
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Java™ Cookbook ™

www.allitebooks.com

http://www.allitebooks.org

Other Java™ resources from O’Reilly

Related titles Java™ in a Nutshell

Head First Java™

Head First EJB™

Programming Jakarta Struts

Tomcat: The Definitive Guide

Learning Java™

Better, Faster, Lighter Java™

Java™ Servlet and JSP™

Cookbook™

Hardcore Java™

JavaServer™ Pages

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books on
Java and related technologies, including sample chapters and
code examples.

OnJava.com is a one-stop resource for enterprise Java develop-
ers, featuring news, code recipes, interviews, weblogs, and
more.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

www.allitebooks.com

http://www.allitebooks.org

Java™ Cookbook ™

SECOND EDITION

Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Java™ Cookbook™, Second Edition
by Ian F. Darwin

Copyright © 2004, 2001 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Debra Cameron

Production Editor: Marlowe Shaeffer

Cover Designer: Hanna Dyer

Interior Designer: David Futato

Printing History:

June 2001: First Edition.

June 2004: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Java Cookbook, the image of a domestic
chicken, and related trade dress are trademarks of O’Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00701-9

ISBN13: 978-0-596-00701-0

[M] [1/07]

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Preface . xv

1. Getting Started: Compiling, Running, and Debugging 1
1.1 Compiling and Running Java: JDK 1
1.2 Editing and Compiling with a Color-Highlighting Editor 3
1.3 Compiling, Running, and Testing with an IDE 4
1.4 Using CLASSPATH Effectively 11
1.5 Using the com.darwinsys API Classes from This Book 14
1.6 Compiling the Source Code Examples from This Book 15
1.7 Automating Compilation with Ant 16
1.8 Running Applets 17
1.9 Dealing with Deprecation Warnings 20

1.10 Conditional Debugging Without #ifdef 22
1.11 Debugging Printouts 24
1.12 Maintaining Program Correctness with Assertions 25
1.13 Debugging with JDB 26
1.14 Unit Testing: Avoid the Need for Debuggers 28
1.15 Getting Readable Tracebacks 30
1.16 Finding More Java Source Code 32
1.17 Program: Debug 33

2. Interacting with the Environment . 35
2.1 Getting Environment Variables 35
2.2 System Properties 37
2.3 Writing JDK Release-Dependent Code 39
2.4 Writing Operating System-Dependent Code 40
2.5 Using Extensions or Other Packaged APIs 42
2.6 Parsing Command-Line Arguments 43

www.allitebooks.com

http://www.allitebooks.org

vi | Table of Contents

3. Strings and Things . 50
3.1 Taking Strings Apart with Substrings 52
3.2 Taking Strings Apart with StringTokenizer 53
3.3 Putting Strings Together with +, StringBuilder (JDK 1.5), and

StringBuffer 56
3.4 Processing a String One Character at a Time 59
3.5 Aligning Strings 60
3.6 Converting Between Unicode Characters and Strings 63
3.7 Reversing a String by Word or by Character 64
3.8 Expanding and Compressing Tabs 65
3.9 Controlling Case 70

3.10 Indenting Text Documents 71
3.11 Entering Nonprintable Characters 73
3.12 Trimming Blanks from the End of a String 74
3.13 Parsing Comma-Separated Data 75
3.14 Program: A Simple Text Formatter 80
3.15 Program: Soundex Name Comparisons 82

4. Pattern Matching with Regular Expressions . 85
4.1 Regular Expression Syntax 87
4.2 Using regexes in Java: Test for a Pattern 94
4.3 Finding the Matching Text 97
4.4 Replacing the Matched Text 99
4.5 Printing All Occurrences of a Pattern 100
4.6 Printing Lines Containing a Pattern 103
4.7 Controlling Case in Regular Expressions 104
4.8 Matching “Accented” or Composite Characters 105
4.9 Matching Newlines in Text 106

4.10 Program: Apache Logfile Parsing 108
4.11 Program: Data Mining 110
4.12 Program: Full Grep 112

5. Numbers . 117
5.1 Checking Whether a String Is a Valid Number 119
5.2 Storing a Larger Number in a Smaller Number 120
5.3 Converting Numbers to Objects and Vice Versa 121
5.4 Taking a Fraction of an Integer Without Using Floating Point 122
5.5 Ensuring the Accuracy of Floating-Point Numbers 123
5.6 Comparing Floating-Point Numbers 125

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | vii

5.7 Rounding Floating-Point Numbers 127
5.8 Formatting Numbers 128
5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal 130

5.10 Operating on a Series of Integers 131
5.11 Working with Roman Numerals 132
5.12 Formatting with Correct Plurals 136
5.13 Generating Random Numbers 138
5.14 Generating Better Random Numbers 139
5.15 Calculating Trigonometric Functions 140
5.16 Taking Logarithms 141
5.17 Multiplying Matrices 141
5.18 Using Complex Numbers 143
5.19 Handling Very Large Numbers 145
5.20 Program: TempConverter 147
5.21 Program: Number Palindromes 151

6. Dates and Times . 154
6.1 Finding Today’s Date 155
6.2 Printing Date/Time in a Given Format 156
6.3 Representing Dates in Other Epochs 159
6.4 Converting YMDHMS to a Calendar or Epoch Seconds 160
6.5 Parsing Strings into Dates 161
6.6 Converting Epoch Seconds to DMYHMS 162
6.7 Adding to or Subtracting from a Date or Calendar 163
6.8 Difference Between Two Dates 165
6.9 Comparing Dates 165

6.10 Day of Week/Month/Year or Week Number 167
6.11 Creating a Calendar Page 168
6.12 Measuring Elapsed Time 171
6.13 Sleeping for a While 173
6.14 Program: Reminder Service 173

7. Structuring Data with Java . 176
7.1 Using Arrays for Data Structuring 177
7.2 Resizing an Array 178
7.3 Like an Array, but More Dynamic 180
7.4 Using Iterators for Data-Independent Access 181
7.5 Structuring Data in a Linked List 183
7.6 Mapping with Hashtable and HashMap 185

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

7.7 Storing Strings in Properties and Preferences 186
7.8 Sorting a Collection 190
7.9 Avoiding the Urge to Sort 193

7.10 Eschewing Duplication 195
7.11 Finding an Object in a Collection 196
7.12 Converting a Collection to an Array 198
7.13 Rolling Your Own Iterator 199
7.14 Stack 201
7.15 Multidimensional Structures 202
7.16 Finally, Collections 204
7.17 Program: Timing Comparisons 206

8. Data Structuring with Generics, foreach, and Enumerations (JDK 1.5) . . . 208
8.1 Using Generic Collections 209
8.2 Using “foreach” Loops 210
8.3 Avoid Casting by Using Generics 211
8.4 Let Java Convert with AutoBoxing and AutoUnboxing 214
8.5 Using Typesafe Enumerations 215
8.6 Program: MediaInvoicer 219

9. Object-Oriented Techniques . 222
9.1 Printing Objects: Formatting with toString() 224
9.2 Overriding the Equals Method 225
9.3 Overriding the hashCode Method 228
9.4 The Clone Method 229
9.5 The Finalize Method 231
9.6 Using Inner Classes 233
9.7 Providing Callbacks via Interfaces 234
9.8 Polymorphism/Abstract Methods 238
9.9 Passing Values 239

9.10 Enforcing the Singleton Pattern 242
9.11 Roll Your Own Exceptions 243
9.12 Program: Plotter 244

10. Input and Output . 247
10.1 Reading Standard Input 248
10.2 Writing Standard Output 252
10.3 Printing with the 1.5 Formatter 253
10.4 Scanning a File with StreamTokenizer 257
10.5 Scanning Input with the 1.5 Scanner Class 262

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

10.6 Opening a File by Name 265
10.7 Copying a File 266
10.8 Reading a File into a String 269
10.9 Reassigning the Standard Streams 270

10.10 Duplicating a Stream as It Is Written 270
10.11 Reading/Writing a Different Character Set 273
10.12 Those Pesky End-of-Line Characters 274
10.13 Beware Platform-Dependent File Code 274
10.14 Reading “Continued” Lines 275
10.15 Binary Data 280
10.16 Seeking 281
10.17 Writing Data Streams from C 282
10.18 Saving and Restoring Java Objects 284
10.19 Preventing ClassCastExceptions with SerialVersionUID 287
10.20 Reading and Writing JAR or Zip Archives 289
10.21 Reading and Writing Compressed Files 292
10.22 Program: Text to PostScript 293

11. Directory and Filesystem Operations . 297
11.1 Getting File Information 297
11.2 Creating a File 300
11.3 Renaming a File 301
11.4 Deleting a File 302
11.5 Creating a Transient File 303
11.6 Changing File Attributes 305
11.7 Listing a Directory 306
11.8 Getting the Directory Roots 308
11.9 Creating New Directories 309

11.10 Program: Find 310

12. Programming External Devices: Serial and Parallel Ports 313
12.1 Choosing a Port 315
12.2 Opening a Serial Port 318
12.3 Opening a Parallel Port 322
12.4 Resolving Port Conflicts 325
12.5 Reading and Writing: Lock-Step 328
12.6 Reading and Writing: Event-Driven 331
12.7 Reading and Writing: Threads 335
12.8 Program: Penman Plotter 337

x | Table of Contents

13. Graphics and Sound . 342
13.1 Painting with a Graphics Object 342
13.2 Testing Graphical Components 344
13.3 Drawing Text 344
13.4 Drawing Centered Text in a Component 345
13.5 Drawing a Drop Shadow 347
13.6 Drawing Text with 2D 349
13.7 Drawing Text with an Application Font 352
13.8 Drawing an Image 354
13.9 Playing a Sound File 358

13.10 Playing a Video Clip 360
13.11 Printing in Java 362
13.12 Program: PlotterAWT 366
13.13 Program: Grapher 368

14. Graphical User Interfaces . 372
14.1 Displaying GUI Components 373
14.2 Designing a Window Layout 375
14.3 A Tabbed View of Life 378
14.4 Action Handling: Making Buttons Work 379
14.5 Action Handling Using Anonymous Inner Classes 381
14.6 Terminating a Program with “Window Close” 383
14.7 Dialogs: When Later Just Won’t Do 387
14.8 Catching and Formatting GUI Exceptions 389
14.9 Getting Program Output into a Window 391

14.10 Choosing a Value with JSpinner 395
14.11 Choosing a File with JFileChooser 396
14.12 Choosing a Color 399
14.13 Formatting JComponents with HTML 402
14.14 Centering a Main Window 403
14.15 Changing a Swing Program’s Look and Feel 404
14.16 Enhancing Your GUI for Mac OS X 408
14.17 Program: Custom Font Chooser 410
14.18 Program: Custom Layout Manager 414

15. Internationalization and Localization . 421
15.1 Creating a Button with I18N Resources 422
15.2 Listing Available Locales 423
15.3 Creating a Menu with I18N Resources 424

Table of Contents | xi

15.4 Writing Internationalization Convenience Routines 425
15.5 Creating a Dialog with I18N Resources 427
15.6 Creating a Resource Bundle 428
15.7 Extracting Strings from Your Code 429
15.8 Using a Particular Locale 430
15.9 Setting the Default Locale 431

15.10 Formatting Messages 432
15.11 Program: MenuIntl 434
15.12 Program: BusCard 436

16. Network Clients . 441
16.1 Contacting a Server 443
16.2 Finding and Reporting Network Addresses 444
16.3 Handling Network Errors 446
16.4 Reading and Writing Textual Data 447
16.5 Reading and Writing Binary Data 449
16.6 Reading and Writing Serialized Data 451
16.7 UDP Datagrams 453
16.8 Program: TFTP UDP Client 455
16.9 Program: Telnet Client 459

16.10 Program: Chat Client 461

17. Server-Side Java: Sockets . 467
17.1 Opening a Server for Business 467
17.2 Returning a Response (String or Binary) 470
17.3 Returning Object Information 474
17.4 Handling Multiple Clients 475
17.5 Serving the HTTP Protocol 480
17.6 Securing a Web Server with SSL and JSSE 482
17.7 Network Logging 484
17.8 Network Logging with log4j 489
17.9 Network Logging with JDK 1.4 491

17.10 Finding Network Interfaces 493
17.11 Program: A Java Chat Server 495

18. Network Clients II: Applets and Web Clients . 501
18.1 Embedding Java in a Web Page 501
18.2 Applet Techniques 503
18.3 Contacting a Server on the Applet Host 505

xii | Table of Contents

18.4 Making an Applet Show a Document 508
18.5 Making an Applet Run JavaScript 510
18.6 Making an Applet Run a CGI Script 511
18.7 Reading the Contents of a URL 512
18.8 URI, URL, or URN? 513
18.9 Extracting HTML from a URL 515

18.10 Extracting URLs from a File 517
18.11 Converting a Filename to a URL 519
18.12 Program: MkIndex 519
18.13 Program: LinkChecker 524

19. Java and Electronic Mail . 531
19.1 Sending Email: Browser Version 531
19.2 Sending Email: For Real 535
19.3 Mail-Enabling a Server Program 539
19.4 Sending MIME Mail 543
19.5 Providing Mail Settings 545
19.6 Sending Mail Without Using JavaMail 546
19.7 Reading Email 550
19.8 Program: MailReaderBean 555
19.9 Program: MailClient 559

20. Database Access . 570
20.1 Easy Database Access with JDO 571
20.2 Text-File Databases 574
20.3 DBM Databases 579
20.4 JDBC Setup and Connection 582
20.5 Connecting to a JDBC Database 585
20.6 Sending a JDBC Query and Getting Results 588
20.7 Using JDBC Prepared Statements 590
20.8 Using Stored Procedures with JDBC 594
20.9 Changing Data Using a ResultSet 595

20.10 Storing Results in a RowSet 596
20.11 Changing Data Using SQL 598
20.12 Finding JDBC Metadata 600
20.13 Program: SQLRunner 604

21. XML . 615
21.1 Generating XML from Objects 618
21.2 Transforming XML with XSLT 619

Table of Contents | xiii

21.3 Parsing XML with SAX 622
21.4 Parsing XML with DOM 624
21.5 Verifying Structure with a DTD 628
21.6 Generating Your Own XML with DOM 630
21.7 Program: xml2mif 632

22. Distributed Java: RMI . 634
22.1 Defining the RMI Contract 635
22.2 Creating an RMI Client 637
22.3 Creating an RMI Server 638
22.4 Deploying RMI Across a Network 641
22.5 Program: RMI Callbacks 641
22.6 Program: NetWatch 646

23. Packages and Packaging . 652
23.1 Creating a Package 653
23.2 Documenting Classes with Javadoc 653
23.3 Beyond JavaDoc: Annotations/Metadata (JDK 1.5) and XDoclet 657
23.4 Archiving with jar 660
23.5 Running an Applet from a JAR 661
23.6 Running an Applet with a Modern JDK 661
23.7 Running a Main Program from a JAR 665
23.8 Preparing a Class as a JavaBean 667
23.9 Pickling Your Bean into a JAR 671

23.10 Packaging a Servlet into a WAR File 672
23.11 “Write Once, Install Anywhere” 673
23.12 “Write Once, Install on Mac OS X” 673
23.13 Java Web Start 675
23.14 Signing Your JAR File 681

24. Threaded Java . 683
24.1 Running Code in a Different Thread 685
24.2 Displaying a Moving Image with Animation 688
24.3 Stopping a Thread 692
24.4 Rendezvous and Timeouts 694
24.5 Synchronizing Threads with the synchronized Keyword 695
24.6 Simplifying Synchronization with 1.5 Locks 701
24.7 Synchronizing Threads with wait() and notifyAll() 705
24.8 Simplifying Producer-Consumer with the 1.5 Queue Interface 711

xiv | Table of Contents

24.9 Background Saving in an Editor 713
24.10 Program: Threaded Network Server 714
24.11 Simplifying Servers Using the Concurrency Utilities (JDK 1.5) 722

25. Introspection, or “A Class Named Class” . 725
25.1 Getting a Class Descriptor 726
25.2 Finding and Using Methods and Fields 727
25.3 Loading and Instantiating a Class Dynamically 731
25.4 Constructing a Class from Scratch 733
25.5 Performance Timing 734
25.6 Printing Class Information 737
25.7 Program: CrossRef 739
25.8 Program: AppletViewer 745

26. Using Java with Other Languages . 752
26.1 Running a Program 752
26.2 Running a Program and Capturing Its Output 755
26.3 Mixing Java and Scripts with BSF 759
26.4 Marrying Java and Perl 763
26.5 Blending in Native Code (C/C++) 767
26.6 Calling Java from Native Code 773
26.7 Program: DBM 773

Afterword . 777

Index . 779

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xv

Preface

Preface to the Second Edition
JDK 1.5, code-named Tiger, is an exciting change to the Java landscape. It intro-
duces several major new facilities, such as generic types for better data structuring,
metadata for annotating Java™ classes in a flexible but well-defined manner, new
pattern-based mechanisms for reading data, and a new mechanism for formatted
printing. In addition, a much larger number of smaller but important changes add up
to a new release that is a must for Java developers. It will be quite some time before
these mechanisms are fully understood and in wide circulation, but you will want to
know about them right away.

I wrote in the Afterword to the first edition that “writing this book has been a hum-
bling experience.” I should add that maintaining it has been humbling, too. While
many reviewers and writers have been lavish with their praise—one very kind
reviewer called it “arguably the best book ever written on the Java programming lan-
guage”—I have been humbled by the number of errors and omissions in the first edi-
tion. In preparing this edition, I have endeavored to correct these.

At the same time I have added a number of new recipes and removed a smaller num-
ber of old ones. The largest single addition is Chapter 8, which covers generic types
and enumerations, features that provide increased flexibility for containers such as
Java Collections. Now that Java includes a regular expressions API, Chapter 4 has
been converted from the Apache Regular Expressions API to JDK 1.4 Regular
Expressions.

I have somewhat hesitantly removed the chapter on Network Web, including the
JabaDot Web Portal Site program. This was the longest single program example in the
book, and it was showing signs of needing considerable refactoring (in fact, it needed
a complete rewrite). In writing such a web site today, one would make much greater
use of JSP tags, and almost certainly use a web site framework such as Struts (http://
jakarta.apache.org/struts), SOFIA (http://www.salmonllc.com/), or the Spring Frame-
work (http://www.springframework.org/) to eliminate a lot of the tedious coding. Or,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

you might use an existing package such as the Java Lobby’s JLCP. Material on Serv-
lets and JavaServer pages can be found in O’Reilly’s Java Servlet & JSP Cookbook
by Bruce W. Perry. Information on Struts itself can be found in Chuck Cavaness’s
Programming Jakarta Struts (O’Reilly). Information on SOAP-based web services is
included in O’Reilly’s Java Web Services by Dave Chappell and Tyler Jewell, so this
topic is not covered here.

While I’ve tested the examples on a variety of systems and provide Ant scripts to
rebuild everything, I did most of the new development and writing for this edition
using Mac OS X, which truly is “Unix for the masses,” and which provides one of the
best-supported out-of-the-box Java experiences. Mac OS X Java does, however, suf-
fer a little from “new version lag” and, since 1.5 was not available for the Mac by the
time this edition went to press, the JDK 1.5 material was developed and tested on
Linux and Windows.

I wish to express my heartfelt thanks to all who sent in both comments and criti-
cisms of the book after the first English edition was in print. Special mention must be
made of one of the book’s German translators,* Gisbert Selke, who read the first edi-
tion cover to cover during its translation and clarified my English. Gisbert did it all
over again for the second edition and provided many code refactorings, which have
made this a far better book than it would be otherwise. Going beyond the call of
duty, Gisbert even contributed one recipe (Recipe 26.4) and revised some of the
other recipes in the same chapter. Thank you, Gisbert! The second edition also bene-
fited from comments by Jim Burgess, who read large parts of the book. Comments
on individual chapters were received from Jonathan Fuerth, Kim Fowler, Marc Loy,
and Mike McCloskey. My wife Betty and teenaged children each proofread several
chapters as well.

The following people contributed significant bug reports or suggested improvements
from the first edition: Rex Bosma, Rod Buchanan, John Chamberlain, Keith Gold-
man, Gilles-Philippe Gregoire, B. S. Hughes, Jeff Johnston, Rob Konigsberg, Tom
Murtagh, Jonathan O’Connor, Mark Petrovic, Steve Reisman, Bruce X. Smith, and
Patrick Wohlwend. My thanks to all of them, and my apologies to anybody I’ve
missed.

My thanks to the good guys behind the O’Reilly “bookquestions” list for fielding so
many questions. Thanks to Mike Loukides, Deb Cameron, and Marlowe Shaeffer for
editorial and production work on the second edition.

* The first edition is available today in English, German, French, Polish, Russian, Korean, Traditional Chinese,
and Simplified Chinese. My thanks to all the translators for their efforts in making the book available to a
wider audience.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

Preface to the First Edition
If you know a little Java, great. If you know more Java, even better! This book is ideal
for anyone who knows some Java and wants to learn more. If you don’t know any
Java yet, you should start with one of the more introductory books from O’Reilly,
such as Head First Java or Learning Java if you’re new to this family of languages, or
Java in a Nutshell if you’re an experienced C programmer.

I started programming in C in 1980 while working at the University of Toronto, and
C served me quite well through the 1980s and into the 1990s. In 1995, as the nascent
language Oak was being renamed Java, I had the good fortune to be told about it by
my colleague J. Greg Davidson. I sent an email to the address Greg provided, and got
this mail back from James Gosling, Java’s inventor, in March 1995:

> Hi. A friend told me about WebRunner(?), your extensible network
> browser. It and Oak(?) its extension language, sounded neat. Can
> you please tell me if it's available for play yet, and/or if any
> papers on it are available for FTP?

Check out http://java.sun.com
(oak got renamed to java and webrunner got renamed to
 hotjava to keep the lawyers happy)

I downloaded HotJava and began to play with it. At first I wasn’t sure about this
newfangled language, which looked like a mangled C/C++. I wrote test and demo
programs, sticking them a few at a time into a directory that I called javasrc to keep it
separate from my C source (because often the programs would have the same name).
And as I learned more about Java, I began to see its advantages for many kinds of
work, such as the automatic memory reclaim and the elimination of pointer
calculations. The javasrc directory kept growing. I wrote a Java course for Learning
Tree,* and the directory grew faster, reaching the point where it needed subdirecto-
ries. Even then, it became increasingly difficult to find things, and it soon became
evident that some kind of documentation was needed.

In a sense, this book is the result of a high-speed collision between my javasrc direc-
tory and a documentation framework established for another newcomer language. In
O’Reilly’s Perl Cookbook, Tom Christiansen and Nathan Torkington worked out a
very successful design, presenting the material in small, focused articles called “reci-
pes.” The original model for such a book is, of course, the familiar kitchen cook-
book. Using the term “cookbook” to refer to an enumeration of how-to recipes
relating to computers has a long history. On the software side, Donald Knuth
applied the “cookbook” analogy to his book The Art of Computer Programming
(Addison Wesley), first published in 1968. On the hardware side, Don Lancaster

* One of the world’s leading high-tech, vendor-independent training companies; see http://www.learningtree.
com/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

wrote The TTL Cookbook (Sams, 1974). (Transistor-transistor logic, or TTL, was the
small-scale building block of electronic circuits at the time.) Tom and Nathan
worked out a successful variation on this, and I recommend their book for anyone
who wishes to, as they put it, “learn more Perl.” Indeed, the work you are now read-
ing strives to be the book for the person who wishes to “learn more Java.”

The code in each recipe is intended to be largely self-contained; feel free to borrow
bits and pieces of any of it for use in your own projects. The code is distributed with
a Berkeley-style copyright, just to discourage wholesale reproduction.

Who This Book Is For
I’m going to assume that you know the basics of Java. I won’t tell you how to
println a string and a number at the same time, or how to write a class that extends
Applet and prints your name in the window. I’ll presume you’ve taken a Java course
or studied an introductory book such as O’Reilly’s Head First Java, Learning Java, or
Java in a Nutshell. However, Chapter 1 covers some techniques that you might not
know very well and that are necessary to understand some of the later material. Feel
free to skip around! Both the printed version of the book and the electronic copy are
heavily cross-referenced.

What’s in This Book?
Unlike my Perl colleagues Tom and Nathan, I don’t have to spend as much time on
the oddities and idioms of the language; Java is refreshingly free of strange quirks.
But that doesn’t mean it’s trivial to learn well! If it were, there’d be no need for this
book. My main approach, then, is to concentrate on the Java APIs. I’ll teach you by
example what the APIs are and what they are good for.

Like Perl, Java is a language that grows on you and with you. And, I confess, I use
Java most of the time nowadays. Things I’d once done in C are now—except for
device drivers and legacy systems—done in Java.

But Java is suited to a different range of tasks than Perl. Perl (and other scripting lan-
guages, such as awk and Python) are particularly suited to the “one-liner” utility
task. As Tom and Nathan show, Perl excels at things like printing the 42nd line from
a file. While it can certainly do these things, Java, because it is a compiled, object-
oriented language, seems more suited to “development in the large” or enterprise
applications development. Indeed, much of the API material added in Java 2 was
aimed at this type of development. However, I will necessarily illustrate many tech-
niques with shorter examples and even code fragments. Be assured that every line of
code you see here has been compiled and run.

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

Many of the longer examples in this book are tools that I originally wrote to auto-
mate some mundane task or another. For example, MkIndex (described in Chapter
17) reads the top-level directory of the place where I keep all my Java example source
code and builds a browser-friendly index.html file for that directory. For another
example, the body of the first edition was partly composed in XML, a simplification
that builds upon many years of experience in SGML (the parent standard that led to
the tag-based syntax of HTML). It is not clear at this point if XML will primarily be
useful as a publishing format or as a data manipulation format, or if its prevalence
will further blur that distinction, although it seems that the blurring of distinctions is
more likely. However, I used XML here to type in and mark up the original text of
some of the chapters of this book. The text was then converted to the publishing
software format by the XmlForm program. This program also handles—by use of
another program, GetMark—full and partial code insertions from the source direc-
tory. XmlForm is discussed in Recipe 21.7.

Let’s go over the organization of this book. I start off Chapter 1, Getting Started:
Compiling, Running, and Debugging, by describing some methods of compiling your
program on different platforms, running them in different environments (browser,
command line, windowed desktop), and debugging. Chapter 2, Interacting with the
Environment, moves from compiling and running your program to getting it to adapt
to the surrounding countryside—the other programs that live in your computer.

The next few chapters deal with basic APIs. Chapter 3, Strings and Things, concen-
trates on one of the most basic but powerful data types in Java, showing you how to
assemble, dissect, compare, and rearrange what you might otherwise think of as
ordinary text.

Chapter 4, Pattern Matching with Regular Expressions, teaches you how to use the
powerful regular expressions technology from Unix in many string-matching and
pattern-matching problem domains. JDK 1.4 was the first release to include this
powerful technology; I also mention several third-party regular expression packages.

Chapter 5, Numbers, deals both with built-in types such as int and double, as well as
the corresponding API classes (Integer, Double, etc.) and the conversion and testing
facilities they offer. There is also brief mention of the “big number” classes. Since
Java programmers often need to deal in dates and times, both locally and interna-
tionally, Chapter 6, Dates and Times, covers this important topic.

The next two chapters cover data processing. As in most languages, arrays in Java
are linear, indexed collections of similar-kind objects, as discussed in Chapter 7,
Structuring Data with Java. This chapter goes on to deal with the many “Collec-
tions” classes: powerful ways of storing quantities of objects in the java.util package.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

A new chapter was added in this section of the second edition. JDK 1.5 introduced a
new dimension to the notion of data structuring, by adapting the C++ notion of tem-
plates to the Java Collections; the result known as Generics is the main subject of
Chapter 8, Data Structuring with Generics, foreach, and Enumerations (JDK 1.5).

Despite some syntactic resemblance to procedural languages such as C, Java is at
heart an object-oriented programming language. Chapter 9, Object-Oriented Tech-
niques, discusses some of the key notions of OOP as it applies to Java, including the
commonly overridden methods of java.lang.Object and the important issue of
Design Patterns.

The next few chapters deal with aspects of traditional input and output. Chapter 10,
Input and Output, details the rules for reading and writing files. (Don’t skip this if
you think files are boring, as you’ll need some of this information in later chapters:
you’ll read and write on serial or parallel ports in Chapter 12 and on a socket-based
network connection in Chapter 16!) Chapter 11, Directory and Filesystem Opera-
tions, shows you everything else about files—such as finding their size and last-modi-
fied time—and about reading and modifying directories, creating temporary files,
and renaming files on disk. Chapter 12, Programming External Devices: Serial and
Parallel Ports, shows how you can use the javax.comm API to read/write on serial and
parallel ports using a standard Java API.

Chapter 13, Graphics and Sound, leads us into the GUI development side of things.
This chapter is a mix of the lower-level details, such as drawing graphics and setting
fonts and colors, and very high-level activities, such as controlling a video clip or
movie. In Chapter 14, Graphical User Interfaces, I cover the higher-level aspects of a
GUI, such as buttons, labels, menus, and the like—the GUI’s predefined compo-
nents. Once you have a GUI (really, before you actually write it), you’ll want to read
Chapter 15, Internationalization and Localization, so your programs can work as well
in Akbar, Afghanistan, Algiers, Amsterdam, or Angleterre as they do in Alberta,
Arkansas, or Alabama....

Since Java was originally promulgated as “the programming language for the Inter-
net,” it’s only fair that we spend some of our time on networking in Java.
Chapter 16, Network Clients, covers the basics of network programming from the cli-
ent side, focusing on sockets. We’ll then move to the server side in Chapter 17,
Server-Side Java: Sockets. In Chapter 18, Network Clients II: Applets and Web Cli-
ents, you’ll learn more client-side techniques. Programs on the Net often need to gen-
erate electronic mail, so this section ends with Chapter 19, Java and Electronic Mail.

Chapter 20, Database Access, covers the essentials of the Java Database Connectivity
(JDBC) and Java Data Objects (JDO) packages, showing how you can connect to
local or remote relational databases, store and retrieve data, and find out informa-
tion about query results or about the database.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Another form of storing and exchanging data is XML. Chapter 21, XML, discusses
XML’s formats and some operations you can apply using SAX and DOM, two stan-
dard Java APIs.

Chapter 22, Distributed Java: RMI, takes the distributed notion one step further and
discusses Remote Method Invocation, Java’s standard remote procedure call mecha-
nism. RMI lets you build clients, servers, and even “callback” scenarios, using a stan-
dard Java mechanism—the Interface—to describe the contract between client and
server.

Chapter 23, Packages and Packaging, shows how to create packages of classes that
work together. This chapter also talks about “deploying” or distributing and install-
ing your software.

Chapter 24, Threaded Java, tells you how to write classes that appear to do more than
one thing at a time and let you take advantage of powerful multiprocessor hardware.

Chapter 25, Introspection, or “A Class Named Class”, lets you in on such secrets as
how to write API cross-reference documents mechanically (“become a famous Java
book author in your spare time!”) and how web browsers are able to load any old
applet—never having seen that particular class before—and run it.

Sometimes you already have code written and working in another language that can
do part of your work for you, or you want to use Java as part of a larger package.
Chapter 26, Using Java with Other Languages, shows you how to run an external
program (compiled or script) and also interact directly with “native code” in C/C++
or other languages.

There isn’t room in an 800-page book for everything I’d like to tell you about Java.
The Afterword presents some closing thoughts and a link to my online summary of
Java APIs that every Java developer should know about.

No two programmers or writers will agree on the best order for presenting all the
Java topics. To help you find your way around, I’ve included extensive cross-refer-
ences, mostly by recipe number.

Platform Notes
Java has gone through five major versions. The first official release was JDK 1.0, and
its last bug-fixed version was 1.0.2. The second major release is Java JDK 1.1, and the
latest bug-fixed version is 1.1.9, though it may be up from that by the time you read
this book. The third major release, in December 1998, was to be known as JDK 1.2,
but somebody at Sun abruptly renamed JDK 1.2 at the time of its release to Java 2,
and the implementation is known as Java 2 SDK 1.2. The current version as of the
writing of the first edition of this book was Java 2 SDK 1.3 (JDK 1.3), which was
released in 2000.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

As the first edition of this book went to press, Java 2 Version 1.4 was about to
appear; it entered beta (which Sun calls “early access”) around the time of the book’s
completion so I could mention it only briefly. The second edition of this book looks
to have better timing; Java 2 Version 1.5 is in beta as I am updating the book.

This book is aimed at the fifth version, Java 2 Standard Edition, Version 1.5. By the
time of publication, I expect that all Java projects in development will be using JDK
1.4, with a very few wedded to earlier versions for historical reasons. I have used sev-
eral platforms to test this code for portability. I’ve tested with Sun’s Linux JDK. For
the mass market, I’ve tested many of the programs on Sun’s Win32 (Windows 2000/
XP/2003) implementation. And, “for the rest of us,” I’ve done most of my recent
development using Apple’s Mac OS X Version 10.2.x and later. However, since Java
is portable, I anticipate that the vast majority of the examples will work on any Java-
enabled platform, except where extra APIs are required. Not every example has been
tested on every platform, but all have been tested on at least one—and most on more
than one.

The Java API consists of two parts: core APIs and noncore APIs. The core is, by defini-
tion, what’s included in the JDK that you download for free from http://java.sun.com/.
Noncore is everything else. But even this “core” is far from tiny: it weighs in at
around 50 packages and well over 2,000 public classes, averaging around 12 public
methods each. Programs that stick to this core API are reasonably assured of porta-
bility to any Java platform.

The noncore APIs are further divided into standard extensions and nonstandard
extensions. All standard extensions have package names beginning with javax.* (and
reference implementations are available from Sun). A Java licensee (such as Apple or
IBM) is not required to implement every standard extension, but if it does, the inter-
face of the standard extension should be adhered to. This book calls your attention
to any code that depends on a standard extension. Little code here depends on non-
standard extensions, other than code listed in the book itself. My own package, com.
darwinsys, contains some utility classes used here and there; you will see an import
for this at the top of any file that uses classes from it.

In addition, two other platforms, the J2ME and the J2EE, are standardized. Java 2
Micro Edition is concerned with small devices such as handhelds (PalmOS and oth-
ers), cell phones, fax machines, and the like. Within J2ME are various “profiles” for
different classes of devices. At the high end, the Java 2 Enterprise Edition (J2EE) is
concerned with building large, scalable, distributed applications. Servlets, JavaServer
Pages, JavaServer Faces, CORBA, RMI, JavaMail, Enterprise JavaBeans™ (EJBs),
Transactions, and other APIs are part of the J2EE. J2ME and J2EE packages nor-
mally begin with “javax” as they are not core J2SE packages. This book does not

* Note that not all packages named javax. are extensions: javax.swing and its subpackages—the Swing GUI
packages—used to be extensions, but are now core.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

cover J2ME at all but includes a few of the J2EE APIs that are also useful on the cli-
ent side, such as RMI and JavaMail. As mentioned earlier, coverage of Servlets and
JSPs from the first edition of this book has been removed as there is now a Servlet
and JSP Cookbook.

Other Books
A lot of useful information is packed into this book. However, due to the breadth of
topics, it is not possible to give book-length treatment to any one topic. Because of
this, the book also contains references to many web sites and other books. This is in
keeping with my target audience: the person who wants to learn more about Java.

O’Reilly publishes, in my opinion, the best selection of Java books on the market. As
the API continues to expand, so does the coverage. You can find the latest versions
and ordering information on O’Reilly’s Java books online at http://java.oreilly.com,
and you can buy them at most bookstores, both physical and virtual. You can also
read them online through a paid subscription service; see http://safari.oreilly.com.
While many are mentioned at appropriate spots in the book, a few deserve special
mention here.

First and foremost, David Flanagan’s Java in a Nutshell offers a brief overview of the
language and API and a detailed reference to the most essential packages. This is
handy to keep beside your computer. Head First Java offers a much more whimsical
introduction to the language and is recommended for the less experienced developer.

A definitive (and monumental) description of programming the Swing GUI is Java
Swing by Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian Cole.

Java Virtual Machine, by Jon Meyer and Troy Downing, will intrigue the person who
wants to know more about what’s under the hood. This book is out of print but can
be found used and in libraries.

Java Network Programming and Java I/O, both by Elliotte Rusty Harold, and Data-
base Programming with JDBC and Java, by George Reese, are also useful references.

There are many more; see the O’Reilly web site for an up-to-date list.

Other Java Books
You should not consider releasing a GUI application unless you have read Sun’s offi-
cial Java Look and Feel Design Guidelines (Addison Wesley). This work presents the
views of a large group of human factors and user-interface experts at Sun who have
worked with the Swing GUI package since its inception; they tell you how to make it
work well.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

General Programming Books
Donald E. Knuth’s The Art of Computer Programming has been a source of inspira-
tion to generations of computing students since its first publication by Addison Wes-
ley in 1968. Volume 1 covers Fundamental Algorithms, Volume 2 is Seminumerical
Algorithms, and Volume 3 is Sorting and Searching. The remaining four volumes in
the projected series are still not completed. Although his examples are far from Java
(he invented a hypothetical assembly language for his examples), many of his discus-
sions of algorithms—of how computers ought to be used to solve real problems—are
as relevant today as they were years ago.*

Though somewhat dated now, the book The Elements of Programming Style, by Ker-
nighan and Plauger, set the style (literally) for a generation of programmers with
examples from various structured programming languages. Kernighan and Plauger
also wrote a pair of books, Software Tools and Software Tools in Pascal, which dem-
onstrated so much good advice on programming that I used to advise all program-
mers to read them. However, these three books are dated now; many times I wanted
to write a follow-on book in a more modern language, but instead defer to The Prac-
tice of Programming, Brian’s follow-on—co-written with Rob Pike—to the Software
Tools series. This book continues the Bell Labs (now part of Lucent) tradition of
excellence in software textbooks. In Recipe 3.13, I have even adapted one bit of code
from their book.

See also The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison
Wesley).

Design Books
Peter Coad’s Java Design (PTR-PH/Yourdon Press) discusses the issues of object-
oriented analysis and design specifically for Java. Coad is somewhat critical of Java’s
implementation of the observable-observer paradigm and offers his own replace-
ment for it.

One of the most famous books on object-oriented design in recent years is Design
Patterns, by Gamma, Helm, Johnson, and Vlissides (Addison Wesley). These authors
are often collectively called “the gang of four,” resulting in their book sometimes
being referred to as “the GOF book.” One of my colleagues called it “the best book
on object-oriented design ever,” and I agree; at the very least it’s among the best.

Refactoring, by Martin Fowler, covers a lot of “coding cleanups” that can be applied
to code to improve readability and maintainability. Just as the GOF book intro-
duced new terminology that helps developers and others communicate about how

* With apologies for algorithm decisions that are less relevant today given the massive changes in computing
power now available.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxv

code is to be designed, Fowler’s book provided a vocabulary for discussing how it is
to be improved. Many of the “refactorings” now appear in the Refactoring Menu of
the Eclipse IDE (see Recipe 1.3).

Two important streams of methodology theories are currently in circulation. The
first is collectively known as Agile Methods, and its best-known member is Extreme
Programming. XP (the methodology, not last year’s flavor of Microsoft’s OS) is pre-
sented in a series of small, short, readable texts led by its designer, Kent Beck. A
good overview of all the Agile methods is Highsmith’s Agile Software Development
Ecosystems. The first book in the XP series is Extreme Programming Explained.

Another group of important books on methodology, covering the more traditional
object-oriented design, is the UML series led by “the Three Amigos” (Booch, Jacob-
son, and Rumbaugh). Their major works are the UML User Guide, UML Process,
and others. A smaller and more approachable book in the same series is Martin
Fowler’s UML Distilled.

Conventions Used in This Book
This book uses the following conventions.

Programming Conventions
I use the following terminology in this book. A program means either an applet, a
servlet, or an application. An applet is for use in a browser. A servlet is similar to an
applet but for use in a server. An application is any other type of program. A desktop
application (a.k.a. client) interacts with the user. A server program deals with a cli-
ent indirectly, usually via a network connection.

The examples shown are in two varieties. Those that begin with zero or more import
statements, a Javadoc comment, and a public class statement are complete exam-
ples. Those that begin with a declaration or executable statement, of course, are
excerpts. However, the full versions of these excerpts have been compiled and run,
and the online source includes the full versions.

Recipes are numbered by chapter and number, so, for example, Recipe 7.5 refers to
the fifth recipe in Chapter 7.

Typesetting Conventions
The following typographic conventions are used in this book:

Italic
Used for commands, filenames, and URLs. It is also used to define new terms
when they first appear in the text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxvi | Preface

Constant width
Used in code examples to show partial or complete Java source code program
listings. It is also used for class names, method names, variable names, and other
fragments of Java code.

Constant width bold
Used for user input, such as commands that you type on the command line.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Many programs are accompanied by an example showing them in action, run from
the command line. These will usually show a prompt ending in either $ for Unix or
> for Windows, depending on which computer I was using that day. Text before this
prompt character can be ignored; it will be a pathname or a hostname, again depend-
ing on the system.

Comments and Questions
As mentioned earlier, I’ve tested all the code on at least one of the reference plat-
forms, and most on several. Still, there may be platform dependencies, or even bugs,
in my code or in some important Java implementation. Please report any errors you
find, as well as your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

An O’Reilly web site for the book lists errata, examples, and any additional informa-
tion. You can access this page at:

http://www.oreilly.com/catalog/javacook2/

I also have a personal web site for the book:

http://javacook.darwinsys.com/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxvii

Both sites list errata and plans for future editions. You’ll also find the source code for
all the Java code examples to download; please don’t waste your time typing them
again! For specific instructions, see the next section.

Getting the Source Code
From my web site http://javacook.darwinsys.com, just follow the Downloads link.
You are presented with three choices:

1. Download the entire source archive as a single large zip file.

2. Download individual source files, indexed alphabetically as well as by chapter.

3. Download the binary JAR file for the com.darwinsys.* package needed to com-
pile many of the other programs.

Most people will choose either option 1 or 2, but anyone who wants to compile my
code will need option 3. See Recipe 1.5 for information on using these files.

Downloading the entire source archive yields a large zip file with all the files from the
book (and more). This archive can be unpacked with jar (see Recipe 23.4), the free
zip program from Info-ZIP, the commercial WinZip or PKZIP, or any compatible
tool. The files are organized into subdirectories by topic, with one for strings
(Chapter 3), regular expressions (Chapter 4), numbers (Chapter 5), and so on. The
archive also contains the index by name and index by chapter files from the down-
load site, so you can easily find the files you need.

Downloading individual files is easy, too: simply follow the links either by file/sub-
directory name or by chapter. Once you see the file you want in your browser, use
File ➝ Save or the equivalent, or just copy and paste it from the browser into an edi-
tor or IDE.

The files are updated periodically, so if there are differences between what’s printed
in the book and what you get, be glad, for you’ll have received the benefit of hind-
sight.

Acknowledgments
My life has been touched many times by the flow of the fates bringing me into con-
tact with the right person to show me the right thing at the right time. Steve Munroe,
with whom I’ve long since lost touch, introduced me to computers—in particular an
IBM 360/30 at the Toronto Board of Education that was bigger than a living room,
had 32 or 64K of memory, and had perhaps the power of a PC/XT—in 1970. Herb
Kugel took me under his wing at the University of Toronto while I was learning
about the larger IBM mainframes that came later. Terry Wood and Dennis Smith at
the University of Toronto introduced me to mini- and micro-computers before there

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxviii | Preface

was an IBM PC. On evenings and weekends, the Toronto Business Club of Toast-
masters International (http://www.toastmasters.org) and Al Lambert’s Canada
SCUBA School allowed me to develop my public speaking and instructional abili-
ties. Several people at the University of Toronto, but especially Geoffrey Collyer,
taught me the features and benefits of the Unix operating system at a time when I
was ready to learn it.

Greg Davidson of UCSD taught the first Learning Tree course I attended and wel-
comed me as a Learning Tree instructor. Years later, when the Oak language was
about to be released on Sun’s web site, Greg encouraged me to write to James Gos-
ling and find out about it. James’s reply of March 29th, 1995, that the lawyers had
made them rename the language to Java and that it was “just now” available for
download, is the prized first entry in my saved Java mailbox. Mike Rozek took me on
as a Learning Tree course author for a Unix course and two Java courses. After
Mike’s departure from the company, Francesco Zamboni, Julane Marx, and Jennifer
Urick in turn provided product management of these courses. Jennifer also arranged
permission for me to “reuse some code” in this book that had previously been used
in my Java course notes. Finally, thanks to the many Learning Tree instructors and
students who showed me ways of improving my presentations. I still teach for “The
Tree” and recommend their courses for the busy developer who wants to zero in on
one topic in detail over four days. Their web site is http://www.learningtree.com.

Closer to this project, Tim O’Reilly believed in “the little Lint book” when it was just
a sample chapter, enabling my early entry into the circle of O’Reilly authors. Years
later, Mike Loukides encouraged me to keep trying to find a Java book idea that both
he and I could work with. And he stuck by me when I kept falling behind the dead-
lines. Mike also read the entire manuscript and made many sensible comments, some
of which brought flights of fancy down to earth. Jessamyn Read turned many faxed
and emailed scratchings of dubious legibility into the quality illustrations you see in
this book. And many, many other talented people at O’Reilly helped put this book
into the form in which you now see it.

I also must thank my first-rate reviewers for the first edition, first and foremost my
dear wife Betty Cerar, who still knows more about the caffeinated beverage that I
drink while programming than the programming language I use, but whose passion
for clear expression and correct grammar has benefited so much of my writing dur-
ing our life together. Jonathan Knudsen, Andy Oram, and David Flanagan com-
mented on the outline when it was little more than a list of chapters and recipes, and
yet were able to see the kind of book it could become, and to suggest ways to make it
better. Learning Tree instructor Jim Burgess read most of the first edition with a very
critical eye on locution, formulation, and code. Bil Lewis and Mike Slinn
(mslinn@mslinn.com) made helpful comments on multiple drafts of the book. Ron
Hitchens (ron@ronsoft.com) and Marc Loy carefully read the entire final draft of the
first edition. I am grateful to Mike Loukides for his encouragement and support
throughout the process. Editor Sue Miller helped shepherd the manuscript through

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxix

the somewhat energetic final phases of production. Sarah Slocombe read the XML
chapter in its entirety and made many lucid suggestions; unfortunately time did not
permit me to include all of them in the first edition. Each of these people made this
book better in many ways, particularly by suggesting additional recipes or revising
existing ones. The faults that remain are my own.

I used a variety of tools and operating systems in preparing, compiling, and testing
the first edition. The developers of OpenBSD (http://www.openbsd.org), “the proac-
tively secure Unix-like system,” deserve thanks for making a stable and secure Unix
clone that is also closer to traditional Unix than other freeware systems. I used the vi
editor (vi on OpenBSD and vim on Windows) while inputting the original manu-
script in XML, and Adobe FrameMaker to format the documents. Each of these is an
excellent tool in its own way, but I must add a caveat about FrameMaker. Adobe had
four years from the release of OS X until I started this book revision cycle during
which they could have produced a current Macintosh version of FrameMaker. They
did not do so, requiring me to do the revision in the increasingly ancient Classic envi-
ronment. Strangely enough, their Mac sales of FrameMaker dropped steadily during
this period, until, during the final production of this book, Adobe officially
announced that it would no longer be producing any Macintosh versions of this
excellent publishing software, ever.

No book on Java would be complete without a quadrium* of thanks to James Gos-
ling for inventing the first Unix Emacs, the sc spreadsheet, the NeWS window sys-
tem, and Java. Thanks also to his employer Sun Microsystems (NASDAQ SUNW)
for creating not only the Java language but an incredible array of Java tools and API
libraries freely available over the Internet.

Thanks to Tom and Nathan for the Perl Cookbook. Without them I might never have
come up with the format for this book.

Willi Powell of Apple Canada provided Mac OS X access in the early days of OS X; I
currently have an Apple notebook of my own. Thanks also to Apple for basing OS X
on BSD Unix, making Apple the world’s largest-volume commercial Unix company.

Thanks to the Tim Horton’s Donuts in Bolton, Ontario for great coffee and for not
enforcing the 20-minute table limit on the geek with the computer.

To each and every one of you, my sincere thanks.

* It’s a good thing he only invented four major technologies, not five, or I’d have to rephrase that to avoid
infringing on an Intel trademark.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Getting Started: Compiling,
Running, and Debugging

1.0 Introduction
This chapter covers some entry-level tasks that you need to know how to do before
you can go on—it is said you must crawl before you can walk, and walk before you
can ride a bicycle. Before you can try out anything in this book, you need to be able
to compile and run your Java code, so I start there, showing several ways: the JDK
way, the Ant way, and the Integrated Development Environment (IDE) way. Another
issue people run into is setting CLASSPATH correctly, so that’s dealt with next.
Then I’ll discuss a few details about applets, in case you are working on them. Dep-
recation warnings come next, as you’re likely to meet them in maintaining “old” Java
code.* The chapter ends with some general information about conditional compila-
tion, unit testing, assertions, and debugging.

If you’re already happy with your IDE, you may wish to skip some or all of this mate-
rial. It’s here to ensure that everybody can compile and debug their programs before
we move on.

1.1 Compiling and Running Java: JDK

Problem
You need to compile and run your Java program.

Solution
This is one of the few areas where your computer’s operating system impinges on
Java’s portability, so let’s get it out of the way first.

* There is humor in the phrase “old Java code,” which should be apparent when you realize that Java had been
in circulation for under five years at the time of this book’s first edition.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Getting Started: Compiling, Running, and Debugging

JDK

Using the command-line Java Development Kit (JDK) may be the best way to keep
up with the very latest improvements from Sun. This is not the fastest compiler avail-
able by any means; the compiler is written in Java and interpreted at compile time,
making it a sensible bootstrapping solution, but not necessarily optimal for speed of
development. Nonetheless, using Sun’s JDK, the commands are javac to compile
and java to run your program (and, on Windows only, javaw to run a program with-
out a console window). For example:

C:\javasrc>javac HelloWorld.java

C:\javasrc>java HelloWorld
Hello, World

C:\javasrc>

As you can see from the compiler’s (lack of) output, this compiler works on the Unix
“no news is good news” philosophy: if a program was able to do what you asked it
to, it shouldn’t bother nattering at you to say that it did so. Many people use this
compiler or one of its clones.

There is an optional setting called CLASSPATH, discussed in Recipe 1.4, that con-
trols where Java looks for classes. CLASSPATH, if set, is used by both javac and
java. In older versions of Java you had to set your CLASSPATH to include “.”, even
to run a simple program from the current directory; this is no longer true on Sun’s
current Java implementations. It may be true on some of the clones.

Command-line alternatives

Sun’s javac compiler is the official reference implementation. But it is itself written in
Java, and hence must be interpreted at runtime. Some other Java compilers are writ-
ten in C/C++, so they are quite a bit faster than an interpreted Java compiler. In
order to speed up my compilations, I have used Jikes, which is fast (C++), free, and
available both for Windows and for Unix. It’s also easy to install and is included with
the Mac OS X Developer Tools package. For Windows, Linux, and other Unix sys-
tems, you can find binaries of the current version on IBM’s Jikes web site. If you are
using OpenBSD, NetBSD, or FreeBSD, you should only need to run something like:

cd /usr/ports/lang/jikes; sudo make install

or just download the package file and use pkg_add to get it installed. Visit http://oss.
software.ibm.com/developerworks/projects/jikes/ for Jikes information and downloads.

What I really like about Jikes is that it gives much better error messages than the JDK
compiler does. It alerts you to slightly misspelled names, for example. Its messages
are often a bit verbose, but you can use the +E option to make it print them in a
shorter format. Jikes has many other command-line options, many that are the same
as the JDK compiler’s, but some that go beyond them. See Jikes’s online documenta-
tion for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Editing and Compiling with a Color-Highlighting Editor | 3

Another alternative technology is Kaffe, a product that Transvirtual licenses but also
makes available in open source form (at http://www.kaffe.org/) under the GNU Pub-
lic License. Kaffe aims to be a complete JDK replacement, though it has moved
rather slowly and is not quite a complete, up-to-date Java 2 clone as of this writing.
Again, Kaffe is available for BSD Unix and for Linux in RPM format. Visit the Kaffe
web site for the latest information on Kaffe.

Other freeware programs include Japhar, a Java runtime clone, available from http://
www.hungry.com/old-hungry/products/japhar/, and the IBM Jikes Runtime from the
same site as Jikes.

If you really want to get away from the mainstream, consider investigating JNODE,
the Java New Operating system Development Idea, at http://www.jnode.org/. JNODE
is a complete operating system written in Java, a kind of proof of concept. At this
point JNODE is probably not something you would use for your main desktop—I’ve
booted it only under Virtual PC on Mac OS X—but it could become that someday.

Mac OS X

The JDK is pure command-line. At the other end of the spectrum in terms of key-
board-versus-visual, we have the Apple Macintosh. Books have been written about
how great the Mac user interface is, and I won’t step into that debate. Mac OS X
(Release 10.x of Mac OS) is a new technology base built upon a BSD Unix base. As
such, it has a regular command line (the Terminal application, hidden away under
/Applications/Utilities), as well as all the traditional Mac tools. It features a full Java
implementation, including two GUI packages, Sun’s Swing and Apple’s own Cocoa.
JDK 1.4.2 has been released for Mac OS 10.3 as of this writing; the latest version is
always available from Software Update.

Mac OS X users can use the command-line JDK tools as above or Ant (see Recipe 1.7).
Compiled classes can be packaged into “clickable applications” using the Jar Pack-
ager discussed in Recipe 23.7. Alternately, Mac fans can use one of the many full IDE
tools discussed in Recipe 1.3.

1.2 Editing and Compiling with a
Color-Highlighting Editor

Problem
You are tired of command-line tools but not ready for an IDE.

Solution
Use a color-highlighting editor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Getting Started: Compiling, Running, and Debugging

Discussion
It’s less than an IDE (see the next recipe), but more than a command line. What is it?
It’s an editor with Java support. Tools such as TextPad (http://www.textpad.com),
Visual Slick Edit, and others are low-cost windowed editors (primarily for Win-
dows) that have some amount of Java recognition built-in and the ability to compile
from within the editor. TextPad recognizes quite a number of file types, including
batch files and shell scripts, C, C++, Java, JSP, JavaScript, and many others. For each
of these, it uses color highlighting to show which part of the file being edited com-
prises keywords, comments, quoted strings, and so on. This is very useful in spot-
ting when part of your code has been swallowed up by an unterminated /* comment
or a missing quote. While this isn’t the same as the deep understanding of Java that a
full IDE might possess, experience has shown that it definitely aids programmer pro-
ductivity. TextPad also has a “compile Java” command and a “run external pro-
gram” command. Both of these have the advantage of capturing the entire command
output into a window, which may be easier to scroll than a command-line window
on some platforms. On the other hand, you don’t see the command results until the
program terminates, which can be most uncomfortable if your GUI application
throws an exception before it puts up its main window. Despite this minor draw-
back, TextPad is a very useful tool. Other editors that include color highlighting
include vim (an enhanced version of the Unix tool vi, available for Windows and
Unix platforms from http://www.vim.org), the ever-popular Emacs editor, and many
others.

And speaking of Emacs, since it is so extensible, it’s natural that people have built
enhanced Java capabilities for it. One example is JDEE (Java Development Environ-
ment for Emacs), an Emacs “major mode” (jde-mode, based on c-mode) with a set of
menu items such as Generate Getters/Setters. You could say that JDEE is in between
using a Color-Highlighting Editor and an IDE. The URL for JDEE is http://jdee.
sunsite.dk/.

Even without JDEE, Emacs features dabbrev-expand, which does class and method
name completion. It is, however, based on what’s in your current edit buffers, so it
doesn’t know about classes in the standard API or in external Jars. For that level of
functionality, you have to turn to a full-blown IDE, such as those discussed in Recipe
1.3.

1.3 Compiling, Running, and Testing
with an IDE

Problem
Several tools are too many.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compiling, Running, and Testing with an IDE | 5

Solution
Use an integrated development environment.

Discussion
Many programmers find that using a handful of separate tools—a text editor, a com-
piler, and a runner program, not to mention a debugger (see Recipe 1.13)—is too
many. An integrated development environment (IDE*) incorporates all of these into a
single toolset with a (hopefully consistent) graphical user interface. Many IDEs are
available, ranging all the way up to fully integrated tools with their own compilers
and virtual machines. Class browsers and other features of IDEs round out the pur-
ported ease-of-use feature-sets of these tools. It has been argued many times whether
an IDE really makes you more productive or if you just have more fun doing the
same thing. However, even the JDK maintainers at Sun admit (perhaps for the bene-
fit of their advertisers) that an IDE is often more productive, although it hides many
implementation details and tends to generate code that locks you into a particular
IDE. Sun’s Java Jumpstart CD (part of Developer Essentials) said, at one time:

The JDK software comes with a minimal set of tools. Serious developers are advised to
use a professional Integrated Development Environment with JDK 1.2 software. Click
on one of the images below to visit external sites and learn more.

This is followed by some (presumably paid) advertising links to various commercial
development suites. I do find that IDEs with “incremental compiling” features—
which note and report compilation errors as you type, instead of waiting until you
are finished typing—do provide somewhat increased productivity for most program-
mers. Beyond that, I don’t plan to debate the IDE versus the command-line process; I
use both modes at different times and on different projects. I’m just going to show a
few examples of using a couple of the Java-based IDEs.

One IDE that runs on both Windows and Unix platforms is NetBeans, which is a
free download. Originally created by NetBeans.com, this IDE was so good that Sun
bought the company and now distributes the IDE in two versions that share a lot of
code: NetBeans (formerly called Forte, distributed as open source), and Sun One
Studio (commercial, not open sourced). There is a plug-in API; some .nbm files will
work either on the free or the Studio version while others work only on one or the
other. You can download the free version and extension modules from http://www.
netbeans.org; the commercial version can be had from http://www.sun.com/.

NetBeans comes with a variety of templates. In Figure 1-1, I have opted for the Swing
JFrame template.

* It takes too long to say, or type, Integrated Development Environment, so I’ll use the term IDE from here on.
I know you’re good at remembering acronyms, especially TLAs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Getting Started: Compiling, Running, and Debugging

In Figure 1-2, NetBeans lets me specify a class name and package name for the new
program I am building.

Figure 1-1. NetBeans: New From Template dialog

Figure 1-2. NetBeans: Name that class

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compiling, Running, and Testing with an IDE | 7

In Figure 1-3, I am building the GUI using NetBeans’ GUI builder. Select a visual
component in the upper right, and click on the form where you want it. While there
are several things about NetBeans that most people find quirky, I do like the fact that
it defaults to using a BorderLayout; some other IDEs default to using no layout at all,
and the resulting GUIs do not resize gracefully.

I also like the way NetBeans handles GUI action handlers (see Recipe 14.4). You sim-
ply double-click on the GUI control you want to handle actions for, and NetBeans
creates an action handler for it and puts you into the editor to type the code for the
action handler. In this case, I made a deliberate typing error to show the effects;
when I click the Build Project menu item, the offending line of code is highlighted in
bright red, both in the source code and in the error listing from the compiler (see
Figure 1-4).

Another popular cross-platform, open source IDE for Java is Eclipse, originally from
IBM. Just as NetBeans is the basis of Sun Studio, so Eclipse is the basis of IBM’s
WebSphere Studio Application Developer.* Eclipse tends to have more options than
NetBeans; see for example, its New Java Class wizard shown in Figure 1-5. It also
features a number of refactoring capabilities, shown in Figure 1-6.

Figure 1-3. NetBeans: GUI building

* WebSphere Studio Application Developer describes itself, in its online help, as “IBM’s implementation of
Eclipse” and gives a link to http://www.eclipse.org/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Getting Started: Compiling, Running, and Debugging

Of these two major open source IDEs, many people like NetBeans and many like
Eclipse. Many other IDEs are available for Java, especially on Windows, and almost
everybody who uses one has a favorite, such as Borland JBuilder, WebGain Visual
Cafe, Sun Studio, or IBM WebSphere Studio Application Developer. Most of them
have a free version and/or a trial version as well as a Pro version. For up-to-date com-
parisons, you may want to consult the glossy magazines, since IDEs are updated rela-
tively often.

Mac OS X includes Apple’s Developer Tools. The main IDE is Xcode in 10.3 (shown
in Figure 1-7). Unlike most IDEs, Apple’s IDE does not include a GUI builder; a sep-
arate program, called Interface Builder, handles this task. Both tools can be used
with a variety of programming languages, including C/C++, Objective C, and Java.
While the Interface Builder is one of the nicer GUI builder tools around, at present it
builds only Cocoa applications, not Swing applications. Figure 1-8 shows Xcode run-
ning a trivial application built using its default frame-based template.

How do you choose an IDE? Given that all the major IDEs can be downloaded free
(Eclipse, NetBeans), “free” but without source, or at least in free trial versions, you
should try a few and see which one best fits the kind of development you do. Regard-
less of what platform you use to develop Java, if you have a Java runtime, you should
have plenty of IDEs from which to choose.

Figure 1-4. NetBeans: Compilation error highlighted

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compiling, Running, and Testing with an IDE | 9

See Also
For NetBeans, see NetBeans: The Definitive Guide by Tim Boudreau, Jesse Glick,
Simeon Greene, Vaughn Spurlin, and Jack J. Woehret (O’Reilly). For Eclipse, see
Eclipse Cookbook by Steve Holzner (O’Reilly) or The Java Developer’s Guide to
Eclipse by Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Keller-
man, and Pat McCarthy (Addison Wesley). Both IDEs are extensible; if you’re inter-
ested in extending Eclipse, the book Contributing to Eclipse: Principles, Patterns, and
Plugins (Addison Wesley) was written by noted OO theorists Erich Gamma (lead
author of Design Patterns) and Kent Beck (author of Extreme Programming
Explained).

Figure 1-5. Eclipse: New Java Class

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Getting Started: Compiling, Running, and Debugging

Figure 1-6. Eclipse: Refactoring

Figure 1-7. Xcode (Mac OS X): Main windows

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using CLASSPATH Effectively | 11

1.4 Using CLASSPATH Effectively

Problem
You need to keep your class files in a common directory, or you’re wrestling with
CLASSPATH.

Solution
Set CLASSPATH to the list of directories and/or JAR files that contain the classes
you want.

Discussion
CLASSPATH is one of the more “interesting” aspects of using Java. You can store
your class files in any of a number of directories, JAR files, or zip files. Just like the
PATH your system uses for finding programs, the CLASSPATH is used by the Java
runtime to find classes. Even when you type something as simple as java Hello-
World, the Java interpreter looks in each of the places named in your CLASSPATH
until it finds a match. Let’s work through an example.

Figure 1-8. Xcode IDE (Mac OS X): Application built and running

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Getting Started: Compiling, Running, and Debugging

The CLASSPATH can be set as an environment variable on systems that support this
(Unix, including Mac OS X, and Windows). You set it the same way you set other
environment variables, such as your PATH environment variable.

Alternatively, you can specify the CLASSPATH for a given command on its com-
mand line:

java -classpath \c:\ian\classes MyProg

Suppose your CLASSPATH were set to C:\classes;. on Windows or ~/classes:. on
Unix (on the Mac, you can set the CLASSPATH with JBindery). Suppose you had
just compiled a file named HelloWorld.java into HelloWorld.class and tried to run it.
On Unix, if you run one of the kernel tracing tools (trace, strace, truss, ktrace), you
would probably see the Java program open (or stat, or access) the following files:

• Some file(s) in the JDK directory

• Then ~/classes/HelloWorld.class, which it probably wouldn’t find

• And ./HelloWorld.class, which it would find, open, and read into memory

The vague “some file(s) in the JDK directory” is release-dependent. On Sun’s JDK it
can be found in the system properties:

sun.boot.class.path = C:\JDK1.4\JRE\lib\rt.jar;C:\JDK1.4\JRE\lib\i18n.jar;C:\JDK1.4\
JRE\classes

The file rt.jar is the runtime stuff; i18n.jar is the internationalization; and classes is
an optional directory where you can install additional classes.

Suppose you had also installed the JAR file containing the supporting classes for pro-
grams from this book, darwinsys.jar. You might then set your CLASSPATH to C:\
classes;C:\classes\darwinsys.jar;. on Windows or ~/classes:~/classes/darwinsys.jar:. on
Unix. Notice that you do need to list the JAR file explicitly. Unlike a single class file,
placing a JAR file into a directory listed in your CLASSPATH does not suffice to
make it available.

Note that certain specialized programs (such as a web server running Java Servlets)
may not use either bootpath or CLASSPATH as shown; these application servers typi-
cally provide their own ClassLoader (see Recipe 25.4 for information on class loaders).

Another useful tool in the JDK is javap, which, by default, prints the external face of
a class file: its full name, its public methods and fields, and so on. If you ran a com-
mand like javap HelloWorld under kernel tracing, you would find that it opened,
looked around in, and read from a file \jdk\lib\tools.jar, and then got around to look-
ing for your HelloWorld class, as previously. Yet there is no entry for this in your
CLASSPATH setting. What’s happening here is that the javap command sets its
CLASSPATH internally to include the tools.jar file. If it can do this, why can’t you?
You can, but not as easily as you might expect. If you try the obvious first attempt at

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using CLASSPATH Effectively | 13

doing a setProperty("java.class.path") to itself, plus the delimiter, plus jdk/lib/
tools.jar, you won’t be able to find the JavaP class (sun.tools.java.JavaP); the
CLASSPATH is set in the java.class.path at the beginning of execution, before your
program starts. You can try it manually and see that it works if you set it beforehand:

C:\javasrc>java -classpath /jdk1.4/lib/tools.jar sun.tools.javap.JavaP
Usage: javap <options> <classes>...

If you need to do this in an application, you can either set it in a startup script, as we
did here, or write C code to start Java, which is described in Recipe 26.6.

How can you easily store class files in a directory in your CLASSPATH? The javac
command has a -d dir option, which specifies where the compiler output should go.
For example, using -d to put the HelloWorld class file into my /classes directory, I just
type:

javac -d /classes HelloWorld.java

As long as this directory remains in my CLASSPATH, I can access the class file
regardless of my current directory. That’s one of the key benefits of using CLASS-
PATH.

Managing CLASSPATH can be tricky, particularly when you alternate among sev-
eral JVMs (as I do) or when you have multiple directories in which to look for JAR
files. You may want to use some sort of batch file or shell script to control this. Here
is part of the script that I use. It was written for the Korn shell on Unix, but similar
scripts could be written in the C shell or as a DOS batch file.

These guys must be present in my classpath...
export CLASSPATH=/home/ian/classes/darwinsys.jar:

Now a for loop, testing for .jar/.zip or [-d ...]
OPT_JARS="$HOME/classes $HOME/classes/*.jar
 ${JAVAHOME}/jre/lib/ext/*.jar
 /usr/local/antlr-2.6.0"

for thing in $OPT_JARS
do
 if [-f $thing]; then //must be either a file...
 CLASSPATH="$CLASSPATH:$thing"
 else if [-d $thing]; then //or a directory
 CLASSPATH="$CLASSPATH:$thing"
 fi
done
CLASSPATH="$CLASSPATH:."

This builds a minimum CLASSPATH out of darwinsys.jar, then goes through a list of
other files and directories to check that each is present on this system (I use this
script on several machines on a network), and ends up adding a dot (.) to the end of
the CLASSPATH.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Getting Started: Compiling, Running, and Debugging

1.5 Using the com.darwinsys API Classes
from This Book

Problem
You want to try out my example code and/or use my utility classes.

Solution
I have built up a fairly sizeable collection of reusable classes into my own API, which
I use in my own Java projects. I use example code from it throughout this book, and
I use classes from it in many of the other examples. So, if you’re going to be down-
loading and compiling the examples individually, you should first download the file
darwinsys.jar and include it in your CLASSPATH. Note that if you are going to build
all of my source code (as in Recipe 1.6), you can skip this download because the top-
level Ant file starts off by building the JAR file for this API.

Discussion
I have split the com.darwinsys.util package from the first edition of this book into
about a dozen com.darwinsys packages, listed in Table 1-1. I have also added many
new classes; these packages now include approximately 50 classes and interfaces.
You can peruse the documentation online at http://javacook.darwinsys.com/docs/api.

Many of these classes are used as examples in this book; just look for files whose first
line is:

package com.darwinsys.nnn;

You’ll also find that many examples have imports from the com.darwinsys packages.

Table 1-1. The com.darwinsys packages

Package name Package description

com.darwinsys.database Classes for dealing with databases in a general way

com.darwinsys.html Classes (only one so far) for dealing with HTML

com.darwinsys.io Classes for input and output operations, using Java’s underlying I/O classes

com.darwinsys.lang Classes for dealing with standard features of Java

com.darwinsys.macosui Classes for dealing with Swing GUIs slightly differently under Mac OS X

com.darwinsys.mail Classes for dealing with e-mail, mainly a convenience class for sending mail

com.darwinsys.sql Classes for dealing with SQL databases

com.darwinsys.swingui Classes for helping construct and use Swing GUIs

com.darwinsys.swingui.
layout

A few interesting LayoutManager implementations

com.darwinsys.util A few miscellaneous utility classes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compiling the Source Code Examples from This Book | 15

1.6 Compiling the Source Code Examples
from This Book

Problem
You want to try out my examples.

Solution
Download the latest archive of the book source files, unpack it, edit build.properties,
and run Ant (see Recipe 1.7) to compile the files.

Discussion
You can download the latest version of the source code for all the examples in this
book from the book’s web site, http://javacook.darwinsys.com/. You can get it all as
one large file containing all the source code, in a file called javacooksrc.jar, which
you should unzip into an empty directory someplace convenient, wherever you like
to keep source code. You should then edit the file build.properties, specifying the
locations of some jar files. Editing build.properties and then running ant in this direc-
tory first creates a file called darwinsys.jar* containing the com.darwinsys API
described in Recipe 1.5 (you will probably want to add this file to your CLASS-
PATH—see Recipe 1.4—or to your JDKHOME/jre/lib/ext directory). Ant goes on to
build as many of the other examples as it can given the settings in build.properties,
your Java runtime, and your operating system. The files are roughly organized in per-
chapter directories, but there is a lot of overlap and cross-referencing. Because of
this, I have prepared a cross-reference file named index-bychapter.html. A mechani-
cally generated file called index-byname.html can be used if you know the name of
the file you want (and remember that Java source files almost always have the same
name as the public class they contain). The canonical index file, index.html, links to
both these files.

If you have JDK 1.3 or 1.4 instead of 1.5, a few files will not compile, but the com-
piler prints a comment about needing 1.4 or 1.5. And the “native code” examples
may not compile at all. Most everything else should compile correctly.

If you’re not using Ant, well, you should! But if you can’t, or won’t, after you’ve set
your CLASSPATH, you should compile what you need. You will need the darwinsys.jar
file; you should probably just download it. In some directories you can simply say
javac *.java or jikes *.java. But in others, you have to set your CLASSPATH manu-
ally; if some files that you need won’t compile, you’ll have to look in the Ant file
build.xml to see what jar files are needed. I no longer provide Makefiles; Ant has sim-
ply become the dominant build tool for Java developers.

* If you have a file called com-darwinsys-util.jar, that file contains the old API described in the first edition and
will not work with the examples in this book.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Getting Started: Compiling, Running, and Debugging

There may also be times when you don’t want to download the entire archive—if
you just need a bit of code in a hurry—so you can access those index files and the
resulting directory, for “anyplace, anytime access” on the same web site, http://
javacook.darwinsys.com/

A caveat

One of the practices of Extreme Programming is Continuous Refactoring—the abil-
ity to improve any part of the code base at any time. Don’t be surprised if the code in
the online source directory is different from what appears in the book; it is a rare
week that I don’t make some improvement to the code, and the results are put online
quite often.

1.7 Automating Compilation with Ant

Problem
You get tired of typing javac and java commands.

Solution
Use the Ant program to direct your compilations.

Discussion
The intricacies of Makefiles have led to the development of a pure Java solution for
automating the build process. Ant is free software; it is available in source form or
ready-to-run from the Apache Foundation’s Jakarta Project web site, at http://
jakarta.apache.org/ant/. Like make, Ant uses a file or files—written in XML—listing
what to do and, if necessary, how to do it. These rules are intended to be platform-
independent, though you can of course write platform-specific recipes if necessary.

To use Ant, you must create a 15 to 30 line file specifying various options. This file
should be called build.xml; if you call it anything else, you’ll have to give a special
command-line argument every time you run Ant. Example 1-1 shows the build script
used to build the files in the starting directory. See Recipe 21.0 for a discussion of the
XML syntax. For now, note that the <!- - tag begins an XML comment, which
extends to the - -> tag.

Example 1-1. Ant example file (build.xml)

<project name="Java Cookbook Examples" default="compile" basedir=".">

 <!-- Set global properties for this build -->
 <property name="src" value="."/>
 <property name="build" value="build"/>
 <!-- Specify the compiler to use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running Applets | 17

When you run Ant, it produces a reasonable amount of notification as it goes:

$ ant compile
Buildfile: build.xml
Project base dir set to: /home/ian/javasrc/starting
Executing Target: init
Executing Target: compile
Compiling 19 source files to /home/ian/javasrc/starting/build
Performing a Modern Compile
Copying 22 support files to /home/ian/javasrc/starting/build
Completed in 8 seconds
$

See Also
The sidebar “make Versus Ant”; Ant: The Definitive Guide by Jesse E. Tilly and Eric
M. Burke (O’Reilly).

1.8 Running Applets

Problem
You want to run an applet.

Solution
Write a class that extends java.applet.Applet; write some HTML and point a
browser at it.

 Using jikes is supported but requires rt.jar in classpath. -->
 <property name="build.compiler" value="modern"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <!-- Specify what to compile. This builds everything -->
 <target name="compile" depends="init">

 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"
 classpath="../darwinsys.jar"/>
 </target>

</project>

Example 1-1. Ant example file (build.xml) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Getting Started: Compiling, Running, and Debugging

make Versus Ant
make is another build tool used in Unix and C/C++ development. make and Ant each
have advantages; I’ll try to stay neutral, although I admit I have been using make far
longer than I have Ant.

Makefiles are shorter. No contest. make has its own language instead of using XML, so
it can be a lot more terse. make runs faster; it’s written in C. However, Ant has the abil-
ity to run many Java tasks at once—such as the built-in Java compiler, jar/war/tar/zip
files, and many more—to the extent that it may be more efficient to run several Java
compilations in one Ant process than to run the same compilations using make. That
is, once the JVM that is running Ant itself is up and running, it doesn’t take long at all
to run the Java compiler and run the compiled class. This is Java as it was meant to be!

Ant files can do more. The javac task in Ant, for example, automatically finds all the *.java
files in subdirectories. With make, a sub-make is normally required. And the include
directive for subdirectories differs between GNU make and BSD make.

Ant has special knowledge of CLASSPATH, making it easy to set a CLASSPATH in var-
ious ways for compile time. See the CLASSPATH setting in Example 1-1. You may
have to duplicate this in other ways—shell scripts or batch files—for manually running
or testing your application.

make is simpler to extend, but harder to do so portably. You can write a one-line make
rule for getting a CVS archive from a remote site, but you may run into incompatibili-
ties between GNU make, BSD make, etc. There is a built-in Ant task for getting an
archive from CVS using Ant; it was written as a Java source file instead of just a series
of command-line commands.

make has been around much longer. There are millions (literally) more Makefiles than
Ant files. Non-Java developers have typically not heard of Ant; they almost all use
make. Almost all non-Java open source projects use make.

make is easier to start with. Ant’s advantages make more sense on larger projects. Yet
of the two, only make has been used on the really large projects. For example, make is
used for telephone switch source code, which consists of hundreds of thousands of
source files containing tens or hundreds of millions of lines of source code. By contrast,
Tomcat 4 is about 340,000 lines of code, and the JBoss J2EE server about 560,000
lines. The use of Ant is growing steadily, particularly now that most of the widely used
Java IDEs (JBuilder, Eclipse, NetBeans, and others) have interfaces to Ant. Effectively
all Java open source projects use Ant.

make is included with most Unix and Unix-like systems and shipped with many Win-
dows IDEs. Ant is not included with any operating system but is included with many
open source Java packages.

To sum up, although make and Ant are both good tools, new Java projects should use
Ant.

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running Applets | 19

Discussion
An applet is simply a Java class that extends java.applet.Applet, and in doing so
inherits the functionality it needs to be viewable inside a web page in a Java-enabled
web browser.* All that’s necessary is an HTML page referring to the applet. This
HTML page requires an applet tag with a minimum of three attributes, or modifiers:
the name of the applet itself and its onscreen width and height in screen dots or pix-
els. This is not the place for me to teach you HTML syntax—there is some of that in
Recipe 18.1—but I’ll show my HTML applet template file. Many of the IDEs write a
page like this if you use their “build new applet” wizards:

<html>
<head><title>A Demonstration</title></head>
<body>
<h1>My TEMPLATE Applet</h1>
<applet code="CCC" width="200" height="200">
</applet>
</body>
</html>

You can probably intuit from this just about all you need to get started. For a little
more detail, see Recipe 18.1. Once you’ve created this file (replacing the CCC with
the fully qualified class name of your applet—e.g., code="com.foo.MyApplet") and
placed it in the same directory as the class file, you need only tell a Java-enabled web
browser to view the HTML page, and the applet should be included in it.

All right, so the applet appeared and it even almost worked. Make a change to the
Java source and recompile. Click the browser’s Reload button. Chances are you’re
still running the old version! Browsers aren’t very good at debugging applets. You
can sometimes get around this by holding down the Shift key while you click Reload.
But to be sure, use AppletViewer, a kind of mini-browser included in the JDK. You
need to give it the HTML file, just like a regular browser. Sun’s AppletViewer (shown
in Figure 1-9 under Windows) has an explicit Reload button that actually reloads the
applet. And it has other features, such as debugging hooks, and other information
displays. It also has a View ➝ Tag option that lets you resize the window until the
applet looks best, and then you can copy and paste the tag—including the adjusted
width and height attributes—into a longer HTML document.

* Includes Netscape/Mozilla, Apple Safari, MS Internet Explorer, KDE Konqueror, and most others.

Figure 1-9. Sun JDK AppletViewer

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Getting Started: Compiling, Running, and Debugging

The Mac OS X runtime includes both the standard AppletViewer from Sun and
Apple’s own implementation (available as /Applications/Utilities/Java/Applet Launcher,
shown in Figure 1-10), which is more colorful but slightly different. It has no Reload
item in its menu; you close the Applet’s window and press the Launch button to
reload. It also lets you load a new HTML file by typing in the URL field (or pressing
Open... and browsing), which is more efficient than closing and restarting the tradi-
tional AppletViewer when the HTML file changes or when you want to invoke a dif-
ferent file.

Neither the Sun version nor the Apple version is a full applet runtime; features such
as jumping to a new document do not work. But they are very good tools for debug-
ging applets. Learn to use the AppletViewer that comes with your JDK or IDE.

See Also
The bad news about applets is that they either can’t use features of current Java ver-
sions or they run into the dreaded browser-incompatibility issue. In Recipe 23.6, I
show how to use the Java Plug-in to get around this. In Recipe 23.13, I talk about
Java Web Start, a relatively new technique for distributing applications over the Web
in a way similar to how applets are downloaded; with JWS, programs are down-
loaded using HTTP but stored as, and run as, regular applications on your system’s
local disk.

1.9 Dealing with Deprecation Warnings

Problem
Your code used to compile cleanly, but now it gives deprecation warnings.

Solution
You must have blinked. Either live—dangerously—with the warnings or revise your
code to eliminate them.

Figure 1-10. Apple Mac OS X applet launcher

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Dealing with Deprecation Warnings | 21

Discussion
Each new release of Java includes a lot of powerful new functionality, but at a price:
during the evolution of this new stuff, Java’s maintainers find some old stuff that
wasn’t done right and shouldn’t be used anymore because they can’t really fix it. In
building JDK 1.1, for example, they realized that the java.util.Date class had some
serious limitations with regard to internationalization. Accordingly, many of the Date
class methods and constructors are marked “deprecated.” To deprecate something
means, according to the American Heritage Dictionary, to “express disapproval of;
deplore.” Java’s developers are therefore disapproving of the old way of doing things.
Try compiling this code:

import java.util.Date;

/** Demonstrate deprecation warning */
public class Deprec {

 public static void main(String[] av) {

 // Create a Date object for May 5, 1986
 // EXPECT DEPRECATION WARNING
 Date d = new Date(86, 04, 05); // May 5, 1986
 System.out.println("Date is " + d);
 }
}

What happened? When I compile it, I get this warning:

C:\javasrc>javac Deprec.java
Note: Deprec.java uses or overrides a deprecated API. Recompile with
"-deprecation" for details.
1 warning
C:\javasrc>

So, we follow orders. Recompile with -deprecation (if using Ant, use <javac
deprecation= 'true '...>) for details:

C:\javasrc>javac -deprecation Deprec.java
Deprec.java:10: warning: constructor Date(int,int,int) in class java.util.Date has
been deprecated
 Date d = new Date(86, 04, 05); // May 5, 1986
 ^
1 warning

C:\javasrc>

The warning is simple: the Date constructor that takes three integer arguments has
been deprecated. How do you fix it? The answer is, as in most questions of usage, to
refer to the Javadoc documentation for the class. In Java 2, the introduction to the
Date page says, in part:

The class Date represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpreta-
tion of dates as year, month, day, hour, minute, and second values. It also allowed the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Getting Started: Compiling, Running, and Debugging

formatting and parsing of date strings. Unfortunately, the API for these functions was
not amenable to internationalization. As of JDK 1.1, the Calendar class should be used
to convert between dates and time fields and the DateFormat class should be used to
format and parse date strings. The corresponding methods in Date are deprecated.

And more specifically, in the description of the three-integer constructor, it says:

Date(int year, int month, int date)

Deprecated. As of JDK version 1.1, replaced by Calendar.set(year + 1900, month,
date) or GregorianCalendar(year + 1900, month, date).

As a general rule, when something has been deprecated, you should not use it in any
new code and, when maintaining code, strive to eliminate the deprecation warnings.

The main areas of deprecation warnings in the standard API are Date (as men-
tioned), JDK 1.0 event handling, and some methods—a few of them important—in
the Thread class.

You can also deprecate your own code. Put in a doc comment (see Recipe 23.2) with
the @deprecated tag immediately before the class or method you wish to deprecate.

1.10 Conditional Debugging Without #ifdef

Problem
You want conditional compilation and Java doesn’t seem to provide it.

Solution
Use constants, command-line arguments, or assertions (Recipe 1.12), depending
upon the goal.

Discussion
Some older languages such as C, PL/I, and C++ provide a feature known as condi-
tional compilation. Conditional compilation means that parts of the program can be
included or excluded at compile time based upon some condition. One thing it’s
often used for is to include or exclude debugging print statements. When the pro-
gram appears to be working, the developer is struck by a fit of hubris and removes all
the error checking. A more common rationale is that the developer wants to make
the finished program smaller—a worthy goal—or make it run faster by removing
conditional statements.

Conditional compilation?

Although Java lacks any explicit conditional compilation, a kind of conditional com-
pilation is implicit in the language. All Java compilers must do flow analysis to ensure
that all paths to a local variable’s usage pass through a statement that assigns it a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Conditional Debugging Without #ifdef | 23

value first, that all returns from a function pass out via someplace that provides a
return value, and so on. Imagine what the compiler will do when it finds an if state-
ment whose value is known to be false at compile time. Why should it even generate
code for the condition? True, you say, but how can the results of an if statement be
known at compile time? Simple: through final boolean variables. Further, if the value
of the if condition is known to be false, then the body of the if statement should not
be emitted by the compiler either. Presto—instant conditional compilation!

// IfDef.java
final boolean DEBUG = false;
System.out.println("Hello, World ");
if (DEBUG) {
 System.out.println("Life is a voyage, not a destination");
}

Compilation of this program and examination of the resulting class file reveals that
the string “Hello” does appear, but the conditionally printed epigram does not. The
entire println has been omitted from the class file. So Java does have its own condi-
tional compilation mechanism.

darian$ jr IfDef
 jikes +E IfDef.java
 java IfDef
Hello, World
darian$ strings IfDef.class | grep Life # not found!
darian$ javac IfDef.java # try another compiler
darian$ strings IfDef.class | grep Life # still not found!
darian$

What if we want to use debugging code similar to this but have the condition applied
at runtime? We can use System.properties (Recipe 2.2) to fetch a variable. Recipe 1.11
uses my Debug class as an example of a class whose entire behavior is controlled this
way.

But this is as good a place as any to interject about another feature—inline code gen-
eration. The C/C++ world has a language keyword inline, which is a hint to the
compiler that the function (method) is not needed outside the current source file.
Therefore, when the C compiler is generating machine code, a call to the function
marked with inline can be replaced by the actual method body, eliminating the
overhead of pushing arguments onto a stack, passing control, retrieving parameters,
and returning values. In Java, making a method final enables the compiler to know
that it can be inlined, or emitted in line. This is an optional optimization that the
compiler is not obliged to perform, but may for efficiency.

See Also
Recipe 1.12.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Getting Started: Compiling, Running, and Debugging

1.11 Debugging Printouts

Problem
You want to have debugging statements left in your code enabled at runtime.

Solution
Use my Debug class.

Discussion
Instead of using the conditional compilation mechanism of Recipe 1.10, you may
want to leave your debugging statements in the code but enable them only at run-
time when a problem surfaces. This is a good technique for all but the most compute-
intensive applications, because the overhead of a simple if statement is not all that
great. Let’s combine the flexibility of runtime checking with the simple if statement
to debug a hypothetical fetch() method (part of Fetch.java):

String name = "poem";
if (System.getProperty("debug.fetch") != null) {
 System.err.println("Fetching " + name);
}
value = fetch(name);

Then, we can compile and run this normally and the debugging statement is omit-
ted. But if we run it with a -D argument to enable debug.fetch, the printout occurs:

> java Fetch # See? No output
> java -Ddebug.fetch Fetch
Fetching poem
>

Of course this kind of if statement is tedious to write in large quantities, so I have
encapsulated it into a Debug class, which is part of my com.darwinsys.util package.
Debug.java appears in full in Recipe 1.17 at the end of this chapter. My Debug class
also provides the string “debug.” as part of the argument to System.getProperty(),
so we can simplify the previous Fetch example as follows (code in FetchDebug.java):

String name = "poem", value;
Fetch f = new Fetch();
Debug.println("fetch", "Fetching " + name);
value = f.fetch(name);

Running it behaves identically to the original Fetch:

> java FetchDebug # again, no output
> java -Ddebug.fetch FetchDebug
Fetching poem
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Maintaining Program Correctness with Assertions | 25

See Also
Some more comprehensive and flexible “debug printout” mechanisms—including
ones that can log across a network connection—are covered in Recipes 17.7, 17.8,
and 17.9.

1.12 Maintaining Program Correctness
with Assertions

Problem
You want to leave tests in your code but not have runtime checking overhead until
you need it.

Solution
Use the JDK 1.4 Assertions mechanism.

Discussion
JDK 1.4 introduced a new keyword into the language: assert. The assert keyword
takes two arguments separated by a colon (by analogy with the conditional operator):
an expression that is asserted by the developer to be true, and a message to be
included in the exception that is thrown if the expression is false. To provide for back-
ward compatibility with programs that might have used “assert” as an identifier name
on prior JDK versions, JDK 1.4 requires a command-line switch (-source 1.4) that
must be provided for assert to be recognized as a keyword. Normally, assertions are
meant to be left in place (unlike quick and dirty print statements, which are often put
in during one test and then removed). To reduce runtime overhead, assertion check-
ing is not enabled by default; it must be enabled explicitly with the -enableassertions
(or -ea) command-line flag. Here is a simple demo program that shows the use of the
assertion mechanism:

ian:147$ cd testing;
ian:148$ cat AssertDemo.java
public class AssertDemo {
 public static void main(String[] args) {
 int i = 4;
 if (args.length == 1) {
 i = Integer.parseInt(args[0]);
 }
 assert i > 0 : "i is non-positive";
 System.out.println("Hello after an assertion");
 }
}
ian:149$ javac -source 1.4 AssertDemo.java # will not compile without 1.4 flag
ian:150$ java AssertDemo -1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Getting Started: Compiling, Running, and Debugging

Hello after an assertion
ian:151$ java -ea AssertDemo -1
Exception in thread "main" java.lang.AssertionError: i is non-positive
 at AssertDemo.main(AssertDemo.java:15)
ian:152$

1.13 Debugging with JDB

Problem
The use of debugging printouts and assertions in your code is still not enough.

Solution
Use a debugger, preferably the one that comes with your IDE.

Discussion
The JDK includes a command-line-based debugger, jdb, and any number of IDEs
include their own debugging tools. If you’ve focused on one IDE, learn to use the
debugger that it provides. If you’re a command-line junkie, you may want to learn at
least the basic operations of jdb.

Here is a buggy program. It intentionally has bugs introduced so that you can see
their effects in a debugger:

/** This program exhibits some bugs, so we can use a debugger */
public class Buggy {
 static String name;

 public static void main(String[] args) {
 int n = name.length(); // bug # 1

 System.out.println(n);

 name += "; The end."; // bug #2
 System.out.println(name); // #3
 }
}

Here is a session using jdb to find these bugs:

ian> java Buggy
Exception in thread "main" java.lang.NullPointerException
 at Buggy.main(Compiled Code)
ian> jdb Buggy
Initializing jdb...
0xb2:class(Buggy)
> run
run Buggy
running ...
main[1]

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Debugging with JDB | 27

Uncaught exception: java.lang.NullPointerException
 at Buggy.main(Buggy.java:6)
 at sun.tools.agent.MainThread.runMain(Native Method)
 at sun.tools.agent.MainThread.run(MainThread.java:49)

main[1] list
2 public class Buggy {
3 static String name;
4
5 public static void main(String[] args) {
6 => int n = name.length(); // bug # 1
7
8 System.out.println(n);
9
10 name += "; The end."; // bug #2
main[1] print Buggy.name
Buggy.name = null
main[1] help
** command list **
threads [threadgroup] -- list threads
thread <thread id> -- set default thread
suspend [thread id(s)] -- suspend threads (default: all)
resume [thread id(s)] -- resume threads (default: all)
where [thread id] | all -- dump a thread's stack
wherei [thread id] | all -- dump a thread's stack, with pc info
threadgroups -- list threadgroups
threadgroup <name> -- set current threadgroup

print <id> [id(s)] -- print object or field
dump <id> [id(s)] -- print all object information

locals -- print all local variables in current stack frame

classes -- list currently known classes
methods <class id> -- list a class's methods

stop in <class id>.<method>[(argument_type,...)] -- set a breakpoint in a method
stop at <class id>:<line> -- set a breakpoint at a line
up [n frames] -- move up a thread's stack
down [n frames] -- move down a thread's stack
clear <class id>.<method>[(argument_type,...)] -- clear a breakpoint in a method
clear <class id>:<line> -- clear a breakpoint at a line
step -- execute current line
step up -- execute until the current method returns to its caller
stepi -- execute current instruction
next -- step one line (step OVER calls)
cont -- continue execution from breakpoint

catch <class id> -- break for the specified exception
ignore <class id> -- ignore when the specified exception

list [line number|method] -- print source code
use [source file path] -- display or change the source path

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Getting Started: Compiling, Running, and Debugging

memory -- report memory usage
gc -- free unused objects

load classname -- load Java class to be debugged
run <class> [args] -- start execution of a loaded Java class
!! -- repeat last command
help (or ?) -- list commands
exit (or quit) -- exit debugger
main[1] exit
ian>

Many other debuggers are available; a look in the current Java magazines will inform
you of them. Many of them work remotely since the Java Debugger API (that which
the debuggers use) is network-based.

1.14 Unit Testing: Avoid the Need for Debuggers

Problem
You don’t want to have to debug your code.

Solution
Use unit testing to validate each class as you develop it.

Discussion
Stopping to use a debugger is time-consuming; it’s better to test beforehand. The
methodology of unit testing has been around for a long time but has been overshad-
owed by newer methodologies. Unit testing is a tried and true means of getting your
code tested in small blocks. Typically, in an OO language like Java, unit testing is
applied to individual classes, in contrast to “black box” testing where the entire
application is tested.

I have long been an advocate of this very basic testing methodology. Indeed, develop-
ers of the software methodology known as Extreme Programming (XP for short; see
http://www.extremeprogramming.org) advocate writing the unit tests before you write
the code, and they also advocate running your tests almost every time you compile.
This group of extremists has some very well-known leaders, including Gamma and
Beck of Design Patterns fame. I definitely go along with their advocacy of unit testing.

Indeed, many of my classes come with a “built-in” unit test. Classes that are not
main programs in their own right often include a main method that just tests out the
functionality of the class. Here is an example:

/** A simple class used to demonstrate unit testing. */
public class Person {
 protected String fullName;
 protected String firstName, lastName;

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unit Testing: Avoid the Need for Debuggers | 29

 /** Construct a Person using his/her first+last names. */
 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 /** Get the person's full name */
 public String getFullName() {
 if (fullName != null)
 return fullName;
 return firstName + " " + lastName;
 }

 /** Simple test program. */
 public static void main(String[] argv) {
 Person p = new Person("Ian", "Darwin");
 String f = p.getFullName();
 if (!f.equals("Ian Darwin"))
 throw new IllegalStateException("Name concatenation broken");
 System.out.println("Fullname " + f + " looks good");
 }
}

What surprised me is that, before encountering XP, I used to think I did this often,
but an actual inspection of two projects indicated that only about a third of my
classes had test cases, either internally or externally. Clearly what is needed is a uni-
form methodology. That is provided by JUnit.

JUnit is a Java-centric methodology for providing test cases. You can freely down-
load JUnit from the obvious web site, http://www.junit.org. JUnit is a very simple but
useful testing tool. It is easy to use—you just write a test class that has a series of
methods whose names begin with test. JUnit uses introspection (see Chapter 25) to
find all these methods, and then it runs them for you! Extensions to JUnit handle
tasks as diverse as load testing and testing Enterprise JavaBeans (EJBs); the JUnit
web site provides links to these extensions.

How do you get started using JUnit? All that’s necessary is to write a test. Here I have
excerpted the test from my Person class and placed it into a class PersonTest. Note
the obvious naming pattern.

import junit.framework.*;

/** A simple test case for Person */
public class PersonTest extends TestCase {

 /** JUnit test classes require this constructor */
 public PersonTest(String name) {
 super(name);
 }

 public void testNameConcat() {
 Person p = new Person("Ian", "Darwin");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Getting Started: Compiling, Running, and Debugging

 String f = p.getFullName();
 assertEquals(f, "Ian Darwin");
 }

}

To run it, I need only compile the test and invoke the test harness junit:

daroad.darwinsys.com$ javac PersonTest.java
daroad.darwinsys.com$ java junit.textui.TestRunner PersonTest
.
Time: 0.188

OK (1 tests)

daroad.darwinsys.com$

The use of a full class name is a bit tedious, so I have a script named jtest that
invokes it; I just say jtest Person and it runs the previous command for me.

#!/bin/sh

exec java junit.textui.TestRunner ${1}Test

In fact, even that is tedious, so I usually have a regress target in my Ant scripts. There
is a junit task in Ant’s “Optional Tasks” package.* Using it is easy:

<target name="regress" depends="build">
 <junit>
 <test name="PersonTest" />
 </junit>
</target>

See Also
If you prefer flashier GUI output, several JUnit variants (built using Swing and AWT;
see Chapter 14) will run the tests with a GUI.

JUnit offers classes for building comprehensive test suites and comes with consider-
able documentation of its own; download the program from the web site listed earlier.

Also, for testing graphical components, I have developed a simple component tester,
described in Recipe 13.2.

Remember: Test early and often!

1.15 Getting Readable Tracebacks

Problem
You’re getting an exception stack trace at runtime, but most of the important parts
don’t have line numbers.

* In some versions of Ant, you may need an additional download for this to function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Readable Tracebacks | 31

Solution
Be sure you have compiled with debugging enabled. On older systems, disable JIT
and run it again, or use the current HotSpot runtime.

Discussion
When a Java program throws an exception, the exception propagates up the call
stack until there is a catch clause that matches it. If none is found, the Java inter-
preter program that invoked your main() method catches the exception and prints a
stack traceback showing all the method calls that got from the top of the program to
the place where the exception was thrown. You can print this traceback yourself in
any catch clause: the Throwable class has several methods called printStackTrace().

The traceback includes line numbers only if they were compiled in. When using
Sun’s javac, this is the default. When using Ant’s javac task, this is not the default;
you must be sure you have used <javac debug="true" ...> in your build.xml file if you
want line numbers.

The Just-In-Time (JIT) translation process consists of having the Java runtime con-
vert part of your compiled class file into machine language so that it can run at full
execution speed. This is a necessary step for making Java programs run under inter-
pretation and still be acceptably fast. However, in the early days of Java, its one
drawback was that it generally lost the line numbers. Hence, when your program
died, you still got a stack traceback but it no longer showed the line numbers where
the error occurred. So we have the trade-off of making the program run faster, but
harder to debug. Modern versions of Sun’s Java runtime include the HotSpot Just-In-
Time translator, which doesn’t have this problem.

If you’re still using an older (or non-Sun) JIT, there is a way around this. If the pro-
gram is getting a stack traceback and you want to make it readable, you need only
disable the JIT processing. How you do this depends upon what release of Java you
are using. On JDK 1.2 and above, you need only set the environment variable JAVA_
COMPILER to the value NONE, using the appropriate set command:

C:\> set JAVA_COMPILER=NONE # DOS, Windows
setenv JAVA_COMPILER NONE # Unix Csh
export JAVA_COMPILER=NONE # Unix Ksh, modern sh

To make this permanent, you would set it in the appropriate configuration file on
your system; on recent versions of Windows, you can also set environment variables
through the Control Panel.

An easier way to disable JIT temporarily, and one that does not require changing the
setting in your configuration files or Control Panel, is the -D command-line option,
which updates the system properties. Just set java.compiler to NONE on the com-
mand line:

java -Djava.compiler=NONE myapp

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Getting Started: Compiling, Running, and Debugging

Note that the -D command-line option overrides the setting of the JAVA_COMPILER
environment variable.

As mentioned, Sun’s HotSpot JIT runtime—included in most modern Java
releases—generally provides tracebacks, even with JIT mode enabled.

1.16 Finding More Java Source Code

Problem
You want even more Java code examples to look at.

Solution
Use The Source, Luke.

Discussion
Java source code is everywhere. As mentioned in the Preface, all the code examples
from this book can be downloaded from the O’Reilly site (http://java.oreilly.com/).
What I didn’t tell you, but what you might have realized by extension, is that the
source examples from all the O’Reilly Java books are available there, too: the exam-
ples from Java Examples in a Nutshell, Java Swing—all of them.

Another valuable resource is the source code for the Java API. You may not have
realized it, but the source code for all the public parts of the Java API are included
with each release of the Java Development Kit. Want to know how java.util.
ArrayList actually works? You have the source code. Got a problem making a JTable
behave? Sun’s JDK includes the source for all the public classes! Look for a file called
src.zip or src.jar; some versions unzip this and some do not.

If that’s not enough, you can get the source for the whole JDK for free over the Inter-
net, just by committing to the Sun Java Community Source License and download-
ing a large file. This includes the source for the public and non-public parts of the
API, as well as the compiler (written in Java) and a large body of code written in C/
C++ (the runtime itself and the interfaces to the native library). For example, java.
io.Reader has a method called read(), which reads bytes of data from a file or net-
work connection. This is written in C because it actually calls the read() system call
for Unix, Windows, Mac OS, BeOS, or whatever. The JDK source kit includes the
source for all this stuff.

And ever since the early days of Java, there have been a number of web sites set up to
distribute free software or open source Java, just as with most other modern “evan-
gelized” languages, such as Perl, Python, Tk/Tcl, and others. (In fact, if you need
native code to deal with some oddball filesystem mechanism in a portable way,
beyond the material in Chapter 11 of this book, the source code for these runtime
systems might be a good place to look.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Debug | 33

I’d like to mention several web sites of lasting value:

• Gamelan has been around almost forever (in Java time). The URL http://www.
gamelan.com still worked the last I checked, but the site has been (naturally)
commercialized, and it is now part of http://www.developer.com.

• Java.Net is a collaboration between Sun and O’Reilly, and it contains a number
of interesting Java projects.

• The Giant Java Tree is more recent and is limited to code that is covered by the
GNU Public License. There is a great deal of source code stored there, all of
which can be freely downloaded. See http://www.gjt.org.

• The CollabNet open source marketplace is not specific to Java but offers a meet-
ing place for people who want open source code written and those willing to
fund its development. See http://www.collab.net.

• SourceForge, also not specific to Java, offers free public hosting of open source
projects. See http://sourceforge.net.

• Finally, the author of this book maintains a small Java site at http://www.
darwinsys.com/java/, which may be of value. It includes a listing of Java
resources and material related to this book.

As with all free software, please be sure that you understand the ramifications of the
various licensing schemes. Code covered by the GPL, for example, automatically
transfers the GPL to any code that uses even a small part of it. And even once look-
ing at Sun’s Java implementation details (the licensed download mentioned previ-
ously) may prevent you from ever working on a “clean-room” reimplementation of
Java, the free software Kaffe, or any commercial implementation. Consult a lawyer.
Your mileage may vary. Despite these caveats, the source code is an invaluable
resource to the person who wants to learn more Java.

1.17 Program: Debug
Most of the chapters of this book end with a “Program” recipe that illustrates some
aspect of the material covered in the chapter. Example 1-2 is the source code for the
Debug utility mentioned in Recipe 1.11.

Example 1-2. Debug.java

package com.darwinsys.util;

/** Utilities for debugging
 */
public class Debug {
 /** Static method to see if a given category of debugging is enabled.
 * Enable by setting e.g., -Ddebug.fileio to debug file I/O operations.
 * Use like this:

 * if (Debug.isEnabled("fileio"))

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Getting Started: Compiling, Running, and Debugging

 * System.out.println("Starting to read file " + fileName);
 */
 public static boolean isEnabled(String category) {
 return System.getProperty("debug." + category) != null;
 }

 /** Static method to println a given message if the
 * given category is enabled for debugging.
 */
 public static void println(String category, String msg) {
 if (isEnabled(category))
 System.out.println(msg);
 }
 /** Same thing but for non-String objects (think of the other
 * form as an optimization of this).
 */
 public static void println(String category, Object stuff) {
 println(category, stuff.toString());
 }
}

Example 1-2. Debug.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

35

Chapter 2 CHAPTER 2

Interacting with the Environment

2.0 Introduction
This chapter describes how your Java program can deal with its immediate surround-
ings, with what we call the runtime environment. In one sense, everything you do in a
Java program using almost any Java API involves the environment. Here we focus
more narrowly on things that directly surround your program. Along the way we’ll
meet the System class, which knows a lot about your particular system.

