interface,

118
@Version annotation, 53

W
.war files, 21, 35, 66, 139
web fragments, 3, 31–33
Web Service Technologies, 179
Web Services Description

Language (see WSDL)
Web ServiceTechnologies, 5, 180
Web Technologies, 5
web-fragment.xml file

about, 31
ordering element, 32

WEB-INF directory, 35
web.xml file

absolute-ordering element,
32

async-supported element, 30
auth-constraint element, 34
error-page element, 37
exception-type element, 37
filter element, 24
filter-mapping element, 24
metadata-complete element,

20, 33

Index | 193

security-constraint element,
34

servlet element, 20
servlet-mapping element, 20
user-data-constraint element,

34
web-fragment element, 31

@WebFault annotation, 126
@WebFilter annotation, 24
@WebInitParam annotation, 18
@WebListener annotation, 25
@WebMethod annotation, 124
@WebResult annotation, 125
@WebService annotation, 123,

124, 128
WebServiceContext interface

getMessageContext method,
126

getUserPrincipal method, 126
isUserInRole method, 126

@WebServiceProvider
annotation, 127

@WebServlet annotation
about, 2, 17, 23
asyncSupported attribute, 29
name attribute, 18

Write locks, 63
wscompile tool, 121
WSDL (Web Services Description

Language)
about, 121
Dispatch-based client, 132–

134
Endpoint-based endpoints,

129
Provider-based endpoints,

127
web service clients, 129–131
web service endpoints, 123–

126
wsdl:fault element, 126, 130
wsdl:input element, 130
wsdl:operation element, 124,

130
wsdl:output element, 130
wsdl:port element, 123, 127, 129

wsdl:portType element, 123, 130
wsdl:service element, 123, 127,

129, 130
wsdl:types element, 130

X
XHTML 1.0, 100
.xhtml file extension, 101
@XmlRootElement annotation,

125, 138, 139

Z
zip code constraint, 167

194 | Index

About the Author
Arun Gupta is a Java evangelist working at Oracle. Arun has
over 16 years of experience in the software industry working
in the Java platform and several web-related technologies. In
his current role, he works to create and foster the community
around Java EE and GlassFish. He has been with the Java EE
team since its inception and contributed to all releases. Arun
has extensive worldwide speaking experience on myriad topics
and loves to engage with the community, customers, partners,
and Java User Groups everywhere to spread the goodness of
Java.

He is a prolific blogger at http://blogs.oracle.com/arungupta,
with over 13,00 blog entries and frequent visitors from around
the world. He is a passionate runner and always up for running
in any part of the world. You can catch him at @arungupta.

Colophon
The animal on the cover of Java EE 6 Pocket Guide is the jel-
lyfish of the South Seas (Favonia octonema). Since jellyfish have
been in existence for well over 500 million years, they are now
the oldest multiorgan animal. They inhabit every ocean, from
coastlines to the deep sea. Some types are even able to survive
in fresh water. Though they are capable of living much longer,
the typical lifespan of a jellyfish in the wild is a few hours to
several months.

The jellyfish’s distinctive body is made up of 95% water, a ge-
latinous body, and a group of nerves. Since they lack both a
brain and a central nervous system, a jellyfish uses only its
nerves to sense its surroundings. The difference in size between
different types of jellyfish is substantial: the smallest species is
a few millimeters in length, while some of the largest species
are more than 65 meters long. The Favonia octonema has a
sub-hemispherical body; at its root are eight appendages with
suckers. Like all jellyfish, they are carnivorous, and typically
will eat plankton, small fish, and fish eggs.

http://blogs.oracle.com/arungupta

The jellyfish’s natural defense mechanism is its sting. This sting
comes from nematocysts—explosive cells that emit toxins. A
single touch can cause millions of nematocysts to inject venom
into the victim. To humans, a sting (depending on the jellyfish)
might have no effect, be mildly to extremely painful, or in some
cases, can be fatal.

The cover image is from Johnson's Natural History. The cover
font is Adobe ITC Garamond. The text font is Linotype Birka;
the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Java Platform, Enterprise
 Edition
	Introduction
	Deliverables
	What’s New in Java EE 6

	Chapter 2. Managed Beans
	Define and Use a Managed Bean
	Lifecycle Callback

	Chapter 3. Servlets
	Servlets
	Servlet Filters
	Event Listeners
	Asynchronous Support
	Web Fragments
	Security
	Resource Packaging
	Error Mapping
	Handling Multipart Requests

	Chapter 4. Java Persistence API
	Entities
	Persistence Unit, Persistence Context, and Entity Manager
	Create, Read, Update, and Delete Entities
	Validating the Entities
	Transactions and Locking
	Caching

	Chapter 5. Enterprise JavaBeans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans
	Message-Driven Beans
	Portable Global JNDI Names
	Transactions
	Asynchronous
	Timers
	Embeddable API
	EJB.Lite

	Chapter 6. Contexts and Dependency Injection
	Injection Points
	Qualifier and Alternative
	Producer and Disposer
	Interceptors and Decorators
	Scopes and Contexts
	Stereotypes
	Events
	Portable Extensions

	Chapter 7. JavaServer Faces
	Facelets
	Resource Handling
	Composite Components
	Ajax
	HTTP GET
	Server and Client Extension Points
	Navigation Rules

	Chapter 8. SOAP-Based Web Services
	Web Service Endpoints
	Provider-Based Dynamic Endpoints
	Endpoint-Based Endpoints
	Web Service Client
	Dispatch-Based Dynamic Client
	Handlers

	Chapter 9. RESTful Web Services
	Simple RESTful Web Services
	Binding HTTP Methods
	Multiple Resource Representations
	Binding Request to a Resource
	Mapping Exceptions

	Chapter 10. Java Message Service
	Sending a Message
	Quality of Service
	Receiving a Message Synchronously
	Receiving a Message Asynchronously
	Temporary Destinations

	Chapter 11. Bean Validation
	Built-in Constraints
	Defining a Custom Constraint
	Validation Groups
	Integration with JPA
	Integration with JSF

	Appendix A. Getting Started with Java EE 6 Development and Deployment
	Appendix B. Further Reading
	Web Technology Specifications
	Enterprise Technology Specifications
	Web Service Technologies
	Management and Security Technologies

	Index