Two other runtime classes deserve brief mention. The first, java.lang.Runtime, lies
behind many of the methods in the System class. System.exit(), for example, just
calls Runtime.exit(). It is technically part of “the environment,” but the only time
we use it directly is to run other programs, which is covered in Recipe 26.1. The
java.awt.Toolkit object is also part of the environment and is discussed in
Chapter 13.

2.1 Getting Environment Variables

Problem
You want to get the value of “environment variables” from within your Java program.

Solution
Don’t (JDK 1.4 and earlier). Go ahead, but be careful (JDK 1.5).

Discussion
The seventh edition of Unix, released in 1979, had an exciting new feature known as
environment variables. Environment variables are in all modern Unix systems
(including Mac OS X) and in most later command-line systems, such as the DOS
subsystem underlying Windows, but are not in some older platforms or other Java
runtimes. Environment variables are commonly used for customizing an individual

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Interacting with the Environment

computer user’s runtime environment, hence the name. To take one familiar exam-
ple, on Unix or DOS the environment variable PATH determines where the system
looks for executable programs. So of course the issue comes up: “How do I get at
environment variables from my Java program?”

The answer is that you can do this in some versions of Java, but you shouldn’t. Java
is designed to be a portable runtime environment. As such, you should not depend
on operating system features that don’t exist on every single Java platform. I just
mentioned several Java platforms that don’t have environment variables.

1.4 and earlier

Oh, all right, if you insist. Let’s try it out using a static method called getenv() in
class java.lang.System. But remember, you made me do it. First, the code. All we
need is the little program shown in Example 2-1.

Let’s try compiling it:

C:\javasrc>javac GetEnv.java
Note: GetEnv.java uses or overrides a deprecated API. Recompile with -deprecation for
details.

That message is seldom welcome news. We’ll do as it says:

C:\javasrc>javac -deprecation GetEnv.java
GetEnv.java:9: Note: The method java.lang.String getenv(java.lang.String) in class
java.lang.System has been deprecated.
System.out.println("System.getenv(\"PATH\") = " + System.getenv("PATH"));
 ^
Note: GetEnv.java uses or overrides a deprecated API. Please consult the
documentation for a better alternative.
1 warning

But it’s only a warning, right? What the heck. Let’s try running the program!

C:\javasrc>java GetEnv
Exception in thread "main" java.lang.Error: getenv no longer supported, use
properties and -D instead: PATH
 at java.lang.System.getenv(System.java:602)
 at GetEnv.main(GetEnv.java:9)

Well, of all the non-backward-compatible things! It used to work, in JDK 1.1, but it
really and truly doesn’t work anymore in later versions. I guess we’ll just have to do
what the error message tells us, which is to learn about “properties and -D instead.”
In fact, that’s our very next recipe.

Example 2-1. GetEnv.java

public class GetEnv {
 public static void main(String[] argv) {
 System.out.println("System.getenv(\"PATH\") = " + System.getenv("PATH"));
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Properties | 37

Back to the future: 1.5

In Java 1.5, the getenv() method is no longer deprecated, although it still carries the
warning that System Properties (Recipe 2.2) should be used instead. Even among sys-
tems that support them, environment variable names are case-sensitive on some plat-
forms and case-insensitive on others. However, if you insist, run a program like
GetEnv above, and you’ll get output like the following:

C:\javasrc>java GetEnv
C:\windows\bin;c:\j2sdk1.5\bin;c:\documents and settings\ian\bin
C:\javasrc>

In another addition in 1.5, the no-argument form of the method System.getenv()
returns all the environment variables, in the form of a non-modifiable String Map.
You can iterate through this list and access all the user’s settings or retrieve multiple
environment settings.

Both forms of getenv() require you to have permissions to access the environment,
so they typically do not work in restricted environments such as applets.

2.2 System Properties

Problem
You need to get information from the system properties.

Solution
Use System.getProperty() or System.getProperties().

Discussion
What is a property anyway? A property is just a name and value pair stored in a java.
util.Properties object, which we discuss more fully in Recipe 7.7. So if I chose to, I
could store the following properties in a Properties object called ian:

name=Ian Darwin
favorite_popsicle=cherry
favorite_rock group=Fleetwood Mac
favorite_programming_language=Java
pencil color=green

The Properties class has several forms of its retrieval method. You could, for exam-
ple, say ian.getProperty("pencil color") and get back the string “green”. You can
also provide a default: say ian.getProperty("pencil color", "black"), and, if the
property has not been set, you get the default value “black”.

For now, we’re concerned with the System class and its role as keeper of the particular
Properties object that controls and describes the Java runtime. The System class has a
static Properties member whose content is the merger of operating system specifics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Interacting with the Environment

(os.name, for example), system and user tailoring (java.class.path), and properties
defined on the command line (as we’ll see in a moment). Note that the use of periods
in these names (like os.arch, os.version, java.class.path, and java.lang.version)
makes it look as though there is a hierarchical relationship similar to that for class
names. The Properties class, however, imposes no such relationships: each key is just
a string, and dots are not special.

To retrieve one system-provided property, use System.getProperty(). If you want
them all, use System.getProperties(). Accordingly, if I wanted to find out if the
System Properties had a property named “pencil color”, I could say:

String color = System.getProperty("pencil color");

But what does that return? Surely Java isn’t clever enough to know about every-
body’s favorite pencil color? Right you are! But we can easily tell Java about our pen-
cil color (or anything else we want to tell it) using the -D argument.

The -D option argument is used to predefine a value in the system properties object.
It must have a name, an equals sign, and a value, which are parsed the same way as
in a properties file (see below). You can have more than one -D definition between
the java command and your class name on the command line. At the Unix or Win-
dows command line, type:

java -D"pencil color=Deep Sea Green" SysPropDemo

Using an IDE, put the variable’s name and value in the appropriate dialog box when
running the program. The SysPropDemo program is short; its essence is this one line:

System.getProperties().list(System.out);

When run this way, the program prints about 50 lines, looking something like:

java.library.path=/usr/local/linux-jdk1.2/jre/lib/i386/...
java.vm.specification.vendor=Sun Microsystems Inc.
sun.io.unicode.encoding=UnicodeLittle
pencil color=Deep Sea Green
file.encoding=ANSI_X3.4-1968
java.specification.vendor=Sun Microsystems Inc.
user.language=en

The program also has code to extract just one or a few properties, so you can say:

$ java SysPropDemo os.arch
os.arch = x86

Which reminds me—this is a good time to mention system-dependent code. Recipe
2.3 talks about release-dependent code, and Recipe 2.4 talks about OS-dependent
code.

See Also
Recipe 7.7 lists more details on using and naming your own Properties files. The
Javadoc page for java.util.Properties lists the exact rules used in the load()
method, as well as other details.

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing JDK Release-Dependent Code | 39

2.3 Writing JDK Release-Dependent Code

Problem
You need to write code that depends on the JDK release.

Solution
Don’t do this.

Discussion
Although Java is meant to be portable, Java runtimes have some significant varia-
tions. Sometimes you need to work around a feature that may be missing in older
runtimes, but you want to use it if it’s present. So one of the first things you want to
know is how to find out the JDK release corresponding to the Java runtime. This is
easily obtained with System.getProperty():

System.out.println(System.getProperty("java.specification.version"));

Accordingly, you may want to test for the presence or absence of particular classes.
One way to do this is with Class.forName("class"), which throws an exception if the
class cannot be loaded—a good indication that it’s not present in the runtime’s
library. Here is code for this, from an application wanting to find out whether the
JDK 1.1 or later components are available. It relies on the fact that the class java.
lang.reflect.Constructor was added in 1.1 but was not present in 1.0. (The Java-
doc for the standard classes reports the version that a given class was added to the
Java standard, under the heading “Since.” If there is no such heading, it normally
means that the class has been present since the beginning—i.e., JDK 1.0.)

/** Test for JDK >= 1.1 */
public class TestJDK11 {
 public static void main(String[] a) {
 // Check for JDK >= 1.1
 try {
 Class.forName("java.lang.reflect.Constructor");
 } catch (ClassNotFoundException e) {
 String failure =
 "Sorry, but this version of MyApp needs \n" +
 "a Java Runtime based on Java JDK 1.1 or later";
 System.err.println(failure);
 throw new IllegalArgumentException(failure);
 }
 System.out.println("Happy to report that this is JDK1.1");
 // rest of program would go here...
 return;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Interacting with the Environment

To check if the runtime includes the Swing components with their final names,* you
could use:

Class.forName("javax.swing.JButton");

It’s important to distinguish between testing this at compile time and at runtime. In
both cases, this code must be compiled on a system that includes the classes you are
testing for—JDK 1.1 and Swing, respectively. These tests are only attempts to help
the poor backwater Java runtime user trying to run your up-to-date application. The
goal is to provide this user with a message more meaningful than the simple “class
not found” error that the runtime gives. It’s also important to note that this test
becomes unreachable if you write it inside any code that depends on the code you
are testing for. The check for Swing won’t ever see the light of day on a JDK 1.0 sys-
tem if you write it in the constructor of a JPanel subclass (think about it). Put the test
early in the main flow of your application, before any GUI objects are constructed.
Otherwise the code just sits there wasting space on newer runtimes and never gets
run on Java 1.0 systems.

As for what the class Class actually does, we’ll defer that until Chapter 25.

2.4 Writing Operating System-Dependent Code

Problem
You need to write code that depends on the underlying operating system.

Solution
Again, don’t do this. Or, if you must, use System.properties.

Discussion
While Java is designed to be portable, some things aren’t. These include such vari-
ables as the filename separator. Everybody on Unix knows that the filename separa-
tor is a slash character (/) and that a backward slash, or backslash (\), is an escape
character. Back in the late 1970s, a group at Microsoft was actually working on
Unix—their version was called Xenix, later taken over by SCO—and the people
working on DOS saw and liked the Unix filesystem model. MS-DOS 2.0 didn’t have
directories, it just had “user numbers” like the system it was a clone of, Digital
Research CP/M (itself a clone of various other systems). So the Microsoft folk set out
to clone the Unix filesystem organization. Unfortunately, they had already commit-
ted the slash character for use as an option delimiter, for which Unix had used a dash
(-); and the PATH separator (:) was also used as a “drive letter” delimiter, as in C: or
A:. So we now have commands like this:

* Old-timers will remember that on the preliminary Swing releases, the name of this class was com.sun.java.
swing.JButton.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Operating System-Dependent Code | 41

Where does this get us? If we are going to generate filenames in Java, we need to
know whether to put a / or a \ or some other character. Java has two solutions to
this. First, when moving between Unix and Microsoft systems, at least, it is permis-
sive: either / or \ can be used,* and the code that deals with the operating system
sorts it out. Second, and more generally, Java makes the platform-specific informa-
tion available in a platform-independent way. First, for the file separator (and also
the PATH separator), the java.io.File class (see Chapter 11) makes available some
static variables containing this information. Since the File class is platform-depen-
dent, it makes sense to anchor this information here. The variables are:

Both filename and path separators are normally characters, but they are also avail-
able in String form for convenience.

A second, more general, mechanism is the system Properties object mentioned in
Recipe 2.2. You can use this to determine the operating system you are running on.
Here is code that simply lists the system properties; it can be informative to run this
on several different implementations:

import java.util.*;
/**
 * Demonstrate System Properties
 */
public class SysPropDemo {
 public static void main(String argv[]) {
 System.out.println("System Properties:");
 Properties p = System.getProperties();
 p.list(System.out);
 }
}

System
Directory list
command Meaning Example PATH setting

Unix ls -R / Recursive listing of /, the top-level directory PATH=/bin:/usr/bin

DOS dir/s \ Directory with subdirectories option (i.e., recursive) of \,
the top-level directory (but only of the current drive)

PATH=C:\windows;
D:\mybin

* When compiling strings for use on Windows, remember to double them, since \ is an escape character in
most places other than the MS-DOS command line: String rootDir = "C:\\";.

Name Type Meaning

separator static
String

The system-dependent filename separator character—e.g., / or \.

separatorChar static
char

The system-dependent filename separator character—e.g., / or \.

pathSeparator static
String

The system-dependent path separator character, represented as a string
for convenience.

pathSeparatorChar static
char

The system-dependent path separator character.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Interacting with the Environment

Some OSes, for example, provide a mechanism called “the null device” that can be
used to discard output (typically used for timing purposes). Here is code that asks
the system properties for the “os.name” and uses it to make up a name that can be
used for discarding data. If no null device is known for the given platform, we return
the name junk, which means that on such platforms, we’ll occasionally create, well,
junk files. I just remove these files when I stumble across them.

/** Some things that are System dependent.
 * All methods are static, like java.lang.Math.
 */
public class SysDep {
 /** Return the name of the Null device on platforms which support it,
 * or the string "junk" otherwise.
 */
 public static String getDevNull() {
 String sys = System.getProperty("os.name");
 if (sys==null)
 return "junk";
 if (sys.startsWith("Windows"))
 return "NUL:";
 return "/dev/null";
 }
}

In one case you do need to check for the OS. Mac OS X has a number of GUI good-
ies that can be used only on that OS and yet should be used to make your GUI appli-
cation look more like a “native” Mac application. Recipe 14.16 explores this issue in
more detail. In brief, Apple says to look for the string mrj.version to determine
whether you are running on OS X:

boolean isMacOS = System.getProperty("mrj.version") != null;

2.5 Using Extensions or Other Packaged APIs

Problem
You have a JAR file of classes you want to use.

Solution
Simply copy the JAR into JDKHOME/jre/lib/ext/.

Discussion
The Java API has grown by leaps and bounds since its first public release in 1995. It
is now considered sufficiently functional for writing robust applications, but the
areas to which it is being applied continue to grow. Some specialized APIs may
require more resources than you have on a given Java platform. Many of the new

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Command-Line Arguments | 43

APIs from Sun are in the form of standard extensions, which is indicated by their
package names beginning in javax.. Classes in packages named java. or javax. are
treated as built-in classes by a web browser for purposes of applet security, for exam-
ple. Each extension is distributed in the form of a JAR file (see Recipe 23.4).

If you have a Java runtime that does not support this feature, you may need to add
each JAR file to your CLASSPATH, as in Recipe 1.4.

As you accumulate these and other optional APIs contained in JAR files, you can
simply drop these JAR files into the Java Extensions Mechanism directory, typically
something like \jdk1.4\jre\lib\ext., instead of listing each JAR file in your CLASS-
PATH variable and watching CLASSPATH grow and grow and grow. The runtime
looks here for any and all JAR and zip files, so no special action is needed. In fact,
unlike many other system changes, you do not even need to reboot your computer;
this directory is scanned each time the JVM starts up. You may, however, need to
restart a long-running program such as an IDE for it to notice the change. Try it and
see first.

2.6 Parsing Command-Line Arguments

Problem
You need to parse command-line options. Java doesn’t provide an API for it.

Solution
Look in the args array passed as an argument to main. Or use my GetOpt class.

Discussion
The Unix folk have had to deal with this longer than anybody, and they came up
with a C-library function called getopt.* getopt processes your command-line argu-
ments and looks for single-character options set off with dashes and optional argu-
ments. For example, the command:

sort -n -o outfile myfile1 yourfile2

runs the standard sort program. The -n tells it that the records are numeric rather
than textual, and the -o outfile tells it to write its output into a file named outfile.
The remaining words, myfile1 and yourfile2, are treated as the input files to be
sorted. On Windows, command arguments are sometimes set off with slashes (/).
We use the Unix form—a dash—in our API, but feel free to change the code to use
slashes.

* The Unix world has several variations on getopt; mine emulates the original AT&T version fairly closely,
with some frills such as long-name arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Interacting with the Environment

Each GetOpt parser is constructed to recognize a particular set of arguments; this is
sensible since a given program normally has a fixed set of arguments that it accepts.
You can construct an array of GetOptDesc objects that represent the allowable argu-
ments. For the sort program shown previously, you might use:

GetOptDesc options[] = {
 new GetOptDesc('n', "numeric", false},
 new GetOptDesc('o', "output-file", true),
});
Map optionsFound = new GetOpt(options).parseArguments(argv);
if (optionsFound.get("n") != null)
 sortType = NUMERIC;
} else if (optionsFound.get("o")){
...

The simple way of using GetOpt is to call its parseArguments method.

For backward compatibility with people who learned to use the Unix version in C,
the getopt() method can be used normally in a while loop. It returns once for each
valid option found, returning the value of the character that was found or the con-
stant DONE when all options (if any) have been processed.

Here is a complete program that uses my GetOpt class just to see if there is a -h (for
help) argument on the command line:

import com.darwinsys.util.GetOpt;

/** Trivial demonstration of GetOpt. If -h present, print help.
 */
public class GetOptSimple {
 public static void main(String[] args) {
 GetOpt go = new GetOpt("h");
 char c;
 while ((c = go.getopt(args)) !=GetOpt.DONE) {
 switch(c) {
 case 'h':
 helpAndExit(0);
 break;
 default:
 System.err.println("Unknown option in " +
 args[go.getOptInd()-1]);
 helpAndExit(1);
 }
 }
 System.out.println();
 }

 /** Stub for providing help on usage
 * You can write a longer help than this, certainly.
 */
 static void helpAndExit(int returnValue) {
 System.err.println("This would tell you how to use this program");
 System.exit(returnValue);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Command-Line Arguments | 45

This longer demo program has several options:

import com.darwinsys.lang.GetOpt;
import com.darwinsys.lang.GetOptDesc;
import java.util.*;

/** Demonstrate the modern way of using GetOpt. This allows a subset of
 * <pre>Unix sort options: sort -n -o outfile infile1 infile2</pre>
 * which means: sort numerically (-n), writing to file "outfile" (-o
 * outfile), sort from infile1 and infile2.
 */
public class GetOptDemoNew {
 public static void main(String[] argv) {
 boolean numeric_option = false;
 boolean errs = false;
 String outputFileName = null;

 GetOptDesc options[] = {
 new GetOptDesc('n', "numeric", false),
 new GetOptDesc('o', "output-file", true),
 };
 GetOpt parser = new GetOpt(options);
 Map optionsFound = parser.parseArguments(argv);
 Iterator it = optionsFound.keySet().iterator();
 while (it.hasNext()) {
 String key = (String)it.next();
 char c = key.charAt(0);
 switch (c) {
 case 'n':
 numeric_option = true;
 break;
 case 'o':
 outputFileName = (String)optionsFound.get(key);
 break;
 case '?':
 errs = true;
 break;
 default:
 throw new IllegalStateException(
 "Unexpected option character: " + c);
 }
 }
 if (errs) {
 System.err.println("Usage: GetOptDemo [-n][-o file][file...]");
 }
 System.out.print("Options: ");
 System.out.print("Numeric: " + numeric_option + ' ');
 System.out.print("Output: " + outputFileName + "; ");
 System.out.print("Inputs: ");
 List files = parser.getFilenameList();
 for (int i = 0; i < files.size(); i++) {
 System.out.print(files.get(i));
 System.out.print(' ');

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Interacting with the Environment

 }
 System.out.println();
 }
}}

If we invoke it several times with different options, including both single-argument
and long-name options, here’s how it behaves:

> java GetOptDemoNew
Options: Numeric: false Output: null; Inputs:
> java GetOptDemoNew -M
Options: Numeric: false Output: null; Inputs: -M
> java GetOptDemoNew -n a b c
Options: Numeric: true Output: null; Inputs: a b c
> java GetOptDemoNew -numeric a b c
Options: Numeric: true Output: null; Inputs: a b c
> java GetOptDemoNew -numeric -output-file /tmp/foo a b c
Options: Numeric: true Output: /tmp/foo; Inputs: a b c

A longer example exercising all the ins and outs of this version of GetOpt can be
found in the online source under darwinsys/src/regress.The source code for GetOpt
itself is shown in Example 2-2.

Example 2-2. Source code for GetOpt

package com.darwinsys.lang;

import com.darwinsys.util.Debug;

import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;

/** A class to implement Unix-style (single-character) command-line argument
 * parsing. Originally patterned after (but not using code from) the Unix
 * getopt(3) program, this has been redesigned to be more Java-friendly.
 * <p>
 * This is not threadsafe; it is expected to be used only from main().
 * <p>
 * For another way of dealing with command lines, see the
 * Jakarta Commons
 * Command Line Interface.
 * @author Ian F. Darwin, ian@darwinsys.com
 * @version $Id: ch02,v 1.4 2004/05/04 20:11:12 ian Exp $
 */
public class GetOpt {
 /** The list of file names found after args */
 protected List fileNameArguments;
 /** The set of characters to look for */
 protected GetOptDesc[] options;
 /** Where we are in the options */
 protected int optind = 0;
 /** Public constant for "no more options" */
 public static final int DONE = 0;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Command-Line Arguments | 47

 /** Internal flag - whether we are done all the options */
 protected boolean done = false;
 /** The current option argument. */
 protected String optarg;

 /** Retrieve the current option argument */
 public String optarg() {
 return optarg;
 }

 /* Construct a GetOpt parser, given the option specifications
 * in an array of GetOptDesc objects. This is the preferred constructor.
 */
 public GetOpt(GetOptDesc[] options) {
 this.options = options;
 }

 /* Construct a GetOpt parser, storing the set of option characters.
 * This is a legacy constructor for backward compatibility.
 */
 public GetOpt(String patt) {
 // Pass One: just count the letters
 int n = 0;
 for (int i = 0; i<patt.length(); i++) {
 if (patt.charAt(i) != ':')
 ++n;
 }
 if (n == 0)
 throw new IllegalArgumentException(
 "No option letters found in " + patt);

 // Pass Two: construct an array of GetOptDesc objects.
 options = new GetOptDesc[n];
 for (int i = 0, ix = 0; i<patt.length(); i++) {
 char c = patt.charAt(i);
 boolean argTakesValue = false;
 if (i < patt.length() - 1 && patt.charAt(i+1) == ':') {
 argTakesValue = true;
 ++i;
 }
 options[ix++] = new GetOptDesc(c, null, argTakesValue);
 Debug.println("getopt",
 "CONSTR: options[" + ix + "] = " + c + ", " + argTakesValue);
 }
 }

 /** Reset this GetOpt parser */
 public void rewind() {
 fileNameArguments = null;
 done = false;
 optind = 0;
 }

Example 2-2. Source code for GetOpt (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Interacting with the Environment

 /** Array used to convert a char to a String */
 private static char[] strConvArray = { 0 };

 /**
 * Modern way of using GetOpt: call this once and get all options.
 * <p>
 * This parses the options and returns a Map whose keys are the found options.
 * Normally followed by a call to getFilenameList().
 * @return a Map whose keys are Strings of length 1 (containing the char
 * from the option that was matched) and whose value is a String
 * containing the value, or null for a non-option argument.
 */
 public Map parseArguments(String[] argv) {
 Map optionsAndValues = new HashMap();
 fileNameArguments = new ArrayList();
 for (int i = 0; i < argv.length; i++) {
 Debug.println("getopt", "parseArg: i=" + i + ": arg " + argv[i]);
 char c = getopt(argv);
 if (c != DONE) {
 strConvArray[0] = c;
 optionsAndValues.put(new String(strConvArray), optarg);
 // If this arg takes an option, we must skip it here.
 if (optarg != null)
 ++i;
 } else {
 fileNameArguments.add(argv[i]);
 }
 }
 return optionsAndValues;
 }

 /** Get the list of filename-like arguments after options */
 public List getFilenameList() {
 if (fileNameArguments == null) {
 throw new IllegalArgumentException(
 "Illegal call to getFilenameList() before parseOptions()");
 }
 return fileNameArguments;
 }

 /** The true heart of getopt, whether used old way or new way:
 * returns one argument; call repeatedly until it returns DONE.
 */
 public char getopt(String argv[]) {
 Debug.println("getopt",
 "optind=" + optind + ", argv.length="+argv.length);

 if (optind == (argv.length)-1) {
 done = true;
 }

 // If we are (now) finished, bail.
 if (done) {

Example 2-2. Source code for GetOpt (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Command-Line Arguments | 49

See Also
GetOpt is an adequate tool for processing command-line options. You may come up
with something better and contribute it to the Java world; this is left as an exercise
for the reader.

For another way of dealing with command lines, see the Jakarta Commons Com-
mand Line Interface, which can be found at http://jakarta.apache.org/commons/cli/.

 return DONE;
 }

 // TODO - two-pass, 1st check long args, 2nd check for
 // char, may be multi char as in "-no outfile" == "-n -o outfile".

 // Pick off the next command-line argument; check if it starts "-".
 // If so, look it up in the list.
 String thisArg = argv[optind++];
 if (thisArg.startsWith("-")) {
 optarg = null;
 for (int i=0; i<options.length; i++) {
 if (options[i].argLetter == thisArg.charAt(1) ||
 (options[i].argName != null &&
 options[i].argName == thisArg.substring(1))) { // found it
 // If it needs an option argument, get it.
 if (options[i].takesArgument) {
 if (optind < argv.length) {
 optarg = argv[optind];
 ++optind;
 } else {
 throw new IllegalArgumentException(
 "Option " + options[i].argLetter +
 " needs value but found end of arg list");
 }
 }
 return options[i].argLetter;
 }
 }
 // Began with "-" but not matched, so must be error.
 return '?';
 } else {
 // Found non-argument non-option word in argv: end of options.
 done = true;
 return DONE;
 }
 }

 /** Return optind, the index into args of the last option we looked at */
 public int getOptInd() {
 return optind;
 }

}

Example 2-2. Source code for GetOpt (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50

Chapter 3abCHAPTER 3

Strings and Things

3.0 Introduction
Character strings are an inevitable part of just about any programming task. We use
them for printing messages for the user; for referring to files on disk or other exter-
nal media; and for people’s names, addresses, and affiliations. The uses of strings are
many, almost without number (actually, if you need numbers, we’ll get to them in
Chapter 5).

If you’re coming from a programming language like C, you’ll need to remember that
String is a defined type (class) in Java. That is, a string is an object and therefore has
methods. It is not an array of characters and should not be thought of as an array.
Operations like fileName.endsWith(".gif") and extension.equals(".gif") (and the
equivalent ".gif".equals(extension)) are commonplace.

Notice that a given String object, once constructed, is immutable. That is, once I
have said String s = "Hello" + yourName; then the particular object that reference vari-
able s refers to can never be changed. You can assign s to refer to a different string,
even one derived from the original, as in s = s.trim(). And you can retrieve charac-
ters from the original string using charAt(), but it isn’t called getCharAt() because
there is not, and never will be, a setCharAt() method. Even methods like
toUpperCase() don’t change the String; they return a new String object containing
the translated characters. If you need to change characters within a String, you
should instead create a StringBuilder* (possibly initialized to the starting value of the
String), manipulate the StringBuilder to your heart’s content, and then convert that
to String at the end, using the ubiquitous toString() method.

How can I be so sure they won’t add a setCharAt() method in the next release?
Because the immutability of strings is one of the fundamentals of the Java Virtual

* StringBuilder is new in JDK 1.5. It is functionally equivalent to the older StringBuffer. We will delve into
the details in Recipe 3.3.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 51

Machine. Remember that Java is the one language that takes security and multipro-
cessing (threads) seriously. Got that in mind? Good. Now think about applets, which
are prevented from accessing many local resources. Consider the following scenario:
Thread A starts up another Thread B. Thread A creates a string called s containing a
filename, saves a reference s2 to it, and passes s to some method that requires per-
mission. This method will certainly call the Java Virtual Machine’s SecurityManager *

object, if one is installed (as it certainly will be in an applet environment). Then, in
the nanoseconds between the time the SecurityManager passes its approval on the
named file and the time the I/O system actually gets around to opening the file,
Thread B changes the string referred to by s2 to refer to a system file. Poof! If you
could do this, the entire notion of Java security would be a joke. But of course, they
thought of that, so you can’t. While you can, at any time, assign a new String refer-
ence to s, this never has any effect on the string that s used to refer to. Except, of
course, if s were the only reference to that String, it is now eligible for garbage col-
lection—it may go up the pipe!

Remember also that the String is a very fundamental type in Java. Unlike most of the
other classes in the core API, the behavior of strings is not changeable; the class is
marked final so it cannot be subclassed. So you can’t declare your own String sub-
class. Think if you could—you could masquerade as a String but provide a
setCharAt() method! Again, they thought of that. If you don’t believe me, try it out:

/**
 * If this class could be compiled, Java security would be a myth.
 */
public class WolfInStringsClothing extends java.lang.String {
 public void setCharAt(int index, char newChar) {
 // The implementation of this method
 // is left as an exercise for the reader.
 // Hint: compile this code exactly as-is before bothering!
 }
}

Got it? They thought of that!

Of course you do need to be able to modify strings. Some methods extract part of a
String; these are covered in the first few recipes in this chapter. And StringBuilder is
an important set of classes that deals in characters and strings and has many methods
for changing the contents, including, of course, a toString() method. Reformed C
programmers should note that Java strings are not arrays of chars as in C, so you must
use methods for such operations as processing a string one character at a time; see
Recipe 3.4. Figure 3-1 shows an overview of String, StringBuilder, and C-language
strings.

* SecurityManager is a class that is consulted about whether the current application is allowed to do certain
things, such as open local disk files, open arbitrary network connections, etc. Applets run with a more
restrictive security manager than do normal applications, for example.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Strings and Things

While we haven’t discussed the details of the java.io package yet (we will, in
Chapter 10), you need to be able to read text files for some of these programs. Even
if you’re not familiar with java.io, you can probably see from the examples that read
text files that a BufferedReader allows you to read “chunks” of data, and that this
class has a very convenient readLine() method.

We won’t show you how to sort an array of strings here; the more general notion of
sorting a collection of objects is discussed in Recipe 7.8.

3.1 Taking Strings Apart with Substrings

Problem
You want to break a string apart into substrings by position.

Solution
Use the String object’s substring() method.

Discussion
The substring() method constructs a new String object made up of a run of charac-
ters contained somewhere in the original string, the one whose substring() you
called. The name of this method, substring(), violates the stylistic dictum that
words should be capitalized; if Java were 100.0% consistent, this method would be

Figure 3-1. String, StringBuilder, and C-language strings

String

immutableH e l l o W o r l d

StringBuilder

mutable
H e l l o W o r
l d

C-language “string” (really “char*”)

null byte at end

H e l l o W o r l d \0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Taking Strings Apart with StringTokenizer | 53

named subString. But it’s not—it’s substring. The substring method is overloaded:
both forms require a starting index. The one-argument form returns from startIndex
to the end. The two-argument form takes an ending index (not a length, as in some
languages), so that an index can be generated by the String methods indexOf() or
lastIndexOf(). Note that the end index is one beyond the last character!

// File SubStringDemo.java
public static void main(String[] av) {
 String a = "Java is great.";
 System.out.println(a);
 String b = a.substring(5); // b is the String "is great."
 System.out.println(b);
 String c = a.substring(5,7);// c is the String "is"
 System.out.println(c);
 String d = a.substring(5,a.length());// d is "is great."
 System.out.println(d);
}

When run, this prints the following:

> java SubStringDemo
Java is great.
is great.
is
is great.
>

3.2 Taking Strings Apart with StringTokenizer

Problem
You need to take a string apart into words or tokens.

Solution
Construct a StringTokenizer around your string and call its methods hasMoreTokens()
and nextToken(). Or, use Regular Expressions (see Chapter 4).

The StringTokenizer methods implement the Iterator design pattern (see Recipe 7.4):

// StrTokDemo.java
StringTokenizer st = new StringTokenizer("Hello World of Java");

while (st.hasMoreTokens())
 System.out.println("Token: " + st.nextToken());

StringTokenizer also implements the Enumeration interface directly (also in Recipe 7.4),
but if you use the methods thereof you need to cast the results to String.

A StringTokenizer normally breaks the String into tokens at what we would think of
as “word boundaries” in European languages. Sometimes you want to break at some
other character. No problem. When you construct your StringTokenizer, in addition

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Strings and Things

to passing in the string to be tokenized, pass in a second string that lists the “break
characters.” For example:

// StrTokDemo2.java
StringTokenizer st = new StringTokenizer("Hello, World|of|Java", ", |");

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

But wait, there’s more! What if you are reading lines like:

FirstName|LastName|Company|PhoneNumber

and your dear old Aunt Begonia hasn’t been employed for the last 38 years? Her
“Company” field will in all probability be blank.* If you look very closely at the previ-
ous code example, you’ll see that it has two delimiters together (the comma and the
space), but if you run it, there are no “extra” tokens. That is, the StringTokenizer
normally discards adjacent consecutive delimiters. For cases like the phone list,
where you need to preserve null fields, there is good news and bad news. The good
news is you can do it: you simply add a second argument of true when constructing
the StringTokenizer, meaning that you wish to see the delimiters as tokens. The bad
news is that you now get to see the delimiters as tokens, so you have to do the arith-
metic yourself. Want to see it? Run this program:

// StrTokDemo3.java
StringTokenizer st =
 new StringTokenizer("Hello, World|of|Java", ", |", true);

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

and you get this output:

C:\javasrc>java StrTokDemo3
Token: Hello
Token: ,
Token:
Token: World
Token: |
Token: of
Token: |
Token: Java

This isn’t how you’d like StringTokenizer to behave, ideally, but it is serviceable
enough most of the time. Example 3-1 processes and ignores consecutive tokens,
returning the results as an array of Strings.

* Unless, perhaps, you’re as slow at updating personal records as I am.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Taking Strings Apart with StringTokenizer | 55

When you run this, you will see that A is always in Field 1, B (if present) is in Field 2,
and so on. In other words, the null fields are being handled properly:

Input: A|B|C|D
Output 0 was: A
Output 1 was: B
Output 2 was: C

Example 3-1. StrTokDemo4.java (StringTokenizer)

import java.util.*;

/** Show using a StringTokenizer including getting the delimiters back */
public class StrTokDemo4 {
 public final static int MAXFIELDS = 5;
 public final static String DELIM = "|";

 /** Processes one String; returns it as an array of Strings */
 public static String[] process(String line) {
 String[] results = new String[MAXFIELDS];

 // Unless you ask StringTokenizer to give you the tokens,
 // it silently discards multiple null tokens.
 StringTokenizer st = new StringTokenizer(line, DELIM, true);

 int i = 0;
 // stuff each token into the current slot in the array
 while (st.hasMoreTokens()) {
 String s = st.nextToken();
 if (s.equals(DELIM)) {
 if (i++>=MAXFIELDS)
 // This is messy: See StrTokDemo4b which uses
 // a Vector to allow any number of fields.
 throw new IllegalArgumentException("Input line " +
 line + " has too many fields");
 continue;
 }
 results[i] = s;
 }
 return results;
 }

 public static void printResults(String input, String[] outputs) {
 System.out.println("Input: " + input);
 for (int i=0; i<outputs.length; i++)
 System.out.println("Output " + i + " was: " + outputs[i]);
 }

 public static void main(String[] a) {
 printResults("A|B|C|D", process("A|B|C|D"));
 printResults("A||C|D", process("A||C|D"));
 printResults("A|||D|E", process("A|||D|E"));
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Strings and Things

Output 3 was: D
Output 4 was: null
Input: A||C|D
Output 0 was: A
Output 1 was: null
Output 2 was: C
Output 3 was: D
Output 4 was: null
Input: A|||D|E
Output 0 was: A
Output 1 was: null
Output 2 was: null
Output 3 was: D
Output 4 was: E

See Also
Now that Java includes Regular Expressions (as of JDK 1.4), many occurrences of
StringTokenizer can be replaced with Regular Expressions (see Chapter 4) with con-
siderably more flexibility. For example, to extract all the numbers from a String, you
can use this code:

Matcher toke = Pattern.compile("\\d+").matcher(inputString);
 while (toke.find()) {
 String courseString = toke.group(0);
 int courseNumber = Integer.parseInt(courseString);
 ...

This allows user input to be more flexible than you could easily handle with a
StringTokenizer. Assuming that the numbers represent course numbers at some edu-
cational institution, the inputs “471,472,570” or “Courses 471 and 472, 570” or just
“471 472 570” should all give the same results.

3.3 Putting Strings Together with +,
StringBuilder (JDK 1.5), and StringBuffer

Problem
You need to put some String pieces (back) together.

Solution
Use string concatenation: the + operator. The compiler implicitly constructs a
StringBuilder for you and uses its append() methods. Better yet, construct and use it
yourself.

Discussion
An object of one of the StringBuilder classes basically represents a collection of char-
acters. It is similar to a String object, but, as mentioned, Strings are immutable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Putting Strings Together with +, StringBuilder (JDK 1.5), and StringBuffer | 57

StringBuilders are mutable and designed for, well, building Strings. You typically
construct a StringBuilder, invoke the methods needed to get the character sequence
just the way you want it, and then call toString() to generate a String representing
the same character sequence for use in most of the Java API, which deals in Strings.

StringBuffer is historical—it’s been around since JDK 1.1. Some of its methods are
synchronized (see Recipe 24.5), which involves unneeded overhead in a single-
threaded application. In 1.5, this class was “split” into StringBuffer (which is syn-
chronized) and the new StringBuilder (which is not synchronized); thus, it is faster
and preferable for single-threaded use. Another new class, AbstractStringBuilder, is
the parent of both. In the following discussion, I’ll use “the StringBuilder classes” to
refer to all three, since they mostly have the same methods. My example code uses
StringBuffer instead of StringBuilder since most people have not yet migrated to 1.5.
Except for the fact that StringBuilder is not threadsafe, these classes are identical
and can be used interchangeably.

The StringBuilder classes have a variety of methods for inserting, replacing, and oth-
erwise modifying a given StringBuilder. Conveniently, the append() method returns
a reference to the StringBuilder itself, so that statements like the .append(...).
append(...) are fairly common. You might even see this third way in a toString()
method. Example 3-2 shows the three ways of concatenating strings.

Example 3-2. StringBufferDemo.java

/**
 * StringBufferDemo: construct the same String three different ways.
 */
public class StringBufferDemo {
 public static void main(String[] argv) {
 String s1 = "Hello" + ", " + "World";
 System.out.println(s1);

 // Build a StringBuffer, and append some things to it.
 StringBuffer sb2 = new StringBuffer();
 sb2.append("Hello");
 sb2.append(',');
 sb2.append(' ');
 sb2.append("World");

 // Get the StringBuffer's value as a String, and print it.
 String s2 = sb2.toString();
 System.out.println(s2);

 // Now do the above all over again, but in a more
 // concise (and typical "real-world" Java) fashion.

 StringBuffer sb3 = new StringBuffer().append("Hello").
 append(',').append(' ').append("World");
 System.out.println(sb3.toString());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Strings and Things

In fact, all the methods that modify more than one character of a StringBuilder’s
contents—append(), delete(), deleteCharAt(), insert(), replace(), and reverse()—
return a reference to the object to facilitate this style of coding.

To show that StringBuilder is, as Sun claims, a (non-threadsafe) “drop-in replace-
ment for StringBuffer,” here is StringBuilderDemo, a copy of StringBufferDemo con-
verted to use StringBuilder. Its output is identical to StringBufferDemo:

/**
 * StringBuilderDemo: construct the same String three different ways.
 */
public class StringBuilderDemo {

 public static void main(String[] argv) {

 String s1 = "Hello" + ", " + "World";
 System.out.println(s1);

 // Build a StringBuilder, and append some things to it.
 StringBuilder sb2 = new StringBuilder();
 sb2.append("Hello");
 sb2.append(',');
 sb2.append(' ');
 sb2.append("World");

 // Get the StringBuilder's value as a String, and print it.
 String s2 = sb2.toString();
 System.out.println(s2);

 // Now do the above all over again, but in a more
 // concise (and typical "real-world" Java) fashion.

 StringBuilder sb3 = new StringBuilder().append("Hello").
 append(',').append(' ').append("World");
 System.out.println(sb3.toString());
 }
}

As another example of using a StringBuilder, consider the need to convert a list of
items into a comma-separated list, like this:

StringBuffer sb = new StringBuffer();
while (st.hasMoreElements()) {
 sb.append(st.nextToken());
 if (st.hasMoreElements())
 sb.append(", ");
}
return sb.toString();

 // Exercise for the reader: do it all again but without
 // creating ANY temporary variables.
 }
}

Example 3-2. StringBufferDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Processing a String One Character at a Time | 59

This pattern relies on the fact that you can call the informational method
hasMoreElements() in the Enumeration (or hasNext() in an Iterator, as discussed in
Recipe 7.4) more than once on each element. But it works, and it avoids getting an
extra comma after the last element of the list.

3.4 Processing a String One Character at a Time

Problem
You want to process the contents of a string, one character at a time.

Solution
Use a for loop and the String’s charAt() method.

Discussion
A string’s charAt() method retrieves a given character by index number (starting at
zero) from within the String object. To process all the characters in a String, one
after another, use a for loop ranging from zero to String.length()–1. Here we pro-
cess all the characters in a String:

// StrCharAt.java
String a = "A quick bronze fox leapt a lazy bovine";
for (int i=0; i < a.length(); i++)
 System.out.println("Char " + i + " is " + a.charAt(i));

A checksum is a numeric quantity representing and confirming the contents of a file.
If you transmit the checksum of a file separately from the contents, a recipient can
checksum the file—assuming the algorithm is known—and verify that the file was
received intact. Example 3-3 shows the simplest possible checksum, computed just
by adding the numeric values of each character. Note that on files, it does not
include the values of the newline characters; to fix this, retrieve System.
getProperty("line.separator"); and add its character value(s) into the sum at the
end of each line. Or give up on line mode and read the file a character at a time.

Example 3-3. CheckSum.java

/** CheckSum one file, given an open BufferedReader. */
 public int process(BufferedReader is) {
 int sum = 0;
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 int i;
 for (i=0; i<inputLine.length(); i++) {
 sum += inputLine.charAt(i);
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Strings and Things

3.5 Aligning Strings

Problem
You want to align strings to the left, right, or center.

Solution
Do the math yourself, and use substring (Recipe 3.1) and a StringBuilder (Recipe 3.3).
Or, just use my StringAlign class, which is based on the java.text.Format class.

Discussion
Centering and aligning text comes up surprisingly often. Suppose you want to print a
simple report with centered page numbers. There doesn’t seem to be anything in the
standard API that will do the job fully for you. But I have written a class called
StringAlign that will. Here’s how you might use it:

/* Align a page number on a 70-character line. */
public class StringAlignSimple {

 public static void main(String[] args) {
 // Construct a "formatter" to center strings.
 StringAlign formatter = new StringAlign(70, StringAlign.JUST_CENTER);
 // Try it out, for page "i"
 System.out.println(formatter.format("- i -"));
 // Try it out, for page 4. Since this formatter is
 // optimized for Strings, not specifically for page numbers,
 // we have to convert the number to a String
 System.out.println(formatter.format(Integer.toString(4)));
 }
}

If we compile and run this class, it prints the two demonstration line numbers cen-
tered, as shown:

> jikes +E -d . StringAlignSimple.java
> java StringAlignSimple
 - i -
 4
>

 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 } f
 return sum;
}

Example 3-3. CheckSum.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Aligning Strings | 61

Example 3-4 is the code for the StringAlign class. Note that this class extends a class
called Format. In the package java.text, there is a series of Format classes that all have
at least one method called format(). It is thus in a family with numerous other for-
matters, such as DateFormat, NumberFormat, and others, that we’ll meet in upcoming
chapters.

Example 3-4. StringAlign.java

/** Bare-minimum String formatter (string aligner). */
public class StringAlign extends Format {
 /* Constant for left justification. */
 public static final int JUST_LEFT = 'l';
 /* Constant for centering. */
 public static final int JUST_CENTRE = 'c';
 /* Centering Constant, for those who spell "centre" the American way. */
 public static final int JUST_CENTER = JUST_CENTRE;
 /** Constant for right-justified Strings. */
 public static final int JUST_RIGHT = 'r';

 /** Current justification */
 private int just;
 /** Current max length */
 private int maxChars;

 /** Construct a StringAlign formatter; length and alignment are
 * passed to the Constructor instead of each format() call as the
 * expected common use is in repetitive formatting e.g., page numbers.
 * @param nChars - the length of the output
 * @param just - one of JUST_LEFT, JUST_CENTRE or JUST_RIGHT
 */
 public StringAlign(int maxChars, int just) {
 switch(just) {
 case JUST_LEFT:
 case JUST_CENTRE:
 case JUST_RIGHT:
 this.just = just;
 break;
 default:
 throw new IllegalArgumentException("invalid justification arg.");
 }
 if (maxChars < 0) {
 throw new IllegalArgumentException("maxChars must be positive.");
 }
 this.maxChars = maxChars;
 }

 /** Format a String.
 * @param input _ the string to be aligned
 * @parm where - the StringBuffer to append it to.
 * @param ignore - a FieldPosition (may be null, not used but
 * specified by the general contract of Format).
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Strings and Things

See Also
The alignment of numeric columns is considered in Chapter 5.

 public StringBuffer format(
 Object obj, StringBuffer where, FieldPosition ignore) {

 String s = (String)obj;
 String wanted = s.substring(0, Math.min(s.length(), maxChars));

 // Get the spaces in the right place.
 switch (just) {
 case JUST_RIGHT:
 pad(where, maxChars - wanted.length());
 where.append(wanted);
 break;
 case JUST_CENTRE:
 int startPos = where.length();
 pad(where, (maxChars - wanted.length())/2);
 where.append(wanted);
 pad(where, (maxChars - wanted.length())/2);
 // Adjust for "rounding error"
 pad(where, maxChars - (where.length() - startPos));
 break;
 case JUST_LEFT:
 where.append(wanted);
 pad(where, maxChars - wanted.length());
 break;
 }
 return where;
 }

 protected final void pad(StringBuffer to, int howMany) {
 for (int i=0; i<howMany; i++)
 to.append(' ');
 }

 /** Convenience Routine */
 String format(String s) {
 return format(s, new StringBuffer(), null).toString();
 }

 /** ParseObject is required, but not useful here. */
 public Object parseObject (String source, ParsePosition pos) {
 return source;
 }

}

Example 3-4. StringAlign.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Unicode Characters and Strings | 63

3.6 Converting Between Unicode Characters
and Strings

Problem
You want to convert between Unicode characters and Strings.

Solution
Since both Java char values and Unicode characters are 16 bits in width, a char can
hold any Unicode character. The charAt() method of String returns a Unicode char-
acter. The StringBuilder append() method has a form that accepts a char. Since char
is an integer type, you can even do arithmetic on chars, though this is not necessary
as frequently as in, say, C. Nor is it often recommended, since the Character class
provides the methods for which these operations were normally used in languages
such as C. Here is a program that uses arithmetic on chars to control a loop, and also
appends the characters into a StringBuilder (see Recipe 3.3):

/**
 * Conversion between Unicode characters and Strings
 */
public class UnicodeChars {
 public static void main(String[] argv) {
 StringBuffer b = new StringBuffer();
 for (char c = 'a'; c<'d'; c++) {
 b.append(c);
 }
 b.append('\u00a5'); // Japanese Yen symbol
 b.append('\u01FC'); // Roman AE with acute accent
 b.append('\u0391'); // GREEK Capital Alpha
 b.append('\u03A9'); // GREEK Capital Omega

 for (int i=0; i<b.length(); i++) {
 System.out.println("Character #" + i + " is " + b.charAt(i));
 }
 System.out.println("Accumulated characters are " + b);
 }
}

When you run it, the expected results are printed for the ASCII characters. On my
Unix system, the default fonts don’t include all the additional characters, so they are
either omitted or mapped to irregular characters (Recipe 13.3 shows how to draw
text in other fonts):

C:\javasrc\strings>java UnicodeChars
Character #0 is a
Character #1 is b
Character #2 is c
Character #3 is %

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Strings and Things

Character #4 is |
Character #5 is
Character #6 is)
Accumulated characters are abc%|)

My Windows system doesn’t have most of those characters either, but at least it
prints the ones it knows are lacking as question marks (Windows system fonts are
more homogenous than those of the various Unix systems, so it is easier to know
what won’t work). On the other hand, it tries to print the Yen sign as a Spanish capi-
tal Enye (N with a ~ over it). Amusingly, if I capture the console log under Win-
dows into a file and display it under Unix, the Yen symbol now appears:

Character #0 is a
Character #1 is b
Character #2 is c
Character #3 is ¥
Character #4 is ?
Character #5 is ?
Character #6 is ?
Accumulated characters are abc¥???

See Also
The Unicode program in this book’s online source displays any 256-character section
of the Unicode character set. Documentation listing every character in the Unicode
character set can be downloaded from the Unicode Consortium at http://www.
unicode.org.

3.7 Reversing a String by Word or by Character

Problem
You wish to reverse a string, a character, or a word at a time.

Solution
You can reverse a string by character easily, using a StringBuilder. There are several
ways to reverse a string a word at a time. One natural way is to use a StringTokenizer
and a stack. Stack is a class (defined in java.util; see Recipe 7.14) that implements
an easy-to-use last-in, first-out (LIFO) stack of objects.

Discussion
To reverse the characters in a string, use the StringBuilder reverse() method:

// StringRevChar.java
String sh = "FCGDAEB";
System.out.println(sh + " -> " + new StringBuffer(sh).reverse());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expanding and Compressing Tabs | 65

The letters in this example list the order of the sharps in the key signatures of West-
ern music; in reverse, it lists the order of flats. Alternately, of course, you could
reverse the characters yourself, using character-at-a-time mode (see Recipe 3.4).

A popular mnemonic, or memory aid, for the order of sharps and flats consists of one
word for each sharp instead of just one letter, so we need to reverse this one word at
a time. Example 3-5 adds each one to a Stack (see Recipe 7.14), then processes the
whole lot in LIFO order, which reverses the order.

3.8 Expanding and Compressing Tabs

Problem
You need to convert space characters to tab characters in a file, or vice versa. You
might want to replace spaces with tabs to save space on disk, or go the other way to
deal with a device or program that can’t handle tabs.

Solution
Use my Tabs class or its subclass EnTab.

Discussion
Example 3-6 is a listing of EnTab, complete with a sample main program. The pro-
gram works a line at a time. For each character on the line, if the character is a space,
we see if we can coalesce it with previous spaces to output a single tab character.
This program depends on the Tabs class, which we’ll come to shortly. The Tabs class
is used to decide which column positions represent tab stops and which do not. The
code also has several Debug printouts. (Debug was introduced in Recipe 1.11.)

Example 3-5. StringReverse.java

String s = "Father Charles Goes Down And Ends Battle";

// Put it in the stack frontward
Stack myStack = new Stack();
StringTokenizer st = new StringTokenizer(s);
while (st.hasMoreTokens()) myStack.push(st.nextElement());

// Print the stack backward
System.out.print('"' + s + '"' + " backwards by word is:\n\t\"");
while (!myStack.empty()) {
 System.out.print(myStack.pop());
 System.out.print(' ');
}
System.out.println('"');

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Strings and Things

Example 3-6. Entab.java

/**
 * EnTab: replace blanks by tabs and blanks. Transmuted from K&R Software Tools
 * book into C. Transmuted again, years later, into Java. Totally rewritten to
 * be line-at-a-time instead of char-at-a-time.
 *
 * @author Ian F. Darwin, http://www.darwinsys.com/
 * @version $Id: ch03,v 1.3 2004/05/04 18:03:14 ian Exp $
 */
public class EnTab {
 /** The Tabs (tab logic handler) */
 protected Tabs tabs;

 /**
 * Delegate tab spacing information to tabs.
 *
 * @return
 */
 public int getTabSpacing() {
 return tabs.getTabSpacing();
 }

 /**
 * Main program: just create an EnTab object, and pass the standard input
 * or the named file(s) through it.
 */
 public static void main(String[] argv) throws IOException {
 EnTab et = new EnTab(8);
 if (argv.length == 0) // do standard input
 et.entab(
 new BufferedReader(new InputStreamReader(System.in)),
 System.out);
 else
 for (int i = 0; i < argv.length; i++) { // do each file
 et.entab(
 new BufferedReader(new FileReader(argv[i])),
 System.out);
 }
 }

 /**
 * Constructor: just save the tab values.
 *
 * @param n
 * The number of spaces each tab is to replace.
 */
 public EnTab(int n) {
 tabs = new Tabs(n);
 }

 public EnTab() {
 tabs = new Tabs();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expanding and Compressing Tabs | 67

 /**
 * entab: process one file, replacing blanks with tabs.
 *
 * @param is A BufferedReader opened to the file to be read.
 * @param out a PrintWriter to send the output to.
 */
 public void entab(BufferedReader is, PrintWriter out) throws IOException {
 String line;
 int c, col = 0, newcol;

 // main loop: process entire file one line at a time.
 while ((line = is.readLine()) != null) {
 out.println(entabLine(line));
 }
 }
 /**
 * entab: process one file, replacing blanks with tabs.
 *
 * @param is A BufferedReader opened to the file to be read.
 * @param out A PrintStream to write the output to.
 */
 public void entab(BufferedReader is, PrintStream out) throws IOException {
 entab(is, new PrintWriter(out));
 }

 /**
 * entabLine: process one line, replacing blanks with tabs.
 *
 * @param line -
 * the string to be processed
 */
 public String entabLine(String line) {
 int N = line.length(), outCol = 0;
 StringBuffer sb = new StringBuffer();
 char ch;
 int consumedSpaces = 0;

 for (int inCol = 0; inCol < N; inCol++) {
 ch = line.charAt(inCol);
 // If we get a space, consume it, don't output it.
 // If this takes us to a tab stop, output a tab character.
 if (ch == ' ') {
 Debug.println("space", "Got space at " + inCol);
 if (!tabs.isTabStop(inCol)) {
 consumedSpaces++;
 } else {
 Debug.println("tab", "Got a Tab Stop "+ inCol);
 sb.append('\t');
 outCol += consumedSpaces;
 consumedSpaces = 0;
 }
 continue;
 }

Example 3-6. Entab.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Strings and Things

As the comments state, this code was patterned after a program in Kernighan and
Plauger’s classic work, Software Tools. While their version was in a language called
RatFor (Rational Fortran), my version has since been through several translations.
Their version actually worked one character at a time, and for a long time I tried to
preserve this overall structure. For this edition of the book, I finally rewrote it to be a
line-at-a-time program.

The program that goes in the opposite direction—putting tabs in rather than taking
them out—is the DeTab class shown in Example 3-7; only the core methods are
shown.

 // We're at a non-space; if we're just past a tab stop, we need
 // to put the "leftover" spaces back out, since we consumed
 // them above.
 while (inCol-1 > outCol) {
 Debug.println("pad", "Padding space at "+ inCol);
 sb.append(' ');
 outCol++;
 }

 // Now we have a plain character to output.
 sb.append(ch);
 outCol++;

 }
 // If line ended with trailing (or only!) spaces, preserve them.
 for (int i = 0; i < consumedSpaces; i++) {
 Debug.println("trail", "Padding space at end # " + i);
 sb.append(' ');
 }
 return sb.toString();
 }
}

Example 3-7. DeTab.java

public class DeTab {
 Tabs ts; // iniitialized in Constructor

 public static void main(String[] argv) throws IOException {
 DeTab dt = new DeTab(8);
 dt.detab(new BufferedReader(new InputStreamReader(System.in)),
 new PrintWriter(System.out));
 }

 /** detab one file (replace tabs with spaces)
 * @param is - the file to be processed
 * @param out - the updated file
 */
 public void detab(BufferedReader is, PrintWriter out) throws IOException {
 String line;

Example 3-6. Entab.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expanding and Compressing Tabs | 69

The Tabs class provides two methods, settabpos() and istabstop(). Example 3-8
lists the source for the Tabs class.

 char c;
 int col;
 while ((line = is.readLine()) != null) {
 out.println(detabLine(line));
 }
 }

 /** detab one line (replace tabs with spaces)
 * @param line - the line to be processed
 * @return the updated line
 */
 public String detabLine(String line) {
 char c;
 int col;
 StringBuffer sb = new StringBuffer();
 col = 0;
 for (int i = 0; i < line.length(); i++) {
 // Either ordinary character or tab.
 if ((c = line.charAt(i)) != '\t') {
 sb.append(c); // Ordinary
 ++col;
 continue;
 }
 do { // Tab, expand it, must put >=1 space
 sb.append(' ');
 } while (!ts.isTabStop(++col));
 }
 return sb.toString();
 }
}

Example 3-8. Tabs.java

public class Tabs {
 /** tabs every so often */
 public final static int DEFTABSPACE = 8;
 /** the current tab stop setting. */
 protected int tabSpace = DEFTABSPACE;
 /** The longest line that we worry about tabs for. */
 public final static int MAXLINE = 250;
 /** the current tab stops */
 protected boolean[] tabstops;

 /** Construct a Tabs object with a given tab stop settings */
 public Tabs(int n) {
 if (n <= 0)
 n = 1;
 tabstops = new boolean[MAXLINE];
 tabSpace = n;

Example 3-7. DeTab.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Strings and Things

3.9 Controlling Case

Problem
You need to convert strings to uppercase or lowercase, or to compare strings with-
out regard for case.

Solution
The String class has a number of methods for dealing with documents in a particu-
lar case. toUpperCase() and toLowerCase() each return a new string that is a copy of
the current string, but converted as the name implies. Each can be called either with

 settabs();
 }

 /** Construct a Tabs object with a default tab stop settings */
 public Tabs() {
 this(DEFTABSPACE);
 }

 /** settabs - set initial tab stops */
 private void settabs() {
 for (int i = 0; i < tabstops.length; i++) {
 tabstops[i] = ((i+1) % tabSpace) == 0;
 Debug.println("tabs", "Tabs[" + i + "]=" + tabstops[i]);
 }
 }

 /**
 * @return Returns the tabSpace.
 */
 public int getTabSpacing() {
 return tabSpace;
 }

 /** isTabStop - returns true if given column is a tab stop.
 * If current input line is too long, we just put tabs wherever,
 * no exception is thrown.
 * @param col - the current column number
 */
 public boolean isTabStop(int col) {
 if (col > tabstops.length-1) {
 tabstops = new boolean[tabstops.length * 2;
 settabs();
 }
 return tabstops[col];
 }
}

Example 3-8. Tabs.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text Documents | 71

no arguments or with a Locale argument specifying the conversion rules; this is nec-
essary because of internationalization. Java provides significantly more international-
ization and localization features than ordinary languages, a feature that is covered in
Chapter 15. While the equals() method tells you if another string is exactly the
same, equalsIgnoreCase() tells you if all characters are the same regardless of case.
Here, you can’t specify an alternate locale; the system’s default locale is used:

// Case.java
String name = "Java Cookbook";
System.out.println("Normal:\t" + name);
System.out.println("Upper:\t" + name.toUpperCase());
System.out.println("Lower:\t" + name.toLowerCase());
String javaName = "java cookBook"; // As if it were Java identifiers :-)
if (!name.equals(javaName))
 System.err.println("equals() correctly reports false");
else
 System.err.println("equals() incorrectly reports true");
if (name.equalsIgnoreCase(javaName))
 System.err.println("equalsIgnoreCase() correctly reports true");
else
 System.err.println("equalsIgnoreCase() incorrectly reports false");

If you run this, it prints the first name changed to uppercase and lowercase, then it
reports that both methods work as expected.

C:\javasrc\strings>java Case
Normal: Java Cookbook
Upper: JAVA COOKBOOK
Lower: java cookbook
equals() correctly reports false
equalsIgnoreCase() correctly reports true

See Also
Regular expressions make it simpler to ignore case in string searching (see
Chapter 4).

3.10 Indenting Text Documents

Problem
You need to indent (or “undent” or “dedent”) a text document.

Solution
To indent, either generate a fixed-length string and prepend it to each output line, or
use a for loop and print the right number of spaces:

// Indent.java
/** the default number of spaces. */
static int nSpaces = 10;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Strings and Things

while ((inputLine = is.readLine()) != null) {
 for (int i=0; i<nSpaces; i++) System.out.print(' ');
 System.out.println(inputLine);
}

A more efficient approach to generating the spaces might be to construct a long
string of spaces and use substring() to get the number of spaces you need.

To undent, use substring to generate a string that does not include the leading
spaces. Be careful of inputs that are shorter than the amount you are removing! By
popular demand, I’ll give you this one, too. First, though, here’s a demonstration of
an Undent object created with an undent value of 5, meaning remove up to five spaces
(but don’t lose other characters in the first five positions):

$ java Undent
Hello World
Hello World
 Hello
Hello
 Hello
Hello
 Hello
 Hello

^C
$

I test it by entering the usual test string “Hello World”, which prints fine. Then
“Hello” with one space, and the space is deleted. With five spaces, exactly the five
spaces go. With six or more spaces, only five spaces go. A blank line comes out as a
blank line (i.e., without throwing an Exception or otherwise going berserk). I think it
works!

import java.io.*;

/** Undent - remove up to 'n' leading spaces
 */
public class Undent {
 /** the maximum number of spaces to remove. */
 protected int nSpaces;

 Undent(int n) {
 nSpaces = n;
 }

 public static void main(String[] av) {
 Undent c = new Undent(5);
 switch(av.length) {
 case 0: c.process(new BufferedReader(
 new InputStreamReader(System.in))); break;
 default:
 for (int i=0; i<av.length; i++)
 try {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Entering Nonprintable Characters | 73

 c.process(new BufferedReader(new FileReader(av[i])));
 } catch (FileNotFoundException e) {
 System.err.println(e);
 }
 }
 }

 /** process one file, given an open BufferedReader */
 public void process(BufferedReader is) {
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 int toRemove = 0;
 for (int i=0; i<nSpaces && i < inputLine.length(); i++)
 if (Character.isSpace(inputLine.charAt(i)))
 ++toRemove;
 System.out.println(inputLine.substring(toRemove));
 }
 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 }
 }
}

3.11 Entering Nonprintable Characters

Problem
You need to put nonprintable characters into strings.

Solution
Use the backslash character and one of the Java string escapes.

Discussion
The Java string escapes are listed in Table 3-1.

Table 3-1. String escapes

To get: Use: Notes

Tab \t

Linefeed (Unix newline) \n SeeSystem.getProperty("line.separator"), which gives you
the platform’s line end.

Carriage return \r

Form feed \f

Backspace \b

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Strings and Things

Here is a code example that shows most of these in action:

// StringEscapes.java
System.out.println("Java Strings in action:");
// System.out.println("An alarm or alert: \a"); // not supported
System.out.println("An alarm entered in Octal: \007");
System.out.println("A tab key: \t(what comes after)");
System.out.println("A newline: \n(what comes after)");
System.out.println("A Unicode character: \u0207");
System.out.println("A backslash character: \\");

If you have a lot of non-ASCII characters to enter, you may wish to consider using
Java’s input methods, discussed briefly in the JDK online documentation.

3.12 Trimming Blanks from the End of a String

Problem
You need to work on a string without regard for extra leading or trailing spaces a
user may have typed.

Solution
Use the String class trim() method.

Discussion
Example 3-9 uses trim() to strip an arbitrary number of leading spaces and/or tabs
from lines of Java source code in order to look for the characters //+ and //-. These
strings are special Java comments I use to mark the parts of the programs in this
book that I want to include in the printed copy.

Single quote \'

Double quote \"

Unicode character \uNNNN Four hexadecimal digits (no \x as in C/C++). See http://www.unicode.org
for codes.

Octal(!) character \NNN Who uses octal (base 8) these days?

Backslash \\

Example 3-9. GetMark.java (trimming and comparing strings)

/** the default starting mark. */
public final String startMark = "//+";
/** the default ending mark. */
public final String endMark = "//-";
/** True if we are currently inside marks. */
protected boolean printing = false;

Table 3-1. String escapes (continued)

To get: Use: Notes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Comma-Separated Data | 75

3.13 Parsing Comma-Separated Data

Problem
You have a string or a file of lines containing comma-separated values (CSV) that you
need to read. Many Windows-based spreadsheets and some databases use CSV to
export data.

Solution
Use my CSV class or a regular expression (see Chapter 4).

Discussion
CSV is deceptive. It looks simple at first glance, but the values may be quoted or
unquoted. If quoted, they may further contain escaped quotes. This far exceeds the
capabilities of the StringTokenizer class (Recipe 3.2). Either considerable Java cod-
ing or the use of regular expressions is required. I’ll show both ways.

First, a Java program. Assume for now that we have a class called CSV that has a no-
argument constructor and a method called parse() that takes a string representing
one line of the input file. The parse() method returns a list of fields. For flexibility,
the fields are returned as a List, from which you can obtain an Iterator (see Recipe
7.4). I simply use the Iterator’s hasNext() method to control the loop and its next()
method to get the next object:

import java.util.*;

/* Simple demo of CSV parser class.
 */
public class CSVSimple {

 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 if (inputLine.trim().equals(startMark)) {
 printing = true;
 } else if (inputLine.trim().equals(endMark)) {
 printing = false;
 } else if (printing)
 System.out.println(inputLine);
 }
 is.close();
 } catch (IOException e) {
 // not shown
 }
 }

Example 3-9. GetMark.java (trimming and comparing strings) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Strings and Things

 public static void main(String[] args) {
 CSV parser = new CSV();
 List list = parser.parse(
 "\"LU\",86.25,\"11/4/1998\",\"2:19PM\",+4.0625");
 Iterator it = list.iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
 }
}

After the quotes are escaped, the string being parsed is actually the following:

"LU",86.25,"11/4/1998","2:19PM",+4.0625

Running CSVSimple yields the following output:

> java CSVSimple
LU
86.25
11/4/1998
2:19PM
+4.0625
>

But what about the CSV class itself? The code in Example 3-10 started as a transla-
tion of a CSV program written in C++ by Brian W. Kernighan and Rob Pike that
appeared in their book The Practice of Programming (Addison Wesley). Their ver-
sion commingled the input processing with the parsing; my CSV class does only the
parsing since the input could be coming from any of a variety of sources. And it has
been substantially rewritten over time. The main work is done in parse(), which del-
egates handling of individual fields to advquoted() in cases where the field begins
with a quote; otherwise, to advplain().

Example 3-10. CSV.java

import java.util.*;

import com.darwinsys.util.Debug;

/** Parse comma-separated values (CSV), a common Windows file format.
 * Sample input: "LU",86.25,"11/4/1998","2:19PM",+4.0625
 * <p>
 * Inner logic adapted from a C++ original that was
 * Copyright (C) 1999 Lucent Technologies
 * Excerpted from 'The Practice of Programming'
 * by Brian W. Kernighan and Rob Pike.
 * <p>
 * Included by permission of the http://tpop.awl.com/ web site,
 * which says:
 * "You may use this code for any purpose, as long as you leave
 * the copyright notice and book citation attached." I have done so.
 * @author Brian W. Kernighan and Rob Pike (C++ original)
 * @author Ian F. Darwin (translation into Java and removal of I/O)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Comma-Separated Data | 77

 * @author Ben Ballard (rewrote advQuoted to handle '""' and for readability)
 */
public class CSV {

 public static final char DEFAULT_SEP = ',';

 /** Construct a CSV parser, with the default separator (','). */
 public CSV() {
 this(DEFAULT_SEP);
 }

 /** Construct a CSV parser with a given separator.
 * @param sep The single char for the separator (not a list of
 * separator characters)
 */
 public CSV(char sep) {
 fieldSep = sep;
 }

 /** The fields in the current String */
 protected List list = new ArrayList();

 /** the separator char for this parser */
 protected char fieldSep;

 /** parse: break the input String into fields
 * @return java.util.Iterator containing each field
 * from the original as a String, in order.
 */
 public List parse(String line)
 {
 StringBuffer sb = new StringBuffer();
 list.clear(); // recycle to initial state
 int i = 0;

 if (line.length() == 0) {
 list.add(line);
 return list;
 }

 do {
 sb.setLength(0);
 if (i < line.length() && line.charAt(i) == '"')
 i = advQuoted(line, sb, ++i); // skip quote
 else
 i = advPlain(line, sb, i);
 list.add(sb.toString());
 Debug.println("csv", sb.toString());
 i++;
 } while (i < line.length());

 return list;
 }

Example 3-10. CSV.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Strings and Things

In the online source directory, you’ll find CSVFile.java, which reads a text file and
runs it through parse(). You’ll also find Kernighan and Pike’s original C++ program.

We haven’t discussed regular expressions yet (we will in Chapter 4). However, many
readers are familiar with regexes in a general way, so the following example demon-
strates the power of regexes, as well as providing code for you to reuse. Note that
this program replaces all the code* in both CSV.java and CSVFile.java. The key to
understanding regexes is that a little specification can match a lot of data.

 /** advQuoted: quoted field; return index of next separator */
 protected int advQuoted(String s, StringBuffer sb, int i)
 {
 int j;
 int len= s.length();
 for (j=i; j<len; j++) {
 if (s.charAt(j) == '"' && j+1 < len) {
 if (s.charAt(j+1) == '"') {
 j++; // skip escape char
 } else if (s.charAt(j+1) == fieldSep) { //next delimiter
 j++; // skip end quotes
 break;
 }
 } else if (s.charAt(j) == '"' && j+1 == len) { // end quotes at end of line
 break; //done
 }
 sb.append(s.charAt(j)); // regular character.
 }
 return j;
 }

 /** advPlain: unquoted field; return index of next separator */
 protected int advPlain(String s, StringBuffer sb, int i)
 {
 int j;

 j = s.indexOf(fieldSep, i); // look for separator
 Debug.println("csv", "i = " + i + ", j = " + j);
 if (j == -1) { // none found
 sb.append(s.substring(i));
 return s.length();
 } else {
 sb.append(s.substring(i, j));
 return j;
 }
 }
}

* With the caveat that it doesn’t handle different delimiters; this could be added using GetOpt and constructing
the pattern around the delimiter.

Example 3-10. CSV.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Comma-Separated Data | 79

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/* Simple demo of CSV matching using Regular Expressions.
 * Does NOT use the "CSV" class defined in the Java CookBook, but uses
 * a regex pattern simplified from Chapter 7 of Mastering Regular
 * Expressions (p. 205, first edn.)
 * @version $Id: ch03,v 1.3 2004/05/04 18:03:14 ian Exp $
 */
public class CSVRE {
 /** The rather involved pattern used to match CSV's consists of three
 * alternations: the first matches aquoted field, the second unquoted,
 * the third a null field.
 */
 public static final String CSV_PATTERN = "\"([^\"]+?)\",?|([^,]+),?|,";
 private static Pattern csvRE;

 public static void main(String[] argv) throws IOException {
 System.out.println(CSV_PATTERN);
 new CSVRE().process(new BufferedReader(new InputStreamReader(System.in)));
 }

 /** Construct a regex-based CSV parser. */
 public CSVRE() {
 csvRE = Pattern.compile(CSV_PATTERN);
 }

 /** Process one file. Delegates to parse() a line at a time */
 public void process(BufferedReader in) throws IOException {
 String line;

 // For each line...
 while ((line = in.readLine()) != null) {
 System.out.println("line = `" + line + "'");
 List l = parse(line);
 System.out.println("Found " + l.size() + " items.");
 for (int i = 0; i < l.size(); i++) {
 System.out.print(l.get(i) + ",");
 }
 System.out.println();
 }
 }

 /** Parse one line.
 * @return List of Strings, minus their double quotes
 */
 public List parse(String line) {
 List list = new ArrayList();
 Matcher m = csvRE.matcher(line);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Strings and Things

 // For each field
 while (m.find()) {
 System.out.println(m.groupCount());
 String match = m.group();
 if (match == null)
 break;
 if (match.endsWith(",")) {// trim trailing ,
 match = match.substring(0, match.length() - 1);
 }
 if (match.startsWith("\"")) { // assume also ends with
 match = match.substring(1, match.length() - 1);
 }
 if (match.length() == 0)
 match = null;
 list.add(match);
 }
 return list;
 }
}

It is sometimes “downright scary” how much mundane code you can eliminate with
a single, well-formulated regular expression.

3.14 Program: A Simple Text Formatter
This program is a very primitive text formatter, representative of what people used
on most computing platforms before the rise of standalone graphics-based word pro-
cessors, laser printers, and, eventually, desktop publishing, word processors, and
desktop office suites. It simply reads words from a file—previously created with a
text editor—and outputs them until it reaches the right margin, when it calls
println() to append a line ending. For example, here is an input file:

It's a nice
day, isn't it, Mr. Mxyzzptllxy?
I think we should
go for a walk.

Given the above as its input, the Fmt program prints the lines formatted neatly:

It's a nice day, isn't it, Mr. Mxyzzptllxy? I think we should go for a
walk.

As you can see, it fits the text we gave it to the margin and discards all the line breaks
present in the original. Here’s the code:

import java.io.*;
import java.util.*;

/**
 * Fmt - format text (like Berkeley Unix fmt).
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: A Simple Text Formatter | 81

public class Fmt {
 /** The maximum column width */
 public static final int COLWIDTH=72;
 /** The file that we read and format */
 BufferedReader in;

 /** If files present, format each, else format the standard input. */
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new Fmt(System.in).format();
 else for (int i=0; i<av.length; i++)
 new Fmt(av[i]).format();
 }

 /** Construct a Formatter given a filename */
 public Fmt(String fname) throws IOException {
 in = new BufferedReader(new FileReader(fname));
 }

 /** Construct a Formatter given an open Stream */
 public Fmt(InputStream file) throws IOException {
 in = new BufferedReader(new InputStreamReader(file));
 }

 /** Format the File contained in a constructed Fmt object */
 public void format() throws IOException {
 String w, f;
 int col = 0;
 while ((w = in.readLine()) != null) {
 if (w.length() == 0) { // null line
 System.out.print("\n"); // end current line
 if (col>0) {
 System.out.print("\n"); // output blank line
 col = 0;
 }
 continue;
 }

 // otherwise it's text, so format it.
 StringTokenizer st = new StringTokenizer(w);
 while (st.hasMoreTokens()) {
 f = st.nextToken();

 if (col + f.length() > COLWIDTH) {
 System.out.print("\n");
 col = 0;
 }
 System.out.print(f + " ");
 col += f.length() + 1;
 }
 }
 if (col>0) System.out.print("\n");
 in.close();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Strings and Things

A slightly fancier version of this program, Fmt2, is in the online source for this book.
It uses “dot commands”—lines beginning with periods—to give limited control over
the formatting. A family of “dot command” formatters includes Unix’s roff, nroff,
troff, and groff, which are in the same family with programs called runoff on Digital
Equipment systems. The original for this is J. Saltzer’s runoff, which first appeared
on Multics and from there made its way into various OSes. To save trees, I did not
include Fmt2 here; it subclasses Fmt and overrides the format() method to include
additional functionality.

3.15 Program: Soundex Name Comparisons
The difficulties in comparing (American-style) names inspired the development of
the Soundex algorithm, in which each of a given set of consonants maps to a particu-
lar number. This was apparently devised for use by the Census Bureau to map simi-
lar-sounding names together on the grounds that in those days many people were
illiterate and could not spell their family names consistently. But it is still useful
today—for example, in a company-wide telephone book application. The names
Darwin and Derwin, for example, map to D650, and Darwent maps to D653, which
puts it adjacent to D650. All of these are historical variants of the same name. Sup-
pose we needed to sort lines containing these names together: if we could output the
Soundex numbers at the beginning of each line, this would be easy. Here is a simple
demonstration of the Soundex class:

/** Simple demonstration of Soundex. */
public class SoundexSimple {

 /** main */
 public static void main(String[] args) {
 String[] names = {
 "Darwin, Ian",
 "Davidson, Greg",
 "Darwent, William",
 "Derwin, Daemon"
 };
 for (int i = 0; i< names.length; i++)
 System.out.println(Soundex.soundex(names[i]) + ' ' + names[i]);
 }
}

Let’s run it:

> jikes +E -d . SoundexSimple.java
> java SoundexSimple | sort
D132 Davidson, Greg
D650 Darwin, Ian
D650 Derwin, Daemon
D653 Darwent, William
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Soundex Name Comparisons | 83

As you can see, the Darwin-variant names (including Daemon Derwin*) all sort
together and are distinct from the Davidson (and Davis, Davies, etc.) names that nor-
mally appear between Darwin and Derwin when using a simple alphabetic sort. The
Soundex algorithm has done its work.

Here is the Soundex class itself: it uses Strings and StringBuilders to convert names
into Soundex codes. A JUnit test (see Recipe 1.14) is also online as SoundexTest.java.

import com.darwinsys.util.Debug;
/**
 * Soundex - the Soundex Algorithm, as described by Knuth
 * <p>
 * This class implements the soundex algorithm as described by Donald
 * Knuth in Volume 3 of <I>The Art of Computer Programming</I>. The
 * algorithm is intended to hash words (in particular surnames) into
 * a small space using a simple model which approximates the sound of
 * the word when spoken by an English speaker. Each word is reduced
 * to a four character string, the first character being an upper case
 * letter and the remaining three being digits. Double letters are
 * collapsed to a single digit.
 *
 * <h2>EXAMPLES</h2>
 * Knuth's examples of various names and the soundex codes they map
 * to are:
 * Euler, Ellery -> E460
 * Gauss, Ghosh -> G200
 * Hilbert, Heilbronn -> H416
 * Knuth, Kant -> K530
 * Lloyd, Ladd -> L300
 * Lukasiewicz, Lissajous -> L222
 *
 * <h2>LIMITATIONS</h2>
 * As the soundex algorithm was originally used a long time ago
 * in the United States of America, it uses only the English alphabet
 * and pronunciation.
 * <p>
 * As it is mapping a large space (arbitrary length strings) onto a
 * small space (single letter plus 3 digits) no inference can be made
 * about the similarity of two strings which end up with the same
 * soundex code. For example, both "Hilbert" and "Heilbronn" end up
 * with a soundex code of "H416".
 * <p>
 * The soundex() method is static, as it maintains no per-instance
 * state; this means you never need to instantiate this class.
 *
 * @author Perl implementation by Mike Stok (<stok@cybercom.net>) from
 * the description given by Knuth. Ian Phillips (<ian@pipex.net>) and
 * Rich Pinder (<rpinder@hsc.usc.edu>) supplied ideas and spotted
 * mistakes.
 */

* In Unix terminology, a daemon is a server. The word has nothing to do with demons but refers to a helper
or assistant. Derwin Daemon is actually a character in Susannah Coleman’s “Source Wars” online comic
strip; see http://darby.daemonnews.org.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Strings and Things

public class Soundex {

 /* Implements the mapping
 * from: AEHIOUWYBFPVCGJKQSXZDTLMNR
 * to: 00000000111122222222334556
 */
 public static final char[] MAP = {
 //A B C D E F G H I J K L M
 '0','1','2','3','0','1','2','0','0','2','2','4','5',
 //N O P W R S T U V W X Y Z
 '5','0','1','2','6','2','3','0','1','0','2','0','2'
 };

 /** Convert the given String to its Soundex code.
 * @return null if the given string can't be mapped to Soundex.
 */
 public static String soundex(String s) {

 // Algorithm works on uppercase (mainframe era).
 String t = s.toUpperCase();

 StringBuffer res = new StringBuffer();
 char c, prev = '?';

 // Main loop: find up to 4 chars that map.
 for (int i=0; i<t.length() && res.length() < 4 &&
 (c = t.charAt(i)) != ','; i++) {

 // Check to see if the given character is alphabetic.
 // Text is already converted to uppercase. Algorithm
 // handles only ASCII letters; do NOT use Character.isLetter()!
 // Also, skip double letters.
 if (c>='A' && c<='Z' && c != prev) {
 prev = c;

 // First char is installed unchanged, for sorting.
 if (i==0)
 res.append(c);
 else {
 char m = MAP[c-'A'];
 Debug.println("inner", c + " --> " + m);
 if (m != '0')
 res.append(m);
 }
 }
 }
 if (res.length() == 0)
 return null;
 for (int i=res.length(); i<4; i++)
 res.append('0');
 return res.toString();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

85

Chapter 4 CHAPTER 4

Pattern Matching with
Regular Expressions

4.0 Introduction
Suppose you have been on the Internet for a few years and have been very faithful
about saving all your correspondence, just in case you (or your lawyers, or the prose-
cution) need a copy. The result is that you have a 50-megabyte disk partition dedi-
cated to saved mail. And let’s further suppose that you remember that somewhere in
there is an email message from someone named Angie or Anjie. Or was it Angy? But
you don’t remember what you called it or where you stored it. Obviously, you have
to look for it.

But while some of you go and try to open up all 15,000,000 documents in a word
processor, I’ll just find it with one simple command. Any system that provides regu-
lar expression support allows me to search for the pattern in several ways. The sim-
plest to understand is:

Angie|Anjie|Angy

which you can probably guess means just to search for any of the variations. A more
concise form (“more thinking, less typing”) is:

An[^ dn]

to search in all the files. The syntax will become clear as we go through this chapter.
Briefly, the “A” and the “n” match themselves, in effect finding words that begin
with “An”, while the cryptic [^ dn] requires the “An” to be followed by a character
other than a space (to eliminate the very common English word “an” at the start of a
sentence) or “d” (to eliminate the common word “and”) or “n” (to eliminate Anne,
Announcing, etc.). Has your word processor gotten past its splash screen yet? Well,
it doesn’t matter, because I’ve already found the missing file. To find the answer, I
just typed the command:

grep 'An[^ dn]' *

Regular expressions, or regexes for short, provide a concise and precise specification
of patterns to be matched in text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Pattern Matching with Regular Expressions

As another example of the power of regular expressions, consider the problem of
bulk-updating hundreds of files. When I started with Java, the syntax declaring array
references was baseType arrayVariableName[]. For example, a method with an array
argument, such as every program’s main method, was commonly written as:

public static void main(String args[]) {

But as time went by, it became clear to the stewards of the Java language that it
would be better to write it as baseType[] arrayVariableName, e.g.:

public static void main(String[] args) {

This is better Java style because it associates the “array-ness” of the type with the
type itself, rather than with the local argument name, and the compiler now accepts
both modes. I wanted to change all occurrences of main written the old way to the
new way. I used the pattern 'main(String [a-z]' with the grep utility described ear-
lier to find the names of all the files containing old-style main declarations, that is,
main(String followed by a space and a name character rather than an open square
bracket. I then used another regex-based Unix tool, the stream editor sed, in a little
shell script to change all occurrences in those files from 'main(String \([a-z][a-z]*\
)\[\]' to 'main(String[] \1' (the syntax used here is discussed later in this chapter).
Again, the regex-based approach was orders of magnitude faster than doing it inter-
actively, even using a reasonably powerful editor such as vi or emacs, let alone trying
to use a graphical word processor.

Unfortunately, the syntax of regexes has changed as they get incorporated into more
tools* and more languages, so the exact syntax in the previous examples is not
exactly what you’d use in Java, but it does convey the conciseness and power of the
regex mechanism.

As a third example, consider parsing an Apache web server log file, where some
fields are delimited with quotes, others with square brackets, and others with spaces.
Writing ad-hoc code to parse this is messy in any language, but a well-crafted regex
can break the line into all its constituent fields in one operation (this example is
developed in Recipe 4.10).

These same time gains can be had by Java developers. Prior to 1.4, Java did not
include any facilities for describing regular expressions in text. This is mildly surpris-
ing given how powerful regular expressions are, how ubiquitous they are on the Unix
operating system (where Java was first brewed), and how powerful they are in mod-
ern scripting languages like sed, awk, Python, and Perl. Table 4-1 lists about half a

* Non-Unix fans fear not, for you can do this on Win32 using one of several packages. One is an open source
package alternately called CygWin (after Cygnus Software) or GnuWin32 (http://sources.redhat.com/cygwin/).
Another is Microsoft’s own Unix Services for Windows. Or you can use my Grep program in Recipe 4.6 if
you don’t have grep on your system. Incidentally, the name grep comes from an ancient Unix line editor com-
mand g/RE/p, the command to find the regex globally in all lines in the edit buffer and print the lines that
match—just what the grep program does to lines in files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Regular Expression Syntax | 87

dozen regular expression packages for Java. I even wrote my own at one point; it
worked well enough but was too slow for production use. The Apache Jakarta Regu-
lar Expressions and ORO packages are widely used.

With JDK 1.4 and later, regular expression support is built into the standard Java
runtime. The advantage of using the JDK 1.4 package is its integration with the runt-
ime, including the standard class java.lang.String and the “new I/O” package. In
addition to this integration, the JDK 1.4 package is one of the fastest Java implemen-
tations. However, code using any of the other packages still works, and you will find
existing applications using some of these packages for the next few years since the
syntax of each package is slightly different and it’s not necessary to convert. Any new
development, though, should be based on the JDK 1.4 regex package.

The first edition of this book focused on the Jakarta RegExp package; this edition
covers the JDK 1.4 Regular Expressions API and does not cover any other package.
The syntax of regexes themselves is discussed in Recipe 4.1, and the syntax of the
Java API for using regexes is described in Recipe 4.2. The remaining recipes show
some applications of regex technology in JDK 1.4.

See Also
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly), now in its second
edition, is the definitive guide to all the details of regular expressions. Most introduc-
tory books on Unix and Perl include some discussion of regexes; Unix Power Tools
(O’Reilly) devotes a chapter to them.

4.1 Regular Expression Syntax

Problem
You need to learn the syntax of JDK 1.4 regular expressions.

Table 4-1. Some Java regex packages

Package Notes URL

JDK 1.4 API Package java.util.regex http://java.sun.com/

Richard Emberson’s Unknown license; not being main-
tained

None; posted to advanced-java@berkeley.edu
in 1998

Ian Darwin’s regex Simple, but slow. Incomplete; didactic http://www.darwinsys.com/java/

Apache Jakarta RegExp
(original by Jonathan Locke)

Apache (BSD-like) license http://jakarta.apache.org/regexp/

Apache Jakarta ORO
(original by Daniel Savarese)

Apache license; more comprehensive
than Jakarta RegExp

http://jakarta.apache.org/oro/

GNU Java Regexp Lesser GNU Public License http://www.cacas.org/java/gnu/regexp/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Pattern Matching with Regular Expressions

Solution
Consult Table 4-2 for a list of the regular expression characters.

Discussion
These pattern characters let you specify regexes of considerable power. In building
patterns, you can use any combination of ordinary text and the metacharacters, or
special characters, in Table 4-2. These can all be used in any combination that makes
sense. For example, a+ means any number of occurrences of the letter a, from one up
to a million or a gazillion. The pattern Mrs?\. matches Mr. or Mrs.. And .* means
“any character, any number of times,” and is similar in meaning to most command-
line interpreters’ meaning of the * alone. The pattern \d+ means any number of
numeric digits. \d{2,3} means a two- or three-digit number.

Table 4-2. Regular expression metacharacter syntax

Subexpression Matches Notes

General

^ Start of line/string

$ End of line/string

\b Word boundary

\B Not a word boundary

\A Beginning of entire string

\z End of entire string

\Z End of entire string (except allowable final line terminator) See Recipe 4.9

. Any one character (except line terminator)

[...] “Character class”; any one character from those listed

[^...] Any one character not from those listed See Recipe 4.2

Alternation and grouping

(...) Grouping (capture groups) See Recipe 4.3

| Alternation

(?:re) Noncapturing parenthesis

\G End of the previous match

\n Back-reference to capture group number “n“

Normal (greedy) multipliers

{m,n} Multiplier for “from m to n repetitions” See Recipe 4.4

{m,} Multiplier for “m or more repetitions”

{m} Multiplier for “exactly m repetitions” See Recipe 4.10

{,n} Multiplier for 0 up to n repetitions

* Multiplier for 0 or more repetitions Short for {0,}

+ Multiplier for 1 or more repetitions Short for {1,}; see Recipe 4.2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Regular Expression Syntax | 89

? Multiplier for 0 or 1 repetitions (i.e, present exactly once, or
not at all)

Short for {0,1}

Reluctant (non-greedy) multipliers

{m,n}? Reluctant multiplier for “from m to n repetitions”

{m,}? Reluctant multiplier for “m or more repetitions”

{,n}? Reluctant multiplier for 0 up to n repetitions

*? Reluctant multiplier: 0 or more

+? Reluctant multiplier: 1 or more See Recipe 4.10

?? Reluctant multiplier: 0 or 1 times

Possessive (very greedy) multipliers

{m,n}+ Possessive multiplier for “from m to n repetitions”

{m,}+ Possessive multiplier for “m or more repetitions”

{,n}+ Possessive multiplier for 0 up to n repetitions

*+ Possessive multiplier: 0 or more

++ Possessive multiplier: 1 or more

?+ Possessive multiplier: 0 or 1 times

Escapes and shorthands

\ Escape (quote) character: turns most metacharacters off;
turns subsequent alphabetic into metacharacters

\Q Escape (quote) all characters up to \E

\E Ends quoting begun with \Q

\t Tab character

\r Return (carriage return) character

\n Newline character See Recipe 4.9

\f Form feed

\w Character in a word Use \w+ for a word; see Recipe 4.10

\W A non-word character

\d Numeric digit Use \d+ for an integer; see Recipe 4.2

\D A non-digit character

\s Whitespace Space, tab, etc., as determined by
java.lang.Character.
isWhitespace()

\S A nonwhitespace character See Recipe 4.10

Unicode blocks (representative samples)

\p{InGreek} A character in the Greek block (simple block)

\P{InGreek} Any character not in the Greek block

\p{Lu} An uppercase letter (simple category)

\p{Sc} A currency symbol

Table 4-2. Regular expression metacharacter syntax (continued)

Subexpression Matches Notes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Pattern Matching with Regular Expressions

Regexes match anyplace possible in the string. Patterns followed by a greedy multi-
plier (the only type that existed in traditional Unix regexes) consume (match) as
much as possible without compromising any subexpressions which follow; patterns
followed by a possessive multiplier match as much as possible without regard to fol-
lowing subexpressions; patterns followed by a reluctant multiplier consume as few
characters as possible to still get a match.

Also, unlike regex packages in some other languages, the JDK 1.4 package was
designed to handle Unicode characters from the beginning. And the standard Java
escape sequence \unnnn is used to specify a Unicode character in the pattern. We use
methods of java.lang.Character to determine Unicode character properties, such as
whether a given character is a space.

To help you learn how regexes work, I provide a little program called REDemo.* In the
online directory javasrc/RE, you should be able to type either ant REDemo, or javac
REDemo followed by java REDemo, to get the program running.

In the uppermost text box (see Figure 4-1), type the regex pattern you want to test.
Note that as you type each character, the regex is checked for syntax; if the syntax is
OK, you see a checkmark beside it. You can then select Match, Find, or Find All.
Match means that the entire string must match the regex, while Find means the regex
must be found somewhere in the string (Find All counts the number of occurrences

POSIX-style character classes (defined only for US-ASCII)

\p{Alnum} Alphanumeric characters [A-Za-z0-9]

\p{Alpha} Alphabetic characters [A-Za-z]

\p{ASCII} Any ASCII character [\x00-\x7F]

\p{Blank} Space and tab characters

\p{Space} Space characters [\t\n\x0B\f\r]

\p{Cntrl} Control characters [\x00-\x1F\x7F]

\p{Digit} Numeric digit characters [0-9]

\p{Graph} Printable and visible characters
(not spaces or control characters)

\p{Print} Printable characters Same as \p{Graph}

\p{Punct} Punctuation characters One of !"#$%&'()*+,-./:;<=>
?@[\]^_`{|}~

\p{Lower} Lowercase characters [a-z]

\p{Upper} Uppercase characters [A-Z]

\p{XDigit} Hexadecimal digit characters [0-9a-fA-F]

* REDemo was inspired by (but does not use any code from) a similar program provided with the Jakarta Regular
Expressions package mentioned in the Introduction to Chapter 4.

Table 4-2. Regular expression metacharacter syntax (continued)

Subexpression Matches Notes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Regular Expression Syntax | 91

that are found). Below that, you type a string that the regex is to match against.
Experiment to your heart’s content. When you have the regex the way you want it,
you can paste it into your Java program. You’ll need to escape (backslash) any char-
acters that are treated specially by both the Java compiler and the JDK 1.4 regex
package, such as the backslash itself, double quotes, and others (see the sidebar
“Remember This!”).

In Figure 4-1, I typed qu into the REDemo program’s Pattern box, which is a syntacti-
cally valid regex pattern: any ordinary characters stand as regexes for themselves, so
this looks for the letter q followed by u. In the top version, I typed only a q into the
string, which is not matched. In the second, I have typed quack and the q of a second
quack. Since I have selected Find All, the count shows one match. As soon as I type
the second u, the count is updated to two, as shown in the third version.

Regexes can do far more than just character matching. For example, the two-charac-
ter regex ^T would match beginning of line (^) immediately followed by a capital T—
i.e., any line beginning with a capital T. It doesn’t matter whether the line begins
with Tiny trumpets, Titanic tubas, or Triumphant slide trombones, as long as the capi-
tal T is present in the first position.

But here we’re not very far ahead. Have we really invested all this effort in regex tech-
nology just to be able to do what we could already do with the java.lang.String
method startsWith()? Hmmm, I can hear some of you getting a bit restless. Stay in
your seats! What if you wanted to match not only a letter T in the first position, but
also a vowel (a, e, i, o, or u) immediately after it, followed by any number of letters in
a word, followed by an exclamation point? Surely you could do this in Java by check-
ing startsWith("T") and charAt(1) == 'a' || charAt(1) == 'e', and so on? Yes, but by
the time you did that, you’d have written a lot of very highly specialized code that
you couldn’t use in any other application. With regular expressions, you can just
give the pattern ^T[aeiou]\w*!. That is, ^ and T as before, followed by a character
class listing the vowels, followed by any number of word characters (\w*), followed
by the exclamation point.

Remember This!
Remember that because a regex compiles strings that are also compiled by javac, you
usually need two levels of escaping for any special characters, including backslash,
double quotes, and so on. For example, the regex:

"You said it\."

has to be typed like this to be a Java language String:

"\"You said it\\.\""

I can’t tell you how many times I’ve made the mistake of forgetting the extra backslash
in \d+, \w+, and their kin!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Pattern Matching with Regular Expressions

“But wait, there’s more!” as my late, great boss Yuri Rubinsky used to say. What if
you want to be able to change the pattern you’re looking for at runtime? Remember
all that Java code you just wrote to match T in column 1, plus a vowel, some word
characters, and an exclamation point? Well, it’s time to throw it out. Because this
morning we need to match Q, followed by a letter other than u, followed by a num-
ber of digits, followed by a period. While some of you start writing a new function to
do that, the rest of us will just saunter over to the RegEx Bar & Grille, order a
^Q[^u]\d+\.. from the bartender, and be on our way.

OK, the [^u] means “match any one character that is not the character u.” The \d+
means one or more numeric digits. The + is a multiplier or quantifier meaning one or
more occurrences of what it follows, and \d is any one numeric digit. So \d+ means a
number with one, two, or more digits. Finally, the \.? Well, . by itself is a metachar-
acter. Most single metacharacters are switched off by preceding them with an escape
character. Not the ESC key on your keyboard, of course. The regex “escape” charac-
ter is the backslash. Preceding a metacharacter like . with escape turns off its special
meaning. Preceding a few selected alphabetic characters (e.g., n, r, t, s, w) with
escape turns them into metacharacters. Figure 4-2 shows the ^Q[^u]\d+\.. regex in
action. In the first frame, I have typed part of the regex as ^Q[^u and, since there is an

Figure 4-1. REDemo with simple examples

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Regular Expression Syntax | 93

unclosed square bracket, the Syntax OK flag is turned off; when I complete the
regex, it will be turned back on. In the second frame, I have finished the regex and
typed the string as QA577 (which you should expect to match the ^Q[^u]\d+, but not
the period since I haven’t typed it). In the third frame, I’ve typed the period so the
Matches flag is set to Yes.

One good way to think of regular expressions is as a “little language” for matching
patterns of characters in text contained in strings. Give yourself extra points if you’ve
already recognized this as the design pattern known as Interpreter. A regular expres-
sion API is an interpreter for matching regular expressions.

So now you should have at least a basic grasp of how regexes work in practice. The
rest of this chapter gives more examples and explains some of the more powerful
topics, such as capture groups. As for how regexes work in theory—and there is a lot
of theoretical details and differences among regex flavors—the interested reader is
referred to the book Mastering Regular Expressions. Meanwhile, let’s start learning
how to write Java programs that use regular expressions.

Figure 4-2. REDemo with ^Q[^u]\d+\. example

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Pattern Matching with Regular Expressions

4.2 Using regexes in Java: Test for a Pattern

Problem
You’re ready to get started using regular expression processing to beef up your Java
code by testing to see if a given pattern can match in a given string.

Solution
Use the Java Regular Expressions Package, java.util.regex.

Discussion
The good news is that the Java API for regexes is actually easy to use. If all you need
is to find out whether a given regex matches a string, you can use the convenient
boolean matches() method of the String class, which accepts a regex pattern in
String form as its argument:

if (inputString.matches(stringRegexPattern)) {
 // it matched... do something with it...
}

This is, however, a convenience routine, and convenience always comes at a price. If
the regex is going to be used more than once or twice in a program, it is more effi-
cient to construct and use a Pattern and its Matcher(s). A complete program con-
structing a Pattern and using it to match is shown here:

import java.util.regex.*;

/**
 * Simple example of using regex class.
 */
public class RESimple {
 public static void main(String[] argv) throws PatternSyntaxException {
 String pattern = "^Q[^u]\\d+\\.";
 String input = "QA777. is the next flight. It is on time.";

 Pattern p = Pattern.compile(pattern);

 boolean found = p.matcher(input).lookingAt();

 System.out.println("'" + pattern + "'" +
 (found ? " matches '" : " doesn't match '") + input + "'");
 }
}

The java.util.regex package consists of two classes, Pattern and Matcher, which
provide the public API shown in Example 4-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using regexes in Java: Test for a Pattern | 95

Example 4-1. Regex public API

/** The main public API of the java.util.regex package.
 * Prepared by javap and Ian Darwin.
 */

package java.util.regex;

public final class Pattern {
 // Flags values ('or' together)
 public static final int
 UNIX_LINES, CASE_INSENSITIVE, COMMENTS, MULTILINE,
 DOTALL, UNICODE_CASE, CANON_EQ;
 // Factory methods (no public constructors)
 public static Pattern compile(String patt);
 public static Pattern compile(String patt, int flags);
 // Method to get a Matcher for this Pattern
 public Matcher matcher(CharSequence input);
 // Information methods
 public String pattern();
 public int flags();
 // Convenience methods
 public static boolean matches(String pattern, CharSequence input);
 public String[] split(CharSequence input);
 public String[] split(CharSequence input, int max);
}

public final class Matcher {
 // Action: find or match methods
 public boolean matches();
 public boolean find();
 public boolean find(int start);
 public boolean lookingAt();
 // "Information about the previous match" methods
 public int start();
 public int start(int whichGroup);
 public int end();
 public int end(int whichGroup);
 public int groupCount();
 public String group();
 public String group(int whichGroup);
 // Reset methods
 public Matcher reset();
 public Matcher reset(CharSequence newInput);
 // Replacement methods
 public Matcher appendReplacement(StringBuffer where, String newText);
 public StringBuffer appendTail(StringBuffer where);
 public String replaceAll(String newText);
 public String replaceFirst(String newText);
 // information methods
 public Pattern pattern();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Pattern Matching with Regular Expressions

This API is large enough to require some explanation. The normal steps for regex
matching in a production program are:

1. Create a Pattern by calling the static method Pattern.compile().

2. Request a Matcher from the pattern by calling pattern.matcher(CharSequence) for
each String (or other CharSequence) you wish to look through.

3. Call (once or more) one of the finder methods (discussed later in this section) in
the resulting Matcher.

The CharSequence interface, added to java.lang with JDK 1.4, provides simple read-
only access to objects containing a collection of characters. The standard implemen-
tations are String and StringBuffer (described in Chapter 3), and the “new I/O”
class java.nio.CharBuffer.

Of course, you can perform regex matching in other ways, such as using the conve-
nience methods in Pattern or even in java.lang.String. For example:

// StringConvenience.java -- show String convenience routine for "match"
String pattern = ".*Q[^u]\\d+\\..*";
String line = "Order QT300. Now!";
if (line.matches(pattern)) {
 System.out.println(line + " matches \"" + pattern + "\"");
} else {
 System.out.println("NO MATCH");
}

But the three-step list just described is the “standard” pattern for matching. You’d
likely use the String convenience routine in a program that only used the regex once;
if the regex were being used more than once, it is worth taking the time to “compile”
it, since the compiled version runs faster.

As well, the Matcher has several finder methods, which provide more flexibility than
the String convenience routine match(). The Matcher methods are:

match()
Used to compare the entire string against the pattern; this is the same as the rou-
tine in java.lang.String. Since it matches the entire String, I had to put .*
before and after the pattern.

lookingAt()
Used to match the pattern only at the beginning of the string.

/* String, showing only the regex-related methods */
public final class String {
 public boolean matches(String regex);
 public String replaceFirst(String regex, String newStr);
 public String replaceAll(String regex, String newStr)
 public String[] split(String regex)
 public String[] split(String regex, int max);
}

Example 4-1. Regex public API (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding the Matching Text | 97

find()
Used to match the pattern in the string (not necessarily at the first character of
the string), starting at the beginning of the string or, if the method was previ-
ously called and succeeded, at the first character not matched by the previous
match.

Each of these methods returns boolean, with true meaning a match and false mean-
ing no match. To check whether a given string matches a given pattern, you need
only type something like the following:

Matcher m = Pattern.compile(patt).matcher(line);
if (m.find()) {
 System.out.println(line + " matches " + patt)
}

But you may also want to extract the text that matched, which is the subject of the
next recipe.

The following recipes cover uses of this API. Initially, the examples just use argu-
ments of type String as the input source. Use of other CharSequence types is covered
in Recipe 4.5.

4.3 Finding the Matching Text

Problem
You need to find the text that the regex matched.

Solution
Sometimes you need to know more than just whether a regex matched a string. In
editors and many other tools, you want to know exactly what characters were
matched. Remember that with multipliers such as *, the length of the text that was
matched may have no relationship to the length of the pattern that matched it. Do
not underestimate the mighty .*, which happily matches thousands or millions of
characters if allowed to. As you saw in the previous recipe, you can find out whether
a given match succeeds just by using find() or matches(). But in other applications,
you will want to get the characters that the pattern matched.

After a successful call to one of the above methods, you can use these “information”
methods to get information on the match:

start(), end()
Returns the character position in the string of the starting and ending characters
that matched.

groupCount()
Returns the number of parenthesized capture groups if any; returns 0 if no
groups were used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Pattern Matching with Regular Expressions

group(int i)
Returns the characters matched by group i of the current match, if i is less than
or equal to the return value of groupCount(). Group 0 is the entire match, so
group(0) (or just group()) returns the entire portion of the string that matched.

The notion of parentheses or “capture groups” is central to regex processing. Regexes
may be nested to any level of complexity. The group(int) method lets you retrieve
the characters that matched a given parenthesis group. If you haven’t used any
explicit parens, you can just treat whatever matched as “level zero.” For example:

// Part of REmatch.java
String patt = "Q[^u]\\d+\\.";
Pattern r = Pattern.compile(patt);
String line = "Order QT300. Now!";
Matcher m = r.matcher(line);
if (m.find()) {
 System.out.println(patt + " matches \"" +
 m.group(0) +
 "\" in \"" + line + "\"");
} else {
 System.out.println("NO MATCH");
}

When run, this prints:

Q[^u]\d+\. matches "QT300." in "Order QT300. Now!"

An extended version of the REDemo program presented in Recipe 4.2, called REDemo2,
provides a display of all the capture groups in a given regex; one example is shown in
Figure 4-3.

It is also possible to get the starting and ending indexes and the length of the text
that the pattern matched (remember that terms with multipliers, such as the \d+ in
this example, can match an arbitrary number of characters in the string). You can use
these in conjunction with the String.substring() methods as follows:

// Part of regexsubstr.java -- Prints exactly the same as REmatch.java
Pattern r = Pattern.compile(patt);
String line = "Order QT300. Now!";

Figure 4-3. REDemo2 in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Replacing the Matched Text | 99

Matcher m = r.matcher(line);
if (m.find()) {
 System.out.println(patt + " matches \"" +
 line.substring(m.start(0), m.end(0)) +
 "\" in \"" + line + "\"");
 } else {
 System.out.println("NO MATCH");
 }
}

Suppose you need to extract several items from a string. If the input is:

Smith, John
Adams, John Quincy

and you want to get out:

John Smith
John Quincy Adams

just use:

// from REmatchTwoFields.java
// Construct a regex with parens to "grab" both field1 and field2
Pattern r = Pattern.compile("(.*), (.*)");
Matcher m = r.matcher(inputLine);
 if (!m.matches())
 throw new IllegalArgumentException("Bad input: " + inputLine);
System.out.println(m.group(2) + ' ' + m.group(1));

4.4 Replacing the Matched Text
As we saw in the previous recipe, regex patterns involving multipliers can match a lot
of characters with very few metacharacters. We need a way to replace the text that
the regex matched without changing other text before or after it. We could do this
manually using the String method substring(). However, because it’s such a com-
mon requirement, the JDK 1.4 Regular Expression API provides some substitution
methods. In all these methods, you pass in the replacement text or “right-hand side”
of the substitution (this term is historical: in a command-line text editor’s substitute
command, the left-hand side is the pattern and the right-hand side is the replace-
ment text). The replacement methods are:

replaceAll(newString)
Replaces all occurrences that matched with the new string.

appendReplacement(StringBuffer, newString)
Copies up to before the first match, plus the given newString.

appendTail(StringBuffer)
Appends text after the last match (normally used after appendReplacement).

Example 4-2 shows use of these three methods.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Pattern Matching with Regular Expressions

Sure enough, when you run it, it does what we expect:

Input: Unix hath demons and deamons in it!
ReplaceAll: Unix hath daemons and daemons in it!
Append methods: Unix hath daemons and daemons in it!

4.5 Printing All Occurrences of a Pattern

Problem
You need to find all the strings that match a given regex in one or more files or other
sources.

Solution
This example reads through a file one line at a time. Whenever a match is found, I
extract it from the line and print it.

This code takes the group() methods from Recipe 4.3, the substring method from
the CharacterIterator interface, and the match() method from the regex and simply
puts them all together. I coded it to extract all the “names” from a given file; in run-
ning the program through itself, it prints the words “import”, “java”, “until”,
“regex”, and so on:

Example 4-2. ReplaceDemo.java

// class ReplaceDemo
// Quick demo of substitution: correct "demon" and other
// spelling variants to the correct, non-satanic "daemon".

// Make a regex pattern to match almost any form (deamon, demon, etc.).
String patt = "d[ae]{1,2}mon"; // i.e., 1 or 2 'a' or 'e' any combo

// A test string.
String input = "Unix hath demons and deamons in it!";
System.out.println("Input: " + input);

// Run it from a regex instance and see that it works
Pattern r = Pattern.compile(patt);
Matcher m = r.matcher(input);
System.out.println("ReplaceAll: " + m.replaceAll("daemon"));

// Show the appendReplacement method
m.reset();
StringBuffer sb = new StringBuffer();
System.out.print("Append methods: ");
while (m.find()) {
 m.appendReplacement(sb, "daemon"); // Copy to before first match,
 // plus the word "daemon"
}
m.appendTail(sb); // copy remainder
System.out.println(sb.toString());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing All Occurrences of a Pattern | 101

> jikes +E -d . ReaderIter.java
> java ReaderIter ReaderIter.java
import
java
util
regex
import
java
io
Print
all
the
strings
that
match
given
pattern
from
file
public

I interrupted it here to save paper. This can be written two ways, a traditional “line
at a time” pattern shown in Example 4-3 and a more compact form using “new I/O”
shown in Example 4-4 (the “new I/O” package is described in Chapter 10).

Example 4-3. ReaderIter.java

import java.util.regex.*;
import java.io.*;

/**
 * Print all the strings that match a given pattern from a file.
 */
public class ReaderIter {
 public static void main(String[] args) throws IOException {
 // The regex pattern
 Pattern patt = Pattern.compile("[A-Za-z][a-z]+");
 // A FileReader (see the I/O chapter)
 BufferedReader r = new BufferedReader(new FileReader(args[0]));

 // For each line of input, try matching in it.
 String line;
 while ((line = r.readLine()) != null) {
 // For each match in the line, extract and print it.
 Matcher m = patt.matcher(line);
 while (m.find()) {
 // Simplest method:
 // System.out.println(m.group(0));

 // Get the starting position of the text
 int start = m.start(0);
 // Get ending position
 int end = m.end(0);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Pattern Matching with Regular Expressions

 // Print whatever matched.
 System.out.println("start=" + start + "; end=" + end);
 // Use CharSequence.substring(offset, end);
 System.out.println(line.substring(start, end));
 }
 }
 }
}

Example 4-4. GrepNIO.java

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.regex.*;

/* Grep-like program using NIO, but NOT LINE BASED.
 * Pattern and file name(s) must be on command line.
 */
public class GrepNIO {
 public static void main(String[] args) throws IOException {

 if (args.length < 2) {
 System.err.println("Usage: GrepNIO patt file [...]");
 System.exit(1);
 }

 Pattern p = Pattern.compile(args[0]);
 for (int i=1; i<args.length; i++)
 process(p, args[i]);
 }

 static void process(Pattern pattern, String fileName) throws IOException {

 // Get a FileChannel from the given file.
 FileChannel fc = new FileInputStream(fileName).getChannel();

 // Map the file's content
 ByteBuffer buf = fc.map(FileChannel.MapMode.READ_ONLY, 0, fc.size());

 // Decode ByteBuffer into CharBuffer
 CharBuffer cbuf =
 Charset.forName("ISO-8859-1").newDecoder().decode(buf);

 Matcher m = pattern.matcher(cbuf);
 while (m.find()) {
 System.out.println(m.group(0));
 }
 }
}

Example 4-3. ReaderIter.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing Lines Containing a Pattern | 103

The NIO version shown in Example 4-4 relies on the fact that an NIO Buffer can be
used as a CharSequence. This program is more general in that the pattern argument is
taken from the command-line argument. It prints the same output as the previous
example if invoked with the pattern argument from the previous program on the
command line:

java GrepNIO " [A-Za-z][a-z]+" ReaderIter.java

You might think of using \w+ as the pattern; the only difference is that my pattern
looks for well-formed capitalized words while \w+ would include Java-centric oddi-
ties like theVariableName, which have capitals in nonstandard positions.

Also note that the NIO version will probably be more efficient since it doesn’t reset
the Matcher to a new input source on each line of input as ReaderIter does.

4.6 Printing Lines Containing a Pattern

Problem
You need to look for lines matching a given regex in one or more files.

Solution
Write a simple grep-like program.

Discussion
As I’ve mentioned, once you have a regex package, you can write a grep-like pro-
gram. I gave an example of the Unix grep program earlier. grep is called with some
optional arguments, followed by one required regular expression pattern, followed
by an arbitrary number of filenames. It prints any line that contains the pattern, dif-
fering from Recipe 4.5, which prints only the matching text itself. For example:

grep "[dD]arwin" *.txt

searches for lines containing either darwin or Darwin in every line of every file whose
name ends in .txt.* Example 4-5 is the source for the first version of a program to do
this, called Grep0. It reads lines from the standard input and doesn’t take any
optional arguments, but it handles the full set of regular expressions that the Pattern
class implements (it is, therefore, not identical with the Unix programs of the same
name). We haven’t covered the java.io package for input and output yet (see
Chapter 10), but our use of it here is simple enough that you can probably intuit it.
The online source includes Grep1, which does the same thing but is better structured
(and therefore longer). Later in this chapter, Recipe 4.12 presents a Grep2 program
that uses my GetOpt (see Recipe 2.6) to parse command-line options.

* On Unix, the shell or command-line interpreter expands *.txt to match all the filenames, but the normal Java
interpreter does this for you on systems where the shell isn’t energetic or bright enough to do it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Pattern Matching with Regular Expressions

4.7 Controlling Case in Regular Expressions

Problem
You want to find text regardless of case.

Solution
Compile the Pattern passing in the flags argument Pattern.CASE_INSENSITIVE to
indicate that matching should be case-independent (“fold” or ignore differences in
case). If your code might run in different locales (see Chapter 15), add Pattern.
UNICODE_CASE. Without these flags, the default is normal, case-sensitive matching
behavior. This flag (and others) are passed to the Pattern.compile() method, as in:

// CaseMatch.java
Pattern reCaseInsens = Pattern.compile(pattern, Pattern.CASE_INSENSITIVE |
Pattern.UNICODE_CASE);
reCaseInsens.matches(input); // will match case-insensitively

This flag must be passed when you create the Pattern; as Pattern objects are immu-
table, they cannot be changed once constructed.

The full source code for this example is online as CaseMatch.java.

Example 4-5. Grep0.java

import java.io.*;
import java.util.regex.*;

/** Grep0 - Match lines from stdin against the pattern on the command line.
 */
public class Grep0 {
 public static void main(String[] args) throws IOException {
 BufferedReader is =
 new BufferedReader(new InputStreamReader(System.in));
 if (args.length != 1) {
 System.err.println("Usage: Grep0 pattern");
 System.exit(1);
 }
 Pattern patt = Pattern.compile(args[0]);
 Matcher matcher = patt.matcher("");
 String line = null;
 while ((line = is.readLine()) != null) {
 matcher.reset(line);
 if (matcher.find()) {
 System.out.println("MATCH: " + line);
 }
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Matching “Accented” or Composite Characters | 105

4.8 Matching “Accented” or Composite
Characters

Problem
You want characters to match regardless of the form in which they are entered.

Solution
Compile the Pattern with the flags argument Pattern.CANON_EQ for “canonical
equality.”

Discussion
Composite characters can be entered in various forms. Consider, as a single exam-
ple, the letter e with an acute accent. This character may be found in various forms in
Unicode text, such as the single character é (Unicode character \u00e9) or as the two-
character sequence e´ (e followed by the Unicode combining acute accent, \u0301).

Pattern.compile() Flags
Half a dozen flags can be passed as the second argument to Pattern.compile(). If more
than one value is needed, they can be or’d together using the | bitwise or operator. In
alphabetical order, the flags are:

CANON_EQ
Enables so-called “canonical equivalence,” that is, characters are matched by their
base character, so that the character e followed by the “combining character
mark” for the acute accent (´) can be matched either by the composite character
é or the letter e followed by the character mark for the accent (see Recipe 4.8).

CASE_INSENSITIVE
Turns on case-insensitive matching (see Recipe 4.7).

COMMENTS
Causes whitespace and comments (from # to end-of-line) to be ignored in the pat-
tern.

DOTALL
Allows dot (.) to match any regular character or the newline, not just newline (see
Recipe 4.9).

MULTILINE
Specifies multiline mode (see Recipe 4.9).

UNICODE_CASE
Enables Unicode-aware case folding (see Recipe 4.7).

UNIX_LINES
Makes \n the only valid “newline” sequence for MULTILINE mode (see Recipe 4.9).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Pattern Matching with Regular Expressions

To allow you to match such characters regardless of which of possibly multiple “fully
decomposed” forms are used to enter them, the regex package has an option for
“canonical matching,” which treats any of the forms as equivalent. This option is
enabled by passing CANON_EQ as (one of) the flags in the second argument to Pattern.
compile(). This program shows CANON_EQ being used to match several forms:

import java.util.regex.*;

/**
 * CanonEqDemo - show use of Pattern.CANON_EQ, by comparing varous ways of
 * entering the Spanish word for "equal" and see if they are considered equal
 * by the regex-matching engine.
 */
public class CanonEqDemo {
 public static void main(String[] args) {
 String pattStr = "\u00e9gal"; // égal
 String[] input = {
 "\u00e9gal", // égal - this one had better match :-)
 "e\u0301gal", // e + "Combining acute accent"
 "e\u02cagal", // e + "modifier letter acute accent"
 "e'gal", // e + single quote
 "e\u00b4gal", // e + Latin-1 "acute"
 };
 Pattern pattern = Pattern.compile(pattStr, Pattern.CANON_EQ);
 for (int i = 0; i < input.length; i++) {
 if (pattern.matcher(input[i]).matches()) {
 System.out.println(pattStr + " matches input " + input[i]);
 } else {
 System.out.println(pattStr + " does not match input " + input[i]);
 }
 }
 }
}

When you run this program on JDK 1.4 or later, it correctly matches the “combin-
ing accent” and rejects the other characters, some of which, unfortunately, look like
the accent on a printer, but are not considered “combining accent” characters.

égal matches input égal
égal matches input e?gal
égal does not match input e?gal
égal does not match input e'gal
égal does not match input e´gal

For more details, see the character charts at http://www.unicode.org/.

4.9 Matching Newlines in Text

Problem
You need to match newlines in text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Matching Newlines in Text | 107

Solution
Use \n or \r.

See also the flags constant Pattern.MULTILINE, which makes newlines match as begin-
ning-of-line and end-of-line (^ and $).

Discussion
While line-oriented tools from Unix such as sed and grep match regular expressions
one line at a time, not all tools do. The sam text editor from Bell Laboratories was
the first interactive tool I know of to allow multiline regular expressions; the Perl
scripting language followed shortly. In the Java API, the newline character by default
has no special significance. The BufferedReader method readLine() normally strips
out whichever newline characters it finds. If you read in gobs of characters using
some method other than readLine(), you may have some number of \n, \r, or \r\n
sequences in your text string.* Normally all of these are treated as equivalent to \n. If
you want only \n to match, use the UNIX_LINES flag to the Pattern.compile()
method.

In Unix, ^ and $ are commonly used to match the beginning or end of a line, respec-
tively. In this API, the regex metacharacters ^ and $ ignore line terminators and only
match at the beginning and the end, respectively, of the entire string. However, if
you pass the MULTILINE flag into Pattern.compile(), these expressions match just
after or just before, respectively, a line terminator; $ also matches the very end of the
string. Since the line ending is just an ordinary character, you can match it with . or
similar expressions, and, if you want to know exactly where it is, \n or \r in the pat-
tern match it as well. In other words, to this API, a newline character is just another
character with no special significance. See the sidebar “Pattern.compile() Flags”. An
example of newline matching is shown in Example 4-6.

* Or a few related Unicode characters, including the next-line (\u0085), line-separator (\u2028), and paragraph-
separator (\u2029) characters.

Example 4-6. NLMatch.java

import java.util.regex.*;

/**
 * Show line ending matching using regex class.
 * @author Ian F. Darwin, ian@darwinsys.com
 * @version $Id: ch04,v 1.4 2004/05/04 20:11:27 ian Exp $
 */
public class NLMatch {
 public static void main(String[] argv) {

 String input = "I dream of engines\nmore engines, all day long";
 System.out.println("INPUT: " + input);
 System.out.println();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Pattern Matching with Regular Expressions

If you run this code, the first pattern (with the wildcard character .) always matches,
while the second pattern (with $) matches only when MATCH_MULTILINE is set.

> java NLMatch
INPUT: I dream of engines
more engines, all day long

PATTERN engines
more engines
DEFAULT match true
MULTILINE match: true

PATTERN engines$
DEFAULT match false
MULTILINE match: true

4.10 Program: Apache Logfile Parsing
The Apache web server is the world’s leading web server and has been for most of
the web’s history. It is one of the world’s best-known open source projects, and one
of many fostered by the Apache Foundation. But the name Apache is a pun on the
origins of the server; its developers began with the free NCSA server and kept hack-
ing at it or “patching” it until it did what they wanted. When it was sufficiently dif-
ferent from the original, a new name was needed. Since it was now “a patchy server,”
the name Apache was chosen. One place this patchiness shows through is in the log
file format. Consider this entry:

 String[] patt = {
 "engines.more engines",
 "engines$"
 };

 for (int i = 0; i < patt.length; i++) {
 System.out.println("PATTERN " + patt[i]);

 boolean found;
 Pattern p1l = Pattern.compile(patt[i]);
 found = p1l.matcher(input).find();
 System.out.println("DEFAULT match " + found);

 Pattern pml = Pattern.compile(patt[i],
 Pattern.DOTALL|Pattern.MULTILINE);
 found = pml.matcher(input).find();
 System.out.println("MultiLine match " + found);
 System.out.println();
 }
 }
}

Example 4-6. NLMatch.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Apache Logfile Parsing | 109

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html HTTP/1.0"
200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)"

The file format was obviously designed for human inspection but not for easy pars-
ing. The problem is that different delimiters are used: square brackets for the date,
quotes for the request line, and spaces sprinkled all through. Consider trying to use a
StringTokenizer; you might be able to get it working, but you’d spend a lot of time
fiddling with it. However, this somewhat contorted regular expression* makes it easy
to parse:

^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)" (\d{3}) (\d+) "([^"]+)"
"([^"]+)"

You may find it informative to refer back to Table 4-2 and review the full syntax used
here. Note in particular the use of the non-greedy quantifier +? in \"(.+?)\" to match
a quoted string; you can’t just use .+ since that would match too much (up to the
quote at the end of the line). Code to extract the various fields such as IP address,
request, referer URL, and browser version is shown in Example 4-7.

* You might think this would hold some kind of world record for complexity in regex competitions, but I’m
sure it’s been outdone many times.

Example 4-7. LogRegExp.java

import java.util.regex.*;

/**
 * Parse an Apache log file with Regular Expressions
 */
public class LogRegExp implements LogExample {

 public static void main(String argv[]) {

 String logEntryPattern =
 "^([\\d.]+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3})
(\\d+) \"([^\"]+)\" \"([^\"]+)\"";

 System.out.println("Using regex Pattern:");
 System.out.println(logEntryPattern);

 System.out.println("Input line is:");
 System.out.println(logEntryLine);

 Pattern p = Pattern.compile(logEntryPattern);
 Matcher matcher = p.matcher(logEntryLine);
 if (!matcher.matches() ||
 NUM_FIELDS != matcher.groupCount()) {
 System.err.println("Bad log entry (or problem with regex?):");
 System.err.println(logEntryLine);
 return;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Pattern Matching with Regular Expressions

The implements clause is for an interface that just defines the input string; it was used
in a demonstration to compare the regular expression mode with the use of a
StringTokenizer. The source for both versions is in the online source for this chap-
ter. Running the program against the sample input shown above gives this output:

Using regex Pattern:
^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)" (\d{3}) (\d+) "([^"]+)"
"([^"]+)"
Input line is:
123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html HTTP/1.0"
200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)"
IP Address: 123.45.67.89
Date&Time: 27/Oct/2000:09:27:09 -0400
Request: GET /java/javaResources.html HTTP/1.0
Response: 200
Bytes Sent: 10450
Browser: Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)

The program successfully parsed the entire log file format with one call to matcher.
matches().

4.11 Program: Data Mining
Suppose that I, as a published author, want to track how my book is selling in com-
parison to others. This information can be obtained for free just by clicking on the
page for my book on any of the major bookseller sites, reading the sales rank num-
ber off the screen, and typing the number into a file—but that’s too tedious. As I
wrote in the book that this example looks for, “computers get paid to extract rele-
vant information from files; people should not have to do such mundane tasks.” This
program uses the Regular Expressions API and, in particular, newline matching to
extract a value from an HTML page on the hypothetical QuickBookShops.web web
site. It also reads from a URL object (see Recipe 18.7). The pattern to look for is
something like this (bear in mind that the HTML may change at any time, so I want
to keep the pattern fairly general):

QuickBookShop.web Sales Rank:
26,252

 System.out.println("IP Address: " + matcher.group(1));
 System.out.println("Date&Time: " + matcher.group(4));
 System.out.println("Request: " + matcher.group(5));
 System.out.println("Response: " + matcher.group(6));
 System.out.println("Bytes Sent: " + matcher.group(7));
 if (!matcher.group(8).equals("-"))
 System.out.println("Referer: " + matcher.group(8));
 System.out.println("Browser: " + matcher.group(9));
 }
}

Example 4-7. LogRegExp.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Data Mining | 111

As the pattern may extend over more than one line, I read the entire web page from
the URL into a single long string using my FileIO.readerToString() method (see
Recipe 10.8) instead of the more traditional line-at-a-time paradigm. I then plot a
graph using an external program (see Recipe 26.1); this could (and should) be
changed to use a Java graphics program (see Recipe 13.13 for some leads). The com-
plete program is shown in Example 4-8.

Example 4-8. BookRank.java

// Standard imports not shown
import com.darwinsys.io.FileIO;
import com.darwinsys.util.FileProperties;

/** Graph of a book's sales rank on a given bookshop site.
 * @author Ian F. Darwin, http://www.darwinsys.com/, Java Cookbook author,
 * originally translated fairly literally from Perl into Java.
 * @author Patrick Killelea <p@patrick.net>: original Perl version,
 * from the 2nd edition of his book "Web Performance Tuning".
 * @version $Id: ch04,v 1.4 2004/05/04 20:11:27 ian Exp $
 */
public class BookRank {
 public final static String DATA_FILE = "book.sales";
 public final static String GRAPH_FILE = "book.png";

 /** Grab the sales rank off the web page and log it. */
 public static void main(String[] args) throws Exception {

 Properties p = new FileProperties(
 args.length == 0 ? "bookrank.properties" : args[1]);
 String title = p.getProperty("title", "NO TITLE IN PROPERTIES");
 // The url must have the "isbn=" at the very end, or otherwise
 // be amenable to being string-catted to, like the default.
 String url = p.getProperty("url", "http://test.ing/test.cgi?isbn=");
 // The 10-digit ISBN for the book.
 String isbn = p.getProperty("isbn", "0000000000");
 // The regex pattern (MUST have ONE capture group for the number)
 String pattern = p.getProperty("pattern", "Rank: (\\d+)");

 // Looking for something like this in the input:
 // QuickBookShop.web Sales Rank:
 // 26,252
 //

 Pattern r = Pattern.compile(pattern);

 // Open the URL and get a Reader from it.
 BufferedReader is = new BufferedReader(new InputStreamReader(
 new URL(url + isbn).openStream()));
 // Read the URL looking for the rank information, as
 // a single long string, so can match regex across multi-lines.
 String input = FileIO.readerToString(is);
 // System.out.println(input);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Pattern Matching with Regular Expressions

4.12 Program: Full Grep
Now that we’ve seen how the regular expressions package works, it’s time to write
Grep2, a full-blown version of the line-matching program with option parsing.
Table 4-3 lists some typical command-line options that a Unix implementation of
grep might include.

 // If found, append to sales data file.
 Matcher m = r.matcher(input);
 if (m.find()) {
 PrintWriter pw = new PrintWriter(
 new FileWriter(DATA_FILE, true));
 String date = // 'date +'%m %d %H %M %S %Y'`;
 new SimpleDateFormat("MM dd hh mm ss yyyy ").
 format(new Date());
 // Paren 1 is the digits (and maybe ','s) that matched; remove comma
 Matcher noComma = Pattern.compile(",").matcher(m.group(1));
 pw.println(date + noComma.replaceAll(""));
 pw.close();
 } else {
 System.err.println("WARNING: pattern `" + pattern +
 "' did not match in `" + url + isbn + "'!");
 }

 // Whether current data found or not, draw the graph, using
 // external plotting program against all historical data.
 // Could use gnuplot, R, any other math/graph program.
 // Better yet: use one of the Java plotting APIs.

 String gnuplot_cmd =
 "set term png\n" +
 "set output \"" + GRAPH_FILE + "\"\n" +
 "set xdata time\n" +
 "set ylabel \"Book sales rank\"\n" +
 "set bmargin 3\n" +
 "set logscale y\n" +
 "set yrange [1:60000] reverse\n" +
 "set timefmt \"%m %d %H %M %S %Y\"\n" +
 "plot \"" + DATA_FILE +
 "\" using 1:7 title \"" + title + "\" with lines\n"
 ;

 Process proc = Runtime.getRuntime().exec("/usr/local/bin/gnuplot");
 PrintWriter gp = new PrintWriter(proc.getOutputStream());
 gp.print(gnuplot_cmd);
 gp.close();
 }
}

Example 4-8. BookRank.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Full Grep | 113

We discussed the GetOpt class in Recipe 2.6. Here we use it to control the operation
of an application program. As usual, since main() runs in a static context but our
application main line does not, we could wind up passing a lot of information into
the constructor. Because we have so many options, and it would be inconvenient to
keep expanding the options list as we add new functionality to the program, we use a
kind of Collection called a BitSet to pass all the true/false arguments: true to print
line numbers, false to print filenames, etc. (Collections are covered in Chapter 7.) A
BitSet is much like a Vector (see Recipe 7.3) but is specialized to store only Boolean
values and is ideal for handling command-line arguments.

The program basically just reads lines, matches the pattern in them, and, if a match
is found (or not found, with -v), prints the line (and optionally some other stuff,
too). Having said all that, the code is shown in Example 4-9.

Table 4-3. Grep command-line options

Option Meaning

-c Count only: don’t print lines, just count them

-C Context; print some lines above and below each line that matches (not implemented in this version; left
as an exercise for the reader)

-f pattern Take pattern from file named after -f instead of from command line

-h Suppress printing filename ahead of lines

-i Ignore case

-l List filenames only: don’t print lines, just the names they’re found in

-n Print line numbers before matching lines

-s Suppress printing certain error messages

-v Invert: print only lines that do NOT match the pattern

Example 4-9. Grep2.java

import com.darwinsys.util.*;
import java.io.*;
import java.util.*;

/** A command-line grep-like program. Accepts some options and takes a pattern
 * and a list of text files.
 */
public class Grep2 {
 /** The pattern we're looking for */
 protected Matcher pattern;
 /** The Reader for the current file */
 protected BufferedReader d;
 /** Are we to only count lines, instead of printing? */
 protected boolean countOnly = false;
 /** Are we to ignore case? */
 protected boolean ignoreCase = false;
 /** Are we to suppress printing of filenames? */
 protected boolean dontPrintFileName = false;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 4: Pattern Matching with Regular Expressions

 /** Are we to only list names of files that match? */
 protected boolean listOnly = false;
 /** are we to print line numbers? */
 protected boolean numbered = false;
 /** Are we to be silent about errors? */
 protected boolean silent = false;
 /** are we to print only lines that DONT match? */
 protected boolean inVert = false;

 /** Construct a Grep object for each pattern, and run it
 * on all input files listed in argv.
 */
 public static void main(String[] argv) throws RESyntaxException {

 if (argv.length < 1) {
 System.err.println("Usage: Grep2 pattern [filename...]");
 System.exit(1);
 }
 String pattern = null;

 GetOpt go = new GetOpt("cf:hilnsv");
 BitSet args = new BitSet();

 char c;
 while ((c = go.getopt(argv)) != 0) {
 switch(c) {
 case 'c':
 args.set('C');
 break;
 case 'f':
 try {
 BufferedReader b = new BufferedReader
 (new FileReader(go.optarg()));
 pattern = b.readLine();
 b.close();
 } catch (IOException e) {
 System.err.println("Can't read pattern file " +
 go.optarg());
 System.exit(1);
 }
 break;
 case 'h':
 args.set('H');
 break;
 case 'i':
 args.set('I');
 break;
 case 'l':
 args.set('L');
 break;
 case 'n':
 args.set('N');

Example 4-9. Grep2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Full Grep | 115

 break;
 case 's':
 args.set('S');
 break;
 case 'v':
 args.set('V');
 break;
 }
 }

 int ix = go.getOptInd();

 if (pattern == null)
 pattern = argv[ix-1];

 Grep2 pg = new Grep2(pattern, args);

 if (argv.length == ix)
 pg.process(new InputStreamReader(System.in), "(standard input)");
 else
 for (int i=ix; i<argv.length; i++) {
 try {
 pg.process(new FileReader(argv[i]), argv[i]);
 } catch(Exception e) {
 System.err.println(e);
 }
 }
 }

 /** Construct a Grep2 object.
 */
 public Grep2(String patt, BitSet args) {
 // compile the regular expression
 if (args.get('C'))
 countOnly = true;
 if (args.get('H'))
 dontPrintFileName = true;
 if (args.get('I'))
 ignoreCase = true;
 if (args.get('L'))
 listOnly = true;
 if (args.get('N'))
 numbered = true;
 if (args.get('S'))
 silent = true;
 if (args.get('V'))
 inVert = true;
 int caseMode = ignoreCase ? Pattern.UNICODE_CASE | Pattern.CASE_INSENSITIVE : 0;
 pattern = Pattern.compile(patt, caseMode);
 matcher = pattern.matcher("");
 }

Example 4-9. Grep2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 4: Pattern Matching with Regular Expressions

 /** Do the work of scanning one file
 * @param ifile Reader Reader object already open
 * @param fileName String Name of the input file
 */
 public void process(Reader ifile, String fileName) {

 String line;
 int matches = 0;

 try {
 d = new BufferedReader(ifile);

 while ((line = d.readLine()) != null) {
 if (pattern.match(line)) {
 if (countOnly)
 matches++;
 else {
 if (!dontPrintFileName)
 System.out.print(fileName + ": ");
 System.out.println(line);
 }
 } else if (inVert) {
 System.out.println(line);
 }
 }
 if (countOnly)
 System.out.println(matches + " matches in " + fileName);
 d.close();
 } catch (IOException e) { System.err.println(e); }
 }
}

Example 4-9. Grep2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

117

Chapter 5- CHAPTER 5

Numbers

5.0 Introduction
Numbers are basic to just about any computation. They’re used for array indexes,
temperatures, salaries, ratings, and an infinite variety of things. Yet they’re not as
simple as they seem. With floating-point numbers, how accurate is accurate? With
random numbers, how random is random? With strings that should contain a num-
ber, what actually constitutes a number?

Java has several built-in types that can be used to represent numbers, summarized in
Table 5-1. Note that unlike languages such as C or Perl, which don’t specify the size
or precision of numeric types, Java—with its goal of portability—specifies these
exactly and states that they are the same on all platforms.

As you can see, Java provides a numeric type for just about any purpose. There are
four sizes of signed integers for representing various sizes of whole numbers. There
are two sizes of floating-point numbers to approximate real numbers. There is also a
type specifically designed to represent and allow operations on Unicode characters.

When you read a string from user input or a text file, you need to convert it to the
appropriate type. The object wrapper classes in the second column have several

Table 5-1. Numeric types

Built-in type Object wrapper Size of built-in (bits) Contents

byte Byte 8 Signed integer

short Short 16 Signed integer

int Integer 32 Signed integer

long Long 64 Signed integer

float Float 32 IEEE-754 floating point

double Double 64 IEEE-754 floating point

char Character 16 Unsigned Unicode character

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Numbers

functions, but one of the most important is to provide this basic conversion func-
tionality—replacing the C programmer’s atoi/atof family of functions and the
numeric arguments to scanf.

Going the other way, you can convert any number (indeed, anything at all in Java) to
a string just by using string concatenation. If you want a little bit of control over
numeric formatting, Recipe 5.8 shows you how to use some of the object wrappers’
conversion routines. And if you want full control, it also shows the use of
NumberFormat and its related classes to provide full control of formatting.

As the name object wrapper implies, these classes are also used to “wrap” a number
in a Java object, as many parts of the standard API are defined in terms of objects.
Later on, Recipe 10.16 shows using an Integer object to save an int’s value to a file
using object serialization, and retrieving the value later.

But I haven’t yet mentioned the issues of floating point. Real numbers, you may
recall, are numbers with a fractional part. There is an infinity of possible real num-
bers. A floating-point number—what a computer uses to approximate a real num-
ber—is not the same as a real number. The number of floating-point numbers is
finite, with only 2^32 different bit patterns for floats, and 2^64 for doubles. Thus,
most real values have only an approximate correspondence to floating point. The
result of printing the real number 0.3 works correctly, as in:

// RealValues.java
System.out.println("The real value 0.3 is " + 0.3);

results in this printout:

The real value 0.3 is 0.3

But the difference between a real value and its floating-point approximation can
accumulate if the value is used in a computation; this is often called a rounding error.
Continuing the previous example, the real 0.3 multiplied by 3 yields:

The real 0.3 times 3 is 0.89999999999999991

Surprised? More surprising is this: you’ll get the same output on any conforming
Java implementation. I ran it on machines as disparate as a Pentium with OpenBSD,
a Pentium with Windows and Sun’s JDK, and on Mac OS X with JDK 1.4.1. Always
the same answer.

And what about random numbers? How random are they? You have probably heard
the expression “pseudo-random numbers.” All conventional random number genera-
tors, whether written in Fortran, C, or Java, generate pseudo-random numbers. That
is, they’re not truly random! True randomness comes only from specially built hard-
ware: an analog source of Brownian noise connected to an analog-to-digital con-
verter, for example.* This is not your average PC! However, pseudo-random number

* For a low-cost source of randomness, check out http://www.lavarand.org. These folks use digitized video of
1970s “lava lamps” to provide “hardware-based” randomness. Fun!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Checking Whether a String Is a Valid Number | 119

generators (PRNG for short) are good enough for most purposes, so we use them.
Java provides one random generator in the base library java.lang.Math, and several
others; we’ll examine these in Recipe 5.13.

The class java.lang.Math contains an entire “math library” in one class, including
trigonometry, conversions (including degrees to radians and back), rounding, trun-
cating, square root, minimum, and maximum. It’s all there. Check the Javadoc for
java.lang.Math.

The package java.Math contains support for “big numbers”—those larger than the
normal built-in long integers, for example. See Recipe 5.19.

Java works hard to ensure that your programs are reliable. The usual ways you’d
notice this are in the common requirement to catch potential exceptions—all
through the Java API—and in the need to “cast” or convert when storing a value that
might or might not fit into the variable you’re trying to store it in. I’ll show examples
of these.

Overall, Java’s handling of numeric data fits well with the ideals of portability, reli-
ability, and ease of programming.

See Also
The Java Language Specification. The Javadoc page for java.lang.Math.

5.1 Checking Whether a String
Is a Valid Number

Problem
You need to check whether a given string contains a valid number, and, if so, con-
vert it to binary (internal) form.

Solution
Use the appropriate wrapper class’s conversion routine and catch the
NumberFormatException. This code converts a string to a double:

// StringToDouble.java
public static void main(String argv[]) {
 String aNumber = argv[0]; // not argv[1]
 double result;
 try {
 result = Double.parseDouble(aNumber);
 } catch(NumberFormatException exc) {
 System.out.println("Invalid number " + aNumber);
 return;
 }
 System.out.println("Number is " + result);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Numbers

Discussion
Of course, that lets you validate only numbers in the format that the designers of the
wrapper classes expected. If you need to accept a different definition of numbers,
you could use regular expressions (see Chapter 4) to make the determination.

There may also be times when you want to tell if a given number is an integer num-
ber or a floating-point number. One way is to check for the characters ., d, e, or f in
the input; if one of these characters is present, convert the number as a double. Oth-
erwise, convert it as an int:

// Part of GetNumber.java
private static Number NAN = new Double(Double.NaN);

/* Process one String, returning it as a Number subclass
 */
public Number process(String s) {
 if (s.matches(".*[.dDeEfF]")) {
 try {
 double dValue = Double.parseDouble(s);
 System.out.println("It's a double: " + dValue);
 return new Double(dValue);
 } catch (NumberFormatException e) {
 System.out.println("Invalid a double: " + s);
 return NAN;
 }
 } else // did not contain . d e or f, so try as int.
 try {
 int iValue = Integer.parseInt(s);
 System.out.println("It's an int: " + iValue);
 return new Integer(iValue);
 } catch (NumberFormatException e2) {
 System.out.println("Not a number:" + s);
 return NAN;
 }
}

See Also
A more involved form of parsing is offered by the DecimalFormat class, discussed in
Recipe 5.8.

JDK 1.5 also features the Scanner class; see Recipe 10.5.

5.2 Storing a Larger Number
in a Smaller Number

Problem
You have a number of a larger type and you want to store it in a variable of a smaller
type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Numbers to Objects and Vice Versa | 121

Solution
Cast the number to the smaller type. (A cast is a type listed in parentheses before a
value that causes the value to be treated as though it were of the listed type.)

For example, to cast a long to an int, you need a cast. To cast a double to a float,
you also need a cast.

Discussion
This causes newcomers some grief, as the default type for a number with a decimal
point is double, not float. So code like:

float f = 3.0;

won’t even compile! It’s as if you had written:

double tmp = 3.0;
float f = tmp;

You can fix it by making f a double, by making the 3.0 a float, by putting in a cast,
or by assigning an integer value of 3:

double f = 3.0;
float f = 3.0f;
float f = 3f;
float f = (float)3.0;
float f = 3;

The same applies when storing an int into a short, char, or byte:

// CastNeeded.java
public static void main(String argv[]) {
 int i;
 double j = 2.75;
 i = j; // EXPECT COMPILE ERROR
 i = (int)j; // with cast; i gets 2
 System.out.println("i =" + i);
 byte b;
 b = i; // EXPECT COMPILE ERROR
 b = (byte)i; // with cast, i gets 2
 System.out.println("b =" + b);
}

The lines marked EXPECT COMPILE ERROR do not compile unless either com-
mented out or changed to be correct. The lines marked “with cast” show the correct
forms.

5.3 Converting Numbers to Objects
and Vice Versa

Problem
You need to convert numbers to objects and objects to numbers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Numbers

Solution
Use the Object Wrapper classes listed in Table 5-1 at the beginning of this chapter.

Discussion
Often you have a primitive number and you need to pass it into a method where an
Object is required. This frequently happens when using the Collection classes (see
Chapter 7) in 1.4 and earlier (in 1.5 you can use AutoBoxing, described in Recipe 8.4).

To convert between an int and an Integer object, or vice versa, you can use the
following:

// IntObject.java
// int to Integer
Integer i1 = new Integer(42);
System.out.println(i1.toString()); // or just i1

// Integer to int
int i2 = i1.intValue();
System.out.println(i2);

5.4 Taking a Fraction of an Integer Without
Using Floating Point

Problem
You want to multiply an integer by a fraction without converting the fraction to a
floating-point number.

Solution
Multiply the integer by the numerator and divide by the denominator.

This technique should be used only when efficiency is more important than clarity,
as it tends to detract from the readability—and therefore the maintainability—of
your code.

Discussion
Since integers and floating-point numbers are stored differently, it may sometimes be
desirable and feasible, for efficiency purposes, to multiply an integer by a fractional
value without converting the values to floating point and back, and without requir-
ing a “cast”:

/** Compute the value of 2/3 of 5 */
public class FractMult {
 public static void main(String u[]) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ensuring the Accuracy of Floating-Point Numbers | 123

 double d1 = 0.666 * 5; // fast but obscure and inaccurate: convert
 System.out.println(d1); // 2/3 to 0.666 in programmer's head

 double d2 = 2/3 * 5; // wrong answer - 2/3 == 0, 0*5 = 0
 System.out.println(d2);

 double d3 = 2d/3d * 5; // "normal"
 System.out.println(d3);

 double d4 = (2*5)/3d; // one step done as integers, almost same answer
 System.out.println(d4);

 int i5 = 2*5/3; // fast, approximate integer answer
 System.out.println(i5);
 }
}

Running it looks like this:

$ java FractMult
3.33
0.0
3.333333333333333
3.3333333333333335
3
$

5.5 Ensuring the Accuracy of Floating-Point
Numbers

Problem
You want to know if a floating-point computation generated a sensible result.

Solution
Compare with the INFINITY constants, and use isNaN() to check for “not a number.”

Fixed-point operations that can do things like divide by zero result in Java notifying
you abruptly by throwing an exception. This is because integer division by zero is
considered a logic error.

Floating-point operations, however, do not throw an exception because they are
defined over an (almost) infinite range of values. Instead, they signal errors by pro-
ducing the constant POSITIVE_INFINITY if you divide a positive floating-point num-
ber by zero, the constant NEGATIVE_INFINITY if you divide a negative floating-point
value by zero, and NaN (Not a Number), if you otherwise generate an invalid result.
Values for these three public constants are defined in both the Float and the Double

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Numbers

wrapper classes. The value NaN has the unusual property that it is not equal to itself,
that is, NaN != NaN. Thus, it would hardly make sense to compare a (possibly sus-
pect) number against NaN, because the expression:

x == NaN

can never be true. Instead, the methods Float.isNaN(float) and Double.
isNaN(double) must be used:

// InfNaN.java
public static void main(String argv[]) {
 double d = 123;
 double e = 0;
 if (d/e == Double.POSITIVE_INFINITY)
 System.out.println("Check for POSITIVE_INFINITY works");
 double s = Math.sqrt(-1);
 if (s == Double.NaN)
 System.out.println("Comparison with NaN incorrectly returns true");
 if (Double.isNaN(s))
 System.out.println("Double.isNaN() correctly returns true");
}

Note that this, by itself, is not sufficient to ensure that floating-point calculations
have been done with adequate accuracy. For example, the following program dem-
onstrates a contrived calculation—Heron’s formula for the area of a triangle—both
in float and in double. The double values are correct, but the floating-point value
comes out as zero due to rounding errors. This happens because, in Java, operations
involving only float values are performed as 32-bit calculations. Related languages
such as C automatically promote these to double during the computation, which can
eliminate some loss of accuracy.

/** Compute the area of a triangle using Heron's Formula.
 * Code and values from Prof W. Kahan and Joseph D. Darcy.
 * See http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf.
 * Derived from listing in Rick Grehan's Java Pro article (October 1999).
 * Simplified and reformatted by Ian Darwin.
 */
public class Heron {
 public static void main(String[] args) {
 // Sides for triangle in float
 float af, bf, cf;
 float sf, areaf;

 // Ditto in double
 double ad, bd, cd;
 double sd, aread;

 // Area of triangle in float
 af = 12345679.0f;
 bf = 12345678.0f;
 cf = 1.01233995f;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Comparing Floating-Point Numbers | 125

 sf = (af+bf+cf)/2.0f;
 areaf = (float)Math.sqrt(sf * (sf - af) * (sf - bf) * (sf - cf));
 System.out.println("Single precision: " + areaf);

 // Area of triangle in double
 ad = 12345679.0;
 bd = 12345678.0;
 cd = 1.01233995;

 sd = (ad+bd+cd)/2.0d;
 aread = Math.sqrt(sd * (sd - ad) * (sd - bd) * (sd - cd));
 System.out.println("Double precision: " + aread);
 }
}

Let’s run it. To ensure that the rounding is not an implementation artifact, I’ll try it
both with Sun’s JDK and with Kaffe:

$ java Heron
Single precision: 0.0
Double precision: 972730.0557076167
$ kaffe Heron
Single precision: 0.0
Double precision: 972730.05570761673

If in doubt, use double!

To ensure consistency of very large magnitude double computations on different
Java implementations, Java provides the keyword strictfp, which can apply to
classes, interfaces, or methods within a class.* If a computation is Strict-FP, then it
must always, for example, return the value INFINITY if a calculation would overflow
the value of Double.MAX_VALUE (or underflow the value Double.MIN_VALUE). Non-Strict-
FP calculations—the default—are allowed to perform calculations on a greater range
and can return a valid final result that is in range even if the interim product was out
of range. This is pretty esoteric and affects only computations that approach the
bounds of what fits into a double.

5.6 Comparing Floating-Point Numbers

Problem
You want to compare two floating-point numbers for equality.

Solution
Based on what we’ve just discussed, you probably won’t just go comparing two
floats or doubles for equality. You might expect the floating-point wrapper classes,

* Note that an expression consisting entirely of compile-time constants, like Math.PI * 2.1e17, is also consid-
ered to be Strict-FP.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 5: Numbers

Float and Double, to override the equals() method, which they do. The equals()
method returns true if the two values are the same bit for bit, that is, if and only if
the numbers are the same or are both NaN. It returns false otherwise, including if the
argument passed in is null, or if one object is +0.0 and the other is –0.0.

If this sounds weird, remember that the complexity comes partly from the nature of
doing real number computations in the less-precise floating-point hardware, and
partly from the details of the IEEE Standard 754, which specifies the floating-point
functionality that Java tries to adhere to, so that underlying floating-point processor
hardware can be used even when Java programs are being interpreted.

To actually compare floating-point numbers for equality, it is generally desirable to
compare them within some tiny range of allowable differences; this range is often
regarded as a tolerance or as epsilon. Example 5-1 shows an equals() method you
can use to do this comparison, as well as comparisons on values of NaN. When run, it
prints that the first two numbers are equal within epsilon:

$ java FloatCmp
True within epsilon 1.0E-7
$

Example 5-1. FloatCmp.java

}/**
 * Floating-point comparisons.
 */
public class FloatCmp {
 final static double EPSILON = 0.0000001;
 public static void main(String[] argv) {
 double da = 3 * .3333333333;
 double db = 0.99999992857;

 // Compare two numbers that are expected to be close.
 if (da == db) {
 System.out.println("Java considers " + da + "==" + db);
 // else compare with our own equals method
 } else if (equals(da, db, 0.0000001)) {
 System.out.println("True within epsilon " + EPSILON);
 } else {
 System.out.println(da + " != " + db);
 }

 // Show that comparing two NaNs is not a good idea:
 double d1 = Double.NaN;
 double d2 = Double.NaN;
 if (d1 == d2)
 System.err.println("Comparing two NaNs incorrectly returns true.");
 if (!new Double(d1).equals(new Double(d2)))
 System.err.println("Double(NaN).equal(NaN) incorrectly returns false.");
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Rounding Floating-Point Numbers | 127

Note that neither of the System.err messages about “incorrect returns” prints. The
point of this example with NaNs is that you should always make sure values are not
NaN before entrusting them to Double.equals().

5.7 Rounding Floating-Point Numbers

Problem
You need to round floating-point numbers to integers or to a particular precision.

Solution
If you simply cast a floating value to an integer value, Java truncates the value. A
value like 3.999999 cast to an int or long becomes 3, not 4. To round floating-point
numbers properly, use Math.round(). It has two forms: if you give it a double, you get
a long result; if you give it a float, you get an int.

What if you don’t like the rounding rules used by round? If for some bizarre reason
you wanted to round numbers greater than 0.54 instead of the normal 0.5, you could
write your own version of round():

/*
 * Round floating values to integers.
 * @Return the closest int to the argument.
 * @param d A non-negative values to be rounded.
 */
static int round(double d) {
 if (d < 0) {
 throw new IllegalArgumentException("Value must be non-negative");
 }
 int di = (int)Math.floor(d); // integral value below (or ==) d
 if ((d - di) > THRESHOLD) {
 return di + 1;

 /** Compare two doubles within a given epsilon */
 public static boolean equals(double a, double b, double eps) {
 if (a==b) return true;
 // If the difference is less than epsilon, treat as equal.
 return Math.abs(a - b) < eps;
 }

 /** Compare two doubles, using default epsilon */
 public static boolean equals(double a, double b) {
 if (a==b) return true;
 // If the difference is less than epsilon, treat as equal.
 return Math.abs(a - b) < EPSILON * Math.max(Math.abs(a), Math.abs(b));
 }
}

Example 5-1. FloatCmp.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 5: Numbers

 } else {
 return di;
 }
}

If you need to display a number with less precision than it normally gets, you proba-
bly want to use a DecimalFormat object or a Formatter object.

5.8 Formatting Numbers

Problem
You need to format numbers.

Solution
Use a NumberFormat subclass.

Java has not traditionally provided a C-style printf/scanf functions because they tend
to mix together formatting and input/output in a very inflexible way. Programs using
printf/scanf can be very hard to internationalize, for example.

Java has an entire package, java.text, full of formatting routines as general and flexi-
ble as anything you might imagine. As with printf, it has an involved formatting lan-
guage, described in the Javadoc page. Consider the presentation of long numbers. In
North America, the number one thousand twenty-four and a quarter is written
1,024.25, in most of Europe it is 1 024,25, and in some other part of the world it
might be written 1.024,25. Not to mention how currencies and percentages are for-
matted! Trying to keep track of this yourself would drive the average small software
shop around the bend rather quickly.

Fortunately, the java.text package includes a Locale class, and, furthermore, the
Java runtime automatically sets a default Locale object based on the user’s environ-
ment; e.g., on the Macintosh and Windows, the user’s preferences; on Unix, the
user’s environment variables. (To provide a nondefault locale, see Recipe 15.8.) To
provide formatters customized for numbers, currencies, and percentages, the
NumberFormat class has static factory methods that normally return a DecimalFormat
with the correct pattern already instantiated. A DecimalFormat object appropriate to
the user’s locale can be obtained from the factory method NumberFormat.
getInstance() and manipulated using set methods. Surprisingly, the method
setMinimumIntegerDigits() turns out to be the easy way to generate a number for-
mat with leading zeros. Here is an example:

import java.text.*;
import java.util.*;

/*
 * Format a number our way and the default way.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting Numbers | 129

public class NumFormat2 {
 /** A number to format */
 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 /** The main (and only) method in this class. */
 public static void main(String av[]) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Set it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it.
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form:

$ java NumFormat2
0.0 formats as 000.00
1.0 formats as 001.00
3.142857142857143 formats as 003.1429
100.2345678 formats as 100.2346
$

You can also construct a DecimalFormat with a particular pattern or change the pat-
tern dynamically using applyPattern(). Some of the more common pattern charac-
ters are shown in Table 5-2.

Table 5-2. DecimalFormat pattern characters

Character Meaning

Numeric digit (leading zeros suppressed)

0 Numeric digit (leading zeros provided)

. Locale-specific decimal separator (decimal point)

, Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

' Escapes one of the above characters so it appears

Anything else Appears as itself

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 5: Numbers

The NumFormatTest program uses one DecimalFormat to print a number with only two
decimal places and a second to format the number according to the default locale:

// NumFormatTest.java
/** A number to format */
public static final double intlNumber = 1024.25;
/** Another number to format */
public static final double ourNumber = 100.2345678;
NumberFormat defForm = NumberFormat.getInstance();
NumberFormat ourForm = new DecimalFormat("##0.##");
// toPattern() shows the combination of #0., etc
// that this particular local uses to format with
System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");

This program prints the given pattern and then formats the same number using sev-
eral formats:

$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format
$

See Also
Chapter 17; O’Reilly’s Java I/O by Elliotte Rusty Harold.

5.9 Converting Between Binary, Octal, Decimal,
and Hexadecimal

Problem
You want to display an integer as a series of bits—for example, when interacting
with certain hardware devices. You want to convert a binary number or a hexadeci-
mal value into an integer.

Solution
The class java.lang.Integer provides the solutions. Use toBinaryString() to con-
vert an integer to binary. Use valueOf() to convert a binary string to an integer:

// BinaryDigits.java
String bin = "101010";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Operating on a Series of Integers | 131

System.out.println(bin + " as an integer is " + Integer.valueOf(bin, 2));
int i = 42;
System.out.println(i + " as binary digits (bits) is " +
 Integer.toBinaryString(i));

This program prints the binary as an integer, and an integer as binary:

$ java BinaryDigits
101010 as an integer is 42
42 as binary digits (bits) is 101010
$

Discussion
Integer.valueOf() is more general than binary formatting. It also converts a string
number from any radix to int, just by changing the second argument. Octal is base
8, decimal is 10, hexadecimal 16. Going the other way, the Integer class includes
toBinaryString(), toOctalString(), and toHexString().

The String class itself includes a series of static methods, valueOf(int),
valueOf(double), and so on, that also provide default formatting. That is, they return
the given numeric value formatted as a string.

5.10 Operating on a Series of Integers

Problem
You need to work on a range of integers.

Solution
For a contiguous set, use a for loop.

Discussion
To process a contiguous set of integers, Java provides a for loop.* Loop control for
the for loop is in three parts: initialize, test, and change. If the test part is initially
false, the loop will never be executed, not even once.

For discontinuous ranges of numbers, use a java.util.BitSet.

The following program demonstrates all of these techniques:

import java.util.BitSet;

/** Operations on series of numbers */
public class NumSeries {
 public static void main(String[] args) {

* If the set of numbers is in an array or collection (see Chapter 7), use a “foreach” loop (see Recipe 8.2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 5: Numbers

 // When you want an ordinal list of numbers, use a for loop
 // starting at 1.
 for (int i = 1; i <= months.length; i++)
 System.out.println("Month # " + i);

 // When you want a set of array indexes, use a for loop
 // starting at 0.
 for (int i = 0; i < months.length; i++)
 System.out.println("Month " + months[i]);

 // For a discontiguous set of integers, try a BitSet

 // Create a BitSet and turn on a couple of bits.
 BitSet b = new BitSet();
 b.set(0); // January
 b.set(3); // April

 // Presumably this would be somewhere else in the code.
 for (int i = 0; i<months.length; i++) {
 if (b.get(i))
 System.out.println("Month " + months[i] + " requested");
 }
 }
 /** The names of the months. See Dates/Times chapter for a better way */
 protected static String months[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };
}

5.11 Working with Roman Numerals

Problem
You need to format numbers as Roman numerals. Perhaps you’ve just written the
next Titanic or Star Wars episode and you need to get the copyright date correct. Or,
on a more mundane level, you need to format page numbers in the front matter of a
book.

Solution
Use my RomanNumberFormat class:

// RomanNumberSimple.java
RomanNumberFormat nf = new RomanNumberFormat();
int year = Calendar.getInstance().get(Calendar.YEAR);
System.out.println(year + " -> " + nf.format(year));

The use of Calendar to get the current year is explained in Recipe 6.1. Running
RomanNumberSimple looks like this:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Working with Roman Numerals | 133

+ jikes +E -d . RomanNumberSimple.java
+ java RomanNumberSimple
2004 -> MMIV

Discussion
Nothing in the standard API formats Roman numerals. However, the java.text.
Format class is designed to be subclassed for precisely such unanticipated purposes,
so I have done just that and developed a class to format numbers as Roman numer-
als. Here is a better and complete example program of using it to format the current
year. I can pass a number of arguments on the command line, including a "-" where I
want the year to appear (note that these arguments are normally not quoted; the "-"
must be an argument all by itself, just to keep the program simple). I use it as follows:

$ java RomanYear Copyright (c) - Ian Darwin
Copyright (c) MMIV Ian Darwin
$

The code for the RomanYear program is simple, yet it correctly puts spaces around the
arguments:

import java.util.*;

/** Print the current year in Roman Numerals */
public class RomanYear {

 public static void main(String[] argv) {

 RomanNumberFormat rf = new RomanNumberFormat();
 Calendar cal = Calendar.getInstance();
 int year = cal.get(Calendar.YEAR);

 // If no arguments, just print the year.
 if (argv.length == 0) {
 System.out.println(rf.format(year));
 return;
 }

 // Else a micro-formatter: replace "-" arg with year, else print.
 for (int i=0; i<argv.length; i++) {
 if (argv[i].equals("-"))
 System.out.print(rf.format(year));
 else
 System.out.print(argv[i]); // e.g., "Copyright"
 System.out.print(' ');
 }
 System.out.println();
 }
}

Now here’s the code for the RomanNumberFormat class. I did sneak in one additional
class, java.text.FieldPosition. A FieldPosition simply represents the position of
one numeric field in a string that has been formatted using a variant of NumberFormat.
format(). You construct it to represent either the integer part or the fraction part (of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 5: Numbers

course, Roman numerals don’t have fractional parts). The FieldPosition methods
getBeginIndex() and getEndIndex() indicate where in the resulting string the given
field wound up.

Example 5-2 is the class that implements Roman number formatting. As the com-
ments indicate, the one limitation is that the input number must be less than 4,000.

Example 5-2. RomanNumberFormat.java

import java.text.*;
import java.util.*;

/**
 * Roman Number class. Not localized, since Latin's a Dead Dead Language
 * and we don't display Roman Numbers differently in different Locales.
 * Filled with quick-n-dirty algorithms.
 */
public class RomanNumberFormat extends Format {

 /** Characters used in "Arabic to Roman", that is, format() methods. */
 static char A2R[][] = {
 { 0, 'M' },
 { 0, 'C', 'D', 'M' },
 { 0, 'X', 'L', 'C' },
 { 0, 'I', 'V', 'X' },
 };

 /** Format a given double as a Roman Numeral; just truncate to a
 * long, and call format(long).
 */
 public String format(double n) {
 return format((long)n);
 }

 /** Format a given long as a Roman Numeral. Just call the
 * three-argument form.
 */
 public String format(long n) {
 if (n <= 0 || n >= 4000)
 throw new IllegalArgumentException(n + " must be > 0 && < 4000");
 StringBuffer sb = new StringBuffer();
 format(new Integer((int)n), sb, new FieldPosition(NumberFormat.INTEGER
 FIELD));
 return sb.toString();
 }

 /* Format the given Number as a Roman Numeral, returning the
 * Stringbuffer (updated), and updating the FieldPosition.
 * This method is the REAL FORMATTING ENGINE.
 * Method signature is overkill, but required as a subclass of Format.
 */
 public StringBuffer format(Object on, StringBuffer sb, FieldPosition fp) {
 if (!(on instanceof Number))
 throw new IllegalArgumentException(on + " must be a Number object");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Working with Roman Numerals | 135

 if (fp.getField() != NumberFormat.INTEGER_FIELD)
 throw new IllegalArgumentException(fp +
 " must be FieldPosition(NumberFormat.INTEGER_FIELD");
 int n = ((Number)on).intValue(); // TODO check for in range here

 // First, put the digits on a tiny stack. Must be 4 digits.
 for (int i=0; i<4; i++) {
 int d=n%10;
 push(d);
 // System.out.println("Pushed " + d);
 n=n/10;
 }

 // Now pop and convert.
 for (int i=0; i<4; i++) {
 int ch = pop();
 // System.out.println("Popped " + ch);
 if (ch==0)
 continue;
 else if (ch <= 3) {
 for(int k=1; k<=ch; k++)
 sb.append(A2R[i][1]); // I
 }
 else if (ch == 4) {
 sb.append(A2R[i][1]); // I
 sb.append(A2R[i][2]); // V
 }
 else if (ch == 5) {
 sb.append(A2R[i][2]); // V
 }
 else if (ch <= 8) {
 sb.append(A2R[i][2]); // V
 for (int k=6; k<=ch; k++)
 sb.append(A2R[i][1]); // I
 }
 else { // 9
 sb.append(A2R[i][1]);
 sb.append(A2R[i][3]);
 }
 }
 // fp.setBeginIndex(0);
 // fp.setEndIndex(3);
 return sb;
 }

 /** Parse a generic object, returning an Object */
 public Object parseObject(String what, ParsePosition where) {
 throw new IllegalArgumentException("Parsing not implemented");
 // TODO PARSING HERE
 // return new Long(0);
 }

Example 5-2. RomanNumberFormat.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 5: Numbers

Several of the public methods are required because I wanted it to be a subclass of
Format, which is abstract. This accounts for some of the complexity, like having three
different format methods.

Note that the parseObject() method is also required, but we don’t actually imple-
ment parsing in this version. This is left as the usual exercise for the reader.

See Also
Java I/O (O’Reilly) has an entire chapter on NumberFormat and develops an
ExponentialNumberFormat subclass.

The online source for this book has ScaledNumberFormat, which prints numbers with
a maximum of four digits and a computerish scale factor (B for bytes, K for kilo-, M
for mega-, and so on).

5.12 Formatting with Correct Plurals

Problem
You’re printing something like "We used " + n + " items", but in English, “We used 1
items” is ungrammatical. You want “We used 1 item.”

Solution
Use a ChoiceFormat or a conditional statement.

Use Java’s ternary operator (cond ? trueval : falseval) in a string concatenation.
Both zero and plurals get an “s” appended to the noun in English (“no books, one
book, two books”), so we test for n==1.

// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);

 /* Implement a toy stack */
 protected int stack[] = new int[10];
 protected int depth = 0;

 /* Implement a toy stack */
 protected void push(int n) {
 stack[depth++] = n;
 }
 /* Implement a toy stack */
 protected int pop() {
 return stack[--depth];
 }
}

Example 5-2. RomanNumberFormat.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting with Correct Plurals | 137

}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("We used " + n + " item" + (n==1?"":"s"));
}

Does it work?

$ java FormatPlurals
We used 0 items
We used 1 item
We used 2 items
$

The final println statement is short for:

if (n==1)
 System.out.println("We used " + n + " item");
else
 System.out.println("We used " + n + " items");

This is a lot longer, in fact, so the ternary conditional operator is worth learning.

The ChoiceFormat is ideal for this. It is actually capable of much more, but here I’ll
show only this simplest use. I specify the values 0, 1, and 2 (or more), and the string
values to print corresponding to each number. The numbers are then formatted
according to the range they fall into:

import java.text.*;
/**
 * Format a plural correctly, using a ChoiceFormat.
 */
public class FormatPluralsChoice extends FormatPlurals {
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "items", "item", "items"};
 static ChoiceFormat myFormat = new ChoiceFormat(limits, formats);

 /** report -- using conditional operator */
 public static void report(int n) {
 System.out.println("We used " + n + " " + myFormat.format(n));
 }

 public static void main(String[] argv) {
 report(0);
 report(1);
 report(2);
 }
}

This generates the same output as the basic version. It is slightly longer, but more
general, and lends itself better to internationalization.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 5: Numbers

5.13 Generating Random Numbers

Problem
You need to generate random numbers in a hurry.

Solution
Use java.lang.Math.random() to generate random numbers. There is no claim that
the random values it returns are very good random numbers, however. This code
exercises the random() method:

// Random1.java
// java.lang.Math.random() is static, don't need to construct Math
System.out.println("A random from java.lang.Math is " + Math.random());

Note that this method only generates double values. If you need integers, you need
to scale and round:

/** Generate random ints by asking Random() for
 * a series of random integers from 1 to 10, inclusive.
 *
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch05,v 1.5 2004/05/04 20:11:35 ian Exp $
 */
public class RandomInt {
 public static void main(String[] a) {
 Random r = new Random();
 for (int i=0; i<1000; i++)
 // nextInt(10) goes from 0-9; add 1 for 1-10;
 System.out.println(1+Math.round(r.nextInt(10)));
 }
}

To see if it was really working well, I used the Unix tools sort and uniq, which,
together, give a count of how many times each value was chosen. For 1,000 integers,
each of 10 values should be chosen about 100 times:

C:> java RandomInt | sort -n | uniq -c
 110 1
 106 2
 98 3
 109 4
 108 5
 99 6
 94 7
 91 8
 94 9
 91 10
C:>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Better Random Numbers | 139

See Also
Recipe 5.14 shows easier and better ways to get random integers and doubles. Also
see the Javadoc documentation for java.lang.Math and the warning in this chapter’s
Introduction about pseudo-randomness versus real randomness.

5.14 Generating Better Random Numbers

Problem
You need to generate better random numbers.

Solution
Construct a java.util.Random object (not just any old random object) and call its
next*() methods. These methods include nextBoolean(), nextBytes() (which fills
the given array of bytes with random values), nextDouble(), nextFloat(), nextInt(),
and nextLong(). Don’t be confused by the capitalization of Float, Double, etc. They
return the primitive types boolean, float, double, etc., not the capitalized wrapper
objects. Clear enough? Maybe an example will help:

// Random2.java
// java.util.Random methods are non-static, so need to construct
Random r = new Random();
for (int i=0; i<10; i++)
 System.out.println("A double from java.util.Random is " + r.nextDouble());
for (int i=0; i<10; i++)
 System.out.println("An integer from java.util.Random is " + r.nextInt());

You can also use the java.util.Random nextGaussian() method, as shown next. The
nextDouble() methods try to give a “flat” distribution between 0 and 1.0, in which
each value has an equal chance of being selected. A Gaussian or normal distribution
is a bell-curve of values from negative infinity to positive infinity, with the majority of
the values around zero (0.0).

// Random3.java
Random r = new Random();
for (int i=0; i<10; i++)
 System.out.println("A gaussian random double is " + r.nextGaussian());

To illustrate the different distributions, I generated 10,000 numbers first using
nextRandom() and then using nextGaussian(). The code for this is in Random4.java
(not shown here) and is a combination of the previous programs with code to print
the results into files. I then plotted histograms using the R statistics package (see
http://www.r-project.org). The results are shown in Figure 5-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 5: Numbers

See Also
The Javadoc documentation for java.util.Random, and the warning in the Introduc-
tion about pseudo-randomness versus real randomness.

For cryptographic use, see class java.security.SecureRandom, which provides crypto-
graphically strong pseudo-random number generators (PRNG).

5.15 Calculating Trigonometric Functions

Problem
You need to compute sine, cosine, and other trigonometric functions.

Solution
Use the trig functions in java.lang.Math. Like java.lang.Math.random(), all the
methods of the Math class are static, so no Math instance is necessary. This makes
sense, as none of these computations maintains any state. Note that the arguments
for trigonometric functions are in radians, not in degrees. Here is a program that
computes a few (mostly) trigonometric values and displays the values of e and PI that
are available in the math library:

// Trig.java
System.out.println("Java's PI is " + Math.PI);
System.out.println("Java's e is " + Math.E);
System.out.println("The cosine of 1.1418 is " + Math.cos(1.1418));

The java.lang.StrictMath class, introduced in JDK 1.3, is intended to perform the
same operations as java.lang.Math but with greater cross-platform repeatability.

Figure 5-1. Flat (left) and Gaussian (right) distributions

Fr
eq

ue
nc

y

0

400

1000

0.0 0.4 0.8

Using nextRandom()

Fr
eq

ue
nc

y

0

1000

2000

-4 -2 0 2 4

Using nextGaussian()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiplying Matrices | 141

5.16 Taking Logarithms

Problem
You need to take the logarithm of a number.

Solution
For logarithms to base e, use java.lang.Math’s log() function:

// Logarithm.java
double someValue;
// compute someValue...
double log_e = Math.log(someValue);

For logarithms to other bases, use the identity that:

where x is the number whose logarithm you want, n is any desired base, and e is the
natural logarithm base. I have a simple LogBase class containing code that imple-
ments this functionality:

// LogBase.java
public static double log_base(double base, double value) {
 return Math.log(value) / Math.log(base);
}

Discussion
My log_base function allows you to compute logs to any positive base. If you have to
perform a lot of logs to the same base, it is more efficient to rewrite the code to cache
the log(base) once. Here is an example of using log_base:

// LogBaseUse.java
public static void main(String argv[]) {
 double d = LogBase.log_base(10, 10000);
 System.out.println("log10(10000) = " + d);
}
C:> java LogBaseUse
log10(10000) = 4.0

5.17 Multiplying Matrices

Problem
You need to multiply a pair of two-dimensional arrays, as is common in mathemati-
cal and engineering applications.

n
log x() e

log x()

e
log n()
-------------------=

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 5: Numbers

Solution
Use the following code as a model.

Discussion
It is straightforward to multiply an array of a numeric type. The code in Example 5-3
implements matrix multiplication.

Example 5-3. Matrix.java

/**
 * Multiply two matrices.
 * Only defined for int:
 * for long, float, and double.
 */
public class Matrix {

 /* Matrix-multiply two arrays together.
 * The arrays MUST be rectangular.
 * @author Tom Christiansen & Nathan Torkington, Perl Cookbook version.
 */
 public static int[][] multiply(int[][] m1, int[][] m2) {
 int m1rows = m1.length;
 int m1cols = m1[0].length;
 int m2rows = m2.length;
 int m2cols = m2[0].length;
 if (m1cols != m2rows)
 throw new IllegalArgumentException(
 "matrices don't match: " + m1cols + " != " + m2rows);
 int[][] result = new int[m1rows][m2cols];

 // multiply
 for (int i=0; i<m1rows; i++)
 for (int j=0; j<m2cols; j++)
 for (int k=0; k<m1cols; k++)
 result[i][j] += m1[i][k] * m2[k][j];

 return result;
 }

 public static void mprint(int[][] a) {
 int rows = a.length;
 int cols = a[0].length;
 System.out.println("array["+rows+"]["+cols+"] = {");
 for (int i=0; i<rows; i++) {
 System.out.print("{");
 for (int j=0; j<cols; j++)
 System.out.print(" " + a[i][j] + ",");
 System.out.println("},");
 }
 System.out.println(":;");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Complex Numbers | 143

Here is a program that uses the Matrix class to multiply two arrays of ints:

// MatrixUse.java
int x[][] = {
 { 3, 2, 3 },
 { 5, 9, 8 },
};
int y[][] = {
 { 4, 7 },
 { 9, 3 },
 { 8, 1 },
};
int z[][] = Matrix.multiply(x, y);
Matrix.mprint(x);
Matrix.mprint(y);
Matrix.mprint(z);

See Also
Consult a book on numerical methods for more things to do with matrices; one of
our reviewers recommends Numerical Recipes in Fortran by Teukolsky, Flannery, et
al., available as a PDF from http://www.library.cornell.edu/nr/bookfpdf.html. Com-
mercial software packages can do some of these calculations for you, including the
Visual Numerics libraries, which can be downloaded from http://www.vni.com.

5.18 Using Complex Numbers

Problem
You need to manipulate complex numbers, as is common in mathematical, scien-
tific, or engineering applications.

Solution
Java does not provide any explicit support for dealing with complex numbers. You
could keep track of the real and imaginary parts and do the computations yourself,
but that is not a very well-structured solution.

A better solution, of course, is to use a class that implements complex numbers. I
provide just such a class. First, an example of using it:

// ComplexDemo.java
Complex c = new Complex(3, 5);
Complex d = new Complex(2, -2);
System.out.println(c + ".getReal() = " + c.getReal());
System.out.println(c + " + " + d + " = " + c.add(d));
System.out.println(c + " + " + d + " = " + Complex.add(c, d));
System.out.println(c + " * " + d + " = " + c.multiply(d));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 5: Numbers

Example 5-4 is the complete source for the Complex class and shouldn’t require much
explanation. To keep the API general, I provide—for each of add, subtract, and mul-
tiply—both a static method that works on two complex objects and a nonstatic
method that applies the operation to the given object and one other object.

Example 5-4. Complex.java

/** A class to represent Complex Numbers. A Complex object is
 * immutable once created; the add, subtract and multiply routines
 * return newly created Complex objects containing the results.
 *
 */
public class Complex {
 /** The real part */
 private double r;
 /** The imaginary part */
 private double i;
 /** Construct a Complex */
 Complex(double rr, double ii) {
 r = rr;
 i = ii;
 }
 /** Display the current Complex as a String, for use in
 * println() and elsewhere.
 */
 public String toString() {
 StringBuffer sb = new StringBuffer().append(r);
 if (i>0)
 sb.append('+'); // else append(i) appends - sign
 return sb.append(i).append('i').toString();
 }
 /** Return just the Real part */
 public double getReal() {
 return r;
 }
 /** Return just the Real part */
 public double getImaginary() {
 return i;
 }
 /** Return the magnitude of a complex number */
 public double magnitude() {
 return Math.sqrt(r*r + i*i);
 }

 /** Add another Complex to this one */
 public Complex add(Complex other) {
 return add(this, other);
 }
 /** Add two Complexes */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.r+c2.r, c1.i+c2.i);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Handling Very Large Numbers | 145

5.19 Handling Very Large Numbers

Problem
You need to handle integer numbers larger than Long.MAX_VALUE or floating-point val-
ues larger than Double.MAX_VALUE.

Solution
Use the BigInteger or BigDecimal values in package java.math:

// BigNums.java
System.out.println("Here's Long.MAX_VALUE: " + Long.MAX_VALUE);
BigInteger bInt = new BigInteger("3419229223372036854775807");
System.out.println("Here's a bigger number: " + bInt);
System.out.println("Here it is as a double: " + bInt.doubleValue());

Note that the constructor takes the number as a string. Obviously you couldn’t just
type the numeric digits since by definition these classes are designed to represent
numbers larger than will fit in a Java long.

 /** Subtract another Complex from this one */
 public Complex subtract(Complex other) {
 return subtract(this, other);
 }
 /** Subtract two Complexes */
 public static Complex subtract(Complex c1, Complex c2) {
 return new Complex(c1.r-c2.r, c1.i-c2.i);
 }

 /** Multiply this Complex times another one */
 public Complex multiply(Complex other) {
 return multiply(this, other);
 }
 /** Multiply two Complexes */
 public static Complex multiply(Complex c1, Complex c2) {
 return new Complex(c1.r*c2.r - c1.i*c2.i, c1.r*c2.i + c1.i*c2.r);
 }
 /** Divide c1 by c2.
 * @author Gisbert Selke.
 */
 public static Complex divide(Complex c1, Complex c2) {
 return new Complex(
 (c1.r*c2.r+c1.i*c2.i)/(c2.r*c2.r+c2.i*c2.i),
 (c1.i*c2.r-c1.r*c2.i)/(c2.r*c2.r+c2.i*c2.i));
 }
}

Example 5-4. Complex.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 5: Numbers

Discussion
Both BigInteger and BigDecimal objects are immutable; that is, once constructed,
they always represent a given number. That said, a number of methods return new
objects that are mutations of the original, such as negate(), which returns the nega-
tive of the given BigInteger or BigDecimal. There are also methods corresponding to
most of the Java language built-in operators defined on the base types int/long and
float/double. The division method makes you specify the rounding method; consult
a book on numerical analysis for details. Example 5-5 is a simple stack-based calcula-
tor using BigDecimal as its numeric data type.

Example 5-5. BigNumCalc

import java.math.BigDecimal;
import java.util.Stack;

/** A trivial reverse-polish stack-based calculator for big numbers */
public class BigNumCalc {

 /** an array of Objects, simulating user input */
 public static Object[] testInput = {
 new BigDecimal("3419229223372036854775807.23343"),
 new BigDecimal("2.0"),
 "*",
 };

 public static void main(String[] args) {
 BigNumCalc calc = new BigNumCalc();
 System.out.println(calc.calculate(testInput));
 }

 Stack s = new Stack();

 public BigDecimal calculate(Object[] input) {
 BigDecimal tmp;
 for (int i = 0; i < input.length; i++) {
 Object o = input[i];
 if (o instanceof BigDecimal)
 s.push(o);
 else if (o instanceof String) {
 switch (((String)o).charAt(0)) {
 // + and * are commutative, order doesn't matter
 case '+':
 s.push(((BigDecimal)s.pop()).add((BigDecimal)s.pop()));
 break;
 case '*':
 s.push(((BigDecimal)s.pop()).multiply((BigDecimal)s.pop()));
 break;
 // - and /, order *does* matter
 case '-':
 tmp = (BigDecimal)s.pop();
 s.push(((BigDecimal)s.pop()).subtract(tmp));
 break;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: TempConverter | 147

Running this produces the expected (very large) value:

> jikes +E -d . BigNumCalc.java
> java BigNumCalc
6838458446744073709551614.466860
>

The current version has its inputs hard-coded, as does the JUnit test program, but in
real life you can use regular expressions to extract words or operators from an input
stream (as in Recipe 4.5), or you can use the StreamTokenizer approach of the simple
calculator (Recipe 10.4). The stack of numbers is maintained using a java.util.
Stack (Recipe 7.14).

BigInteger is mainly useful in cryptographic and security applications. Its method
isProbablyPrime() can create prime pairs for public key cryptography. BigDecimal
might also be useful in computing the size of the universe.

5.20 Program: TempConverter
The program shown in Example 5-6 prints a table of Fahrenheit temperatures (still
used in daily life weather reporting in the United States) and the corresponding Cel-
sius temperatures (used in science everywhere, and in daily life in most of the world).

 case '/':
 tmp = (BigDecimal)s.pop();
 s.push(((BigDecimal)s.pop()).divide(tmp,
 BigDecimal.ROUND_UP));
 break;
 default:
 throw new IllegalStateException("Unknown OPERATOR popped");
 }
 } else {
 throw new IllegalStateException("Syntax error in input");
 }
 }
 return (BigDecimal)s.pop();
 }
}

Example 5-6. TempConverter.java

import java.text.*;

/* Print a table of Fahrenheit and Celsius temperatures
 */
public class TempConverter {

 public static void main(String[] args) {
 TempConverter t = new TempConverter();

Example 5-5. BigNumCalc (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 5: Numbers

This works, but these numbers print with about 15 digits of (useless) decimal frac-
tions! The second version of this program subclasses the first and uses a
DecimalFormat to control the formatting of the converted temperatures
(Example 5-7).

 t.start();
 t.data();
 t.end();
 }

 protected void start() {
 }

 protected void data() {
 for (int i=-40; i<=120; i+=10) {
 float c = (i-32)*(5f/9);
 print(i, c);
 }
 }

 protected void print(float f, float c) {
 System.out.println(f + " " + c);
 }

 protected void end() {
 }
}

Example 5-7. TempConverter2.java

import java.text.*;

/* Print a table of fahrenheit and celsius temperatures, a bit more neatly.
 */
public class TempConverter2 extends TempConverter {
 protected DecimalFormat df;

 public static void main(String[] args) {
 TempConverter t = new TempConverter2();
 t.start();
 t.data();
 t.end();
 }

 // Constructor
 public TempConverter2() {
 df = new DecimalFormat("#0.00");
 }

 protected void print(float f, float c) {
 System.out.println(f + " " + df.format(c));
 }

Example 5-6. TempConverter.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: TempConverter | 149

This works, and the results are better than the first version’s, but still not right:

C:\javasrc\numbers>java TempConverter2
Fahr Centigrade.
-40.00 -40.00
-30.00 -34.44
-20.00 -28.89
-10.00 -23.33
0.00 -17.78
10.00 -12.22
20.00 -6.67
30.00 -1.11
40.00 4.44
50.00 10.00
60.00 15.56
70.00 21.11
80.00 26.67
90.00 32.22
100.00 37.78
110.00 43.33
120.00 48.89

It would look neater if we lined up the decimal points, but Java had nothing in its
standard API for doing this. This is deliberate! They wanted to utterly break the ties
with the ancient IBM 1403 line printers and similar monospaced devices such as
typewriters, “dumb” terminals,* and DOS terminal windows. However, with a bit of
simple arithmetic, the FieldPosition from Recipe 5.11 can be used to figure out how
many spaces need to be prepended to line up the columns; the arithmetic is done in
print(), and the spaces are put on in prependSpaces(). The result is much prettier:

C:\javasrc\numbers>java TempConverter3
Fahr Centigrade.
 -40 -40
 -30 -34.444
 -20 -28.889
 -10 -23.333
 0 -17.778
 10 -12.222
 20 -6.667

 protected void start() {
 System.out.println("Fahr Centigrade.");
 }

 protected void end() {
 System.out.println("-------------------");
 }
}

* My children are quick to remind me that “dumb” means “incapable of speech.” Nobody who has used, say,
a TTY33 or a DecWriter 100 dumb terminal will claim that they are incapable of speech. Intelligible speech
yes, but they certainly did talk at you while they were printing....

Example 5-7. TempConverter2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 5: Numbers

 30 -1.111
 40 4.444
 50 10
 60 15.556
 70 21.111
 80 26.667
 90 32.222
 100 37.778
 110 43.333
 120 48.889

And the code (Example 5-8) is only ten lines longer!

Example 5-8. TempConverter3.java

import java.text.*;

/* Print a table of Fahrenheit and Celsius temperatures, with decimal
 * points lined up.
 */
public class TempConverter3 extends TempConverter2 {
 protected FieldPosition fp;
 protected DecimalFormat dff;

 public static void main(String[] args) {
 TempConverter t = new TempConverter3();
 t.start();
 t.data();
 t.end();
 }

 // Constructor
 public TempConverter3() {
 super();
 dff = new DecimalFormat("##.#");
 fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 }

 protected void print(float f, float c) {
 String fs = dff.format(f, new StringBuffer(), fp).toString();
 fs = prependSpaces(4 - fp.getEndIndex(), fs);

 String cs = df.format(c, new StringBuffer(), fp).toString();
 cs = prependSpaces(4 - fp.getEndIndex(), cs);

 System.out.println(fs + " " + cs);
 }

 protected String prependSpaces(int n, String s) {
 String[] res = {
 "", " ", " ", " ", " ", " "
 };
 if (n<res.length)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Number Palindromes | 151

Remember, though, that the fields line up only if you use a fixed-width font, such as
Courier or LucidaSansTypewriter. If you want to line it up in a graphical display,
you’ll need to use Java’s font capability (see Chapter 13) or a JTable (see the Javadoc
for javax.swing.JTable or the O’Reilly book Java Swing).

5.21 Program: Number Palindromes
My wife, Betty, recently reminded me of a theorem that I must have studied in high
school but whose name I have long since forgotten: that any positive integer number
can be used to generate a palindrome by adding to it the number comprised of its
digits in reverse order. Palindromes are sequences that read the same in either direc-
tion, such as the name “Anna” or the phrase “Madam, I’m Adam” (ignoring spaces
and punctuation). We normally think of palindromes as composed of text, but the
concept can be applied to numbers: 13531 is a palindrome. Start with the number
72, for example, and add to it the number 27. The results of this addition is 99,
which is a (short) palindrome. Starting with 142, add 241, and you get 383. Some
numbers take more than one try to generate a palindrome. 1951 + 1591 yields 3542,
which is not palindromic. The second round, however, 3542 + 2453, yields 5995,
which is. The number 17,892, which my son Benjamin picked out of the air, requires
12 rounds to generate a palindrome, but it does terminate:

C:\javasrc\numbers>java Palindrome 72 142 1951 17892
Trying 72
72->99
Trying 142
142->383
Trying 1951
Trying 3542
1951->5995
Trying 17892
Trying 47763
Trying 84537
Trying 158085
Trying 738936
Trying 1378773
Trying 5157504
Trying 9215019
Trying 18320148
Trying 102422529
Trying 1027646730
Trying 1404113931
17892->2797227972

C:\javasrc\numbers>

 return res[n] + s;
 throw new IllegalStateException("Rebuild with bigger \"res\" array.");
 }
}

Example 5-8. TempConverter3.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 5: Numbers

If this sounds to you like a natural candidate for recursion, you are correct. Recur-
sion involves dividing a problem into simple and identical steps, which can be imple-
mented by a function that calls itself and provides a way of termination. Our basic
approach, as shown in method findPalindrome, is:

long findPalindrome(long num) {
 if (isPalindrome(num))
 return num;
 return findPalindrome(num + reverseNumber(num));
}

That is, if the starting number is already a palindromic number, return it; otherwise,
add it to its reverse, and try again. The version of the code shown here handles sim-
ple cases directly (single digits are always palindromic, for example). We won’t think
about negative numbers, as these have a character at the front that loses its meaning
if placed at the end, and hence are not strictly palindromic. Further, palindromic
forms of certain numbers are too long to fit in Java’s 64-bit long integer. These cause
underflow, which is trapped. As a result, an error message like “too big” is reported.*

Having said all that, Example 5-9 shows the code.

* Certain values do not work; for example, Ashish Batia reported that this version gets an exception on the
value 8989 (which it does).

Example 5-9. Palindrome.java

/** Compute the Palindrome of a number by adding the number composed of
 * its digits in reverse order, until a Palindrome occurs.
 * e.g., 42->66 (42+24); 1951->5995 (1951+1591=3542; 3542+2453=5995).
 */
public class Palindrome {
 public static void main(String[] argv) {
 for (int i=0; i<argv.length; i++)
 try {
 long l = Long.parseLong(argv[i]);
 if (l < 0) {
 System.err.println(argv[i] + " -> TOO SMALL");
 continue;
 }
 System.out.println(argv[i] + "->" + findPalindrome(l));
 } catch (NumberFormatException e) {
 System.err.println(argv[i] + "-> INVALID");
 } catch (IllegalStateException e) {
 System.err.println(argv[i] + "-> TOO BIG(went negative)");
 }
 }

 /** find a palindromic number given a starting point, by
 * calling ourself until we get a number that is palindromic.
 */
 static long findPalindrome(long num) {
 if (num < 0)
 throw new IllegalStateException("went negative");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Number Palindromes | 153

See Also
People using Java in scientific or large-scale numeric computing should check out the
Java Grande Forum (http://www.javagrande.org), a working group that aims to work
with Sun to ensure Java’s usability in these realms.

 if (isPalindrome(num))
 return num;
 System.out.println("Trying " + num);
 return findPalindrome(num + reverseNumber(num));
 }

 /** The number of digits in Long.MAX_VALUE */
 protected static final int MAX_DIGITS = 19;

 // digits array is shared by isPalindrome and reverseNumber,
 // which cannot both be running at the same time.

 /* Statically allocated array to avoid new-ing each time. */
 static long[] digits = new long[MAX_DIGITS];

 /** Check if a number is palindromic. */
 static boolean isPalindrome(long num) {
 if (num >= 0 && num <= 9)
 return true;
 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }
 for (int i=0; i<nDigits/2; i++)
 if (digits[i] != digits[nDigits - i - 1])
 return false;
 return true;
 }

 static long reverseNumber(long num) {
 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }
 long ret = 0;
 for (int i=0; i<nDigits; i++) {
 ret *= 10;
 ret += digits[i];
 }
 return ret;
 }
}

Example 5-9. Palindrome.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154

Chapter 6jCHAPTER 6

Dates and Times

6.0 Introduction
From its earliest releases, Java included a class called Date designed for representing
and operating upon dates. Its problems were that it was Anglocentric—like much of
Java 1.0—and that its dates began with the Unix time epoch: January 1, 1970. The
year was an integer whose minimum value 70 represented 1970, so 99 was 1999, 100
was 2000, and so on. This led to the problem that those of us ancient enough to have
been born before that venerable year of 1970 in the history of computing—the time
when Unix was invented—found ourselves unable to represent our birthdates, and
this made us grumpy and irritable.

The Anglocentricity and 1970-centricity were partly vanquished with Java 1.1. A new
class, Calendar, was devised, with hooks for representing dates in any date scheme
such as the Western (Christian) calendar, the Hebrew calendar, the Islamic calen-
dar, the Chinese calendar, and even Star Trek Star Dates. Unfortunately, there wasn’t
enough time to implement any of these. In fact, only the GregorianCalendar class
appears in Java 1.1, and subsequent Java versions have done little to solve the prob-
lem (though 1.2 did repair the Date class to allow it to represent years before 1970.)
You may have to go to other sources to get additional calendar classes; one source is
listed in Recipe 6.3.

The Calendar class can represent any date, BC or AD, in the Western calendar. A
separate Java int variable, with 32 bits of storage, is allocated for each item such as
year, month, day, and so on. Years are signed, with negative numbers meaning
before the calendar epoch and positive numbers after it. The term epoch means the
beginning of recorded time. In the Western world, our calendar epoch is the year 1,
representing the putative birth year of Jesus Christ. This is such an important event
in Western society that the years before it are called Before Christ or BC, and dates
since then are called...well, not After Christ, but the Latin anno domini, “in the year
of our Lord.” Because that takes too long to say and write, we use the acronym AD,
thus proving that computerists take no blame whatsoever for inventing the use of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding Today’s Date | 155

acronyms. In the modern spirit of political correctness, these terms have been
renamed to BCE (Before Common Era) and CE (Common Era), but to most English
speakers born before about 1980, they will always be BC and AD. The
GregorianCalendar class, intended to represent Western or Christian dates, also uses
BC and AD.

Where was I? Oh yes, Java. As ints in Java are 32 bits, that allows 2^31, or
2,147,483,648, years. Let’s say roughly two billion years. I, for one, am not going to
worry about this new Y2B menace—even if I’m still around, I’m sure they’ll have
gone to a 64-bit integer by then.

Fortunately, in JDK 1.2, the Date class was changed to use long values, and it can
now represent a much wider range of dates. And what about the DateFormat class?
Well, it provides a great deal of flexibility in the formatting of dates. Plus, it’s bidirec-
tional—it can parse dates too. We’ll see it in action in Recipes 6.2 and 6.5.

Note also that some of these classes are in package java.text, while others are in
java.util. Package java.text contains classes and interfaces for handling text, dates,
numbers, and messages in a manner independent of natural languages, while java.
util contains the collections framework and legacy collection classes (see
Chapter 7), event model, date and time facilities, internationalization, and miscella-
neous utility classes. You’ll need imports from both packages in most date-related
programs.

6.1 Finding Today’s Date

Problem
You want to find today’s date.

Solution
Use a Date object’s toString() method.

Discussion
The quick and simple way to get today’s date and time is to construct a Date object
with no arguments in the constructor call, and call its toString() method:

// Date0.java
System.out.println(new java.util.Date());

However, for reasons just outlined, we want to use a Calendar object. Just use
Calendar.getInstance().getTime(), which returns a Date object (even though the
name makes it seem like it should return a Time value*) and prints the resulting Date
object, using its toString() method or preferably a DateFormat object. You might be

* Just to be clear: Date’s getTime() returns the time in milliseconds while Calendar’s getTime() returns a Date.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Dates and Times

tempted to construct a GregorianCalendar object, using the no-argument construc-
tor, but if you do this, your program will not give the correct answer when non-
Western locales get Calendar subclasses of their own (which might occur in some
future release of Java). The static factory method Calendar.getInstance() returns a
localized Calendar subclass for the locale you are in. In North America and Europe it
will likely return a GregorianCalendar, but in other parts of the world it might (some-
day) return a different kind of Calendar.

Do not try to use a GregorianCalendar’s toString() method; the results are truly
impressive, but not very interesting. Sun’s implementation prints all its internal state
information; Kaffe’s inherits Object’s toString(), which just prints the class name
and the hashcode. Neither is useful for our purposes.

C> java Date1
java.util.
GregorianCalendar[time=932363506950,areFieldsSet=true,areAllFieldsSet=true,lenient=tr
ue,zone=java.util.SimpleTimeZone[id=America/Los_Angeles,offset=-
28800000,dstSavings=3600000,useDaylight=true,startYear=0,startMode=3,startMonth=3,sta
rtDay=1,startDayOfWeek=1,startTime=7200000,endMode=2,endMonth=9,endDay=-
1,endDayOfWeek=1,endTime=7200000],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=1,YEA
R=1999,MONTH=6,WEEK_OF_YEAR=30,WEEK_OF_MONTH=4,DAY_OF_MONTH=18,DAY_OF_YEAR=199,DAY_
OF_WEEK=1,DAY_OF_WEEK_IN_MONTH=3,AM_PM=1,HOUR=10,HOUR_OF_
DAY=22,MINUTE=51,SECOND=46,MILLISECOND=950,ZONE_OFFSET=-28800000,DST_OFFSET=3600000]

Calendar’s getTime() returns a Date object, which can be passed to println() to
print today’s date (and time) in the traditional (but non-localized) format:

// Date2.java
System.out.println(Calendar.getInstance().getTime());

To print the date in any other format, use java.text.DateFormat, which you’ll meet
in Recipe 6.2.

6.2 Printing Date/Time in a Given Format

Problem
You want to print the date and/or time in a locale-sensitive or otherwise-specified
format.

Solution
Use java.text.DateFormat.

Discussion
To print the date in the correct format for whatever locale your software lands in,
simply use the default DateFormat formatter, which is obtained by calling DateFormat.
getInstance():

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing Date/Time in a Given Format | 157

import java.util.*;
import java.text.*;

public class DateFormatBest {
 public static void main(String[] args) {
 Date today = new Date();

 DateFormat df = DateFormat.getInstance();
 System.out.println(df.format(today));

 DateFormat df_fr =
 DateFormat.getDateInstance(DateFormat.FULL, Locale.FRENCH);
 System.out.println(df_fr.format(today));
 }
}

When I run this, it prints:

3/3/04 12:17 PM
mercredi 3 mars 2004

You can ask for a default date and time formatter (df in the example), or a
TimeFormatter or DateFormatter that extracts just the time or date portion of the Date
object (df_fr in the example). You can also request a nondefault Locale (df_fr in the
example). Five codes—FULL, LONG, MEDIUM, SHORT and DEFAULT—can be
passed to describe how verbose a format you want.

Suppose you want the date printed, but instead of the default format, you want it
printed like “Sun 2004.07.18 at 04:14:09 PM PDT”. A look at the Javadoc page for
SimpleDateFormat—the only nonabstract subclass of DateFormat—reveals that it has a
rich language for specifying date and time formatting. Be aware that in so doing you
are presuming to know the correct format in all locales; see Chapter 15 for why this
may be a bad idea.

To use a default format, of course, we can just use the Date object’s toString()
method, and for a localized default format, we use DateFormat.getInstance(). But to
have full control and get the “Sun 2004.07.18 at 04:14:09 PM PDT”, we construct an
instance explicitly, like so:

new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

E means the day of the week; yyyy, MM, and dd are obviously year, month, and day.
The quoted string 'at' means the string “at”. hh:mm:ss is the time; a means A.M. or
P.M., and zzz means the time zone. Some of these are more memorable than others;
I find the zzz tends to put me to sleep. Here’s the code:

// DateDemo.java
Date dNow = new Date();

/* Simple, Java 1.0 date printing */
System.out.println("It is now " + dNow.toString());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 6: Dates and Times

// Use a SimpleDateFormat to print the date our way.
SimpleDateFormat formatter
 = new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");
System.out.println("It is " + formatter.format(dNow));

There are many format symbols; a list is shown in Table 6-1.

You can use as many of the given symbols as needed. Where a format can be used
either in text or numeric context, you can set it to a longer form by repetitions of the
character. For codes marked Text, four or more pattern letters cause the formatter to
use the long form; fewer cause it to use the short or abbreviated form if one exists.
Thus, E might yield Mon, whereas EEEE would yield Monday. For those marked
Number, the number of repetitions of the symbol gives the minimum number of dig-
its. Shorter numbers are zero-padded to the given number of digits. The year is han-
dled specially: yy yields an ambiguous* two-digit year (98, 99, 00, 01...), whereas

Table 6-1. SimpleDateFormat format codes

Symbol Meaning Presentation Example

G Era designator Text AD

y Year Number 2001

M Month in year Text and Number July or 07

d Day in month Number 10

h Hour in A.M./P.M. (1~12) Number 12

H Hour in day (0~23) Number 0

m Minute in hour Number 30

s Second in minute Number 43

S Millisecond Number 234

E Day in week Text Tuesday

D Day in year Number 360

F Day of week in month Number 2 (second Wed. in July)

w Week in year Number 40

W Week in month Number 1

a A.M./P.M. marker Text PM

k Hour in day (1~24) Number 24

K Hour in A.M./P.M. (0~11) Number 0

z Time zone Text Eastern Standard Time

' Escape for text Delimiter

" Single quote Literal ‘

* Remember Y2K? Use a four-digit year!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Dates in Other Epochs | 159

yyyy yields a valid year (2001). For those marked Text and Number, three or more
symbols causes the formatter to use text, while one or two make it use a number: MM
might yield 01, while MMM would yield January.

6.3 Representing Dates in Other Epochs

Problem
You need to deal with dates in a form other than the Gregorian Calendar used in the
Western world.

Solution
Download the IBM calendar classes.

Discussion
The only nonabstract Calendar subclass is the GregorianCalendar, as mentioned pre-
viously. However, other calendar classes do exist. IBM has a set of calendars—
Hebrew, Islamic, Buddhist, Japanese, and even an Astronomical Calendar class—that
covers most of the rest of the world. This work has been open sourced and is now
part of a project called International Components for Unicode for Java, which can be
found at http://oss.software.ibm.com/icu4j/.

The calendar classes in ICU4J work in a similar fashion to the standard
GregorianCalendar class, but they have constants for month names and other infor-
mation relevant to each particular calendar. They are not subclassed from java.util.
Calendar, however, so they must be referred to by their full class name:

import java.util.Locale;
import com.ibm.icu.util.Calendar;
import java.text.DateFormat;
import com.ibm.icu.util.IslamicCalendar;

public class IBMCalDemo {
 public static void main(String[] args) {
 Locale ar_loc = new Locale("ar");
 Calendar c = new com.ibm.icu.util.IslamicCalendar();
 DateFormat d = DateFormat.getDateInstance(DateFormat.LONG, ar_loc);
 System.out.println(d.format(c.getTime()));
 }
}

I can’t include the textual output because of font limitations. The icu4j package
includes a multicalendar demo application whose output is shown in Figure 6-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 6: Dates and Times

6.4 Converting YMDHMS to a Calendar
or Epoch Seconds

Problem
You have year, month, day, hour, minute, and maybe even seconds, and you need to
convert it to a Calendar or a Date.

Solution
Use the Calendar class’s set(y,m,d,h,m[,s]) method, which allows you to set the
date/time fields to whatever you wish. Note that when using this form and providing
your own numbers, or when constructing either a Date or a GregorianCalendar
object, the month value is zero-based while all the other values are true-origin. Pre-
sumably, this is to allow you to print the month name from an array without having
to remember to subtract one, but it is still confusing.

// GregCalDemo.java
GregorianCalendar d1 = new GregorianCalendar(1986, 04, 05); // May 5
GregorianCalendar d2 = new GregorianCalendar(); // today
Calendar d3 = Calendar.getInstance(); // today

Figure 6-1. IBMCalDemo in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing Strings into Dates | 161

System.out.println("It was then " + d1.getTime());
System.out.println("It is now " + d2.getTime());
System.out.println("It is now " + d3.getTime());
d3.set(Calendar.YEAR, 1915);
d3.set(Calendar.MONTH, Calendar.APRIL);
d3.set(Calendar.DAY_OF_MONTH, 12);
System.out.println("D3 set to " + d3.getTime());

This prints the dates as shown:

It was then Mon May 05 00:00:00 EDT 1986
It is now Thu Mar 25 16:36:07 EST 2004
It is now Thu Mar 25 16:36:07 EST 2004
D3 set to Mon Apr 12 16:36:07 EST 1915

6.5 Parsing Strings into Dates

Problem
You need to convert user input into Date or Calendar objects.

Solution
Use a DateFormat.

Discussion
The DateFormat class introduced in Recipe 6.2 has some additional methods, notably
parse(), which tries to parse a string according to the format stored in the given
DateFormat object:

// DateParse1.java
SimpleDateFormat formatter
 = new SimpleDateFormat ("yyyy-MM-dd");
String input = args.length == 0 ? "1818-11-11" : args[0];
System.out.print(input + " parses as ");
Date t;
try {
 t = formatter.parse(input);
 System.out.println(t);
} catch (ParseException e) {
 System.out.println("unparseable using " + formatter);
}

This program parses any date back to Year Zero and well beyond Year 2000.

What if the date is embedded in an input string? You could, of course, use the
string’s substring() method to extract it, but there is an easier way. The
ParsePosition object from java.text is designed to represent (and track) the posi-
tion of an imaginary cursor in a string. Suppose we have genealogical data with input
strings representing the times of a person’s life:

BD: 1913-10-01 Vancouver, B.C.
DD: 1983-06-06 Toronto, ON

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 6: Dates and Times

This lists one person’s birth date (BD) and place, and death date (DD) and place. We
can parse these using String.indexOf(' ') to find the space after the : character,
DateFormat parse() to parse the date, and String.substring() to get the city and
other geographic information. Here’s how:

// DateParse2.java
SimpleDateFormat formatter =
 new SimpleDateFormat ("yyyy-MM-dd");
String input[] = {
 "BD: 1913-10-01 Vancouver, B.C.",
 "MD: 1948-03-01 Ottawa, ON",
 "DD: 1983-06-06 Toronto, ON" };
for (int i=0; i<input.length; i++) {
 String aLine = input[i];
 String action;
 switch(aLine.charAt(0)) {
 case 'B': action = "Born"; break;
 case 'M': action = "Married"; break;
 case 'D': action = "Died"; break;
 // others...
 default: System.err.println("Invalid code in " + aLine);
 continue;
 }
 int p = aLine.indexOf(' ');
 ParsePosition pp = new ParsePosition(p);
 Date d = formatter.parse(aLine, pp);
 if (d == null) {
 System.err.println("Invalid date in " + aLine);
 continue;
 }
 String location = aLine.substring(pp.getIndex());
 System.out.println(
 action + " on " + d + " in " + location);
}

This works like I said it would:

Born on Wed Oct 01 00:00:00 PDT 1913 in Vancouver, B.C.
Married on Mon Mar 01 00:00:00 PST 1948 in Ottawa, ON
Died on Mon Jun 06 00:00:00 PDT 1983 in Toronto, ON

Note that the polymorphic form of parse() that takes one argument throws a
ParseException if the input cannot be parsed, while the form that takes a
ParsePosition as its second argument returns null to indicate failure.

6.6 Converting Epoch Seconds to DMYHMS

Problem
You need to convert a number of seconds since 1970 into a Date.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding to or Subtracting from a Date or Calendar | 163

Solution
Just use the Date constructor.

Discussion
“The Epoch” is the beginning of time as far as modern operating systems go. Unix
time, and some versions of Windows time, count off inexorably the seconds since
the epoch. On systems that store this in a 32-bit integer, time is indeed running out.
Let’s say we wanted to find out when the Unix operating system, whose 32-bit ver-
sions use a 32-bit date, will get into difficulty. We take a 32-bit integer of all ones,
and construct a Date around it. The Date constructor needs the number of millisec-
onds since 1970, so we multiply by 1,000:

/** When does the UNIX date get into trouble? */

public class Y2038 {
 public static void main(String[] a) {

 // This should yield 2038AD, the hour of doom for the
 // last remaining 32-bit UNIX systems (there will be
 // millions of 64-bit UNIXes by then).

 long expiry = 0x7FFFFFFFL;

 System.out.println("32-bit UNIX expires on " +
 Long.toHexString(expiry) + " or " +
 new java.util.Date(expiry * 1000));
 }
}

Sure enough, the program reports that 32-bit Unixes will expire in the year 2038
(you might think I knew that in advance if you were to judge by the name I gave the
class; in fact, my web site has carried the Y2038 warning to Unix users for several
years now). At least Unix system managers have more warning than most of the gen-
eral public had for the original Y2K problem.

> java Y2038
32-bit UNIX expires on 7fffffff or Mon Jan 18 22:14:07 EST 2038
>

At any rate, if you need to convert seconds since 1970 to a date, you know how.

6.7 Adding to or Subtracting from a Date
or Calendar

Problem
You need to add or subtract a fixed amount to or from a date.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 6: Dates and Times

Solution
As we’ve seen, Date has a getTime() method that returns the number of seconds
since the epoch as a long. To add or subtract, you just do arithmetic on this value.
Here’s a code example:

// DateAdd.java
/** Today's date */
Date now = new Date();

long t = now.getTime();

t -= 700L*24*60*60*1000;

Date then = new Date(t);

System.out.println("Seven hundred days ago was " + then);

Discussion
A cleaner variant is to use the Calendar’s add() method. There is no corresponding
subtraction method; you just add a negative value to make time run backward:

import java.text.*;
import java.util.*;

/** DateCalAdd -- compute the difference between two dates.
 */
public class DateCalAdd {
 public static void main(String[] av) {
 /** Today's date */
 Calendar now = Calendar.getInstance();

 /* Do "DateFormat" using "simple" format. */
 SimpleDateFormat formatter
 = new SimpleDateFormat ("E yyyy/MM/dd 'at' hh:mm:ss a zzz");
 System.out.println("It is now " +
 formatter.format(now.getTime()));

 now.add(Calendar.YEAR, - 2);
 System.out.println("Two years ago was " +
 formatter.format(now.getTime()));
 }
}

Running this reports the current date and time, and the date and time two years ago:

> java DateCalAdd
It is now Tue 2003/11/25 at 09:14:26 AM EST
Two years ago was Sun 2001/11/25 at 09:14:26 AM EST

A method called roll() does not change “larger” fields. For example, rolling the
month up from January 31, 2051 results in February 28, 2051.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Comparing Dates | 165

6.8 Difference Between Two Dates

Problem
You need to compute the difference between two dates.

Solution
Convert to Date objects if necessary, call their getTime() methods, and subtract. For-
mat the result yourself.

Discussion
The API has no general mechanism for computing the difference between two dates.
This is surprising, given how often it comes up in some types of commercial data
processing. However, it’s fairly simple to implement this yourself:

import java.util.*;

/** DateDiff -- compute the difference between two dates. */
public class DateDiff {
 public static void main(String[] av) {
 /** The date at the end of the last century */
 Date d1 = new GregorianCalendar(2000,11,31,23,59).getTime();

 /** Today's date */
 Date today = new Date();

 // Get msec from each, and subtract.
 long diff = today.getTime() - d1.getTime();

 System.out.println("The 21st century (up to " + today +
 ") is " + (diff / (1000*60*60*24)) + " days old.");
 }
}

I’m editing this recipe in November of 2003; the 20th Century AD ended at the end
of 2000, so the value should be about 3 11/12 years, and it is:

> java DateDiff
The 21st century (up to Tue Nov 25 09:20:15 EST 2003) is 1058 days old.
>

You saw Calendar’s add() method in Recipe 6.7, but that only adds to the day,
month, or year (or any other field) in the Calendar object; it does not add two
Calendar dates together.

6.9 Comparing Dates

Problem
You need to compare two dates.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 6: Dates and Times

Solution
If the dates are in Date objects, compare with equals() and one of before() or after().
If the dates are in longs, compare with == and either < or >.

Discussion
While Date implements equals() like any good class, it also provides before(Date)
and after(Date), which compare one date with another to see which happened first.
This can be used to determine the relationship among any two dates, as in
Example 6-1.

Running CompareDates with two close-together dates and the same date reveals that it
seems to work:

> java CompareDates 2000-01-01 1999-12-31
Sat Jan 01 00:00:00 EST 2000 is after Fri Dec 31 00:00:00 EST 1999
> java CompareDates 2000-01-01 2000-01-01
Sat Jan 01 00:00:00 EST 2000 is the same date as Sat Jan 01 00:00:00 EST 2000

It would be interesting to see if DateFormat.parse() really does field rolling, as the
documentation says. Apparently so!

> javaCompareDates 2001-02-29 2001-03-01
Thu Mar 01 00:00:00 EST 2001 is the same date as Thu Mar 01 00:00:00 EST 2001
>

Example 6-1. CompareDates.java

import java.util.*;
import java.text.*;

public class CompareDates {
 public static void main(String[] args) throws ParseException {

 DateFormat df = new SimpleDateFormat ("yyyy-MM-dd");

 // Get Date 1
 Date d1 = df.parse(args[0]);

 // Get Date 2
 Date d2 = df.parse(args[1]);

 String relation;
 if (d1.equals(d2))
 relation = "the same date as";
 else if (d1.before(d2))
 relation = "before";
 else
 relation = "after";
 System.out.println(d1 + " is " + relation + ' ' + d2);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Day of Week/Month/Year or Week Number | 167

Sometimes the API gives you a date as a long. For example, the File class has meth-
ods (detailed in Recipe 11.1) to give information such as when the last time a file on
disk was modified. Example 6-2 shows a program similar to Example 6-1, but using
the long value returned by the File’s lastModified() method.

Running CompareFileDates on its source and class reveals that the class file is newer
(that is, more up-to-date). Comparing a directory with itself gives the result of “the
same age,” as you’d expect:

> java CompareFileDates CompareFileDates.java CompareFileDates.class
CompareFileDates.java is older thanCompareFileDates.class
> java CompareFileDates . .
. is the same age as .

6.10 Day of Week/Month/Year or Week Number

Problem
You have a date and need to find what day of the week, month, or year that date falls
on.

Solution
Use the Calendar class’s get() method, which has constants for retrieving most such
values.

Example 6-2. CompareFileDates.java

import java.util.*;
import java.io.File;

public class CompareFileDates {
 public static void main(String[] args) {
 // Get the timestamp from file 1
 String f1 = args[0];
 long d1 = new File(f1).lastModified();

 // Get the timestamp from file 2
 String f2 = args[1];
 long d2 = new File(f2).lastModified();

 String relation;
 if (d1 == d2)
 relation = "the same age as";
 else if (d1 < d2)
 relation = "older than";
 else
 relation = "newer than";
 System.out.println(f1 + " is " + relation + ' ' + f2);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 6: Dates and Times

Discussion
The Calendar class can return most of these:

// CalendarDemo.java
Calendar c = Calendar.getInstance(); // today
System.out.println("Year: " + c.get(Calendar.YEAR));
System.out.println("Month: " + c.get(Calendar.MONTH));
System.out.println("Day: " + c.get(Calendar.DAY_OF_MONTH));
System.out.println("Day of week = " + c.get(Calendar.DAY_OF_WEEK));
System.out.println("Day of year = " + c.get(Calendar.DAY_OF_YEAR));
System.out.println("Week in Year: " + c.get(Calendar.WEEK_OF_YEAR));
System.out.println("Week in Month: " + c.get(Calendar.WEEK_OF_MONTH));
System.out.println("Day of Week in Month: " +
 c.get(Calendar.DAY_OF_WEEK_IN_MONTH));
System.out.println("Hour: " + c.get(Calendar.HOUR));
System.out.println("AM or PM: " + c.get(Calendar.AM_PM));
System.out.println("Hour (24-hour clock): " +
 c.get(Calendar.HOUR_OF_DAY));
System.out.println("Minute: " + c.get(Calendar.MINUTE));
System.out.println("Second: " + c.get(Calendar.SECOND));

This chatty program shows most of the fields in the Calendar class. Note that months
start at zero (for indexing an array of Strings), while the other values start at 1:

Year: 2005
Month: 6
Day: 19
Day of week = 2
Day of year = 200
Week in Year: 30
Week in Month: 4
Day of Week in Month: 3
Hour: 3
AM or PM: 1
Hour (24-hour clock): 15
Minute: 18
Second: 42

6.11 Creating a Calendar Page

Problem
You want a calendar for a given month of a given year, or of the current month and
year.

Solution
Use Calendar.get() to find what day of the week the first of the month falls on and
format accordingly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Calendar Page | 169

Discussion
Like the output of the Unix cal command, it is often convenient to view a month in
compact form. The basic idea is to find what day of the week the first of the month is
and print blank columns for the days of the week before the month begins. Then,
print the numbers from 1 to the end of the month, starting a new row after you get to
the last day of each week.

Here’s my program, compared to the Unix cal command:

daroad.darwinsys.com$ java CalendarPage 6 2000
June 2000
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
daroad.darwinsys.com$ cal 6 2000
 June 2000
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

The source code is simple and straightforward (Example 6-3).

Example 6-3. CalendarPage.java

import java.util.*;
import java.text.*;

/** Print a month page.
 * Only works for the Western calendar.
 */
public class CalendarPage {

 /** The names of the months */
 String[] months = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

 /** The days in each month. */
 public final static int[] dom = {
 31, 28, 31, 30, /* jan feb mar apr */
 31, 30, 31, 31, /* may jun jul aug */
 30, 31, 30, 31 /* sep oct nov dec */
 };

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 6: Dates and Times

 /** Compute which days to put where, in the Cal panel */
 public void print(int mm, int yy) {
 /** The number of days to leave blank at the start of this month */
 int leadGap = 0;

 System.out.print(months[mm]); // print month and year
 System.out.print(" ");
 System.out.print(yy);
 System.out.println();

 if (mm < 0 || mm > 11)
 throw new IllegalArgumentException("Month " + mm + " bad, must be 0-11");
 GregorianCalendar calendar = new GregorianCalendar(yy, mm, 1);

 System.out.println("Su Mo Tu We Th Fr Sa");

 // Compute how much to leave before the first.
 // get(DAY_OF_WEEK) returns 0 for Sunday, which is just right.
 leadGap = calendar.get(Calendar.DAY_OF_WEEK)-1;

 int daysInMonth = dom[mm];
 if (calendar.isLeapYear(calendar.get(Calendar.YEAR)) && mm == 1)
 ++daysInMonth;

 // Blank out the labels before 1st day of month
 for (int i = 0; i < leadGap; i++) {
 System.out.print(" ");
 }

 // Fill in numbers for the day of month.
 for (int i = 1; i <= daysInMonth; i++) {

 // This "if" statement is simpler than fiddling with NumberFormat
 if (i<=9)
 System.out.print(' ');
 System.out.print(i);

 if ((leadGap + i) % 7 == 0) // wrap if end of line.
 System.out.println();
 else
 System.out.print(' ');
 }
 System.out.println();
 }

 /** For testing, a main program */
 public static void main(String[] av) {
 int month, year;

 CalendarPage cp = new CalendarPage();

Example 6-3. CalendarPage.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Measuring Elapsed Time | 171

6.12 Measuring Elapsed Time

Problem
You need to time how long it takes to do something.

Solution
Call System.currentTimeMillis() twice, or System.nanoTime(), and subtract the first
result from the second result.

Discussion
Needing a timer is such a common thing that, instead of making you depend on
some external library, the developers of Java have built it in. The System class con-
tains two static methods for times. currentTimeMillis() returns the current time
(since 1970) in milliseconds, and nanoTime() (new in 1.5) returns the relative time in
nanoseconds. To time some event, use this:

long start = System.currentTimeMillis();
method_to_be_timed();
long end = System.currentTimeMillis(); l
ong elapsed = end - start; // time in milliseconds

or:

long start = System.nanoTime();
method_to_be_timed();
long end = System.nanoTime(); l
ong elapsed = end - start; // time in nanoseconds

Be aware that the millisecond timer works on almost all platforms. The nanosecond
timer is always available, but some operating systems and/or hardware combina-
tions may not really provide nanosecond resolution; beware of reading too much
into small differences in the values it returns, unless you know that your system is
providing, and the JVM is using, a good high-resolution timer.

 // print the current month.
 if (av.length == 2) {
 cp.print(Integer.parseInt(av[0])-1, Integer.parseInt(av[1]));
 } else {
 Calendar c = Calendar.getInstance();
 cp.print(c.get(Calendar.MONTH), c.get(Calendar.YEAR));
 }
 }
}

Example 6-3. CalendarPage.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 6: Dates and Times

Here is a short example to measure how long it takes a user to press return. We
divide the time in milliseconds by 1,000 to get seconds and print it nicely using a
NumberFormat:

// Timer0.java
long t0, t1;
System.out.println("Press return when ready");
t0=System.currentTimeMillis();
int b;
do {
 b = System.in.read();
} while (b!='\r' && b != '\n');

t1=System.currentTimeMillis();
double deltaT = t1-t0;
System.out.println("You took " +
 DecimalFormat.getInstance().format(deltaT/1000.) + " seconds.");

This longer example uses the same technique but computes a large number of square
roots and writes each one to a discard file. It uses the getDevNull() method from
Recipe 2.4 to measure how long the computation takes:

import java.io.*;
import java.text.*;

/**
 * Timer for processing sqrt and I/O operations.
 */
public class TimeComputation {
 public static void main(String argv[]) {
 try {
 new Timer().run();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 public void run() throws IOException {

 DataOutputStream n = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(SysDep.getDevNull())));
 long t0, t1;
 System.out.println("Java Starts at " + (t0=System.currentTimeMillis()));
 double k;
 for (int i=0; i<100000; i++) {
 k = 2.1 * Math.sqrt((double)i);
 n.writeDouble(k);
 }
 System.out.println("Java Ends at " + (t1=System.currentTimeMillis()));
 double deltaT = t1-t0;
 System.out.println("This run took " +
 DecimalFormat.getInstance().format(deltaT/1000.) + " seconds.");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Reminder Service | 173

This code shows a simpler, but less portable, technique for formatting a “delta t”, or
time difference. It works only for the English locale (or any other where the number
one-and-a-half is written “1.5”), but it’s simple enough to write the code inline. I
show it here as a method for completeness, and I confess to having used it this way
on occasion:

/** QuickTimeFormat.java - Convert a long ("time_t") to seconds and thousandths. */
public static String msToSecs(long t) {
 return Double.toString(t/1000D);
}

6.13 Sleeping for a While

Problem
You need to sleep for a while.

Solution
Use Thread.sleep().

Discussion
You can sleep for any period of time from one millisecond up to the lifetime of your
computer. As I write this, for example, I have a chicken on the barbecue. My wife
has instructed me to check it every five minutes. Since I’m busy writing, time tends
to fly. So, I needed a reminder service and came up with this in a jiffy:

// Reminder.java
while (true) {
 System.out.println(new Date() + "\007");
 Thread.sleep(5*60*1000);
}

The 007 is not a throwback to the Cold War espionage thriller genre, but the ASCII
character for a bell code, or beep. It’s probably preferable to use \b for this, but then
I couldn’t make that 007 joke. Had I written the program as a windowed application
using a frame, I could have called Toolkit.beep() instead, and, by toggling the state
of setVisible(), a pop up would appear every five minutes.

With a bit more work, you could have a series of events and wait until their due
times, making a sort of minischeduler entirely in Java. In fact, we’ll do that in Recipe
6.14.

6.14 Program: Reminder Service
The ReminderService program provides a simple reminder service. The load()
method reads a plain text file containing a list of appointments like the ones shown
here, using a SimpleDateFormat:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 6: Dates and Times

2004 03 06 22 00 Get some sleep!
2004 11 26 01 27 Finish this program
2004 11 25 01 29 Document this program

The program is based around java.util.Timer, which runs a threaded timer (threads
are discussed in Chapter 24) and starts each TimerTask at the scheduled time. In my
version, the TimerTask simply prints the message and displays it in a Swing pop up.
Example 6-4 shows the full program.

Example 6-4. ReminderService.java

import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.JOptionPane;

/** Read a file of reminders, run each when due using java.util.Timer. */

public class ReminderService {

 /** The Timer object */
 Timer timer = new Timer();

 class Item extends TimerTask {
 String message;
 Item(String m) {
 message = m;
 }
 public void run() {
 message(message);
 }
 }

 public static void main(String[] argv) throws IOException {
 new ReminderService().load();
 }

 protected void load() throws IOException {

 BufferedReader is = new BufferedReader(
 new FileReader("ReminderService.txt"));
 SimpleDateFormat formatter =
 new SimpleDateFormat ("yyyy MM dd hh mm");
 String aLine;
 while ((aLine = is.readLine()) != null) {
 ParsePosition pp = new ParsePosition(0);
 Date date = formatter.parse(aLine, pp);
 if (date == null) {
 message("Invalid date in " + aLine);
 continue;
 }
 String mesg = aLine.substring(pp.getIndex());
 timer.schedule(new Item(mesg), date);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Reminder Service | 175

I create a nested class Item to store one notification, scheduling it at its due date and
time whilst constructing an Item object to display the message when it’s due. The
load() method reads the file containing the data and converts it, using the date pars-
ing from Recipe 6.5. When invoked, the run() method in each Item object displays
the reminder, as shown in Figure 6-2, both on the standard output (for debugging)
and in a dialog window using the Swing JOptionPane class (see Recipe 14.7). The
message() method consolidates both displays, allowing you to add a control to use
only standard output or only the dialog (this is left as an exercise for the reader).

See Also
You could implement the functionality of this reminder program without using the
Timer class; see ReminderServiceOld in the online source.

 }
 is.close();
 }

 /** Display a message on the console and in the GUI.
 * Used both by Item tasks and by mainline parser.
 */
 void message(String message) {
 System.out.println("\007" + message);
 JOptionPane.showMessageDialog(null,
 message,
 "Timer Alert", // titlebar
 JOptionPane.INFORMATION_MESSAGE); // icon
 }
}

Figure 6-2. ReminderService in action

Example 6-4. ReminderService.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176

Chapter 7FooCHAPTER 7

Structuring Data with Java

7.0 Introduction
Almost every application beyond “Hello World” needs to keep track of a certain
amount of data. A simple numeric problem might work with three or four numbers
only, but most applications have groups of similar data items. A GUI-based applica-
tion may need to keep track of a number of dialog windows. A personal information
manager or PIM needs to keep track of a number of, well, persons. An operating sys-
tem needs to keep track of who is allowed to log in, who is currently logged in, and
what those users are doing. A library needs to keep track of who has books checked
out and when they’re due. A network server may need to keep track of its active cli-
ents. A pattern emerges here, and it revolves around variations of what has tradition-
ally been called data structuring.

There are data structures in the memory of a running program; there is structure in
the data in a file on disk, and there is structure in the information stored in a data-
base. In this chapter, we concentrate on the first aspect: in-memory data. We’ll cover
the second aspect in Chapter 10 and the third in Chapter 20.

If you had to think about in-memory data, you might want to compare it to a collec-
tion of index cards in a filing box, or to a treasure hunt where each clue leads to the
next. Or you might think of it like my desk—apparently scattered, but actually a very
powerful collection filled with meaningful information. Each of these is a good anal-
ogy for a type of data structuring that Java provides. An array is a fixed-length linear
collection of data items, like the card filing box: it can only hold so much, then it
overflows. The treasure hunt is like a data structure called a linked list. Until JDK 1.2,
Java had no standard linked list class, but you could (and still can) write your own
“traditional data structure” classes. The complex collection represents Java’s
Collection classes. A document entitled Collections Framework Overview, distrib-
uted with the Java Development Kit documentation (and stored as file /jdk1.x/docs/
guide/collections/overview.html), provides a detailed discussion of the Collections
Framework. The framework aspects of Java collections are summarized in Recipe 7.16.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Arrays for Data Structuring | 177

Beware of some typographic issues. The word Arrays (in constant width font) is
short for the class java.util.Arrays, but in the normal typeface, the word “arrays” is
simply the plural of “array” (and will be found capitalized at the beginning of a sen-
tence). Also, note that HashMap and HashSet, added in JDK 1.2, follow the rule of hav-
ing a “midcapital” at each word boundary, while the older Hashtable does not (the
“t” is not capitalized).

Several classes in java.util are not covered in this chapter. All the classes whose
names begin with Abstract are, in fact, abstract, and we discuss their nonabstract
subclasses. BitSet is used less frequently than some of the classes discussed here and
is simple enough to learn on your own; I have examples of it in Recipes 2.6 and 5.10.
The StringTokenizer class is covered in Recipe 3.2.

We start our discussion of data structuring techniques with one of the oldest struc-
tures, the array. Then we’ll go through a variety of fancier structuring techniques
using classes from java.util. At the end, we discuss the overall structure of the java.
util’s Collections Framework.

7.1 Using Arrays for Data Structuring

Problem
You need to keep track of a fixed amount of information and retrieve it (usually)
sequentially.

Solution
Use an array.

Discussion
Arrays can be used to hold any linear collection of data. The items in an array must
all be of the same type. You can make an array of any built-in type or any object
type. For arrays of built-ins, such as ints, booleans, etc., the data is stored in the
array. For arrays of objects, a reference is stored in the array, so the normal rules of
reference variables and casting apply. Note in particular that if the array is declared
as Object[], object references of any type can be stored in it without casting,
although a valid cast is required to take an Object reference out and use it as its origi-
nal type. I’ll say a bit more on two-dimensional arrays in Recipe 7.15; otherwise, you
should treat this as a review example:

import java.util.Calendar;

/** Review examples of arrays: shows array allocation, processing,
 * storing objects in Arrays, two-dimensional arrays, and lengths.
 *
 * @author Ian Darwin
 * @version $Id: ch07,v 1.5 2004/05/04 20:11:49 ian Exp $
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 7: Structuring Data with Java

public class Array1 {
 public static void main(String[] argv) {
 int[] monthLen1; // declare a reference
 monthLen1 = new int[12]; // construct it
 int[] monthLen2 = new int[12]; // short form
 // even shorter is this initializer form:
 int[] monthLen3 = {
 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31,
 };

 final int MAX = 10;
 Calendar[] days = new Calendar[MAX];
 for (int i=0; i<MAX; i++) {
 // Note that this actually stores GregorianCalendar
 // etc. instances into a Calendar Array
 days[i] = Calendar.getInstance();
 }

 // Two-Dimensional Arrays
 // Want a 10-by-24 array
 int[][] me = new int[10][];
 for (int i=0; i<10; i++)
 me[i] = new int[24];

 // Remember that an array has a ".length" attribute
 System.out.println(me.length);
 System.out.println(me[0].length);

 }
}

Arrays in Java work nicely. The type checking provides reasonable integrity, and
array bounds are always checked by the runtime system, further contributing to reli-
ability.

The only problem with arrays is: what if the array fills up and you still have data
coming in? See the Solution in Recipe 7.2.

7.2 Resizing an Array

Problem
The array filled up, and you got an ArrayIndexOutOfBoundsException.

Solution
Make the array bigger.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Resizing an Array | 179

Discussion
One approach is to allocate the array at a reasonable size to begin with, but if you
find yourself with more data than will fit, reallocate a new, bigger array and copy the
elements into it.* Here is code that does so:

import java.util.Calendar;
/** Re-allocate an array, bigger... */
public class Array2 {
 public static void main(String argv[]) {
 int nDates = 0;
 final int MAX = 10;
 Calendar[] dates = new Calendar[MAX];
 Calendar c;
 while ((c=getDate()) != null) {

 // if (nDates >= dates.length) {
 // System.err.println("Too Many Dates! Simplify your life!!");
 // System.exit(1); // wimp out
 // }

 // better: reallocate, making data structure dynamic
 if (nDates >= dates.length) {
 Calendar[] tmp = new Calendar[dates.length + 10];
 System.arraycopy(dates, 0, tmp, 0, dates.length);
 dates = tmp; // copies the array reference
 // old array will be garbage collected soon...
 }
 dates[nDates++] = c;
 }
 System.out.println("Array size = " + dates.length);
 }

 static int n;
 /* Dummy method to return a sequence of 21 Calendar references,
 * so the array should be sized >= 21.
 */
 public static Calendar getDate() {
 if (n++ > 21)
 return null;
 return Calendar.getInstance();
 }
}

This technique works reasonably well for simple linear collections of data. For data
with a more variable structure, you probably want to use a more dynamic approach,
as in Recipe 7.3.

* You could copy it yourself using a for loop if you wish, but System.arrayCopy() is likely to be faster because
it’s implemented in native code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 7: Structuring Data with Java

7.3 Like an Array, but More Dynamic

Problem
You don’t want to worry about storage reallocation; you want a standard class to
handle it for you.

Solution
Use an ArrayList.

Discussion
ArrayList is a standard class that encapsulates the functionality of an array but
allows it to expand automatically. You can just keep on adding things to it, and each
addition behaves the same. If you watch really closely, you might notice a brief extra
pause once in a while when adding objects as the ArrayList reallocates and copies.
But you don’t have to think about it.

However, because ArrayList is a class and isn’t part of the syntax of Java, you can’t
use Java’s array syntax; you must use methods to access the ArrayList’s data. It has
methods to add objects, retrieve objects, find objects, and tell you how big the List is
and how big it can become without having to reallocate (note that the ArrayList
class is but one implementation of the List interface; more on that later). Like the
collection classes in java.util, ArrayList’s storing and retrieval methods are defined
in terms of java.lang.Object. But since Object is the ancestor of every defined type,
you can store objects of any type in a List (or any collection) and cast it when
retrieving it. If you need to store a small number of built-ins (like int, float, etc.)
into a collection containing other data, use the appropriate wrapper class (see the
Introduction to Chapter 5). To store booleans, either store them directly in a java.
util.BitSet (see the online documentation) or store them in a List using the Boolean
wrapper class.

Table 7-1 shows some of the most important methods of ArrayList. Equally impor-
tant, those listed are also methods of the List interface, which we’ll discuss shortly.
This means that the same methods can be used with the older Vector class and sev-
eral other classes.

Table 7-1. List access methods

Method signature Usage

add(Object o) Add the given element at the end

add(int i, Object o) Insert the given element at the specified position

clear() Remove all element references from the Collection

contains(Object o) True if the List contains the given Object

get(int i) Return the object reference at the specified position

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Iterators for Data-Independent Access | 181

ArrayListDemo stores data in an ArrayList and retrieves it for processing:

List al = new ArrayList();

// Create a source of Objects
StructureDemo source = new StructureDemo(15);

// Add lots of elements to the ArrayList.
al.add(source.getDate());
al.add(source.getDate());
al.add(source.getDate());

// First print them out using a for loop.
System.out.println("Retrieving by index:");
for (int i = 0; i<al.size(); i++) {
 System.out.println("Element " + i + " = " + al.get(i));
}

The older Vector and Hashtable classes predate the Collections framework, so they
provide additional methods with different names: Vector provides addElement() and
elementAt(). In new code, you should use the Collections methods add() and get()
instead. Another difference is that the methods of Vector are synchronized, meaning
that they can be accessed from multiple threads (see Recipe 24.5). This does mean
more overhead, though, so in a single-threaded application it may be faster to use an
ArrayList (see timing results in Recipe 7.17).

7.4 Using Iterators for Data-Independent
Access

Problem
You want to write your code so that users don’t have to know whether you store it in
an array, a Vector, an ArrayList, or even a doubly linked list of your own choosing.

Solution
Use the Iterator interface.

indexOf(Object o) Return the index where the given object is found, or –1

remove(Object o)
remove(int i)

Remove an object by reference or by position

toArray() Return an array containing the objects in the Collection

Table 7-1. List access methods (continued)

Method signature Usage

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 7: Structuring Data with Java

Discussion
If you are making collections of data available to other classes, you may not want the
other classes to depend upon how you have stored the data so that you can revise
your class easily at a later time. Yet you need to publish a method that gives these
classes access to your data. It is for this very purpose that the Enumeration and
Iterator interfaces were included in the java.util package. These provide a pair of
methods that allow you to iterate, or step through, all the elements of a data struc-
ture without knowing or caring how the data is stored. The newer Iterator interface
also allows deletions, though classes that implement the interface are free either to
implement the use of deletions or to throw an UnsupportedOperationException.

Here is IteratorDemo, the previous ArrayList demo rewritten to use an Iterator to
access the elements of the data structure:

import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;

/** Iterator used to walk through a List.
 * @version $Id: ch07,v 1.5 2004/05/04 20:11:49 ian Exp $
 */
public class IteratorDemo {

 public static void main(String[] argv) {

 List l = new ArrayList();
 StructureDemo source = new StructureDemo(15);

 // Add lots of elements to the list...
 l.add(source.getDate());
 l.add(source.getDate());
 l.add(source.getDate());

 int i = 0;

 Iterator it = l.iterator();

 // Process the data structure using an iterator.
 // This part of the code does not know or care
 // if the data is an an array, a List, a Vector, or whatever.
 while (it.hasNext()) {
 Object o = it.next();
 System.out.println("Element " + i++ + " = " + o);
 }
 }
}

To demystify the Iterator and show that it’s actually easy to build, we create our
own Iterator in Recipe 7.13.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Structuring Data in a Linked List | 183

7.5 Structuring Data in a Linked List

Problem
Your data isn’t suitable for use in an array.

Solution
Write your own data structure(s).

Discussion
Anybody who’s taken Computer Science 101 (or any computer science course)
should be familiar with the concepts of data structuring, such as linked lists, binary
trees, and the like. While this is not the place to discuss the details of such things, I’ll
give a brief illustration of the common linked list. A linked list is commonly used
when you have an unpredictably large number of data items, you wish to allocate
just the right amount of storage, and usually want to access them in the same order
that you created them. Figure 7-1 is a diagram showing the normal arrangement.

Here is code that implements a simple linked list:

/**
 * Linked list class, written out in full using Java.
 */
public class LinkList {
 public static void main(String argv[]) {
 System.out.println("Here is a demo of a Linked List in Java");
 LinkList l = new LinkList();
 l.add(new Object());
 l.add("Hello");
 System.out.println("Here is a list of all the elements");
 l.print();
 if (l.lookup("Hello"))
 System.err.println("Lookup works");
 else
 System.err.println("Lookup does not work");
 }

 /* A TNode stores one node or item in the linked list. */

Figure 7-1. Linked list structure

head

last node,
“next” is null

next

node nodenode

next next

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 7: Structuring Data with Java

 class TNode {
 TNode next;
 Object data;
 TNode(Object o) {
 data = o;
 next = null;
 }
 }
 protected TNode root;
 protected TNode last;

 /** Construct a LinkList: initialize the root and last nodes. */
 LinkList() {
 root = new TNode(this);
 last = root;
 }

 /** Add one object to the end of the list. Update the "next"
 * reference in the previous end, to refer to the new node.
 * Update "last" to refer to the new node.
 */
 void add(Object o) {
 last.next = new TNode(o);
 last = last.next;
 }

 public boolean lookup(Object o) {
 for (TNode p=root.next; p != null; p = p.next)
 if (p.data==o || p.data.equals(o))
 return true;
 return false;
 }

 void print() {
 for (TNode p=root.next; p != null; p = p.next)
 System.out.println("TNode" + p + " = " + p.data);
 }
}

This approach works reasonably well. But it turns out that many applications use
linked lists. Why should each programmer have to provide his or her own linked list
class, each with a slightly different set of bugs? You don’t have to provide your own
square root function or write your own Remote Method Invocation services. Accord-
ingly, Java has a LinkedList class; here is a similar program that uses it:

import java.util.*;

/**
 * Demo 1.2 java.util.LinkedList; same example as my older LinkList class.
 */
public class LinkedListDemo {
 public static void main(String argv[]) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mapping with Hashtable and HashMap | 185

 System.out.println("Here is a demo of Java 1.2's LinkedList class");
 LinkedList l = new LinkedList();
 l.add(new Object());
 l.add("Hello");

 System.out.println("Here is a list of all the elements");
 // ListIterator is discussed shortly.
 ListIterator li = l.listIterator(0);
 while (li.hasNext())
 System.out.println(li.next());

 if (l.indexOf("Hello") < 0)
 System.err.println("Lookup does not work");
 else
 System.err.println("Lookup works");
 }
}

As you can see, it does pretty much the same thing as my LinkList but uses the exist-
ing class java.util.LinkedList instead of having you roll your own. The ListIterator
used here is a subinterface of an Iterator, which was discussed in Recipe 7.4.

7.6 Mapping with Hashtable and HashMap

Problem
You need a one-way mapping from one data item to another.

Solution
Use a HashMap or the older Hashtable.

Discussion
HashMap (added in JDK 1.2) and Hashtable provide a one-way mapping from one set
of object references to another. They are completely general purpose. I’ve used them
to map AWT push buttons (see Recipe 14.4) to the URL to jump to when the but-
ton is pushed, to map names to addresses, and to implement a simple in-memory
cache in a web server. You can map from anything to anything. Here we map from
company names to addresses; the addresses here are String objects, but in real life
they’d probably be Address objects:

// HashMapDemo.java
// Construct and load the HashMap. This simulates loading a database
// or reading from a file, or wherever the data is from.

// The hashtable maps from company name to company address.
// In a real application these would be Address objects.
HashMap h = new HashMap();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 7: Structuring Data with Java

h.put("Adobe", "Mountain View, CA");
h.put("IBM", "White Plains, NY");
h.put("Learning Tree", "Los Angeles, CA");
h.put("O'Reilly Media, Inc.", "Sebastopol, CA");
h.put("Netscape", "Mountain View, CA");
h.put("Sun", "Mountain View, CA");

 // Two versions of the "retrieval" phase.
 // Version 1: get one pair's value given its key
 // (presumably the key would really come from user input):
 String queryString = "O'Reilly & Associates";
 System.out.println("You asked about " + queryString + ".");
 String resultString = (String)h.get(queryString);
 System.out.println("They are located in: " + resultString);
 System.out.println();

 // Version 2: get ALL the keys and pairs
 // (maybe to print a report, or to save to disk)
 Iterator it = h.keySet().iterator();
 while (it.hasNext()) {
 String key = (String) it.next();
 System.out.println("Company " + key + "; " +
 "Address " + h.get(key));
 }
 }
}

7.7 Storing Strings in Properties
and Preferences

Problem
You need to store keys and values that are both strings, possibly with persistence
across runs of a program—for example, program customization.

Solution
Use a java.util.Prefs.Preferences object (JDK 1.4 and above) or a java.util.
Properties object.

Discussion
Here are three approaches to customization based on the user’s environment. Java
offers Preferences and Properties for cross-platform customizations; for Windows
only deployments, a Java-based commercial product can do the trick.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Strings in Properties and Preferences | 187

Preferences

The Preferences class java.util.prefs.Preferences (added in SDK 1.4) is intended
to provide an easier-to-use mechanism for storing user customizations in a system-
dependent way (which might mean dot files on Unix, a preferences file on the Mac,
or the registry on Windows systems). This new class provides a hierarchical set of
nodes representing a user’s preferences. Data is stored in the system-dependent stor-
age format but can also be exported to or imported from an XML format. Here is a
simple demonstration of Preferences:

// PrefsDemo.java

// Set up the Preferences for this application, by class.
Preferences prefs = Preferences.userNodeForPackage(PrefsDemo.class);

// Retrieve some preferences previously stored, with defaults in case
// this is the first run.
String text = prefs.get("textFontName", "lucida-bright");
String display = prefs.get("displayFontName", "lucida-blackletter");
System.out.println(text);
System.out.println(display);

// Assume the user chose new preference values: Store them back.
prefs.put("textFontName", "times-roman");
prefs.put("displayFontName", "helvetica");

When you run the PrefsDemo program the first time, of course, it doesn’t find any set-
tings, so the calls to preferences.get() return the default values:

> javac PrefsDemo.java
> java PrefsDemo
lucida-bright
lucida-blackletter

On subsequent runs, it finds and returns the “user provided” settings:

> java PrefsDemo
times-roman
helvetica
>

Properties

The Properties class is similar to a HashMap or Hashtable (it extends the latter), but
with methods defined specifically for string storage and retrieval and for loading/sav-
ing. Properties objects are used throughout Java, for everything from setting the
platform font names to customizing user applications into different Locale settings as
part of internationalization and localization. When stored on disk, a Properties
object looks just like a series of name=value assignments, with optional comments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 7: Structuring Data with Java

Comments are added when you edit a Properties file by hand, ignored when the
Properties object reads itself, and lost when you ask the Properties object to save
itself to disk. Here is an example of a Properties file that could be used to interna-
tionalize the menus in a GUI-based program:

Default properties for MenuIntl
program.title=Demonstrate I18N (MenuIntl)
program.message=Welcome to an English-localized Java Program
#
The File Menu
#
file.label=File Menu
file.new.label=New File
file.new.key=N
file.open.label=Open...
file.open.key=O
file.save.label=Save
file.save.key=S
file.exit.label=Exit
file.exit.key=Q

Here is another example, showing some personalization properties:

name=Ian Darwin
favorite_popsicle=cherry
favorite_rock group=Fleetwood Mac
favorite_programming_language=Java
pencil color=green

A Properties object can be loaded from a file. The rules are flexible: either =, :, or
spaces can be used after a key name and its values. Spaces after a non-space charac-
ter are ignored in the key. Backslash can be used to continue lines or to escape other
characters. Comment lines may begin with either # or !. Thus, a Properties file con-
taining the previous items, if prepared by hand, could look like this:

Here is a list of properties
! first, my name
name Ian Darwin
favorite_popsicle = cherry
favorite_rock\ group \
 Fleetwood Mac
favorite_programming_language=Java
pencil\ color green

Fortunately, when a Properties object writes itself to a file, it uses the simple format:

key=value

Here is an example of a program that creates a Properties object and adds into it the
list of companies and their locations from Recipe 7.6. It then loads additional prop-
erties from disk. To simplify the I/O processing, the program assumes that the Prop-
erties file to be loaded is contained in the standard input, as would be done using a
command-line redirection on either Unix or DOS:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Strings in Properties and Preferences | 189

import java.util.*;

public class PropsCompanies {
 public static void main(String argv[]) throws java.io.IOException {
 Properties props = new Properties();

 // Get my data.
 props.setProperty("Adobe", "Mountain View, CA");
 props.setProperty("IBM", "White Plains, NY");
 props.setProperty("Learning Tree", "Los Angeles, CA");
 props.setProperty("O'Reilly & Associates", "Sebastopol, CA");
 props.setProperty("Netscape", "Mountain View, CA");
 props.setProperty("Sun", "Mountain View, CA");

 // Now load additional properties
 props.load(System.in);

 // Now list the merged Properties, using System.out
 props.list(System.out);
 }
}

JDK 1.2 added setProperty(); prior to that, the put() method of parent class
Hashtable was used.

Running it as:

java PropsCompanies < PropsDemo.dat

produces the following output:

-- listing properties --
Sony=Japan
Sun=Mountain View, CA
IBM=White Plains, NY
Netscape=Mountain View, CA
Nippon_Kogaku=Japan
Acorn=United Kingdom
Adobe=Mountain View, CA
Ericsson=Sweden
O'Reilly & Associates=Sebastopol, CA
Learning Tree=Los Angeles, CA

In case you didn’t notice in either the HashMap or the Properties examples, the order
that the outputs appear in these examples is neither sorted nor in the same order we
put them in. The hashing classes and the Properties subclass make no claim about
the order in which objects are retrieved. If you need them sorted, see Recipe 7.8.

As a convenient shortcut, my FileProperties class includes a constructor that takes a
filename, as in:

import com.darwinsys.util.FileProperties;
...
Properties p = new FileProperties("PropsDemo.dat");

Note that constructing a FileProperties object causes it to be loaded, and therefore
the constructor may throw a checked exception of class IOException.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 7: Structuring Data with Java

Commercial solution for Windows registry access

Though it is platform-specific, Cogent Logic produces a JNDI (Java Naming and
Directory Interface) service provider for accessing the Windows registry, which can
also be used for preferences. JNDI is a general naming and directory lookup that, like
java.util.prefs.Preference, is better suited than Properties for dealing with hierar-
chical data. Cogent Logic’s product gives you both local and (subject to security
arrangements) remote access to preferences on a Windows system. See http://
cogentlogic.com/jndi/.

7.8 Sorting a Collection

Problem
You put your data into a collection in random order or used a Properties object that
doesn’t preserve the order, and now you want it sorted.

Solution
Use the static method Arrays.sort() or Collections.sort(), optionally providing a
Comparator.

Discussion
If your data is in an array, you can sort it using the static sort() method of the
Arrays utility class. If it is in a Collection, you can use the static sort() method of
the Collections class. Here is a set of strings being sorted, first in an Array and then
in a Vector:

public class SortArray {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 for (int i=0; i<strings.length; i++)
 System.out.println(strings[i]);
 }
}

public class SortCollection {
 public static void main(String[] unused) {
 List l ist = new ArrayList();
 list.add("painful");
 list.add("mainly");
 list.add("gaining");
 list.add("raindrops");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sorting a Collection | 191

 Collections.sort(list);
 for (int i=0; i<list.size(); i++)
 System.out.println(list.elementAt(i));
 }
}

What if the default sort order isn’t what you want? Well, you can create an object
that implements the Comparator interface and pass that as the second argument to
sort. Fortunately, for the most common ordering next to the default, you don’t have
to: a public constant String.CASE_INSENSITIVE_ORDER can be passed as this second
argument. The String class defines it as “a Comparator that orders String objects as
by compareToIgnoreCase.” But if you need something fancier, you probably need to
write a Comparator. Suppose that, for some strange reason, you need to sort strings
using all but the first character of the string. One way to do this would be to write
this Comparator:

public class SubstringComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 String s1 = o1.toString().substring(1);
 String s2 = o2.toString().substring(1);
 return s1.compareTo(s2);
 // or, more concisely:
 // return o1.toString().substring(1).equals(o2toString()..substring(1));
 }
}

Using it is just a matter of passing it as the Comparator argument to the correct form
of sort(), as shown here:

import java.util.*;

public class SubstrCompDemo {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 dump(strings, "Using Default Sort");
 Arrays.sort(strings, new SubstringComparator());
 dump(strings, "Using SubstringComparator");

 }
 static void dump(String[] args, String title) {
 System.out.println(title);
 for (int i=0; i<args.length; i++)
 System.out.println(args[i]);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 7: Structuring Data with Java

Here is the output of running it:

$ java SubstrCompDemo
Using Default Sort
gaining
mainly
painful
raindrops
Using SubstringComparator
raindrops
painful
gaining
mainly

And this is all as it should be.

On the other hand, you may be writing a class and want to build in the comparison
functionality so that you don’t always have to remember to pass the Comparator with
it. In this case, you can directly implement the java.lang.Comparable interface. The
String class; the wrapper classes Byte, Character, Double, Float, Long, Short, and
Integer, BigInteger and BigDecimal from java.math; File from java.io; java.util.
Date; and java.text.CollationKey all implement this interface, so arrays or
Collections of these types can be sorted without providing a Comparator. Classes that
implement Comparable are said to have a “natural” ordering. The documentation
strongly recommends that a class’s natural ordering be consistent with its equals()
method, and it is consistent with equals() if and only if e1.
compareTo((Object)e2)==0 has the same Boolean value as e1.equals((Object)e2) for
every instance e1 and e2 of the given class. This means that if you implement
Comparable, you should also implement equals(), and the logic of equals() should
be consistent with the logic of the compareTo() method. Here, for example, is part of
the appointment class Appt from a hypothetical scheduling program:

public class Appt implements Comparable {
 // much code and variables omitted - see online version

 //---
 // METHODS - COMPARISON
 //---
 /** compareTo method, from Comparable interface.
 * Compare this Appointment against another, for purposes of sorting.
 * <P>Only date and time participate, not repetition!
 * Consistent with equals().
 * @return -1 if this<a2, +1 if this>a2, else 0.
 */
 public int compareTo(Object o2) {
 Appt a2 = (Appt) o2;
 if (year < a2.year)
 return -1;
 if (year > a2.year)
 return +1;
 if (month < a2.month)
 return -1;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Avoiding the Urge to Sort | 193

 if (month > a2.month)
 return +1;
 if (day < a2.day)
 return -1;
 if (day > a2.day)
 return +1;
 if (hour < a2.hour)
 return -1;
 if (hour > a2.hour)
 return +1;
 if (minute < a2.minute)
 return -1;
 if (minute > a2.minute)
 return +1;
 return target.compareTo(a2.target);
 }

 /** Compare this appointment against another, for equality.
 * Consistent with compareTo(). For this reason, only
 * date & time participate, not repetition.
 * @returns true if the objects are equal, false if not.
 */
 public boolean equals(Object o2) {
 Appt a2 = (Appt) o2;
 if (year != a2.year ||
 month != a2.month ||
 day != a2.day ||
 hour != a2.hour ||
 minute != a2.minute)
 return false;
 return target.equals(a2.target);
 }

If you’re still confused between Comparable and Comparator, you’re probably not
alone. This table summarizes the two “comparison” interfaces:

7.9 Avoiding the Urge to Sort

Problem
Your data needs to be sorted, but you don’t want to stop and sort it periodically.

Interface name Description Method(s)

java.lang.Comparable Provides a natural order to objects.
Used in the class whose objects are
being sorted.

int compareTo(Object o);
boolean equals(Object c2)

java.util.Comparator Provides total control over sorting
objects of another class. Standalone;
pass to sort() method or
Collection constructor. Imple-
ments Strategy Design Pattern.

int compare(Object o1,
Object o2);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 7: Structuring Data with Java

Solution
Not everything that requires order requires an explicit sort operation. Just keep the
data sorted at all times.

Discussion
You can avoid the overhead and elapsed time of an explicit sorting operation by
ensuring that the data is in the correct order at all times. You can do this manually
or, as of JDK 1.2, by using a TreeSet or a TreeMap. First, here is some code from a call
tracking program that I first wrote on JDK 1.0 to keep track of people I had extended
contact with. Far less functional than a Rolodex, my CallTrak program maintained a
list of people sorted by last name and first name. It also had the city, phone number,
and email address of each person. Here is a very small portion of the code surround-
ing the event handling for the New User push button:

/** The list of Person objects. */
protected List usrList = new ArrayList();

/** The scrolling list */
protected java.awt.List visList = new java.awt.List();

/** Add one (new) Person to the list, keeping the list sorted. */
protected void add(Person p) {
 String lastName = p.getLastName();
 int i;
 for (i=0; i<usrList.size(); i++)
 if (lastName.compareTo(((Person)(usrList.get(i))).getLastName()) <= 0)
 break;
 usrList.add(i, p);
 visList.add(p.getName(), i);
 visList.select(i); // ensure current
}

This code uses the String class compareTo(String) routine.

If I were writing this code today, I might well use a TreeSet (which keeps objects in
order) or a TreeMap (which keeps the keys in order and maps from keys to values; the
keys would be the name and the values would be the Person objects). Both insert the
objects into a tree in the correct order, so an Iterator that traverses the tree always
returns the objects in sorted order. In addition, they have methods such as headSet()
and headMap(), which give a new Set or Map of objects of the same class, containing
the objects lexically before a given value. The tailSet() and tailMap() methods,
similarly, return objects greater than a given value, and subSet() and subMap()
return a range. The first() and last() methods retrieve the obvious components
from the collection. The following program uses a TreeSet to sort some names:

// TreeSetDemo.java
/* A TreeSet keeps objects in sorted order. We use a
 * Comparator published by String for case-insensitive
 * sorting order.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Eschewing Duplication | 195

TreeSet tm = new TreeSet(String.CASE_INSENSITIVE_ORDER);
tm.add("Gosling");
tm.add("da Vinci");
tm.add("van Gogh");
tm.add("Java To Go");
tm.add("Vanguard");
tm.add("Darwin");
tm.add("Darwin"); // TreeSet is Set, ignores duplicate. See Recipe 7.10.

// Since it is sorted we can ask for various subsets
System.out.println("Lowest (alphabetically) is " + tm.first());
// Print how many elements are greater than "k"
System.out.println(tm.tailSet("k").toArray().length +
 " elements higher than \"k\"");

// Print the whole list in sorted order
System.out.println("Sorted list:");
java.util.Iterator t = tm.iterator();
while (t.hasNext())
 System.out.println(t.next());

One last point to note is that if you have a Hashtable or HashMap, you can convert it to
a TreeMap, and therefore get it sorted, just by passing it to the TreeMap constructor:

TreeMap sorted = new TreeMap(unsortedHashMap);

7.10 Eschewing Duplication

Problem
You want to ensure that only one copy of each unique value is stored in a collection.

Solution
Use a Set.

Discussion
The Set interface is a collection that maintains only one instance of each value. If you
add into it an object that is equal (as defined by the equals() method) to another
object, only one of the objects is maintained. By definition, it does not matter to you
which of the two objects it keeps—the one in the collection or the one being
added—since your objects’ equals() method indicates they are both equal:

// SetDemo.java
HashSet h = new HashSet();
h.add("One");
h.add("Two");
h.add("One"); // DUPLICATE
h.add("Three");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 7: Structuring Data with Java

Iterator it = h.iterator();
while (it.hasNext()) {
 System.out.println(it.next());
}

Not surprisingly, only the three distinct values are printed.

7.11 Finding an Object in a Collection

Problem
You need to see whether a given collection contains a particular value.

Solution
Ask the collection if it contains an object of the given value.

Discussion
If you have created the contents of a collection, you probably know what is in it and
what is not. But if the collection is prepared by another part of a large application, or
even if you’ve just been putting objects into it and now need to find out if a given
value was found, this recipe’s for you. There is quite a variety of methods, depend-
ing on which collection class you have. The following methods can be used:

This example plays a little game of “find the hidden number” (or “needle in a hay-
stack”): the numbers to look through are stored in an array. As games go, it’s fairly
pathetic: the computer plays against itself, so you probably know who’s going to
win. I wrote it that way so I would know that the data array contains valid numbers.
The interesting part is not the generation of the random numbers (discussed in Rec-
ipe 5.13). The array to be used with Arrays.binarySearch() must be in sorted order,
but since we just filled it with random numbers, it isn’t initially sorted. Hence we call
Arrays.sort() on the array. Then we are in a position to call Arrays.binarySearch(),
passing in the array and the value to look for. If you run the program with a number,
it runs that many games and reports on how it fared overall. If you don’t bother, it
plays only one game:

Method(s) Meaning Implementing classes

binarySearch() Fairly fast search Arrays, Collections

contains() Linear search ArrayList, HashSet,
Hashtable, LinkList,
Properties, Vector

containsKey(),
containsValue()

Checks if the collection contains the
object as a Key or as a Value

HashMap, Hashtable,
Properties, TreeMap

indexOf() Returns location where object is found ArrayList, LinkedList, List,
Stack, Vector

search() Linear search Stack

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding an Object in a Collection | 197

import java.util.*;

/** Array Hunt "game" (pathetic: computer plays itself).
 */
public class ArrayHunt {
 protected final static int MAX = 4000; // how many random ints
 protected final static int NEEDLE = 1999; // value to look for
 int haystack[];
 Random r;

 public static void main(String argv[]) {
 ArrayHunt h = new ArrayHunt();
 if (argv.length == 0)
 h.play();
 else {
 int won = 0;
 int games = Integer.parseInt(argv[0]);
 for (int i=0; i<games; i++)
 if (h.play())
 ++won;
 System.out.println("Computer won " + won +
 " out of " + games + ".");
 }
 }

 /** Construct the hunting ground */
 public ArrayHunt() {
 haystack = new int[MAX];
 r = new Random();
 }

 /** Play one game. */
 public boolean play() {
 int i;
 // Fill the array with random data (hay?)
 for (i=0; i<MAX; i++) {
 haystack[i] = (int)(r.nextFloat() * MAX);
 }

 // Precondition for binarySearch() is that array be sorted!
 Arrays.sort(haystack);

 // Look for needle in haystack. :-)
 i = Arrays.binarySearch(haystack, NEEDLE);

 if (i >= 0) { // found it - hurray, we win!
 System.out.println("Value " + NEEDLE +
 " occurs at haystack[" + i + "]");
 return true;
 } else { // not found, we lose.
 System.out.println("Value " + NEEDLE +
 " does not occur in haystack; nearest value is " +
 haystack[-(i+2)] + " (found at " + -(i+2) + ")");
 return false;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 7: Structuring Data with Java

 }
 }
}

The Collections.binarySearch() works almost exactly the same way, except it looks
in a Collection, which must be sorted (presumably using Collections.sort, as dis-
cussed in Recipe 7.8).

7.12 Converting a Collection to an Array

Problem
You have a Collection but you need a Java language array.

Solution
Use the Collection method toArray().

Discussion
If you have an ArrayList or other Collection and you need a Java language array,
you can get it just by calling the Collection’s toArray() method. With no argu-
ments, you get an array whose type is Object[]. You can optionally provide an array
argument, which is used for two purposes:

1. The type of the array argument determines the type of array returned.

2. If the array is big enough (and you can ensure that it is by allocating the array
based on the Collection’s size() method), then this array is filled and returned.
If the array is not big enough, a new array is allocated instead. If you provide an
array and objects in the Collection cannot be casted to this type, you get an
ArrayStoreException.

Example 7-1 shows code for converting an ArrayList to an array of type Object.

Example 7-1. ToArray.java

import java.util.*;

/** ArrayList to array */
public class ToArray {
 public static void main(String[] args) {
 ArrayList al = new ArrayList();
 al.add("Blobbo");
 al.add("Cracked");
 al.add("Dumbo");
 // al.add(new Date()); // Don't mix and match!

 // Convert a collection to Object[], which can store objects
 // of any type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Rolling Your Own Iterator | 199

7.13 Rolling Your Own Iterator

Problem
You have your own data structure, but you want to publish the data as an Iterator
to provide generic access to it.

Solution
You need to write your own Iterator. Just implement (or provide an inner class that
implements) the Iterator (or Enumeration) interface.

Discussion
To make data from one part of your program available in a storage-independent way
to other parts of the code, generate an Iterator. Here is a short program that con-
structs, upon request, an Iterator for some data that it is storing—in this case, in an
array. The Iterator interface has only three methods: hasNext(), next(), and
remove():

package com.darwinsys.util;

import java.util.Iterator;

/** De-mystify the Iterator interface, showing how
 * to write a simple Iterator for an Array of Objects.
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch07,v 1.5 2004/05/04 20:11:49 ian Exp $
 */
public class ArrayIterator implements Iterator {
 /** The data to be iterated over. */
 protected Object[] data;

 protected int index = 0;

 /** Construct an ArrayIterator object.
 * @param data The array of objects to be iterated over.
 */

 Object[] ol = al.toArray();
 System.out.println("Array of Object has length " + ol.length);

 // This would throw an ArrayStoreException if the line
 // "al.add(new Date())" above were uncommented.
 String[] sl = (String[]) al.toArray(new String[0]);
 System.out.println("Array of String has length " + sl.length);
 }
}

Example 7-1. ToArray.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 7: Structuring Data with Java

 public ArrayIterator(Object[] data) {
 setData(data);
 }

 /** (Re)set the data array to the given array, and reset the iterator.
 * @param data The array of objects to be iterated over.
 */
 public void setData(Object[] data) {
 this.data = data;
 index = 0;
 }

 /**
 * Tell if there are any more elements.
 * @return true if not at the end, i.e., if next() will succeed.
 * @return false if next() will throw an exception.
 */
 public boolean hasNext() {
 return (index < data.length);
 }

 /** Returns the next element from the data */
 public Object next() {
 if (hasNext()) {
 return data[index++];
 }
 throw new IndexOutOfBoundsException("only " + data.length + " elements");
 }

 /** Remove the object that next() just returned.
 * An Iterator is not required to support this interface,
 * and we certainly don't!
 */
 public void remove() {
 throw new UnsupportedOperationException(
 "This demo does not implement the remove method");
 }

 /** Simple tryout */
 protected String[] data = { "one", "two", "three" };
 public static void main(String unused[]) {
 ArrayIterator it = new ArrayIterator(data);
 while (it.hasNext())
 System.out.println(it.next());
 }
}

The comments above the remove() method remind me of an interesting point. This
interface introduces something new to Java, the optional method. Since there is no
syntax for this, and they didn’t want to introduce any new syntax, the developers of
the Collections Framework decided on an implementation using existing syntax. If
they are not implemented, the optional methods are required to throw an

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stack | 201

UnsupportedOperationException if they ever get called. My remove() method does
this. Note that UnsupportedOperationException is subclassed from RunTimeException,
so it is not required to be declared or caught.

This code is unrealistic in several ways, but it does show the syntax and how the
Iterator interface works. In real code, the Iterator and the data are usually separate
objects (the Iterator might be an inner class from the data store class). Also, you
don’t even need to write this code for an array; you can just construct an ArrayList
object, copy the array elements into it, and ask it to provide the Iterator. However, I
believe it’s worth showing this simple example of the internals of an Iterator so that
you can understand both how it works and how you could provide one for a more
sophisticated data structure, should the need arise.

7.14 Stack

Problem
You need to process data in “last-in, first-out” (LIFO) or “most recently added”
order.

Solution
Write your own code for creating a stack; it’s easy. Or, use a java.util.Stack.

Discussion
You need to put things into a holding area quickly and retrieve them in last-in, first-
out order. This is a common data structuring operation and is often used to reverse
the order of objects. The basic operations of any stack are push() (add to stack), pop()
(remove from stack), and peek() (examine top element without removing). ToyStack
is a simple class for stacking only ints:

/** Toy Stack. */
public class ToyStack {

 /** The maximum stack depth */
 protected int MAX_DEPTH = 10;
 /** The current stack depth */
 protected int depth = 0;
 /* The actual stack */
 protected int[] stack = new int[MAX_DEPTH];

 /* Implement a toy stack version of push */
 protected void push(int n) {
 stack[depth++] = n;
 }
 /* Implement a toy stack version of pop */
 protected int pop() {
 return stack[--depth];

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 7: Structuring Data with Java

 }
 /* Implement a toy stack version of peek */
 protected int peek() {
 return stack[depth - 1];
 }
}

If you are not familiar with the basic idea of a stack, you should work through the
code here; if you are familiar with it, you can skip ahead. While looking at it, of
course, think about what happens if pop() or peek() is called when push() has never
been called, or if push() is called to stack more data than will fit.

The java.util.Stack operation behaves in a similar fashion. However, instead of
being built just for one type of primitive, such as Java int, the methods of java.util.
Stack are defined in terms of java.lang.Object so that any kind of object can be put
in and taken out. A cast is needed when popping objects, if you wish to call any
methods defined in a class below Object. (In JDK 1.5, you can avoid the cast; see
Recipe 8.1.)

For an example of a java.util.Stack in operation, Recipe 5.19 provides a simple
stack-based numeric calculator.

7.15 Multidimensional Structures

Problem
You need a two-, three-, or more dimensional array or ArrayList.

Solution
No problem. Java supports this.

Discussion
As mentioned back in Recipe 7.1, Java arrays can hold any reference type. Since an
array is a reference type, it follows that you can have arrays of arrays or, in other ter-
minology, multidimensional arrays. Further, since each array has its own length
attribute, the columns of a two-dimensional array, for example, do not all have to be
the same length (see Figure 7-2).

Here is code to allocate a couple of two-dimensional arrays, one using a loop and the
other using an initializer. Both are selectively printed:

/** Show Two-Dimensional Array of Objects */
public class ArrayTwoDObjects {

 /** Return list of subscript names (unrealistic; just for demo). */
 public static String[][] getArrayInfo() {
 String info[][];
 info = new String[10][10];

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multidimensional Structures | 203

 for (int i=0; i < info.length; i++) {
 for (int j = 0; j < info[i].length; j++) {
 info[i][j] = "String[" + i + "," + j + "]";
 }
 }
 return info;
 }

 /** Return list of allowable parameters (Applet method). */
 public static String[][] getParameterInfo() {
 String param_info[][] = {
 {"fontsize", "9-18", "Size of font"},
 {"URL", "-", "Where to download"},
 };
 return param_info;
 }

 /** Run both initialization methods and print part of the results */
 public static void main(String[] args) {
 print("from getArrayInfo", getArrayInfo());
 print("from getParameterInfo", getParameterInfo());
 }

 /** Print selected elements from the 2D array */
 public static void print(String tag, String[][] array) {
 System.out.println("Array " + tag + " is " + array.length + " x " +
 array[0].length);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[0][1] = " + array[0][1]);
 System.out.println("Array[1][0] = " + array[1][0]);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[1][1] = " + array[1][1]);
 }
}

Running it produces this output:

> java ArrayTwoDObjects
Array from getArrayInfo is 10 x 10
Array[0][0] = String[0,0]
Array[0][1] = String[0,1]
Array[1][0] = String[1,0]
Array[0][0] = String[0,0]
Array[1][1] = String[1,1]
Array from getParameterInfo is 2 x 3
Array[0][0] = fontsize
Array[0][1] = 9-18
Array[1][0] = URL
Array[0][0] = fontsize
Array[1][1] = -
>

The same kind of logic can be applied to any of the Collections. You could have an
ArrayList of ArrayLists, or a Vector of linked lists, or whatever your little heart
desires.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 7: Structuring Data with Java

As Figure 7-2 shows, it is not necessary for the array to be “regular.” That is, it’s pos-
sible for each column of the 2D array to have a different height. That is why I used
array[0].length for the length of the first column in the code example.

7.16 Finally, Collections

Problem
You’re having trouble keeping track of all these lists, sets, and iterators.

Solution
There’s a pattern to it. See Figure 7-3 and Table 7-2.

Discussion
Figure 7-3, in the fashion of the package-level class diagrams in the O’Reilly classic
Java in a Nutshell, shows the collection-based classes from package java.util.

See Also
The Javadoc documentation on Collections, Arrays, List, Set, and the classes that
implement them provides more details than there’s room for here. Table 7-2 may fur-
ther help you to absorb the regularity of the Collections Framework.

Figure 7-2. Multidimensional arrays

Array

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finally, Collections | 205

Figure 7-3. The Collections Framework

Table 7-2. Java collections

Implementations

Interfaces Resizable array Hashed table Linked list Balanced tree

Set HashSet TreeSet

List ArrayList, Vector LinkList

Map HashMap, HashTable TreeMap

S serializableC cloneableABSTRACT CLASSKEY CLASS INTERFACE

extends implements

java.lang

Collections

java.util

AbstractCollection
Object

AbstractList AbstractSequentialList LinkedList C S

ArrayList C S

StackVector C S

AbstractSet HashSet C S

TreeSet C S

Collection

AbstractMap

List

Set

HashMap

TreeMap

WeakHashMap

SortedMapMap

Dictionary Hashtable C S

C S

C S

Properties

Arrays

ListIterator

Comparator

SortedSet

Iterator

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 7: Structuring Data with Java

7.17 Program: Timing Comparisons
New developers sometimes worry about the overhead of these collections and think
they should use arrays instead of data structures. To investigate, I wrote a program
that creates and accesses 250,000 objects, once through a Java array and again
through an ArrayList. This is a lot more objects than most programs use. First the
code for the Array version:

import com.darwinsys.util.MutableInteger;

/** Time a bunch of creates and gets through an Array */
public class Array {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new Array().run());
 }
 public int run() {
 MutableInteger list[] = new MutableInteger[MAX];
 for (int i=0; i<list.length; i++) {
 list[i] = new MutableInteger(i);
 }
 int sum = 0;
 for (int i=0; i<list.length; i++) {
 sum += list[i].getValue();
 }
 return sum;
 }
}

And the ArrayList version:

import java.util.ArrayList;

import com.darwinsys.util.MutableInteger;

/** Time a bunch of creates and gets through an Array */
public class ArrayLst {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new ArrayLst().run());
 }
 public int run() {
 ArrayList list = new ArrayList();
 for (int i=0; i<MAX; i++) {
 list.add(new MutableInteger(i));
 }
 int sum = 0;
 for (int i=0; i<MAX; i++) {
 sum += ((MutableInteger)list.get(i)).getValue();
 }
 return sum;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Timing Comparisons | 207

The Vector-based version, ArrayVec, is sufficiently similar that I don’t feel the need to
kill a tree reprinting its code—it’s online.

How can we time this? As covered in Recipe 25.5, you can either use the operating
system’s time command, if available, or just use a bit of Java that times a run of your
main program. To be portable, I chose to use the latter on an older, slower machine.
Its exact speed doesn’t matter since the important thing is to compare only versions
of this program running on the same machine.

Finally (drum roll, please), the results:

$ java Time Array
Starting class class Array
1185103928
runTime=4.310
$ java Time ArrayLst
Starting class class ArrayLst
1185103928
runTime=5.626
$ java Time ArrayVec
Starting class class ArrayVec
1185103928
runTime=6.699
$

Notice that I have ignored one oft-quoted bit of advice that recommends giving a
good initial estimate on the size of the ArrayList. I did time it that way as well; in
this example, it made a difference of less than four percent in the total runtime.

The bottom line is that the efficiency of ArrayList is not totally awful compared to
arrays. Obviously there is more overhead in calling a “get” method than in retrieving
an element from an array. The overhead of objects whose methods actually do some
computation probably outweighs the overhead of fetching and storing objects in an
ArrayList rather than in an Array. Unless you are dealing with large numbers of
objects, you may not need to worry about it. Vector is slightly slower but still only
about two-thirds the speed of the original array version. If you are concerned about
the time, once the “finished” size of the ArrayList is known, you can convert the
ArrayList to an array (see Recipe 7.12).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208

Chapter 8CHAPTER 8

Data Structuring with Generics,
foreach, and Enumerations (JDK 1.5)

8.0 Introduction
JDK 1.5 introduced two new concepts, Generics and AutoBoxing/Unboxing, and
two new language features, “foreach” and typesafe enumerations; these features are
covered in this chapter.

Generics allow a class to be tailored for a variety of argument/return types at compile
time. It provides similar functionality to the Templates mechanism that has been in
C++ for some years. When used with the Collections classes (see Chapter 7), Gener-
ics significantly increase type safety and remove the requirement for downcasting
every object that is retrieved from a Collection (either directly or via an Iterator).

Recipe 5.3 discussed the “Wrapper” classes; these classes provide Objects that repre-
sent primitive values. Autoboxing automates the conversion from primitive to Object
and vice versa.

The new “foreach” mechanism does not give Java a new keyword; the “for” key-
word is still used. However, the syntax is changed slightly to resemble the “for value
in list” construct in languages such as the Unix Bourne Shell and the Awk scripting
language. This makes it much easier to use Collections, often eliminating the need
to obtain an Iterator.

Finally, the Typesafe Enumerations feature provides a mechanism for dealing with a
small list of discrete values, such as months, colors, and the like. It combines the
enum syntax from Java’s predecessor, C, with the Typesafe Enumeration design pat-
tern, giving JDK 1.5 the best of both worlds.

These represent, for the most part, changes to the compiler and the class libraries,
rather than changes to the underlying Java Virtual Machine; the changes were imple-
mented by having the compiler map from new constructions to calls on classes,
rather than by perturbing the JVM. Because of this, in order to maintain backward
compatibility (so that the 1.5 compiler can compile 1.4-level code), these new mech-
anisms are not enabled by default. So get very used to typing the magical incantation:

javac -source 1.5 file.java

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Generic Collections | 209

For without this, the examples in this chapter will universally fail to compile. You
have been warned!

You do not, at least, need any special options to the java command that invokes the
JVM to interpret your class file because, as mentioned, the changes are in the com-
piler, not in the JVM itself. This does not mean that most of this chapter’s material
can be compiled on 1.5 and run on 1.4; because of the need for extra methods in the
Java runtime, you can’t run most of the generated code under 1.4.

See Also
The compiler techniques used in compiling these new constructs in a backward-
compatible way include erasure and bridging, topics discussed in an article by
O’Reilly author William Grosso, which can be read online at http://today.java.net/
pub/a/today/2003/12/02/explorations.html.

8.1 Using Generic Collections

Problem
You want to store your data in one of the Collection classes defined in Chapter 7 but
have it treated as though it were homogeneous.

Solution
Use the JDK 1.5 Generic Types mechanism, and declare the Collection with refer-
ence to the given type. The type name appears in angle brackets after the declaration
and instantiation. For example, to declare an ArrayList for holding String object
references:

List<String> myList = new ArrayList<String>();

Discussion
When you instantiate a Collection (or any other class using Generic Types), the class
appears to be instantiated with the type given in angle brackets becoming the type of
arguments passed in, values returned, and so on. Recipe 8.3 provides some details on
the implementation. As an example, consider the code in Example 8-1, which cre-
ates and uses an ArrayList specialized to contain String objects.

Example 8-1. ArrayListGenericDemo.java

import java.util.*;

public class ArrayListGenericDemo {
 public static void main(String[] args) {
 ArrayList<String> data = new ArrayList<String>();
 data.add("hello");
 data.add("goodbye");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

As you know from the ArrayList example in Recipe 7.3, prior to Generics, the refer-
ences obtained from a Collection or Iterator would have to be downcasted to their
specific type, often after testing with the instanceof operator. A key benefit of
Generic Types is that they obviate this testing and downcasting by doing more work
at compile time.

You can still instantiate classes such as ArrayList without using a specific type. In
this case, they behave as in 1.4—that is, the objects returned from a Collection or
Iterator are typed as java.lang.Object and must be downcasted before use.

As a further example, consider the Map interface mentioned in Chapter 7. A Map
requires Keys and Values in its put() method. A Map, therefore, has two parameter-
ized types. To set up a Map whose keys are Person objects and whose values are
Address objects (assuming these two classes exist in your application), you could
define it as:

Map<Person, Address> addressMap = new HashMap<Person, Addresss>();

This Map would expect a Person as its key and an Address as its value in the put()
method; the get() method would return an Address object. The keySet() method
would return Set<Person>—a Set specialized for Person objects—and so on.

8.2 Using “foreach” Loops

Problem
You want a convenient means of accessing all the elements of an array or collection.

Solution
Use the JDK 1.5 “foreach” construction. For example:

for (String s : myList)

This form of for is always read as “foreach” and is referred to that way in the docu-
mentation and the compiler messages; the colon (:) is always pronounced as “in” so
that the above statement is read as “foreach String s in myList.” The String named s
will be given each value from myList (which is presumed to be declared as an array or
Collection of String references).

 // data.add(new Date()); This won't compile!

 Iterator<String> it = data.iterator();
 while (it.hasNext()) {
 String s = it.next();
 System.out.println(s);
 }
 }
}

Example 8-1. ArrayListGenericDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Avoid Casting by Using Generics | 211

Discussion
The foreach construction can be used on Java arrays and on collection classes. The
compiler turns it into an iteration, typically using an Iterator object where
Collection classes are involved. Example 8-2 shows foreach on an array; in a slightly
longer example, Example 8-3 shows foreach on a Collection.

8.3 Avoid Casting by Using Generics

Problem
You wish to define your own container classes using the Generic Type mechanism to
avoid needless casting.

Solution
Define a class using <TypeName> where the type is declared and TypeName where it is
used.

Example 8-2. ForeachArray.java

public class ForeachArray {
 public static void main(String args[]) {
 String[] data = { "Toronto", "Stockholm" };
 for (String s : data) {
 System.out.println(s);
 }
 }
}

Example 8-3. ForeachDemo.java

import java.util.Collection;
import java.util.List;
import java.util.ArrayList;

public class ForeachDemo {
 static void iterate(Collection<String> c) {
 for (String s: c)
 System.out.println(s);
 }
 public static void main(String args[]) {
 List<String> l = new ArrayList<String>();
 l.add("Toronto");
 l.add("Stockholm");
 iterate(l);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

Discussion
Consider the very simple Stack class in Example 8-4. This class has been parameter-
ized to take a type whose local name is T. This type T will be the type of the argu-
ment of the push() method, the return type of the pop() method, and so on. Because
of this return type—more specific than the Object return type of the original Collec-
tions—the return value from pop() does not need to be downcasted. In 1.5, the Col-
lections Framework classes have been modified similarly.

The association of a particular type is done at the time the class is instantiated. For
example, to instantiate a MyStack specialized for holding BankAccount objects, one
would need to code only the following:

MyStack<BankAccount> theAccounts = new MyStack<BankAccount>();

Note that if you do not provide a specific type, this class defaults to the most general
behavior, that is, type T is treated as java.lang.Object. So this toy collection, like the
real ones in java.util, will behave as they did in 1.4—accepting input arguments of
any type, returning java.lang.Object from getter methods, and requiring downcast-
ing—as their default, backward-compatible behavior. Example 8-5 shows a program
that creates two instances of MyStack, one specialized for Strings and one left gen-
eral. The general one, called m2, is loaded up with the same two String objects as m1
but also includes a Date object. The printing code is now “broken”, as it will throw a

Example 8-4. MyStack.java

/** A lax Stack implementation. */
public class MyStack<T> {
 private int ix = 0;
 public final int MAX = 10;
 private T[] data = (T[])new Object[MAX];

 public void push(T obj) {
 data[ix++] = obj;
 }

 public boolean hasNext() {
 return ix > 0;
 }

 public boolean hasRoom() {
 return ix < MAX;
 }

 public T pop() {
 if (hasNext()) {
 return data[--ix];
 }
 throw new ArrayIndexOutOfBoundsException(-1);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Avoid Casting by Using Generics | 213

ClassCastException: a Date is not a String. I handle this case specially for pedantic
purposes: it is illustrative of the kinds of errors you can get into when using nonpa-
rameterized container classes.

Because of this potential for error, the 1.5 compiler warns that you have unchecked
raw types. Like the Deprecation warnings discussed in Recipe 1.9, by default, these
warnings are not printed in detail. You must ask for them, with the rather lengthy
option -Xlint:unchecked:

C:> javac -source 1.5 MyStackDemo.java
Note: MyStackDemo.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
C:> javac -source 1.5 -Xlint:unchecked MyStackDemo.java
MyStackDemo.java:14: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push("billg");
 ^

Example 8-5. MyStackDemo.java

public class MyStackDemo {
 public static void main(String[] args) {
 MyStack<String> ms1 = new MyStack<String>();
 ms1.push("billg");
 ms1.push("scottm");

 while (ms1.hasNext()) {
 String name = ms1.pop();
 System.out.println(name);
 }

 // Old way of using Collections: not type safe.
 MyStack ms2 = new MyStack();
 ms2.push("billg");
 ms2.push("scottm");
 ms2.push(new java.util.Date());

 // Show that it is broken
 try {
 String bad = (String)ms2.pop();
 System.err.println("Didn't get expected exception!");
 } catch (ClassCastException ex) {
 System.out.println("Did get expected exception.");
 }

 // Removed the brokenness, print rest of it.
 while (ms2.hasNext()) {
 String name = (String)ms2.pop();
 System.out.println(name);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

MyStackDemo.java:15: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push("scottm");
 ^
MyStackDemo.java:16: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push(new java.util.Date());
 ^
3 warnings
C:>

8.4 Let Java Convert with AutoBoxing
and AutoUnboxing

Problem
You are tired of typing code like new Integer(i) and intObj.intValue() to convert
back and forth between primitives and Object Wrappers.

Solution
Use the JDK 1.5 compiler; it will AutoBox and AutoUnbox for you.

Discussion
There’s a reason they call it automatic boxing: you don’t have to do any work. The 1.5
compiler is finally able to figure out how to convert back and forth between primi-
tives and their wrappers. Example 8-6 shows converting from a primitive int value to
an Integer needed in a method call.

This code compiles and runs on JDK 1.5 (but only with the -source 1.5 option).
Notice what happens when we omit that option:

C:\ian\javasrc\structure1.5>javac AutoboxDemo.java
AutoboxDemo.java:4: foo(java.lang.Integer) in AutoboxDemo cannot be applied to (int)
 foo(i);
 ^

Example 8-6. AutoboxDemo.java

public class AutoboxDemo {
 public static void main(String[] args) {
 int i = 42;
 foo(i);
 }

 public static void foo(Integer i) {
 System.out.println("Object = " + i);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Typesafe Enumerations | 215

1 error

C:\ian\javasrc\structure1.5>javac -source 1.5 AutoboxDemo.java

C:\ian\javasrc\structure1.5>java AutoboxDemo
Object = 42

C:\ian\javasrc\structure1.5>

The resulting class file does not run in a JDK 1.4 implementation because it depends
on a new method signature in the Integer class, notably valueOf(int i).

8.5 Using Typesafe Enumerations

Problem
You need to manage a small list of discrete values within a program.

Solution
Use the JDK 1.5 enum mechanism.

Discussion
To enumerate means to list all the values. You often know that a small list of possi-
ble values is all that’s wanted in a variable, such as the months of the year, the suits
or ranks in a deck of cards, the primary and secondary colors, and so on. The C pro-
gramming language provided an enum keyword:

enum { BLACK, RED, ORANGE} color;

Java has been criticized since the earliest releases for its lack of enumerations, which
many developers have wished for. Many have had to develop custom classes to
implement the “enumeration pattern.”

But C enumerations are not “typesafe”; they simply define constants that can be used
in any integer context. For example, this code compiles without warning, even on
gcc 3 with -Wall (all warnings), while a C++* compiler catches the error:

enum { BLACK, RED, ORANGE} color;
enum { READ, UNREAD } state;

/*ARGSUSED*/
int main(int argc, char *argv[]) {
 color = RED;
 color = READ;
 return 0;
}

* For Java folks not that familiar with C/C++, C is the older, non-OO language; C++ is an OO derivative of
C; and Java is in part a portable, more strongly typesafe derivative of C++.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

To replicate this mistake in Java, one needs only to define a series of final int val-
ues; it will still not be typesafe. By typesafe I mean that you can not accidentally use
values other than those defined for the given enumeration. The definitive statement
on the “typesafe enumeration pattern” is probably the version defined in Item 21 of
Joshua Bloch’s book Effective Java (Addison Wesley). Bloch was one of the authors
of the Typesafe Enumeration specification for JDK 1.5, so you can be sure the book
does a good job of implementing his pattern. These enums are implemented as
Classes, subclassed (transparently, by the compiler) from the new class java.lang.
Enum. Unlike C, and unlike the “series of final int” implementation, JDK 1.5 typesafe
enumerations:

• Are printable (they print as the name, not as an underlying int implementation).

• Are almost as fast as int constants, but the code is more readable.

• Can be easily iterated over.

• Utilize a separate namespace for each enum type, so you don’t have to prefix each
with some sort of constant name, like ACCOUNT_SAVINGS, ACCOUNT_
CHECKING, etc.

Enum constants are not compiled into clients, giving you the freedom to reorder the
constants within your enum without recompiling the client classes. Normally this
works correctly and, even if you blow it and remove a constant that a client depends
on, you’ll get an informative message instead of a cryptic crash. Additionally, an enum
type is a class so it can, for example, implement arbitrary interfaces, and you can add
arbitrary fields and methods to an enum class.

Compared to Bloch’s Typesafe Enum pattern in the book:

• JDK 1.5 enums are simpler to use and more readable (those in the book require a
lot of methods, making them cumbersome to write).

• Enums can be used in switch statements.

So there are many benefits and few pitfalls.

The new enum keyword is at the same level as the keyword class in declarations. That
is, an enum may be declared in its own file with public or default access. It may also be
declared inside classes, much like nested or inner classes (see Recipe 9.6). Media.java,
shown in Example 8-7, is a code sample showing the definition of a typesafe enum.

Notice that an enum is a class; see what javap thinks of the Media class:

C:> javap Media
Compiled from "Media.java"

Example 8-7. Media.java

public enum Media {
 book, music_cd, music_vinyl, movie_vhs, movie_dvd;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Typesafe Enumerations | 217

public class Media extends java.lang.Enum{
 public static final Media book;
 public static final Media music_cd;
 public static final Media music_vinyl;
 public static final Media movie_vhs;
 public static final Media movie_dvd;
 public static final Media[] values();
 public static Media valueOf(java.lang.String);
 public Media(java.lang.String, int);
 public int compareTo(java.lang.Enum);
 public int compareTo(java.lang.Object);
 static {};
}
C:>

Product.java, shown in Example 8-8, is a code sample that uses the Media enum.

Example 8-8. Product.java

import com.darwinsys.util.Debug;

public class Product {
 String title;
 String artist;
 Media media;

 public Product(String artist, String title, Media media) {
 this.title = title;
 this.artist = artist;
 switch (media) {
 case book:
 Debug.println("media", title + " is a book");
 break;
 case music_cd:
 Debug.println("media", title + " is a CD");
 break;
 case music_vinyl:
 Debug.println("media", title + " is a relic");
 break;
 case movie_vhs:
 Debug.println("media", title + " is on tape");
 break;
 case movie_dvd:
 Debug.println("media", title + " is on DVD");
 break;
 default:
 Debug.println("media", "Warning: " + title +
 ": Unknown media " + media);
 break;
 }
 this.media = media;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

In Example 8-9, MediaFancy shows how operations (methods) can be added to enu-
merations; the toString() method is overridden for the “book” value of this enum.

Running the MediaFancy program produces this output:

Book
movie_dvd
music_vinyl

That is, the Book values print in a “user-friendly” way compared to the default way
the other values print. You’d want to extend this to all the values in an Enumeration.

Finally, EnumList, in Example 8-10, shows how to list all the possible values that a
given enum can take on; simply iterate over the array returned by the class’s values()
method.

The output of the EnumList program is, of course:

ON
OFF
UNKNOWN

Example 8-9. MediaFancy.java

public enum MediaFancy {
 book {
 public String toString() { return "Book"; }
 },
 music_cd, music_vinyl, movie_vhs, movie_dvd;

 public static void main(String[] args) {
 MediaFancy[] data = { book, movie_dvd, music_vinyl };
 for (MediaFancy mf : data) {
 System.out.println(mf);
 }
 }
}

Example 8-10. EnumList.java

/** Simple demo to print all the types of an enum. */
public class EnumList {
 public static void main(String[] args) {
 enum State { ON, OFF, UNKNOWN };
 for (State i : State.values()) {
 System.out.println(i);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MediaInvoicer | 219

8.6 Program: MediaInvoicer
This sketch of an invoicing program demonstrates several of these concepts.
MediaFactory is a class that takes a String (or int) and returns the corresponding
Media enum constant:

/*
 * MediaFactory - give out Media enumeration constants
 * @verion $Id: ch08,v 1.5 2004/05/04 20:11:57 ian Exp $
 */
public class MediaFactory {

 public static void main(String[] args) {

 System.out.println(MediaFactory.getMedia("Book"));
 }
 public static Media getMedia(String s) {
 return Enum.valueOf(Media.class, s.toLowerCase());
 }
 public static Media getMedia(int n){
 return Media.values()[n];
 }
}

This program uses the valueOf() method inherited from java.lang.Enum by all user-
defined enumerations. The MediaFactory is used in the main class’s getInvoice()
method to get the correct enum constant for a given String read from the invoices file,
a sample of which looks like this:

Lines beginning with # are comments, ignored by the program
I invoice# cust#
M media item# quantity
M Book 2074 1
M MUSIC_VINYL 107 1
M MUSIC_CD 5102 5
M book 2100 1

As you can see, the data entry people have been careless about case, but the
MediaFactory class turns the strings into lowercase before looking them up. The main
program pulls these lines apart with a StringTokenizer and parses the ints with
Integer.parseInt().

The main class uses two helper classes, Invoice and Item. An invoice can have one or
more line items in it, so the Invoice object contains an array of Item objects.

Example 8-11 is the code for the main MediaInvoicer class and the helper classes.

Example 8-11. MediaInvoicer.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.InputStream;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 8: Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;

/**
 * MediaInvoicer - Simple applicatin of Media, MediaFactory &c.
 *
 * @author ian
 * @version $Id: ch08,v 1.5 2004/05/04 20:11:57 ian Exp $
 */
public class MediaInvoicer {

 public static void main(String[] args) throws IOException {
 MediaInvoicer mi = new MediaInvoicer(System.in);
 Invoice i = mi.getInvoice();
 i.print(System.out);
 }
 BufferedReader myFile;
 public MediaInvoicer(InputStream is) {
 myFile = new BufferedReader(new InputStreamReader(is));
 }

 public Invoice getInvoice() throws IOException {
 String line;
 List < Item > items = new ArrayList < Item > ();
 while ((line = myFile.readLine()) != null) {
 if (line.startsWith("#")) {
 continue;
 }
 StringTokenizer st = new StringTokenizer(line);
 st.nextToken();
 Media m = MediaFactory.getMedia(st.nextToken());
 int stock = Integer.parseInt(st.nextToken());
 int qty = Integer.parseInt(st.nextToken());
 Item tmp = new Item(m, stock, qty);
 items.add(tmp);
 }
 return new Invoice(1, 3,
 (Item[]) items.toArray(new Item[items.size()]));
 }

 /** Inner class for line order item */
 class Item {
 Media product;
 int stockNumber;
 int quantity;
 /**
 * @param product
 * @param stockNumber
 * @param quantity
 */

Example 8-11. MediaInvoicer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MediaInvoicer | 221

Running the program with the sample file shown in Example 8-11 produces this
output:

*** Invoice ***
Customer number: 1
Our order number: 3
Item[book 2074]
Item[music_vinyl 107]
Item[music_cd 5102]
Item[book 2100]

This demonstrates a bit of the ease of use of Java enumerations—they print as them-
selves—and the use of a List customized to hold Item objects—the list named items
in the getInvoice() method.

 public Item(Media product, int stockNumber, int quantity) {
 super();
 this.product = product;
 this.stockNumber = stockNumber;
 this.quantity = quantity;
 }
 public String toString() {
 return "Item[" + product + " " + stockNumber + "]";
 }
 }
 /** Inner class for one invoice */
 class Invoice {
 int orderNumber;
 int custNumber;
 Item[] items;

 public Invoice(int orderNumber, int custNumber, Item[] items) {
 super();
 this.orderNumber = orderNumber;
 this.custNumber = custNumber;
 this.items = items;
 }
 public void print(PrintStream ps) {
 ps.println("*** Invoice ***");
 ps.println("Customer: " + custNumber + ")");
 ps.println("Our order number: " + orderNumber);
 for (int i = 0; i < items.length; i++) {
 Item it = items[i];
 ps.println(it);
 }
 }
 }
}

Example 8-11. MediaInvoicer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222

Chapter 9CHAPTER 9

Object-Oriented Techniques

9.0 Introduction
Java is an object-oriented (OO) language in the tradition of Simula-67, SmallTalk,
and C++. It borrows syntax from C++ and ideas from SmallTalk. The Java API has
been designed and built on the OO model. Design Patterns (see the book of the same
name), such as Factory and Delegate, are used throughout; an understanding of
these patterns will help you better understand the use of the API and improve the
design of your own classes.

Advice, or Mantras
There are any number of short bits of advice that I could give. A few recurring
themes arise when learning the basics of Java, and then when learning more Java.

Use the API

I can’t say this often enough. A lot of the things you need to do have already been
done by the good folks at JavaSoft. And this grows with most releases: 1.2 added the
Collections API, and 1.4 added the Regular Expressions API discussed in Chapter 4.
Learning the API well is a good grounds for avoiding that deadly “reinventing the flat
tire” syndrome—coming up with a second-rate equivalent of a first-rate product that
was available to you the whole time. In fact, part of this book’s mission is to prevent
you from reinventing what’s already there. One example of this is the Collections
API in java.util, discussed in Chapter 7. The Collections API has a high degree of
generality and regularity, so there is usually very little reason to invent your own data
structuring code.

Generalize

There is a trade-off between generality (and the resulting reusability), which is
emphasized here, and the convenience of application specificity. If you’re writing one
small part of a very large application designed according to OO design techniques,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 223

you’ll have in mind a specific set of use cases. On the other hand, if you’re writing
“toolkit-style” code, you should write classes with few assumptions about how
they’ll be used. Making code easy to use from a variety of programs is the route to
writing reusable code.

Read and write Javadoc

You’ve no doubt looked at the Java online documentation in a browser, in part
because I just told you to learn the API well. Do you think Sun hired millions of tech
writers to produce all that documentation? No. That documentation exists because
the developers of the API took the time to write Javadoc comments, those funny /**
comments you’ve seen in code. So, one more bit of advice: use Javadoc. We finally
have a good, standard mechanism for API documentation. And use it as you write
the code—don’t think you’ll come back and write it in later. That kind of tomorrow
never comes.

See Recipe 23.2 for details on using Javadoc.

Use subclassing and delegation

I can’t say this one enough either. Use subclassing. Use subclassing. Use subclassing.
It is the best basis not only for avoiding code duplication, but for developing soft-
ware that works. See any number of good books on the topic of object-oriented
design and programming for more details.

An alternative to subclassing is the Design Pattern (see below) known as delegation.
For example, instead of subclassing NameAndAddress to make Supplier and Customer,
make Supplier and Customer have instances of NameAndAddress. That is a clearer struc-
ture and also makes it easier for a Customer to have both a billing address and a ship-
ping address.

Use design patterns

In the Preface, I listed Design Patterns (Addison Wesley) as one of the Very Impor-
tant Books on object-oriented programming. It provides a powerful catalog of things
that programmers often reinvent. It is as important for giving a standard vocabulary
of design as it is for its clear explanations of how the basic patterns work and how
they can be implemented.

Here are some examples from the standard API:

Pattern name Meaning Examples in Java API

Factory Method One class makes up instances for you, controlled by
subclasses

getInstance (in Calendar, Format,
Locale...);
socket constructor;
RMI InitialContext

Iterator Loop over all elements in a collection, visiting each
exactly once

Iterator; older Enumeration;
java.sql.ResultSet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 9: Object-Oriented Techniques

9.1 Printing Objects: Formatting
with toString()

Problem
You want your objects to have a useful default format.

Solution
Override the toString() method inherited from java.lang.Object.

Discussion
Whenever you pass an object to System.out.println() or any equivalent method, or
involve it in string concatenation, Java automatically calls its toString() method.
Java “knows” that every object has a toString() method since java.lang.Object has
one and all classes are ultimately subclasses of Object. The default implementation,
in java.lang.Object, is neither pretty nor interesting: it just prints the class name, an
@ sign, and the object’s hashCode() value (see Recipe 9.3). For example, if you run
this code:

/* Demonstrate toString() without an override */
public class ToStringWithout {
 int x, y;

 /** Simple constructor */
 public ToStringWithout(int anX, int aY) {
 x = anX; y = aY;
 }

 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWithout(42, 86));
 }
}

you might see this uninformative output:

ToStringWithout@990c747b

Singleton Only one instance may exist java.lang.Runtime,
java.awt.Toolkit

Memento Capture and externalize an object’s state for later
reconstruction

Object serialization

Command Encapsulate requests, allowing queues of requests,
undoable operations, etc.

javax.swing.Action;
javax.swing.undo.UndoableEdit

Model-View-
Controller

Model represents data; View is what the user sees;
Controller responds to user request

Observer/Observable;
used internally by all visible Swing components

Pattern name Meaning Examples in Java API

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overriding the Equals Method | 225

To make it print better, you should provide an implementation of toString() that
prints the class name and some of the important states in all but the most trivial
classes. This gives you formatting control in println(), in debuggers, and anywhere
your objects get referred to in a String context. Here is the previous program rewrit-
ten with a toString() method:

/* Demonstrate toString() with an override */
public class ToStringWith {
 int x, y;

 /** Simple constructor */
 public ToStringWith(int anX, int aY) {
 x = anX; y = aY;
 }

 /** Override toString */
 public String toString() {
 return "ToStringWith[" + x + "," + y + "]";
 }
 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWith(42, 86));
 }
}

This version produces the more useful output:

ToStringWith[42,86]

9.2 Overriding the Equals Method

Problem
You want to be able to compare objects of your class.

Solution
Write an equals() method.

Discussion
How do you determine equality? For arithmetic or Boolean operands, the answer is
simple: you test with the equals operator (==). For object references, though, Java pro-
vides both == and the equals() method inherited from java.lang.Object. The equals
operator can be confusing, as it simply compares two object references to see if they
refer to the same object. This is not the same as comparing the objects themselves.

The inherited equals() method is also not as useful as you might imagine. Some peo-
ple seem to start their life as Java developers thinking that the default equals() magi-
cally does some kind of detailed, field-by-field or even binary comparison of objects.
But it does not compare fields! It just does the simplest possible thing: it returns the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 9: Object-Oriented Techniques

value of an == comparison on the two objects involved! So, for any major classes you
write, you probably have to write an equals method. Note that both the equals and
hashCode methods are used by hashes (Hashtable, HashMap; see Recipe 7.6). So if you
think somebody using your class might want to create instances and put them into a
hash, or even compare your objects, you owe it to them (and to yourself!) to imple-
ment equals() properly.

Here are the rules for an equals() method:

1. It is reflexive: x.equals(x) must be true.

2. It is symmetrical: x.equals(y) must be true if and only if y.equals(x) is also true.

3. It is transitive: if x.equals(y) is true and y.equals(z) is true, then x.equals(z)
must also be true.

4. It is repeatable: multiple calls on x.equals(y) return the same value (unless state
values used in the comparison are changed, as by calling a set method).

5. It is cautious: x.equals(null) must return false rather than accidentally throw-
ing a NullPointerException.

Here is a class that endeavors to implement these rules:

public class EqualsDemo {
 int int1;
 SomeClass obj1;

 /** Constructor */
 public EqualsDemo(int i, SomeClass o) {
 int1 = i;
 if (o == null) {
 throw new IllegalArgumentException("Object may not be null");
 }
 obj1 = o;
 }

 /** Default Constructor */
 public EqualsDemo() {
 this(0, new SomeClass());
 }

 /** Typical run-of-the-mill Equals method */
 public boolean equals(Object o) {
 if (o == this) // optimization
 return true;

 // Castable to this class? (false if == null)
 if (!(o instanceof EqualsDemo))
 return false;

 EqualsDemo other = (EqualsDemo)o; // OK, cast to this class

 // compare field-by-field
 if (int1 != other.int1) // compare primitives directly
 return false;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overriding the Equals Method | 227

 if (!obj1.equals(other.obj1)) // compare objects using their equals
 return false;
 return true;
 }
}

And here is a JUnit test file (see Recipe 1.14) for the EqualsDemo class:

import junit.framework.*;
/** some junit test cases for EqualsDemo
 * writing a full set is left as "an exercise for the reader".
 * Run as: $ java junit.textui.TestRunner EqualsDemoTest
 */
public class EqualsDemoTest extends TestCase {

 /** an object being tested */
 EqualsDemo d1;
 /** another object being tested */
 EqualsDemo d2;

 /** init() method */
 public void setUp() {
 d1 = new EqualsDemo();
 d2 = new EqualsDemo();
 }

 /** constructor plumbing for junit */
 public EqualsDemoTest(String name) {
 super(name);
 }

 public void testSymmetry() {
 assert(d1.equals(d1));
 }

 public void testSymmetric() {
 assert(d1.equals(d2) && d2.equals(d1));
 }

 public void testCaution() {
 assert(!d1.equals(null));
 }
}

With all that testing, what could go wrong? Well, some things still need care. What if
the object is a subclass of EqualsDemo? We cast it and...compare only our fields! You
probably should test explicitly with getClass() if subclassing is likely. And sub-
classes should call super.equals() to test all superclass fields.

What else could go wrong? Well, what if either obj1 or other.obj1 is null? You might
have just earned a nice shiny new NullPointerException. So you also need to test for
any possible null values. Good constructors can avoid these NullPointerExceptions,
as I’ve tried to do in EqualsDemo, or else test for them explicitly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 9: Object-Oriented Techniques

9.3 Overriding the hashCode Method

Problem
You want to use your objects in a HashMap, HashSet, Hashtable, or other Collection,
and you need to write a hashCode() method.

Discussion
The hashCode() method is supposed to return an int that should uniquely identify
different objects.

A properly written hashCode() method will follow these rules:

1. It is repeatable: hashCode(x) must return the same int when called repeatedly,
unless set methods have been called.

2. It is consistent with equality: if x.equals(y), then x.hashCode() must == y.
hashCode().

3. If !x.equals(y), it is not required that x.hashCode() != y.hashCode(), but doing
so may improve performance of hash tables; i.e., hashes may call hashCode()
before equals().

The default hashCode() on Sun’s JDK returns a machine address, which conforms to
Rule 1. Conformance to Rules 2 and 3 depends, in part, upon your equals()
method. Here is a program that prints the hashcodes of a small handful of objects:

/** Display hashCodes from some objects */
public class PrintHashCodes {

 /** Some objects to hashCode() on */
 protected static Object[] data = {
 new PrintHashCodes(),
 new java.awt.Color(0x44, 0x88, 0xcc),
 new SomeClass()
 };

 public static void main(String[] args) {
 System.out.println("About to hashCode " + data.length + " objects.");
 for (int i=0; i<data.length; i++) {
 System.out.println(data[i].toString() + " --> " +
 data[i].hashCode());
 }
 System.out.println("All done.");
 }
}

What does it print?

> jikes +E -d . PrintHashCodes.java
> java PrintHashCodes
About to hashCode 3 objects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Clone Method | 229

PrintHashCodes@982741a0 --> -1742257760
java.awt.Color[r=68,g=136,b=204] --> -12285748
SomeClass@860b41ad --> -2046082643
All done.
>

The hashcode value for the Color object is interesting. It is actually computed as
something like:

alpha<<24 + r<<16 + g<<8 + b

In this formula, r, g, and b are the red, green, and blue components respectively, and
alpha is the transparency. Each of these quantities is stored in 8 bits of a 32-bit inte-
ger. If the alpha value is greater than 128, the “high bit” in this word—having been
set by shifting into the sign bit of the word—causes the integer value to appear nega-
tive when printed as a signed integer. Hashcode values are of type int, so they are
allowed to be negative.

9.4 The Clone Method

Problem
You want to clone yourself. Or at least your objects.

Solution
Override Object.clone().

Discussion
To clone something is to make a duplicate of it. The clone() method in Java makes
an exact duplicate of an object. Why do we need cloning? Think about what hap-
pens when you call a method passing it an argument you have created. Java’s
method-calling semantics are call-by-reference—a reference to your object is
passed—which allows the called method to modify the state of your carefully con-
structed object! Cloning the input object before calling the method allows you to
pass a copy of the object, keeping your original safe.

How can you clone? Cloning is not “enabled” by default in classes that you write:

Object o = new Object();
Object o2 = o.clone();

If you try calling clone() without any special preparation, as in this excerpt from
Clone0.java, you will see a message like this (from the Jikes compiler; the javac mes-
sage may not be as informative):

Clone0.java:4:29:4:37: Error: Method "java.lang.Object clone();" in class "java/lang/
Object" has protected or default access. Therefore, it is not accessible in class
"Clone0" which is in a different package.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 9: Object-Oriented Techniques

You must take two steps to make your class cloneable:

1. Override Object’s clone() method.

2. Implement the empty Cloneable interface.

Using cloning

The class java.lang.Object declares its clone method protected and native. Protected
methods can be called by a subclass or those in the same package (i.e., java.lang),
but not by unrelated classes. That is, you can call Object.clone()—the native
method that does the magic of duplicating the object—only from within the object
being cloned. Here is a simple example of a class with a clone method and a tiny pro-
gram that uses it:

public class Clone1 implements Cloneable {

 /** Clone this object. Just call super.clone() to do the work */
 public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException ex) {
 throw new InternalError(ex.toString());
 }
 }

 int x;
 transient int y; // will be cloned, but not serialized

 public static void main(String[] args) {
 Clone1 c = new Clone1();
 c.x = 100;
 c.y = 200;
 try {
 Object d = c.clone();
 System.out.println("c=" + c);
 System.out.println("d=" + d);
 } catch (Exception ex) {
 System.out.println("Now that's a surprise!!");
 System.out.println(ex);
 }
 }

 /** Display the current object as a string */
 public String toString() {
 return "Clone1[" + x + "," + y + "]";
 }
}

The clone() method in Object throws CloneNotSupportedException. This handles the
case of inadvertently calling clone() on a class that isn’t supposed to be cloned.
Since most of the time you don’t need to do anything with this exception, a clone
method could declare this exception in its throws clause and let the calling code deal

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Finalize Method | 231

with it. But CloneNotSupportedException is a checked exception, and it’s generally
unlikely, so it’s often simpler to have your clone() method catch it and rethrow it as
an unchecked exception, as this code does.

Calling Object’s clone() creates a stateful, shallow copy down inside the JVM. That
is, it creates a new object, and copies all the fields from the old object into the new. It
then returns the new reference as an Object; you need to cast it to the appropriate
object type. So if that’s all there is, why do you even have to write this method? The
reason is to give you a chance to do any preservation of state that is required in clon-
ing your objects. For example, if your class has any references to other objects (and
most real-world classes do), you may well want to clone them as well! The default
clone method simply copies all the object’s state so that you now have two refer-
ences to each object. Or you might have to close and reopen files to avoid having two
threads (see Chapter 24) reading from or writing into the same file. In effect, what
you have to do here depends on what the rest of your class does.

Now suppose that you clone a class containing an array of objects. You now have
two references to objects in the array, but further additions to the array will be made
only in one array or the other. Imagine a Vector, Stack, or other collection class being
used in your class, and your object gets cloned!

The bottom line is that most object references need to be cloned.

Even if you don’t need clone(), your subclasses may! If you didn’t provide clone()
in a class subclassed from Object, your subclasses will probably get the Object ver-
sion, which causes problems if there are collections or other mutable objects referred
to. As a general rule, you should provide clone() even if only your own subclasses
would need it.

Difficulty in the standard API

The java.util.Observable class (designed to implement the Model-View-Controller
pattern with AWT or Swing applications) contains a private Vector but no clone
method to deep-clone it. Thus, Observable objects cannot safely be cloned, ever!

9.5 The Finalize Method

Problem
You want to have some action taken when your objects are removed from service.

Solution
Use finalize()—but don’t trust it—or write your own end-of-life method.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 9: Object-Oriented Techniques

Discussion
Developers coming from a C++ background tend to form a mental map that has a
line of equivalency drawn from C++ destructors to Java finalizers. In C++, destruc-
tors are called automatically when you delete an object. Java, though, has no such
operator as delete; objects are freed automatically by a part of the Java runtime called
the garbage collector, or GC. GC runs as a background thread in Java processes and
looks around every so often to see if any objects are no longer referred to by any ref-
erence variable. When it runs, as it frees objects, it calls their finalize() methods.

For example, what if you (or some code you called) invoke System.exit()? In this
case, the entire JVM would cease to exist (assuming there isn’t a security manager
that denies your program permission to do so), and the finalizer is never run. Simi-
larly, a “memory leak,” or mistakenly held reference to your object, also prevents
finalizers from running.

Can’t you just ensure that all finalizers get run simply by calling System.
runFinalizersOnExit(true)? Not really! This method is deprecated (see Recipe 1.9);
the documentation notes:

This method is inherently unsafe. It may result in finalizers being called on live objects
while other threads are concurrently manipulating those objects, resulting in erratic
behavior or deadlock.

So what if you need some kind of cleanup? You must take responsibility for defining
a method and invoking it before you let any object of that class go out of reference.
You might call such a method cleanUp().

JDK 1.3 introduced the runtime method addShutdownHook(), to which you pass a
nonstarted Thread subclass object; if the virtual machine has a chance, it runs your
shutdown hook code as part of termination. This normally works, unless the VM
was terminated abruptly as by a kill signal on Unix or a KillProcess on Win32, or the
VM aborts due to detecting internal corruption of its data structures. Program
ShutdownDemo shown in Example 9-1 contains both a finalize() method and a shut-
down hook. The program normally exits while holding a reference to the object with
the finalize method. If run with -f as an argument, it “frees” the object and “forces”
a GC run by calling System.gc(); only in this case does the finalize() method run.
The shutdown hook is run in every case.

Example 9-1. Shutdown Demo

/** Demonstrate how finalize() methods and shutdownHooks interact
 * with calls to System.exit().
 */
public class ShutdownDemo {
 public static void main(String[] args) throws Exception {

 // Create an Object with a finalize() method.
 Object f = new Object() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Inner Classes | 233

The bottom line? There’s no guarantee, but finalizers and shutdown hooks both have
pretty good odds of being run.

9.6 Using Inner Classes

Problem
You need to write a private class, or a class to be used in one other class at the most.

Solution
Use a nonpublic class or an inner class.

Discussion
A nonpublic class can be written as part of another class’s source file, but it is not
included inside that class. An inner class is Java terminology for a nonstatic class
defined inside another class. Inner classes were first popularized with the advent of
JDK 1.1 for use as event handlers for GUI applications (see Recipe 14.4), but they
have a much wider application.

Inner classes can, in fact, be constructed in several contexts. An inner class defined as
a member of a class can be instantiated anywhere in that class. An inner class defined

 public void finalize() {
 System.out.println("Running finalize()");
 }
 };

 // Add a shutdownHook to the JVM
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 System.out.println("Running Shutdown Hook");
 }
 });

 // Unless the user puts -f (for "free") on the command line,
 // call System.exit while holding a reference to
 // Object f, which can therefore not be finalized().

 if (args.length == 1 && args[0].equals("-f")) {
 f = null;
 System.gc();
 }

 System.out.println("Calling System.exit()");
 System.exit(0);
 }
}

Example 9-1. Shutdown Demo (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 9: Object-Oriented Techniques

inside a method can be referred to later only in the same method. Inner classes can
also be named or anonymous. A named inner class has a full name that is compiler-
dependent; the standard JVM uses a name like MainClass$InnerClass.class for the
resulting file. An anonymous inner class, similarly, has a compiler-dependent name;
the JVM uses MainClass$1.class, MainClass$2.class, and so on.

These classes cannot be instantiated in any other context; any explicit attempt to
refer to, say, OtherMainClass$InnerClass, is caught at compile time:

import java.awt.event.*;
import javax.swing.*;

public class AllClasses {
 /** Inner class can be used anywhere in this file */
 public class Data {
 int x;
 int y;
 }
 public void getResults() {
 JButton b = new JButton("Press me");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.out.println("Thanks for pressing me");
 }
 });
 }
}

/** Class contained in same file as AllClasses, but can be used
 * (with a warning) in other contexts.
 */
class AnotherClass {
 // methods and fields here...
}

9.7 Providing Callbacks via Interfaces

Problem
You want to provide callbacks , that is, have unrelated classes call back into your
code.

Solution
One way is to use a Java interface.

Discussion
An interface is a class-like entity that can contain only abstract methods and final
fields. As we’ve seen, interfaces are used a lot in Java! In the standard API, the fol-
lowing are a few of the commonly used interfaces:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Providing Callbacks via Interfaces | 235

• Runnable, Comparable, and Cloneable (in java.lang)

• List, Set, Map, and Enumeration/Iterator (in the Collections API; see Chapter 7)

• ActionListener, WindowListener, and others (in the AWT GUI; see Recipe 14.4)

• Driver, Connection, Statement, and ResultSet (in JDBC; see Recipe 20.4)

• The “remote interface”—the contact between the client and the server—is speci-
fied as an Interface (in RMI, CORBA, and EJB)

Suppose we are generating a futuristic building management system. To be energy-
efficient, we want to be able to remotely turn off (at night and on weekends) such
things as room lights and computer monitors, which use a lot of energy. Assume we
have some kind of “remote control” technology. It could be a commercial version of
BSR’s house-light control technology X10, it could be Bluetooth or 802.11—it
doesn’t matter. What matters is that we have to be very careful what we turn off. It
would cause great ire if we turned off computer processors automatically—people
often leave things running overnight. It would be a matter of public safety if we ever
turned off the building emergency lighting.*

Subclass, Abstract Class, or Interface?
There is usually more than one way to skin a cat. Some problems can be solved by sub-
classing, by use of abstract classes, or by interfaces. The following general guidelines
may help:

• Use an abstract class when you want to provide a template for a series of sub-
classes, all of which may inherit some of their functionality from the parent class
but are required to implement some of it themselves. (Any subclass of a geomet-
ric Shapes class might have to provide a computeArea() method; since the top-
level Shapes class cannot do this, it would be abstract. This is implemented in
Recipe 9.8.)

• Subclass whenever you want to extend a class and add some functionality to it,
whether the parent class is abstract or not. See the standard Java APIs and the
examples in Recipes 1.14, 5.11, 9.12, 10.10, and others throughout this book.

• Subclass when you are required to extend a given class. Applets (see Recipe 18.
2), servlets, and others use subclassing to ensure “base” functionality in classes
that are dynamically loaded (see Recipe 25.3).

• Define an interface when there is no common parent class with the desired func-
tionality and when you want only certain unrelated classes to have that function-
ality (see the PowerSwitchable interface in Recipe 9.7).

• Use interfaces as “markers” to indicate something about a class. The standard
API uses Cloneable (Recipe 9.4) and Serializable (Recipe 10.18) as markers.

* Of course these lights wouldn’t have remote power-off. But the computers might, for maintenance purposes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 9: Object-Oriented Techniques

So we’ve come up with the design shown in Figure 9-1.

The code for these classes is not shown (it’s pretty trivial) but it’s in the online
source. The top-level classes—BuildingLight and Asset—are abstract classes. You
can’t instantiate them, as they don’t have any specific functionality. To ensure—both
at compile time and at runtime—that we can never switch off the emergency light-
ing, we need only ensure that the class representing it, EmergencyLight, does not
implement the PowerSwitchable interface.

Note that we can’t very well use direct inheritance here. No common ancestor class
includes both ComputerMonitor and RoomLights that doesn’t also include ComputerCPU
and EmergencyLight. Use interfaces to define functionality in unrelated classes.

How we use these is demonstrated by the BuildingManagement class; this class is not
part of the hierarchy shown in Figure 9-1, but instead uses a collection (actually an
array, to make the code simpler for illustrative purposes) of Asset objects from that
hierarchy.

Items that can’t be switched must nonetheless be in the database, for various pur-
poses (auditing, insurance, and so on). In the method that turns things off, the code
is careful to check whether each object in the database is an instance of the
PowerSwitchable interface. If so, the object is casted to PowerSwitchable so that its
powerDown() method can be called. If not, the object is skipped, thus preventing any
possibility of turning out the emergency lights or shutting off a machine that is busy
running Seti@Home, downloading a big MP3 playlist, or performing system backups.

Figure 9-1. Classes for a building management system

Asset

ComputerAsset BuildingAsset

BuildingLightPowerSwitchable

ComputerCPU

RoomLights EmergencyLight

ComputerMonitor

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Providing Callbacks via Interfaces | 237

/**
 * BuildingManagement - control an energy-saving building.
 * This class shows how we might control the objects in an office
 * that can safely be powered off at nighttime to save energy - lots of
 * it, when applied to a large office!
 */
public class BuildingManagement {

 Asset things[] = new Asset[24];
 int numItems = 0;

 /** goodNight is called from a timer Thread at 2200, or when we
 * get the "shutdown" command from the security guard.
 */
 public void goodNight() {
 for (int i=0; i<things.length; i++)
 if (things[i] instanceof PowerSwitchable)
 ((PowerSwitchable)things[i]).powerDown();
 }

 // goodMorning() would be the same, but call each one's powerUp().

 /** Add an Asset to this building */
 public void add(Asset thing) {
 System.out.println("Adding " + thing);
 things[numItems++] = thing;
 }

 /** The main program */
 public static void main(String[] av) {
 BuildingManagement b1 = new BuildingManagement();
 b1.add(new RoomLights(101)); // control lights in room 101
 b1.add(new EmergencyLight(101)); // and emerg. lights.
 // add the computer on desk#4 in room 101
 b1.add(new ComputerCPU(10104));
 // and its monitor
 b1.add(new ComputerMonitor(10104));

 // time passes, and the sun sets...
 b1.goodNight();
 }
}

When you run this program, it shows all the items being added, but only the
PowerSwitchable ones being switched off:

> java BuildingManagement
Adding RoomLights@2dc77f32
Adding EmergencyLight@2e3b7f32
Adding ComputerCPU@2e637f32
Adding ComputerMonitor@2f1f7f32
Dousing lights in room 101
Dousing monitor at desk 10104
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 9: Object-Oriented Techniques

9.8 Polymorphism/Abstract Methods

Problem
You want each of a number of subclasses to provide its own version of one or more
methods.

Solution
Make the method abstract in the parent class; this makes the compiler ensure that
each subclass implements it.

Discussion
A hypothetical drawing program uses a Shape subclass for anything that is drawn.
Shape has an abstract method called computeArea() that computes the exact area of
the given shape:

public abstract class Shape {
 protected int x, y;
 public abstract double computeArea();
}

A Rectangle subclass, for example, has a computeArea() that multiplies width times
height and returns the result:

public class Rectangle extends Shape {
 double width, height;
 public double computeArea() {
 return width * height;
 }
}

A Circle subclass returns :

public class Circle extends Shape {
 double radius;
 public double computeArea() {
 return Math.PI * radius * radius;
 }
}

This system has a very high degree of generality. In the main program, we can pass
over a collection of Shape objects and—here’s the real beauty—call computeArea() on
any Shape subclass object without having to worry about what kind of shape it is.
Java’s polymorphic methods automatically call the correct computeArea() method in
the class of which the object was originally constructed:

/** Part of a main program using Shape objects */
public class Main {

 Collection allShapes; // created in a Constructor, not shown

πr2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Passing Values | 239

 /** Iterate over all the Shapes, getting their areas */
 public double totalAreas() {
 Iterator it = allShapes.iterator();
 double total = 0.0;
 while (it.hasNext()) {
 Shape s = (Shape)it.next();
 total += s.computeArea();
 }
 return total;
 }
}

Polymorphism is a great boon for software maintenance: if a new subclass is added,
the code in the main program does not change. Further, all the code that is specific
to, say, polygon handling, is all in one place: in the source file for the Polygon class.
This is a big improvement over older languages, where type fields in a structure or
record were used with case or switch statements scattered all across the software.
Java makes software more reliable and maintainable with the use of polymorphism.

9.9 Passing Values

Problem
You need to pass a number like an int into a routine and get back the routine’s
updated version of that value in addition to the routine’s return value.

This often comes up in working through strings; the routine may need to return a
boolean, say, or the number of characters transferred, but also needs to increment an
integer array or string index in the calling class.

It is also useful in constructors, which can’t return a value but may need to indicate
that they have “consumed” or processed a certain number of characters from within
a string, such as when the string will be further processed in a subsequent call.

Solution
Use a specialized class such as the one presented here.

Discussion
The Integer class is one of Java’s predefined Number subclasses, mentioned in the
Introduction to Chapter 5. It serves as a wrapper for an int value and also has static
methods for parsing and formatting integers.

It’s fine as it is, but you may want something simpler.

Here is a class I wrote, called MutableInteger, that is like an Integer but specialized
by omitting the overhead of Number and providing only the set, get, and incr opera-
tions, the latter overloaded to provide a no-argument version that performs the incre-
ment (++) operator on its value, and also a one-integer version that adds that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 9: Object-Oriented Techniques

increment into the value (analogous to the += operator). Since Java doesn’t support
operator overloading, the calling class has to call these methods instead of invoking
the operations syntactically, as you would on an int. For applications that need this
functionality, the advantages outweigh this minor syntactic restriction. First, let’s
look at an example of how it might be used. Assume you need to call a scanner func-
tion called, say, parse() and get back both a Boolean (indicating whether a value
was found) and an integer value indicating where it was found:

import com.darwinsys.util.*;

/** Show use of MutableInteger to "pass back" a value in addition
 * to a function's return value.
 */
public class StringParse {
 /** This is the function that has a return value of true but
 * also "passes back" the offset into the String where a
 * value was found. Contrived example!
 */
 public static boolean parse(String in,
 char lookFor, MutableInteger whereFound) {
 int i = in.indexOf(lookFor);
 if (i == -1)
 return false; // not found
 whereFound.setValue(i); // say where found
 return true; // say that it was found
 }

 public static void main(String[] args) {
 MutableInteger mi = new MutableInteger();
 String text = "Hello, World";
 char c = 'W';
 if (parse(text, c, mi)) {
 System.out.println("Character " + c + " found at offset "
 + mi + " in " + text);
 } else {
 System.out.println("Not found");
 }
 }
}

Now many OO purists argue—convincingly—that you shouldn’t do this, and that
you can always rewrite it so there is only one return value. Either return and have the
caller interpret a single value (in this case, return the offset in the return statement,
and let the user know that –1 indicates not found), or define a trivial wrapper class
containing both the integer and the Boolean. However, there is precedent in the stan-
dard API: this code is remarkably similar to how the ParsePosition class (see Recipe
6.5) is used. Anyway, this functionality is requested often enough that I feel justified
in showing how to do it, accompanied by this disclaimer: try to avoid doing it this
way in new code!

Having said all that, here is the MutableInteger class:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Passing Values | 241

package com.darwinsys.lang;

/** A MutableInteger is like an Integer but mutable, to avoid the
 * excess object creation involved in
 * c = new Integer(c.getInt()+1)
 * which can get expensive if done a lot.
 * Not subclassed from Integer, since Integer is final (for performance :-))
 */
public class MutableInteger {
 private int value = 0;

 public MutableInteger() {
 }

 public MutableInteger(int i) {
 value = i;
 }

 public void incr() {
 value++;
 }
 public void incr(int amt) {
 value += amt;
 }

 public void decr() {
 value--;
 }

 public void setValue(int i) {
 value = i;
 }

 public int getValue() {
 return value;
 }

 public String toString() {
 return Integer.toString(value);
 }

 public static String toString(int val) {
 return Integer.toString(val);
 }

 public static int parseInt(String str) {
 return Integer.parseInt(str);
 }
}

See Also
As mentioned, this use of MutableInteger could be replaced with ParsePosition.
However, MutableInteger has other uses: it makes a fine in-memory counter in a
servlet or other application.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 9: Object-Oriented Techniques

9.10 Enforcing the Singleton Pattern

Problem
You want to be sure there is only one instance of your class in a given Java Virtual
Machine.

Solution
Make your class enforce the Singleton Pattern (see Design Patterns, page 127), prima-
rily by having only a private constructor(s).

Discussion
It is often useful to ensure that only one instance of a class gets created, usually to
funnel all requests for some resource through a single point. An example of a Single-
ton from the standard API is java.lang.Runtime; you cannot create instances of
Runtime, you simply ask for a reference by calling the static method Runtime.
getRuntime(). Singleton is also a good example of a design pattern because it can be
easily implemented.

The easiest implementation consists of a private constructor and a field to hold its
result, and a static accessor method with a name like getInstance().

The private field can be assigned from within a static initializer block or, more sim-
ply, using an initializer. The getInstance() method (which must be public) then sim-
ply returns this instance:

// Simple demonstration Singleton instance
public class Singleton {

 private static Singleton singleton = new Singleton();

 /** A private Constructor prevents any other class from instantiating. */
 private Singleton() {
 }

 /** Static 'instance' method */
 public static Singleton getInstance() {
 return singleton;
 }

 // other methods protected by singleton-ness would be here...
}

Note that the method advocated in Design Patterns, of using “lazy evaluation” in the
getInstance() method, is not necessary in Java, since Java already uses “lazy load-
ing.” Your Singleton class will probably not get loaded unless its getInstance() is
called, so there is no point in trying to defer the singleton construction until it’s
needed by having getInstance() test the singleton variable for null and creating the
singleton there.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Roll Your Own Exceptions | 243

Using this class is equally simple: simply get and retain the reference, and invoke
methods on it:

public class SingletonDemo {
 public static void main(String[] args) {
 Singleton tmp = Singleton.getInstance();
 tmp.demoMethod();
 }
}

Some commentators believe that a Singleton should also provide a public final
clone() method (see Recipe 9.4) to avoid subclasses that “cheat” and clone() the
singleton. However, on inspection, it is clear that a class with only a private con-
structor cannot be subclassed, so this paranoia does not appear to be necessary.

Variation
One variation is to make all methods static (as java.lang.Math does), but this works
only if methods do not need to share state. You also lose the scalability that is inher-
ent in the Singleton pattern: if you later need, say, 2 or 3 instances, you could easily
change the getInstance() method to give out references to one of several, but you
can’t do that if all the methods are static.

See Also
The Collections class in java.util has methods singletonList(), singletonMap(),
and singletonSet(), which give out an immutable List, Map, or Set respectively, con-
taining only the one object that is passed to the method. This does not, of course,
convert the object into a Singleton in the sense of preventing that object from being
cloned or other instances from being constructed, but it does qualify by providing a
single access point that always returns the same instance.

9.11 Roll Your Own Exceptions

Problem
You’d like to use an application-specific exception class or two.

Solution
Go ahead and subclass Exception or RuntimeException.

Discussion
In theory, you could subclass Throwable directly, but that’s considered rude. You
normally subclass Exception (if you want a checked exception) or RuntimeException
(if you want an unchecked exception). Checked exceptions are those that an applica-
tion developer is required to catch or “throw away” by listing them in the throws
clause of the invoking method.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 9: Object-Oriented Techniques

When subclassing either of these, it is customary to provide at least a no-argument
and a one-string argument constructor:

/** A ChessMoveException is thrown when the user makes an illegal move. */
public class ChessMoveException extends RuntimeException {
 public ChessMoveException () {
 super();
 }
 public ChessMoveException (String msg) {
 super(msg);
 }
}

See Also
The Javadoc documentation for Exception lists a very large number of subclasses;
you might look there first to see if there is one you can use.

9.12 Program: Plotter
Not because it is very sophisticated, but because it is simple, this program serves as an
example of some of the things we’ve covered in this chapter, and also, in its sub-
classes, provides a springboard for other discussions. This class describes a series of
old-fashioned (i.e., common in the 1970s and 1980s) pen plotters. A pen plotter, in
case you’ve never seen one, is a device that moves a pen around a piece of paper and
draws things. It can lift the pen off the paper or lower it, and it can draw lines, letters,
and so on. Before the rise of laser printers and ink-jet printers, pen plotters were the
dominant means of preparing charts of all sorts, as well as presentation slides (this
was, ah, well before the rise of programs like Harvard Presents and Microsoft Power-
Point). Today few companies still manufacture pen plotters, but I use them here
because they are simple enough to be well understood from this brief description.

I’ll present a high-level class that abstracts the key characteristics of a series of such
plotters made by different vendors. It would be used, for example, in an analytical or
data-exploration program to draw colorful charts showing the relationships found in
data. But I don’t want my main program to worry about the gory details of any partic-
ular brand of plotter, so I’ll abstract into a Plotter class, whose source is as follows:

/**
 * Plotter abstract class. Must be subclassed
 * for X, DOS, Penman, HP plotter, etc.
 *
 * Coordinate space: X = 0 at left, increases to right.
 * Y = 0 at top, increases downward (same as AWT).
 */
public abstract class Plotter {
 public final int MAXX = 800;
 public final int MAXY = 600;
 /** Current X co-ordinate (same reference frame as AWT!) */
 protected int curx;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Plotter | 245

 /** Current Y co-ordinate (same reference frame as AWT!) */
 protected int cury;
 /** The current state: up or down */
 protected boolean penIsUp;
 /** The current color */
 protected int penColor;

 Plotter() {
 penIsUp = true;
 curx = 0; cury = 0;
 }
 abstract void rmoveTo(int incrx, int incry);
 abstract void moveTo(int absx, int absy);
 abstract void penUp();
 abstract void penDown();
 abstract void penColor(int c);

 abstract void setFont(String fName, int fSize);
 abstract void drawString(String s);

 /* Concrete methods */

 /** Draw a box of width w and height h */
 public void drawBox(int w, int h) {
 penDown();
 rmoveTo(w, 0);
 rmoveTo(0, h);
 rmoveTo(-w, 0);
 rmoveTo(0, -h);
 penUp();
 }

 /** Draw a box given an AWT Dimension for its size */
 public void drawBox(java.awt.Dimension d) {
 drawBox(d.width, d.height);
 }

 /** Draw a box given an AWT Rectangle for its location and size */
 public void drawBox(java.awt.Rectangle r) {
 moveTo(r.x, r.y);
 drawBox(r.width, r.height);
 }
}

Note the variety of abstract methods. Those related to motion, pen control, or draw-
ing are left out, due to the number of different methods for dealing with them. How-
ever, the method for drawing a rectangle (drawBox) has a default implementation,
which simply puts the currently selected pen onto the paper at the last-moved-to
location, draws the four sides, and raises the pen. Subclasses for “smarter” plotters
will likely override this method, but subclasses for less-evolved plotters will proba-
bly use the default version. This method also has two overloaded convenience meth-
ods for cases where the client has an AWT Dimension for the size or an AWT
Rectangle for the location and size.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 9: Object-Oriented Techniques

To demonstrate one of the subclasses of this program, consider the following simple
“driver” program. The Class.forName() near the beginning of main is discussed in
Recipe 25.2; for now you can take my word that it simply creates an instance of the
given subclass, which we store in a Plotter reference named “r” and use to draw the
plot:

/** Main program, driver for Plotter class.
 * This is to simulate a larger graphics application such as GnuPlot.
 */
public class PlotDriver {

 /** Construct a Plotter driver, and try it out. */
 public static void main(String[] argv)
 {
 Plotter r ;
 if (argv.length != 1) {
 System.err.println("Usage: PlotDriver driverclass");
 return;
 }
 try {
 Class c = Class.forName(argv[0]);
 Object o = c.newInstance();
 if (!(o instanceof Plotter))
 throw new ClassNotFoundException("Not instanceof Plotter");
 r = (Plotter)o;
 } catch (ClassNotFoundException e) {
 System.err.println("Sorry, "+argv[0]+" not a plotter class");
 return;
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 r.penDown();
 r.penColor(1);
 r.moveTo(200, 200);
 r.penColor(2);
 r.drawBox(123, 200);
 r.rmoveTo(10, 20);
 r.penColor(3);
 r.drawBox(123, 200);
 r.penUp();
 r.moveTo(300, 100);
 r.penDown();
 r.setFont("Helvetica", 14);
 r.drawString("Hello World");
 r.penColor(4);
 r.drawBox(10, 10);
 }
}

We’ll see more examples of this Plotter class and its relatives in several upcoming
chapters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

247

Chapter 10 CHAPTER 10

Input and Output

10.0 Introduction
Most programs need to interact with the outside world, and one common way of
doing so is by reading and writing files. Files are normally on some persistent
medium such as a disk drive, and, for the most part, we shall happily ignore the dif-
ferences between a hard disk (and all the operating system-dependent filesystem
types), a floppy or zip drive, a CD-ROM, and others. For now, they’re just files.

This chapter covers all the normal input/output operations such as opening/closing
and reading/writing files. Files are assumed to reside on some kind of file store or
permanent storage. I don’t discuss how such a filesystem or disk I/O system works—
consult a book on operating system design or a platform-specific book on system
internals or filesystem design. Network filesystems such as Sun’s Network File Sys-
tem (NFS, common on Unix and available for Windows through products such as
Hummingbird NFS Maestro), Macintosh Appletalk File System (used for OS 9; avail-
able for Unix via the open source Netatalk), and SMB (Windows network filesys-
tem, available for Unix with the open source Samba program) are assumed to work
“just like” disk filesystems, except where noted.

JDK 1.5 introduced the Formatter and Scanner classes, which provide substantial
new functionality. Formatter allows many formatting tasks to be performed either
into a String or to almost any output destination. Scanner parses many kinds of
objects, again either from a String or from almost any input source. These are new
and very powerful; each is given its own recipe in this chapter.

Streams and Readers/Writers
Java provides two sets of classes for reading and writing. The Stream section of pack-
age java.io (see Figure 10-1) is for reading or writing bytes of data. Older languages
tended to assume that a byte (which is a machine-specific collection of bits, usually
eight bits on modern computers) is exactly the same thing as a “character”—a letter,
digit, or other linguistic element. However, Java is designed to be used internation-
ally, and eight bits is simply not enough to handle the many different character sets

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 10: Input and Output

used around the world. Script-based languages like Arabic and Indian languages, and
pictographic languages like Chinese and Japanese, each have many more than 256
characters, the maximum that can be represented in an eight-bit byte. The unifica-
tion of these many character code sets is called, not surprisingly, Unicode. Actually,
it’s not the first such unification, but it’s the most widely used standard at this time.
Both Java and XML use Unicode as their character sets, allowing you to read and
write text in any of these human languages. But you have to use Readers and Writers,
not Streams, for textual data.

Unicode itself doesn’t solve the entire problem. Many of these human languages were
used on computers long before Unicode was invented, and they didn’t all pick the
same representation as Unicode. And they all have zillions of files encoded in a partic-
ular representation that isn’t Unicode. So conversion routines are needed when read-
ing and writing to convert between Unicode String objects used inside the Java
machine and the particular external representation that a user’s files are written in.
These converters are packaged inside a powerful set of classes called Readers and
Writers. Readers and Writers are always used instead of InputStreams and
OutputStreams when you want to deal with characters instead of bytes. We’ll see more
on this conversion, and how to specify which conversion, a little later in this chapter.

See Also
One topic not addressed in depth here is the Java “New IO” package (it was “new”
in 1.4). NIO is more complex to use, and the benefits accrue primarily in large-scale
server-side processing. Recipe 4.5 provides one example of using NIO. The NIO
package is given full coverage in Java NIO by Ron Hitchens (O’Reilly).

Another issue not addressed here is hardcopy printing. Java’s scheme for printing
onto paper uses the same graphics model as is used in AWT, the basic Window Sys-
tem package. For this reason, I defer discussion of printing to Chapter 13.

Another topic not covered here is that of having the read or write occur concurrently
with other program activity. This requires the use of threads, or multiple flows of
control within a single program. Threaded I/O is a necessity in many programs:
those reading from slow devices such as tape drives, those reading from or writing to
network connections, and those with a GUI. For this reason the topic is given con-
siderable attention, in the context of multithreaded applications, in Chapter 24.

10.1 Reading Standard Input

Problem
You really do need to read from the standard input, or console. One reason is that
simple test programs are often console-driven. Another is that some programs natu-
rally require a lot of interaction with the user and you want something faster than a
GUI (consider an interactive mathematics or statistical exploration program). Yet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading Standard Input | 249

Figure 10-1. java.io classes

 DEPRECATED extends implements

KEY CLASS ABSTRACT CLASS FINAL CLASS INTERFACE

Serializable

java.io

ObjectStreamClass

StreamTokenizer

Reader
BufferedWriter

CharArrayWriter

FilterWriter

OutputStreamWriter

PipedWriter

PrintWriter

FilterInputStream

ObjectInputStream

BufferedReader

InputStreamReader

CharArrayReader

PipedInputStream

SequenceInputStream

FilterReader

FileInputStream

PipedReader

StringReader

DataInputStream

BufferedInputStream
ByteArrayInputStream

StringBufferInputStream

PushbackInputStream

LineNumberInputStream

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

StringWriter

BufferedOutputStream

DataOutputStream

PrintStream

ObjectInput

ObjectOutput

DataInput

DataOutput

LineNumberReader

PushbackReader

OutputStream

Writer

Object

java.lang

Comparable

FileFilter

ObjectStreamField

FilenameFilter

InputStream

RandomAccessFile

FileDescriptor

File

Externalizable

java.security

Permission

BasicPermission

ObjectInputValidation

ObjectStreamConstants

FilePermission

SerializablePermission

FileReader

FileWriter

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 10: Input and Output

another is piping the output of one program directly to the input of another, a very
common operation among Unix users and quite valuable on other platforms, such as
Windows, that support this operation.

Solution
To read bytes, wrap a BufferedInputStream() around System.in. For the more com-
mon case of reading text, use an InputStreamReader and a BufferedReader.

Discussion
Most desktop platforms support the notion of standard input—a keyboard, a file, or
the output from another program—and standard output—a terminal window, a
printer, a file on disk, or the input to yet another program. Most such systems also
support a standard error output so that error messages can be seen by the user even if
the standard output is being redirected. When programs on these platforms start up,
the three streams are preassigned to particular platform-dependent handles, or file
descriptors. The net result is that ordinary programs on these operating systems can
read the standard input or write to the standard output or standard error stream
without having to open any files or make any other special arrangements.

Java continues this tradition and enshrines it in the System class. The static variables
System.in, System.out, and System.err are connected to the three operating system
streams before your program begins execution (an application is free to reassign these;
see Recipe 10.9). So, to read the standard input, you need only refer to the variable
System.in and call its methods. For example, to read one byte from the standard input,
you call the read method of System.in, which returns the byte in an int variable:

int b = System.in.read();

But is that enough? No, because the read() method can throw an IOException. So
you must either declare that your program throws an IOException, as in:

public static void main(String ap[]) throws IOException {

or you can put a try/catch block around the read method:

int b = 0;
try {
 b = System.in.read();
} catch (Exception e) {
 System.out.println("Caught " + e);
}
System.out.println("Read this data: " + (char)b);

Note that I cavalierly convert the byte to a char for printing, assuming that you’ve
typed a valid character in the terminal window.

Well, that certainly works and gives you the ability to read a byte at a time from the
standard input. But most applications are designed in terms of larger units, such as
integers, or a line of text. To read a value of a known type, such as int, from the
standard input, you can use the Scanner class (covered in more detail in Recipe 10.5):

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading Standard Input | 251

// part of ReadStdinInt15.java
Scanner sc = Scanner.create(System.in); // Requires JDK 1.5
int i = sc.nextInt();

For reading characters of text with an input character converter so that your pro-
gram will work with multiple input encodings around the world, use a Reader class.
The particular subclass that allows you to read lines of characters is a
BufferedReader. But there’s a hitch. Remember I mentioned those two categories of
input classes, Streams and Readers? But I also said that System.in is a Stream, and you
want a Reader. How do you get from a Stream to a Reader? A “crossover” class called
InputStreamReader is tailor-made for this purpose. Just pass your Stream (like System.
in) to the InputStreamReader constructor and you get back a Reader, which you in
turn pass to the BufferedReader constructor. The usual idiom for writing this in Java
is to nest the constructor calls:

BufferedReader is = new BufferedReader(new InputStreamReader(System.in));

You can then read lines of text from the standard input using the readLine()
method. This method takes no argument and returns a String that is made up for
you by readLine() containing the characters (converted to Unicode) from the next
line of text in the file. If there are no more lines of text, the constant null is returned:

import java.io.*;

/**
 * Read and print, using BufferedReader from System.in, onto System.out
 */
public class CatStdin {

 public static void main(String av[]) {
 try {
 BufferedReader is = new BufferedReader(
 new InputStreamReader(System.in));
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 System.out.println(inputLine);
 }
 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 }
 }
}

Now that we’ve covered the InputStreamReader, and because it’s something that peo-
ple have asked me several times, I’ll show how to read an Integer from the standard
input if you don’t have 1.5:

import java.io.*;
/**
 * Read an int from Standard Input
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 10: Input and Output

public class ReadStdinInt {
 public static void main(String[] ap) {
 String line = null;
 int val = 0;
 try {
 BufferedReader is = new BufferedReader(
 new InputStreamReader(System.in));
 line = is.readLine();
 val = Integer.parseInt(line);
 } catch (NumberFormatException ex) {
 System.err.println("Not a valid number: " + line);
 } catch (IOException e) {
 System.err.println("Unexpected IO ERROR: " + e);
 }
 System.out.println("I read this number: " + val);
 }
}

There are many other things you might want to do with lines of text read from a
Reader. In the demo program shown in this recipe, I just printed them. In the demo
program in Recipe 10.6, I convert them to integer values using Integer.parseInt()
(also see Recipe 5.1) or using a DecimalFormat (Recipe 5.8). You can interpret them as
dates (Recipe 6.5), or break them into words with a StringTokenizer (Recipe 3.2).
You can also process the lines as you read them; several methods for doing so are
listed in Recipe 10.4.

10.2 Writing Standard Output

Problem
You want your program to write to the standard output.

Solution
Use System.out.

Discussion
In certain circumstances (such as a server program with no connection back to the
user’s terminal), System.out can become a very important debugging tool (assuming
that you can find out what file the server program has redirected standard output
into; see Recipe 10.9).

System.out is a PrintStream, so in every introductory text you see a program contain-
ing this line, or one like it:*

System.out.println("Hello World of Java");

* All the examples in this recipe are found in one file, PrintStandardOutput.java.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing with the 1.5 Formatter | 253

The println method is polymorphic; it has several forms for Object (which obvi-
ously calls the given object’s toString() method), for String, and for each of the
primitive types (int, float, boolean, etc.). Each takes only one argument, so it is
common to use string concatenation:

System.out.println("The answer is " + myAnswer + " at this time.");

Remember that string concatenation is also polymorphic: you can “add” anything at
all to a string, and the result is a string.

Up to here I have been using a Stream, System.out. What if you want to use a Writer?
The PrintWriter class has all the same methods as PrintStream and a constructor
that takes a Stream, so you can just say:

PrintWriter pw = new PrintWriter(System.out);
pw.println("The answer is " + myAnswer + " at this time.");

One caveat with this string concatenation is that if you are appending a bunch of
things, and a number and a character come together at the front, they are added
before concatenation due to the precedence rules. So don’t do this:

System.out.println(i + '=' + " the answer.");

Assuming that i is an integer, then i + '=' (i added to the equals sign) is a valid
numeric expression, which will result in a single value of type int. If the variable i
has the value 42, and the character = in a Unicode (or ASCII) code chart has the
value 61, this prints:

103 the answer.

The wrong value and no equals sign! Safer methods include using parentheses, using
double quotes around the equals sign, and using a StringBuffer (see Recipe 3.3) or a
MessageFormat (see Recipe 15.10).

10.3 Printing with the 1.5 Formatter

Problem
You have JDK 1.5 and you want the ease of use that the java.util.Formatter class
brings to simple printing tasks.

Solution
Use Formatter for printing values with fine-grained control over the formatting.

Discussion
The 1.5 Formatter class is patterned after C’s printf routines. In fact, PrintStream and
PrintWriter have convenience routines named printf(), which simply delegate to
PrintStream’s format() method, which uses a default Formatter instance. However,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 10: Input and Output

since Java is an object-oriented language, the methods are strongly type-checked, and
invalid arguments will throw an exception rather than generating gibberish.

The underlying Formatter class in java.util works on a String containing format
codes. For each item that you want to format, you put a format code. The format
code consists of a percent sign (%), an argument number followed by a dollar sign ($),
an optional field width or precision, and a format type (d for decimal integer, that is,
an integer with no decimal point, f for floating point, and so on). A simple use might
look like the following:

System.out.format("%1$04d - the year of %2$f", 1951, Math.PI);

As shown in Figure 10-2, the “%1$04d” controls formatting of the year and the
“%2$f” controls formatting of the value of PI.

Many format codes are available; Table 10-1 lists some of the more common ones.
For a complete description, refer to the Javadoc for java.util.Formatter.

Figure 10-2. Format codes examined

Table 10-1. Formatter format codes

Code Meaning

c Character (argument must be char or integral type containing valid character value)

d “decimal int”—integer to be printed as a decimal (radix 10) with no decimal point (argument must be integral
type).

f Floating point value with decimal fraction (must be numeric); field width may be followed by decimal point and
fractional digit field width; e.g., 7.2f.

e Floating point value in scientific notation.

g Floating point value, as per f or e, depending on magnitude.

s General format; if value is null, prints “null”, else if arg implements Formattable, format as per
arg.formatTo(); else format as per arg.toString().

t Date codes; follow with secondary code. Common date codes are shown in Table 10-2. Argument must be
long, Long, Calendar, or Date.

n Newline; insert the platform-dependent line ending character.

% Insert a literal % character.

format("%1$04d - the year of %2$f", 1951, Math.PI);

 % - format code
1$ - use first arg (1951)
 0 - leading with 0 if needed
 4 - field width (4 digits)
 d - decimal integer (int)

 % - format code
2$ - use second arg (PI)
 f - floating point

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing with the 1.5 Formatter | 255

Some examples of using a Formatter are shown in FormatterDemo.java, in
Example 10-1.

Running FormatterDemo produces this:

C:> javac -source 1.5 FormatterDates.java
C:> java FormatterDates
1951 - The year of 3.141593
1951 - The year of 3.141593
1951 - The year of 3.141593
PI is about 3.14

For date and time formatting, a large variety of format codes are available.* Each
must be preceded by a t, so to format the first argument as a year, you would use
%1$tY. Table 10-2 lists some of the more common date and time codes.

Example 10-1. FormatterDemo.java

import java.util.Formatter;

/** Demonstrate some usage patterns and format-code examples
 * of the Formatter class (new in JDK 1.5).
 */
public class FormatterDemo {
 public static void main(String[] args) {

 // The arguments to all these format methods consist of
 // a format code String and 1 or more arguments.
 // Each format code consists of the following:
 // % - code lead-in
 // N$ - which parameter number (1-based) after the code
 // N - field width
 // L - format letter (d: decimal(int); f: float; s: general; many more)
 // For the full(!) story, see javadoc for java.util.Formatter.

 Formatter fmtr = new Formatter();
 Object result = fmtr.format("%1$04d - the year of %2$f", 1951, Math.PI);
 System.out.println(result);

 // A shorter way of doing things. But this
 // way you must provide the newline delimiter
 System.out.format("%1$04d - the year of %2$f%n", 1951, Math.PI);

 // So is this
 System.out.printf("%1$04d - the year of %2$f%n", 1951, Math.PI);

 // Format doubles with more control
 System.out.printf("PI is about %1$4.2f", Math.PI);
 }
}

* The 1.5 beta 1 documentation lists about 40 conversions plus another 6 “combination” codes; the exact list
may change in the final release of 1.5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 10: Input and Output

In my opinion, using these in applications that you distribute or make available as
web applications is a Really Bad Idea because any direct use of them assumes that
you know the correct order to print these fields in all locales around the world. Trust
me, you don’t. Instead of these, I recommend the use of DateFormat, which I show
you how to use in Recipe 6.2; I also urge you to read Chapter 15. However, for
“quick and dirty” work, as well as for writing log or data files that must be in a given
format because some other program reads them, these are hard to beat.

Some date examples are shown in Example 10-2.

Table 10-2. Formatting codes for dates and times

Format code Meaning

Y Year (at least four digits)

m Month as 2-digit (leading zeros) number

B Locale-specific month name (b for abbreviated)

d Day of month (2 digits, leading zeros)

e Day of month (1 or 2 digits)

A Locale-specific day of week (a for abbreviated)

H or I Hour in 24-hour (H) or 12-hour (I) format (2-digits, leading zeros)

M Minute (2 digits)

S Second (2 digits)

P or p Locale-specific AM/PM in uppercase (P) or lowercase (p)

R or T 24-hour time combination: %tH:%tM (R) or %tH:%tM:%tS (T)

D Date formatted as “%tm/%td/%ty”

Example 10-2. FormatterDates.java

import java.util.Formatter;
import java.util.Date;
import java.util.Calendar;

/** Demonstrate some usage patterns and format-code examples
 * of the Formatter class (new in JDK 1.5).
 */
public class FormatterDates {
 public static void main(String[] args) {

 // Format numbers as dates e.g., 2004-06-28
 System.out.printf("%1$4d-%2$02d-%3$2d%n", 2004, 6, 28);

 // Format fields from a Date object: multiple fields from "1$"
 // (hard-coded formatting for Date not advisable; see I18N chapter)
 Date today = Calendar.getInstance().getTime();
 System.out.printf("Today is %1$tB %1$td, %1$tY%n", today); // e.g., July 4, 2004

 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scanning a File with StreamTokenizer | 257

Running this FormatterDates class produces the following output:

C:> javac -source 1.5 FormatterDates.java
C:> java FormatterDates
2004-06-28
Today is March 07, 2004

The astute reader will notice that this mechanism requires that the Java language
now contain a variable arguments mechanism. Var args have been the bane of devel-
opers on many platforms and, indeed, they have finally come to Java. However, they
are not intended for capricious use, and I do not document them here.* If you really
need to use this mechanism, consult the documentation accompanying JDK 1.5.

10.4 Scanning a File with StreamTokenizer

Problem
You need to scan a file with more fine-grained resolution than the readLine()
method of the BufferedReader class and its subclasses (discussed in Recipe 10.14).

Solution
Use a StreamTokenizer, readLine(), and a StringTokenizer; regular expressions
(Chapter 4); or one of several scanner generating tools, such as ANTLR or JavaCC.
On JDK 1.5, use the Scanner class (see Recipe 10.5).

Discussion
While you could, in theory, read a file one character at a time and analyze each char-
acter, that is a pretty low-level approach. The read() method in the Reader class is
defined to return int so that it can use the time-honored value –1 (defined as EOF in
Unix <stdio.h> for years) to indicate that you have read to the end of the file:

void doFile(Reader is) {
 int c;
 while ((c=is.read()) != -1) {
 System.out.print((char)c);
 }
}

The cast to char is interesting. The program compiles fine without it, but does not
print correctly because c is declared as int (which it must be, to be able to compare
against the end-of-file value -1). For example, the integer value corresponding to cap-
ital A treated as an int prints as 65, while (char) prints the character A.

* Well, if you insist. But only briefly. The variable argument, which must be the last declaration in the
method’s header, is declared as Type...name, and is treated as Type[] in the body of the method. Don’t forget
to compile with -source 1.5. The invocation must pass a comma-separated list of arguments of the same or
compatible types. See lang/VarArgsDemo.java in the online source.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 10: Input and Output

We discussed the StringTokenizer class extensively in Recipe 3.2. The combination
of readLine() and StringTokenizer provides a simple means of scanning a file. Sup-
pose you need to read a file in which each line consists of a name like user@host.
domain, and you want to split the lines into users and host addresses. You could use
this:

// ScanStringTok.java
protected void process(LineNumberReader is) {
 String s = null;
 try {
 while ((s = is.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(s, "@", true);
 String user = (String)st.nextElement();
 st.nextElement();
 String host = (String)st.nextElement();
 System.out.println("User name: " + user +
 "; host part: " + host);

 // Presumably you would now do something
 // with the user and host parts...

 }

 } catch (NoSuchElementException ix) {
 System.err.println("Line " + is.getLineNumber() +
 ": Invalid input " + s);
 } catch (IOException e) {
 System.err.println(e);
 }
}

The StreamTokenizer class in java.util provides slightly more capabilities for scan-
ning a file. It reads characters and assembles them into words, or tokens. It returns
these tokens to you along with a type code describing the kind of token it found.
This typecode is one of four predefined types (StringTokenizer.TT_WORD, TT_NUMBER,
TT_EOF, or TT_EOL for the end-of-line), or the char value of an ordinary character (such
as 40 for the space character). Methods such as ordinaryCharacter() allow you to
specify how to categorize characters, while others such as slashSlashComment() allow
you to enable or disable features.

Example 10-3 shows a StreamTokenizer used to implement a simple immediate-mode
stack-based calculator:

2 2 + =
4
22 7 / =
3.141592857

I read tokens as they arrive from the StreamTokenizer. Numbers are put on the stack.
The four operators (+, -, *, and /) are immediately performed on the two elements at
the top of the stack, and the result is put back on the top of the stack. The = opera-
tor causes the top element to be printed, but is left on the stack so that you can say:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scanning a File with StreamTokenizer | 259

4 5 * = 2 / =
20.0
10.0

Example 10-3. Simple calculator using StreamTokenizer

import java.io.*;
import java.io.StreamTokenizer;
import java.util.Stack;

/**
 * SimpleCalc -- simple calculator to show StringTokenizer
 *
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch10,v 1.5 2004/05/04 20:12:12 ian Exp $
 */
public class SimpleCalcStreamTok {
 /** The StreamTokenizer Input */
 protected StreamTokenizer tf;
 /** The Output File */
 protected PrintWriter out = new PrintWriter(System.out, true);
 /** The variable name (not used in this version) */
 protected String variable;
 /** The operand stack */
 protected Stack s;

 /* Driver - main program */
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new SimpleCalcStreamTok(
 new InputStreamReader(System.in)).doCalc();
 else
 for (int i=0; i<av.length; i++)
 new SimpleCalcStreamTok(av[i]).doCalc();
 }

 /** Construct by filename */
 public SimpleCalcStreamTok(String fileName) throws IOException {
 this(new FileReader(fileName));
 }

 /** Construct from an existing Reader */
 public SimpleCalcStreamTok(Reader rdr) throws IOException {
 tf = new StreamTokenizer(rdr);
 // Control the input character set:
 tf.slashSlashComments(true); // treat "//" as comments
 tf.ordinaryChar('-'); // used for subtraction
 tf.ordinaryChar('/'); // used for division

 s = new Stack();
 }

 /** Construct from a Reader and a PrintWriter
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 10: Input and Output

 public SimpleCalcStreamTok(Reader in, PrintWriter out) throws IOException {
 this(in);
 setOutput(out);
 }

 /**
 * Change the output destination.
 */
 public void setOutput(PrintWriter out) {
 this.out = out;
 }

 protected void doCalc() throws IOException {
 int iType;
 double tmp;

 while ((iType = tf.nextToken()) != StreamTokenizer.TT_EOF) {
 switch(iType) {
 case StreamTokenizer.TT_NUMBER: // Found a number, push value to stack
 push(tf.nval);
 break;
 case StreamTokenizer.TT_WORD:
 // Found a variable, save its name. Not used here.
 variable = tf.sval;
 break;
 case '+':
 // + operator is commutative.
 push(pop() + pop());
 break;
 case '-':
 // - operator: order matters.
 tmp = pop();
 push(pop() - tmp);
 break;
 case '*':
 // Multiply is commutative
 push(pop() * pop());
 break;
 case '/':
 // Handle division carefully: order matters!
 tmp = pop();
 push(pop() / tmp);
 break;
 case '=':
 out.println(peek());
 break;
 default:
 out.println("What's this? iType = " + iType);
 }
 }
 }

Example 10-3. Simple calculator using StreamTokenizer (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scanning a File with StreamTokenizer | 261

While StreamTokenizer is useful, it knows only a limited number of tokens and has
no way of specifying that the tokens must appear in a particular order. To do more
advanced scanning, you need some special-purpose scanning tools. Such tools have
been used for a long time in the Unix realm. The best-known examples are yacc and
lex (discussed in the O’Reilly text lex & yacc). These tools let you specify the lexical
structure of your input using regular expressions (see Chapter 4). For example, you
might say that an email address consists of a series of alphanumerics, followed by an
at sign (@), followed by a series of alphanumerics with periods embedded, as:

name: [A-Za-z0-9]+@[A-Za-z0-0.]

The tool then writes code that recognizes the characters you have described. These
tools also have a grammatical specification, which says, for example, that the key-
word ADDRESS must appear, followed by a colon, followed by a “name” token, as pre-
viously defined.

Two widely used scanning tools for Java are ANTLR and JavaCC. Terence Parr is the
author and maintainer of ANTLR, which can be download from http://www.antlr.org/.
JavaCC is an open source project on java.net (https://javacc.dev.java.net/). These
“compiler generators” can be used to write grammars for a wide variety of programs,
from simple calculators—such as the one earlier in this recipe—through HTML and
CORBA/IDL, up to full Java and C/C++ compilers. Examples of these are included
with the downloads. Unfortunately, the learning curve for parsers in general pre-
cludes providing a simple and comprehensive example here. Please refer to the docu-
mentation and the numerous examples provided with the distributions.

Java offers simple line-at-a-time scanners using StringTokenizer, fancier token-based
scanners using StreamTokenizer, and grammar-based scanners based on JavaCC and
similar tools. In addition to these, JDK 1.5 provides an easier way to scan simple
tokens (see Recipe 10.5).

 void push(double val) {
 s.push(new Double(val));
 }
 double pop() {
 return ((Double)s.pop()).doubleValue();
 }
 double peek() {
 return ((Double)s.peek()).doubleValue();
 }
 void clearStack() {
 s.removeAllElements();
 }
}

Example 10-3. Simple calculator using StreamTokenizer (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 10: Input and Output

10.5 Scanning Input with the 1.5 Scanner Class

Problem
You have JDK 1.5 and you want the ease of use that the java.util.Scanner class
brings to simple reading tasks.

Solution
Use Scanner’s next() methods for reading.

Discussion
The Scanner class lets you read an input source by tokens, somewhat analogous to
the StreamTokenizer described in Recipe 10.4. The Scanner is more flexible in some
ways—it lets you break tokens based on spaces or regular expressions—but less in
others—you need to know the kind of token you are reading. This class bears some
resemblance to the C-language scanf() function, but in the Scanner you specify the
input token types by calling methods like nextInt(), nextDouble(), and so on. Here
is a simple example of scanning:

// From ScannerTest.java
String sampleDate = "25 Dec 1988";

Scanner sDate = Scanner.create(sampleDate);
int dom = sDate.nextInt();
String mon = sDate.next();
int year = sDate.nextInt();

The Scanner recognizes Java’s eight built-in types, as well as BigInteger and
BigDecimal. It can also return input tokens as Strings or by matching regular expres-
sions (see Chapter 4). Table 10-3 lists the “next” methods and corresponding “has”
methods; the “has” method returns true if the corresponding “next” method would
succeed. There is no nextString() method; just use next() to get the next token as a
String.

Table 10-3. Scanner methods

Returned type “has” method “next” method Comment

String hasNext() next() The next complete token from this
scanner

String hasNext(Pattern) next(Pattern) The next string that matches the given
regular expression (regex)

String hasNext(String) next(String) The next token that matches the regex
pattern constructed from the specified
string

BigDecimal hasNextBigDecimal() nextBigDecimal() The next token of the input as a
BigDecimal

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scanning Input with the 1.5 Scanner Class | 263

The Scanner class does not provide any public constructors; you must call the static
create() method with an input source, which can be a File object (Chapter 11), an
InputStream, a String, or Readable (new in 1.5, Readable is an interface that Reader
and all its subclasses implement).

One way of using the Scanner is based on the Iterator pattern, using while (scanner.
hasNext()) to control the iteration. Example 10-4 shows the simple calculator from
Recipe 10.4 rewritten* to use the Scanner class.

BigInteger hasNextBigInteger() nextBigInteger() The next token of the input as a
BigInteger

boolean hasNextBoolean() nextBoolean() The next token of the input as a
boolean

byte hasNextByte() nextByte() The next token of the input as a byte

double hasNextDouble() nextDouble() The next token of the input as a
double

float hasNextFloat() nextFloat() The next token of the input as a float

int hasNextInt() nextInt() The next token of the input as an int

String N/A nextLine() Reads up to the end-of-line, including
the line ending

long hasNextLong() nextLong() The next token of the input as a long

short hasNextShort() nextShort() The next token of the input as a short

* If this were code in a maintained project, I might factor out some of the common code among these two cal-
culators, as well as the one in Recipe 5.19, and divide the code better using interfaces. However, this would
detract from the simplicity of self-contained examples.

Example 10-4. Simple calculator using java.util.Scanner

import java.io.*;
import java.util.Scanner;
import java.util.Stack;

/**
 * SimpleCalc -- simple calculator using 1.5 java.util.Scanner
 * @version $Id: ch10,v 1.5 2004/05/04 20:12:12 ian Exp $
 */
public class SimpleCalcScanner {
 /** The Scanner */
 protected Scanner scan;

 /** The output */
 protected PrintWriter out = new PrintWriter(System.out);

 /** The variable name (not used in this version) */
 protected String variable;

Table 10-3. Scanner methods (continued)

Returned type “has” method “next” method Comment

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 10: Input and Output

 /** The operand stack */
 protected Stack s = new Stack();

 /* Driver - main program */
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new SimpleCalcScanner(
 new InputStreamReader(System.in)).doCalc();
 else
 for (int i=0; i<av.length; i++)
 new SimpleCalcScanner(av[i]).doCalc();
 }

 /** Construct a SimpleCalcScanner by name */
 public SimpleCalcScanner(String fileName) throws IOException {
 this(new FileReader(fileName));
 }

 /** Construct a SimpleCalcScanner from an open Reader */
 public SimpleCalcScanner(Reader rdr) throws IOException {
 scan = new Scanner(rdr);
 // Control the input character set:
 scan.slashSlashComments(true); // treat "//" as comments
 scan.ordinaryChar('-'); // used for subtraction
 scan.ordinaryChar('/'); // used for division
 }

 /** Construct a SimpleCalcScanner from a Reader and a PrintWriter */
 public SimpleCalcScanner(Reader rdr, PrintWriter pw) throws IOException {
 this(rdr);
 setWriter(pw);
 }

 /** Change the output to go to a new PrintWriter */
 public void setWriter(PrintWriter pw) {
 out = pw;
 }

 protected void doCalc() throws IOException {
 int iType;
 double tmp;

 while (scan.hasNext()) {
 if (scan.hasNextDouble()) {
 push(scan.nextDouble());
 } else {
 String token = scan.next().toString();
 if (token.equals("+")) {
 // Found + operator, perform it immediately.
 push(pop() + pop());
 } else if (token.equals("-")) {

Example 10-4. Simple calculator using java.util.Scanner (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a File by Name | 265

10.6 Opening a File by Name

Problem
The Java documentation doesn’t have methods for opening files. How do I connect a
filename on disk with a Reader, Writer, or Stream?

Solution
Construct a FileReader, FileWriter, FileInputStream, or FileOutputStream.

 // Found - operator, perform it (order matters).
 tmp = pop();
 push(pop() - tmp);
 } else if (token.equals("*")) {
 // Multiply is commutative
 push(pop() * pop());
 } else if (token.equals("/")) {
 // Handle division carefully: order matters!
 tmp = pop();
 push(pop() / tmp);
 } else if (token.equals("=")) {
 out.println(peek());
 } else {
 out.println("What's this? " + token);
 }
 }
 }
 }

 void push(double val) {
 s.push(new Double(val));
 }

 double pop() {
 return ((Double)s.pop()).doubleValue();
 }

 double peek() {
 return ((Double)s.peek()).doubleValue();
 }

 void clearStack() {
 s.removeAllElements();
 }
}

Example 10-4. Simple calculator using java.util.Scanner (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 10: Input and Output

Discussion
The action of constructing a FileReader, FileWriter, FileInputStream, or
FileOutputStream corresponds to the “open” operation in most I/O packages. There
is no explicit open operation, perhaps as a kind of rhetorical flourish of the Java
API’s object-oriented design. So to read a text file, you’d create, in order, a
FileReader and a BufferedReader. To write a file a byte at a time, you’d create a
FileOutputStream and probably a BufferedOutputStream for efficiency:

// OpenFileByName.java
BufferedReader is = new BufferedReader(new FileReader("myFile.txt"));
BufferedOutputStream bytesOut = new BufferedOutputStream(
 new FileOutputStream("bytes.dat"));
...
bytesOut.close();

Remember that you need to handle IOExceptions around these calls.

10.7 Copying a File

Problem
You need to copy a file in its entirety.

Solution
Use a pair of Streams for binary data, or a Reader and a Writer for text, and a while
loop to copy until end-of-file is reached on the input.

Discussion
This operation is fairly common, so I’ve packaged it as a set of methods in a class
called FileIO in my utilities package com.darwinsys.util. Here’s a simple test pro-
gram that uses it to copy a source file to a backup file:

package regress; // in javasrc/darwinsys/src
import com.darwinsys.util.FileIO;

import java.io.*;

public class FileIOTest {
 public static void main(String[] av) {
 try {
 FileIO.copyFile("FileIO.java", "FileIO.bak");
 FileIO.copyFile("FileIO.class", "FileIO-class.bak");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Copying a File | 267

How does FileIO work? Its copyFile method takes several forms, depending on
whether you have two filenames, a filename and a PrintWriter, and so on. The code
for FileIO itself is shown in Example 10-5.

Example 10-5. FileIO.java

package com.darwinsys.io;

import java.io.*;

/**
 * Some simple file IO primitives reimplemented in Java.
 * All methods are static since there is no state.
 */
public class FileIO {

 /** Copy a file from one filename to another */
 public static void copyFile(String inName, String outName)
 throws FileNotFoundException, IOException {
 BufferedInputStream is =
 new BufferedInputStream(new FileInputStream(inName));
 BufferedOutputStream os =
 new BufferedOutputStream(new FileOutputStream(outName));
 copyFile(is, os, true);
 }

 /** Copy a file from an opened InputStream to an opened OutputStream */
 public static void copyFile(InputStream is, OutputStream os, boolean close)
 throws IOException {
 int b; // the byte read from the file
 while ((b = is.read()) != -1) {
 os.write(b);
 }
 is.close();
 if (close)
 os.close();
 }

 /** Copy a file from an opened Reader to an opened Writer */
 public static void copyFile(Reader is, Writer os, boolean close)
 throws IOException {
 int b; // the byte read from the file
 while ((b = is.read()) != -1) {
 os.write(b);
 }
 is.close();
 if (close)
 os.close();
 }

 /** Copy a file from a filename to a PrintWriter. */
 public static void copyFile(String inName, PrintWriter pw, boolean close)
 throws FileNotFoundException, IOException {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 10: Input and Output

 BufferedReader ir = new BufferedReader(new FileReader(inName));
 copyFile(ir, pw, close);
 }

 /** Open a file and read the first line from it. */
 public static String readLine(String inName)
 throws FileNotFoundException, IOException {
 BufferedReader is = new BufferedReader(new FileReader(inName));
 String line = null;
 line = is.readLine();
 is.close();
 return line;
 }

 /** The size of blocking to use */
 protected static final int BLKSIZ = 8192;

 /** Copy a data file from one filename to another, alternate method.
 * As the name suggests, use my own buffer instead of letting
 * the BufferedReader allocate and use the buffer.
 * (just to show how, not necessarily optimal).
 */
 public void copyFileBuffered(String inName, String outName) throws
 FileNotFoundException, IOException {
 InputStream is = new FileInputStream(inName);
 OutputStream os = new FileOutputStream(outName);
 int count = 0; // the byte count
 byte[] b = new byte[BLKSIZ]; // the bytes read from the file
 while ((count = is.read(b)) != -1) {
 os.write(b, 0, count);
 }
 is.close();
 os.close();
 }

 /** Read the entire content of a Reader into a String */
 public static String readerToString(Reader is) throws IOException {
 StringBuffer sb = new StringBuffer();
 char[] b = new char[BLKSIZ];
 int n;

 // Read a block. If it gets any chars, append them.
 while ((n = is.read(b)) > 0) {
 sb.append(b, 0, n);
 }

 // Only construct the String object once, here.
 return sb.toString();
 }

 /** Read the content of a Stream into a String */

Example 10-5. FileIO.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading a File into a String | 269

A test main program included in the online source copies the source and class files of
this program. When I ran it for testing, I followed up by using diff (a text file com-
pare program) on the text file and its backup, and cmp (a binary compare program)
on the class files. Both of these programs operate on the Unix “no news is good
news” principle: if they say nothing, it is because they found nothing of significance
to report—i.e., no differences:

C:\javasrc\io>java IOUtil
C:\javasrc\io>diff IOUtil.java IOUtil-java.bak
C:\javasrc\io>cmp IOUtil.class IOUtil-class.bak
C:\javasrc\io>

But wait! Did you look closely at the body of copyFile(String inName, PrintWriter
pw, boolean close)? If you didn’t, have a look. You’ll notice that I cheated and just
delegated the work to copyFile(Reader is, Writer os, boolean close). If I’m copying
a file from one place on disk to another, why go through the overhead of converting
it from external form to Unicode and back? Normally, you won’t have to. But if you
have something like a network filesystem mounted from Windows to Unix, or vice
versa, it’s better to do it a line at a time.

10.8 Reading a File into a String

Problem
You need to read the entire contents of a file into a string.

Solution
Use my FileIO.readerToString() method.

Discussion
This is not a common activity in Java, but sometimes you really want to do it. For
example, you might want to load a file into a “text area” in a GUI. Or process an
entire file looking for multiline regular expressions (as in Recipe 4.11). Even though
there’s nothing in the standard API to do this, it’s still easy to accomplish with the
readerToString() method in com.darwinsys.util.FileIO, the source for which is
included and discussed in Recipe 10.7. You just say something like the following:

Reader is = new FileReader(theFileName);
String input = FileIO.readerToString(is);

 public static String inputStreamToString(InputStream is)
 throws IOException {
 return readerToString(new InputStreamReader(is));
 }
}

Example 10-5. FileIO.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 10: Input and Output

10.9 Reassigning the Standard Streams

Problem
You need to reassign one or more of the standard streams System.in, System.out, or
System.err.

Solution
Construct an InputStream or PrintStream as appropriate, and pass it to the appropri-
ate set method in the System class.

Discussion
The ability to reassign these streams corresponds to what Unix (or DOS command
line) users think of as redirection, or piping. This mechanism is commonly used to
make a program read from or write to a file without having to explicitly open it and
go through every line of code changing the read, write, print, etc. calls to refer to a
different stream object. The open operation is performed by the command-line inter-
preter in Unix or DOS, or by the calling class in Java.

While you could just assign a new PrintStream to the variable System.out, you’d be
considered antisocial since there is a defined method to replace it carefully:

// Redirect.java
String LOGFILENAME = "error.log";
System.setErr(new PrintStream(new FileOutputStream(LOGFILENAME)));
System.out.println("Please look for errors in " + LOGFILENAME);
// Now assume this is somebody else's code; you'll see it writing to stderr...
int[] a = new int[5];
a[10] = 0; // here comes an ArrayIndexOutOfBoundsException

The stream you use can be one that you’ve opened, as here, or one you inherited:

System.setErr(System.out); // merge stderr and stdout to same output file.

It could also be a stream connected to or from another Process you’ve started (see
Recipe 26.1), a network socket, or URL. Anything that gives you a stream can be used.

See Also
See Recipe 14.9, which shows how to reassign a file so that it gets “written” to a text
window in a GUI application.

10.10 Duplicating a Stream as It Is Written

Problem
You want anything written to a stream, such as the standard output System.out, or
the standard error System.err, to appear there but also be logged into a file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Duplicating a Stream as It Is Written | 271

Solution
Subclass PrintStream and have its write() methods write to two streams. Then use
system.setErr() or setOut(), as in Recipe 10.9, to replace the existing standard
stream with this “tee” PrintStream subclass.

Discussion
Classes are meant to be subclassed. Here we’re just subclassing PrintStream and add-
ing a bit of functionality: a second PrintStream! I wrote a class called TeePrintStream,
named after the ancient Unix command tee. That command allowed you to duplicate,
or “tee off,” a copy of the data being written on a “pipeline” between two programs.

The original Unix tee command is used like this: the | character creates a pipeline in
which the standard output of one program becomes the standard input to the next.
This often-used example of pipes shows how many users are logged into a Unix
server:

who | wc -l

This runs the who program (which lists who is logged into the system, one name per
line along with the terminal port and login time) and sends its output, not to the ter-
minal, but rather into the standard input of the word count (wc) program. Here, wc
is being asked to count lines, not words; hence the -l option. To tee a copy of the
intermediate data into a file, you might say:

who | tee wholist | wc -l

which creates a file wholist containing the data. For the curious, the file wholist might
look something like this:

ian ttyC0 Mar 14 09:59
ben ttyC3 Mar 14 10:23
ian ttyp4 Mar 14 13:46 (daroad.darwinsys.com)

So both the previous command sequences would print 3 as their output.

TeePrintStream is an attempt to capture the spirit of the tee command. It can be used
like this:

System.setErr(new TeePrintStream(System.err, "err.log"));
// ...lots of code that occasionally writes to System.err... Or might.

System.setErr() is a means of specifying the destination of text printed to System.
err (there are also System.setOut() and System.setIn()). This code results in any
messages that printed to System.err to print to wherever System.err was previously
directed (normally the terminal, but possibly a text window in an IDE) and into the
file err.log.

This technique is not limited to the three standard streams. A TeePrintStream can be
passed to any method that wants a PrintStream. Or, for that matter, an OutputStream.
And you can adapt the technique for BufferedInputStreams, PrintWriters,
BufferedReaders, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 10: Input and Output

Since TeePrintStream is fairly simple, I’ll list the main parts of it here (see the online
source for the complete version):

import java.io.*;

public class TeePrintStream extends PrintStream {
 protected PrintStream parent;
 protected String fileName;

 /* Construct a TeePrintStream given an existing Stream and a filename.
 */
 public TeePrintStream(PrintStream os, String fn) throws IOException {
 this(os, fn, false);
 }
 /* Construct a TeePrintStream given an existing Stream, a filename,
 * and a boolean to control the flush operation.
 */
 public TeePrintStream(PrintStream orig, String fn,
 boolean flush) throws IOException {
 super(new FileOutputStream(fn), flush);
 fileName = fn;
 parent = orig;
 }

 /** Return true if either stream has an error. */
 public boolean checkError() {
 return parent.checkError() || super.checkError();
 }

 /** override write(). This is the actual "tee" operation! */
 public void write(int x) {
 parent.write(x); // "write once;
 super.write(x); // write somewhere else"
 }
 /** override write() */
 public void write(byte[] x, int o, int l) {
 parent.write(x, o, l);
 super.write(x, o, l);
 }

 /** Close both streams. */
 public void close() {
 parent.close();
 super.close();
 }
}

It’s worth mentioning that I do not need to override all the polymorphic forms of
print() and println(). Since these all ultimately use one of the forms of write(), if
you override the print and println methods to do the tee-ing as well, you can get
several additional copies of the data written out.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading/Writing a Different Character Set | 273

10.11 Reading/Writing a Different Character Set

Problem
You need to read or write a text file using a particular encoding.

Solution
Convert the text to or from internal Unicode by specifying a converter when you
construct an InputStreamReader or PrintWriter.

Discussion
Classes InputStreamReader and OutputStreamWriter are the bridge from byte-oriented
Streams to character-based Readers. These classes read or write bytes and translate
them to or from characters according to a specified character encoding. The Unicode
character set used inside Java (char and String types) is a 16-bit character set. But
most character sets—such as ASCII, Swedish, Spanish, Greek, Turkish, and many
others—use only a small subset of that. In fact, many European language character
sets fit nicely into 8-bit characters. Even the larger character sets (script-based and pic-
tographic languages) don’t all use the same bit values for each particular character.
The encoding, then, is a mapping between Unicode characters and an external storage
format for characters drawn from a particular national or linguistic character set.

To simplify matters, the InputStreamReader and OutputStreamWriter constructors are
the only places where you can specify the name of an encoding to be used in this
translation. If you do not, the platform’s (or user’s) default encoding is used.
PrintWriters, BufferedReaders, and the like all use whatever encoding the
InputStreamReader or OutputStreamWriter class uses. Since these bridge classes only
accept Stream arguments in their constructors, the implication is that if you want to
specify a nondefault converter to read or write a file on disk, you must start by con-
structing not a FileReader or FileWriter, but a FileInputStream or FileOutputStream!

// UseConverters.java
BufferedReader fromKanji = new BufferedReader(
 new InputStreamReader(new FileInputStream("kanji.txt"), "EUC_JP"));
PrintWriter toSwedish = new PrintWriter(
 new OutputStreamWriter(new FileOutputStream("sverige.txt"), "Cp278"));

Not that it would necessarily make sense to read a single file from Kanji and output it
in a Swedish encoding; for one thing, most fonts would not have all the characters of
both character sets, and, at any rate, the Swedish encoding certainly has far fewer
characters in it than the Kanji encoding. Besides, if that were all you wanted, you
could use a JDK tool with the ill-fitting name native2ascii (see its documentation for
details). A list of the supported encodings is also in the JDK documentation, in the
file docs/guide/internat/encoding.doc.html. A more detailed description is found in
Appendix B of O’Reilly’s Java I/O.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 10: Input and Output

10.12 Those Pesky End-of-Line Characters

Problem
You really want to know about end-of-line characters.

Solution
Use \r and \n in whatever combination makes sense.

Discussion
If you are reading text (or bytes containing ASCII characters) in line mode using the
readLine() method, you’ll never see the end-of-line characters, and so you won’t be
cursed with having to figure out whether \n, \r, or \r\n appears at the end of each
line. If you want that level of detail, you have to read the characters or bytes one at a
time, using the read() methods. The only time I’ve found this necessary is in net-
working code, where some of the line-mode protocols assume that the line ending is
\r\n. Even here, though, you can still work in line mode. When writing, pass \r\n
into the print() (not println()!) method. When reading, use readLine() and you
won’t have to deal with the characters:

outputSocket.print("HELO " + myName + "\r\n");
String response = inputSocket.readLine();

For the curious, the strange spelling of “hello” is used in SMTP, the mail sending
protocol, where all commands must be four letters.

10.13 Beware Platform-Dependent File Code

Problem
Chastened by the previous recipe, you now wish to write only platform-independent
code.

Solution
Use readLine() and println(). Never use \n by itself; use File.separator if you
must.

Discussion
As mentioned in Recipe 10.12, if you just use readLine() and println(), you won’t
have to think about the line endings. But a particular problem, especially for recy-
cled C programmers and their relatives, is using the \n character in text strings to
mean a newline. What is particularly distressing about this code is that it works—
sometimes—usually on the developer’s own platform. But it will surely someday fail,
on some other system:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading “Continued” Lines | 275

// BadNewline.java
String myName;
public static void main(String argv[]) {
 BadNewline jack = new BadNewline("Jack Adolphus Schmidt, III");
 System.out.println(jack);
}
/**
 * DON'T DO THIS. THIS IS BAD CODE.
 */
public String toString() {
 return "BadNewlineDemo@" + hashCode() + "\n" + myName;
}

// The obvious Constructor is not shown for brevity; it's in the code

The real problem is not that it fails on some platforms, though. What’s really wrong
is that it mixes formatting and I/O, or tries to. Don’t mix line-based display with
toString(); avoid “multiline strings”—output from toString() or any other string-
returning method. If you need to write multiple strings, then say what you mean:

// GoodNewline.java
String myName;
public static void main(String argv[]) {
 GoodNewline jack = new GoodNewline("Jack Adolphus Schmidt, III");
 jack.print(System.out);
}

protected void print(PrintStream out) {
 out.println(toString()); // classname and hashcode
 out.println(myName); // print name on next line
}

10.14 Reading “Continued” Lines

Problem
You need to read lines that are continued with backslashes (\) or that are continued
with leading spaces (such as email or news headers).

Solution
Use my IndentContLineReader or EscContLineReader classes.

Discussion
This functionality is likely to be reused, so it should be encapsulated in general-
purpose classes. I offer the IndentContLineReader and EscContLineReader classes.
EscContLineReader reads lines normally, but if a line ends with the escape character
(by default, the backslash), the escape character is deleted and the following line is
joined to the preceding line. So if you have lines like this in the input:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 10: Input and Output

Here is something I wanted to say:\
Try and Buy in every way.
Go Team!

and you read them using EscContLineReader’s readLine() method, you get the fol-
lowing lines:

Here is something I wanted to say: Try and Buy in every way.
Go Team!

Note in particular that my reader does provide a space character between the abut-
ted parts of the continued line. An IOException is thrown if a file ends with the
escape character.

IndentContLineReader reads lines, but if a line begins with a space or tab, that line is
joined to the preceding line. This is designed for reading email or Usenet news
(“message”) header lines. Here is an example input file:

From: ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Received: by darwinsys.com (OpenBSD 2.6)
 from localhost
 at Tuesday, January 1, 2000 8:45 AM EST
Subject: Hey, it's 2000 and MY computer is still up

When read using an IndentContLineReader, this text comes out with the continued
lines joined together into longer single lines:

From: ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Received: by darwinsys.com (OpenBSD 2.6) from localhost at Tuesday, January 1, 2000
8:45 AM EST
Subject: Hey, it's 2000 and MY computer is still up

This class has a setContinueMode(boolean) method that lets you turn continuation
mode off. This would normally be used to process the body of a message. Since the
header and the body are separated by a null line in the text representation of mes-
sages, we can process the entire message correctly as follows:

IndentContLineReader is = new IndentContLineReader(
 new StringReader(sampleTxt));
 String aLine;
 // Print Mail/News Header
 System.out.println("----- Message Header -----");
 while ((aLine = is.readLine()) != null && aLine.length() > 0) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 // Make "is" behave like normal BufferedReader
 is.setContinuationMode(false);
 System.out.println();
 // Print Message Body
 System.out.println("----- Message Body -----");
 while ((aLine = is.readLine()) != null) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading “Continued” Lines | 277

Each of the Reader classes is subclassed from LineNumberReader so that you can use
getLineNumber(). This is a very useful feature when reporting errors back to the user
who prepared an input file; it can save them considerable hunting around in the file
if you tell them the line number on which the error occurred. The Reader classes are
actually subclassed from an abstract ContLineReader subclass, which I’ll present first
in Example 10-6. This class encapsulates the basic functionality for keeping track of
lines that need to be joined together, and for enabling or disabling the continuation
processing.

Example 10-6. ContLineReader.java

import java.io.*;

/** Subclass of LineNumberReader to allow reading of continued lines
 * using the readLine() method. The other Reader methods (readInt()) etc.)
 * must not be used. Must subclass to provide the actual implementation
 * of readLine().
 */
public abstract class ContLineReader extends LineNumberReader {
 /** Line number of first line in current (possibly continued) line */
 protected int firstLineNumber = 0;
 /** True if handling continuations, false if not; false == "PRE" mode */
 protected boolean doContinue = true;

 /** Set the continuation mode */
 public void setContinuationMode(boolean b) {
 doContinue = b;
 }

 /** Get the continuation mode */
 public boolean getContinuationMode() {
 return doContinue;
 }

 /** Read one (possibly continued) line, stripping out the \ that
 * marks the end of each line but the last in a sequence.
 */
 public abstract String readLine() throws IOException;

 /** Read one real line. Provided as a convenience for the
 * subclasses, so they don't embarass themselves trying to
 * call "super.readLine()" which isn't very practical...
 */
 public String readPhysicalLine() throws IOException {
 return super.readLine();
 }

 // Can NOT override getLineNumber in this class to return the #
 // of the beginning of the continued line, since the subclasses
 // all call super.getLineNumber...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 10: Input and Output

The ContLineReader class ends with code for handling the read() calls so that the
class will work correctly. The IndentContLineReader class extends this to allow merg-
ing of lines based on indentation. Example 10-7 shows the code for the
IndentContLineReader class.

 /** Construct a ContLineReader with the default input-buffer size. */
 public ContLineReader(Reader in) {
 super(in);
 }

 /** Construct a ContLineReader using the given input-buffer size. */
 public ContLineReader(Reader in, int sz) {
 super(in, sz);
 }

 // Methods that do NOT work - redirect straight to parent

 /** Read a single character, returned as an int. */
 public int read() throws IOException {
 return super.read();
 }

 /** Read characters into a portion of an array. */
 public int read(char[] cbuf, int off, int len) throws IOException {
 return super.read(cbuf, off, len);
 }

 public boolean markSupported() {
 return false;
 }
}

Example 10-7. IndentContLineReader.java

import java.io.*;

/** Subclass of ContLineReader for lines continued by indentation of
 * following line (like RFC822 mail, Usenet News, etc.).
 */
public class IndentContLineReader extends ContLineReader {
 /** Line number of first line in current (possibly continued) line */
 public int getLineNumber() {
 return firstLineNumber;
 }

 protected String prevLine;

 /** Read one (possibly continued) line, stripping out the '\'s that
 * mark the end of all but the last.
 */
 public String readLine() throws IOException {
 String s;

Example 10-6. ContLineReader.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading “Continued” Lines | 279

 // If we saved a previous line, start with it. Else,
 // read the first line of possible continuation.
 // If non-null, put it into the StringBuffer and its line
 // number in firstLineNumber.
 if (prevLine != null) {
 s = prevLine;
 prevLine = null;
 }
 else {
 s = readPhysicalLine();
 }

 // save the line number of the first line.
 firstLineNumber = super.getLineNumber();

 // Now we have one line. If we are not in continuation
 // mode, or if a previous readPhysicalLine() returned null,
 // we are finished, so return it.
 if (!doContinue || s == null)
 return s;

 // Otherwise, start building a stringbuffer
 StringBuffer sb = new StringBuffer(s);

 // Read as many continued lines as there are, if any.
 while (true) {
 String nextPart = readPhysicalLine();
 if (nextPart == null) {
 // Egad! EOF within continued line.
 // Return what we have so far.
 return sb.toString();
 }
 // If the next line begins with space, it's continuation
 if (nextPart.length() > 0 &&
 Character.isWhitespace(nextPart.charAt(0))) {
 sb.append(nextPart); // and add line.
 } else {
 // else we just read too far, so put in "pushback" holder
 prevLine = nextPart;
 break;
 }
 }

 return sb.toString(); // return what's left
 }

 /* Constructors not shown */

 // Built-in test case
 protected static String sampleTxt =
 "From: ian today now\n" +
 "Received: by foo.bar.com\n" +
 " at 12:34:56 January 1, 2000\n" +

Example 10-7. IndentContLineReader.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 10: Input and Output

10.15 Binary Data

Problem
You need to read or write binary data, as opposed to text.

Solution
Use a DataInputStream or DataOutputStream.

Discussion
The Stream classes have been in Java since the JDK 1.0 release and are optimal for
reading and writing bytes rather than characters. The “data” layer over them, com-
prising DataInputStream and DataOutputStream, is configured for reading and writing

 "X-Silly-Headers: Too Many\n" +
 "This line should be line 5.\n" +
 "Test more indented line continues from line 6:\n" +
 " space indented.\n" +
 " tab indented;\n" +
 "\n" +
 "This is line 10\n" +
 "the start of a hypothetical mail/news message, \n" +
 "that is, it follows a null line.\n" +
 " Let us see how it fares if indented.\n" +
 " also space-indented.\n" +
 "\n" +
 "How about text ending without a newline?";

 // A simple main program for testing the class.
 public static void main(String argv[]) throws IOException {
 IndentContLineReader is = new IndentContLineReader(
 new StringReader(sampleTxt));
 String aLine;
 // Print Mail/News Header
 System.out.println("----- Message Header -----");
 while ((aLine = is.readLine()) != null && aLine.length() > 0) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 // Make "is" behave like normal BufferedReader
 is.setContinuationMode(false);
 System.out.println();
 // Print Message Body
 System.out.println("----- Message Body -----");
 while ((aLine = is.readLine()) != null) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 is.close();
 }
}

Example 10-7. IndentContLineReader.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Seeking | 281

binary values, including all of Java’s built-in types. Suppose that you want to write a
binary integer plus a binary floating-point value into a file and read it back later. This
code shows the writing part:

import java.io.*;
/** Write some data in binary. */
public class WriteBinary {
 public static void main(String argv[]) throws IOException {
 int i = 42;
 double d = Math.PI;
 String FILENAME = "binary.dat";
 DataOutputStream os = new DataOutputStream(
 new FileOutputStream(FILENAME));
 os.writeInt(i);
 os.writeDouble(d);
 os.close();
 System.out.println("Wrote " + i + ", " + d + " to file " + FILENAME);
 }
}

The reading part is left as an exercise for the reader. Should you need to write all the
fields from an object, you should probably use one of the methods described in Rec-
ipe 10.18.

10.16 Seeking

Problem
You need to read from or write to a particular location in a file, such as an indexed
file.

Solution
Use a RandomAccessFile.

Discussion
The class java.io.RandomAccessFile allows you to move the read or write position
when writing to any location within a file or past the end. This allows you to create
or access “files with holes” on some platforms and lets you read or write indexed or
other database-like files in Java. The primary methods of interest are void seek(long
where), which moves the position for the next read or write to where; int
skipBytes(int howmany), which moves the position forward by howmany bytes; and
long getFilePointer(), which returns the position.

RandomAccessFile class also implements the DataInput and DataOutput interfaces, so
everything I said about DataStreams in Recipe 10.15 also applies here. This example
reads a binary integer from the beginning of the file, treats that as the position to
read from, finds that position, and reads a string from that location within the file:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 10: Input and Output

import java.io.*;

/**
 * Read a file containing an offset, and a String at that offset.
 */
public class ReadRandom {
 final static String FILENAME = "random.dat";
 protected String fileName;
 protected RandomAccessFile seeker;

 public static void main(String argv[]) throws IOException {
 ReadRandom r = new ReadRandom(FILENAME);

 System.out.println("Offset is " + r.readOffset());
 System.out.println("Message is \"" + r.readMessage() + "\".");
 }

 /** Constructor: save filename, construct RandomAccessFile */
 public ReadRandom(String fname) throws IOException {
 fileName = fname;
 seeker = new RandomAccessFile(fname, "r");
 }

 /** Read the Offset field, defined to be at location 0 in the file. */
 public int readOffset() throws IOException {
 seeker.seek(0);
 return seeker.readInt();
 }

 /** read the message at the given offset */
 public String readMessage() throws IOException {
 seeker.seek(readOffset()); // move to the offset
 return seeker.readLine(); // and read the String
 }
}

10.17 Writing Data Streams from C

Problem
You need to exchange binary data between C and Java.

Solution
Use the network byte-ordering macros.

Discussion
The program that created the file random.dat read by the program in the previous
recipe was not written in Java, but in C. Since the earliest days of the TCP/IP proto-
col in the 1980s, and particularly on the 4.2 BSD version of Unix, there was an

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Data Streams from C | 283

awareness that not all brands of computers store the bytes within a word in the same
order, and there was a means for dealing with it. For this early heterogeneous net-
work to function at all, it was necessary that a 32-bit word be interpreted correctly as
a computer’s network address, regardless of whether it originated on a PDP-11, a
VAX, a Sun workstation, or any other kind of machine then prevalent (no “IBM PC”
machines were powerful enough to run TCP/IP at that time). So network byte order
was established, a standard for which bytes go in which order on the network. And
the network byte order macros were written: ntohl for network-to-host order for a
long (32 bits), htons for host-to-network order for a short (16 bits), and so on. In
most Unix implementations, these C macros live in one of the Internet header files,
although in some newer systems, they have been segregated out into a file like
<machine/endian.h>, as on our OpenBSD system.

The designers of Java, working at Sun, were well aware of these issues and chose to
use network byte order in the Java Virtual Machine. Thus, a Java program can read
an IP address from a socket using a DataInputStream or write an integer to disk that
will be read from C using read() and the network byte order macros.

This C program writes the file random.dat read in Recipe 10.16. It uses the network
byte order macros to make sure that the long integer (32 bits on most C compilers on
the IBM PC) is in the correct order to be read as an int in Java:

/* Create the random-access file for the RandomAccessFile example
 */

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <machine/endian.h>

const off_t OFFSET = 1234;
const char* FILENAME = "random.dat";
const int MODE = 0644;
const char* MESSAGE = "Ye have sought, and ye have found!\r\n";

int
main(int argc, char **argv) {
 int fd;
 int java_offset;

 if ((fd = creat(FILENAME, MODE)) < 0) {
 perror(FILENAME);
 return 1;
 }

 /* Java's DataStreams etc. are defined to be in network byte order,
 * so convert OFFSET to network byte order.
 */
 java_offset = htonl(OFFSET);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 10: Input and Output

 if (write(fd, &java_offset, sizeof java_offset) < 0) {
 perror("write");
 return 1;
 }

 if (lseek(fd, OFFSET, SEEK_SET) < 0) {
 perror("seek");
 return 1;
 }

 if (write(fd, MESSAGE, strlen(MESSAGE)) != strlen(MESSAGE)) {
 perror("write2");
 return 1;
 }

 if (close(fd) < 0) {
 perror("close!?");
 return 1;
 }

 return 0;
}

The same technique can be used in the other direction, of course, and when
exchanging data over a network socket, and anyplace else you need to exchange
binary data between Java and C.

10.18 Saving and Restoring Java Objects

Problem
You need to write and (later) read objects.

Solution
Use the object stream classes, ObjectInputStream and ObjectOutputStream. Or use
XMLDecoder and XMLEncoder, or Java Data Objects.

Discussion
Object serialization is the ability to convert in-memory objects to an external form
that can be sent serially (a byte at a time) and back again. The “and back again” may
happen at a later time, or in another JVM on another computer (even one that has a
different byte order); Java handles differences between machines. ObjectInputStream
and ObjectOutputStream are specialized stream classes designed to read and write
objects. They can be used to save objects to disk, as I’ll show here, and are also useful
in passing objects across a network connection, as I’ll show in Recipe 16.6. This fact
was not lost on the designers of remote method invocation, or RMI (see Chapter 22),
which uses them for transporting the data involved in remote method calls.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Saving and Restoring Java Objects | 285

As you might imagine, if we pass an object, such as a MyData object, to the
writeObject() method, and writeObject() notices that one of the fields is itself a ref-
erence to an object such as a String, that data will get serialized properly. In other
words, writeObject works recursively. So, we will give it a List of data objects. The
first entry in this list is a java.util.Date, for versioning purposes. All remaining
objects are of type MyData, a dummy class made up for this demonstration.

To be serializable, the data class must implement the empty Serializable interface.
Also, the keyword transient can be used for any data that should not be serialized.
You might need to do this for security or to prevent attempts to serialize a reference
to an object from a nonserializable class. Here it is used to prevent unencrypted pass-
words from being saved where they might be readable:

/** Simple data class used in Serialization demos. */
public class MyData implements Serializable {
 String userName;
 String passwordCypher;
 transient String passwordClear;

 /** This constructor is required for use by JDO */
 public MyData() {
 }

 public MyData(String name, String clear) {
 setUserName(name);
 setPassword(clear);
 }

 public String getUserName() {
 return userName;
 }

 public void setUserName(String s) {
 userName = s;
 }

 public String getPasswordCypher() {
 return passwordCypher;
 }

 /** Save the clear text p/w in the object, it won't get serialized
 * So we must save the encryption! Encryption not shown here.
 */
 public void setPassword(String s) {
 this.passwordClear = s;
 passwordCypher = encrypt(passwordClear);
 }

 public String toString() {
 return "MyData[" + userName + "]";
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 10: Input and Output

 /** In real life this would use Java Cryptography */
 protected String encrypt(String s) {
 return "fjslkjlqj2TOP+SECRETkjlskl";
 }
}

Since several methods are available for serializing, I define an abstract base class,
called SerialDemoAbstractBase, which creates the data list and whose save() method
calls the abstract write() method to actually save the data:

/** Demonstrate use of Serialization. Typical Subclass main will be:
 * public static void main(String[] s) throws Exception {
 * new SerialDemoZZZ().save(); // in parent class; calls write
 * new SerialDemoZZZ().dump();
 * }
 */
public abstract class SerialDemoAbstractBase {

 /** The save method in an application */
 public void save() throws IOException {
 List l = new ArrayList();
 // Gather the data
 l.add(new Date());
 l.add(new MyData("Ian Darwin", "secret_java_cook"));
 l.add(new MyData("Abby Brant Charles", "dujordian"));
 write(l);
 }

 /** Does the actual serialization */
 public abstract void write(Object theGraph) throws IOException;

 /** Reads the file and displays it. */
 public abstract void dump() throws IOException, ClassNotFoundException;
}

The implementation for Object Stream serialization is shown here:

/** Demonstrate use of standard Object Serialization. */
public class SerialDemoObjectStream extends SerialDemoAbstractBase {
 protected static final String FILENAME = "serial.dat";

 public static void main(String[] s) throws Exception {
 new SerialDemoObjectStream().save(); // in parent class; calls write
 new SerialDemoObjectStream().dump();
 }

 /** Does the actual serialization */
 public void write(Object theGraph) throws IOException {
 // Save the data to disk.
 ObjectOutputStream os = new ObjectOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(FILENAME)));
 os.writeObject(theGraph);
 os.close();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing ClassCastExceptions with SerialVersionUID | 287

 public void dump() throws IOException, ClassNotFoundException {
 ObjectInputStream is = new ObjectInputStream(
 new FileInputStream(FILENAME));
 System.out.println(is.readObject());
 is.close();
 }
}

See Also
There are other ways to serialize objects, depending upon your storage/interchange
goals. One way is to serialize using Java Data Objects (JDO), as discussed in Recipe
20.1. Another is to write the individual data members into an XML file, discussed in
Recipe 21.1. The implementation classes for this demonstration are SerialDemoJDO
and SerialDemoXML respectively.

10.19 Preventing ClassCastExceptions
with SerialVersionUID

Problem
Your classes were recompiled, and you’re getting ClassCastExceptions that you
shouldn’t.

Solution
Run serialver and paste its output into your classes before you start.

Discussion
When a class is undergoing a period of evolution, particularly a class being used in a
networking context such as RMI or servlets, it may be useful to provide a
serialVersionUID value in this class. This is a long integer that is basically a hash of
the methods and fields in the class. Both the object serialization API (see Recipe 10.
18) and the JVM, when asked to cast one object to another (common when using
collections, as in Chapter 7), either look up or, if not found, compute this value. If
the value on the source and destination do not match, a ClassCastException is
thrown. Most of the time, this is the correct thing for Java to do.

However, sometimes you may want to allow a class to evolve in a compatible way,
but you can’t immediately replace all instances in circulation. You must be willing to
write code to account for the additional fields being discarded if restoring from the
longer format to the shorter and having the default value (null for objects, 0 for num-
bers and false for Boolean) if you’re restoring from the shorter format to the longer. If
you are only adding fields and methods in a reasonably compatible way, you can

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 10: Input and Output

control the compatibility by providing a long int named serialVersionUID. The ini-
tial value should be obtained from a JDK tool called serialver, which takes just the
class name. Consider a simple class called SerializableUser:

/** Demo of a data class that will be used as a JavaBean or as a data
 * class in a Servlet container; making it Serializable allows
 * it to be saved ("serialized") to disk or over a network connection.
 */
public class SerializableUser implements java.io.Serializable {
 public String name;
 public String address;
 public String country;

 // other fields, and methods, here...
}

I first compiled it with two different compilers to ensure that the value is a product
of the class structure, not of some minor differences in class file format that different
compilers might emit:

$ jikes +E SerializableUser.java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -7978489268769667877L;
$ javac SerializableUser.java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -7978489268769667877L;

Sure enough, the class file from both compilers has the same hash. Now let’s change
the file. I go in with an editor and add a new field, phoneNum, right after country:

 public String country;
public String phoneNum; // Added this line.

ian:145$ jikes +E SerializableUser.java
ian:146$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -8339341455288589756L;

Notice how the addition of the field changed the serialVersionUID! Now, if I had
wanted this class to evolve in a compatible fashion, here’s what I should have done
before I started expanding it. I copy and paste the original serialver output into the
source file (again using an editor to insert a line before the last line):

// SerializableUser.java
 static final long serialVersionUID = -7978489268769667877L; // Added this line
$ jikes +E SerializableUser.java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -7978489268769667877L;
$

Now all is well: I can interchange serialized versions of this file.

Note that serialver is part of the “object serialization” mechanism, and, therefore, it
works only on classes that implement the Serializable interface described in Recipe
10.18.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing JAR or Zip Archives | 289

10.20 Reading and Writing JAR or Zip Archives

Problem
You need to create and/or extract from a JAR archive or a file in the well-known Zip
Archive format, as established by PkZip and used by Unix zip/unzip and WinZip.

Solution
You could use the jar program in the Java Development Kit since its file format is
identical to the zip format with the addition of the META-INF directory to contain
additional structural information. But since this is a book about programming, you
are probably more interested in the ZipFile and ZipEntry classes and the stream
classes that they provide access to.

Discussion
The class java.util.zip.ZipFile is not an I/O class per se, but a utility class that
allows you to read or write the contents of a JAR or zip-format file.* When con-
structed, it creates a series of ZipEntry objects, one to represent each entry in the
archive. In other words, the ZipFile represents the entire archive, and the ZipEntry
represents one entry, or one file that has been stored (and compressed) in the
archive. The ZipEntry has methods like getName(), which returns the name that the
file had before it was put into the archive, and getInputStream(), which gives you an
InputStream that will transparently uncompress the archive entry by filtering it as you
read it. To create a ZipFile object, you need either the name of the archive file or a
File object representing it:

ZipFile zippy = new ZipFile(fileName);

If you want to see whether a given file is present in the archive, you can call the
getEntry() method with a filename. More commonly, you’ll want to process all the
entries; for this, use the ZipFile object to get a list of the entries in the archive, in the
form of an Enumeration (see Recipe 7.4):

Enumeration all = zippy.entries();
while (all.hasMoreElements()) {
 ZipEntry entry = (ZipEntry)all.nextElement();

We can then process each entry as we wish. A simple listing program could be:

if (entry.isDirectory())
 println("Directory: " + e.getName());
else
 println("File: " + e.getName());

* There is no support for adding files to an existing archive, so make sure you put all the files in at once or be
prepared to recreate the archive from scratch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 10: Input and Output

A fancier version would extract the files. The program in Example 10-8 does both: it
lists by default, but with the -x (extract) switch, it actually extracts the files from the
archive.

Example 10-8. UnZip.java

import java.io.*;
import java.util.*;
import java.util.zip.*;

/**
 * UnZip -- print or unzip a JAR or PKZIP file using java.util.zip.
 * Final command-line version: extracts files.
 */
public class UnZip {
 /** Constants for mode listing or mode extracting. */
 public static final int LIST = 0, EXTRACT = 1;
 /** Whether we are extracting or just printing TOC */
 protected int mode = LIST;

 /** The ZipFile that is used to read an archive */
 protected ZipFile zippy;

 /** The buffer for reading/writing the ZipFile data */
 protected byte[] b;

 /** Simple main program, construct an UnZipper, process each
 * .ZIP file from argv[] through that object.
 */
 public static void main(String[] argv) {
 UnZip u = new UnZip();

 for (int i=0; i<argv.length; i++) {
 if ("-x".equals(argv[i])) {
 u.setMode(EXTRACT);
 continue;
 }
 String candidate = argv[i];
 // System.err.println("Trying path " + candidate);
 if (candidate.endsWith(".zip") ||
 candidate.endsWith(".jar"))
 u.unZip(candidate);
 else System.err.println("Not a zip file? " + candidate);
 }
 System.err.println("All done!");
 }

 /** Construct an UnZip object. Just allocate the buffer */
 UnZip() {
 b = new byte[8092];
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing JAR or Zip Archives | 291

 /** Set the Mode (list, extract). */
 protected void setMode(int m) {
 if (m == LIST ||
 m == EXTRACT)
 mode = m;
 }

 /** For a given Zip file, process each entry. */
 public void unZip(String fileName) {
 try {
 zippy = new ZipFile(fileName);
 Enumeration all = zippy.entries();
 while (all.hasMoreElements()) {
 getFile((ZipEntry)all.nextElement());
 }
 } catch (IOException err) {
 System.err.println("IO Error: " + err);
 return;
 }
 }

 /** Process one file from the zip, given its name.
 * Either print the name, or create the file on disk.
 */
 protected void getFile(ZipEntry e) throws IOException {
 String zipName = e.getName();
 if (mode == EXTRACT) {
 // double-check that the file is in the zip
 // if a directory, mkdir it (remember to
 // create intervening subdirectories if needed!)
 if (zipName.endsWith("/")) {
 new File(zipName).mkdirs();
 return;
 }
 // Else must be a file; open the file for output
 System.err.println("Creating " + zipName);
 FileOutputStream os = new FileOutputStream(zipName);
 InputStream is = zippy.getInputStream(e);
 int n = 0;
 while ((n = is.read(b)) >0)
 os.write(b, 0, n);
 is.close();
 os.close();
 } else
 // Not extracting, just list
 if (e.isDirectory()) {
 System.out.println("Directory " + zipName);
 } else {
 System.out.println("File " + zipName);
 }
 }
}

Example 10-8. UnZip.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 10: Input and Output

See Also
JDK 1.5 introduces a new format, called Pack200, that is specified as the JSR 200
Network File Transfer Format. See http://jcp.org/en/jsr/detail?id=200 for details. The
new class javax.pack.Pack200 converts between JAR and Pack200 formats.

10.21 Reading and Writing Compressed Files

Problem
You need to read or write files that have been compressed using GNU zip, or gzip.
These files are usually saved with the extension .gz.

Solution
Use a GZipInputStream or GZipOutputStream as appropriate.

Discussion
The GNU gzip/gunzip utilities originated on Unix and are commonly used to com-
press files. Unlike the Zip format discussed in Recipe 10.20, these programs do not
combine the functionality of archiving and compressing, and, therefore, they are eas-
ier to work with. However, because they are not archives, people often use them in
conjunction with an archiver. On Unix, tar and cpio are common, with tar and gzip
being the de facto standard combination. Many web sites and FTP sites make files
available with the extension .tar.gz; such files originally had to be first decom-
pressed with gunzip and then extracted with tar. As this became a common opera-
tion, modern versions of tar have been extended to support a -z option, which
means to gunzip before extracting, or to gzip before writing, as appropriate.

You may find archived files in gzip format on any platform. If you do, they’re quite
easy to read, again using classes from the java.util.zip package. This program
assumes that the gzipped file originally contained text (Unicode characters). If not,
you would treat it as a stream of bytes, that is, use a BufferedInputStream instead of a
BufferedReader:

import java.io.*;
import java.util.zip.*;

public class ReadGZIP {
 public static void main(String argv[]) throws IOException {
 String FILENAME = "file.txt.gz";

 // Since there are 4 constructors here, I wrote them all out in full.
 // In real life you would probably nest these constructor calls.
 FileInputStream fin = new FileInputStream(FILENAME);
 GZIPInputStream gzis = new GZIPInputStream(fin);
 InputStreamReader xover = new InputStreamReader(gzis);
 BufferedReader is = new BufferedReader(xover);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Text to PostScript | 293

 String line;
 // Now read lines of text: the BufferedReader puts them in lines,
 // the InputStreamReader does Unicode conversion, and the
 // GZipInputStream "gunzip"s the data from the FileInputStream.
 while ((line = is.readLine()) != null)
 System.out.println("Read: " + line);
 }
}

If you need to write files in this format, everything works as you’d expect: you create
a GZipOutputStream and write on it, usually using it through a DataOutputStream,
BufferedWriter, or PrintWriter.

See Also
The Inflater and Deflater classes provide access to general-purpose compression
and decompression. The InflaterStream and DeflaterStream stream classes provide
an I/O-based implementation of Inflater and Deflater.

10.22 Program: Text to PostScript
There are several approaches to printing in Java. In a GUI application, or if you want
to use the graphical facilities that Java offers (fonts, colors, drawing primitives, and
the like), you should refer to Recipe 13.11. However, sometimes you simply want to
convert text into a form that prints nicely on a printer that isn’t capable of handling
raw text on its own (such as most of the PostScript devices on the market). The pro-
gram in Example 10-9 shows code for reading one or more text files and outputting
each of them in a plain font with PostScript around it. Because of the nature of Post-
Script, certain characters must be escaped; this is handled in toPsString(), which in
turn is called from doLine(). There is also code for keeping track of the current posi-
tion on the page. The output of this program can be sent directly to a PostScript
printer.

Example 10-9. PSFormatter.java

import java.io.*;

/** Text to PS */
public class PSFormatter {
 /** The current input source */
 protected BufferedReader br;
 /** The current page number */
 protected int pageNum;
 /** The current X and Y on the page */
 protected int curX, curY;
 /** The current line number on page */
 protected int lineNum;
 /** The current tab setting */
 protected int tabPos = 0;
 public static final int INCH = 72; // PS constant: 72 pts/inch

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 10: Input and Output

 // Page parameters
 /** The left margin indent */
 protected int leftMargin = 50;
 /** The top of page indent */
 protected int topMargin = 750;
 /** The bottom of page indent */
 protected int botMargin = 50;

 // FORMATTING PARAMETERS
 protected int points = 12;
 protected int leading = 14;

 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new PSFormatter(
 new InputStreamReader(System.in)).process();
 else for (int i = 0; i < av.length; i++) {
 new PSFormatter(av[i]).process();
 }
 }

 public PSFormatter(String fileName) throws IOException {
 br = new BufferedReader(new FileReader(fileName));
 }

 public PSFormatter(Reader in) throws IOException {
 if (in instanceof BufferedReader)
 br = (BufferedReader)in;
 else
 br = new BufferedReader(in);
 }

 /** Main processing of the current input source. */
 protected void process() throws IOException {

 String line;

 prologue(); // emit PostScript prologue, once.

 startPage(); // emit top-of-page (ending previous)

 while ((line = br.readLine()) != null) {
 if (line.startsWith("\f") || line.trim().equals(".bp")) {
 startPage();
 continue;
 }
 doLine(line);
 }

 // finish last page, if not already done.
 if (lineNum != 0)
 println("showpage");
 }

Example 10-9. PSFormatter.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Text to PostScript | 295

 /** Handle start of page details. */
 protected void startPage() {
 if (pageNum++ > 0)
 println("showpage");
 lineNum = 0;
 moveTo(leftMargin, topMargin);
 }

 /** Process one line from the current input */
 protected void doLine(String line) {
 tabPos = 0;
 // count leading (not imbedded) tabs.
 for (int i=0; i<line.length(); i++) {
 if (line.charAt(i)=='\t')
 tabPos++;
 else
 break;
 }
 String l = line.trim(); // removes spaces AND tabs
 if (l.length() == 0) {
 ++lineNum;
 return;
 }
 moveTo(leftMargin + (tabPos * INCH),
 topMargin-(lineNum++ * leading));
 println('(' + toPSString(l)+ ") show");

 // If we just hit the bottom, start a new page
 if (curY <= botMargin)
 startPage();
 }

 /** Overly-simplistic conversion to PS, e.g., breaks on "foo\)bar" */
 protected String toPSString(String o) {
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<o.length(); i++) {
 char c = o.charAt(i);
 switch(c) {
 case '(': sb.append("\\("); break;
 case ')': sb.append("\\)"); break;
 default: sb.append(c); break;
 }
 }
 return sb.toString();
 }

 protected void println(String s) {
 System.out.println(s);
 }

Example 10-9. PSFormatter.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 10: Input and Output

The program could certainly be generalized more, and certain features (such as wrap-
ping long lines) could be handled. I could also wade into the debate among Post-
Script experts as to how much of the formatting should be done on the main
computer and how much should be done by the PostScript program interpreter run-
ning in the printer. But perhaps I won’t get into that discussion. At least, not today.

See Also
As mentioned, Recipe 13.11 contains “better” recipes for printing under Java.

For all topics in this chapter, Elliotte Rusty Harold’s book Java I/O should be consid-
ered the antepenultimate documentation. The penultimate reference is the Javadoc
documentation, while the ultimate reference is, if you really need it, the source code
for the Java API, to which I have not needed to make a single reference in writing this
chapter.

 protected void moveTo(int x, int y) {
 curX = x;
 curY = y;
 println(x + " " + y + " " + "moveto");
 }

 void prologue() {
 println("%!PS-Adobe");
 println("/Courier findfont " + points + " scalefont setfont ");
 }
}

Example 10-9. PSFormatter.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

297

Chapter 11 CHAPTER 11

Directory and Filesystem Operations

11.0 Introduction
This chapter is largely devoted to one class: java.io.File. The File class gives you
the ability to list directories, obtain file status, rename and delete files on disk, create
directories, and perform other filesystem operations. Many of these would be consid-
ered “system programming” functions on some operating systems; Java makes them
all as portable as possible.

Note that many of the methods of this class attempt to modify the permanent file
store, or disk filesystem, of the computer you run them on. Naturally, you might not
have permission to change certain files in certain ways. This can be detected by the
Java Virtual Machine’s (or the browser’s, in an applet) SecurityManager, which will
throw an instance of the unchecked exception SecurityException. But failure can
also be detected by the underlying operating system: if the security manager
approves it, but the user running your program lacks permissions on the directory,
for example, you will either get back an indication (such as false) or an instance of
the checked exception IOException. This must be caught (or declared in the throws
clause) in any code that calls any method that tries to change the filesystem.

11.1 Getting File Information

Problem
You need to know all you can about a given file on disk.

Solution
Use a java.io.File object.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 11: Directory and Filesystem Operations

Discussion
The File class has a number of “informational” methods. To use any of these, you
must construct a File object containing the name of the file it is to operate upon. It
should be noted up front that creating a File object has no effect on the permanent
filesystem; it is only an object in Java’s memory. You must call methods on the File
object in order to change the filesystem; as we’ll see, there are numerous “change”
methods, such as one for creating a new (but empty) file, one for renaming a file, etc.,
as well as many informational methods. Table 11-1 lists some of the informational
methods.

You can’t change the name stored in a File object; you simply create a new File
object each time you need to refer to a different file:

import java.io.*;
import java.util.*;

/**
 * Report on a file's status in Java
 */
public class FileStatus {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: FileStatus filename");
 System.exit(1);
 }
 for (int i = 0; i< argv.length; i++) {
 status(argv[i]);
 }
 }

Table 11-1. java.io.File methods

Return type Method name Meaning

boolean exists() True if something of that name exists

String getCanonicalPath() Full name

String getName() Relative filename

String getParent() Parent directory

boolean canRead() True if file is readable

boolean canWrite() True if file is writable

long lastModified() File modification time

long length() File size

boolean isFile() True if it’s a file

True if it’s a directory (note: it might be neither)boolean isDirectory()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting File Information | 299

 public static void status(String fileName) throws IOException {
 System.out.println("---" + fileName + "---");

 // Construct a File object for the given file.
 File f = new File(fileName);

 // See if it actually exists
 if (!f.exists()) {
 System.out.println("file not found");
 System.out.println(); // Blank line
 return;
 }
 // Print full name
 System.out.println("Canonical name " + f.getCanonicalPath());
 // Print parent directory if possible
 String p = f.getParent();
 if (p != null) {
 System.out.println("Parent directory: " + p);
 }
 // Check if the file is readable
 if (f.canRead()) {
 System.out.println("File is readable.");
 }
 // Check if the file is writable
 if (f.canWrite()) {
 System.out.println("File is writable.");
 }
 // Report on the modification time.
 Date d = new Date();
 d.setTime(f.lastModified());
 System.out.println("Last modified " + d);

 // See if file, directory, or other. If file, print size.
 if (f.isFile()) {
 // Report on the file's size
 System.out.println("File size is " + f.length() + " bytes.");
 } else if (f.isDirectory()) {
 System.out.println("It's a directory");
 } else {
 System.out.println("I dunno! Neither a file nor a directory!");
 }

 System.out.println(); // blank line between entries
 }
}

When run with the three arguments shown, it produces this output:

C:\javasrc\dir_file>java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name C:\
File is readable.
File is writable.
Last modified Thu Jan 01 00:00:00 GMT 1970
It's a directory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 11: Directory and Filesystem Operations

---/tmp/id---
file not found

---/autoexec.bat---
Canonical name C:\AUTOEXEC.BAT
Parent directory: \
File is readable.
File is writable.
Last modified Fri Sep 10 15:40:32 GMT 1999
File size is 308 bytes.

As you can see, the so-called “canonical name” not only includes a leading directory
root of C:\, but also has had the name converted to uppercase. You can tell I ran that
on Windows. On Unix, it behaves differently:

$ java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name /
File is readable.
Last modified October 4, 1999 6:29:14 AM PDT
It's a directory

---/tmp/id---
Canonical name /tmp/id
Parent directory: /tmp
File is readable.
File is writable.
Last modified October 8, 1999 1:01:54 PM PDT
File size is 0 bytes.

---/autoexec.bat---
file not found

$

A typical Unix system has no autoexec.bat file. And Unix filenames (like those on a
Mac) can consist of upper- and lowercase characters: what you type is what you get.

11.2 Creating a File

Problem
You need to create a new file on disk, but you don’t want to write into it.

Solution
Use a java.io.File object’s createNewFile() method.

Discussion
You could easily create a new file by constructing a FileOutputStream or FileWriter
(see Recipe 10.6). But then you’d have to remember to close it as well. Sometimes
you want a file to exist, but you don’t want to bother putting anything into it. This

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Renaming a File | 301

might be used, for example, as a simple form of interprogram communication: one
program could test for the presence of a file and interpret that to mean that the other
program has reached a certain state. Here is code that simply creates an empty file
for each name you give:

import java.io.*;

/**
 * Create one or more files by name.
 * The final "e" is omitted in homage to the underlying UNIX system call.
 */
public class Creat {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: Creat filename");
 System.exit(1);
 }

 for (int i = 0; i< argv.length; i++) {
 // Constructing a File object doesn't affect the disk, but
 // the createNewFile() method does.
 new File(argv[i]).createNewFile();
 }
 }
}

11.3 Renaming a File

Problem
You need to change a file’s name on disk.

Solution
Use a java.io.File object’s renameTo() method.

Discussion
For reasons best left to the gods of Java, the renameTo() method requires not the
name you want the file renamed to, but another File object referring to the new
name. So to rename a file you must create two File objects, one for the existing
name and another for the new name. Then call the renameTo method of the existing
name’s File object, passing in the second File object. This is easier to see than to
explain, so here goes:

import java.io.*;

/**
 * Rename a file in Java
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 11: Directory and Filesystem Operations

public class Rename {
 public static void main(String[] argv) throws IOException {

 // Construct the file object. Does NOT create a file on disk!
 File f = new File("Rename.java~"); // backup of this source file.

 // Rename the backup file to "junk.dat"
 // Renaming requires a File object for the target.
 f.renameTo(new File("junk.dat"));
 }
}

11.4 Deleting a File

Problem
You need to delete one or more files from the disk.

Solution
Use a java.io.File object’s delete() method; it deletes files (subject to permissions)
and directories (subject to permissions and to the directory being empty).

Discussion
This is not very complicated. Simply construct a File object for the file you wish to
delete, and call its delete() method:

import java.io.*;

/**
 * Delete a file from within Java
 */
public class Delete {
 public static void main(String[] argv) throws IOException {

 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // My editor creates backups by putting ~ at the end of the name.
 File target = new File("Delete.java~");
 // Now delete the file from disk.
 target.delete();
 }
}

Just recall the caveat about permissions in the Introduction to this chapter: if you
don’t have permission, you can get a return value of false or, possibly, a
SecurityException. Note also that there are some differences between platforms.
Some versions of Windows allow Java to remove a file that has the read-only bit, but
Unix does not allow you to remove a file that you don’t have permission on or to
remove a directory that isn’t empty. Here is a version of Delete with error checking
(and reporting of success, too):

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Transient File | 303

import java.io.*;

/**
 * Delete a file from within Java, with error handling.
 */
public class Delete2 {

 public static void main(String argv[]) {
 for (int i=0; i<argv.length; i++)
 delete(argv[i]);
 }

 public static void delete(String fileName) {
 try {
 // Construct a File object for the file to be deleted.
 File target = new File(fileName);
 // Now delete the file from disk.
 if (target.delete())
 System.out.println("** Deleted " + fileName);
 else
 System.err.println("Failed to delete " + fileName);
 } catch (SecurityException e) {
 System.err.println("Unable to delete " + fileName +
 "(" + e.getMessage() + ")");
 }
 }
}

Running it, we get this:

$ ls -ld ?
-rw-r--r-- 1 ian ian 0 Oct 8 16:50 a
drwxr-xr-x 2 ian ian 512 Oct 8 16:50 b
drwxr-xr-x 3 ian ian 512 Oct 8 16:50 c
$ java Delete2 ?
Deleted a
Deleted b
Failed to delete c
$ ls -l c
total 2
drwxr-xr-x 2 ian ian 512 Oct 8 16:50 d
$ java Delete2 c/d c
Deleted c/d
Deleted c
$

11.5 Creating a Transient File

Problem
You need to create a file with a unique temporary filename, or arrange for a file to be
deleted when your program is finished.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 11: Directory and Filesystem Operations

Solution
Use a java.io.File object’s createTempFile() or deleteOnExit() method.

Discussion
The File object has a createTempFile method and a deleteOnExit method. The
former creates a file with a unique name (in case several users run the same program
at the same time on a server) and the latter arranges for any file (no matter how it
was created) to be deleted when the program exits. Here we arrange for a backup
copy of a program to be deleted on exit, and we also create a temporary file and
arrange for it to be removed on exit. Both files are gone after the program runs:

import java.io.*;

/**
 * Work with temporary files in Java.
 */
public class TempFiles {
 public static void main(String[] argv) throws IOException {

 // 1. Make an existing file temporary

 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // My editor creates backups by putting ~ at the end of the name.
 File bkup = new File("Rename.java~");
 // Arrange to have it deleted when the program ends.
 bkup.deleteOnExit();

 // 2. Create a new temporary file.

 // Make a file object for foo.tmp, in the default temp directory
 File tmp = File.createTempFile("foo", "tmp");
 // Report on the filename that it made up for us.
 System.out.println("Your temp file is " + tmp.getCanonicalPath());
 // Arrange for it to be deleted at exit.
 tmp.deleteOnExit();
 // Now do something with the temporary file, without having to
 // worry about deleting it later.
 writeDataInTemp(tmp.getCanonicalPath());
 }

 public static void writeDataInTemp(String tempnam) {
 // This version is dummy. Use your imagination.
 }
}

Notice that the createTempFile method is like createNewFile (see Recipe 11.2) in that
it does create the file. Also be aware that, should the Java Virtual Machine terminate
abnormally, the deletion probably does not occur. Finally, there is no way to undo
the setting of deleteOnExit() short of something drastic like powering off the com-
puter before the program exits.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changing File Attributes | 305

11.6 Changing File Attributes

Problem
You want to change attributes of a file other than its name.

Solution
Use setReadOnly() or setLastModified().

Discussion
As we saw in Recipe 11.1, many methods report on a file. By contrast, only a few
change the file.

setReadOnly() turns on read-only for a given file or directory. It returns true if it suc-
ceeds, otherwise false. There is no corresponding method setReadWrite(). Since
you can’t undo a setReadOnly(), use this method with care!

setLastModified() allows you to play games with the modification time of a file.
This is normally not a good game to play, but it is useful in some types of backup/
restore programs. This method takes an argument that is the number of milliseconds
(not seconds) since the beginning of time (January 1, 1970). You can get the original
value for the file by calling getLastModified() (see Recipe 11.1), or you can get the
value for a given date by calling the Date class’s getTime() method (see Recipe 6.1).
setLastModified() returns true if it succeeded and false otherwise.

The interesting thing is that the documentation claims that “File objects are immuta-
ble,” meaning that their state doesn’t change. But does calling setReadOnly() affect
the return value of canRead()? Let’s find out:

import java.io.*;

public class ReadOnly {
 public static void main(String[] a) throws IOException {

 File f = new File("f");

 if (!f.createNewFile()) {
 System.out.println("Can't create new file.");
 return;
 }

 if (!f.canWrite()) {
 System.out.println("Can't write new file!");
 return;
 }

 if (!f.setReadOnly()) {
 System.out.println("Grrr! Can't set file read-only.");
 return;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 11: Directory and Filesystem Operations

 if (f.canWrite()) {
 System.out.println("Most immutable, captain!");
 System.out.println("But it still says canWrite() after setReadOnly");
 return;
 } else {
 System.out.println("Logical, captain!");
 System.out.println
 ("canWrite() correctly returns false after setReadOnly");
 }
 }
}

When I run it, this program reports what I (and I hope you) would expect:

$ jr ReadOnly
+ jikes +E -d . ReadOnly.java
+ java ReadOnly
Logical, captain!
canWrite() correctly returns false after setReadOnly
$

So the immutability of a File object refers only to the pathname it contains, not to its
read-only-ness.

11.7 Listing a Directory

Problem
You need to list the filesystem entries named in a directory.

Solution
Use a java.io.File object’s list() or listFiles() method.

Discussion
The java.io.File class contains several methods for working with directories. For
example, to list the filesystem entities named in the current directory, just write:

String[] list = new File(".").list()

To get an array of already constructed File objects rather than Strings, use:

File[] list = new File(".").listFiles();

This can become a complete program with as little as the following:

/** Simple directory lister.
 */
public class Ls {
 public static void main(String argh_my_aching_fingers[]) {
 String[] dir = new java.io.File(".").list(); // Get list of names
 java.util.Arrays.sort(dir); // Sort it (see Recipe 7.8)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Listing a Directory | 307

 for (int i=0; i<dir.length; i++)
 System.out.println(dir[i]); // Print the list
 }
}

Of course, there’s lots of room for elaboration. You could print the names in multi-
ple columns across the page. Or even down the page since you know the number of
items in the list before you print. You could omit filenames with leading periods, as
does the Unix ls program. Or print the directory names first; I once used a directory
lister called lc that did this, and I found it quite useful. By using listFiles(), which
constructs a new File object for each name, you could print the size of each, as per
the DOS dir command or the Unix ls –l command (see Recipe 11.1). Or you could
figure out whether each is a file, a directory, or neither. Having done that, you could
pass each directory to your top-level function, and you’d have directory recursion
(the Unix find command, or ls –R, or the DOS DIR /S command).

A more flexible way to list filesystem entries is with list(FilenameFilter ff).
FilenameFilter is a tiny little interface with only one method: boolean accept(File
inDir, String fileName). Suppose you want a listing of only Java-related files (*.java,
*.class, *.jar, etc.). Just write the accept() method so that it returns true for these files
and false for any others. Here is the Ls class warmed over to use a FilenameFilter
instance (my OnlyJava class implements this interface) to restrict the listing:

import java.io.*;

/**
 * FNFilter - Ls directory lister modified to use FilenameFilter
 */
public class FNFilter {
 public static void main(String argh_my_aching_fingers[]) {
 // Generate the selective list, with a one-use File object.
 String[] dir = new java.io.File(".").list(new OnlyJava());
 java.util.Arrays.sort(dir); // Sort it (Data Structuring chapter))
 for (int i=0; i<dir.length; i++)
 System.out.println(dir[i]); // Print the list
 }
}

/** This class implements the FilenameFilter interface.
 * The Accept method only returns true for .java , .jar and .class files.
 */
class OnlyJava implements FilenameFilter {
 public boolean accept(File dir, String s) {
 if (s.endsWith(".java") || s.endsWith(".class") || s.endsWith(".jar"))
 return true;
 // others: projects, ... ?
 return false;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 11: Directory and Filesystem Operations

The FilenameFilter need not be a separate class; the online code example FNFilter2
implements the interface directly in the main class, resulting in a slightly shorter file.
In a full-scale application, the list of files returned by the FilenameFilter would be
chosen dynamically, possibly automatically, based on what you were working on. As
we’ll see in Recipe 14.11, the file chooser dialogs implement a superset of this func-
tionality, allowing the user to select interactively from one of several sets of files to be
listed. This is a great convenience in finding files, just as it is here in reducing the
number of files that must be examined.

11.8 Getting the Directory Roots

Problem
You want to know about the top-level directories, such as C:\ and D:\ on Windows.

Solution
Use the static method File.listRoots().

Discussion
Speaking of directory listings, you surely know that all modern desktop computing
systems arrange files into hierarchies of directories. But you might not know that on
Unix all filenames are somehow “under” the single root directory named /, while on
Microsoft platforms, each disk drive has a root directory named \ (A:\ for the first
floppy, C:\ for the first hard drive, and other letters for CD-ROM and network
drives). If you need to know about all the files on all the disks, you should find out
what “directory root” names exist on the particular platform. The static method
listRoots() returns (in an array of File objects) the available filesystem roots on
whatever platform you are running on. Here is a short program to list these, along
with its output:

C:> type DirRoots.java
import java.io.*;

public class ListRoots {
 public static void main(String argh_my_aching_fingers[]) {
 File[] drives = File.listRoots(); // Get list of names
 for (int i=0; i<drives.length; i++)
 System.out.println(drives[i]); // Print the list
 }
}
C:> java DirRoots
A:\
C:\
D:\
C:>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating New Directories | 309

As you can see, the program listed my floppy drive (even though the floppy drive was
not only empty, but left at home while I wrote this recipe on my notebook computer
in a parking lot), the hard disk drive, and the CD-ROM drive.

On Unix there is only one:

$ java DirRoots
/
$

One thing that is “left out” of the list of roots is the so-called UNC filename. UNC
filenames are used on Microsoft platforms to refer to a network-available resource
that hasn’t been mounted locally on a particular drive letter. For example, my server
(running Unix with the Samba SMB file server software) is named darian (made from
my surname and first name), and my home directory on that machine is exported or
shared with the name ian, so I could refer to a directory named book in my home
directory under the UNC name \\darian\ian\book. Such a filename would be valid in
any Java filename context (assuming you’re running on Windows), but you would
not learn about it from the File.listRoots() method.

11.9 Creating New Directories

Problem
You need to create a directory.

Solution
Use java.io.File’s mkdir() or mkdirs() method.

Discussion
Of the two methods used for creating directories, mkdir() creates just one directory,
while mkdirs() creates any parent directories that are needed. For example, if /home/ian
exists and is a directory, the calls:

new File("/home/ian/bin").mkdir();
new File("/home/ian/src").mkdir();

succeed, whereas:

new File("/home/ian/once/twice/again").mkdir();

fails, assuming that the directory once does not exist. If you wish to create a whole
path of directories, you would tell File to make all the directories at once by using
mkdirs():

new File("/home/ian/once/twice/again").mkdirs();

Both variants of this command return true if they succeed and false if they fail.
Notice that it is possible (but not likely) for mkdirs() to create some of the directo-
ries and then fail; in this case, the newly created directories are left in the filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 11: Directory and Filesystem Operations

Notice that the spelling mkdir() is all lowercase. While this might be said to violate
the normal Java naming conventions (which would suggest mkDir() as the name), it
is the name of the underlying operating system call and command on both Unix and
DOS (though DOS allows md as an alias on the command-line).

11.10 Program: Find
This program implements a small subset of the Windows Find Files dialog or the
Unix find command. However, it has much of the structure needed to build a more
complete version of either of these. It uses a custom filename filter controlled by the
-n command-line option, which is parsed using my GetOpt (see Recipe 2.6). It has a
hook for filtering by file size, whose implementation is left as an exercise for the
reader:

import com.darwinsys.util.*;
import java.io.*;
import java.io.*;

/**
 * Find - find files by name, size, or other criteria. Non-GUI version.
 */
public class Find {
 /** Main program */
 public static void main(String[] args) {
 Find finder = new Find();
 GetOpt argHandler = new GetOpt("n:s:");
 int c;
 while ((c = argHandler.getopt(args)) != GetOpt.DONE) {
 switch(c) {
 case 'n': finder.filter.setNameFilter(argHandler.optarg()); break;
 case 's': finder.filter.setSizeFilter(argHandler.optarg()); break;
 default:
 System.out.println("Got: " + c);
 usage();
 }
 }
 if (args.length == 0 || argHandler.getOptInd()-1 == args.length) {
 finder.doName(".");
 } else {
 for (int i = argHandler.getOptInd()-1; i<args.length; i++)
 finder.doName(args[i]);
 }
 }

 protected FindFilter filter = new FindFilter();

 public static void usage() {
 System.err.println(
 "Usage: Find [-n namefilter][-s sizefilter][dir...]");
 System.exit(1);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Find | 311

 /** doName - handle one filesystem object by name */
 private void doName(String s) {
 Debug.println("flow", "doName(" + s + ")");
 File f = new File(s);
 if (!f.exists()) {
 System.out.println(s + " does not exist");
 return;
 }
 if (f.isFile())
 doFile(f);
 else if (f.isDirectory()) {
 // System.out.println("d " + f.getPath());
 String objects[] = f.list(filter);

 for (int i=0; i<objects.length; i++)
 doName(s + f.separator + objects[i]);
 } else
 System.err.println("Unknown type: " + s);
 }

 /** doFile - process one regular file. */
 private static void doFile(File f) {
 System.out.println("f " + f.getPath());
 }
}

The program uses a class called FindFilter to implement matching:

import java.io.*;
import java.util.regex.*;
import com.darwinsys.util.Debug;

/** Class to encapsulate the filtration for Find.
 * For now just setTTTFilter() methods. Really needs to be a real
 * data structure to allow complex things like
 * -n "*.html" -a \(-size < 0 -o mtime < 5 \).
 * @version $Id: ch11,v 1.5 2004/05/04 20:12:20 ian Exp $
 */
public class FindFilter implements FilenameFilter {
 boolean sizeSet;
 int size;
 String name;
 Pattern nameRE;

 public FindFilter() {
 }

 void setSizeFilter(String sizeFilter) {
 size = Integer.parseInt(sizeFilter);
 sizeSet = true;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 11: Directory and Filesystem Operations

 /** Convert the given shell wildcard pattern into internal form (a regex) */
 void setNameFilter(String nameFilter) {
 name = nameFilter;
 StringBuffer sb = new StringBuffer('^');
 for (int i = 0; i < nameFilter.length(); i++) {
 char c = nameFilter.charAt(i);
 switch(c) {
 case '.': sb.append("\\."); break;
 case '*': sb.append(".*"); break;
 case '?': sb.append('.'); break;
 default: sb.append(c); break;
 }
 }
 sb.append('$');
 Debug.println("name", "RE=\"" + sb + "\".");
 try {
 nameRE = Pattern.compile(sb.toString());
 } catch (PatternSyntaxException ex) {
 System.err.println("Error: RE " + sb.toString() +
 " didn't compile: " + ex);
 }
 }

 /** Do the filtering. For now, only filter on name */
 public boolean accept(File dir, String fileName) {
 File f = new File(dir, fileName);
 if (f.isDirectory()) {
 return true; // allow recursion
 }

 if (nameRE != null) {
 return nameRE.matcher(fileName).matches();
 }

 // TODO size handling.

 // Catchall
 return false;
 }
}

Exercise for the reader: in the online source directory, you’ll find a class called
FindNumFilter, which is meant to (someday) allow relational comparison of sizes,
modification times, and the like, as most find services already offer. Make this work
from the command line, and write a GUI frontend to this program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

313

Chapter 12 CHAPTER 12

Programming External Devices:
Serial and Parallel Ports

12.0 Introduction
Peripheral devices are usually external to the computer.* Printers, mice, video cam-
eras, scanners, data/fax modems, plotters, robots, telephones, light switches,
weather gauges, Personal Digital Assistants (PDAs), and many others exist “out
there,” beyond the confines of your desktop or server machine. We need a way to
reach out to them.

The Java Communications API not only gives us that but cleverly unifies the pro-
gramming model for dealing with a range of external devices. It supports both serial
(RS232/434, COM, or tty) and parallel (printer, LPT) ports. We’ll cover this in more
detail later, but briefly, serial ports are used for modems and occasionally printers,
and parallel ports are used for printers and sometimes (in the PC world) for Zip
drives and other peripherals.

Before USB (Universal Serial Bus) came along, it seemed that parallel ports would
dominate for such peripherals, as manufacturers were starting to make video cam-
eras, scanners, and the like. Now, however, USB has become the main attachment
mode for such devices. A Java Standards Request (JSR) is in the works to build a
standard API for accessing USB devices under Java, but it has not progressed to the
release stage. A reference implementation can be downloaded from http://
sourceforge.net/projects/javax-usb. A competing Java API for USB can be found at
http://jusb.sourceforge.net. Since the JSR is not completed, I do not document its use
here in this edition.

This chapter aims to teach you the principles of controlling many kinds of devices in
a machine-independent way using the Java Communications API, which is in pack-
age javax.comm.

* Conveniently ignoring things like “internal modem cards” on desktop machines!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 12: Programming External Devices: Serial and Parallel Ports

I’ll start this chapter by showing you how to get a list of available ports and how to
control simple serial devices like modems. Such details as baud rate, parity, and
word size are attended to before we can write commands to the modem, read the
results, and establish communications. We’ll move on to parallel (printer) ports and
then look at how to transfer data synchronously (using read/write calls directly) and
asynchronously (using Java listeners). Then we build a simple phone dialer that can
call a friend’s voice phone for you—a simple phone controller, if you will. The dis-
cussion ends with a serial-port printer/plotter driver.

The Communications API
The Communications API is centered around the abstract class CommPort and its two
subclasses, SerialPort and ParallelPort, which describe two types of ports found on
desktop computers. CommPort represents a general model of communications and has
general methods like getInputStream() and getOutputStream() that allow you to use
the information from Chapter 10 to communicate with the device on that port.

However, the constructors for these classes are intentionally nonpublic. Rather than
constructing them, you instead use the static factory method CommPortIdentifier.
getPortIdentifiers() to get a list of ports, let the user choose a port from this list,
and call this CommPortIdentifier’s open() method to receive a CommPort object. You
cast the CommPort reference to a nonabstract subclass representing a particular type of
communications device. At present, the subclass must be either SerialPort or
ParallelPort.

Each of these subclasses has some methods that apply only to that type. For exam-
ple, the SerialPort class has a method to set baud rate, parity, and the like, while the
ParallelPort class has methods for setting the “port mode” to original PC mode,
bidirectional mode, etc.

Both subclasses also have methods that allow you to use the standard Java event
model to receive notification of events such as data available for reading and output
buffer empty. You can also receive notification of type-specific events such as ring
indicator for a serial port and out-of-paper for a parallel port. (Parallel ports were
originally for printers and still use their terminology in a few places.)

About the Code Examples in This Chapter
Java Communication is a standard extension, so it is not a required part of the Java
API, which in turn means that your vendor probably didn’t ship it. You may need to
download the Java Communications API from Sun’s Java web site, http://java.sun.
com, or from your system vendor’s web site, and install it. If your platform or ven-
dor doesn’t ship it, you may need to find, modify, compile, and install some C code.
And, naturally enough, to run some of the examples, you will need additional
peripheral devices beyond those normally provided with a desktop computer. Batter-
ies—and peripheral devices—are not included with the purchase of this book.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Port | 315

See Also
Elliotte Rusty Harold’s book Java I/O contains a chapter that discusses the Commu-
nications API in considerable detail, as well as some background issues such as baud
rate that we take for granted here. Rusty also discusses some details that I have
glossed over, such as the ability to set receive timeouts and buffer sizes.

This book is about portable Java. If you want the gory, low-level details of setting
device registers on a 16451 UART on an ISA or PCI PC, you’ll have to look else-
where; several books cover these topics. If you really need the hardware details for I/O
ports on other platforms such as Sun Workstations and the Palm Computing Plat-
form, consult either the vendor’s documentation and/or the available open source
operating systems that run on that platform.

12.1 Choosing a Port

Problem
You need to know what ports are available on a given computer.

Solution
Use CommPortIdentifier.getPortIdentifiers() to return the list of ports.

Discussion
Many kinds of computers are out there. It’s unlikely that you’d find yourself running
on a desktop computer with no serial ports, but you might find that there is only one
and it’s already in use by another program. Or you might want a parallel port and
find that the computer has only serial ports. This program shows you how to use the
static CommPortIdentifier method getPortIdentifiers(). This gives you an
Enumeration (Recipe 7.4) of the serial and parallel ports available on your system. My
routine populate() processes this list and loads it into a pair of JComboBoxes (graphi-
cal choosers; see Recipe 14.1), one for serial ports and one for parallel (a third,
unknown, covers future expansion of the API). The routine makeGUI creates the
JComboBoxes and arranges to notify us when the user picks one from either of the lists.
The name of the selected port is displayed at the bottom of the window. So that you
won’t have to know much about it to use it, there are public methods.
getSelectedName() returns the name of the last port chosen by either JComboBox;
getSelectedIdentifier() returns an object called a CommPortIdentifier correspond-
ing to the selected port name. Figure 12-1 shows the Port Chooser in action.

Example 12-1 shows the code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 12: Programming External Devices: Serial and Parallel Ports

Figure 12-1. The Communications Port Chooser in action

Example 12-1. PortChooser.java

import java.io.*;
import javax.comm.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

/**
 * Choose a port, any port!
 *
 * Java Communications is a "standard extension" and must be downloaded
 * and installed separately from the JDK before you can even compile this
 * program.
 */
public class PortChooser extends JDialog implements ItemListener {
 /** A mapping from names to CommPortIdentifiers. */
 protected HashMap map = new HashMap();
 /** The name of the choice the user made. */
 protected String selectedPortName;
 /** The CommPortIdentifier the user chose. */
 protected CommPortIdentifier selectedPortIdentifier;
 /** The JComboBox for serial ports */
 protected JComboBox serialPortsChoice;
 /** The JComboBox for parallel ports */
 protected JComboBox parallelPortsChoice;
 /** The JComboBox for anything else */
 protected JComboBox other;
 /** The SerialPort object */
 protected SerialPort ttya;
 /** To display the chosen */
 protected JLabel choice;
 /** Padding in the GUI */
 protected final int PAD = 5;

 /** This will be called from either of the JComboBoxes when the
 * user selects any given item.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Port | 317

 public void itemStateChanged(ItemEvent e) {
 // Get the name
 selectedPortName = (String)((JComboBox)e.getSource()).getSelectedItem();
 // Get the given CommPortIdentifier
 selectedPortIdentifier = (CommPortIdentifier)map.get(selectedPortName);
 // Display the name.
 choice.setText(selectedPortName);
 }

 /* The public "getter" to retrieve the chosen port by name. */
 public String getSelectedName() {
 return selectedPortName;
 }

 /* The public "getter" to retrieve the selection by CommPortIdentifier. */
 public CommPortIdentifier getSelectedIdentifier() {
 return selectedPortIdentifier;
 }

 /** A test program to show up this chooser. */
 public static void main(String[] ap) {
 PortChooser c = new PortChooser(null);
 c.setVisible(true); // blocking wait
 System.out.println("You chose " + c.getSelectedName() +
 " (known by " + c.getSelectedIdentifier() + ").");
 System.exit(0);
 }

 /** Construct a PortChooser --make the GUI and populate the ComboBoxes.
 */
 public PortChooser(JFrame parent) {
 super(parent, "Port Chooser", true);

 makeGUI();
 populate();
 finishGUI();
 }

 /** Build the GUI. You can ignore this for now if you have not
 * yet worked through the GUI chapter. Your mileage may vary.
 */
 protected void makeGUI() {
 // CONTENTS OF THIS METHOD OMITTED -- SEE ONLINE SOURCE VERSION
 }

 /** Populate the ComboBoxes by asking the Java Communications API
 * what ports it has. Since the initial information comes from
 * a Properties file, it may not exactly reflect your hardware.
 */
 protected void populate() {
 // get list of ports available on this particular computer,
 // by calling static method in CommPortIdentifier.
 Enumeration pList = CommPortIdentifier.getPortIdentifiers();

Example 12-1. PortChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 12: Programming External Devices: Serial and Parallel Ports

12.2 Opening a Serial Port

Problem
You want to set up a serial port and open it for input/output.

Solution
Use a CommPortIdentifier’s open() method to get a SerialPort object.

Discussion
Now you’ve picked your serial port, but it’s not yet ready to go. Baud rate. Parity.
Stop bits. These things have been the bane of many a programmer’s life. Having
needed to work out the details of setting them on many platforms over the years,
including CP/M systems, IBM PCs, and IBM System/370 mainframes, I can report
that it’s no fun. Finally, Java has provided a portable interface for setting all these
parameters.

The steps in setting up and opening a serial port are as follows:

 // Process the list, putting serial and parallel into ComboBoxes
 while (pList.hasMoreElements()) {
 CommPortIdentifier cpi = (CommPortIdentifier)pList.nextElement();
 // System.out.println("Port " + cpi.getName());
 map.put(cpi.getName(), cpi);
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 serialPortsChoice.setEnabled(true);
 serialPortsChoice.addItem(cpi.getName());
 } else if (cpi.getPortType() == CommPortIdentifier.PORT_PARALLEL) {
 parallelPortsChoice.setEnabled(true);
 parallelPortsChoice.addItem(cpi.getName());
 } else {
 other.setEnabled(true);
 other.addItem(cpi.getName());
 }
 }
 serialPortsChoice.setSelectedIndex(-1);
 parallelPortsChoice.setSelectedIndex(-1);
 }

 protected void finishGUI() {
 serialPortsChoice.addItemListener(this);
 parallelPortsChoice.addItemListener(this);
 other.addItemListener(this);
 pack();
 addWindowListener(new WindowCloser(this, true));
 }
}

Example 12-1. PortChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Serial Port | 319

1. Get the name and CommPortIdentifier (which you can do using my PortChooser
class).

2. Call the CommPortIdentifier’s open() method; cast the resulting CommPort object
to a SerialPort object (this cast fails if the user chooses a parallel port!).

3. Set the serial communications parameters, such as baud rate, parity, stop bits,
and the like, either individually or all at once, using the convenience routine
setSerialPortParams().

4. Call the getInputStream and getOutputStream methods of the SerialPort object,
and construct any additional Stream or Writer objects (see Chapter 10).

You are then ready to read and write on the serial port. Example 12-2 is code that
implements all these steps for a serial port. Some of this code is for parallel ports,
which we’ll discuss in Recipe 12.3.

Example 12-2. CommPortOpen.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Open a serial port using Java Communications.
 *
 */
public class CommPortOpen {
 /** How long to wait for the open to finish up. */
 public static final int TIMEOUTSECONDS = 30;
 /** The baud rate to use. */
 public static final int BAUD = 9600;
 /** The parent Frame, for the chooser. */
 protected Frame parent;
 /** The input stream */
 protected DataInputStream is;
 /** The output stream */
 protected PrintStream os;
 /** The chosen Port Identifier */
 CommPortIdentifier thePortID;
 /** The chosen Port itself */
 CommPort thePort;

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new CommPortOpen(null).converse();

 System.exit(0);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 12: Programming External Devices: Serial and Parallel Ports

 /* Constructor */
 public CommPortOpen(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 // Use the PortChooser from before. Pop up the JDialog.
 PortChooser chooser = new PortChooser(null);

 String portName = null;
 do {
 chooser.setVisible(true);

 // Dialog done. Get the port name.
 portName = chooser.getSelectedName();

 if (portName == null)
 System.out.println("No port selected. Try again.\n");
 } while (portName == null);

 // Get the CommPortIdentifier.
 thePortID = chooser.getSelectedIdentifier();

 // Now actually open the port.
 // This form of openPort takes an Application Name and a timeout.
 //
 System.out.println("Trying to open " + thePortID.getName() + "...");

 switch (thePortID.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 thePort = thePortID.open("DarwinSys DataComm",
 TIMEOUTSECONDS * 1000);
 SerialPort myPort = (SerialPort) thePort;

 // set up the serial port
 myPort.setSerialPortParams(BAUD, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 break;

 case CommPortIdentifier.PORT_PARALLEL:
 thePort = thePortID.open("DarwinSys Printing",
 TIMEOUTSECONDS * 1000);
 ParallelPort pPort = (ParallelPort)thePort;

 // Tell API to pick "best available mode" - can fail!
 // myPort.setMode(ParallelPort.LPT_MODE_ANY);

 // Print what the mode is
 int mode = pPort.getMode();
 switch (mode) {
 case ParallelPort.LPT_MODE_ECP:
 System.out.println("Mode is: ECP");
 break;

Example 12-2. CommPortOpen.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Serial Port | 321

 case ParallelPort.LPT_MODE_EPP:
 System.out.println("Mode is: EPP");
 break;
 case ParallelPort.LPT_MODE_NIBBLE:
 System.out.println("Mode is: Nibble Mode.");
 break;
 case ParallelPort.LPT_MODE_PS2:
 System.out.println("Mode is: Byte mode.");
 break;
 case ParallelPort.LPT_MODE_SPP:
 System.out.println("Mode is: Compatibility mode.");
 break;
 // ParallelPort.LPT_MODE_ANY is a "set only" mode;
 // tells the API to pick "best mode"; will report the
 // actual mode it selected.
 default:
 throw new IllegalStateException
 ("Parallel mode " + mode + " invalid.");
 }
 break;
 default: // Neither parallel nor serial??
 throw new IllegalStateException("Unknown port type " + thePortID);
 }

 // Get the input and output streams
 // Printers can be write-only
 try {
 is = new DataInputStream(thePort.getInputStream());
 } catch (IOException e) {
 System.err.println("Can't open input stream: write-only");
 is = null;
 }
 os = new PrintStream(thePort.getOutputStream(), true);
 }

 /** This method will be overridden by nontrivial subclasses
 * to hold a conversation.
 */
 protected void converse() throws IOException {

 System.out.println("Ready to read and write port.");

 // Input/Output code not written -- must subclass.

 // Finally, clean up.
 if (is != null)
 is.close();
 os.close();
 }
}

Example 12-2. CommPortOpen.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 12: Programming External Devices: Serial and Parallel Ports

As noted in the comments, this class contains a dummy version of the converse
method. In following sections we’ll expand on the input/output processing by sub-
classing and overriding this method.

12.3 Opening a Parallel Port

Problem
You want to open a parallel port.

Solution
Use a CommPortIdentifier’s open() method to get a ParallelPort object.

Discussion
Enough of serial ports! Parallel ports as we know ‘em are an outgrowth of the “dot
matrix” printer industry. Before the IBM PC, Tandy and other “pre-PC” PC makers
needed a way to hook printers to their computers. Centronics, a company that made
a variety of dot matrix printers, had a standard connector mechanism that caught on,
changing only when IBM got into the act. Along the way, PC makers found they
needed more speed, so they built faster printer ports. And peripheral makers took
advantage of this by using the faster (and by now bidirectional) printer ports to hook
up all manner of weird devices—like scanners, SCSI and Ethernet controllers, and
others—via parallel ports. You can, in theory, open any of these devices and control
them; the logic of controlling such devices is left as an exercise for the reader. For
now we’ll just open a parallel port.

Just as the SerialPortOpen program sets the port’s parameters, the ParallelPortOpen
program sets the parallel port access type or “mode.” Like baud rate and parity, this
requires some knowledge of the particular desktop computer’s hardware. There are
several common modes, or types of printer interface and interaction. The oldest is
“simple parallel port,” which the API calls MODE_SPP. This is an output-only parallel
port. Other common modes include EPP (extended parallel port, MODE_EPP) and ECP
(extended communication port, MODE_ECP). The API defines a few rare ones—as well
as MODE_ANY, the default—and allows the API to pick the best mode. In my experi-
ence, the API doesn’t always do a very good job of picking, either with MODE_ANY or
with explicit settings. And indeed, there may be interactions with the BIOS (at least
on a PC) and on device drivers (Windows, Unix). What follows is a simple example
that opens a parallel port (although it works on a serial port also), opens a file, and
sends it; in other words, a very trivial printer driver. Now this is obviously not the
way to drive printers. Most operating systems provide support for a wide variety of
printers (Mac OS and Windows both do, at least; Unix systems tend to assume a
PostScript or HP printer). This example, just to make life simple by allowing us to
work with ASCII files, copies a short file of PostScript. The intent of the PostScript
job is just to print the little logo in Figure 12-2.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Parallel Port | 323

The PostScript code used in this particular example is fairly short:

%!PS-Adobe

% Draw a circle of "Java Cookbook"
% simplified from Chapter 9 of the Adobe Systems "Blue Book",
% PostScript Language Tutorial and Cookbook

% center the origin
250 350 translate

/Helvetica-BoldOblique findfont
 30 scalefont
 setfont

% print circle of Java
0.4 setlinewidth % make outlines not too heavy
20 20 340 {
 gsave
 rotate 0 0 moveto
 (Java) true charpath stroke
 grestore
} for

% print "Java Cookbook" in darker outline
% fill w/ light gray to contrast w/ spiral
1.5 setlinewidth
0 0 moveto
(Java Cookbook) true charpath
gsave 1 setgray fill grestore
stroke

% now send it all to the printed page
showpage

It doesn’t matter if you know PostScript; it’s just the printer control language that
some printers accept. What matters to us is that we can open the parallel port, and,
if an appropriate printer is connected (I used an HP6MP, which supports Post-
Script), the logo prints, appearing near the middle of the page. Example 12-3 is a
short program that again subclasses CommPortOpen, opens a file that is named on the
command line, and copies it to the given port. Using it looks like this:

Figure 12-2. PostScript printer output

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 12: Programming External Devices: Serial and Parallel Ports

C:\javasrc\io\javacomm>java ParallelPrint javacook.ps
Mode is: Compatibility mode.
Can't open input stream: write-only

C:\javasrc\io\javacomm>

The message “Can’t open input stream” appears because my notebook’s printer port
is (according to the Java Comm API) unable to do bidirectional I/O. This is, in fact,
incorrect, as I have used various printer-port devices that require bidirectional I/O,
such as the Logitech (formerly Connectix) QuickCam, on this same hardware plat-
form (but under Unix and Windows, not using Java). This message is just a warn-
ing; the program works correctly despite it.

Example 12-3. ParallelPrint.com

import java.awt.*;
import java.io.*;
import javax.comm.*;

/**
 * Print to a serial port using Java Communications.
 *
 */
public class ParallelPrint extends CommPortOpen {

 protected static String inputFileName;

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 if (argv.length != 1) {
 System.err.println("Usage: ParallelPrint filename");
 System.exit(1);
 }
 inputFileName = argv[0];

 new ParallelPrint(null).converse();

 System.exit(0);
 }

 /* Constructor */
 public ParallelPrint(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 super(f);
 }

 /**
 * Hold the (one-way) conversation.
 */
 protected void converse() throws IOException {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Resolving Port Conflicts | 325

12.4 Resolving Port Conflicts

Problem
Somebody else is using the port you want, and they won’t let go!

Solution
Use a PortOwnershipListener.

Discussion
If you run the CommPortOpen program and select a port that is opened by a native pro-
gram such as HyperTerminal on Windows, you get a PortInUseException after the
timeout period is up:

C:\javasrc\commport>java CommPortOpen
Exception in thread "main" javax.comm.PortInUseException: Port currently owned by
Unknown Windows Application
 at javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:337)
 at CommPortOpen.main(CommPortOpen.java:41)

If, on the other hand, you run two copies of CommPortOpen at the same time for the
same port, you will see something like the following:

C:\javasrc\commport>java CommPortOpen
Exception in thread "main" javax.comm.PortInUseException: Port currently owned by
DarwinSys DataComm
 at javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:337)
 at CommPortOpen.main(CommPortOpen.java:41)

C:\javasrc\commport>

To resolve conflicts over port ownership, you can register a PortOwnershipListener
so that you are told if another (Java) application wants to use the port. Then you can
either close the port and the other application will get it, or ignore the request and
the other program will get a PortInUseException, as we did here.

 // Make a reader for the input file.
 BufferedReader file = new BufferedReader(
 new FileReader(inputFileName));

 String line;
 while ((line = file.readLine()) != null)
 os.println(line);

 // Finally, clean up.
 file.close();
 os.close();
 }
}

Example 12-3. ParallelPrint.com (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 12: Programming External Devices: Serial and Parallel Ports

What is this “listener”? The Event Listener model is used in many places in Java. It
may be best known for its uses in GUIs (see Recipe 14.4). The basic form is that you
have to register an object as a listener with an event source. The event source then
calls a well-known method to notify you that a particular event has occurred. In the
GUI, for example, an event occurs when the user presses a button with the mouse; if
you wish to monitor these events, you need to call the button object’s
addActionListener() method, passing an instance of the ActionListener interface
(which can be your main class, an inner class, or some other class).

How does a listener work in practice? To simplify matters, we’ve again subclassed
from our command-line program CommPortOpen to pop up a dialog if one copy of the
program tries to open a port that another copy already has open. If you run two cop-
ies of the new program PortOwner at the same time, and select the same port in each,
you’ll see the dialog shown in Figure 12-3.

The trick to make this happen is simply to add a CommPortOwnershipListener to the
CommPortIdentifier object. You are then called when any program gets ownership,
gives up ownership, or if there is a conflict. Example 12-4 shows the program with
this addition.

Figure 12-3. Port conflict resolution

Example 12-4. PortOwner.java

import javax.comm.*;
import java.io.*;
import javax.swing.*;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Resolving Port Conflicts | 327

/** Demonstrate the port conflict resolution mechanism.
 * Run two copies of this program and choose the same port in each.
 */
public class PortOwner extends CommPortOpen {
 /** A name for showing which of several instances of this program */
 String myName;

 public PortOwner(String name)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 super(null);
 myName = name;
 thePortID.addPortOwnershipListener(new MyResolver());
 }

 public void converse() {
 // lah de dah...
 // To simulate a long conversation on the port...

 try {
 Thread.sleep(1000 * 1000);
 } catch (InterruptedException cantHappen) {
 //
 }
 }

 /** An inner class that handles the ports conflict resolution. */
 class MyResolver implements CommPortOwnershipListener {
 protected boolean owned = false;
 public void ownershipChange(int whaHoppen) {
 switch (whaHoppen) {
 case PORT_OWNED:
 System.out.println("An open succeeded.");
 owned = true;
 break;
 case PORT_UNOWNED:
 System.out.println("A close succeeded.");
 owned = false;
 break;
 case PORT_OWNERSHIP_REQUESTED:
 if (owned) {
 if (JOptionPane.showConfirmDialog(null,
 "I've been asked to give up the port, should I?",
 "Port Conflict (" + myName + ")",
 JOptionPane.OK_CANCEL_OPTION) == 0)
 thePort.close();
 } else {
 System.out.println("Somebody else has the port");
 }
 }
 }
 }

Example 12-4. PortOwner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 12: Programming External Devices: Serial and Parallel Ports

Note the single argument to ownershipChange(). Do not assume that only your lis-
tener will be told when an event occurs; it will be called whether you are the affected
program or simply a bystander. To see if you are the program being requested to give
up ownership, you have to check to see if you already have the port that is being
requested (for example, by opening it successfully!).

12.5 Reading and Writing: Lock-Step

Problem
You want to read and write on a port, and your communications needs are simple.

Solution
Just use read and write calls.

Discussion
Suppose you need to send a command to a device and get a response back, and then
send another, and get another. This has been called a “lock-step” protocol, since
both ends of the communication are locked into step with one another, like soldiers
on parade. There is no requirement that both ends be able to write at the same time
since you know what the response to your command should be and don’t proceed
until you have received that response. A well-known example is using a standard
Hayes-command-set modem to just dial a phone number. In its simplest form, you
send the command string ATZ and expect the response OK; then send ATD with the
number, and expect CONNECT. To implement this, we first subclass from
CommPortOpen to add two functions, send and expect, which perform reasonably obvi-
ous functions for dealing with such devices. See Example 12-5.

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 if (argv.length != 1) {
 System.err.println("Usage: PortOwner aname");
 System.exit(1);
 }

 new PortOwner(argv[0]).converse();

 System.exit(0);
 }
}

Example 12-4. PortOwner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing: Lock-Step | 329

Example 12-5. CommPortModem.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Subclasses CommPortOpen and adds send/expect handling for dealing
 * with Hayes-type modems.
 *
 */
public class CommPortModem extends CommPortOpen {
 /** The last line read from the serial port. */
 protected String response;
 /** A flag to control debugging output. */
 protected boolean debug = true;

 public CommPortModem(Frame f)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {
 super(f);
 }

 /** Send a line to a PC-style modem. Send \r\n, regardless of
 * what platform we're on, instead of using println().
 */
 protected void send(String s) throws IOException {
 if (debug) {
 System.out.print(">>> ");
 System.out.print(s);
 System.out.println();
 }
 os.print(s);
 os.print("\r\n");

 // Expect the modem to echo the command.
 if (!expect(s)) {
 System.err.println("WARNING: Modem did not echo command.");
 }

 // The modem sends an extra blank line by way of a prompt.
 // Here we read and discard it.
 String junk = is.readLine();
 if (junk.length() != 0) {
 System.err.print("Warning: unexpected response: ");
 System.err.println(junk);
 }
 }

 /** Read a line, saving it in "response".
 * @return true if the expected String is contained in the response, false if not.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 12: Programming External Devices: Serial and Parallel Ports

Finally, Example 12-6 extends our CommPortModem program to initialize the modem
and dial a telephone number.

 protected boolean expect(String exp) throws IOException {
 response = is.readLine();
 if (debug) {
 System.out.print("<<< ");
 System.out.print(response);
 System.out.println();
 }
 return response.indexOf(exp) >= 0;
 }
}

Example 12-6. CommPortDial.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Dial a phone using the Java Communications Package.
 *
 */
public class CommPortDial extends CommPortModem {

 protected static String number = "000-0000";

 public static void main(String[] ap)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {
 if (ap.length == 1)
 number = ap[0];
 new CommPortDial().converse();
 System.exit(0);
 }

 public CommPortDial()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {
 super(null);
 }

 protected void converse() throws IOException {

 String resp; // the modem response.

 // Send the reset command
 send("ATZ");

 expect("OK");

 send("ATDT" + number);

Example 12-5. CommPortModem.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing: Event-Driven | 331

12.6 Reading and Writing: Event-Driven

Problem
After the connection is made, you don’t know what order to read or write in.

Solution
Use Java Communication Events to notify you when data becomes available. Or use
threads (see Recipe 12.7).

Discussion
While lock-step mode is acceptable for dialing a modem, it breaks down when you
have two independent agents communicating over a port. Either end may be a per-
son or a program, so you cannot predict who will need to read and who will need to
write. Consider the simplest case: the programs at both ends try to read at the same
time! Using the lock-step model, each end will wait forever for the other end to write
something. This error condition is known as a deadlock, since both ends are locked
up, dead, until a person intervenes, or the communication line drops, or the world
ends, or somebody making tea blows a fuse and causes one of the machines to halt.

There are two general approaches to this problem: event-driven activity, wherein the
Communications API notifies you when the port is ready to be read or written; and
threads-based activity, wherein each “direction” (from the user to the remote, and
from the remote to the user) has its own little flow of control, causing only the reads
in that direction to wait. We’ll discuss each of these.

First, Example 12-7 reads from a serial port using the event-driven approach.

 expect("OK");

 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 // nothing to do
 }
 is.close();
 os.close();
 }
}

Example 12-7. SerialReadByEvents.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

Example 12-6. CommPortDial.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 12: Programming External Devices: Serial and Parallel Ports

/**
 * Read from a Serial port, notifying when data arrives.
 * Simulation of part of an event-logging service.
 */
public class SerialReadByEvents extends CommPortOpen
 implements SerialPortEventListener {

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new SerialReadByEvents(null).converse();
 }

 /* Constructor */
 public SerialReadByEvents(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 super(f);
 }

 protected BufferedReader ifile;

 /**
 * Hold the conversation.
 */
 protected void converse() throws IOException {

 if (!(thePort instanceof SerialPort)) {
 System.err.println("But I wanted a SERIAL port!");
 System.exit(1);
 }
 // Tell the Comm API that we want serial events.
 ((SerialPort)thePort).notifyOnDataAvailable(true);
 try {
 ((SerialPort)thePort).addEventListener(this);
 } catch (TooManyListenersException ev) {
 // "CantHappen" error
 System.err.println("Too many listeners(!) " + ev);
 System.exit(0);
 }

 // Make a reader for the input file.
 ifile = new BufferedReader(new InputStreamReader(is));

 //
 }
 public void serialEvent(SerialPortEvent ev) {
 String line;
 try {
 line = ifile.readLine();

Example 12-7. SerialReadByEvents.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing: Event-Driven | 333

As you can see, the serialEvent() method does the readLine() calls. “But wait!” I
hear you say. “This program is not a very meaningful example. It could just as easily
be implemented using the lock-step method of Recipe 12.5.” True enough, gentle
reader. Have patience with your humble and obedient servant. Here is a program
that reads from any of the serial ports, whenever data arrives. The program is repre-
sentative of a class of programs called “data loggers,” which receive data from a
number (possibly a large number) of remote locations, and log them centrally. One
example is a burglar alarm monitoring station, which needs to log activities such as
the alarm being turned off at the close of the day, entry by the cleaners later, what
time they left, and so on. And then, of course, it needs to notify the operator of the
monitoring station when an unexpected event occurs. This last step is left as an exer-
cise for the reader.

Example 12-8 makes use of the EventListener model and uses a unique instance of
the inner class Logger for each serial port it’s able to open.

 if (line == null) {
 System.out.println("EOF on serial port.");
 System.exit(0);
 }
 os.println(line);
 } catch (IOException ex) {
 System.err.println("IO Error " + ex);
 }
 }
}

Example 12-8. SerialLogger.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Read from multiple Serial ports, notifying when data arrives on any.
 */
public class SerialLogger {

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new SerialLogger();
 }

 /* Constructor */
 public SerialLogger()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

Example 12-7. SerialReadByEvents.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 12: Programming External Devices: Serial and Parallel Ports

 // get list of ports available on this particular computer,
 // by calling static method in CommPortIdentifier.
 Enumeration pList = CommPortIdentifier.getPortIdentifiers();

 // Process the list, saving Serial Ports in ComboBoxes
 while (pList.hasMoreElements()) {
 CommPortIdentifier cpi = (CommPortIdentifier)pList.nextElement();
 String name = cpi.getName();
 System.out.print("Port " + name + " ");
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 System.out.println("is a Serial Port: " + cpi);

 SerialPort thePort;
 try {
 thePort = (SerialPort)cpi.open("Logger", 1000);
 } catch (PortInUseException ev) {
 System.err.println("Port in use: " + name);
 continue;
 }

 // Tell the Comm API that we want serial events.
 thePort.notifyOnDataAvailable(true);
 try {
 thePort.addEventListener(new Logger(cpi.getName(), thePort));
 } catch (TooManyListenersException ev) {
 // "CantHappen" error
 System.err.println("Too many listeners(!) " + ev);
 System.exit(0);
 }
 }
 }
 }

 /** Handle one port. */
 public class Logger implements SerialPortEventListener {
 String portName;
 SerialPort thePort;
 BufferedReader ifile;
 public Logger(String name, SerialPort port) throws IOException {
 portName = name;
 thePort = port;
 // Make a reader for the input file.
 ifile = new BufferedReader(
 new InputStreamReader(thePort.getInputStream()));
 }
 public void serialEvent(SerialPortEvent ev) {
 String line;
 try {
 line = ifile.readLine();
 if (line == null) {
 System.out.println("EOF on serial port.");
 System.exit(0);

Example 12-8. SerialLogger.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing: Threads | 335

12.7 Reading and Writing: Threads

Problem
After the connection is made, you don’t know what order to read or write in.

Solution
Use a thread to handle each direction.

Discussion
When you have two things that must happen at the same time or unpredictably, the
normal Java paradigm is to use a thread for each. We discuss threads in detail in
Chapter 24, but for now, think of a thread as a small, semi-independent flow of con-
trol within a program, just as a program is a small, self-contained flow of control
within an operating system. The Thread API requires you to construct a method
whose signature is public void run() to do the body of work for the thread and call
the start() method of the thread to “ignite” it and start it running independently.
This example creates a Thread subclass called DataThread, which reads from one file
and writes to another. DataThread works a byte at a time so that it works correctly
with interactive prompts, which don’t end at a line ending. My now-familiar
converse() method creates two of these DataThreads, one to handle data “traffic”
from the keyboard to the remote, and one to handle bytes arriving from the remote
and copy them to the standard output. For each of these, the start() method is
called. Example 12-9 shows the entire program.

 }
 System.out.println(portName + ": " + line);
 } catch (IOException ex) {
 System.err.println("IO Error " + ex);
 }
 }
 }
}

Example 12-9. CommPortThreaded.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * This program tries to do I/O in each direction using a separate Thread.
 */
public class CommPortThreaded extends CommPortOpen {

Example 12-8. SerialLogger.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 12: Programming External Devices: Serial and Parallel Ports

 public static void main(String[] ap)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {
 CommPortThreaded cp;
 try {
 cp = new CommPortThreaded();
 cp.converse();
 } catch(Exception e) {
 System.err.println("You lose!");
 System.err.println(e);
 }
 }

 public CommPortThreaded()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {
 super(null);
 }

 /** This version of converse() just starts a Thread in each direction.
 */
 protected void converse() throws IOException {

 String resp; // the modem response.

 new DataThread(is, System.out).start();
 new DataThread(new DataInputStream(System.in), os).start();

 }

 /** This inner class handles one side of a conversation. */
 class DataThread extends Thread {
 DataInputStream inStream;
 PrintStream pStream;

 /** Construct this object */
 DataThread(DataInputStream is, PrintStream os) {
 inStream = is;
 pStream = os;
 }

 /** A Thread's run method does the work. */
 public void run() {
 byte ch = 0;
 try {
 while ((ch = (byte)inStream.read()) != -1)
 pStream.print((char)ch);
 } catch (IOException e) {
 System.err.println("Input or output error: " + e);
 return;
 }
 }
 }
}

Example 12-9. CommPortThreaded.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Penman Plotter | 337

12.8 Program: Penman Plotter
The program in Example 12-10 is an outgrowth of the Plotter class from Recipe 9.12.
It connects to a Penman plotter. These serial-port plotters were made in the United
Kingdom in the 1980s, so it is unlikely that you will meet one. However, several
companies still make pen plotters. See Figure 12-4 for a photograph of the plotter in
action.

Figure 12-4. Penman plotter in action

Example 12-10. Penman.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * A Plotter subclass for drawing on a Penman plotter.
 * These were made in the UK and sold into North American markets.
 * It is a little "turtle" style robot plotter that communicates
 * over a serial port. For this, we use the "Java Communications" API.
 *
 */
public class Penman extends Plotter {
 private final String OK_PROMPT = "\r\n!";
 private final int MAX_REPLY_BYTES = 50; // paranoid upper bound
 private SerialPort tty;
 private DataInputStream is;
 private DataOutputStream os;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 12: Programming External Devices: Serial and Parallel Ports

 /** Construct a Penman plotter object */
 public Penman() throws NoSuchPortException,PortInUseException,
 IOException,UnsupportedCommOperationException {
 super();
 init_comm("COM2"); // setup serial commx
 init_plotter(); // set plotter to good state
 }

 private void init_plotter() {
 send("I"); expect('!'); // eat VERSION etc., up to !
 send("I"); expect('!'); // wait for it!
 send("H"); // find home position
 expect('!'); // wait for it!
 send("A"); // Set to use absolute coordinates
 expect('!');
 curx = cury = 0;
 penUp();
 }

 //
 // PUBLIC DRAWING ROUTINES
 //

 public void setFont(String fName, int fSize) {
 // Font name is ignored for now...

 // Penman's size is in mm, fsize in points (inch/72).
 int size = (int)(fSize*25.4f/72);
 send("S"+size + ","); expect(OK_PROMPT);
 System.err.println("Font set request: " + fName + "/" + fSize);
 }

 public void drawString(String mesg) {
 send("L" + mesg + "\r"); expect(OK_PROMPT);
 }

 /** Move to a relative location */
 public void rmoveTo(int incrx, int incry){
 moveTo(curx + incrx, cury + incry);
 }

 /** move to absolute location */
 public void moveTo(int absx, int absy) {
 System.err.println("moveTo ["+absx+","+absy+"]");
 curx = absx;
 cury = absy;
 send("M" + curx + "," + cury + ","); expect(OK_PROMPT);
 }

 private void setPenState(boolean up) {
 penIsUp = up;
 System.err.println("Pen Up is ["+penIsUp+"]");
 }

Example 12-10. Penman.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Penman Plotter | 339

 public void penUp() {
 setPenState(true);
 send("U"); expect(OK_PROMPT);
 }
 public void penDown() {
 setPenState(false);
 send("D"); expect(OK_PROMPT);
 }
 public void penColor(int c) {
 penColor = (c%3)+1; // only has 3 pens, 4->1
 System.err.println("PenColor is ["+penColor+"]");
 send("P" + c + ","); expect(OK_PROMPT);
 }

 //
 // PRIVATE COMMUNICATION ROUTINES
 // (XXX Should re-use CommPortOpen here).

 private void init_comm(String portName) throws
 NoSuchPortException, PortInUseException,
 IOException, UnsupportedCommOperationException {

 // get list of ports available on this particular computer.
 // Enumeration pList = CommPortIdentifier.getPortIdentifiers();

 // Print the list. A GUI program would put these in a chooser!
 // while (pList.hasMoreElements()) {
 // CommPortIdentifier cpi = (CommPortIdentifier)pList.nextElement();
 // System.err.println("Port " + cpi.getName());
 // }

 // Open a port.
 CommPortIdentifier port =
 CommPortIdentifier.getPortIdentifier(portName);

 // This form of openPort takes an Application Name and a timeout.
 tty = (SerialPort) port.openPort("Penman Driver", 1000);

 // set up the serial port
 tty.setSerialPortParams(9600, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 tty.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_OUT|
 SerialPort.FLOWCONTROL_RTSCTS_OUT);

 // Get the input and output streams
 is = new DataInputStream(tty.getInputStream());
 os = new DataOutputStream(tty.getOutputStream());
 }

 /** Send a command to the plotter. Although the argument is a String,
 * we send each char as a *byte*, so avoid 16-bit characters!
 * Not that it matters: the Penman only knows about 8-bit chars.
 */

Example 12-10. Penman.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 12: Programming External Devices: Serial and Parallel Ports

See Also
The online source includes a program called JModem that implements remote connec-
tions (like tip or cu on Unix, or HyperTerminal on Windows). It is usable but too
long to include in this book.

 private void send(String s) {
 System.err.println("sending " + s + "...");
 try {
 for (int i=0; i<s.length(); i++)
 os.writeByte(s.charAt(i));
 } catch(IOException e) {
 e.printStackTrace();
 }
 }

 /** Expect a given CHAR for a result */
 private void expect(char s) {
 byte b;
 try {
 for (int i=0; i<MAX_REPLY_BYTES; i++){
 if ((b = is.readByte()) == s) {
 return;
 }
 System.err.print((char)b);
 }
 } catch (IOException e) {
 System.err.println("Penman:expect(char "+s+"): Read failed");
 System.exit(1);
 }
 System.err.println("ARGHH!");
 }

 /** Expect a given String for a result */
 private void expect(String s) {
 byte ans[] = new byte[s.length()];

 System.err.println("expect " + s + " ...");
 try {
 is.read(ans);
 } catch (IOException e) {
 System.err.println("Penman:expect(String "+s+"): Read failed");
 System.exit(1);
 };
 for (int i=0; i<s.length() && i<ans.length; i++)
 if (ans[i] != s.charAt(i)) {
 System.err.println("MISMATCH");
 break;
 }
 System.err.println("GOT: " + new String(ans));

 }
}

Example 12-10. Penman.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Penman Plotter | 341

As mentioned, a USB standard for Java is in progress; check on http://www.jcp.org/jsr/
detail/80.jsp to see if it has been released by the time you read this. The JSR reference
implementation can be downloaded from http://sourceforge.net/projects/javax-usb/.

There are other specialized APIs for dealing with particular devices. For communicat-
ing with Palm Computing Platform devices, you can either use the Palm SDK for Java
from Palm Computing, or one of various third-party APIs such as jSyncManager by
Brad Barclay, now available from http://www.jsyncmanager.org/. Consult your favor-
ite search engine to find others. There is also an XML-based synchronization inter-
face for mobile devices, called SyncML. Information about SyncML can be found at
http://www.openmobilealliance.org/syncml/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342

Chapter 13Java GraphicsCHAPTER 13

Graphics and Sound

13.0 Introduction
The Graphics class and the Component method paint() have survived virtually
unchanged since the early days of Java. Together they provide a basic but quite func-
tional graphics capability. The first printing API was put forward in 1.1, and it was
promptly replaced in 1.2. Both printing APIs, fortunately, are based on use of Graphics
objects, so drawing code did not have to change; only the details of getting the right
kind of Graphics object changed in moving from 1.1 to 1.2. The 2D (two-dimensional
graphics) package is also based on Graphics; Graphics2D is a subclass of Graphics. To
put the 2D graphics in perspective, think about the tremendous boost that the Adobe
PostScript language gave to desktop publishing and printing. PostScript is both a
scripting language and a marking engine: it has the ability to make a terrific variety of
marks on paper. Since Java is already a comprehensive programming language, the 2D
API needed only to add the marking engine. This it did very well, using several ideas
imported from PostScript via Adobe’s participation in the early design.

Also present from the beginning was the AudioClip class, which represents a play-
able sound file. In JDK 1.2, this was extended to support additional formats (includ-
ing MIDI) and to be usable from within an application as well. Meanwhile, the Java
Media Framework—standard extension javax.media—provides for playing (and
eventually recording) audio, video, and possibly other media with much greater con-
trol over the presentation. You’ll see examples in this chapter.

But first let’s look at the Graphics class. Many of the code examples in this chapter
can be used either in applications (which we’ll see in Recipe 13.2) or in applets (dis-
cussed more in Chapter 18).

13.1 Painting with a Graphics Object

Problem
You want to draw something on the screen.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Painting with a Graphics Object | 343

Solution
In your paint() method, use the provided Graphics object’s drawing methods:

// graphics/PaintDemo.java
import java.awt.*;

public class PaintDemo extends Component {
 int rectX = 20, rectY = 30;
 int rectWidth = 50, rectHeight = 50;

 public void paint(Graphics g) {
 g.setColor(Color.red);
 g.fillRect(rectX, rectY, rectWidth, rectHeight);
 }
 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

Discussion
The Graphics class has a large set of drawing primitives. Each shape—Rect(angle),
Arc, Ellipse, and Polygon—has a draw method (draws just the outline) and a fill
method (fills inside the outline). You don’t need both, unless you want the outline
and the interior (fill) of a shape to be different colors. The method drawString() and
its relatives let you print text on the screen (see Recipe 13.3). There are also
drawLine()—which draws straight line segments—setColor/getColor, setFont/
getFont, and many other methods. Too many to list here, in fact; see Sun’s online
documentation for java.awt.Graphics.

When to draw?

A common beginner’s mistake used to be to call getGraphics() and call the Graphics
object’s drawing methods from within a main program or the constructor of a
Component subclass. Fortunately we now have any number of books to tell us that the
correct way to draw anything is with your component’s paint method. Why? Because
you can’t draw in a window until it’s actually been created and (on most window
systems) mapped to the screen, which takes much more time than your main pro-
gram or constructor has. The drawing code needs to wait patiently until the window
system notifies the Java runtime that it’s time to paint the window.

Where do you put your drawing code? This is one situation where you need to think
about AWT versus Swing. AWT, the basic windowing system (and the only one in
JDK 1.1) uses a method called paint(). This method is still available in Swing, but
due to interaction with borders and the like, it is recommended that you override
paintComponent() instead. Both are called with a single argument of type Graphics.
Your paintComponent() should start by calling super.paintComponent() with the
same argument to ensure that components are painted in proper back-to-front order,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 13: Graphics and Sound

while paint() should not call its parent. Some examples in this chapter use paint()
and others use paintComponent(); the latter also usually extend JPanel. This allows
better interaction with Swing, and also allows you to place these as the main compo-
nent in a JFrame by calling setContentPane(), which eliminates an extra layer of con-
tainer. (JFrame’s ContentPane is discussed in Recipe 14.1.)

13.2 Testing Graphical Components

Problem
You don’t want to have to write a little main program with a frame each time you
write a subclass of Component.

Solution
Use my CompTest class, which has a main method that builds a frame and installs
your component into it.

Discussion
CompTest is a small main program that takes a class name from the command line,
instantiates it (see Recipe 25.3), and puts it in a JFrame, along with an Exit button
and its action handler. It also worries a bit over making sure the window comes out
the right size. Many of these issues relate to the GUI rather than graphics and are dis-
cussed in Chapter 14.

The class to be tested must be a subclass of Component, or an error message is printed.
This is very convenient for running small component classes, and I show a lot of
these in this chapter and the next. Using it is simplicity itself; for example, to instan-
tiate the DrawStringDemo2 class from Recipe 13.3, you just say:

java CompTest DrawStringDemo2

The result is shown on the left side of Figure 13-1. It’s interesting to try running it on
some of the predefined classes. A JTree (Java’s tree view widget, used in Recipe 19.9)
no-argument constructor creates a JTree that comes up with a demonstration set of
data, as in Figure 13-1, right.

Since little of this relates to the material in this chapter, I don’t show the source for
CompTest; however, it’s included in the online code examples for the book.

13.3 Drawing Text

Problem
You need to draw text in a component.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing Centered Text in a Component | 345

Solution
Simply call the drawString() method in the Graphics class:

// graphics/DrawStringDemo.java
import java.awt.*;

public class DrawStringDemo extends Component {
 int textX = 10, textY = 20;
 public void paint(Graphics g) {
 g.drawString("Hello Java", textX, textY);
 }
 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

13.4 Drawing Centered Text in a Component

Problem
You want to draw text neatly centered in a component.

Solution
Measure the width and height of the string in the given font, and subtract it from the
width and height of the component. Divide by two, and use this as your drawing
location.

Discussion
The program DrawStringDemo2 measures the width and height of a string (see
Figure 13-2 for some attributes of the text). The program then subtracts the size of
the text from the size of the component, divides this by two, and thereby centers the
text in the given component.

public class DrawStringDemo2 extends Component {
 String message = "Hello Java";

Figure 13-1. CompTest showing DrawStringDemo2 (left) and javax.swing.JTree (right)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 13: Graphics and Sound

 /** Paint is called (by AWT) when it's time to draw the text. */
 public void paint(Graphics g) {
 // Get the current Font, and ask it for its FontMetrics.
 FontMetrics fm = getFontMetrics(getFont());

 // Use the FontMetrics to get the width of the String.
 // Subtract this from width, divide by 2, that's our starting point.
 int textX = (getSize().width - fm.stringWidth(message))/2;
 if (textX<0) // If string too long, start at 0
 textX = 0;

 // Same as above but for the height
 int textY = (getSize().height + fm.getAscent())/2 - fm.getDescent();
 if (textY<0)
 textY = 0;

 // Now draw the text at the computed spot.
 g.drawString(message, textX, textY);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

This is so common that you’d expect Java to have encapsulated the whole thing as a
service, and in fact, Java does do this. What we have here is what most GUI compo-
nent architectures call a label. As we’ll see in Chapter 14, Java provides a Label com-
ponent that allows for centered (or left- or right-aligned) text and supports the
setting of fonts and colors. It also offers JLabel, which provides image icons in addi-
tion to or instead of text.

See Also
To draw formatted text—as in a word processor—requires considerably more com-
plexity. You’ll find an example in the online source under the JabberPoint program (see
ShowView.java). This program also implements the Model-View-Controller pattern.

Figure 13-2. Font metrics

character
width

string width

x-height

baseline

ascender

descender

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing a Drop Shadow | 347

13.5 Drawing a Drop Shadow

Problem
You want to draw text or graphical objects with a “drop shadow” effect, as in
Figure 13-3.

Solution
Draw the component twice, with the darker shadow behind and the “real” color,
slightly offset, in front.

Discussion
Program DropShadow does just this. It also uses a Font object from java.awt to exer-
cise some control over the typeface.

The program in Example 13-1 is unabashedly an applet; to run it, you should invoke it
as appletviewer DropShadow.htm (the details of such HTML files* are in Recipe 18.1).

Figure 13-3. Drop shadow text

* In all my applet examples I use a filename ending in htm instead of the more traditional html because the
Javadoc program (see Recipe 23.2) overwrites the html file without notice. AppletViewer doesn’t care either
way.

Example 13-1. DropShadow.java

import java.applet.*;
import java.awt.*;

/**
 * DropShadow -- show overlapped painting.
 */
public class DropShadow extends Applet {
 /** The label that is to appear in the window */
 protected String theLabel = null;
 /** The width and height */
 protected int width, height;
 /** The name of the font */
 protected String fontName;
 /** The font */
 protected Font theFont;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 13: Graphics and Sound

 /** The size of the font */
 protected int fontSize = 18;
 /** The offset for the drop shadow */
 protected int theOffset = 3;
 /** True if we got all required parameters */
 protected boolean inittedOK = false;

 /** Called from the browser to set up. We want to throw various
 * kinds of exceptions but the API predefines that we don't, so we
 * limit ourselves to the ubiquitous IllegalArgumentException.
 */
 public void init() {
 // System.out.println("In DropShadow init()");

 theLabel = getParameter("label");
 if (theLabel == null)
 throw new IllegalArgumentException("LABEL is REQUIRED");
 // Now handle font stuff.
 fontName = getParameter("fontname");
 if (fontName == null)
 throw new IllegalArgumentException("FONTNAME is REQUIRED");
 String s;
 if ((s = getParameter("fontsize")) != null)
 fontSize = Integer.parseInt(s);
 if (fontName != null || fontSize != 0) {
 theFont = new Font(fontName, Font.BOLD + Font.ITALIC, fontSize);
 System.out.println("Name " + fontName + ", font " + theFont);
 }
 if ((s = getParameter("offset")) != null)
 theOffset = Integer.parseInt(s);
 setBackground(Color.green);
 inittedOK = true;
 }

 /** Paint method showing drop shadow effect */
 public void paint(Graphics g) {
 if (!inittedOK)
 return;
 g.setFont(theFont);
 g.setColor(Color.black);
 g.drawString(theLabel, theOffset+30, theOffset+50);
 g.setColor(Color.white);
 g.drawString(theLabel, 30, 50);
 }

 /** Give Parameter info to the AppletViewer, just for those
 * writing HTML without hardcopy documentation :-)
 */
 public String[][] getParameterInfo() {
 String info[][] = {
 { "label", "string", "Text to display" },
 { "fontname", "name", "Font to display it in" },
 { "fontsize", "10-30?", "Size to display it at" },

Example 13-1. DropShadow.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing Text with 2D | 349

Standard AWT uses a very simple paint model for drawing. I guess that’s why the
method you have to write is called paint(). Let’s go back to the paper age for a
moment. If you paint something on a piece of paper and then paint over it with a dif-
ferent color, what happens? If you’re old enough to remember paper, you’ll know
that the second color covers up the first color. Well, AWT works in pretty much the
same way. No fair asking about water-based paints that run together; Java’s painting
is more like fast-drying oil paints. The fact that AWT retains all the bits (pixels, or
picture elements) that you don’t draw, plus the fact that methods like drawString()
have extremely good aim, make it very easy to create a drop shadow and to combine
graphics drawings in interesting ways.

Remember to draw from the back to the front, though. To see why, try interchang-
ing the two calls to drawString() in the previous code.

A word of warning: don’t mix drawing with added GUI components (see
Chapter 14). For example, say you had a paint method in an applet or other con-
tainer and had add()ed a button to it. This works on some implementations of Java,
but not on others: only the painting or the button appears, not both. It’s not porta-
ble, so don’t do it—you’ve been warned! Instead, you should probably use multiple
components; see the JFrame’s getContentPane() and getGlassPane(), discussed in
Chapter 8 of Java Swing, for details.

An alternative method of obtaining a drop shadow effect is covered in Recipe 13.6.

13.6 Drawing Text with 2D

Problem
You want fancier drawing abilities.

Solution
Use a Graphics2D object.

Discussion
The 2D graphics added in JDK 1.2 could be the subject of an entire book, and in
fact, it is. Java 2D Graphics by Jonathan Knudsen (O’Reilly) covers every imaginable
aspect of this comprehensive graphics package. Here I’ll just show one example:
drawing text with a textured background.

 };
 return info;
 }
}

Example 13-1. DropShadow.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 13: Graphics and Sound

The Graphics2D class is a direct subclass of the original Java Graphics object. In fact,
your paint() method is always called with an instance of Graphics2D. So begin your
paint method by casting appropriately:

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

You can then use any Graphics2D methods or any regular Graphics methods, getting
to them with the object reference g2. One of the additional methods in Graphics2D is
setPaint(), which can take the place of setColor() to draw with a solid color. How-
ever, it can also be called with several other types, and in this case we pass in an
object called a TexturePaint, which refers to a pattern. Our pattern is a simple set of
diagonal lines, but any pattern or even a bitmap from a file (see Recipe 13.8) can be
used. Figure 13-4 shows the resulting screen (it looks even better in color); the pro-
gram itself is shown in Example 13-2.

Figure 13-4. TexturedText in action

Example 13-2. TexturedText.java

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;

/** Text with a Texture
 */
public class TexturedText extends Component {
 /** The image we draw in the texture */
 protected BufferedImage bim;
 /** The texture for painting. */
 TexturePaint tp;
 /** The string to draw. */
 String mesg = "Stripey";
 /** The font */
 Font myFont = new Font("Lucida Regular", Font.BOLD, 72);

 /** "main program" method - construct and show */
 public static void main(String av[]) {
 // create a TexturedText object, tell it to show up
 final Frame f = new Frame("TexturedText");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing Text with 2D | 351

 TexturedText comp = new TexturedText();
 f.add(comp);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 f.pack();
 f.setLocation(200, 200);
 f.setVisible(true);
 }

 protected static Color[] colors = {
 Color.green, Color.red, Color.blue, Color.yellow,
 };

 /** Construct the object */
 public TexturedText() {
 super();
 setBackground(Color.white);
 int width = 8, height = 8;
 bim = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = bim.createGraphics();
 for (int i=0; i<width; i++) {
 g2.setPaint(colors[(i/2)%colors.length]);
 g2.drawLine(0, i, i, 0);
 g2.drawLine(width-i, height, width, height-i);
 }
 Rectangle r = new Rectangle(0, 0, bim.getWidth(), bim.getHeight());
 tp = new TexturePaint(bim, r);
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2.setPaint(tp);
 g2.setFont(myFont);
 g2.drawString(mesg, 20, 100);
 }

 public Dimension getMinimumSize() {
 return new Dimension(250, 100);
 }

 public Dimension getPreferredSize() {
 return new Dimension(320, 150);
 }
}

Example 13-2. TexturedText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 13: Graphics and Sound

 See Also
I have not discussed how to scale, rotate, or otherwise transmogrify an image using
the AffineTransform class in Java 2D graphics, as such topics are beyond the scope of
this book. Consult the previously mentioned Java 2D Graphics.

13.7 Drawing Text with an Application Font

Problem
You want to provide a font with your application but not require users to install it as
a “system font” on all platforms.

Solution
Use Font.createFont(...), which returns a scalable Font object, and scale it with
deriveFont(int nPoints).

Discussion
JDK 1.3 introduced the static method Font.createFont(), which allows you to have
a “private” font that can be used in your application without having it installed using
the operating system’s font mechanism. Users can then use your application and its
custom font without having to have “root” or “administration” privileges on sys-
tems that require this in order to install fonts.

The createFont() method requires two arguments. The first is an int, which must be
the public static field Font.TRUETYPE_FONT, and the second is an InputStream (see Rec-
ipe 10.15) that is open for reading the binary file. As you can infer from the require-
ment that the first argument be Font.TRUETYPE_FONT, only TrueType fonts are
supported at present. The Font class documentation, ever the optimist, states that
this field is to allow possible future addition of other font formats, though none is
promised. Given the availability of free PostScript font renderers, such as the one in
the X Window System XFree86, it should be possible to add PostScript font support
in the future. Example 13-3 is a listing of a small standalone application that creates
the window shown in Figure 13-5.

Figure 13-5. TTFontDemo in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing Text with an Application Font | 353

Example 13-3. Demo of an application font

/** Demo of making TrueType font usable in Java. This is a way cool facility
 * because it means you can have "application-specific" fonts in Java;
 * your application can have its own distinctive font that the user does
 * NOT have to install into the JRE before you can use it.
 * (of course they can install it if they have privileges and want to).
 * <p>
 * Must remain Swing-based despite problems on older systems, since
 * apparently only Swing components can use TTF fonts in this implementation.
 * <p>
 * Did NOT work for me in Applet nor JApplet due to
 * security problems (requires to create a temp file). Could be made
 * to work by providing a policy file.
 * @author Ian Darwin
 * @since 1.3
 */
public class TTFontDemo extends JLabel {

 /** Construct a TTFontDemo -- Create a Font from TTF.
 */
 public TTFontDemo(String fontFileName, String text)
 throws IOException, FontFormatException {
 super(text, JLabel.CENTER);

 setBackground(Color.white);

 // First, see if we can load the font file.
 InputStream is = this.getClass().getResourceAsStream(fontFileName);
 if (is == null) {
 throw new IOException("Cannot open " + fontFileName);
 }

 // createFont makes a 1-point font, bit hard to read :-)
 Font ttfBase = Font.createFont(Font.TRUETYPE_FONT, is);

 // So scale it to 24 pt.
 Font ttfReal = ttfBase.deriveFont(Font.PLAIN, 24);

 setFont(ttfReal);
 }

 /** Simple main program for TTFontDemo */
 public static void main(String[] args) throws Exception {

 String DEFAULT_MESSAGE =
 "What hath man wrought? Or at least rendered?";
 String DEFAULT_FONTFILE =
 "Kellyag_.ttf";
 String message = args.length == 1 ? args[0] : DEFAULT_MESSAGE;
 JFrame f = new JFrame("TrueType Font Demo");

 TTFontDemo ttfd = new TTFontDemo(DEFAULT_FONTFILE, message);
 f.getContentPane().add(ttfd);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 13: Graphics and Sound

This font technology has some restrictions. First, as noted in the comments, you can
use this font only on a Swing JComponent, not on an AWT Component (see Chapter 14).

Also, this technique cannot easily be used in an applet. The createFont() method
obviously requires some very clever code and, for this reason, is apparently unable to
do its work from an opened InputStream; it copies the TrueType font file to the local
disk to work on it. This may cause a security exception to be thrown. The program
in TTFontApplet in the online source shows an applet that attempts to reuse the code
from the TTFontDemo program. Invoking this as an applet fails when used with
Netscape 4 due to lack of a complete Swing implementation; it throws a
SecurityException when used with the Java Plug-in under older Netscape versions,
but works fine when invoked under Apple’s browser, Safari, which uses the latest
installed JRE (in my case, Java 1.4.1_03). And it should also work in an application
downloaded using Java WebStart (see Recipe 23.13).

13.8 Drawing an Image

Problem
You want to display an image, a preformatted bitmap, or raster file.

Solution
Use the Graphics drawImage() method in your paint routine. Image objects represent
bitmaps. They are normally loaded from a file via getImage() but can also be synthe-
sized using createImage(). You can’t construct them yourself, however: the Image
class is abstract. Once you have an image, displaying it is trivial:

// File graphics/DrawImageDemo.java
public void paint(Graphics g) {
 g.drawImage(myImage, 0, 0, this);
}

Discussion
You can get an image by using a routine named, naturally, getImage(). If your code
is used only in an applet, you can use the Applet method getImage(), but if you want
it to run in an application as well, you need to use the Toolkit version, which takes
either a filename or a URL. The filename, of course, when it turns up in an applet,
fails with a security exception unless the user installs a policy file. Program GetImage
shows the code for doing this both ways:

 f.setBounds(100, 100, 700, 250);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

Example 13-3. Demo of an application font (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing an Image | 355

/*
 * For Applet, invoke as:
 * <applet code=”GetImage” width=”100” height=”100”>
 * </applet>
 * For Application, just run it (has own main).
 */

import java.awt.Graphics;
import java.awt.Image;
import java.net.URL;

import javax.swing.JApplet;
import javax.swing.JFrame;

/** This program, which can be an Applet or an Application,
 * shows a form of Toolkit.getImage() which works the same
 * in either Applet or Application!
 */
public class GetImage extends JApplet {

Image image;

public void init() {
loadImage();

}

public void loadImage() {
// Applet-only version:
// image = getImage(getCodeBase(), “Duke.gif”);

// Portable version: getClass().getResource() works in either
// applet or application, 1.1 or 1.3, returns URL for file name.
URL url = getClass().getResource(“Duke.gif”);
image = getToolkit().getImage(url);
// Shorter portable version: same but avoids temporary variables
// image = getToolkit().getImage(getClass().getResource(“Duke.gif”));

}

public void paint(Graphics g) {
g.drawImage(image, 20, 20, this);

}

public static void main(String[] args) {
JFrame f = new JFrame(“GetImage”);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
GetImage myApplet = new GetImage();
f.getContentPane().add(myApplet);
myApplet.init();
f.setSize(100, 100);
f.setVisible(true);
myApplet.start();

}
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 13: Graphics and Sound

You may sometimes want to display an image more than once in the same panel.
Example 13-4 is a program that paints its background with the same image over and
over. We use the image’s getWidth() and getHeight() methods to find the image’s
size and the more regular getSize() method on the component itself. As usual, we
don’t hardcode the window size in the paint() method, since the user has the option
of resizing with the mouse.

Example 13-4. TiledImageComponent.java

import com.darwinsys.util.WindowCloser;

import java.awt.*;
import java.awt.event.*;
import java.net.*;

/**
 * Demo of Tiled Image
 */
public class TiledImageComponent extends Container {
 TextField nameTF, passTF, domainTF;
 Image im;
 String IMAGE_NAME = "background.gif";

 /** Set things up nicely. */
 public TiledImageComponent() {
 Label l;

 setLayout(new FlowLayout());
 add(l = new Label("Name:", Label.CENTER));
 add(nameTF=new TextField(10));

 add(l = new Label("Password:", Label.CENTER));
 add(passTF=new TextField(10));
 passTF.setEchoChar('*');

 add(l = new Label("Domain:", Label.CENTER));
 add(domainTF=new TextField(10));

 im = getToolkit().getImage(IMAGE_NAME);
 }

 /** paint() - just tile the background. */
 public void paint(Graphics g) {
 // System.out.println("In paint()");
 if (im == null)
 return;
 int iw = im.getWidth(this), ih=im.getHeight(this);
 if (iw < 0 || ih < 0) // image not ready
 return; // live to try again later.
 int w = getSize().width, h = getSize().height;
 // System.out.println(iw + "," + ih + "; " + w + ", " + h);
 for (int i = 0; i<=w; i+=iw) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Drawing an Image | 357

In the paint() method, we must check that the image is not null and has a nonnega-
tive width and height—we are more careful than we were in the previous, somewhat
cavalier, example. The image is null only if something went very wrong in the con-
structor, but it can have a negative size. How? In certain creation myths, time ran
backward before the beginning of time; therefore, before an image is fully created, its
size is backward, that is, it has a width and height of –1. The getImage() method
doesn’t actually get the image, you see. It creates the Image object, true, but it doesn’t
necessarily load all the bits: it starts a background thread to do the reading and
returns. This dates from the days when the Web was slower and took a long time to
fully load an image. In particular, with some image file formats (some kinds of TIFF
files, perhaps), you don’t know the actual image size until you’ve read the entire file.
Thus, when getImage() returns, the Image object is created, but its size is set to –1, –1.
Since two threads are now running (see Chapter 24), two outcomes are possible.
Either the image-reading thread reads enough to know the width and height before
you need them, or you need them before the thread reads enough to know them. The
curious-looking code in paint() is defensive about this. You should be, too.

But what if you really need the size of the image, for example to lay out a larger
panel? If you read a bit of the Image documentation, you might think you can use the
prepareImage() method to ensure that the object has been loaded. Unfortunately,
this method can get you stuck in a loop if the image file is missing because
prepareImage never returns true! If you need to be sure, you must construct a
MediaTracker object to ensure that the image has been loaded successfully. That
looks something like this:

/**
 * This CODE FRAGMENT shows using a MediaTracker to ensure
 * that an Image has been loaded successfully, then obtaining
 * its Width and Height. The MediaTracker can track an arbitrary
 * number of Images; the "0" is an arbitrary number used to track
 * this particular image.
 */

 for (int j = 0; j<=h; j+=ih) {
 // System.out.println("drawImage(im,"+i+","+j+")");
 g.drawImage(im, i, j, this);
 }
 }
 }

 public static void main(String[] av) {
 Frame f = new Frame("TiledImageComponent Demo");
 f.add(new TiledImageComponent());
 f.setSize(200, 200);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

Example 13-4. TiledImageComponent.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 13: Graphics and Sound

Image im;
int imWidth, imHeight;
public void setImage(Image i) {
 im = i;
 MediaTracker mt = new MediaTracker(this);
 // use of "this" assumes we're in a Component subclass.
 mt.addImage(im, 0);
 try {
 mt.waitForID(0);
 } catch(InterruptedException e) {
 throw new IllegalArgumentException(
 "InterruptedException while loading Image");
 }
 if (mt.isErrorID(0)) {
 throw new IllegalArgumentException(
 "Couldn't load image");
 }
 imWidth = im.getWidth(this);
 imHeight = im.getHeight(this);
}

You can ask the MediaTracker for its status at any time using the method status(int
ID, boolean load), which returns an integer made by or-ing together the values
shown in Table 13-1. The Boolean load flag, if true, tells the MediaTracker to start
loading any images that haven’t yet been started. A related method, statusAll(),
returns the inclusive or of any flags applying to images that have started loading.

You can shorten the previous code by using the Swing ImageIcon class, which
includes this functionality. The ImageIcon class has several constructor forms, one of
which takes just a filename argument. ImageIcon uses a MediaTracker internally; you
can ask for its status using the ImageIcon’s getImageLoadStatus() method, which
returns the same values as MediaTracker’s statusAll()/statusID().

13.9 Playing a Sound File

Problem
You want a quick and easy way to “make noise” or play an existing sound file.

Table 13-1. MediaTracker status values

Flag Meaning

ABORTED Downloading of at least one item was aborted.

COMPLETE Downloading of all items completed without error.

ERRORED Something went wrong while downloading at least one item.

LOADING Downloading is ongoing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Playing a Sound File | 359

Solution
Get an AudioClip object and use its play() method.

Discussion
This might seem out of place in the midst of all this Graphics code, but there’s a pat-
tern. We’re moving from the simpler graphical forms to more dynamic multimedia.
You can play a sound file using an AudioClip to represent it. Back in the days of 1.0
and 1.1, you could do this only in an applet (or using unsupported sun.java classes).
But starting with JDK 1.2, this capability was extended to applications. Here is a pro-
gram that plays either two demonstration files from a precompiled list or the list of
files you give. Due to the applet legacy, each file must be given as a URL:

import java.applet.*;
import java.net.*;

/** Simple program to try out the "new Sound" stuff in JDK1.2 --
 * allows Applications, not just Applets, to play Sound.
 */
public class SoundPlay {
 static String defSounds[] = {
 "file:///javasrc/graphics/test.wav",
 "file:///music/midi/Beet5th.mid",
 };
 public static void main(String[] av) {
 if (av.length == 0)
 main(defSounds);
 else for (int i=0;i<av.length; i++) {
 System.out.println("Starting " + av[i]);
 try {
 URL snd = new URL(av[i]);
 // open to see if works or throws exception, close to free fd's
 // snd.openConnection().getInputStream().close();
 Applet.newAudioClip(snd).play();
 } catch (Exception e) {
 System.err.println(e);
 }
 }
 // With this call, program exits before/during play.
 // Without it, on some versions, program hangs forever after play.
 // System.exit(0);
 }
}

As the code comment reports, you can open the URL to see if it succeeds; if it throws
an IOException, there is not much point in trying the newAudioClip() call, and catch-
ing it this way might allow you to print a better error message.

See Also
There are several limitations on the applet sound API. The JMFPlayer interface dis-
cussed in Recipe 13.10 plays sound files with a volume control panel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 13: Graphics and Sound

13.10 Playing a Video Clip

Problem
You want to display a video file within a Java program.

Solution
Use the Java Media Framework (JMF), a standard extension.

Discussion
Example 13-5 shows a program that displays a movie or other media file named on
the command line. JMF is very flexible; this program plays an audio file, supplying a
volume control if the media object that you name contains a sound clip instead of a
movie. Figure 13-6 shows JMFPlayer displaying a sound file and a movie.

Figure 13-6. JMFPlayer in action: audio (left), video (right)

Example 13-5. JMFPlayer.java

import com.darwinsys.util.WindowCloser;

import java.applet.*;
import java.awt.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.util.*;
import javax.media.*;

/**
 * Demonstrate simple code to play a movie with Java Media Framework.
 */
public class JMFPlayer extends JPanel implements ControllerListener {

 /** The player object */
 Player thePlayer = null;
 /** The parent Frame we are in. */
 JFrame parentFrame = null;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Playing a Video Clip | 361

 /** Our contentpane */
 Container cp;
 /** The visual component (if any) */
 Component visualComponent = null;
 /** The default control component (if any) */
 Component controlComponent = null;
 /** The name of this instance's media file. */
 String mediaName;
 /** The URL representing this media file. */
 URL theURL;

 /** Construct the player object and the GUI. */
 public JMFPlayer(JFrame pf, String media) {
 parentFrame = pf;
 mediaName = media;
 // cp = getContentPane();
 cp = this;
 cp.setLayout(new BorderLayout());
 try {
 theURL = new URL(getClass().getResource("."), mediaName);
 thePlayer = Manager.createPlayer(theURL);
 thePlayer.addControllerListener(this);
 } catch (MalformedURLException e) {
 System.err.println("JMF URL creation error: " + e);
 } catch (Exception e) {
 System.err.println("JMF Player creation error: " + e);
 return;
 }
 System.out.println("theURL = " + theURL);

 // Start the player: this will notify our ControllerListener.
 thePlayer.start(); // start playing
 }

 /** Called to stop the audio, as from a Stop button or menuitem */
 public void stop() {
 if (thePlayer == null)
 return;
 thePlayer.stop(); // stop playing!
 thePlayer.deallocate(); // free system resources
 }

 /** Called when we are really finished (as from an Exit button). */
 public void destroy() {
 if (thePlayer == null)
 return;
 thePlayer.close();
 }

 /** Called by JMF when the Player has something to tell us about. */
 public synchronized void controllerUpdate(ControllerEvent event) {
 // System.out.println("controllerUpdate(" + event + ")");
 if (event instanceof RealizeCompleteEvent) {

Example 13-5. JMFPlayer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 13: Graphics and Sound

The optional Java Media Framework includes much more functionality than this
example shows. However, the ability to display a QuickTime or MPEG movie with
only a few lines of code is one of JMF’s most endearing young charms. We load the
media file from a URL and create a Player object to manage it. If it makes sense for
the given player to have a controller, it will have one, and we add it to the bottom of
the applet. Controllers may include volume controls, forward/backward buttons,
position sliders, etc. However, we don’t have to care: we get a component that con-
tains all the appropriate controls for the kind of media clip for which we’ve created
the player. If the given player represents a medium with a visual component (like a
movie or a bitmap image), we add this to the center of the applet.

See Also
Of course, there is much more to the JMF API than this. You can, for example, coor-
dinate playing of audio and video with each other or with other events.

13.11 Printing in Java

Problem
You need to generate hardcopy.

 if ((visualComponent = thePlayer.getVisualComponent()) != null)
 cp.add(BorderLayout.CENTER, visualComponent);
 if ((controlComponent =
 thePlayer.getControlPanelComponent()) != null)
 cp.add(BorderLayout.SOUTH, controlComponent);
 // re-size the main window
 if (parentFrame != null) {
 parentFrame.pack();
 parentFrame.setTitle(mediaName);
 }
 }
 }

 public static void main(String[] argv) {
 JFrame f = new JFrame("JMF Player Demo");
 Container frameCP = f.getContentPane();
 JMFPlayer p = new JMFPlayer(f, argv.length == 0 ?
 "file:///C:/music/midi/beet5th.mid" : argv[0]);
 frameCP.add(BorderLayout.CENTER, p);
 f.setSize(200, 200);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

Example 13-5. JMFPlayer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing in Java | 363

Solution
Use java.awt.print.PrinterJob.

Discussion
The JDK 1.2 Printing API makes you divide the data into pages. Again, you start by
getting a PrinterJob object to control your printing. You’ll usually want to let the user
pick a printer, which you do by calling the PrinterJob’s method printerDialog().
This pops up a platform-specific print chooser dialog, and if the user picks a printer,
you get back a PrinterJob object (otherwise, again, you get back null). If you don’t
call printerDialog() and there is a default printer, your job is sent to that printer (if
there isn’t a default printer, I don’t know what happens). Unlike the 1.1 Printing API,
however, Java is in charge of what to print and in what order, although your program
is still responsible for pagination and drawing each page onto a print buffer. You need
to provide an object that implements the Printable interface (see Recipe 9.7). In this
example, we pass an anonymous inner class (see Recipe 9.6); this is not required, but
as usual, it makes the code more succinct by eliminating having to write another class
in another file and by keeping the action and the result together. Java calls this
object’s print() method once for each page the user has requested. This is efficient
because if the user wants to print only page 57, you get called only once to print that
page. Note that the official documentation calls the third argument a pageIndex, but
it’s really a page number. Trust me. Presumably it’s called a pageIndex to remind you
that in some printing jobs (such as this book), there are unnumbered pages and pages
with those funny little roman numerals at the front (see Recipe 5.11).

The source code is shown in Example 13-6. The screenshots in Figure 13-7 show this
program in action.

Example 13-6. PrintDemoGfx

import java.awt.*;
import java.awt.event.*;
import java.awt.print.*;
import javax.swing.*;

/** PrintDemoGfx -- Construct and print a GfxDemoCanvas. */
public class PrintDemoGfx {

 /** Simple demo main program. */
 public static void main(String[] av) throws PrinterException {
 final JFrame f = new JFrame("Printing Test Dummy Frame");

 // Construct the object we want to print. Contrived:
 // this object would already exist in a real program.
 final GfxDemoCanvas thing = new GfxDemoCanvas(400, 300);

 f.getContentPane().add(thing, BorderLayout.CENTER);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 13: Graphics and Sound

See Also
The Printing API has other useful methods in the PrinterJob class; see the documen-
tation. Paper, PageFormat, and Book classes describe a physical page, a page by size
and orientation, and a collection of pages, respectively.

 JButton printButton = new JButton("Print");
 f.getContentPane().add(printButton, BorderLayout.SOUTH);

 printButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 PrinterJob pjob = PrinterJob.getPrinterJob();
 pjob.setJobName("DemoGfx - Graphics Demo Printout");
 pjob.setCopies(1);
 // Tell the print system how to print our pages.
 pjob.setPrintable(new Printable() {
 /** called from the printer system to print each page */
 public int print(Graphics pg, PageFormat pf, int pageNum) {
 if (pageNum>0) // we only print one page
 return Printable.NO_SUCH_PAGE; // ie., end of job

 // Now (drum roll please), ask "thing" to paint itself
 // on the printer, by calling its paint() method with
 // a Printjob Graphics instead of a Window Graphics.
 thing.paint(pg);

 // Tell print system that the page is ready to print
 return Printable.PAGE_EXISTS;
 }
 });

 if (pjob.printDialog() == false) // choose printer
 return; // user cancelled

 pjob.print(); // Finally, do the printing.
 } catch (PrinterException pe) {
 JOptionPane.showMessageDialog(f,
 "Printer error" + pe, "Printing error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 f.pack();
 f.setVisible(true);
 }
}

Example 13-6. PrintDemoGfx (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing in Java | 365

Both Java printing APIs require you to think in “page mode.” That is, you must
know where the page breaks are and request the start of each new page. This is opti-
mal for graphically oriented programs, and less optimal for “report writing” applica-
tions; handling pagination for yourself can become quite a tedium. See the
HardCopyWriter class in O’Reilly’s Java Examples in a Nutshell for code that neatly
paginates and prints plain text.

Figure 13-7. PrintDemoGfx program in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 13: Graphics and Sound

13.12 Program: PlotterAWT
In Recipe 9.12, we discussed a series of Plotter classes. The PlotterAWT class shown
in Example 13-7 extends that to provide a “plot preview” service: before being plot-
ted on a (probably slow) plotter, the plot is displayed in an AWT window using the
Graphics drawing primitives.

Example 13-7. PlotterAWT.java

import java.awt.*;
import java.awt.event.*;

import com.darwinsys.swingui.WindowCloser;

/**
 * A Plotter subclass for drawing into an AWT Window. Reflecting back
 * to AWT gives us a "known working" plotter to test on.
 * You can also steal this as a basis for your own plotter driver.
 * @author Ian Darwin
 */
public class PlotterAWT extends Plotter {
 Frame f;
 PCanvas p;
 Graphics g;
 Font font;
 FontMetrics fontMetrics;
 PlotterAWT() {
 super();
 f = new Frame("Plotter");
 p = new PCanvas(MAXX, MAXY);
 f.add(p);
 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true)); // ignore deprecation warning
 g = p.getOsGraphics();
 }

 public void drawBox(int w, int h) {
 g.drawRect(curx, cury, w, h);
 p.repaint();
 }

 public void rmoveTo(int incrx, int incry){
 moveTo(curx += incrx, cury += incry);
 }

 public void moveTo(int absx, int absy){
 if (!penIsUp)
 g.drawLine(curx, cury, absx, absy);
 curx = absx;
 cury = absy;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: PlotterAWT | 367

 public void setdir(float deg){}
 void penUp(){ penIsUp = true; }
 void penDown(){ penIsUp = false; }
 void penColor(int c){
 switch(c) {
 case 0: g.setColor(Color.white); break;
 case 1: g.setColor(Color.black); break;
 case 2: g.setColor(Color.red); break;
 case 3: g.setColor(Color.green); break;
 case 4: g.setColor(Color.blue); break;
 default: g.setColor(new Color(c)); break;
 }
 }
 void setFont(String fName, int fSize) {
 font = new Font(fName, Font.BOLD, fSize);
 fontMetrics = p.getFontMetrics(font);
 }
 void drawString(String s) {
 g.drawString(s, curx, cury);
 curx += fontMetrics.stringWidth(s);
 }

 /** A Member Class that contains an off-screen Image that is
 * drawn into; this component's paint() copies from there to
 * the screen. This avoids having to keep a list of all the
 * things that have been drawn.
 */
 class PCanvas extends Canvas {
 Image offScreenImage;
 int width;
 int height;
 Graphics pg;

 PCanvas(int w, int h) {
 width = w;
 height = h;
 setBackground(Color.white);
 setForeground(Color.red);
 }

 public Graphics getOsGraphics() {
 return pg;
 }

 /** This is called by AWT after the native window peer is created,
 * and before paint() is called for the first time, so
 * is a good time to create images and the like.
 */
 public void addNotify() {
 super.addNotify();
 offScreenImage = createImage(width, height);
 // assert (offScreenImage != null);

Example 13-7. PlotterAWT.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 13: Graphics and Sound

13.13 Program: Grapher
Grapher is a simple program that reads a table of numbers and graphs them. The
input format is two or more lines that each contain an X and a Y value. The output is
an onscreen display that can also be printed. Figure 13-8 shows the results of running
it with the following simple data; the first column is the X coordinate and the second
is the Y coordinate of each point. The program scales the data to fit the window:

1.5 5
1.7 6
1.8 8
2.2 7

Example 13-8 shows the code.

 pg = offScreenImage.getGraphics();
 }

 public void paint(Graphics pg) {
 pg.drawImage(offScreenImage, 0, 0, null);
 }
 public Dimension getPreferredSize() {
 return new Dimension(width, height);
 }
 }
}

Figure 13-8. Grapher in action

Example 13-8. Grapher.java

import com.darwinsys.util.Debug;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

Example 13-7. PlotterAWT.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Grapher | 369

/** Simple Graphing program.
 */
public class Grapher extends JPanel {
 /** Multiplier for range to allow room for a border */
 public final static float BORDERFACTOR = 1.1f;

 /* Small inner class to hold x, y. Called Apoint to differentiate
 * from java.awt.Point.
 */
 class Apoint {
 float x;
 float y;
 public String toString() {
 return "Apoint("+x+","+y+")";
 }
 }

 /** The list of Apoint points. */
 protected Vector data;

 /** The minimum and maximum X values */
 protected float minx = Integer.MAX_VALUE, maxx = Integer.MIN_VALUE;
 /** The minimum and maximum Y values */
 protected float miny = Integer.MAX_VALUE, maxy = Integer.MIN_VALUE;
 /** The number of data points */
 protected int n;
 /** The range of X and Y values */
 protected float xrange, yrange;

 public Grapher() {
 data = new Vector();
 }

 /** Read the data file named. Each line has an x and a y coordinate. */
 public void read(String fname) {
 LineNumberReader is = null;
 try {
 is = new LineNumberReader(new FileReader(fname));

 String txt;
 // Read the file a line at a time, parse it, save the data.
 while ((txt = is.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(txt);
 try {
 Apoint d = new Apoint();
 d.x = Float.parseFloat(st.nextToken());
 d.y = Float.parseFloat(st.nextToken());
 data.add(d);
 } catch(NumberFormatException nfe) {
 System.err.println("Invalid number on line " +
 is.getLineNumber());
 }
 }

Example 13-8. Grapher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 13: Graphics and Sound

 } catch (FileNotFoundException e) {
 System.err.println("File " + fname + " unreadable: " + e);
 } catch (IOException e) {
 System.err.println("I/O error on line " + is.getLineNumber());
 }
 n = data.size();
 if (n < 2) {
 System.err.println("Not enough data points!");
 return;
 }

 // find min & max
 for (int i=0 ; i < n; i++) {
 Apoint d = (Apoint)data.elementAt(i);
 if (d.x < minx) minx = d.x;
 if (d.x > maxx) maxx = d.x;
 if (d.y < miny) miny = d.y;
 if (d.y > maxy) maxy = d.y;
 }

 // Compute ranges
 xrange = (maxx - minx) * BORDERFACTOR;
 yrange = (maxy - miny) * BORDERFACTOR;
 Debug.println("range", "minx,x,r = " + minx +' '+ maxx +' '+ xrange);
 Debug.println("range", "miny,y,r = " + miny +' '+ maxy +' '+ yrange);
 }

 /** Called when the window needs painting.
 * Computes X and Y range, scales.
 */
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Dimension s = getSize();
 if (n < 2) {
 g.drawString("Insufficient data", 10, 40);
 return;
 }

 // Compute scale factors
 float xfact = s.width / xrange;
 float yfact = s.height / yrange;

 // Scale and plot the data
 for (int i=0 ; i < n; i++) {
 Apoint d = (Apoint)data.elementAt(i);
 float x = (d.x-minx) * xfact;
 float y = (d.y-miny) * yfact;
 Debug.println("point", "AT " + i + " " + d + "; " +
 "x = " + x + "; y = " + y);
 // Draw a 5-pixel rectangle centered, so -2 both x and y.
 // AWT numbers Y from 0 down, so invert:
 g.drawRect(((int)x)-2, s.height-2-(int)y, 5, 5);

Example 13-8. Grapher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Grapher | 371

Most of the complexity of Grapher lies in determining the range and scaling. You
could obviously extend this to draw fancier drawings such as bar charts and the like.
If pie charts interest you, see ChartBean in the online source.

 }
 }

 public Dimension getPreferredSize() {
 return new Dimension(150, 150);
 }

 public static void main(String[] rgs) {
 final JFrame f = new JFrame("Grapher");
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 Grapher g = new Grapher();
 f.setContentPane(g);
 f.setLocation(100, 100);
 f.pack();
 if (rgs.length == 0)
 g.read("Grapher.dat");
 else
 g.read(rgs[0]);
 f.setVisible(true);
 }
}

Example 13-8. Grapher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372

Chapter 14Bleeding Tab TextCHAPTER 14

Graphical User Interfaces

14.0 Introduction
Java has had windowing capabilities since its earliest days. The first version made
public was the Abstract Windowing Toolkit, or AWT. AWT used the native toolkit
components, so it was relatively small and simple. AWT suffered somewhat from
being a “least common denominator”; a feature could not be added unless it could
be implemented on all major platforms that Java supported. The second major
implementation was the Swing classes, released in 1998 as part of the Java Founda-
tion Classes. Swing is a full-function, professional-quality GUI toolkit designed to
enable almost any kind of client-side GUI-based interaction. AWT lives inside, or
rather underneath, Swing, and, for this reason, many programs begin by importing
both java.awt and javax.swing. An alternate approach is exemplified by IBM’s SWT
(Standard Windowing Toolkit), which is a thin wrapper for direct access to the
underlying toolkit. SWT is used in building the Eclipse IDE discussed in Recipe 1.3.
It’s possible to build new applications using SWT, but Swing is more portable and
more widely used.

This chapter presents a few elements of Java windowing for the developer whose
main exposure to Java has been on the server side. Most of the examples are shown
using Swing, rather than the obsolescent AWT components; SWT is not covered at
all. I assume that you have at least a basic understanding of what GUI components
are, which ones should be used where, and so on. I will refer to JButton, JList, and
JFrame, to name a few, without saying much more about their basics or functional-
ity. This is not intended to be a complete tutorial; the reader needing more back-
ground should refer to Java in a Nutshell or Head First Java. For a very thorough
presentation on all aspects of Swing, I recommend Java Swing by Marc Loy, Bob
Eckstein, Dave Wood, Jim Elliott, and Brian Cole (O’Reilly). At around 1,250 pages,
it’s not an overnight read. But it is comprehensive.

Java’s event model has evolved over time, too. In JDK 1.0, the writer of a win-
dowed application had to write a single large event-handling method to deal with
button presses from all the GUI controls in the window. This was simple for small

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Displaying GUI Components | 373

programs, but it did not scale well. My JabaDex application had one large event han-
dler method that tried to figure out which of 50 or 60 GUI controls had caused an
event, which was tedious and error prone. In JDK 1.1, a new delegation event
model was introduced. In this model, events are given only to classes that request
them, which is done by registering a listener. This is discussed in Recipe 14.4 and
shown in Example 14-1. At the same time, the language was extended ever so
slightly to include the notion of inner classes. An inner class is simply a class whose
definition is contained inside the body of another class. We use examples of two
types of inner classes here; for details on the half-dozen different categories of inner
classes, the reader is referred to Java in a Nutshell.

Most of the GUI construction techniques in this chapter can be done for you, in
some cases more quickly, by an integrated development environment (IDE). I have
always believed, however, that understanding what goes on inside the code should
be a prerequisite for being allowed to use an IDE. Those who disagree may be
inclined to skip this chapter, go press a few buttons, and have the computer do the
work for them. But you should at least skim this chapter to see what’s going on so
that you’ll know where to look when you need it later.

See Also
Please do not unleash your GUI application upon the world until you have read
Sun’s official Java Look and Feel Design Guidelines (Addison Wesley). This work pre-
sents the views of a large group of human factors and user-interface experts at Sun
who have worked with the Swing GUI package since its inception; they tell you how
to make it work well.

14.1 Displaying GUI Components

Problem
You want to create some GUI components and have them appear in a window.

Solution
Create a JFrame and add the components to its ContentPane.

Discussion
The older Abstract Windowing Toolkit (AWT) had a simple Frame component for
making main windows; this allowed you to add components directly to it. “Good”
programs usually created a panel to fit inside and populate the frame. But some less-
educated heathens, and those in a hurry, often added components directly to the
frame. The Swing JFrame is more complex—it comes with not one but two containers
already constructed inside it. The ContentPane is the main container; you should nor-
mally use it as your JFrame’s main container. The GlassPane has a clear background

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 14: Graphical User Interfaces

and sits over the top of the ContentPane; its primary use is in temporarily painting
something over the top of the main ContentPane. Because of this, you need to use the
JFrame’s getContentPane() method:

import java.awt.*;
import javax.swing.*;

public class ContentPane extends JFrame {
 public ContentPane() {
 Container cp = getContentPane();
 // now add Components to "cp"...
 }
}

You can add any number of components (including containers) into this existing
container, using the ContentPane add() method:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** Just a Frame
 * @version $Id: ch14,v 1.6 2004/05/07 15:20:56 ian Exp $
 */
public class JFrameDemo extends JFrame {
 JButton quitButton;

 /** Construct the object including its GUI */
 public JFrameDemo() {
 super("JFrameDemo");
 Container cp = getContentPane();
 cp.add(quitButton = new JButton("Exit"));

 // Set up so that "Close" will exit the program,
 // not just close the JFrame.
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // This "action handler" will be explained later in the chapter.
 quitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });

 pack();
 }
 public static void main(String[] args) {
 new JFrameDemo().setVisible(true);
 }
}

This code compiles fine. But when we try to run it, of course, there is no main
method. We need to create one, either inside the JFrameDemo class or on its own:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Designing a Window Layout | 375

public class JFrameDemoMain {
 // We need a main program to instantiate and show.
 public static void main(String[] args) {
 new JFrameDemo().setVisible(true);
 }
}

Now we can run it and have it display. But it has two obvious problems: it starts off
tiny (on Windows) or huge (on X Windows). And, when we do resize it, only the
buttons show, and it always takes up the full size of the window. To solve these prob-
lems, we need to discuss layout management, to which we now turn our attention.

A less obvious problem has to do with thread safety (see Chapter 24). The basic idea
is that the first component that gets created starts a Thread of control running, and
both this thread and your main thread can be doing things to the GUI at the same
time. The solution is to do the setVisible(true) on the window system’s event
thread, using the static EventQueue.invokeLater() method. The code to start the GUI
in a thread-safe way is only a few lines longer. This code uses an “anonymous inner
class”; see Recipe 9.6 for details on this technique:

public class JFrameDemoSafe {
 // We need a main program to instantiate and show.
 public static void main(String[] args) {

 // Create the GUI (variable is final because used by inner class).
 final JFrame demo = new JFrameDemo();

 // Create a Runnable to set the main visible, and get Swing to invoke.
 EventQueue.invokeLater(new Runnable() {
 public void run() {
 demo.setVisible(true);
 }
 });
 }
}

Most books and articles on Swing GUIs do not mention Swing’s thread-safety issues,
but you can read about it on Sun’s web site, at http://java.sun.com/developer/
JDCTechTips/2003/tt1208.html. We will omit this code for brevity from the simple
demos herein, but production code should use it.

14.2 Designing a Window Layout

Problem
The default layout isn’t good enough.

Solution
Learn to deal with a layout manager.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 14: Graphical User Interfaces

Discussion
The container classes such as Panel have the ability to contain a series of compo-
nents, but you can arrange components in a window in many ways. Rather than clut-
ter up each container with a variety of different layout computations, the designers of
the Java API used a sensible design pattern to divide the labor. A layout manager is
an object that performs the layout computations for a container.* The AWT package
has five common layout manager classes (see Table 14-1), and Swing has a few more.
Plus, as we’ll see in Recipe 14.18, it’s not that big a deal to write your own!

Since we’ve broached the subject of layout management, I should mention that each
component has a method called getPreferredSize(), which the layout managers use
in deciding how and where to place components. A well-behaved component over-
rides this method to return something meaningful. A button or label, for example,
will indicate that it wishes to be large enough to contain its text and/or icon, plus a
bit of space for padding. And, if your JFrame is full of well-behaved components, you
can set its size to be “just the size of all included components, plus a bit for pad-
ding,” just by calling the pack() method, which takes no arguments. The pack()
method goes around and asks each embedded component for its preferred size (and
any nested container’s getPreferredSize() will ask each of its components, and so
on). The JFrame is then set to the best size to give the components their preferred
sizes as much as is possible. If not using pack(), you need to call the setSize()
method, which requires either a width and a height, or a Dimension object containing
this information.

A FlowLayout is the default in JPanel and Applet/JApplet. It simply lays the compo-
nents out along the “normal” axis (left to right in European and English-speaking
locales, right to left in Hebrew or Arabic locales, and so on, as set by the user’s
Locale settings). The overall collection of them is centered within the window.

* The LayoutManager specification is actually a Java interface rather than a class. In fact, it’s two interfaces:
quoting the code, interface LayoutManager2 extends LayoutManager. The differences between these two inter-
faces don’t concern us here; we want to concentrate on using the layout managers.

Table 14-1. Layout managers

Name Notes Default on

FlowLayout Flows across the container (J)Panel, (J)Applet

BorderLayout Five “geographic” regions (J)Frame, (J)Window

GridLayout Regular grid (all items same size) None

CardLayout Display one of many components at a time; useful for wizard-
style layouts

None

GridBagLayout Very flexible but maximally complex None

BoxLayout (Swing) Single row or column of components None

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Designing a Window Layout | 377

The default for JFrame and JWindow is BorderLayout. This explains the problem of the
single button appearing in the JFrameDemo class at the end of the previous recipe.
BorderLayout divides the screen into the five areas shown in Figure 14-1. If you don’t
specify where to place a component, it goes into the Center. And if you place multi-
ple components in the same region (perhaps by adding several components without
specifying where to place them!), only the last one appears.

So we can fix the previous version of the JFrameDemo in one of two ways: either we
can use a FlowLayout or specify BorderLayout regions for the label and the button.
The former being simpler, we’ll try it out:

import java.awt.*;
import javax.swing.*;

public class JFrameFlowLayout extends JFrame {
 public JFrameFlowLayout() {
 Container cp = getContentPane();

 // Make sure it has a FlowLayout layoutmanager.
 cp.setLayout(new FlowLayout());

 // now add Components to "cp"...
 cp.add(new JLabel("Wonderful?"));
 cp.add(new JButton("Yes!"));
 pack();
 }

 // We need a main program to instantiate and show.
 public static void main(String[] args) {
 new JFrameFlowLayout().setVisible(true);
 }
}

See Also
I have not discussed the details of the advanced layouts. For an example of a dialog
layout using nested panels, see the Font Chooser in Recipe 14.17. For an example of
a GridBagLayout, see the GUI network client in Recipe 18.3. For more details, see the
AWT and Swing books.

Figure 14-1. BorderLayout’s five regions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 14: Graphical User Interfaces

14.3 A Tabbed View of Life

Problem
These layouts don’t include a tab layout, and you need one.

Solution
Use a JTabbedPane.

Discussion
The JTabbedPane class acts as a combined container and layout manager. It imple-
ments a conventional tab layout, which looks like Figure 14-2.

To add a tab to the layout, you do not use setLayout(). You simply create the
JTabbedPane and call its addTab() method, passing in a String and a Component; you
usually need to add JPanels or some similar Container to make a sophisticated lay-
out. Example 14-1 is the code for our simple program.

Figure 14-2. JTabbedPane: two views in Java Look and one in Windows Look

Example 14-1. TabPaneDemo.java

import javax.swing.*;

public class TabPaneDemo {
 protected JTabbedPane tabPane;
 public TabPaneDemo() {
 tabPane = new JTabbedPane();
 tabPane.add(new JLabel("One", JLabel.CENTER), "First");
 tabPane.add(new JLabel("Two", JLabel.CENTER), "Second");
 }

 public static void main(String[] a) {
 JFrame f = new JFrame("Tab Demo");
 f.getContentPane().add(new TabPaneDemo().tabPane);
 f.setSize(120, 100);
 f.setVisible(true);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Action Handling: Making Buttons Work | 379

See Also
The third screenshot in Figure 14-2 shows the program with a Windows look and
feel, instead of the default Java look and feel. See Recipe 14.15 for how to change the
look and feel of a Swing-based GUI application.

14.4 Action Handling: Making Buttons Work

Problem
Your button doesn’t do anything when the user presses it.

Solution
Add an ActionListener to do the work.

Discussion
Event listeners come in about half a dozen different types. The most common is the
ActionListener, used by push buttons, text fields, and certain other components to
indicate that the user has performed a high-level action, such as activating a push
button or pressing Enter in a text field. The paradigm (shown in Figure 14-3) is that
you create a Listener object, register it with the event source (such as the push but-
ton), and wait. Later, when and if the user pushes the button, the button will call
your Listener.

Here’s some simple code in which pushing a button causes the program to print a
friendly message. This program is an applet (see Recipe 18.2), so it can use the
showStatus() method to print its text:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of Button */
public class ButtonDemo extends Applet implements ActionListener {
 Button b1;

 public ButtonDemo() {
 add(b1 = new Button("A button"));
 b1.addActionListener(this);
 }

Figure 14-3. AWT listener relationships

JButton

addActionListener (ActionListener): void

ActionListener

actionPerformed (ActionEvent): void

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 14: Graphical User Interfaces

 public void actionPerformed(ActionEvent event) {
 showStatus("Thanks for pushing my button!");
 }
}

This version does not use an inner class to handle the events but does so itself by
directly implementing the ActionListener interface. This works for small programs,
but as an application grows, it quickly becomes unserviceable; how do you sort out
which button was pressed? To solve this problem, we normally use an inner class as
the action handler and have a different class for each button. First, let’s write the pre-
vious code with two buttons so that you can see what I mean:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of two buttons, using a single ActionListener,
 * being the class itself.
 */
public class ButtonDemo2a extends Applet implements ActionListener {
 Button b1, b2;

 public void init() {
 add(b1 = new Button("A button"));
 b1.addActionListener(this);

 add(b2 = new Button("Another button"));
 b2.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == b1)
 showStatus("Thanks for pushing my first button!");
 else
 showStatus("Thanks for pushing my second button!");
 }
}

Now here it is using a member inner class, that is, a class that is a named part of
another class:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of two buttons, using a single ActionListener
 * made of a named inner class
 */
public class ButtonDemo2b extends Applet {
 Button b1, b2;
 ActionListener handler = new ButtonHandler();

 public void init() {
 add(b1 = new Button("A button"));
 b1.addActionListener(handler);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Action Handling Using Anonymous Inner Classes | 381

 add(b2 = new Button("Another button"));
 b2.addActionListener(handler);
 }

 class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == b1)
 showStatus("Thanks for pushing my first button!");
 else
 showStatus("Thanks for pushing my second button!");
 }
 }
}

Note that merely breaking the action handling code into its own class doesn’t really
contribute much to readability. But there is a way to use inner classes that does pro-
mote readability and maintainability. We create an inner class (see Recipe 9.6) for
each event source—each button, each menu item, and so on. Sounds like a lot of
work, and it would be, if you used the previous method. But there is a shorter way,
using anonymous inner classes, described next.

14.5 Action Handling Using Anonymous
Inner Classes

Problem
You want action handling with less creation of special classes.

Solution
Use anonymous inner classes.

Discussion
Anonymous inner classes are declared and instantiated at the same time, using the
new operator with the name of an existing class or interface. If you name a class, it
will be subclassed; if you name an interface, the anonymous class will extend java.
lang.Object and implement the named interface. The paradigm is:

b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my second button!");
 }
});

Did you notice the }); by itself on the last line? Good, because it’s important. The }
terminates the definition of the inner class, while the) ends the argument list to the
addActionListener method; the single argument inside the parenthesis is an argu-
ment of type ActionListener that refers to the one and only instance created of your
anonymous class. Example 14-2 contains a complete example.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 14: Graphical User Interfaces

The real benefit of these anonymous inner classes, by the way, is that they keep the
action handling code in the same place that the GUI control is being instantiated.
This saves a lot of looking back and forth to see what a GUI control really does.

Those ActionListener objects have no instance name and appear to have no class
name: is that possible? The former yes, but not the latter. In fact, class names are
assigned to anonymous inner classes by the compiler. After compiling and testing
ButtonDemo2c, I list the directory in which I ran the program:

C:\javasrc\gui>ls -1 ButtonDemo2c*
ButtonDemo2c$1.class
ButtonDemo2c$2.class
ButtonDemo2c.class
ButtonDemo2c.htm
ButtonDemo2c.java
C:\javasrc\gui>

Those first two are the anonymous inner classes. Note that a different compiler
might assign different names to them; it doesn’t matter to us. A word to the wise:
don’t depend on those names!

See Also
Most IDEs (see Recipe 1.1) have drag-and-drop GUI builder tools that make this task
easier, at least for simpler projects.

Example 14-2. ButtonDemo2c.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of Button */
public class ButtonDemo2c extends Applet {
 Button b;

 public void init() {
 add(b = new Button("A button"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my first button!");
 }
 });
 add(b = new Button("Another button"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my second button!");
 }
 });
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Terminating a Program with “Window Close” | 383

14.6 Terminating a Program with
“Window Close”

Problem
Nothing happens when you click on the close button on the titlebar of an AWT
Frame. When you do this on a Swing JFrame, the window disappears but the applica-
tion does not exit.

Solution
Use JFrame’s setDefaultCloseOperation() method or add a WindowListener and have
it exit the application.

Discussion
Main windows—subclasses of java.awt.Window, such as (J)Frames and (J)Dialogs—
are treated specially. Unlike all other Component subclasses, Window and its subclasses
are not initially visible. This is sensible, as they have to be packed or resized, and you
don’t want the user to watch the components getting rearranged. Once you call a
Window’s setVisible(true) method, all components inside it become visible. You can
listen for WindowEvents on a Window.

The WindowListener interface contains a plenitude of methods to notify a listener
when anything happens to the window. You can be told when the window is acti-
vated (gets keyboard and mouse events) or deactivated. Or you can find out when
the window is iconified or deiconified: these are good times to suspend and resume
processing, respectively. You can be notified the first time the window is opened.
And, most importantly for us, you can be notified when the user requests that the
window be closed. (Some sample close buttons are shown in Figure 14-4.) You can
respond in two ways. With Swing’s JFrame, you can set the “default close operation.”
Alternatively, with any Window subclass, you can provide a WindowListener to be noti-
fied of window events.

In some cases, you may not need a window closer. The Swing JFrame has a
setDefaultCloseOperation() method, which controls the default behavior. You can
pass it one of the values defined in the Swing WindowConstants class:

WindowConstants.DO_NOTHING_ON_CLOSE
Ignore the request. The window stays open. Useful for critical dialogs; probably
antisocial for most “main application”-type windows.

WindowConstants.HIDE_ON_CLOSE
Hide the window (default).

WindowConstants.DISPOSE_ON_CLOSE
Hide and dispose the window.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 14: Graphical User Interfaces

WindowConstants.EXIT_ON_CLOSE
JDK 1.3 (and later). Exit the application on close, obviating the need for a
WindowListener! Does not give you a chance to save data; for that, you need a
WindowListener.

The action set by setDefaultCloseOperation() will be performed after the last
windowClosing() method on the Window (if you have one) returns.

The windowClosing() method of your WindowListener is called when the user clicks
on the close button (this depends on the window system and, on X Windows, on the
window manager) or sends the close message from the keyboard (normally Alt-F4).

The method signature is:

public void windowClosing(WindowEvent);

But this method comes from the interface WindowListener, which has half a dozen
other methods. If you define a WindowListener and implement only this one method,
the compiler declares your class abstract and refuses to instantiate it. You might start
by writing stub or dummy versions (methods whose body is just the two characters
{}), but you’d then be doing more work than necessary; an “adapter” class already
does this for all methods in the Listener interface. So you really need only to sub-
class from WindowAdapter and override the one method, windowClosing, that you care
about. Figure 14-5 shows this model.

Let’s put this all together in some code examples. Class WindowDemo puts up a frame
and closes when you ask it to. The online source includes class WindowDemo2, which is
the same, but implemented as a Swing JFrame.

Figure 14-4. Some close buttons

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Terminating a Program with “Window Close” | 385

import java.awt.*;
import java.awt.event.*;

/* Show an example of closing a Window.
 */
public class WindowDemo extends Frame {

 public static void main(String[] argv) {
 Frame f = new WindowDemo();
 f.setVisible(true);
 }
 public WindowDemo() {
 setSize(200, 100);
 addWindowListener(new WindowDemoAdapter());

Figure 14-5. WindowListener, WindowAdapter, and my WindowCloser

windowActivated (): void

inplements

WindowListener (java.awt.event)

windowActivated (): void

windowClosed (): void

windowClosing (): void

windowDeactivated (): void

windowDeiconified (): void

windowIconified (): void

windowOpened (): void

WindowAdapter (java.awt.event)

WindowAdapter ()

windowOpened (): void

windowIconified (): void

windowDeiconified (): void

windowDeactivated (): void

windowClosing (): void

windowClosed (): void

WindowCloser (com.darwinsys.util)

WindowCloser (Window)
WindowCloser (Window, boolean)

windowClosing (WindowEvent): void

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 14: Graphical User Interfaces

 }

 /** Named Inner class that closes a Window. */
 class WindowDemoAdapter extends WindowAdapter {
 public void windowClosing(WindowEvent e) {
 System.out.println("Goodbye!");
 WindowDemo.this.setVisible(false); // window will close
 WindowDemo.this.dispose(); // and be freed up.
 System.exit(0);
 }
 }
}

Since making a Window close—and optionally exit the program—is a common opera-
tion, I’ve encapsulated this into a small class called WindowCloser, which is in my
public package com.darwinsys.util. Most AWT and Swing books have similar
classes. Example 14-3 contains my WindowCloser class. Note that the class is marked
deprecated; this is to remind you that, on Swing, you should just use
setDefaultCloseOperation(). If you’re writing an AWT-only application, you’ll have
to live with the deprecation warning.

Example 14-3. WindowCloser.java

package com.darwinsys.swingui;

import java.awt.Window;
import java.awt.event.*;

/** A WindowCloser - watch for Window Closing events, and
 * follow them up with setVisible(false) and dispose().
 * @deprecated Use setDefaultCloseOperation() instead.
 */
public class WindowCloser extends WindowAdapter {
 /** True if we are to exit as well. */
 boolean doExit = false;
 public WindowCloser() {
 }
 public WindowCloser(Window w) {
 // nothing to do
 }
 public WindowCloser(Window w, boolean exit) {
 doExit = exit;
 }

 public void windowClosing(WindowEvent e) {
 Window win = e.getWindow();
 win.setVisible(false);
 win.dispose();
 if (doExit)
 System.exit(0);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Dialogs: When Later Just Won’t Do | 387

Using it is straightforward:

import java.awt.Frame;
import java.awt.Label;
import com.darwinsys.swingui.WindowCloser;

/* Show an example of closing a Window.
 */
public class WindowCloserTest {

 /* Main method */
 public static void main(String[] argv) {
 Frame f = new Frame("Close Me");
 f.add(new Label("Try Titlebar Close", Label.CENTER));
 f.setSize(100, 100);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

Notice that some of this “quick and dirty” class extends Frame or JFrame directly. It is
generally better to have a main program that creates a JFrame and installs the “main”
GUI component into that. This scheme promotes greater reusability. For example, if
your graphing program’s main component extends JComponent, it can be added to a
JPanel in another application; whereas if it extends JFrame, it cannot.

See Also
I’ve mentioned dispose() several times without saying much about it. The dispose()
method (inherited from Window) causes the underlying (operating system-specific)
window system resources to be released without totally destroying the Window. If you
later call pack() or setVisible(true) on the Window, the native resources are recre-
ated. It’s a good idea to dispose() a window if you won’t be using it for a while, but
not if there’s a good chance you’ll need it again soon.

In addition to WindowListener, Swing has several other multimethod interfaces,
including MouseListener and ComponentListener, and an Adapter class for each of
these.

14.7 Dialogs: When Later Just Won’t Do

Problem
You need a bit of feedback from the user right now.

Solution
Use a JOptionPane method to show a prebuilt dialog. Or subclass JDialog.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 14: Graphical User Interfaces

Discussion
It’s fairly common to want to confirm an action with the user or to bring some prob-
lem to her attention right away, rather than waiting for her to read a log file that she
might or might not get around to. These popup windows are called Dialogs. The
JOptionPane class has a number of show...Dialog() methods that let you display
most prebuilt dialogs, including those shown in Figure 14-6.

The simplest form is showMessageDialog(), and its first argument is the owning Frame
or JFrame. If you don’t know it, pass null, but Java doesn’t guarantee to give input
focus back to your main window when the dialog is dismissed. The second argu-
ment is the message text, and the third is the titlebar title. Last but not least is code
telling which of several prebuilt bitmaps should be displayed. This program pro-
duces the “Coded Message” dialog in the figure:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Demonstrate JOptionPane
 */
public class JOptionDemo extends JFrame {

 // Constructor
 JOptionDemo(String s) {
 super(s);

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());

 JButton b = new JButton("Give me a message");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(
 JOptionDemo.this,
 "This is your message: etaoin shrdlu", "Coded Message",
 JOptionPane.INFORMATION_MESSAGE);
 }
 });
 cp.add(b);

Figure 14-6. JOptionPane in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Catching and Formatting GUI Exceptions | 389

 b = new JButton("Goodbye!");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 cp.add(b);

 // the main window
 setSize(200, 150);
 pack();
 }

 public static void main(String[] arg) {
 JOptionDemo x = new JOptionDemo("Testing 1 2 3...");
 x.setVisible(true);
 }
}

You can use the JOptionPane class in several other ways. For example, you can call its
showDialog() method with a list of strings; each is displayed on a push button in the
dialog. This method blocks until the user selects one of the buttons; the return value
of the method is an int telling which button the user clicked on (it returns the array
index of the string whose button was pressed). Another method, showInputDialog(),
lets you prompt the user for a data value. Very, very convenient!

See Also
JDialog lets you write arbitrarily complicated dialogs. You subclass them in a man-
ner similar to JFrame, specifying whether you want an application-modal or non-
modal dialog (a modal dialog locks out the rest of the application, which is less
convenient for the user but much easier for the programmer). See Java Swing
(O’Reilly) for information on JDialog.

14.8 Catching and Formatting GUI Exceptions

Problem
Your application code is throwing an exception, and you want to catch it, but the
GUI runs in a different Thread (see Chapter 24), so you can’t.

Solution
There is an “undocumented feature” for doing this; you can use it for now, but
expect the interface to change someday.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 14: Graphical User Interfaces

Discussion
This is one of the few cases in the book where I venture to document an unsup-
ported feature, and only because Sun’s unwillingness to formally document it has
generated so much frustration for developers.

You can find out about this by reading the source code for AWT.

To specify an error handler, you must set the System Property (see Recipe 2.2) sun.
awt.exception.handler to the full class name of your exception handler before you
create any GUI components (the fact that this name begins with sun. rather than
java. is your assurance that it is unsupported). The class you name must be on your
CLASSPATH at runtime, must have a public, no-argument constructor, and must
contain a method exactly matching the signature public void handle(Throwable t). If
the named class can be found and loaded, the GUI exception dispatching mecha-
nism calls the handle() method whenever an uncaught exception is received.

To display the caught exceptions, show each one in a dialog. My API class com.
darwinsys.swingui.ErrorUtil contains both a handle() method as described and a
more general method public static void showExceptions(Component parent,
Throwable t). This method displays the Throwable (and, on 1.4 and later, any nested
exceptions) in an error dialog. See the program ErrorUtilTest in the darwinsys/src/
regress directory for an example of running this program directly, and see
ErrorUtilCatchTest in the same directory for an example of using it with uncaught
exceptions from the GUI thread as described. The command ant regress.gui in the
darwinsys directory runs both.

In JDK 1.5, an easier method may be to use the new Thread method
setDefaultUncaughtExceptionHandler(), whose signature is:

public static void setDefaultUncaughtExceptionHandler(Thread.
UncaughtExceptionHandler eh);

The code in Example 14-4 shows a tiny demonstration of this technique.

Example 14-4. ThreadBasedCatcher.java

/**
 * ThreadBasedCatcher - Demonstrate catching uncaught exceptions
 * thrown in an unrelated Thread.
 * @version $Id: ch14,v 1.6 2004/05/07 15:20:56 ian Exp $
 */
public class ThreadBasedCatcher extends JFrame{

 public static void main(String[] args) {
 new ThreadBasedCatcher().setVisible(true);
 }
 public ThreadBasedCatcher(){
 Container cp = getContentPane();
 JButton crasher = new JButton("Crash");
 cp.add(crasher);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Program Output into a Window | 391

Figure 14-7 shows the program running; pushing the button produced this output.

You crashed thread AWT-EventQueue-0
Exception was: java..lang.RuntimeException: You asked for it.

14.9 Getting Program Output into a Window

Problem
You want to capture an input/output stream and display it in a text field.

Solution
Use an interconnected pair of piped streams and a Thread to read from the input half,
and write it to the text area. You may also want to redirect System.out and System.err
to the stream; see Recipe 10.9.

Discussion
PipedInputStream and PipedOutputStream provide two streams (see “Streams and
Readers/Writers” at the beginning of Chapter 10) that are connected together by a
buffer and are designed to provide communication between multiple threads (see the
Introduction to Chapter 24).

 crasher.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 throw new RuntimeException("You asked for it");
 }
 });
 Thread.setDefaultUncaughtExceptionHandler(
 new Thread.UncaughtExceptionHandler(){
 public void uncaughtException(Thread t, Throwable ex){
 System.out.println(
 "You crashed thread " + t.getName());
 System.out.println(
 "Exception was: " + ex.toString());
 }
 });
 pack();
 }
}

Figure 14-7. ThreadBasedCatcher running

Example 14-4. ThreadBasedCatcher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 14: Graphical User Interfaces

As you’ll see in Chapter 19, I am fairly aggressive in the pursuit of SPAM perpetra-
tors. I have a program called TestOpenMailRelay, derived from the mail sender in Rec-
ipe 19.2, that I use to test whether remote servers are willing to accept mail from
unknown third parties and forward it as their own. Example 14-5 is the GUI for that
program; both this and the main program are online in the email directory.

In the constructor, I arrange for the main class to write to the PipedOutputStream; the
call to TestOpenMailRelay.process() passing the ps argument arranges this. That
method writes its own output to the stream in addition to assigning standard output
and standard error, so we should see anything it tries to print. To avoid long (possi-
bly infinitely long!) delays, I start an additional thread to read from the pipe buffer.
Figure 14-8 shows three windows: the program output window (the goal of this
whole exercise), a terminal window from which I copied the IP address (some parts
of the text in this window have been deliberately obfuscated), and another com-
mand window in which I started the GUI program running.

The code is shown in Example 14-5.

Figure 14-8. TestOpenMailRelayGUI in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Program Output into a Window | 393

Example 14-5. TestOpenMailRelayGUI.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

/** GUI for TestOpenMailRelay, lets you run it multiple times in one JVM
 * to avoid startup delay.
 *
 * Starts each in its own Thread for faster return to ready state.
 *
 * Uses PipedI/OStreams to capture system.out/err into a window.
 */
public class TestOpenMailRelayGUI extends JFrame {

 public static void main(String unused[]) throws IOException {
 new TestOpenMailRelayGUI().setVisible(true);
 }

 /** The one-line textfield for the user to type Host name/IP */
 protected JTextField hostTextField;
 /** The push button to start a test; a field so can disable/enable it. */
 protected JButton goButton;
 /** Multi-line text area for results. */
 protected JTextArea results;
 /** The piped stream for the main class to write into ""results" */
 protected PrintStream ps;
 /** The piped stream to read from "ps" into "results" */
 protected BufferedReader iis;

 /** This inner class is the action handler both for pressing
 * the "Try" button and also for pressing <ENTER> in the text
 * field. It gets the IP name/address from the text field
 * and passes it to process() in the main class. Run in the
 * GUI Dispatch thread to avoid messing the GUI. -- tmurtagh.
 */
 ActionListener runner = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 goButton.setEnabled(false);
 SwingUtilities.invokeLater(
 new Thread() {
 public void run() {
 String host = hostTextField.getText().trim();
 ps.println("Trying " + host);
 TestOpenMailRelay.process(host, ps);
 goButton.setEnabled(true);
 }
 });
 }
 };

 /** Construct a GUI and some I/O plumbing to get the output
 * of "TestOpenMailRelay" into the "results" textfield.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 14: Graphical User Interfaces

 public TestOpenMailRelayGUI() throws IOException {
 super("Tests for Open Mail Relays");
 PipedInputStream is;
 PipedOutputStream os;
 JPanel p;
 Container cp = getContentPane();
 cp.add(BorderLayout.NORTH, p = new JPanel());

 // The entry label and text field.
 p.add(new JLabel("Host:"));
 p.add(hostTextField = new JTextField(10));
 hostTextField.addActionListener(runner);

 p.add(goButton = new JButton("Try"));
 goButton.addActionListener(runner);

 JButton cb;
 p.add(cb = new JButton("Clear Log"));
 cb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 results.setText("");
 }
 });
 JButton sb;
 p.add(sb = new JButton("Save Log"));
 sb.setEnabled(false);

 results = new JTextArea(20, 60);
 // Add the text area to the main part of the window (CENTER).
 // Wrap it in a JScrollPane to make it scroll automatically.
 cp.add(BorderLayout.CENTER, new JScrollPane(results));

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 pack(); // end of GUI portion

 // Create a pair of Piped Streams.
 is = new PipedInputStream();
 os = new PipedOutputStream(is);

 iis = new BufferedReader(new InputStreamReader(is, "ISO8859_1"));
 ps = new PrintStream(os);

 // Construct and start a Thread to copy data from "is" to "os".
 new Thread() {
 public void run() {
 try {
 String line;
 while ((line = iis.readLine()) != null) {
 results.append(line);
 results.append("\n");
 }

Example 14-5. TestOpenMailRelayGUI.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Value with JSpinner | 395

14.10 Choosing a Value with JSpinner

Problem
You want to let the user choose from a fixed set of values, but do not want to use a
JList or JComboBox because they take up too much “screen real estate.”

Solution
Use a JSpinner.

Discussion
The JSpinner class introduced in JDK 1.4 lets the user click up or down to cycle
through a set of values. The values can be of any type, as they are managed by a
helper of type SpinnerModel and displayed by another helper of type SpinnerEditor. A
series of predefined SpinnerModels handle Numbers, Dates, and Lists (which can be
arrays or Collections). A demonstration program is listed in Example 14-6; its out-
put is shown in Figure 14-9.

 } catch(IOException ex) {
 JOptionPane.showMessageDialog(null,
 "*** Input or Output error ***\n" + ex,
 "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }.start();
 }
}

Example 14-6. SpinnerDemo.java

import java.awt.Container;
import java.awt.GridLayout;
import javax.swing.*;

/**
 * Demonstrate the Swing "Spinner" control.
 * @author ian
 */
public class SpinnerDemo {

 public static void main(String[] args) {
 JFrame jf = new JFrame("It Spins");
 Container cp = jf.getContentPane();
 cp.setLayout(new GridLayout(0,1));

Example 14-5. TestOpenMailRelayGUI.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 14: Graphical User Interfaces

JSpinner’s editors are reasonably clever. For example, if you select the leading zero of
a number (such as the 04 in 2004), and try to increment it, the editor updates the
entire number (04 to 05) rather than producing something silly like 15.

See Also
The earlier Swing classes JList and JComboBox also let you choose among values.

14.11 Choosing a File with JFileChooser

Problem
You want to allow the user to select a file by name using a traditional windowed file
dialog.

Solution
Use a JFileChooser.

Discussion
The JFileChooser dialog provides a fairly standard file chooser. It has elements of
both a Windows chooser and a Mac chooser, with more resemblance to the former
than the latter. If you want to have control over which files appear, you need to pro-
vide one or more FileFilter subclasses. Each FileFilter subclass instance passed

 // Create a JSpinner using one of the pre-defined SpinnerModels
 JSpinner dates = new JSpinner(new SpinnerDateModel());
 cp.add(dates);

 // Create a JSPinner using a SpinnerListModel.
 String[] data = { "One", "Two", "Three" };
 JSpinner js = new JSpinner(new SpinnerListModel(data));
 cp.add(js);

 jf.setSize(100, 80);
 jf.setVisible(true);
 }
}

Figure 14-9. SpinnerDemo output

Example 14-6. SpinnerDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a File with JFileChooser | 397

into the JFileChooser’s addChoosableFileFilter() method becomes a selection in the
chooser’s Files of Type: choice. The default is All Files (*.*). Figure 14-10 shows my
demo program in action.

Let’s look at the code for using JFileChooser:

import com.darwinsys.util.*;

import javax.swing.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

/** A simple demo of a JFileChooser in action. */
public class JFileChooserDemo extends JPanel {

 /** Constructor */
 public JFileChooserDemo(JFrame f) {
 final JFrame frame = f;
 final JFileChooser chooser = new JFileChooser();
 JFileFilter filter = new JFileFilter();
 filter.addType("java");
 filter.addType("class");
 filter.addType("jar");
 filter.setDescription("Java-related files");
 chooser.addChoosableFileFilter(filter);
 JButton b = new JButton("Choose file...");
 add(b);

Figure 14-10. JFileChooserDemo in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 14: Graphical User Interfaces

 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int returnVal = chooser.showOpenDialog(frame);
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 System.out.println("You chose a file named: " +
 chooser.getSelectedFile().getPath());
 } else {
 System.out.println("You did not choose a file.");
 }
 }
 });
 }

 public static void main(String[] args) {
 JFrame f = new JFrame("JFileChooser Demo");
 f.getContentPane().add(new JFileChooserDemo(f));
 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

In this example, I set up a FileFilter for Java files. Note that FileFilter exists both
in javax.swing.filechooser and java.io (an older version, not for use here; see Rec-
ipe 11.7). The javax.swing.filechooser.FileFilter interface has only two methods:
boolean accept(File) and String getDescription(). This is enough for a totally
fixed-function file filter: you could hardcode the list of extensions that should be
accepted, for example. The following class is similar in spirit to the
ExampleFileFilter included in the JDK demo directory; Sun claims that its version
will be moved into javax.swing.filechooser in a subsequent release of Swing.

/** A simple FileFilter class that works by filename extension,
 * like the one in the JDK demo called ExampleFileFilter, which
 * has been announced to be supported in a future Swing release.
 */
class JFileFilter extends javax.swing.filechooser.FileFilter {
 protected String description;
 protected ArrayList exts = new ArrayList();

 public void addType(String s) {
 exts.add(s);
 }

 /** Return true if the given file is accepted by this filter. */
 public boolean accept(File f) {
 // Little trick: if you don't do this, only directory names
 // ending in one of the extensions appear in the window.
 if (f.isDirectory()) {
 return true;

 } else if (f.isFile()) {
 Iterator it = exts.iterator();
 while (it.hasNext()) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Color | 399

 if (f.getName().endsWith((String)it.next()))
 return true;
 }
 }

 // A file that didn't match, or a weirdo (e.g., Unix device file?).
 return false;
 }

 /** Set the printable description of this filter. */
 public void setDescription(String s) {
 description = s;
 }
 /** Return the printable description of this filter. */
 public String getDescription() {
 return description;
 }
}

14.12 Choosing a Color

Problem
You want to allow the user to select a color from all the colors available on your
computer.

Solution
Use Swing’s JColorChooser.

Discussion
OK, so it may be just glitz or a passing fad, but with today’s displays, the 13 original
AWT colors are too limiting. Swing’s JColorChooser lets you choose from zillions of
colors. From a program’s view, it can be used in three ways:

• Construct it and place it in a panel

• Call its createDialog() and get a JDialog back

• Call its showDialog() and get back the chosen color

We use the last method since it’s the simplest and the most likely to be used in a real
application. The user has several methods of operating the chooser, too:

Swatches mode
The user can pick from one of a few hundred color variants.

HSB mode
This one’s my favorite. The user picks one of Hue, Saturation, or Brightness, a
standard way of representing color value. The user can adjust each value by
slider. There is a huge range of different pixel values to choose from, by clicking
(or, more fun, dragging) in the central area. See Figure 14-11.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 14: Graphical User Interfaces

RGB mode
The user picks Red, Green, and Blue components by sliders.

Example 14-7 contains a short program that makes it happen.

Figure 14-11. JColorChooser: HSB view in action

Example 14-7. JColorDemo.java

import com.darwinsys.util.*;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
 * Colors - demo of Swing JColorChooser.
 * Swing's JColorChooser can be used in three ways:
 * Construct it and place it in a panel;
 * Call its createDialog() and get a JDialog back
 * Call its showDialog() and get back the chosen color
 *
 * <P>We use the last method, as it's the simplest, and is how
 * you'd most likely use it in a real application.
 *
 * Originally appeared in the Linux Journal, 1999.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Color | 401

See Also
This program introduces setToolTipText(), a method to set the text for pop-up
“tooltips” that appear when you position the mouse pointer over a component and
don’t do anything for a given time (initially half a second). Tooltips originated with
Macintosh Balloon Help and were refined into ToolTips under Microsoft Windows.*

Tooltips are easy to use; the simplest form is shown here. For more documentation,
see Chapter 3 of Java Swing.

public class JColorDemo extends JFrame
{
 /** A canvas to display the color in. */
 JLabel demo;
 /** The latest chosen Color */
 Color lastChosen;

 /** Constructor - set up the entire GUI for this program */
 public JColorDemo() {
 super("Swing Color Demo");
 Container cp = getContentPane();
 JButton jButton;
 cp.add(jButton = new JButton("Change Color..."), BorderLayout.NORTH);
 jButton.setToolTipText("Click here to see the Color Chooser");
 jButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent actionEvent)
 {
 Color ch = JColorChooser.showDialog(
 JColorDemo.this, // parent
 "Swing Demo Color Popup", // title
 demo.getForeground()); // default
 if (ch != null)
 demo.setForeground(ch);
 }
 });
 cp.add(BorderLayout.CENTER, demo =
 new MyLabel("Your One True Color", 200, 100));
 demo.setToolTipText("This is the last color you chose");
 pack();
 addWindowListener(new WindowCloser(this, true));
 }

 /** good old main */
 public static void main(String[] argv)
 {
 new JColorDemo().setVisible(true);
 }
}

* See? I even said something nice about Microsoft. I do believe in credit where credit’s due.

Example 14-7. JColorDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 14: Graphical User Interfaces

14.13 Formatting JComponents with HTML

Problem
You want more control over the formatting of text in JLabel and friends.

Solution
Use HTML in the text of the component.

Discussion
The Swing components that display text, such as JLabel, format the text as HTML—
instead of as plain text—if the first six characters are the obvious tag <html>. The pro-
gram JLabelHTMLDemo just puts up a JLabel formatted using this Java code:

// Part of JLabelHTMLDemo.java
 JButton component = new JButton(
 "<html>" +
 "<body bgcolor='white'>" +
 "<h1>Welcome</h1>" +
 "<p>This button will be formatted according to the usual " +
 "HTML rules for formatting of paragraphs.</p>" +
 "</body></html>");

Figure 14-12 shows the program in operation.

Figure 14-12. JLabel with HTML text

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Centering a Main Window | 403

14.14 Centering a Main Window

Problem
You want your main window to be centered on the screen.

Solution
First, be aware that some users on some platforms would rather that you didn’t do
this, as they have existing “placement” schemes. However, at least on Windows, this
technique is useful.

Subtract the width and height of the window from the width and height of the
screen, divide by two, and go there. Be aware that some platforms (Mac, Unix) make
it pretty easy for the power user to have multiple monitors active, so you don’t
always want to do this.

Discussion
The code for this is pretty simple. The part that might take a while to figure out is the
Dimension of the screen. Two methods can help: getScreenSize() in the Toolkit class
and the static method getDefaultToolkit(). (The Toolkit class relates to the under-
lying windowing toolkit; it has several subclasses, including two different ones for X
Windows on Unix (Motif and non-Motif), another for Macintosh, etc.) Put these
together and you have the Dimension you need.

Centering a Window is such a common need that I have packaged it in its own little
class: UtilGUI. Here is the complete source for UtilGUI, which I’ll use without com-
ment from now on:

package com.darwinsys.util;

import java.awt.*;

/** Utilities for GUI work.
 */
public class UtilGUI {
 /** Centre a Window, Frame, JFrame, Dialog, etc. */
 public static void centre(Window w) {
 // After packing a Frame or Dialog, centre it on the screen.
 Dimension us = w.getSize(),
 them = Toolkit.getDefaultToolkit().getScreenSize();
 int newX = (them.width - us.width) / 2;
 int newY = (them.height- us.height)/ 2;
 w.setLocation(newX, newY);
 }
 /** Center a Window, Frame, JFrame, Dialog, etc.,
 * but do it the American Spelling Way :-)
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 14: Graphical User Interfaces

 public static void center(Window w) {
 UtilGUI.centre(w);
 }
}

To use it after the relevant import, you can simply say, for example:

myFrame.pack();
UtilGUI.centre(myFrame);
myFrame.setVisible(true);

14.15 Changing a Swing Program’s
Look and Feel

Problem
You want to change the look and feel of an application.

Solution
Use the static UIManager.setLookAndFeel() method. Maybe.

Discussion
If you wish to specify the entire look and feel for a program, set it with the static
UIManager.setLookAndFeel() method; the name you pass in must be the full name (as
a string) of a class that implements a Java look and feel. The details of writing a look
and feel class are beyond the scope of this book; refer to the book Java Swing or the
Sun documentation. But using these classes is easy. For example:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

This must appear before you create the GUI of the program, and it can throw an
exception if the class name is invalid.

People sometimes like to show off the fact that you can change the look and feel on
the fly. You call setLookAndFeel() as previously, and then call the static
SwingUtilities.updateComponentTree() for your JFrame and all detached trees, such
as dialog classes. But before you rush out to do it, please be advised that the official
Sun position is that you shouldn’t! The official Java Look and Feel Design Guideline
book says, on page 23 (first edition):

Because there is far more to the design of an application than the look and feel of com-
ponents, it is unwise to give end users the ability to swap look and feel while [run-
ning] your application. Switching look and feel designs in this way only swaps the look
and feel designs from one platform to another. The layout and vocabulary used are
platform-specific and do not change. For instance, swapping look and feel designs
does not change the titles of the menus.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changing a Swing Program’s Look and Feel | 405

The book does recommend that you let users specify an alternate look and feel, pre-
sumably in your properties file, at program startup time. Even so, the capability to
switch while an application is running is too tempting to ignore; even Sun’s own
Swing Demonstration (included with the JDK) offers a menu item to change its look
and feel. Figure 14-13 is my nice little program in the Java style; see Example 14-8 for
the source code.

Of course, not all looks work on all platforms. If I try the Mac OS look and feel under
Windows, I get the error dialog shown in Figure 14-14, which shows what happens
when you request any look and feel that is unavailable on the current platform.

The OPEN LOOK design alluded to in the code is, well, not written yet. Vaporware.
That’s why it’s grayed out.

Under Mac OS X, the default look and feel is, of course, the Mac OS look and feel.
You can also select the Java or Motif look, but not the Windows look. See
Figure 14-15.

Example 14-8 shows the code that implements the look and feel switcher. It’s pretty
straightforward based on what we’ve seen already. The only neat trick is that I’ve set
the selected button back to what it was if the look and feel that the user selects is not
available.

Figure 14-13. Java, Windows, and Motif look and feel under Windows

Figure 14-14. Look and feel request refused on Windows

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 14: Graphical User Interfaces

Figure 14-15. Look and feel switcher under Mac OS X

Example 14-8. LNFSwitcher.java

/**
 * A Look-and-feel switcher.
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch14,v 1.6 2004/05/07 15:20:56 ian Exp $
 */
public class LNFSwitcher {
 /** The frame. */
 protected JFrame theFrame;
 /** Its content pane */
 protected Container cp;

 /** Start with the Java look-and-feel, if possible */
 final static String PREFERREDLOOKANDFEELNAME =
 "javax.swing.plaf.metal.MetalLookAndFeel";
 protected String curLF = PREFERREDLOOKANDFEELNAME;
 protected JRadioButton previousButton;

 /** Construct a program... */
 public LNFSwitcher() {
 super();
 theFrame = new JFrame("LNF Switcher");
 theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 cp = theFrame.getContentPane();
 cp.setLayout(new FlowLayout());

 ButtonGroup bg = new ButtonGroup();

 JRadioButton bJava = new JRadioButton("Java");
 bJava.addActionListener(new LNFSetter(
 "javax.swing.plaf.metal.MetalLookAndFeel", bJava));
 bg.add(bJava);
 cp.add(bJava);

 JRadioButton bMSW = new JRadioButton("MS-Windows");
 bMSW.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel", bMSW));
 bg.add(bMSW);
 cp.add(bMSW);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changing a Swing Program’s Look and Feel | 407

 JRadioButton bMotif = new JRadioButton("Motif");
 bMotif.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel", bMotif));
 bg.add(bMotif);
 cp.add(bMotif);

 JRadioButton bMac = new JRadioButton("Sun-MacOS");
 bMac.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.mac.MacLookAndFeel", bMac));
 bg.add(bMac);
 cp.add(bMac);

 String defaultLookAndFeel = UIManager.getSystemLookAndFeelClassName();
 // System.out.println(defaultLookAndFeel);
 JRadioButton bDefault = new JRadioButton("Default");
 bDefault.addActionListener(new LNFSetter(
 defaultLookAndFeel, bDefault));
 bg.add(bDefault);
 cp.add(bDefault);

 previousButton = bDefault;
 bDefault.setSelected(true);

 theFrame.pack();
 theFrame.setVisible(true);
 }

 /* Class to set the Look and Feel on a frame */
 class LNFSetter implements ActionListener {
 String theLNFName;
 JRadioButton thisButton;

 /** Called to setup for button handling */
 LNFSetter(String lnfName, JRadioButton me) {
 theLNFName = lnfName;
 thisButton = me;
 }

 /** Called when the button actually gets pressed. */
 public void actionPerformed(ActionEvent e) {
 try {
 UIManager.setLookAndFeel(theLNFName);
 SwingUtilities.updateComponentTreeUI(theFrame);
 theFrame.pack();
 } catch (Exception evt) {
 JOptionPane.showMessageDialog(null,
 "setLookAndFeel didn't work: " + evt,
 "UI Failure", JOptionPane.INFORMATION_MESSAGE);
 previousButton.setSelected(true); // reset the GUI to agree
 }
 previousButton = thisButton;
 }
 }

Example 14-8. LNFSwitcher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 14: Graphical User Interfaces

See Also
Some alternate look-and-feel implementations can be found on the Web. If you’d
like to build your own look and feel, perhaps for corporate identity reasons, some of
these, in conjunction with O’Reilly’s Java Swing, would be a good starting point.

14.16 Enhancing Your GUI for Mac OS X

Problem
You tried running your Swing GUI application on Mac OS X, and it didn’t look right.

Solution
There are a variety of small steps you can take to improve your GUI’s appearance
and behavior under Mac OS X.

Discussion
While Swing aims to be a portable GUI, Apple’s implementation for Mac OS X does
not automatically do “the right thing” for everyone. For example, a JMenuBar menu
container appears by default at the top of the application window. This is the norm
on Windows and on most Unix platforms, but Mac users expect the menu bar for
the active application to appear at the top of the screen. To enable “normal” behav-
ior, you have to set the System property apple.laf.useScreenMenuBar to the value
true, as in java -Dapple.laf.useScreenMenuBar=true SomeClassName. You might want
to set some other properties too, such as a short name for your application to appear
in the menu bar (the default is the full class name of your main application class).

But there is no point setting these properties unless you are, in fact, running on Mac
OS X. How do you tell? Apple’s recommended way is to check for the system prop-
erty mrj.runtime and, if so, assume you are on Mac OS X.* So the code might be
something like this:

boolean isMacOS = System.getProperty("mrj.version") != null;
if (isMacOS) {
 System.setProperty("apple.laf.useScreenMenuBar", "true");
 System.setProperty("com.apple.mrj.application.apple.menu.about.name", "JabaDex");
}

 public static void main(String[] argv) {
 new LNFSwitcher();
 }
}

* In fact, you could be running on the ancient (JDK 1.1.8) MRJ under Mac OS 8 or 9, but that’s statistically
very unlikely.

Example 14-8. LNFSwitcher.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Enhancing Your GUI for Mac OS X | 409

But there’s more! You still don’t get to handle “normal” Mac-style Quit, Preferences,
Print or About requests (Command-Q, Command-comma, Command-P, or Applica-
tion ➝ About, respectively). For these you may need to use some classes in the com.
apple.eawt package. You can read about this in the Apple Developer Documenta-
tion that comes with Mac OS X. Or you can just use my adapter class, com.
darwinsys.macosui.MacOSAppAdapter. You need to implement some of my four inter-
faces (in the same package): AboutBoxHandler, PrefsHandler, PrintHandler, and
ShutdownHandler. Each of these has one method that is invoked when the Mac user
invokes the relevant request. Sample code that implements this is in Example 14-9;
this program doubles as a primitive interactive test, and it can be invoked by ant
regress.macosui in the darwinsys directory of the online source code.

As of build 1.4.2, the Print dialog is not invoked. Also, you (obviously) can neither
compile nor run any program using this package against a copy of the darwinsys.jar
file that was compiled on a non-Mac OS X platform, such as Windows or Unix.

Example 14-9. MacOSUITest.java

/**
 * Interactive test for "macosui" package.
 * Class can not extend JFrame; must invoke setMacOS() before first
 * call to any Swing constructor.
 */
public class MacOSUITest {

 public static void main(String[] args) {
 // Tester: check that this string appears in the Application Menu.
 MacOSUtil.setMacOS("MacOSUITest");
 new MacOSUITest();

 }

 public MacOSUITest() {
 JFrame jf = new JFrame("MacOSUITest");
 JButton button = new JButton("Exit");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 System.exit(0);
 }
 });
 jf.getContentPane().add(button);
 // Tester: see that Application->About produces our popup
 // Ditto for Preferences and Shutdown.
 MacOSAppAdapter adapter =
 new MacOSAppAdapter(jf, abouter, prefser, printer, shutter);
 adapter.register();
 jf.setSize(300, 200);
 jf.setVisible(true);
 }

 // Definititions of individual action handlers omitted.
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 14: Graphical User Interfaces

See Also
See the O’Reilly book Mac OS X for Java Geeks by Will Iverson for more informa-
tion on Mac OS X. Apple’s web site includes several Technical Notes at http://
developer.apple.com/qa/indexes/java-a.html.

14.17 Program: Custom Font Chooser

Problem
You want to allow the user to select a font, but standard Java doesn’t yet include a
Font Chooser dialog.

Solution
Use my FontChooser dialog class.

Discussion
As we saw in Recipe 13.3, you can manually select a font by calling the java.awt.
Font class constructor, passing in the name of the font, the type you want (plain,
bold, italic, or bold+italic), and the point size:

Font f = new Font("Helvetica", Font.BOLD, 14);
setfont(f);

This is not very flexible for interactive applications. You normally want the user to be
able to choose fonts with the same ease as using a File Chooser dialog. Until the Java
API catches up with this, you are more than welcome to use the Font Chooser that I
wrote when faced with a similar need.

The source code is shown in Example 14-10; it ends, as many of my classes do, with
a short main method that is both a test case and an example of using the class in
action. The display is shown in Figure 14-16.

Example 14-10. FontChooser.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A font selection dialog. .
 * <p>Note: can take a LONG time to start up on systems
 * with (literally) hundreds of fonts.
 */
public class FontChooser extends JDialog {
 /** The font the user has chosen */
 protected Font resultFont;
 /** The resulting font name */
 protected String resultName;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Custom Font Chooser | 411

 /** The resulting font size */
 protected int resultSize;
 /** The resulting boldness */
 protected boolean isBold;
 /** The resulting italicness */
 protected boolean isItalic;

 /** The list of Fonts */
 protected String fontList[];
 /** The font name chooser */
 protected List fontNameChoice;
 /** The font size chooser */
 protected List fontSizeChoice;
 /** The bold and italic choosers */
 Checkbox bold, italic;
 /** The list of font sizes */
 protected String fontSizes[] = {
 "8", "10", "11", "12", "14", "16", "18", "20", "24",
 "30", "36", "40", "48", "60", "72"
 };
 /** The display area. Use a JLabel as the AWT label doesn't always
 * honor setFont() in a timely fashion :-)
 */
 protected JLabel previewArea;

 /** Construct a FontChooser -- Sets title and gets
 * array of fonts on the system. Builds a GUI to let
 * the user choose one font at one size.
 */
 public FontChooser(Frame f) {
 super(f, "Font Chooser", true);

 Container cp = this; // or getContentPane() in Swing

 Panel top = new Panel();
 top.setLayout(new FlowLayout());

 fontNameChoice = new List(8);
 top.add(fontNameChoice);

 Toolkit toolkit = Toolkit.getDefaultToolkit();
 // For JDK 1.1: returns about 10 names (Serif, SansSerif, etc.)
 // fontList = toolkit.getFontList();
 // For JDK 1.2: a much longer list; most of the names that come
 // with your OS (e.g., Arial), plus the Sun/Java ones (Lucida,
 // Lucida Bright, Lucida Sans...)
 fontList = GraphicsEnvironment.getLocalGraphicsEnvironment().
 getAvailableFontFamilyNames();

 for (int i=0; i<fontList.length; i++)
 fontNameChoice.add(fontList[i]);
 fontNameChoice.select(0);

Example 14-10. FontChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 14: Graphical User Interfaces

 fontSizeChoice = new List(8);
 top.add(fontSizeChoice);

 for (int i=0; i<fontSizes.length; i++)
 fontSizeChoice.add(fontSizes[i]);
 fontSizeChoice.select(5);

 cp.add(top, BorderLayout.NORTH);

 Panel attrs = new Panel();
 top.add(attrs);
 attrs.setLayout(new GridLayout(0,1));
 attrs.add(bold =new Checkbox("Bold", false));
 attrs.add(italic=new Checkbox("Italic", false));

 previewArea = new JLabel("Qwerty Yuiop", JLabel.CENTER);
 previewArea.setSize(200, 50);
 cp.add(BorderLayout.CENTER, previewArea);

 Panel bot = new Panel();

 Button okButton = new Button("Apply");
 bot.add(okButton);
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 previewFont();
 dispose();
 setVisible(false);
 }
 });

 Button pvButton = new Button("Preview");
 bot.add(pvButton);
 pvButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 previewFont();
 }
 });

 Button canButton = new Button("Cancel");
 bot.add(canButton);
 canButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // Set all values to null. Better: restore previous.
 resultFont = null;
 resultName = null;
 resultSize = 0;
 isBold = false;
 isItalic = false;

 dispose();
 setVisible(false);

Example 14-10. FontChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Custom Font Chooser | 413

 }
 });

 cp.add(BorderLayout.SOUTH, bot);

 previewFont(); // ensure view is up to date!

 pack();
 setLocation(100, 100);
 }

 /** Called from the action handlers to get the font info,
 * build a font, and set it.
 */
 protected void previewFont() {
 resultName = fontNameChoice.getSelectedItem();
 String resultSizeName = fontSizeChoice.getSelectedItem();
 int resultSize = Integer.parseInt(resultSizeName);
 isBold = bold.getState();
 isItalic = italic.getState();
 int attrs = Font.PLAIN;
 if (isBold) attrs = Font.BOLD;
 if (isItalic) attrs |= Font.ITALIC;
 resultFont = new Font(resultName, attrs, resultSize);
 // System.out.println("resultName = " + resultName + "; " +
 // "resultFont = " + resultFont);
 previewArea.setFont(resultFont);
 pack(); // ensure Dialog is big enough.
 }

 /** Retrieve the selected font name. */
 public String getSelectedName() {
 return resultName;
 }
 /** Retrieve the selected size */
 public int getSelectedSize() {
 return resultSize;
 }

 /** Retrieve the selected font, or null */
 public Font getSelectedFont() {
 return resultFont;
 }

 /** Simple main program to start it running */
 public static void main(String[] args) {
 final JFrame f = new JFrame("Dummy");
 final FontChooser fc = new FontChooser(f);
 final Container cp = f.getContentPane();
 cp.setLayout(new GridLayout(0, 1)); // one vertical column

Example 14-10. FontChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 14: Graphical User Interfaces

14.18 Program: Custom Layout Manager

Problem
None of the standard layout managers do quite what you need.

Solution
Roll your own. All you need to do is implement the methods of the java.awt.
LayoutManager interface.

 JButton theButton = new JButton("Change font");
 cp.add(theButton);

 final JLabel theLabel = new JLabel("Java is great!");
 cp.add(theLabel);

 // Now that theButton and theLabel are ready, make the action listener
 theButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fc.setVisible(true);
 Font myNewFont = fc.getSelectedFont();
 System.out.println("You chose " + myNewFont);
 theLabel.setFont(myNewFont);
 f.pack(); // again
 fc.dispose();
 }
 });

 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

Figure 14-16. Font Chooser in action

Example 14-10. FontChooser.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Custom Layout Manager | 415

Discussion
While many people are intimidated by the thought of writing their own layout man-
ager, it beats the alternative of using only “the big five” layouts (BorderLayout,
CondLayout, FlowLayout, GridBagLayout, and GridLayout). BorderLayout isn’t quite
flexible enough, and GridBaglayout is too complex for many applications. Suppose,
for instance, that you wanted to lay out an arbitrary number of components in a cir-
cle. In a typical X Windows or Windows application, you would write the geometry
calculations within the code for creating the components to be drawn. This would
work, but the code for the geometry calculations would be unavailable to anybody
who needed it later. The LayoutManager interface is another great example of how the
Java API’s design promotes code reuse: if you write the geometry calculations as a
layout manager, then anybody needing this type of layout could simply instantiate
your CircleLayout class to get circular layouts.

As another example, consider the layout shown in Figure 14-17, where the labels col-
umn and the textfield column have different widths. Using the big five layouts,
there’s no good way to ensure that the columns line up and that you have control
over their relative widths. Suppose you wanted the label field to take up 40% of the
panel and the entry field to take up 60%. I’ll implement a simple layout manager
here, both to show you how easy it is and to give you a useful class for making pan-
els like the one shown.

The methods for the LayoutManager interface are shown in Table 14-2.

Figure 14-17. EntryLayout in action

Table 14-2. LayoutManager methods

Method name Description

preferredLayoutSize(Container) Like getPreferredSize() for a component: the “best”
size for the container

minimumLayoutSize(Container) Same, but for the minimum workable size

layoutContainer(Container) Perform the layout calculations, and resize and reposition all
the components at the current size of the container

addLayoutComponent(String, Component) Associate a constraint with a given component (you normally
store these mappings in a java.util.HashMap())

removeLayoutComponent(Component) Remove a component from the HashMap

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 14: Graphical User Interfaces

If you don’t need Constraint objects (like BorderLayout.NORTH or a GridBagConstraint
object), you can ignore the last two methods. Well, you can’t ignore them com-
pletely. Since this is an interface, you must implement them. But they can be as sim-
ple as {}, that is, a null-bodied method.

That leaves only three serious methods. The first, preferredLayoutSize(), normally
loops through all the components—either in the HashMap if using constraints, or in an
array returned by the container’s getComponents() method—asking each for its pre-
ferred size and adding them up, while partly doing the layout calculations. And
minimumLayoutSize() is the same for the smallest possible layout that will work. It
may be possible for these methods to delegate either to a common submethod or to
invoke layoutContainer(), depending upon how the given layout policy works.

The most important method is layoutContainer(). This method needs to examine all
the components and decide where to put them and how big to make each one. Hav-
ing made the decision, it can use setBounds() to set each one’s position and size.

Other than a bit of error checking, that’s all that’s involved. Here’s an example,
EntryLayout, that implements the multicolumn layout shown in Figure 14-17. Quot-
ing its Javadoc documentation:

A simple layout manager, for Entry areas like:

Login: ______________

Password: ______________

Basically two (or more) columns of different, but constant, widths.

Construct instances by passing an array of the column width percentages (as doubles,
fractions from 0.1 to 0.9, so 40%, 60% would be {0.4, 0.6}). The length of this array
uniquely determines the number of columns. Columns are forced to be the relevant
widths. As with GridLayout, the number of items added must be an even multiple of
the number of columns. If not, exceptions may be thrown!

First, let’s look at the program that uses this layout to produce Figure 14-17. This
program simply creates a JFrame, gets the contentPane container, and sets its layout
to an instance of EntryLayout, passing an array of two doubles representing the rela-
tive widths (decimal fractions, not percentages) into the EntryLayout constructor.
Then we add an even number of components, and call pack()—which in turn calls
our preferredLayoutSize()—and setVisible(true):

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** Testbed for EntryLayout layout manager.
 */
public class EntryLayoutTest {

 /** "main program" method - construct and show */
 public static void main(String[] av) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Custom Layout Manager | 417

 final JFrame f = new JFrame("EntryLayout Demonstration");
 Container cp = f.getContentPane();
 double widths[] = { .33, .66 };
 cp.setLayout(new EntryLayout(widths));
 cp.add(new JLabel("Login:", SwingConstants.RIGHT));
 cp.add(new JTextField(10));
 cp.add(new JLabel("Password:", SwingConstants.RIGHT));
 cp.add(new JPasswordField(20));
 cp.add(new JLabel("Security Domain:", SwingConstants.RIGHT));
 cp.add(new JTextField(20));
 // cp.add(new JLabel("Monkey wrench in works"));
 f.pack();
 f.addWindowListener(new WindowCloser(f, true));
 f.setLocation(200, 200);
 f.setVisible(true);
 }
}

Nothing complicated about it. The last JLabel (“Monkey wrench in works”) is com-
mented out since, as noted, the LayoutManager throws an exception if the number of
components is not evenly divisible by the number of columns. It was put in during
testing and then commented out, but was left in place for further consideration.
Note that this layout operates correctly with more than two columns, but it does
assume that all columns are approximately the same height (relaxing this require-
ment has been left as an exercise for the reader).

Finally, let’s look at the code for the layout manager itself, shown in Example 14-11.
After some constants and fields and two constructors, the methods are listed in about
the same order as the discussion earlier in this recipe: the dummy add/remove compo-
nent methods; then the preferredSize() and minimumLayoutSize() methods (which
delegate to computeLayoutSize); and, finally, layoutContainer, which does the actual
laying out of the components within the container. As you can see, the entire
EntryLayout layout manager class is only about 140 lines, including a lot of comments.

Example 14-11. EntryLayout.java

// package com.darwinsys.entrylayout;

import java.awt.*;
import java.util.*;

/** A simple layout manager, for Entry areas like:
 * <pre>
 * Login: _____________
 * Password: _____________
 * </pre>
 * Note: all columns must be approximately the same height!
 */
public class EntryLayout implements LayoutManager {
 /** The array of widths, as decimal fractions (0.4 == 40%, etc.). */
 protected final double[] widthPercentages;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 14: Graphical User Interfaces

 /** The number of columns. */
 protected final int COLUMNS;

 /** The default padding */
 protected final static int HPAD = 5, VPAD = 5;
 /** The actual padding */
 protected final int hpad, vpad;

 /** True if the list of widths was valid. */
 protected boolean validWidths = false;

 /** Construct an EntryLayout with widths and padding specified.
 * @param widths Array of doubles specifying column widths.
 * @param h Horizontal padding between items
 * @param v Vertical padding between items
 */
 public EntryLayout(double[] widths, int h, int v) {
 COLUMNS = widths.length;
 widthPercentages = new double[COLUMNS];
 for (int i=0; i<widths.length; i++) {
 if (widths[i] >= 1.0)
 throw new IllegalArgumentException(
 "EntryLayout: widths must be fractions < 1");
 widthPercentages[i] = widths[i];
 }
 validWidths = true;
 hpad = h;
 vpad = v;
 }
 /** Construct an EntryLayout with widths and with default padding amounts.
 * @param widths Array of doubles specifying column widths.
 */
 public EntryLayout(double[] widths) {
 this(widths, HPAD, VPAD);
 }

 /** Adds the specified component with the specified constraint
 * to the layout; required by LayoutManager but not used.
 */
 public void addLayoutComponent(String name, Component comp) {
 // nothing to do
 }

 /** Removes the specified component from the layout;
 * required by LayoutManager, but does nothing.
 */
 public void removeLayoutComponent(Component comp) {
 // nothing to do
 }

 /** Calculates the preferred size dimensions for the specified panel
 * given the components in the specified parent container. */

Example 14-11. EntryLayout.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Custom Layout Manager | 419

 public Dimension preferredLayoutSize(Container parent) {
 // System.out.println("preferredLayoutSize");
 return computeLayoutSize(parent, hpad, vpad);
 }

 /** Find the minimum Dimension for the
 * specified container given the components therein.
 */
 public Dimension minimumLayoutSize(Container parent) {
 // System.out.println("minimumLayoutSize");
 return computeLayoutSize(parent, 0, 0);
 }

 /** The width of each column, as found by computLayoutSize(). */
 int[] widths;
 /** The height of each row, as found by computLayoutSize(). */
 int[] heights;

 /** Compute the size of the whole mess. Serves as the guts of
 * preferredLayoutSize() and minimumLayoutSize().
 */
 protected Dimension computeLayoutSize(Container parent, int hpad, int vpad) {
 if (!validWidths)
 return null;
 Component[] components = parent.getComponents();
 Dimension contSize = parent.getSize();
 int preferredWidth = 0, preferredHeight = 0;
 widths = new int[COLUMNS];
 heights = new int[components.length / COLUMNS];
 // System.out.println("Grid: " + widths.length + ", " + heights.length);

 int i;
 // Pass One: Compute largest widths and heights.
 for (i=0; i<components.length; i++) {
 int row = i / widthPercentages.length;
 int col = i % widthPercentages.length;
 Component c = components[i];
 Dimension d = c.getPreferredSize();
 widths[col] = Math.max(widths[col], d.width);
 heights[row] = Math.max(heights[row], d.height);
 }

 // Pass two: aggregate them.
 for (i=0; i<widths.length; i++)
 preferredWidth += widths[i] + hpad;
 for (i=0; i<heights.length; i++)
 preferredHeight += heights[i] + vpad;

 // Finally, pass the sums back as the actual size.
 return new Dimension(preferredWidth, preferredHeight);
 }

Example 14-11. EntryLayout.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 14: Graphical User Interfaces

See Also
For more on layouts, see Jim Elliott’s RelativeLayout, described in http://www.
onjava.com/pub/a/onjava/2002/09/18/relativelayout.html. This is not to be confused
with the like-named but much simpler RelativeLayout in the source distribution
accompanying the book; Jim’s is more complete.

As mentioned in the Introduction, there are many good books on windowed applica-
tion programming with Java. O’Reilly’s Java Swing discusses the many Swing com-
ponents not covered here, such as JTable, JScrollPane, JList, and JTree, and many
more. My JabaDex application contains examples of many of these, and some are
used in later recipes in this book (for example, JTree is discussed in Recipe 19.9).

 /** Lays out the container in the specified panel. */
 public void layoutContainer(Container parent) {
 // System.out.println("layoutContainer:");
 if (!validWidths)
 return;
 Component[] components = parent.getComponents();
 Dimension contSize = parent.getSize();
 int x = 0;
 for (int i=0; i<components.length; i++) {
 int row = i / COLUMNS;
 int col = i % COLUMNS;
 Component c = components[i];
 Dimension d = c.getPreferredSize();
 int colWidth = (int)(contSize.width * widthPercentages[col]);
 if (col == 0) {
 x = hpad;
 } else {
 x += hpad * (col-1) + (int)(contSize.width * widthPercentages[col-1]);
 }
 int y = vpad * (row) + (row * heights[row]) + (heights[row]-d.height);
 Rectangle r = new Rectangle(x, y,
 colWidth, d.height);
 c.setBounds(r);
 }
 }

}

Example 14-11. EntryLayout.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

421

Chapter 15 CHAPTER 15

Internationalization and Localization

15.0 Introduction
“All the world’s a stage,” wrote William Shakespeare. But not all the players upon
that great and turbulent stage speak the great Bard’s native tongue. To be usable on a
global scale, your software needs to communicate in many different languages. The
menu labels, button strings, dialog messages, titlebar titles, and even command-line
error messages must be settable to the user’s choice of language. This is the topic of
internationalization and localization. Because these words take a long time to say and
write, they are often abbreviated by their first and last letters and the count of omit-
ted letters, that is, I18N and L10N.

Java provides a Locale class to discover/control the internationalization settings. A
default Locale is inherited from operating system runtime settings when Java starts
up and can be used most of the time!

See also Java Internationalization by Andy Deitsch and David Czarnecki (O’Reilly).

Ian’s Basic Steps: Internationalization
Internationalization and localization consist of:

• Sensitivity training (Internationalization or I18N): making your software sensi-
tive to these issues

• Language lessons (Localization or L10N): writing configuration files for each
language

• Culture lessons (optional): customizing the presentation of numbers, fractions,
dates, and message-formatting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 15: Internationalization and Localization

15.1 Creating a Button with I18N Resources

Problem
You want your program to take “sensitivity lessons” so that it can communicate well
internationally.

Solution
Your program must obtain all control and message strings via the internationaliza-
tion software. Here’s how:

1. Get a ResourceBundle.
ResourceBundle rb = ResourceBundle.getBundle("Menus");

I’ll talk about ResourceBundle in Recipe 15.6, but briefly, a ResourceBundle repre-
sents a collection of name-value pairs (resources). The names are names you
assign to each GUI control or other user interface text, and the values are the
text to assign to each control in a given language.

2. Use this ResourceBundle to fetch the localized version of each control name.

Old way:
somePanel.add(new JButton("Exit"));

New way:
try { label = rb.getString("exit.label"); }
catch (MissingResourceException e) { label="Exit"; } // fallback
somePanel.add(new JButton(label));

This is quite a bit of code for one button but distributed over all the widgets
(buttons, menus, etc.) in a program, it can be as little as one line with the use of
convenience routines, which I’ll show in Recipe 15.4.

What happens at runtime?

The default locale is used, since we didn’t specify one. The default locale is platform-
dependent:

• Unix/POSIX: LANG environment variable (per user)

• Windows: Control Panel ➝ Regional Settings

• Mac OS X: System Preferences ➝ International

• Others: see platform documentation

ResourceBundle.getBundle() locates a file with the named resource bundle name
(Menus in the previous example), plus an underscore and the locale name (if any
locale is set), plus another underscore and the locale variation (if any variation is set),
plus the extension .properties. If a variation is set but the file can’t be found, it falls
back to just the country code. If that can’t be found, it falls back to the original
default. Table 15-1 shows some examples for various locales.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Listing Available Locales | 423

Locale names are two-letter ISO language codes (lowercase); locale variations are
two-letter ISO country codes (uppercase).

Setting the locale

On Windows, go into Regional Settings in the Control Panel. Changing this setting
may entail a reboot, so exit any editor windows.

On Unix, set your LANG environment variable. For example, a Korn shell user in
Mexico might have this line in his or her .profile:

export LANG=es_MX

On either system, for testing a different locale, you need only define the locale in the
System Properties at runtime using the command-line option -D, as in:

java -Duser.language=es Browser

to run the program named Browser in the Spanish locale.

15.2 Listing Available Locales

Problem
You want to see what locales are available.

Solution
Call Locale.getAvailableLocales().

Discussion
A typical runtime may have dozens of locales available. The program ListLocales
uses the method getAvailableLocales() and prints the list:

// File ListLocales.java
Locale[] list = Locale.getAvailableLocales();
 for (int i=0; i<list.length; i++)
 System.out.println(list[i]);
 }
}

Table 15-1. Property filenames for different locales

Locale Filename

Default locale Menus.Properties

Swedish Menus_sv.properties

Spanish Menus_es.properties

French Menus_fr.properties

French-Canadian Menus_fr_CA.properties

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 15: Internationalization and Localization

The list is far too long to show here, as you can judge by the first few entries:

> java ListLocales
en
en_US
ar
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY
ar_MA
ar_OM
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE
be
be_BY

On my system, the complete list has an even dozen dozen (144) locales, as listed by
the command java ListLocales | wc –l.

15.3 Creating a Menu with I18N Resources

Problem
You want to internationalize an entire Menu.

Solution
Get the Menu’s label, and each MenuItem’s label, from a ResourceBundle.

Discussion
Fetching a single menu item is the same as fetching a button:

rb = getResourceBundle("Widgets");
try { label = rb.getString("exitMenu.label"); }
catch (MissingResourceException e) { label="Exit"; } // fallback
someMenu.add(new JMenuItem(label));

This is a lot of code, so we typically consolidate it in convenience routines (see Recipe
15.4). Here is sample code, using our convenience routines:

JMenu fm = mkMenu(rb, "file");
fm.add(mkMenuItem(rb, "file", "open"));
fm.add(mkMenuItem(rb, "file", "new"));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Internationalization Convenience Routines | 425

fm.add(mkMenuItem(rb, "file", "save"));
fm.add(mkMenuItem(rb, "file", "exit"));
mb.add(fm);
Menu um = mkMenu(rb, "edit");
um.add(mkMenuItem(rb, "edit", "copy"));
um.add(mkMenuItem(rb, "edit", "paste"));
mb.add(um);

15.4 Writing Internationalization Convenience
Routines

Problem
You want convenience.

Solution
I’ve got it.

Discussion
Convenience routines are mini-implementations that can be more convenient and
effective than the general-purpose routines. Here I present the convenience routines
to create buttons, menus, etc. First, a simple one, mkMenu():

/** Convenience routine to make up a Menu with its name L10N'd */
Menu mkMenu(ResourceBundle b, String menuName) {
 String label;
 try { label = b.getString(menuName+".label"); }
 catch (MissingResourceException e) { label=menuName; }
 return new Menu(label);
}

There are many such routines that you might need; I have consolidated several of
them into my class I18N.java, which is part of the com.darwinsys.swingui package.
All methods are static, and can be used without having to instantiate an I18N object
because they do not maintain any state across calls. The method mkButton() creates
and returns a localized Button, and so on. The method mkDialog is slightly misnamed
since the JOptionPane method showMessageDialog() doesn’t create and return a
Dialog object, but it seemed more consistent to write it as shown here:

package com.darwinsys.util;

import java.util.*;
import javax.swing.*;

/** Set of convenience routines for internationalized code.
 * All convenience methods are static, for ease of use.
 */
public class I18N {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 15: Internationalization and Localization

 /** Convenience routine to make a JButton */
 public static JButton mkButton(ResourceBundle b, String name) {
 String label;
 try { label = b.getString(name+".label"); }
 catch (MissingResourceException e) { label=name; }
 return new JButton(label);
 }

 /** Convenience routine to make a JMenu */
 public static JMenu mkMenu(ResourceBundle b, String name) {
 String menuLabel;
 try { menuLabel = b.getString(name+".label"); }
 catch (MissingResourceException e) { menuLabel=name; }
 return new JMenu(menuLabel);
 }

 /** Convenience routine to make a JMenuItem */
 public static JMenuItem mkMenuItem(ResourceBundle b,
 String menu, String name) {

 String miLabel;
 try { miLabel = b.getString(menu + "." + name + ".label"); }
 catch (MissingResourceException e) { miLabel=name; }
 String key = null;
 try { key = b.getString(menu + "." + name + ".key"); }
 catch (MissingResourceException e) { key=null; }

 if (key == null)
 return new JMenuItem(miLabel);
 else
 return new JMenuItem(miLabel, key.charAt(0));
 }

 /** Show a JOptionPane message dialog */
 public static void mkDialog(ResourceBundle b,JFrame parent,
 String dialogTag, String titleTag, int messageType) {
 JOptionPane.showMessageDialog(
 parent,
 getString(b, dialogTag, "DIALOG TEXT MISSING " + dialogTag),
 getString(b, titleTag, "DIALOG TITLE MISSING" + titleTag),
 messageType);
 }

 /** Just get a String (for dialogs, labels, etc.) */
 public static String getString(ResourceBundle b, String name, String dflt) {
 String result;
 try {
 result = b.getString(name);
 } catch (MissingResourceException e) {
 result = dflt;
 }
 return result;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Dialog with I18N Resources | 427

15.5 Creating a Dialog with I18N Resources

Problem
You want to internationalize a dialog.

Solution
Use a ResourceBundle.

Discussion
This is similar to the use of ResourceBundle in the previous recipes and shows the
code for an internationalized version of the JOptionDemo program from Recipe 14.7:

package com.darwinsys.util;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

/**
 * I18N'd JOptionPane
 */
public class JOptionDemo extends JFrame {

 ResourceBundle rb;

 // Constructor
 JOptionDemo(String s) {
 super(s);

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());

 rb = ResourceBundle.getBundle("Widgets");

 JButton b = I18N.mkButton(rb, "getButton");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(
 JOptionDemo.this,
 rb.getString("dialog1.text"),
 rb.getString("dialog1.title"),
 JOptionPane.INFORMATION_MESSAGE);
 }
 });
 cp.add(b);

 b = I18N.mkButton(rb, "goodbye");
 b.addActionListener(new ActionListener() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 15: Internationalization and Localization

 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 cp.add(b);

 // the main window
 setSize(200, 150);
 pack();
 }

 public static void main(String[] arg) {
 JOptionDemo x = new JOptionDemo("Testing 1 2 3...");
 x.setVisible(true);
 }
}

15.6 Creating a Resource Bundle

Problem
You need to create a resource bundle for use by I18N.

Solution
A resource bundle is just a collection of names and values. You can write a java.
util.ResourceBundle subclass, but it is easier to create textual Properties files (see
Recipe 7.7) that you then load with ResourceBundle.getBundle(). The files can be
created using any text editor. Leaving it in a text file format also allows user customi-
zation; a user whose language is not provided for, or who wishes to change the word-
ing somewhat due to local variations in dialect, will have no trouble editing the file.

Note that the resource bundle text file should not have the same name as any of your
Java classes. The reason is that the ResourceBundle constructs a class dynamically
with the same name as the resource files. You can confirm this by running java –verbose
on any of the programs that use the I18N class from this chapter.

Discussion
Here is a sample properties file for a simple browser (see the MenuIntl program in
Recipe 15.11):

Default Menu properties
The File Menu
file.label=File Menu
file.new.label=New File
file.new.key=N

Creating the default properties file is usually not a problem, but creating properties
files for other languages might be. Unless you are a large multinational corporation,
you will probably not have the resources (pardon the pun) to create resource files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting Strings from Your Code | 429

in-house. If you are shipping commercial software, you need to identify your target
markets and understand which of these are most sensitive to wanting menus and the
like in their own languages. Then, hire a professional translation service that has
expertise in the required languages to prepare the files. Test them well before you
ship, as you would any other part of your software.

If you need special characters, multiline text, or other complex entry, remember that
a ResourceBundle is also a Properties file.

As an alternate approach, the next recipe describes a program that automates some
of the work of isolating strings, creating resource files, and translating them to other
languages.

15.7 Extracting Strings from Your Code

Problem
You have existing code that contains hardcoded strings.

Solution
Use JILT, Eclipse, or your favorite IDE.

Discussion
Many tools extract Strings into resource bundles. This process is also known as
externalization. Nothing to do with jilting your lover, JILT is Sun’s Java Internation-
alization and Localization Toolkit, Version 2.0.* JILTing your code means process-
ing it with JILT, which facilitates I18N and L10N’ing the Java classes. JILT has four
GUI-based tools, which can be used independently, started from a GUI frontend
called JILKIT. Figure 15-1 shows JILT in action.

* Ironically, though, Sun appears to be jilting JILT; it’s nearing the end of its lifecycle, so you may want to look
at the externalization support offered by your IDE instead.

Figure 15-1. JILT in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 15: Internationalization and Localization

The tools are listed in Table 15-2.

It’s worth noting that the time it takes to learn these tools may overshadow their
benefits on small projects, but on large projects they will likely prove worthwhile.

Version 2 of the Translator ships with a Chinese dictionary, but you can provide
your own dictionaries as well.

The Java Internationalization and Localization Toolkit is nearing its end-of-life sup-
port from Sun but can, as of this writing, still be downloaded for free from Sun’s Java
page, http://java.sun.com/products/jilkit/.

Many IDEs provide an externalization mechanism. Under Eclipse, for example,
select a Java source file, then select Externalize Strings from the Source menu. Eclipse
generates a Properties file and a class with static methods to retrieve the values of the
Strings and replace the strings in your code with calls to those methods. Other IDEs
provide similar mechanisms.

15.8 Using a Particular Locale

Problem
You want to use a locale other than the default in a particular operation.

Solution
Use Locale.getInstance(Locale).

Discussion
Classes that provide formatting services, such as DateFormat and NumberFormat, pro-
vide an overloaded getInstance() method that can be called either with no argu-
ments or with a Locale argument.

To use these, you can use one of the predefined locale variables provided by the
Locale class, or you can construct your own Locale object giving a language code and
a country code:

Locale locale1 = Locale.FRANCE; // predefined
Locale locale2 = new Locale("en", "UK"); // English, UK version

Table 15-2. JILT programs

Tool Function

I18N Verifier Tests program for international use and suggests improvements.

Message Tool Finds and allows you to edit hardcoded or inconsistent messages.

Translator Translates messages in a resource bundle file into a given locale/language.

Resource Tool Merges multiple resource files into a new resource bundle. Can also find differences between resource
files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Setting the Default Locale | 431

Either of these can be used to format a date or a number, as shown in class
UseLocales:

import java.text.*;
import java.util.*;

/** Use some locales
 * choices or -Duser.lang= or -Duser.region=.
 */
public class UseLocales {
 public static void main(String[] args) {

 Locale frLocale = Locale.FRANCE; // predefined
 Locale ukLocale = new Locale("en", "UK"); // English, UK version

 DateFormat defaultDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM);
 DateFormat frDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, frLocale);
 DateFormat ukDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, ukLocale);

 Date now = new Date();
 System.out.println("Default: " + ' ' +
 defaultDateFormatter.format(now));
 System.out.println(frLocale.getDisplayName() + ' ' +
 frDateFormatter.format(now));
 System.out.println(ukLocale.getDisplayName() + ' ' +
 ukDateFormatter.format(now));
 }
}

The program prints the locale name and formats the date in each of the locales:

$ java UseLocales
Default: Nov 30, 2000
French (France) 30 nov. 00
English (UK) Nov 30, 2000
$

15.9 Setting the Default Locale

Problem
You want to change the default Locale for all operations within a given Java runtime.

Solution
Set the system property user.language or call Locale.setDefault().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 15: Internationalization and Localization

Discussion
Here is a program called SetLocale, which takes the language and country codes
from the command line, constructs a Locale object, and passes it to Locale.
setDefault(). When run with different arguments, it prints the date and a number in
the appropriate locale:

C:\javasrc\i18n>java SetLocale en US
6/30/00 1:45 AM
123.457

C:\javasrc\i18n>java SetLocale fr FR
30/06/00 01:45
123,457

The code is similar to the previous recipe in how it constructs the locale:

import java.text.*;
import java.util.*;

/** Change the default locale */
public class SetLocale {
 public static void main(String[] args) {

 switch (args.length) {
 case 0:
 Locale.setDefault(Locale.FRANCE);
 break;
 case 1:
 throw new IllegalArgumentException();
 case 2:
 Locale.setDefault(new Locale(args[0], args[1]));
 break;
 default:
 System.out.println("Usage: SetLocale [language [country]]");
 // FALLTHROUGH
 }

 DateFormat df = DateFormat.getInstance();
 NumberFormat nf = NumberFormat.getInstance();

 System.out.println(df.format(new Date()));
 System.out.println(nf.format(123.4567));
 }
}

15.10 Formatting Messages

Problem
Messages may need to be formatted differently in different languages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting Messages | 433

Solution
Use a MessageFormat object.

Discussion
In English, for example, we say “file not found.” But in other languages the word
order is different: the word for “not found” might need to precede the word for “file.”
Java provides for this using the MessageFormat class. Suppose we want to format a
message as follows:

$ java MessageFormatDemoIntl
At 3:33:02 PM on 01-Jul-00, myfile.txt could not be opened.
$ java -Duser.language=es MessageFormatDemoIntl
A 3:34:49 PM sobre 01-Jul-00, no se puede abrir la fila myfile.txt.
$

The MessageFormat in its simplest form takes a format string with a series of numeric
indexes and an array of objects to be formatted. The objects are inserted into the
resulting string, where the given array index appears. Here is a simple example of a
MessageFormat in action:

import java.text.*;

public class MessageFormatDemo {

 static Object[] data = {
 new java.util.Date(),
 "myfile.txt",
 "could not be opened"
 };

 public static void main(String[] args) {
 String result = MessageFormat.format(
 "At {0,time} on {0,date}, {1} {2}.", data);
 System.out.println(result);
 }
}

But we still need to internationalize this, so we’ll add some lines to our widget’s
properties files. In the default (English) version:

These are for MessageFormatDemo
#
filedialogs.cantopen.string=could not be opened
filedialogs.cantopen.format=At {0,time} on {0,date}, {1} {2}.

In the Spanish version, we’ll add these lines:

These are for MessageFormatDemo
#
filedialogs.cantopen.string=no se puede abrir la fila
filedialogs.cantopen.format=A {0,time} sobre {0,date}, {2} {1}.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 15: Internationalization and Localization

Then MessageFormatDemo still needs to have a ResourceBundle and get both the format
string and the message from the bundle. Here is MessageFormatDemoIntl:

import java.text.*;
import java.util.*;

public class MessageFormatDemoIntl {

 static Object[] data = {
 new Date(),
 "myfile.txt",
 null
 };

 public static void main(String[] args) {
 ResourceBundle rb = ResourceBundle.getBundle("Widgets");
 data[2] = rb.getString("filedialogs.cantopen.string");
 String result = MessageFormat.format(
 rb.getString("filedialogs.cantopen.format"), data);
 System.out.println(result);
 }
}

MessageFormat is more complex than this; see the Javadoc page for more details and
examples.

15.11 Program: MenuIntl
MenuIntl (shown in Example 15-1) is a complete version of the menu code presented
in Recipe 15.3.

Example 15-1. MenuIntl.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

/** This is a partly-internationalized version of MenuDemo.
 * To try it out, use
 * java MenuIntl
 * java -Duser.language=es MenuIntl
 */
public class MenuIntl extends JFrame {

 /** "main program" method - construct and show */
 public static void main(String[] av) {
 // create an MenuIntl object, tell it to show up
 new MenuIntl().setVisible(true);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MenuIntl | 435

 /** Construct the object including its GUI */
 public MenuIntl() {
 super("MenuIntlTest");
 JMenuItem mi; // used in various spots

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 JLabel lab;
 cp.add(lab = new JLabel());

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 JMenuBar mb = new JMenuBar();
 setJMenuBar(mb);

 ResourceBundle b = ResourceBundle.getBundle("Menus");

 String titlebar;
 try { titlebar = b.getString("program"+".title"); }
 catch (MissingResourceException e) { titlebar="MenuIntl Demo"; }
 setTitle(titlebar);

 String message;
 try { message = b.getString("program"+".message"); }
 catch (MissingResourceException e) {
 message="Welcome to the world of Java";
 }
 lab.setText(message);

 JMenu fm = mkMenu(b, "file");
 fm.add(mi = mkMenuItem(b, "file", "open"));
 // In finished code there would be a call to
 // mi.addActionListener(...) after *each* of
 // these mkMenuItem calls!
 fm.add(mi = mkMenuItem(b, "file", "new"));
 fm.add(mi = mkMenuItem(b, "file", "save"));
 fm.add(mi = mkMenuItem(b, "file", "exit"));
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 MenuIntl.this.setVisible(false);
 MenuIntl.this.dispose();
 System.exit(0);
 }
 });
 mb.add(fm);

Example 15-1. MenuIntl.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 15: Internationalization and Localization

15.12 Program: BusCard
This program may seem a bit silly, but it’s a good example of configuring a variety of
user interface controls from a resource bundle. The BusCard program allows you to
create a digital business card (“interactive business card”) onscreen (see Figure 15-2).
The labels for all the GUI controls, and even the pull-down menu options, are loaded
from a ResourceBundle.

Example 15-2 shows the code for the BusCard program.

 JMenu vm = mkMenu(b, "view");
 vm.add(mi = mkMenuItem(b, "view", "tree"));
 vm.add(mi = mkMenuItem(b, "view", "list"));
 vm.add(mi = mkMenuItem(b, "view", "longlist"));
 mb.add(vm);

 JMenu hm = mkMenu(b, "help");
 hm.add(mi = mkMenuItem(b, "help", "about"));
 // mb.setHelpMenu(hm); // needed for portability (Motif, etc.).

 // the main window
 JLabel jl = new JLabel("Menu Demo Window");
 jl.setSize(200, 150);
 cp.add(jl);
 pack();
 }

 /** Convenience routine to make a JMenu */
 public JMenu mkMenu(ResourceBundle b, String name) {
 String menuLabel;
 try { menuLabel = b.getString(name+".label"); }
 catch (MissingResourceException e) { menuLabel=name; }
 return new JMenu(menuLabel);
 }

 /** Convenience routine to make a JMenuItem */
 public JMenuItem mkMenuItem(ResourceBundle b, String menu, String name) {
 String miLabel;
 try { miLabel = b.getString(menu + "." + name + ".label"); }
 catch (MissingResourceException e) { miLabel=name; }
 String key = null;
 try { key = b.getString(menu + "." + name + ".key"); }
 catch (MissingResourceException e) { key=null; }

 if (key == null)
 return new JMenuItem(miLabel);
 else
 return new JMenuItem(miLabel, key.charAt(0));
 }
}

Example 15-1. MenuIntl.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: BusCard | 437

Figure 15-2. BusCard program in action

Example 15-2. BusCard.java

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

/** Display your business-card information in a Java window.
 *
 * This is a first attempt. The next version should use a GridBagLayout.
 */
public class BusCard extends JFrame {

 JLabel nameTF;
 JComboBox jobChoice;
 JButton B1, B2, B3, B4;

 /** "main program" method - construct and show */
 public static void main(String[] av) {

 // create a BusCard object, tell it to show up
 new BusCard().setVisible(true);
 }

 /** Construct the object including its GUI */
 public BusCard() {
 super();

 Container cp = getContentPane();

 cp.setLayout(new GridLayout(0, 1));

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 15: Internationalization and Localization

 System.exit(0);
 }
 });

 JMenuBar mb = new JMenuBar();
 setJMenuBar(mb);

 ResourceBundle b = ResourceBundle.getBundle("BusCard");

 JMenu aMenu;
 aMenu = I18N.mkMenu(b, "filemenu");
 mb.add(aMenu);
 JMenuItem mi = I18N.mkMenuItem(b, "filemenu", "exit");
 aMenu.add(mi);
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 aMenu = I18N.mkMenu(b, "editmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "viewmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "optionsmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "helpmenu");
 mb.add(aMenu);
 //mb.setHelpMenu(aMenu); // needed for portability (Motif, etc.).

 setTitle(I18N.getString(b, "card"+".company", "TITLE"));

 JPanel p1 = new JPanel();
 p1.setLayout(new GridLayout(0, 1, 50, 10));

 nameTF = new JLabel("My Name", JLabel.CENTER);
 nameTF.setFont(new Font("helvetica", Font.BOLD, 18));
 nameTF.setText(I18N.getString(b, "card"+".myname", "MYNAME"));
 p1.add(nameTF);

 jobChoice = new JComboBox();
 jobChoice.setFont(new Font("helvetica", Font.BOLD, 14));

 // Get Job Titles ofrom the Properties file loaded into "b"!
 String next;
 int i=1;
 do {
 next = I18N.getString(b, "job_title" + i++, null);
 if (next != null)
 jobChoice.addItem(next);
 } while (next != null);
 p1.add(jobChoice);

Example 15-2. BusCard.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: BusCard | 439

See Also
Other things may need to be internationalized as well:

Character comparisons
These are set separately on Unix/POSIX; on other operating systems, they
depend on the default Locale.

Date and time formats
See GregorianCalendar and DateFormat in the Introduction to Chapter 6.

Number formats
See java.util.NumberFormat in Recipe 5.8.

Message insertions
These appear in different orders in different languages (something the C-
language printf() could never handle). See java.util.MessageFormat in Recipe
14.10.

Sun maintains an Internationalization Home Page at http://java.sun.com/j2se/
corejava/intl/.

 cp.add(p1);

 JPanel p2 = new JPanel();
 p2.setLayout(new GridLayout(2, 2, 10, 10));

 B1 = new JButton();
 B1.setLabel(I18N.getString(b, "button1.label", "BUTTON LABEL"));
 p2.add(B1);

 B2 = new JButton();
 B2.setLabel(I18N.getString(b, "button2.label", "BUTTON LABEL"));
 p2.add(B2);

 B3 = new JButton();
 B3.setLabel(I18N.getString(b, "button3.label", "BUTTON LABEL"));
 p2.add(B3);

 B4 = new JButton();
 B4.setLabel(I18N.getString(b, "button4.label", "BUTTON LABEL"));
 p2.add(B4);
 cp.add(p2);

 pack();
 }
}

Example 15-2. BusCard.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 15: Internationalization and Localization

Internationalization Caveats
Internationalizing your menus and push buttons is only one step. You also need to
internationalize message text in dialogs as well as help files (see the JavaHelp API at
http://java.sun.com/products/javahelp/).

Some items such as AWT FileDialog use native components; their appearance
depends on the native operating system (your application can change its own default
locale, but not the system’s. If your customer has a differently internationalized copy
of the same OS, the file dialogs will appear differently).

Documentation
A short, readable, non-Java-specific introduction to the overall topic of international-
ization is The Guide to Translation and Localization, written by the staff of Lingo Sys-
tems and published by the IEEE Computer Society. For more on Java I18N, see the
online documentation that ships with the JDK; start at docs/guide/intl/index.html. See
also Java Internationalization (O’Reilly).

The Last Word
Good luck. Bonne chance. Buena suerte....

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

441

Chapter 16ch CHAPTER 16

Network Clients

16.0 Introduction
Java can be used to write many types of networked programs. In traditional socket-
based code, the programmer is responsible for the entire interaction between the cli-
ent and server. In higher-level types, such as RMI, CORBA, and EJB, the software
takes over increasing degrees of control. Sockets are often used for connecting to
“legacy” servers; if you were writing a new application from scratch, you’d be better
off using a higher-level service.

It may be helpful to compare sockets with the telephone system. Telephones were
originally used for analog voice traffic, which is pretty unstructured. Then it began to
be used for some “layered” applications; the first widely popular one was facsimile
transmission, or fax. Where would fax be without the widespread availability of
voice telephony? The second wildly popular layered application is dialup TCP/IP.
This coexisted with the Web to become popular as a mass-market service. Where
would dialup IP be without widely deployed voice lines? And where would the Inter-
net be without dialup IP?

Sockets are like that too. The Web, RMI, JDBC, CORBA, and EJB are all layered on
top of sockets.

Ever since the alpha release of Java (originally as a sideline to the HotJava browser)
in May 1995, Java has been popular as a programming language for building net-
work applications. It’s easy to see why, particularly if you’ve ever built a networked
application in C. First, C programmers have to worry about the platform they are on.
Unix uses synchronous sockets, which work rather like normal disk files vis-a-vis
reading and writing, while Microsoft OSes use asynchronous sockets, which use call-
backs to notify when a read or write has completed. Java glosses over this distinc-
tion. Further, the amount of code needed to set up a socket in C is intimidating. Just
for fun, Example 16-1 shows the “typical” C code for setting up a client socket. And
remember, this is only the Unix part. And only the part that makes the connection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 16: Network Clients

To be portable to Windows, it would need additional conditional code (using C’s
#ifdef mechanism). And C’s #include mechanism requires that exactly the right files
be included in exactly the right order; Java’s import mechanism lets you use * to
import a whole section of the API, and the imports can be listed in any order you like.

Example 16-1. C client setup

/*
 * Simple demonstration of code to setup a client connection in C.
 */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 char* server_name = "localhost";
 struct hostent *host_info;
 int sock;
 struct sockaddr_in server;

 /* Look up the remote host's IP address */
 host_info = gethostbyname(server_name);
 if (host_info == NULL) {
 fprintf(stderr, "%s: unknown host: %s\n", argv[0], server_name);
 exit(1);
 }

 /* Create the socket */
 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("creating client socket");
 exit(2);
 }

 /* Set up the server's socket address */
 server.sin_family = AF_INET;
 memcpy((char *)&server.sin_addr, host_info->h_addr,
 host_info->h_length);
 server.sin_port = htons(80);

 /* Connect to the server */
 if (connect(sock,(struct sockaddr *)&server,sizeof server) < 0) {
 perror("connecting to server");
 exit(4);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Contacting a Server | 443

In the first recipe, we’ll see how to do the connect in essentially one line of Java (plus
a bit of error handling). We’ll then cover error handling and transferring data over a
socket. Next, we’ll take a quick look at a datagram or UDP client that implements
most of the TFTP (trivial file transfer protocol) that has been used for two decades to
boot diskless workstations. We’ll end with a program that connects interactively to a
text-based server such as Telnet or email.

A common theme through most of these client examples is to use existing servers so
that we don’t have to generate both the client and the server at the same time. With
one exception, all of these are services that exist on any standard Unix platform. If
you can’t find a Unix server near you to try them on, let me suggest that you take an
old PC, maybe one that’s underpowered for running the latest Microsoft software,
and put up a free, open source Unix system on it. My personal favorite is OpenBSD,
and the market’s overall favorite is Linux. Both are readily available on CD-ROM,
can be installed for free over the Internet, and offer all the standard services used in
the client examples, including the time servers and TFTP. Both have free Java imple-
mentations available.

16.1 Contacting a Server

Problem
You need to contact a server using TCP/IP.

Solution
Just create a Socket, passing the hostname and port number into the constructor.

Discussion
There isn’t much to this in Java, in fact. When creating a socket, you pass in the
hostname and the port number. The java.net.Socket constructor does the
gethostbyname() and the socket() system call, sets up the server’s sockaddr_in struc-
ture, and executes the connect() call. All you have to do is catch the errors, which
are subclassed from the familiar IOException. Example 16-2 sets up a Java network
client, using IOException to catch errors.

 /* Finally, we can read and write on the socket. */
 /* ... */

 (void) close(sock);
}

Example 16-1. C client setup (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 16: Network Clients

See Also
Java supports other ways of using network applications. You can also open a URL
and read from it (see Recipe 18.7). You can write code so that it will run from a URL,
when opened in a web browser, or from an application.

16.2 Finding and Reporting Network Addresses

Problem
You want to look up a host’s address name or number or get the address at the other
end of a network connection.

Solution
Get an InetAddress object.

Discussion
The InetAddress object represents the Internet address of a given computer or host.
It has no public constructors; you obtain an InetAddress by calling the static
getByName() method, passing in either a hostname like www.darwinsys.com or a

Example 16-2. Connect.java (simple client connection)

import java.net.*;

/*
 * A simple demonstration of setting up a Java network client.
 */
public class Connect {
 public static void main(String[] argv) {
 String server_name = "localhost";

 try {
 Socket sock = new Socket(server_name, 80);

 /* Finally, we can read and write on the socket. */
 System.out.println(" *** Connected to " + server_name + " ***");

 /* . do the I/O here .. */

 sock.close();

 } catch (java.io.IOException e) {
 System.err.println("error connecting to " +
 server_name + ": " + e);
 return;
 }

 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding and Reporting Network Addresses | 445

network address as a string, like 1.23.45.67. All the “lookup” methods in this class
can throw the checked UnknownHostException (a subclass of java.ioIOException),
which must be caught or declared on the calling method’s header. None of these
methods actually contacts the remote host, so they do not throw the other excep-
tions related to network connections.

The method getHostAddress() gives you the numeric IP address (as a string) corre-
sponding to the InetAddress. The inverse is getHostName(), which reports the name
of the InetAddress. This can be used to print the address of a host given its name, or
vice versa:

// From InetAddrDemo.java
String ipNumber = "123.45.67.89";
String hostName = "www.darwinsys.com";
System.out.println(hostName + "'s address is " +
 InetAddress.getByName(hostName).getHostAddress());
 System.out.println(ipNumber + "'s name is " +
 InetAddress.getByName(ipNumber).getHostName());

You can also get an InetAddress from a Socket by calling its getInetAddress()
method. You can construct a Socket using an InetAddress instead of a hostname
string. So, to connect to port number myPortNumber on the same host as an existing
socket, you’d use:

InetAddress remote = theSocket.getInetAddress();
Socket anotherSocket = new Socket(remote, myPortNumber);

Finally, to look up all the addresses associated with a host—a server may be on more
than one network—use the static method getAllByName(host), which returns an
array of InetAddress objects, one for each IP address associated with the given name.

A static method getLocalHost() returns an InetAddress equivalent to “localhost” or
127.0.0.1. This can be used to connect to a server program running on the same
machine as the client.

If you are using IPV6, you can use Inet6Address instead.

See Also
See NetworkInterface in Recipe 17.10 which lets you find out more about the net-
working of the machine you are running on.

There is not yet a way to look up services—i.e., to find out that the HTTP service is
on port 80. Full implementations of TCP/IP have always included an additional set
of resolvers; in C, the call getservbyname("http", "tcp"); would look up the given
service* and return a servent (service entry) structure whose s_port member would
contain the value 80. The numbers of established services do not change, but when

* The location where it is looked up varies. It might be in a file named /etc/services on Unix or the services file
in a subdirectory of \windows or \winnt under Windows; in a centralized registry such as Sun’s Network
Information Services (NIS, formerly YP); or in some other platform- or network-dependent location.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 16: Network Clients

services are new or installed in nonroutine ways, it is convenient to be able to change
the service number for all programs on a machine or network (regardless of program-
ming language) just by changing the services definitions. Java should provide this
capability in a future release.

16.3 Handling Network Errors

Problem
You want more detailed reporting than just IOException if something goes wrong.

Solution
Catch a greater variety of exception classes. SocketException has several subclasses;
the most notable are ConnectException and NoRouteToHostException. The names are
self-explanatory: the first means that the connection was refused by the machine at
the other end (the server machine), and the second completely explains the failure.
Example 16-3 is an excerpt from the Connect program, enhanced to handle these
conditions.

Example 16-3. ConnectFriendly.java

/* Client with error handling */
public class ConnectFriendly {
 public static void main(String[] argv) {
 String server_name = argv.length == 1 ? argv[0] : "localhost";
 int tcp_port = 80;
 try {
 Socket sock = new Socket(server_name, tcp_port);

 /* Finally, we can read and write on the socket. */
 System.out.println(" *** Connected to " + server_name + " ***");
 /* ... */

 sock.close();

 } catch (UnknownHostException e) {
 System.err.println(server_name + " Unknown host");
 return;
 } catch (NoRouteToHostException e) {
 System.err.println(server_name + " Unreachable");
 return;
 } catch (ConnectException e) {
 System.err.println(server_name + " connect refused");
 return;
 } catch (java.io.IOException e) {
 System.err.println(server_name + ' ' + e.getMessage());
 return;
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing Textual Data | 447

16.4 Reading and Writing Textual Data

Problem
Having connected, you wish to transfer textual data.

Solution
Construct a BufferedReader or PrintWriter from the socket’s getInputStream() or
getOutputStream().

Discussion
The Socket class has methods that allow you to get an InputStream or OutputStream
to read from or write to the socket. It has no method to fetch a Reader or Writer,
partly because some network services are limited to ASCII, but mainly because the
Socket class was decided on before there were Reader and Writer classes. You can
always create a Reader from an InputStream or a Writer from an OutputStream using
the conversion classes. The paradigm for the two most common forms is:

BufferedReader is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
PrintWriter os = new PrintWriter(sock.getOutputStream(), true);

Here is code that reads a line of text from the “daytime” service, which is offered by
full-fledged TCP/IP suites (such as those included with most Unixes). You don’t have
to send anything to the Daytime server; you simply connect and read one line. The
server writes one line containing the date and time and then closes the connection.

Running it looks like this. I started by getting the current date and time on the local
host, then ran the DaytimeText program to see the date and time on the server
(machine darian is my local server):

C:\javasrc\network>date
Current date is Sun 01-23-2000
Enter new date (mm-dd-yy):
C:\javasrc\network>time
Current time is 1:13:18.70p
Enter new time:
C:\javasrc\network>java DaytimeText darian
Time on darian is Sun Jan 23 13:14:34 2000

The code is in class DaytimeText, shown in Example 16-4.

Example 16-4. DaytimeText.java

/**
 * DaytimeText - connect to the Daytime (ascii) service.
 */
public class DaytimeText {
 public static final short TIME_PORT = 13;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 16: Network Clients

The second example, shown in Example 16-5, shows both reading and writing on
the same socket. The Echo server simply echoes back whatever lines of text you send
it. It’s not a very clever server, but it is a useful one. It helps in network testing and
also in testing clients of this type!

The converse() method holds a short conversation with the Echo server on the
named host; if no host is named, it tries to contact localhost, a universal alias* for
“the machine the program is running on.”

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 BufferedReader is = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 String remoteTime = is.readLine();
 System.out.println("Time on " + hostName + " is " + remoteTime);
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

* It used to be universal, when most networked systems were administered by full-time systems people who
had been trained or served an apprenticeship. Today many machines on the Internet don’t have localhost
configured properly.

Example 16-5. EchoClientOneLine.java

/**
 * EchoClientOneLine - create client socket, send one line,
 * read it back. See also EchoClient.java, slightly fancier.
 */
public class EchoClientOneLine {
 /** What we send across the net */
 String mesg = "Hello across the net";

 public static void main(String[] argv) {
 if (argv.length == 0)
 new EchoClientOneLine().converse("localhost");
 else
 new EchoClientOneLine().converse(argv[0]);
 }

 /** Hold one conversation across the net */
 protected void converse(String hostName) {
 try {

Example 16-4. DaytimeText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing Binary Data | 449

It might be a good exercise to isolate the reading and writing code from this method
into a NetWriter class, possibly subclassing PrintWriter and adding the \r\n and the
flushing.

16.5 Reading and Writing Binary Data

Problem
Having connected, you wish to transfer binary data.

Solution
Construct a DataInputStream or DataOutputStream from the socket’s getInputStream()
or getOutputStream().

Discussion
The simplest paradigm is:

DataInputStream is = new DataInputStream(sock.getInputStream());
DataOutputStream is = new DataOutputStream(sock.getOutputStream());

If the volume of data might be large, insert a buffered stream for efficiency. The para-
digm is:

DataInputStream is = new DataInputStream(
 new BufferedInputStream(sock.getInputStream()));
DataOutputStream is = new DataOutputStream(
 new BufferedOutputStream(sock.getOutputStream()));

This program uses another standard service that gives out the time as a binary inte-
ger representing the number of seconds since 1900. Since the Java Date class base is
1970, we convert the time base by subtracting the difference between 1970 and 1900.

 Socket sock = new Socket(hostName, 7); // echo server.
 BufferedReader is = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 PrintWriter os = new PrintWriter(sock.getOutputStream(), true);
 // Do the CRLF ourself since println appends only a \r on
 // platforms where that is the native line ending.
 os.print(mesg + "\r\n"); os.flush();
 String reply = is.readLine();
 System.out.println("Sent \"" + mesg + "\"");
 System.out.println("Got \"" + reply + "\"");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

Example 16-5. EchoClientOneLine.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 16: Network Clients

When I used this exercise in a course, most of the students wanted to add this time
difference, reasoning that 1970 is later. But if you think clearly, you’ll see that there
are fewer seconds between 1999 and 1970 than there are between 1999 and 1900, so
subtraction gives the correct number of seconds. And since the Date constructor
needs milliseconds, we multiply the number of seconds by 1,000.

The time difference is the number of years multiplied by 365, plus the number of
leap days between the two dates (in the years 1904, 1908, ..., 1968)—i.e., 19 days.

The integer that we read from the server is a C-language unsigned int. But Java
doesn’t provide an unsigned integer type; normally when you need an unsigned
number, you use the next-larger integer type, which would be long. But Java also
doesn’t give us a method to read an unsigned integer from a data stream. The
DataInputStream method readInt() reads Java-style signed integers. There are
readUnsignedByte() methods and readUnsignedShort() methods, but no
readUnsignedInt() method. Accordingly, we synthesize the ability to read an
unsigned int (which must be stored in a long, or else you’d lose the signed bit and be
back where you started from) by reading unsigned bytes and reassembling them
using Java’s bit-shifting operators:

$ date
Fri Mar 30 10:02:28 EST 2001
$ java DaytimeBinary darian
Remote time is 3194953367
BASE_DIFF is 2208988800
Time diff == 985964567
Time on darian is Fri Mar 30 10:02:47 EST 2001
$

Looking at the output, you can see that the server agrees within a few seconds. So
the date calculation code in Example 16-6 is probably correct.

Example 16-6. DaytimeBinary.java

/**
 * DaytimeBinary - connect to the Time (binary) service.
 */
public class DaytimeBinary {
 /** The TCP port for the binary time service. */
 public static final short TIME_PORT = 37;
 /** Seconds between 1970, the time base for Date(long) and Time.
 * Factors in leap years (up to 2100), hours, minutes, and seconds.
 * Subtract 1 day for 1900, add in 1/2 day for 1969/1970.
 */
 protected static final long BASE_DAYS =
 (long)((1970-1900)*365 + (1970-1900-1)/4)
 /* Seconds since 1970 */
 public static final long BASE_DIFF = (BASE_DAYS * 24 * 60 * 60);
 /** Convert from seconds to milliseconds */
 public static final int MSEC = 1000;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing Serialized Data | 451

16.6 Reading and Writing Serialized Data

Problem
Having connected, you wish to transfer serialized object data.

Solution
Construct an ObjectInputStream or ObjectOutputStream from the socket’s
getInputStream() or getOutputStream().

Discussion
Object serialization is the ability to convert in-memory objects to an external form
that can be sent serially (a byte at a time). This is discussed in Recipe 10.18.

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 DataInputStream is = new DataInputStream(new
 BufferedInputStream(sock.getInputStream()));
 // Need to read 4 bytes from the network, unsigned.
 // Do it yourself; there is no readUnsignedInt().
 // Long is 8 bytes on Java, but we are using the
 // existing time protocol, which uses 4-byte ints.
 long remoteTime = (
 ((long)(is.readUnsignedByte()) << 24) |
 ((long)(is.readUnsignedByte()) << 16) |
 ((long)(is.readUnsignedByte()) << 8) |
 ((long)(is.readUnsignedByte()) << 0));
 System.out.println("Remote time is " + remoteTime);
 System.out.println("BASE_DIFF is " + BASE_DIFF);
 System.out.println("Time diff == " + (remoteTime - BASE_DIFF));
 Date d = new Date((remoteTime - BASE_DIFF) * MSEC);
 System.out.println("Time on " + hostName + " is " + d.toString());
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

Example 16-6. DaytimeBinary.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 16: Network Clients

This program (and its server) operate one service that isn’t normally provided by
TCP/IP, as it is Java-specific. It looks rather like the DaytimeBinary program in the
previous recipe, but the server sends us a Date object already constructed. You can
find the server for this program in Recipe 17.2; Example 16-7 shows the client code.

I ask the operating system for the date and time, and then run the program, which
prints the date and time on a remote machine.

C:\javasrc\network>date /t
Current date is Sun 01-23-2000
C:\javasrc\network>time /t
Current time is 2:52:35.43p
C:\javasrc\network>java DaytimeObject aragorn
Time on aragorn is Sun Jan 23 14:52:25 GMT 2000
C:\javasrc\network>

Example 16-7. DaytimeObject.java

/**
 * DaytimeObject - connect to the non-standard Time (object) service.
 */
public class DaytimeObject {
 /** The TCP port for the object time service. */
 public static final short TIME_PORT = 1951;

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 ObjectInputStream is = new ObjectInputStream(new
 BufferedInputStream(sock.getInputStream()));

 // Read and validate the Object
 Object o = is.readObject();
 if (!(o instanceof Date))
 throw new IllegalArgumentException("Wanted Date, got " + o);

 // Valid, so cast to Date, and print
 Date d = (Date) o;
 System.out.println("Time on " + hostName + " is " + d.toString());
 } catch (ClassNotFoundException e) {
 System.err.println("Wanted date, got INVALID CLASS (" + e + ")");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

UDP Datagrams | 453

16.7 UDP Datagrams

Problem
You need to use a datagram connection (UDP) instead of a stream connection (TCP).

Solution
Use DatagramSocket and DatagramPacket.

Discussion
Datagram network traffic is a kindred spirit to the underlying packet-based Ether-
net and IP (Internet protocol) layers. Unlike a stream-based connection such as
TCP, datagram transports such as UDP transmit each “packet,” or chunk of data, as
a single entity with no necessary relation to any other. A common analogy is that
TCP is like talking on the telephone, while UDP is like sending postcards or maybe
fax messages.

The differences show up most in error handling. Packets can, like postcards, go
astray. When was the last time the postman rang your bell to tell you that the post
office had lost one of several postcards it was supposed to deliver to you? It doesn’t
happen, right? Because they don’t keep track of them. On the other hand, when
you’re talking on the phone and there’s a noise burst—like somebody yelling in the
room, or even a bad connection—you can ask the person at the other end to repeat
what they just said.

With a stream-based connection like a TCP socket, the network transport layer han-
dles errors for you: it asks the other end to retransmit. With a datagram transport
such as UDP, you have to handle retransmission yourself. It’s kind of like number-
ing the postcards you send so that you can go back and resend any that don’t
arrive—a good excuse to return to your vacation spot, perhaps.

Another difference is that datagram transmission preserves message boundaries.
That is, if you write 20 bytes and then write 10 bytes when using TCP, the program
reading from the other end will not know if you wrote one chunk of 30 bytes, two
chunks of 15, or even 30 individual characters. With a DatagramSocket, you con-
struct a DatagramPacket object for each buffer, and its contents are sent as a single
entity over the network; its contents will not be mixed together with the contents of
any other buffer. The DatagramPacket object has methods like getLength(), setPort(),
and so on.

Example 16-8 is a short program that connects via UDP to the Daytime date and time
server used in Recipe 16.4. Since UDP has no real notion of “connection,” even ser-
vices that only send you data must be contacted by sending an empty packet, which
the UDP server uses to return its response.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 16: Network Clients

Ian’s Basic Steps: UDP Client
UDP is a bit more involved, so I’ll list the basic steps for generating a UDP client:

1. Create a DatagramSocket with no arguments (the form that takes two arguments
is used on the server).

2. Optionally connect() the socket to an InetAddress (see Recipe 16.2) and port
number.

3. Create one or more DatagramPacket objects; these are wrappers around a byte
array that contains data you want to send and is filled in with data you receive.

4. If you did not connect() the socket, provide the InetAddress and port when con-
structing the DatagramPacket.

5. Set the packet’s length and use sock.send(packet) to send data to the server.

6. Use sock.receive() to retrieve data.

Example 16-8. DaytimeUDP.java

public class DaytimeUDP {
 /** The UDP port number */
 public final static int DAYTIME_PORT = 13;

 /** A buffer plenty big enough for the date string */
 protected final static int PACKET_SIZE = 100;

 // main program
 public static void main(String[] argv) throws IOException {
 if (argv.length < 1) {
 System.err.println("usage: java DaytimeUDP host");
 System.exit(1);
 }
 String host = argv[0];
 InetAddress servAddr = InetAddress.getByName(host);
 DatagramSocket sock = new DatagramSocket();

 // Allocate the data buffer
 byte[] buffer = new byte[PACKET_SIZE];

 // The udp packet we will send and receive
 DatagramPacket packet = new DatagramPacket(
 buffer, PACKET_SIZE, servAddr, DAYTIME_PORT);

 /* Send empty max-length (-1 for null byte) packet to server */
 packet.setLength(PACKET_SIZE-1);
 sock.send(packet);
 Debug.println("net", "Sent request");

 // Receive a packet and print it.
 sock.receive(packet);
 Debug.println("net", "Got packet of size " + packet.getLength());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: TFTP UDP Client | 455

I’ll run it to my server just to be sure that it works:

$ javac DaytimeUDP.java
$ java DaytimeUDP darian
Date on darian is Sat Jan 27 12:42:41 2001
$

16.8 Program: TFTP UDP Client
This program implements the client half of the TFTP application protocol, a well-
known service that has been used in the Unix world for network booting of worksta-
tions since before Windows 3.1. I chose this protocol because it’s widely imple-
mented on the server side, so it’s easy to find a test server for it.

The TFTP protocol is a bit odd. The client contacts the server on the well-known
UDP port number 69, from a generated port number,* and the server responds to the
client from a generated port number. Further communication is on the two gener-
ated port numbers.

Getting into more detail, as shown in Figure 16-1, the client initially sends a read
request with the filename and reads the first packet of data. The read request con-
sists of two bytes (a short) with the read request code (short integer with a value of
1, defined as OP_RRQ), two bytes for the sequence number, then the ASCII file-
name, null terminated, and the string octet, also null terminated. The server reads
the read request from the client, verifies that it can open the file and, if so, sends the
first data packet (OP_DATA), and then reads again. This read-acknowledge cycle is
repeated until all the data is read. Note that each packet is 516 bytes (512 bytes of
data, plus 2 bytes for the packet type and 2 more for the packet number) except the
last, which can be any length from 4 (zero bytes of data) to 515 (511 bytes of data). If
a network I/O error occurs, the packet is resent. If a given packet goes astray, both
client and server are supposed to perform a timeout cycle. This client does not, but
the server does. You could add timeouts using a thread; see Recipe 24.4. The client
code is shown in Example 16-9.

 System.out.print("Date on " + host + " is " +
 new String(buffer, 0, packet.getLength()));
 }
}

* When the application doesn’t care, these port numbers are usually made up by the operating system. For
example, when you call a company from a pay phone or cell phone, the company doesn’t usually care what
number you are calling from, and if it does, there are ways to find out. Generated port numbers generally
range from 1024 (the first nonprivileged port; see Chapter 17) to 65535 (the largest value that can be held in
a 16-bit port number).

Example 16-8. DaytimeUDP.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 16: Network Clients

Figure 16-1. The TFTP protocol packet formats

Example 16-9. RemCat.java

import java.io.*;
import java.net.*;

/**
 * RemCat - remotely cat (DOS type) a file, using the TFTP protocol.
 * Inspired by the "rcat" exercise in Learning Tree Course 363,
 * <I>UNIX Network Programming</I>, by Dr. Chris Brown.
 *
 * Note that the TFTP server is NOT "internationalized"; the name and
 * mode in the protocol are defined in terms of ASCII, not UniCode.
 */
public class RemCat {
 /** The UDP port number */
 public final static int TFTP_PORT = 69;
 /** The mode we will use - octet for everything. */
 protected final String MODE = "octet";

 /** The offset for the code/response as a byte */
 protected final int OFFSET_REQUEST = 1;
 /** The offset for the packet number as a byte */
 protected final int OFFSET_PACKETNUM = 3;

 /** Debugging flag */
 protected static boolean debug = false;

01 filename 0 mode 0

2 bytes n bytes 1 byte n bytes 1 byte

opcode string EOS string EOS
read request

(OP_RRQ)

02 filename 0 mode 0

2 bytes n bytes 1 byte n bytes 1 byte

opcode string EOS string EOS
write request

(OP_WRQ)

03 block# data

2 bytes 2 bytes n bytes, 0 ≤ n ≤ 512

opcode
data

(OP_DATA)

04 block#

2 bytes 2 bytes

opcode
acknowledgment

(OP_ACK)

05 errcode errstring 0

2 bytes 2 bytes n bytes 1 byte

opcode string EOS
error

(OP_ERROR)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: TFTP UDP Client | 457

 /** TFTP op-code for a read request */
 public final int OP_RRQ = 1;
 /** TFTP op-code for a write request */
 public final int OP_WRQ = 2;
 /** TFTP op-code for a data packet */
 public final int OP_DATA = 3;
 /** TFTP op-code for an acknowledgement */
 public final int OP_ACK = 4;
 /** TFTP op-code for an error packet */
 public final int OP_ERROR = 5;
 protected final static int PACKET_SIZE = 516; // == 2 + 2 + 512
 protected String host;
 protected InetAddress servAddr;
 protected DatagramSocket sock;
 protected byte buffer[];
 protected DatagramPacket inp, outp;

 /** The main program that drives this network client.
 * @param argv[0] hostname, running TFTP server
 * @param argv[1..n] filename(s), must be at least one
 */
 public static void main(String[] argv) throws IOException {
 if (argv.length < 2) {
 System.err.println("usage: java RemCat host filename[...]");
 System.exit(1);
 }
 if (debug)
 System.err.println("Java RemCat starting");
 RemCat rc = new RemCat(argv[0]);
 for (int i = 1; i<argv.length; i++) {
 if (debug)
 System.err.println("-- Starting file " +
 argv[0] + ":" + argv[i] + "---");
 rc.readFile(argv[i]);
 }
 }

 RemCat(String host) throws IOException {
 super();
 this.host = host;
 servAddr = InetAddress.getByName(host);
 sock = new DatagramSocket();
 buffer = new byte[PACKET_SIZE];
 inp = new DatagramPacket(buffer, PACKET_SIZE);
 outp = new DatagramPacket(buffer, PACKET_SIZE, servAddr, TFTP_PORT);
 }

 void readFile(String path) throws IOException {
 /* Build a tftp Read Request packet. This is messy because the
 * fields have variable length. Numbers must be in
 * network order, too; fortunately Java just seems
 * naturally smart enough :-) to use network byte order.
 */

Example 16-9. RemCat.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 16: Network Clients

 buffer[0] = 0;
 buffer[OFFSET_REQUEST] = OP_RRQ; // read request
 int p = 2; // number of chars into buffer

 // Convert filename String to bytes in buffer , using "p" as an
 // offset indicator to get all the bits of this request
 // in exactly the right spot.
 byte[] bTemp = path.getBytes(); // i.e., ASCII
 System.arraycopy(bTemp, 0, buffer, p, path.length());
 p += path.length();
 buffer[p++] = 0; // null byte terminates string

 // Similarly, convert MODE ("octet") to bytes in buffer
 MODE.getBytes(0, MODE.length(), buffer, p);
 p += MODE.length();
 buffer[p++] = 0; // null terminate

 /* Send Read Request to tftp server */
 outp.setLength(p);
 sock.send(outp);

 /* Loop reading data packets from the server until a short
 * packet arrives; this indicates the end of the file.
 */
 int len = 0;
 do {
 sock.receive(inp);
 if (debug)
 System.err.println(
 "Packet # " + Byte.toString(buffer[OFFSET_PACKETNUM])+
 "RESPONSE CODE " + Byte.toString(buffer[OFFSET_REQUEST]));
 if (buffer[OFFSET_REQUEST] == OP_ERROR) {
 System.err.println("remcat ERROR: " +
 new String(buffer, 4, inp.getLength()-4));
 return;
 }
 if (debug)
 System.err.println("Got packet of size " +
 inp.getLength());

 /* Print the data from the packet */
 System.out.write(buffer, 4, inp.getLength()-4);

 /* Ack the packet. The block number we
 * want to ack is already in buffer so
 * we just change the opcode. The ACK is
 * sent to the port number which the server
 * just sent the data from, NOT to port
 * TFTP_PORT.
 */
 buffer[OFFSET_REQUEST] = OP_ACK;
 outp.setLength(4);

Example 16-9. RemCat.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Telnet Client | 459

To test this client, you would need a TFTP server. If you are on a Unix system that
you administer, you can enable the TFTP server to test this client just by editing the
file /etc/inetd.conf and restarting (or just reloading, with kill -HUP) the inetd server.
inetd is a program that listens for a wide range of connections and starts the servers
only when a connection from a client comes along (a kind of lazy evaluation).
Beware of security holes; don’t turn a TFTP server loose on the Internet without first
reading a good security book, such as O’Reilly’s Building Internet Firewalls. I set up
the traditional /tftpboot directory, put this line in my inetd.conf, and reloaded inetd:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot

Then I put a few test files, one named foo, into the /tftpboot directory. Running:

$ java RemCat localhost foo

produced what looked like the file. But just to be safe, I tested the output of RemCat
against the original file, using the Unix diff comparison program. No news is good
news:

$ java RemCat localhost foo | diff - /tftpboot/foo

So far so good. Let’s not slip this program on an unsuspecting network without exer-
cising the error handling at least briefly:

$ java RemCat localhost nosuchfile
remcat ERROR: File not found
$

16.9 Program: Telnet Client
This program is a simple Telnet client. Telnet, as you probably know, is the oldest
surviving remote login program in use on the Internet. It began on the original
ARPAnet and was later translated for the Internet. A Unix command-line client lives
on, and several windowed clients are in circulation. For security reasons, the use of
Telnet as a means of logging in remotely over the Internet has largely been super-
seded by SSH (see http://www.openssh.com). However, a Telnet client remains a
necessity for such purposes as connecting locally, as well as debugging textual socket
servers and understanding their protocols. For example, it is common to connect from
a Telnet client to an SMTP (email) server; you can often intuit quite a bit about the
SMTP server, even if you wouldn’t normally type an entire mail session interactively.

 outp.setPort(inp.getPort());
 sock.send(outp);
 } while (inp.getLength() == PACKET_SIZE);

 if (debug)
 System.err.println("** ALL DONE** Leaving loop, last size " +
 inp.getLength());
 }
}

Example 16-9. RemCat.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 16: Network Clients

When you need to have data copied in both directions at more or less the same
time—from the keyboard to the remote program, and from the remote program to
the screen—there are two approaches. Some I/O libraries in C have a function called
poll() or select() that allows you to examine a number of files to see which ones
are ready for reading or writing. Java does not support this model. The other model,
which works on most platforms and is the norm in Java, is to use two threads,* one
to handle the data transfer in each direction. That is our plan here; the class Pipe
encapsulates one thread and the code for copying data in one direction; two
instances are used, one to drive each direction of transfer independently of the other.

This program allows you to connect to any text-based network service. For example,
you can talk to your system’s SMTP (simple mail transport protocol) server, or the
Daytime server (port 13) used in several earlier recipes in this chapter:

$ java Telnet darian 13
Host darian; port 13
Connected OK
Sat Apr 28 14:07:41 2001
^C
$

The source code is shown in Example 16-10.

* A thread is one of (possibly) many separate flows of control within a single process; see Recipe 24.1.

Example 16-10. Telnet.java

import java.net.*;
import java.io.*;

/**
 * Telnet - very minimal (no options); connect to given host and service
 */
public class Telnet {
 String host;
 int portNum;
 public static void main(String[] argv) {
 new Telnet().talkTo(argv);
 }
 private void talkTo(String av[]) {
 if (av.length >= 1)
 host = av[0];
 else
 host = "localhost";
 if (av.length >= 2)
 portNum = Integer.parseInt(av[1]);
 else portNum = 23;
 System.out.println("Host " + host + "; port " + portNum);
 try {
 Socket s = new Socket(host, portNum);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Chat Client | 461

16.10 Program: Chat Client
This program is a simple chat program. You can’t break in on ICQ or AIM with it,
because they each use their own protocol;* this one simply writes to and reads from a
server, locating the server with the applet method getCodeBase(). The server for this

 // Connect the remote to our stdout
 new Pipe(s.getInputStream(), System.out).start();

 // Connect our stdin to the remote
 new Pipe(System.in, s.getOutputStream()).start();

 } catch(IOException e) {
 System.out.println(e);
 return;
 }
 System.out.println("Connected OK");
 }
}

/* This class handles one half of a full-duplex connection.
 * Line-at-a-time mode.
 */
class Pipe extends Thread {
 BufferedReader is;
 PrintStream os;

 /** Construct a Pipe to read from "is" and write to "os" */
 Pipe(InputStream is, OutputStream os) {
 this.is = new BufferedReader(new InputStreamReader(is));
 this.os = new PrintStream(os);
 }

 /** Do the reading and writing. */
 public void run() {
 String line;
 try {
 while ((line = is.readLine()) != null) {
 os.print(line);
 os.print("\r\n");
 os.flush();
 }
 } catch(IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

* For an open source program that “AIMs” to let you talk to both from the same program, check out Jabber
at http://www.jabber.org.

Example 16-10. Telnet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 16: Network Clients

will be presented in Chapter 17. How does it look when you run it? Figure 16-2
shows me chatting all by myself one day.

The code is reasonably self-explanatory. We read from the remote server in a thread
to make the input and the output run without blocking each other; this is discussed
in Chapter 24. The reading and writing are discussed in this chapter. The program is
an applet (see Recipe 18.2) and is shown in Example 16-11.

Figure 16-2. Chat client in action

Example 16-11. ChatRoom.java (chat client)

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

/** Simple Chat Room Applet.
 * Writing a Chat Room seems to be one of many obligatory rites (or wrongs)
 * of passage for Java experts these days.
 * <P>
 * This one is a toy because it doesn't implement much of a command protocol, which
 * means we can't query the server as to * who's logged in,
 * or anything fancy like that. However, it works OK for small groups.
 * <P>
 * Uses client socket w/ two Threads (main and one constructed),
 * one for reading and one for writing.
 * <P>
 * Server multiplexes messages back to all clients.
 */
public class ChatRoom extends Applet {
 /** The state */
 protected boolean loggedIn;
 /* The Frame, for a pop-up, durable Chat Room. */
 protected Frame cp;
 /** The default port number */
 protected static int PORTNUM = 7777;
 /** The actual port number */
 protected int port;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Chat Client | 463

 /** The network socket */
 protected Socket sock;
 /** BufferedReader for reading from socket */
 protected BufferedReader is;
 /** PrintWriter for sending lines on socket */
 protected PrintWriter pw;
 /** TextField for input */
 protected TextField tf;
 /** TextArea to display conversations */
 protected TextArea ta;
 /** The Login button */
 protected Button lib;
 /** The LogOUT button */
 protected Button lob;
 /** The TitleBar title */
 final static String TITLE = "Chat: Ian Darwin's Toy Chat Room Applet";
 /** The message that we paint */
 protected String paintMessage;

 /** Init, overrides method in Applet */
 public void init() {
 paintMessage = "Creating Window for Chat";
 repaint();
 cp = new Frame(TITLE);
 cp.setLayout(new BorderLayout());
 String portNum = getParameter("port");
 port = PORTNUM;
 if (portNum == null)
 port = Integer.parseInt(portNum);

 // The GUI
 ta = new TextArea(14, 80);
 ta.setEditable(false); // readonly
 ta.setFont(new Font("Monospaced", Font.PLAIN, 11));
 cp.add(BorderLayout.NORTH, ta);

 Panel p = new Panel();
 Button b;

 // The login button
 p.add(lib = new Button("Login"));
 lib.setEnabled(true);
 lib.requestFocus();
 lib.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 login();
 lib.setEnabled(false);
 lob.setEnabled(true);
 tf.requestFocus(); // set keyboard focus in right place!
 }
 });

Example 16-11. ChatRoom.java (chat client) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 16: Network Clients

 // The logout button
 p.add(lob = new Button("Logout"));
 lob.setEnabled(false);
 lob.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 logout();
 lib.setEnabled(true);
 lob.setEnabled(false);
 lib.requestFocus();
 }
 });

 p.add(new Label("Message here:"));
 tf = new TextField(40);
 tf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (loggedIn) {
 pw.println(Chat.CMD_BCAST+tf.getText());
 tf.setText("");
 }
 }
 });
 p.add(tf);

 cp.add(BorderLayout.SOUTH, p);

 cp.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 // If we do setVisible and dispose, then the Close completes
 ChatRoom.this.cp.setVisible(false);
 ChatRoom.this.cp.dispose();
 logout();
 }
 });
 cp.pack();
 // After packing the Frame, centre it on the screen.
 Dimension us = cp.getSize(),
 them = Toolkit.getDefaultToolkit().getScreenSize();
 int newX = (them.width - us.width) / 2;
 int newY = (them.height- us.height)/ 2;
 cp.setLocation(newX, newY);
 cp.setVisible(true);
 paintMessage = "Window should now be visible";
 repaint();
 }

 /** LOG ME IN TO THE CHAT */
 public void login() {
 if (loggedIn)
 return;
 try {

Example 16-11. ChatRoom.java (chat client) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Chat Client | 465

 sock = new Socket(getCodeBase().getHost(), port);
 is = new BufferedReader(new InputStreamReader(sock.getInputStream()));
 pw = new PrintWriter(sock.getOutputStream(), true);
 } catch(IOException e) {
 showStatus("Can't get socket: " + e);
 cp.add(new Label("Can't get socket: " + e));
 return;
 }

 // construct and start the reader: from server to textarea
 // make a Thread to avoid lockups.
 new Thread(new Runnable() {
 public void run() {
 String line;
 try {
 while (loggedIn && ((line = is.readLine()) != null))
 ta.append(line + "\n");
 } catch(IOException e) {
 showStatus("GAA! LOST THE LINK!!");
 return;
 }
 }
 }).start();

 // FAKE LOGIN FOR NOW
 pw.println(Chat.CMD_LOGIN + "AppletUser");
 loggedIn = true;
 }

 /** Log me out, Scotty, there's no intelligent life here! */
 public void logout() {
 if (!loggedIn)
 return;
 loggedIn = false;
 try {
 if (sock != null)
 sock.close();
 } catch (IOException ign) {
 // so what?
 }
 }

 // It is deliberate that there is no STOP method - we want to keep
 // going even if the user moves the browser to another page.
 // Anti-social? Maybe, but you can use the CLOSE button to kill
 // the Frame, or you can exit the Browser.

 /** Paint paints the small window that appears in the HTML,
 * telling the user to look elsewhere!
 */

Example 16-11. ChatRoom.java (chat client) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 16: Network Clients

See Also
This chat applet might not work on all browser flavors; you might need the Java
Plug-in. See Recipe 23.6.

There are many better-structured ways to write a chat client, including RMI, Java’s
RPC interface (see the Introduction to Chapter 22) and the Java Messaging Services,
part of the Java 2 Enterprise Edition.

If you need to encrypt your socket connection, check out Sun’s JSSE (Java Secure
Socket Extension).

For a good overview of network programming from the C programmer’s point of
view, see the late W. Richard Stevens’s Unix Network Programming (Prentice Hall).
Despite the book’s name, it’s really about socket and TCP/IP/UDP programming
and covers all parts of the (Unix) networking API and protocols such as TFTP in
amazing detail.

 public void paint(Graphics g) {
 Dimension d = getSize();
 int h = d.height;
 int w = d.width;
 g.fillRect(0, 0, w, 0);
 g.setColor(Color.black);
 g.drawString(paintMessage, 10, (h/2)-5);
 }
}

Example 16-11. ChatRoom.java (chat client) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

467

Chapter 17l CHAPTER 17

Server-Side Java: Sockets

17.0 Introduction
Sockets form the underpinnings of almost all networking protocols. JDBC, RMI,
CORBA, EJB, and the non-Java RPC (Remote Procedure Call) and NFS (Network
File System) are all implemented by connecting various types of sockets together.
Socket connections can be implemented in many languages, not just Java: C, C++,
Perl, and Python are also popular, and many others are possible. A client or server
written in any one of these languages can communicate with its opposite written in
any of the other languages. Therefore, it’s worth taking a quick look at how the
ServerSocket behaves, even if you wind up utilizing the higher-level services such as
RMI, JDBC, CORBA, or EJB.

The discussion looks first at the ServerSocket itself, then at writing data over a socket
in various ways. Finally, we show a complete implementation of a usable network
server written in Java: the chat server from the client in the previous chapter.

17.1 Opening a Server for Business

Problem
You need to write a socket-based server.

Solution
Create a ServerSocket for the given port number.

Discussion
The ServerSocket represents the “other end” of a connection, the server that waits
patiently for clients to come along and connect to it. You construct a ServerSocket

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 17: Server-Side Java: Sockets

with just the port number.* Since it doesn’t need to connect to another host, it
doesn’t need a particular host’s address as the client socket constructor does.

Assuming the ServerSocket constructor doesn’t throw an exception, you’re in busi-
ness. Your next step is to await client activity, which you do by calling accept().
This call blocks until a client connects to your server; at that point, the accept()
returns to you a Socket object (not a ServerSocket) that is connected in both direc-
tions to the Socket object on the client (or its equivalent, if written in another lan-
guage). Example 17-1 shows the code for a socket-based server.

You would normally use the socket for reading and writing, as shown in the next few
recipes.

* You may not be able to pick just any port number for your own service, of course. Certain well-known port
numbers are reserved for specific services and listed in your services file, such as 22 for Secure Shell, 25 for
SMTP, and hundreds more. Also, on server-based operating systems, ports below 1024 are considered “priv-
ileged” ports and require root or administrator privilege to create. This was an early security mechanism;
today, with zillions of single-user desktops connected to the Internet, it provides little real security, but the
restriction remains.

Example 17-1. Listen.java

/**
 * Listen -- make a ServerSocket and wait for connections.
 */
public class Listen {
 /** The TCP port for the service. */
 public static final short PORT = 9999;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT);
 while ((clientSock = sock.accept()) != null) {

 // Process it.
 process(clientSock);
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** This would do something with one client. */
 static void process(Socket s) throws IOException {
 System.out.println("Accept from client " + s.getInetAddress());
 // The conversation would be here.
 s.close();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Server for Business | 469

You may want to listen only on a particular network interface. While we tend to
think of network addresses as computer addresses, the two are not the same. A net-
work address is actually the address of a particular network card, or network inter-
face connection, on a given computing device. A desktop computer, laptop, Palm
handheld, or cellular phone might have only a single interface, hence a single net-
work address. But a large server machine might have two or more interfaces, usually
when it is connected to several networks. A network router is a box (either special-
purpose, e.g., a Cisco router, or general-purpose, e.g., a Unix host) that has inter-
faces on multiple networks and has both the capability and the administrative per-
mission to forward packets from one network to another. A program running on
such a server machine might want to provide services only to its inside network or its
outside network. One way to accomplish this is by specifying the network interface
to be listened on. Suppose you want to provide a different view of web pages for your
intranet than you provide to outside customers. For security reasons, you probably
wouldn’t run both these services on the same machine. But if you wanted to, you
could do this by providing the network interface addresses as arguments to the
ServerSocket constructor.

However, to use this form of the constructor, you don’t have the option of using a
string for the network address’s name, as you did with the client socket; you must
convert it to an InetAddress object. You also have to provide a backlog argument,
which is the number of connections that can queue up to be accepted before clients
are told that your server is too busy. The complete setup is shown in Example 17-2.

Example 17-2. ListenInside.java

/**
 * ListenInside -- make a server socket that listens only on
 * a particular interface, in this case, one named by INSIDE_HOST.
 */
public class ListenInside {
 /** The TCP port for the service. */
 public static final short PORT = 9999;
 /** The name of the network interface. */
 public static final String INSIDE_HOST = "acmewidgets-inside";
 /** The number of clients allowed to queue */
 public static final int BACKLOG = 10;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT, BACKLOG,
 InetAddress.getByName(INSIDE_HOST));
 while ((clientSock = sock.accept()) != null) {

 // Process it.
 process(clientSock);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 17: Server-Side Java: Sockets

The InetAddress.getByName() looks up the given hostname in a system-dependent
way, referring to a configuration file in the /etc or \windows directory, or to some
kind of resolver such as the Domain Name System. Consult a good book on net-
working and system administration if you need to modify this data.

17.2 Returning a Response (String or Binary)

Problem
You need to write a string or binary data to the client.

Solution
The socket gives you an InputStream and an OutputStream. Use them.

Discussion
The client socket examples in the previous chapter called the getInputStream() and
getOutputStream() methods. These examples do the same. The main difference is
that these ones get the socket from a ServerSocket’s accept() method. Another dis-
tinction is, by definition, that normally the server creates or modifies the data and
sends it to the client. Example 17-3 is a simple Echo server, which the Echo client of
Recipe 16.4 can connect to. This server handles one complete connection with a cli-
ent, then goes back and does the accept() to wait for the next client.

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** Hold server's conversation with one client. . */
 static void process(Socket s) throws IOException {

System.out.println("Connected from " + INSIDE_HOST + "": " + s.getInetAddress());
 // The conversation would be here.
 s.close();
 }
}

Example 17-3. EchoServer.java

/**
 * EchoServer - create server socket, do I-O on it.
 */
public class EchoServer {
 /** Our server-side rendezvous socket */
 protected ServerSocket sock;
 /** The port number to use by default */
 public final static int ECHOPORT = 7;

Example 17-2. ListenInside.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Returning a Response (String or Binary) | 471

 /** Flag to control debugging */
 protected boolean debug = true;

 /** main: construct and run */
 public static void main(String[] argv) {
 new EchoServer(ECHOPORT).handle();
 }

 /** Construct an EchoServer on the given port number */
 public EchoServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup");
 System.err.println(e);
 System.exit(1);
 }
 }

 /** This handles the connections */
 protected void handle() {
 Socket ios = null;
 BufferedReader is = null;
 PrintWriter os = null;
 while (true) {
 try {
 ios = sock.accept();
 System.err.println("Accepted from " +
 ios.getInetAddress().getHostName());
 is = new BufferedReader(
 new InputStreamReader(ios.getInputStream(), "8859_1"));
 os = new PrintWriter(
 new OutputStreamWriter(
 ios.getOutputStream(), "8859_1"), true);
 String echoLine;
 while ((echoLine = is.readLine()) != null) {
 System.err.println("Read " + echoLine);
 os.print(echoLine + "\r\n"); os.flush();
 System.err.println("Wrote " + echoLine);
 }
 System.err.println("All done!");
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 try {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (ios != null)
 ios.close();
 } catch (IOException e) {

Example 17-3. EchoServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 17: Server-Side Java: Sockets

To send a string across an arbitrary network connection, some authorities recom-
mend sending both the carriage return and the newline character. This explains the
\r\n in the code. If the other end is a DOS program or a Telnet-like program, it may
be expecting both characters. On the other hand, if you are writing both ends, you
can simply use println()—followed always by an explicit flush() before you read—
to prevent the deadlock of having both ends trying to read with one end’s data still in
the PrintWriter’s buffer!

If you need to process binary data, use the data streams from java.io instead of the
readers/writers. I need a server for the DaytimeBinary program of Recipe 16.5. In
operation, it should look like the following.

C:\javasrc\network>java DaytimeBinary
Remote time is 3161316799
BASE_DIFF is 2208988800
Time diff == 952284799
Time on localhost is Sun Mar 05 19:33:19 GMT 2000

C:\javasrc\network>time/t
Current time is 7:33:23.84p

C:\javasrc\network>date/t
Current date is Sun 03-05-2000

C:\javasrc\network>

Well, it happens that I have such a program in my arsenal, so I present it in
Example 17-4. Note that it directly uses certain public constants defined in the client
class. Normally these are defined in the server class and used by the client, but I
wanted to present the client code first.

 // These are unlikely, but might indicate that
 // the other end shut down early, a disk filled up
 // but wasn't detected until close, etc.
 System.err.println("IO Error in close");
 }
 }
 }
 /*NOTREACHED*/
 }
}

Example 17-4. DaytimeServer.java

/**
 * DaytimeServer - send the binary time.
 */
public class DaytimeServer {
 /** Our server-side rendezvous socket */
 ServerSocket sock;

Example 17-3. EchoServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Returning a Response (String or Binary) | 473

 /** The port number to use by default */
 public final static int PORT = 37;

 /** main: construct and run */
 public static void main(String[] argv) {
 new DaytimeServer(PORT).runService();
 }

 /** Construct a DaytimeServer on the given port number */
 public DaytimeServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup\n" + e);
 System.exit(1);
 }
 }

 /** This handles the connections */
 protected void runService() {
 Socket ios = null;
 DataOutputStream os = null;
 while (true) {
 try {
 System.out.println("Waiting for connection on port " + PORT);
 ios = sock.accept();
 System.err.println("Accepted from " +
 ios.getInetAddress().getHostName());
 os = new DataOutputStream(ios.getOutputStream());
 long time = System.currentTimeMillis();

 time /= DaytimeBinary.MSEC; // Daytime Protocol is in seconds

 // Convert to Java time base.
 time += DaytimeBinary.BASE_DIFF;

 // Write it, truncating cast to int since it is using
 // the Internet Daytime protocol which uses 4 bytes.
 // This will fail in the year 2038, along with all
 // 32-bit timekeeping systems based from 1970.
 // Remember, you read about the Y2038 crisis here first!
 os.writeInt((int)time);
 os.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }
}

Example 17-4. DaytimeServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 17: Server-Side Java: Sockets

17.3 Returning Object Information

Problem
You need to return an object.

Solution
Create the object you need, and write it using an ObjectOutputStream created on top
of the socket’s output stream.

Discussion
The program in Example 16-7 in the previous chapter reads a Date object over an
ObjectInputStream. Example 17-5, the DaytimeObjectServer—the other end of that
process—is a program that constructs a Date object each time it’s connected to and
returns it to the client.

Example 17-5. DaytimeObjectServer.java

/*
 * DaytimeObjectServer - server for the non-standard Time (object) service.
 */
public class DaytimeObjectServer {
 /** The TCP port for the object time service. */
 public static final short TIME_PORT = 1951;

 public static void main(String[] argv) {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(TIME_PORT);
 while ((clientSock = sock.accept()) != null) {
 System.out.println("Accept from " +
 clientSock.getInetAddress());
 ObjectOutputStream os = new ObjectOutputStream(
 clientSock.getOutputStream());

 // Construct and write the Object
 os.writeObject(new Date());

 os.close();
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Handling Multiple Clients | 475

17.4 Handling Multiple Clients

Problem
Your server needs to handle multiple clients.

Solution
Use a thread for each.

Discussion
In the C world, several mechanisms allow a server to handle multiple clients. One is
to use a special “system call” select() or poll(), which notifies the server when any
of a set of file/socket descriptors is ready to read, ready to write, or has an error. By
including its rendezvous socket (equivalent to our ServerSocket) in this list, the C-
based server can read from any of a number of clients in any order. Java does not
provide this call, as it is not readily implementable on some Java platforms. Instead,
Java uses the general-purpose Thread mechanism, as described in Recipe 24.10.
Threads are, in fact, one of the other mechanisms available to the C programmer on
most platforms. Each time the code accepts a new connection from the ServerSocket,
it immediately constructs and starts a new thread object to process that client.*

The code to implement accepting on a socket is pretty simple, apart from having to
catch IOExceptions:

/** Run the main loop of the Server. */
void runServer() {
 while (true) {
 try {
 Socket clntSock = sock.accept();
 new Handler(clntSock).start();
 } catch(IOException e) {
 System.err.println(e);
 }
 }
}

To use a thread, you must either subclass Thread or implement Runnable. The Handler
class must be a subclass of Thread for this code to work as written; if Handler instead
implemented the Runnable interface, the code would pass an instance of the Runnable
into the constructor for Thread, as in:

Thread t = new Thread(new Handler(clntSock));
t.start();

* There are some limits to how many threads you can have, which affect only very large, enterprise-scale serv-
ers. You can’t expect to have thousands of threads running in the standard Java runtime. For large, high-
performance servers, you may wish to resort to native code (see Recipe 26.5) using select() or poll().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 17: Server-Side Java: Sockets

But as written, Handler is constructed using the normal socket returned by the
accept() call, and normally calls the socket’s getInputStream() and
getOutputStream() methods and holds its conversation in the usual way. I’ll present
a full implementation, a threaded echo client. First, a session showing it in use:

$ java EchoServerThreaded
EchoServerThreaded ready for connections.
Socket starting: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]
Socket starting: Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket starting: Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket ENDED: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]

Here, I connected to the server once with my EchoClient program and, while still
connected, called it up again (and again) with an operating system-provided Telnet
client. The server communicated with all the clients concurrently, sending the
answers from the first client back to the first client, and the data from the second cli-
ent back to the second client. In short, it works. I ended the sessions with the end-of-
file character in the program and used the normal disconnect mechanism from the
Telnet client. Example 17-6 is the code for the server.

Example 17-6. EchoServerThreaded.java

/**
 * Threaded Echo Server, sequential allocation scheme.
 */
public class EchoServerThreaded {

 public static final int ECHOPORT = 7;

 public static void main(String[] av)
 {
 new EchoServerThreaded().runServer();
 }

 public void runServer()
 {
 ServerSocket sock;
 Socket clientSocket;

 try {
 sock = new ServerSocket(ECHOPORT);

 System.out.println("EchoServerThreaded ready for connections.");

 /* Wait for a connection */
 while(true){
 clientSocket = sock.accept();
 /* Create a thread to do the communication, and start it */
 new Handler(clientSocket).start();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Handling Multiple Clients | 477

A lot of short transactions can degrade performance since each client causes the cre-
ation of a new threaded object. If you know or can reliably predict the degree of con-
currency that is needed, an alternative paradigm involves the precreation of a fixed
number of threads. But then how do you control their access to the ServerSocket? A
look at the ServerSocket class documentation reveals that the accept() method is
not synchronized, meaning that any number of threads can call the method concur-
rently. This could cause bad things to happen. So I use the synchronized keyword
around this call to ensure that only one client runs in it at a time, because it updates
global data. When no clients are connected, you will have one (randomly selected)
thread running in the ServerSocket object’s accept() method, waiting for a connec-
tion, plus n–1 threads waiting for the first thread to return from the method. As soon

 } catch(IOException e) {
 /* Crash the server if IO fails. Something bad has happened */
 System.err.println("Could not accept " + e);
 System.exit(1);
 }
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 Socket sock;

 Handler(Socket s) {
 sock = s;
 }

 public void run()
 {
 System.out.println("Socket starting: " + sock);
 try {
 DataInputStream is = new DataInputStream(
 sock.getInputStream());
 PrintStream os = new PrintStream(
 sock.getOutputStream(), true);
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 sock.close();
 } catch (IOException e) {
 System.out.println("IO Error on socket " + e);
 return;
 }
 System.out.println("Socket ENDED: " + sock);
 }
 }
}

Example 17-6. EchoServerThreaded.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 17: Server-Side Java: Sockets

as the first thread manages to accept a connection, it goes off and holds its conversa-
tion, releasing its lock in the process so that another randomly chosen thread is
allowed into the accept() method. Each thread’s run() method has an indefinite
loop beginning with an accept() and then holding the conversation. The result is
that client connections can get started more quickly, at a cost of slightly greater
server startup time. Doing it this way also avoids the overhead of constructing a new
Handler or Thread object each time a request comes along. This general approach is
similar to what the popular Apache web server does, although it normally creates a
number or pool of identical processes (instead of threads) to handle client connec-
tions. Accordingly, I have modified the EchoServerThreaded class shown in
Example 17-6 to work this way, as you can see in Example 17-7.

Example 17-7. EchoServerThreaded2.java

/**
 * Threaded Echo Server, pre-allocation scheme.
 */
public class EchoServerThreaded2 {

 public static final int ECHOPORT = 7;

 public static final int NUM_THREADS = 4;

 /** Main method, to start the servers. */
 public static void main(String[] av)
 {
 new EchoServerThreaded2(ECHOPORT, NUM_THREADS);
 }

 /** Constructor */
 public EchoServerThreaded2(int port, int numThreads)
 {
 ServerSocket servSock;
 Socket clientSocket;

 try {
 servSock = new ServerSocket(ECHOPORT);

 } catch(IOException e) {
 /* Crash the server if IO fails. Something bad has happened */
 throw new RuntimeException("Could not create ServerSocket " + e);
 }

 // Create a series of threads and start them.
 for (int i=0; i<numThreads; i++) {
 new Handler(servSock, i).start();
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Handling Multiple Clients | 479

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 ServerSocket servSock;
 int threadNumber;

 /** Construct a Handler. */
 Handler(ServerSocket s, int i) {
 super();
 servSock = s;
 threadNumber = i;
 setName("Thread " + threadNumber);
 }

 public void run()
 {
 /* Wait for a connection */
 while (true){
 try {
 System.out.println(getName() + " waiting");

 Socket clientSocket;
 // Wait here for the next connection.
 synchronized(servSock) {
 clientSocket = servSock.accept();
 }
 System.out.println(getName() + " starting, IP=" +
 clientSocket.getInetAddress());
 BufferedReader is = new BufferedReader(new InputStreamReader(
 clientSocket.getInputStream());
 PrintStream os = new PrintStream(
 clientSocket.getOutputStream(), true);
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 System.out.println(getName() + " ENDED ");
 clientSocket.close();
 } catch (IOException ex) {
 System.out.println(getName() + ": IO Error on socket " + ex);
 return;
 }
 }
 }
 }
}

Example 17-7. EchoServerThreaded2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 17: Server-Side Java: Sockets

17.5 Serving the HTTP Protocol

Problem
You want to serve up a protocol such as HTTP.

Solution
Create a ServerSocket and write some code that “speaks” the particular protocol.

Discussion
This example just constructs a ServerSocket and listens on it. When connections
come in, they are replied to using the HTTP protocol. So it is somewhat more
involved than the simple Echo server presented in Recipe 17.2. However, it’s not a
complete web server; the filename in the request is ignored, and a standard message
is always returned. This is thus a very simple web server; it follows only the bare
minimum of the HTTP protocol needed to send its response back. A somewhat more
complete example is presented in Recipe 24.8, after the issues of multithreading have
been covered. For a real web server written in Java, get Tomcat from http://jakarta.
apache.org/tomcat/. The code shown in Example 17-8, however, is enough to under-
stand how to structure a simple server that communicates using a protocol.

Example 17-8. WebServer0.java

import java.net.*;
import java.util.StringTokenizer;
import java.io.*;

/**
 * A very very very simple Web server.
 *
 * There is only one response to all requests, and it's hard-coded.
 * This version is not threaded and doesn't do very much.
 * Really just a proof of concept.
 * However, it is still useful on notebooks in case somebody connects
 * to you on the Web port by accident (or otherwise).
 *
 * Can't claim to be fully standards-conforming, but has been
 * tested with Netscape Communicator and with the Lynx text browser.
 *
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch17,v 1.4 2004/05/04 18:04:54 ian Exp $
 * @see webserver/* for more fully-fleshed-out version(s).
 */
public class WebServer0 {
 public static final int HTTP = 80;
 ServerSocket s;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Serving the HTTP Protocol | 481

 /**
 * Main method, just creates a server and call its runServer().
 */
 public static void main(String[] argv) throws Exception {
 System.out.println("DarwinSys JavaWeb Server 0.0 starting...");
 WebServer0 w = new WebServer0();
 w.runServer(HTTP); // never returns!!
 }

 /** Get the actual ServerSocket; deferred until after Constructor
 * so subclass can mess with ServerSocketFactory (e.g., to do SSL).
 * @param port The port number to listen on
 */
 protected ServerSocket getServerSocket(int port) throws Exception {
 return new ServerSocket(port);
 }

 /** RunServer accepts connections and passes each one to handler. */
 public void runServer(int port) throws Exception {
 s = getServerSocket(port);
 while (true) {
 try {
 Socket us = s.accept();
 Handler(us);
 } catch(IOException e) {
 System.err.println(e);
 System.exit(0);
 return;
 }

 }
 }

 /** Handler() handles one conversation with a Web client.
 * This is the only part of the program that "knows" HTTP.
 */
 public void Handler(Socket s) {
 BufferedReader is; // inputStream, from Viewer
 PrintWriter os; // outputStream, to Viewer
 String request; // what Viewer sends us.
 try {
 String from = s.getInetAddress().toString();
 System.out.println("Accepted connection from " + from);
 is = new BufferedReader(new InputStreamReader(s.getInputStream()));
 request = is.readLine();
 StringTokenizer st = new StringTokenizer(request);
 System.out.println(""Request: " + request);
 String nullLine = is.readLine();
 os = new PrintWriter(s.getOutputStream(), true);
 os.println("HTTP/1.0 200 Here is your data");
 os.println("Content-type: text/html");
 os.println("Server-name: DarwinSys NULL Java WebServer 0");

Example 17-8. WebServer0.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 17: Server-Side Java: Sockets

17.6 Securing a Web Server with SSL and JSSE

Problem
You want to protect your network traffic from prying eyes or malicious modifica-
tion, while the data is in transit.

Solution
Use the Java Secure Socket Extension, JSSE, to encrypt your traffic.

Discussion
Introduced in JDK 1.4, JSSE provides services at a number of levels, but the simplest
way to use it is simply to get your ServerSocket from an SSLServerSocketFactory
instead of using the ServerSocket constructor directly. SSL is the Secure Sockets
Layer; a revised version is known as TLS. It is specific to use on the Web. To secure
other protocols, you’d have to use a different form of the SocketFactory.

The SSLServerSocketFactory returns a ServerSocket that is set up to do SSL encryp-
tion. The code in Example 17-9 uses this technique to override the getServerSocket()
method in Recipe 17.5. If you’re thinking this is too easy, you’re wrong!

 String reply = "<html><head>" +
 "<title>Wrong System Reached</title></head>\n" +
 "<h1>Welcome, " + from + ", but...</h1>\n" +
 "<p>You have reached a desktop machine " +
 "that does not run a real Web service.\n" +
 "<p>Please pick another system!</p>\n" +
 "<p>Or view " +
 "the WebServer0 source (at the Authors Web Site).</p>\n" +
 "<hr/>Java-based WebServer0<hr/>\n" +
 "</html>\n";
 os.println("Content-length: " + reply.length());
 os.println("");
 os.println(reply);
 os.flush();
 s.close();
 } catch (IOException e) {
 System.out.println("IOException " + e);
 }
 return;
 }
}

Example 17-9. JSSEWebServer0

import java.net.ServerSocket;
import javax.net.ssl.SSLServerSocketFactory;

Example 17-8. WebServer0.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing a Web Server with SSL and JSSE | 483

That is, indeed, all the Java code one needs to write. You do have to set up a Web
Server Certificate. For demonstration purposes, this can be a self-signed certificate;
the steps in Recipe 23.14 (Steps 1–4) will suffice. You have to tell the JSSE layer
where to find your keystore:

java -Djavax.net.ssl.keyStore=/home/ian/.keystore -Djavax.net.ssl.
keyStorePassword=secrit JSSEWebServer0

The typical client browser raises its eyebrows at a self-signed certificate (see
Figure 17-1), but, if the user OKs it, will accept the certificate. Figure 17-2 shows the
output of the simple WebServer0 being displayed over the HTTPS protocol (notice the
padlock in the lower right corner).

See Also
JSSE can do much more than encrypt web server traffic; this is, however, sometimes
seen as its most exciting application. For more information on JSSE, see the Sun web
site http://java.sun.com/products/jsse/ or Java Security by Scott Oaks (O’Reilly).

/**
 * JSSEWebServer - subclass trivial WebServer0 to make it use SSL.
 * @version $Id: ch17,v 1.4 2004/05/04 18:04:54 ian Exp $
 */
public class JSSEWebServer0 extends WebServer0 {

 public static final int HTTPS = 8443;

 public static void main(String[] args) throws Exception {
 System.out.println("DarwinSys JSSE Server 0.0 starting...");
 JSSEWebServer0 w = new JSSEWebServer0();
 w.runServer(HTTPS); // never returns!!
 }

 /** Get an HTTPS ServerSocket using JSSE.
 * @see WebServer0#getServerSocket(int)
 * @throws ClassNotFoundException if the SecurityProvider cannot be instantiated.
 */
 protected ServerSocket getServerSocket(int port) throws Exception {

 SSLServerSocketFactory ssf = (SSLServerSocketFactory)SSLServerSocketFactory.
getDefault();

 return ssf.createServerSocket(port);
 }

}

Example 17-9. JSSEWebServer0 (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 17: Server-Side Java: Sockets

17.7 Network Logging

Problem
Your class is running inside a server container, and its debugging output is hard to
obtain.

Solution
Use a network-based logger like the JDK 1.4 Logging API, Apache Logging Services
Project’s log4j, or the simple one shown here.

Discussion
Getting the debug output from a desktop client is fairly easy on most operating sys-
tems. But if the program you want to debug is running in a “container” like a servlet
engine or an EJB server, it can be difficult to obtain debugging output, particularly if

Figure 17-1. Browser caution

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Logging | 485

the container is running on a remote computer. It would be convenient if you could
have your program send messages back to a program on your desktop machine for
immediate display. Needless to say, it’s not that hard to do this with Java’s socket
mechanism.

Several logging APIs can handle this. As of JDK 1.4, Java has a standard logging API
(discussed in Recipe 17.9) that talks to various logging mechanisms including Unix
syslog. The Apache Logging Services Project produces log4j, which is used in most
open source projects that require logging (see Recipe 17.8). And, before these
became widely used, I wrote a small, simple API to handle this type of logging func-
tion. The JDK logging API and log4j are more fully fleshed out and can write to such
destinations as a file, an OutputStream or Writer, or a remote log4j, Unix syslog, or
Windows Event Log server.

The program being debugged is the “client” from the logging API’s point of view—
even though it may be running in a server-side container such as a web server or
application server—since the “network client” is the program that initiates the con-
nection. The program that runs on your desktop machine is the “server” program for
sockets since it waits for a connection to come along.

Example 17-10 is a simple client program, NetLogSimple, using my simple Netlog API.

Figure 17-2. With encryption

Example 17-10. NetLogSimple.java

/* A simple example of using the NetLog program.
 * Unrealistic in that it's standalone; this API is
 * intended for use inside another program, possibly
 * a servlet or EJB.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 17: Server-Side Java: Sockets

In Figure 17-3, I show both the server and client running side by side.

The client-side API and the server code are both online. Example 17-11 shows the
code for the key parts of my NetLog server.

public class NetLogSimple {

 public static void main(String[] args) throws java.io.IOException {

 System.out.println("NetLogSimple: Starting...");

 // Get the connection to the NetLog
 NetLog nl = new NetLog();

 // Show sending a String
 nl.log("Hello Java");

 // Show sending Objects
 nl.log(new java.util.Date());
 nl.log(nl);

 // Show sending null and "" (normally an accident...)
 nl.log(null);
 nl.log("");

 // All done, close the log
 nl.close();

 System.out.println("NetLogSimple: Done...");
 }
}

Figure 17-3. NetLog server and client

Example 17-10. NetLogSimple.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Logging | 487

Example 17-11. NetLogServer.java

public class NetLogServer {

 public static final int PORT = 65432;

 public static final int NUM_THREADS = 8;

 JFrame theFrame;
 JTextArea theTextArea;

 /** Main method, to start the servers. */
 public static void main(String[] av)
 {
 new NetLogServer(PORT, NUM_THREADS);
 }

 /** Constructor */
 public NetLogServer(int port, int numThreads)
 {
 ServerSocket servSock;
 Socket clientSocket;

 try {
 servSock = new ServerSocket(PORT);

 } catch(IOException e) {
 /* Crash the server if IO fails. Something bad has happened */
 System.err.println("Could not create ServerSocket " + e);
 System.exit(1);
 return; /*NOTREACHED*/
 }

 // Build the GUI - must be before Handler constructors!
 theFrame = new JFrame("NetLog Server");
 theTextArea = new JTextArea(24, 80);
 theTextArea.setEditable(false);
 theTextArea.setBorder(BorderFactory.createTitledBorder("NetLogServer"));
 theFrame.getContentPane().add(new JScrollPane(theTextArea));

 // Now start the Threads
 for (int i=0; i<numThreads; i++) {
 new Handler(servSock, i).start();
 }

 theFrame.pack();
 theFrame.setVisible(true);
 theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public synchronized void log(int tid, String s) {
 StringBuffer sb = new StringBuffer();
 sb.append(tid);
 sb.append(": ");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 17: Server-Side Java: Sockets

 if (s == null) {
 sb.append("(null)");
 }
 else if (s.length() == 0) {
 sb.append("(null string)");
 }
 else
 sb.append(s);

 sb.append('\n');
 theTextArea.append(sb.toString());
 theTextArea.setCaretPosition(theTextArea.getText().length());
 theFrame.toFront();
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 ServerSocket servSock;
 int tid;

 /** Construct a Handler. */
 Handler(ServerSocket s, int i) {
 super();
 servSock = s;
 tid = i;
 setName("Thread " + tid);
 }

 public void run()
 {
 /* Wait for a connection */
 while (true){
 try {
 // log(tid, getName() + " waiting");
 Socket clientSocket = servSock.accept();
 log(tid,getName() + " START, IP=" +
 clientSocket.getInetAddress());
 BufferedReader is = new BufferedReader(
 new InputStreamReader(clientSocket.getInputStream()));
 String line;
 while ((line = is.readLine()) != null) {
 // System.out.println(">> " + line);
 log(tid,line);
 }
 log(tid,getName() + " ENDED ");
 clientSocket.close();
 } catch (IOException ex) {
 log(tid, getName() + ": IO Error on socket " + ex);
 return;
 }
 }
 }
 }
}

Example 17-11. NetLogServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Logging with log4j | 489

See Also
Better network loggers are available. The Apache Foundation Logging Services
Project (http://logging.apache.org) offers log4j, which provides a similar service (see
Recipe 17.8). JDK 1.4 includes an Event Logger mechanism, described in Recipe 17.9.

If you want to run any network-based logger, you need to be very aware of security
issues. One common form of attack is a simple denial-of-service during which the
attacker makes a lot of connections to your server in order to slow it down. If you
had extended this program by writing the log to disk, the attacker could fill up your
disk by sending lots of garbage. However, because this example displays the log on
the screen, you would see this happening. Don’t leave the server running while
you’re not around to watch it!

The simplest non-network logger around is probably my Debug class described in
Recipe 1.11.

17.8 Network Logging with log4j

Problem
You wish to write log file messages using log4j.

Solution
Get a Logger and use its log() method or the convenience methods. Control logging
by changing a properties file. Make it network-based by using the org.apache.log4j.
net package.

Discussion
Logging using log4j is simple, convenient, and flexible. You need to get a Logger
object from the static method Logger.getLogger(), pass in a configuration identifier
that can either be a hierarchical name like com.darwinsys or a Class object (e.g.,
MyApp.class) that generates the full package and class name. This name can be used
in the configuration file to specify the level of detail that you want to see from the
logger. The Logger has public void methods—debug(), info(), warn(), error() and
fatal()—each of which takes one Object to be logged. As with System.out.println(),
if you pass in anything that is not a String, its toString() method is called. A generic
logging method is also included:

public void log(Level level, Object message);

The Level class is defined in the log4j package. The standard levels are in this order:
DEBUG < INFO < WARN < ERROR < FATAL. So debug messages are least important, and
fatal are most important. Each Logger has a level associated with it; messages whose
level is less than the Logger’s level are silently discarded.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 17: Server-Side Java: Sockets

A simple application can log messages using these few statements:

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

public class Log4JDemo {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys");

 Object o = new Object();
 myLogger.info("I created an object: " + o);

 }
}

If you compile and run this program with no log4j.properties file, it complains and
does not produce any logging output:

ant run.log4jdemo
Buildfile: build.xml
run.log4jdemo:
 [java] log4j:WARN No appenders could be found for logger (com.darwinsys).
 [java] log4j:WARN Please initialize the log4j system properly.

So we need to create a configuration file, whose default name is log4j.properties. You
can also provide the log file name via System Properties: -Dlog4j.configuration=URL.

Every Logger has a Level to specify what level of messages to write, and an Appender,
which is the code that writes the messages out. A ConsoleAppender writes to System.
out, of course; other loggers write to files, operating system-level loggers, and so on.
A simple configuration file looks something like this:

Set root logger level to DEBUG and its only appender to APP1.
log4j.rootLogger=DEBUG, APP1

APP1 is set to be a ConsoleAppender.
log4j.appender.APP1=org.apache.log4j.ConsoleAppender

APP1 uses PatternLayout.
log4j.appender.APP1.layout=org.apache.log4j.PatternLayout
log4j.appender.APP1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

This file gives the root logger a level of DEBUG—write all messages—and an
appender of APP1, which is configured on the next few lines. Note that I didn’t have
to refer to the com.darwinsys Logger; since every Logger inherits from the root logger,
a simple application needs to configure only the root logger. The properties file can
also be an XML document or you can write your own configuration parser (almost
nobody does this). With the above file in place, the demonstration works better:

$ ant run.log4jdemo
Buildfile: build.xml

init:

V413HAV
Typewritten Text
V413HAV

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Logging with JDK 1.4 | 491

build:

run.log4jdemo:
 [java] 1 [main] INFO com.darwinsys - I created an object: java.lang.
Object@bb6086

BUILD SUCCESSFUL
Total time: 1 second

A more typical use of logging might be to catch an Exception and log it, as shown in
Example 17-12.

Much of the flexibility of the log4j package stems from its use of external configura-
tion files; you can enable or disable logging without recompiling the application. A
properties file that eliminates all logging might have this entry:

log4j.rootLogger=FATAL, APP1

Only fatal error messages print; all levels less than that are ignored.

To log from a client to a server on a remote machine, the org.apache.log4j.net pack-
age includes several Appenders and servers to connect them to.

For more information on log4j, visit http://logging.apache.org/log4j/. log4j is free
software, distributed under the Apache Software Foundation license.

17.9 Network Logging with JDK 1.4

Problem
You wish to write logging messages using the JDK 1.4 logging mechanism.

Example 17-12. Log4j—catching and logging

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

public class Log4JDemo2 {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys");

 try {
 Object o = new Object();
 if (o != null) { // bogus, just to show logging
 throw new IllegalArgumentException("Just testing");
 }
 myLogger.info("I created an object: " + o);
 } catch (Exception ex) {
 myLogger.error("Caught Exception: " + ex);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 17: Server-Side Java: Sockets

Solution
Get a Logger, and use it to log your messages and/or exceptions.

Discussion
The JDK 1.4 Logging API (package java.util.logging) is similar to, and obviously
inspired by, the log4j package. You acquire a Logger object by calling the static
Logger.getLogger() with a descriptive String. You then use instance methods to
write to the log; these methods include:

public void log(java.util.logging.LogRecord);
public void log(java.util.logging.Level,String);
// and a variety of overloaded log() methods
public void logp(java.util.logging.Level,String,String,String);
public void logrb(java.util.logging.Level,String,String,String,String);

// Convenience routines for tracing program flow
public void entering(String,String);
public void entering(String,String,Object);
public void entering(String,String,Object[]);
public void exiting(String,String);
public void exiting(String,String,Object);
public void throwing(String,String,Throwable);

// Convenience routines for log() with a given level
public void severe(String);
public void warning(String);
public void info(String);
public void config(String);
public void fine(String);
public void finer(String);
public void finest(String);

As with log4j, every Logger object has a given logging level, and messages below that
level are silently discarded:

public void setLevel(java.util.logging.Level);
public java.util.logging.Level getLevel();
public boolean isLoggable(java.util.logging.Level);

As with log4j, objects handle the writing of the log. Each logger has a Handler:

public synchronized void addHandler(java.util.logging.Handler);
public synchronized void removeHandler(java.util.logging.Handler);
public synchronized java.util.logging.Handler[] getHandlers();

and each Handler has a Formatter, which formats a LogRecord for display. By provid-
ing your own Formatter, you have more control over how the information being
passed into the log gets formatted.

Unlike log4j, the 1.4 logging mechanism has a default configuration, so this is a min-
imal logging example program:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding Network Interfaces | 493

import java.util.logging.Logger;

public class Log14Demo {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys");

 Object o = new Object();
 myLogger.info("I created an object: " + o);
 }
}

Running it prints the following:

C:> java Log14Demo
Mar 8, 2004 7:48:26 PM Log14Demo main
INFO: I created an object: java.lang.Object@57f0dc
C:>

As with log4j, the typical use is in logging caught exceptions; the code for this is in
Example 17-13.

17.10 Finding Network Interfaces

Problem
You wish to find out about the computer’s networking arrangements.

Example 17-13. Log14Demo2—catching and logging

import java.util.logging.Logger;
import java.util.logging.LogRecord;
import java.util.logging.Level;

public class Log14Demo2 {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys");

 try {
 Object o = new Object();
 if (o != null) { // bogus, just to show logging
 throw new IllegalArgumentException("Just testing");
 }
 myLogger.info("I created an object: " + o);
 } catch (Throwable t) {
 LogRecord msg = new LogRecord(Level.SEVERE,
 "Caught exception ");
 msg.setThrown(t);
 myLogger.log(msg);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 17: Server-Side Java: Sockets

Solution
Use the NetworkInterface class introduced in JDK 1.4.

Discussion
Every computer on a network has one or more network interfaces. On typical desk-
top machines, a network interface represents a network card or network port and
often some software network interfaces, such as the loopback interface. Each inter-
face has an operating system-defined name. On most versions of Unix, these devices
have a two- or three-character device driver name plus a digit (starting from 0); for
example, de0 and de1 for the first and second Digital Equipment* DC21x4x-based
Ethernet card, xl0 for a 3Com EtherLink XL, and so on. On Linux, these interfaces
are typically named eth0, eth1, and so on, without regard for the manufacturer. The
loopback interface is usually lo0, at least on Unix-like platforms.

So what? Most of the time this is of no consequence to you. If you have only one net-
work connection, like a dialup or cable link to your ISP, you really don’t care. Where
this matters is on a server, where you might need to find the address for a given net-
work, for example. The NetworkInterface class lets you find out. It has static meth-
ods for listing the interfaces and other methods for finding the addresses associated
with a given interface. The program in Example 17-14 shows some examples of using
this class. Running it prints the names of all the local interfaces. If you happen to be
on a computer named daroad, it prints the machine’s network address; if not, you
probably want to change it to accept the local computer’s name from the command
line; this is left as an exercise for the reader.

* Digital Equipment was absorbed by Compaq, which was then absorbed by HP, but the name remains de
because the engineers who name such things don’t care for corporate mergers anyway.

Example 17-14. NetworkInterfaceDemo.java

/**
 * Show some uses of the new-in-1.4 NetworkInterface class.
 */
public class NetworkInterfaceDemo {
 public static void main(String[] a) throws IOException {
 Enumeration list = NetworkInterface.getNetworkInterfaces();
 while (list.hasMoreElements()) {
 // Get one NetworkInterface
 NetworkInterface iface = (NetworkInterface) list.nextElement();
 // Print its name
 System.out.println(iface.getDisplayName());
 Enumeration addrs = iface.getInetAddresses();
 // And its address(es)
 while (addrs.hasMoreElements()) {
 InetAddress addr = (InetAddress) addrs.nextElement();
 System.out.println(addr);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: A Java Chat Server | 495

17.11 Program: A Java Chat Server
This program implements a simple chat server (Example 17-15) that works with the
chat applet from Recipe 16.10. It accepts connections from an arbitrary number of
clients; any message sent from one client is broadcast to all clients. In addition to
ServerSockets, it demonstrates the use of threads (see Chapter 24). Since there are
interactions among clients, this server needs to keep track of all the clients it has at
any one time. I use an ArrayList (see Recipe 7.3) to serve as an expandable list and
am careful to use the synchronized keyword around all accesses to this list to prevent
one thread from accessing it while another is modifying it (this is discussed in
Chapter 24).

 }
 // Try to get the Interface for a given local (this machine's) address
 InetAddress destAddr = InetAddress.getByName("daroad");
 try {
 NetworkInterface dest = NetworkInterface.getByInetAddress(destAddr);
 System.out.println("Address for " + destAddr + "" is " + dest);
 } catch (SocketException ex) {
 System.err.println("Couldn't get address for " + destAddr);
 }
 }
}

Example 17-15. ChatServer.java

/** Simple Chat Server to go with our Trivial Chat Client.
 */
public class ChatServer {
 /** What I call myself in system messages */
 protected final static String CHATMASTER_ID = "ChatMaster";
 /** What goes between any handle and the message */
 protected final static String SEP = ": ";
 /** The Server Socket */
 protected ServerSocket servSock;
 /** The list of my current clients */
 protected ArrayList clients;
 /** Debugging state */
 private boolean DEBUG = false;

 /** Main just constructs a ChatServer, which should never return */
 public static void main(String[] argv) {
 System.out.println("DarwinSys Chat Server 0.1 starting...");
 ChatServer w = new ChatServer();
 w.runServer(); // should never return.
 System.out.println("**ERROR* Chat Server 0.1 quitting");
 }

Example 17-14. NetworkInterfaceDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 17: Server-Side Java: Sockets

 /** Construct (and run!) a Chat Service */
 ChatServer() {
 clients = new ArrayList();
 try {
 servSock = new ServerSocket(Chat.PORTNUM);
 System.out.println("DarwinSys Chat Server Listening on port " +
 Chat.PORTNUM);
 } catch(IOException e) {
 log("IO Exception in ChatServer.<init>" + e);
 System.exit(0);
 }
 }

 public void runServer() {
 try {
 while (true) {
 Socket us = servSock.accept();
 String hostName = us.getInetAddress().getHostName();
 System.out.println("Accepted from " + hostName);
 ChatHandler cl = new ChatHandler(us, hostName);
 synchronized (clients) {
 clients.add(cl);
 cl.start();
 if (clients.size() == 1)
 cl.send(CHATMASTER_ID,
 "Welcome! you're the first one here");
 else {
 cl.send(CHATMASTER_ID, "Welcome! you're the latest of " +
 clients.size() + " users.");
 }
 }
 }
 } catch(IOException e) {
 log("IO Exception in runServer: " + e);
 System.exit(0);
 }
 }

 protected void log(String s) {
 System.out.println(s);
 }

 /** Inner class to handle one conversation */
 protected class ChatHandler extends Thread {
 /** The client socket */
 protected Socket clientSock;
 /** BufferedReader for reading from socket */
 protected BufferedReader is;
 /** PrintWriter for sending lines on socket */
 protected PrintWriter pw;
 /** The client's host */
 protected String clientIP;

Example 17-15. ChatServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: A Java Chat Server | 497

 /** String form of user's handle (name) */
 protected String login;

 /* Construct a Chat Handler */
 public ChatHandler(Socket sock, String clnt) throws IOException {
 clientSock = sock;
 clientIP = clnt;
 is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 pw = new PrintWriter(sock.getOutputStream(), true);
 }

 /** Each ChatHandler is a Thread, so here's the run() method,
 * which handles this conversation.
 */
 public void run() {
 String line;
 try {
 while ((line = is.readLine()) != null) {
 char c = line.charAt(0);
 line = line.substring(1);
 switch (c) {
 case Chat.CMD_LOGIN:
 if (!Chat.isValidLoginName(line)) {
 send(CHATMASTER_ID, "LOGIN " + line + " invalid");
 log("LOGIN INVALID from " + clientIP);
 continue;
 }
 login = line;
 broadcast(CHATMASTER_ID, login +
 " joins us, for a total of " +
 clients.size() + " users");
 break;
 case Chat.CMD_MESG: // Private message from one user to another.
 if (login == null) {
 send(CHATMASTER_ID, "please login first");
 continue;
 }
 int where = line.indexOf(Chat.SEPARATOR);
 String recip = line.substring(0, where);
 String mesg = line.substring(where+1);
 log("MESG: " + login + "-->" + recip + ": "+ mesg);
 ChatHandler cl = lookup(recip);
 if (cl == null)
 psend(CHATMASTER_ID, recip + " not logged in.");
 else
 cl.psend(login, mesg);
 break;
 case Chat.CMD_QUIT:
 broadcast(CHATMASTER_ID,
 "Goodbye to " + login + "@" + clientIP);
 close();

Example 17-15. ChatServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 17: Server-Side Java: Sockets

 return; // The end of this ChatHandler

 case Chat.CMD_BCAST: // Message from one user to everybody.
 if (login != null)
 broadcast(login, line);
 else
 log("B<L FROM " + clientIP);
 break;
 default:
 log("Unknown cmd " + c + " from " + login + "@" + clientIP);
 }
 }
 } catch (IOException e) {
 log("IO Exception: " + e);
 } finally {
 // the sock ended, so we're done, bye now
 System.out.println(login + SEP + "All Done");
 synchronized(clients) {
 clients.remove(this);
 if (clients.size() == 0) {
 System.out.println(CHATMASTER_ID + SEP +
 "I'm so lonely I could cry...");
 } else if (clients.size() == 1) {
 ChatHandler last = (ChatHandler)clients.get(0);
 last.send(CHATMASTER_ID,
 "Hey, you're talking to yourself again");
 } else {
 broadcast(CHATMASTER_ID,
 "There are now " + clients.size() + " users");
 }
 }
 }
 }

 protected void close() {
 if (clientSock == null) {
 log("close when not open");
 return;
 }
 try {
 clientSock.close();
 clientSock = null;
 } catch (IOException e) {
 log("Failure during close to " + clientIP);
 }
 }

 /** Send one message to this user */
 public void send(String sender, String mesg) {
 pw.println(sender + SEP + mesg);
 }

Example 17-15. ChatServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: A Java Chat Server | 499

I’ve used this code with a number of clients connected concurrently, and no difficul-
ties were found.

See Also
The server side of any network mechanism is extremely sensitive to security issues. It
is easy for one misconfigured or poorly written server program to compromise the
security of an entire network! Of the many books on network security, two stand
out: Firewalls and Internet Security by William R. Cheswick, Steven M. Bellovin, and
Aviel D. Rubin (Addison Wesley) and Hacking Exposed by Stuart McClure, Joel
Scambray, and George Kurtz (McGraw-Hill).

This completes my discussion of server-side Java using sockets. Next, I’ll return to
the client side to discuss applets and some useful client-side recipes. Later, in
Chapter 22, I show an alternate technology that can be used to implement both sides

 /** Send a private message */
 protected void psend(String sender, String msg) {
 send("<*" + sender + "*>", msg);
 }

 /** Send one message to all users */
 public void broadcast(String sender, String mesg) {
 System.out.println("Broadcasting " + sender + SEP + mesg);
 for (int i=0; i<clients.size(); i++) {
 ChatHandler sib = (ChatHandler)clients.get(i);
 if (DEBUG)
 System.out.println("Sending to " + sib);
 sib.send(sender, mesg);
 }
 if (DEBUG) System.out.println("Done broadcast");
 }

 protected ChatHandler lookup(String nick) {
 synchronized(clients) {
 for (int i=0; i<clients.size(); i++) {
 ChatHandler cl = (ChatHandler)clients.get(i);
 if (cl.login.equals(nick))
 return cl;
 }
 }
 return null;
 }

 /** Present this ChatHandler as a String */
 public String toString() {
 return "ChatHandler[" + login + "]";
 }
 }
}

Example 17-15. ChatServer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 17: Server-Side Java: Sockets

of the chat program in a more object-oriented manner. Finally, a chat server could
also be implemented using JMS (Java Message Service), a newer API that handles
store-and-forward message processing. This is beyond the scope of this book, but
there’s an example of such a chat server in O’Reilly’s Java Message Service by Richard
Monson-Haefel and David Chappell.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

501

Chapter 18 CHAPTER 18

Network Clients II: Applets
and Web Clients

18.0 Introduction
In Chapter 16, I discussed straightforward client applications that communicate over
a socket. Chapter 17 covered simple server topics. Now we turn our attention to a
variety of other client topics. First let’s look at Java-based web applet client pro-
grams. Applets are, as you probably know, small programs that run inside and under
the control of a web browser. There’s a discussion of Applet versus JApplet and the
Applet methods. Deploying an applet is no different from deploying a web page—
you simply copy it into the web server directory—but you need an HTML page to
invoke it (discussed in Recipe 18.1). We then discuss some additional client-side top-
ics, such as loading a URL, that apply both to applets and to applications. Other
books talk about servlets, which are programs similar to applets but designed to run
inside the process of a web server. Applet deployment requires some considerations;
see Recipe 23.6 for a means of ensuring that a user’s browser has a Java runtime
compatible with your applet. Recipe 23.13 contains information on Java Web Start,
which combines applet-like downloading with full application capabilities.

18.1 Embedding Java in a Web Page

Problem
You need to deploy a Java applet.

Solution
Use an <applet> tag in an HTML page.

Discussion
While this is not the place for a dissertation on the details of HTML, you should at
least know that HTML is a tag-based textual language for writing web pages. The
tags (officially called elements) have short names, such as p for paragraph and a for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 18: Network Clients II: Applets and Web Clients

anchor (hyperlink). Tag names can be written in uppercase or lowercase, with a pref-
erence for lowercase because the emerging standard XHTML* requires lowercase.
Tags are surrounded by angle brackets, < and >. Modifiers, called attributes, go
between the tag name and the close angle brackets. For example, the body of a web
page might be introduced by <body bgcolor="white">, which gives that page the spec-
ified background color. Most tags, including body and p, have a corresponding end
tag, consisting of a forward slash character (/) and the name of the tag. A paragraph,
for example, should begin with <p> and end with </p>.

In days of yore, it was common to simply use <P> between paragraphs, but this mis-
take stems from not understanding the nature of HTML tags as containers. It was
also common to omit the quotation marks around attribute values. You still see old
pages done this way and old books or web pages recommending this. You may even
see a few examples of that in old code of mine!

The most common way to embed a Java applet is using an <applet> tag. Other tags
for applets include <object> and <embed>, which I discuss briefly in Recipe 23.6. The
<applet> tag has three required parameters (code, width, and height) and several
optional ones. Table 18-1 lists these parameters.

You may also wish to pass some parameters in to the applet. Since an applet has no
main method, there is no command-line communication with the applet. Hence, the
applet parameters are included in the HTML page: the <param> tags go between the
<applet> and </applet> tags. The following HTML file demonstrates many of these
parameters:

* XHTML is HTML written as though it were XML; see Chapter 21 for XML information.

Table 18-1. Applet parameters

Parameter Description

code Name of applet class to run

object Name of serialized applet to run

width Width in pixels for applet display

height Height in pixels for applet display

codebase Directory (URL) from which to load class file; needed only if different from place where the HTML
page itself is loaded from

archive List of JAR archives in which to look for applet and resources

alt Alternate text to display if applet can’t be loaded

name Name of this applet instance

align Horizontal alignment

vspace Vertical space around applet, in pixels

hspace Horizontal space around applet, in pixels

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Applet Techniques | 503

<applet
 code="DemoApplet.class" width="400 " height="75"
 codebase="http://www.darwinsys.com/applets/"
 >
 <param name="text" value="Java is fun!">
 <hr / >
 If you were using a Java-enabled browser,
 you would see the graphical results instead of this paragraph.
 <hr />
</applet>

18.2 Applet Techniques

Problem
You need to write an applet.

Solution
Write a class that extends java.applet.Applet or javax.swing.JApplet, and use some
or all of the applet methods. Start with Applet if you want to use plain AWT and be
portable to all browsers; use JApplet if you want Swing capabilities in your applet
(see the See Also section at the end of this recipe).

Discussion
The four Applet “lifecycle” methods that an applet writer can implement are init(),
start(), stop(), and destroy() (see Table 18-2). The applet’s lifecycle is more com-
plex than that of a regular application since the user can make the browser move to a
new page, return to a previous page, reload the current page, etc. What’s a poor
applet to do?

Applets normally use their init() method to initialize their state, the same functional-
ity as a constructor in a nonapplet class. This may seem a bit odd for those used to con-
structors in an OO language. However, it is mandatory for any methods that call
applet-specific methods, such as the all-important getParameter(). Why? In brief,
because the browser first constructs the applet—always with the no-argument con-
structor form, which is much easier for the browser (see Recipe 25.3 for the reasons)—

Table 18-2. Applet methods

Method name Function

init() Initialize the applet (takes the place of a constructor).

start() The page is loaded, or reloaded, or revisited via the Back button...

stop() The user is leaving this page, or the applet is scrolled off-screen...

destroy() The applet is being unloaded.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 18: Network Clients II: Applets and Web Clients

and then call its setStub() method.* The AppletStub is an object provided by the
browser, which provides a getAppletContext() method, which of course returns an
AppletContext object. These objects are both delegates (in the design patterns sense).
The AppletStub object contains the actual implementation of important methods like
getParameter(), getCodeBase(), and getDocumentBase(). The AppletContext object
contains the real implementations of most other applet-specific routines, including
showStatus(), getImage(), and showDocument().

So, an applet’s constructor can’t call getParameter(), getImage(), or showStatus()
because the AppletStub isn’t set until the applet’s constructor returns. About the
most a constructor can do is add GUI elements. Therefore, it is generally preferable
to do all the applet’s initialization in one place, so it might as well be the init()
method, which the browser calls only once for each applet instance. This is why, in
practice, most applets don’t have any constructors: the default (no-argument) con-
structor is the only one ever called.

The start() method is called when the browser has fully loaded the applet and it’s
ready to go. It may be called again when the user moves back onto the page, scrolls
back so the applet is shown again, and so on. This is the normal time for your applet
to start threads (Chapter 24), audio or video (see Chapter 13), or anything else that
takes time. The stop() method is called when the user gets bored and leaves the page.

The least commonly used applet method is destroy(); it is called when the browser
removes your applet instance from memory and allows you to close files, network
connections, etc. After that, it’s all over.

All four methods are public, all return void, and all take no arguments. They are
shown together in Example 18-1.

* It didn’t have to be this way. At the beginning of Java browserdom, they could have said, “Let’s just pass in
the applet stub as an argument when constructing the applet.” But they didn’t “and now it’s too late,” as Dr.
Seuss once said.

Example 18-1. AppletMethods.java

import java.applet.*;
import java.awt.*;
import java.net.*;

/** AppletMethods -- show stop/start and AudioClip methods */

public class AppletMethods extends Applet {
 /** AudioClip object, used to load and play a sound file. */
 AudioClip snd = null;

 /** Initialize the sound file object and the GUI. */
 public void init() {
 System.out.println("In AppletMethods.init()");
 try {
 snd = getAudioClip(new URL(getCodeBase(), "laugh.au"));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Contacting a Server on the Applet Host | 505

See Also
Applets based on Applet and using AWT work on most browsers. Applets based on
JApplet and/or using Swing components need the Java Plug-in (see Recipe 23.6) to
ensure that a compatible runtime is available.

18.3 Contacting a Server on the Applet Host

Problem
You want an applet to contact a socket-based server on the host from which it was
loaded.

 } catch (MalformedURLException e) {
 showStatus(e.toString());
 }
 setSize(200,100); // take the place of a GUI
 }

 /** Called from the Browser when the page is ready to go. */
 public void start() {
 System.out.println("In AppletMethods.start()");
 if (snd != null)
 snd.play(); // loop() to be obnoxious...
 }

 /** Called from the Browser when the page is being vacated. */
 public void stop() {
 System.out.println("In AppletMethods.stop()");
 if (snd != null)
 snd.stop(); // stop play() or loop()
 }

 /** Called from the Browser (when the applet is being un-cached?).
 * Not actually used here, but the println will show when it's called.
 */
 public void destroy() {
 System.out.println("In AppletMethods.destroy()");
 }

 public void paint(Graphics g) {
 g.drawString("Welcome to Java", 50, 50);
 }

 /** An alternate form of getParameter that lets
 * you provide a default value, since this is so common.
 */
 public String getParameter(String p, String def) {
 return getParameter(p)==null?def:getParameter(p);
 }
}

Example 18-1. AppletMethods.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 18: Network Clients II: Applets and Web Clients

Solution
Use the method getCodeBase() to retrieve a URL for the applet host, and call the
URL’s getHost(). Use this to construct a client socket.

Discussion
For very good security reasons, applets are not permitted network access to servers
on hosts other than the one from which the applet was loaded.

To reach a server on the download host, call the applet method getCodeBase(),
which yields a URL for the applet host. Call this URL’s getHost() method to get the
hostname. Finally, use the hostname to open a client socket (see Recipe 16.1). For
example:

URL u = getCodeBase();
String host = u.getHost();
Socket s = new Socket(host , MY_SERVER_PORT);

Of course, in real code you wouldn’t create all those temporary variables:

Socket s = new Socket(getCodeBase().getHost(), MY_SERVER_PORT);

And, of course, you need error handling. Example 18-2 shows an applet that con-
structs a sort of login dialog and passes the results to a socket-based server on the
applet host using exactly this technique. Figure 18-1 shows the screen display.

Example 18-2. SocketApplet.java

/** Initialize the GUI nicely. */
public void init() {
 Label aLabel;

 setLayout(new GridBagLayout());
 int LOGO_COL = 1;
 int LABEL_COL = 2;
 int TEXT_COL = 3;
 int BUTTON_COL = 1;
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.weightx = 100.0; gbc.weighty = 100.0;

 gbc.gridx = LABEL_COL; gbc.gridy = 0;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Name:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 0;
 add(nameTF=new TextField(10), gbc);

 gbc.gridx = LABEL_COL; gbc.gridy = 1;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Password:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 1;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Contacting a Server on the Applet Host | 507

 add(passTF=new TextField(10), gbc);
 passTF.setEchoChar('*');

 gbc.gridx = LABEL_COL; gbc.gridy = 2;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Domain:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 2;
 add(domainTF=new TextField(10), gbc);
 sendButton = new Button("Send data");
 gbc.gridx = BUTTON_COL; gbc.gridy = 3;
 gbc.gridwidth = 3;
 add(sendButton, gbc);

 whence = getCodeBase();

 // Now the action begins...
 sendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 String name = nameTF.getText();
 if (name.length() == 0) {
 showStatus("Name required");
 return;
 }
 String domain = domainTF.getText();
 if (domain.length() == 0) {
 showStatus("Domain required");
 return;
 }
 showStatus("Connecting to host " + whence.getHost() +
 " as " + nameTF.getText());

 try {
 Socket s = new Socket(getCodeBase().getHost(),
 SocketServer.PORT);
 PrintWriter pf = new PrintWriter(s.getOutputStream(), true);
 // send login name
 pf.println(nameTF.getText());
 // passwd
 pf.println(passTF.getText());
 // and domain
 pf.println(domainTF.getText());

 BufferedReader is = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
 String response = is.readLine();
 showStatus(response);
 } catch (IOException e) {
 showStatus("ERROR: " + e.getMessage());
 }
 }
 });
}

Example 18-2. SocketApplet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 18: Network Clients II: Applets and Web Clients

18.4 Making an Applet Show a Document

Problem
You want an applet to transfer control to another web page.

Solution
Use the AppletContext method showDocument().

Discussion
Any applet can request the browser that contains it to show a new web page by pass-
ing the new URL into the showDocument() method. Usually, the browser replaces the
current page with the target page. This, of course, triggers a call to the applet’s stop()
method.

Note that the applet shown in Example 18-3 works correctly only in a full browser;
the AppletViewer does not display HTML pages, so it ignores this method!

Figure 18-1. SocketApplet in action

Example 18-3. ShowDocApplet.java

/** ShowDocApplet: Demonstrate showDocument().
 */
public class ShowDocApplet extends Applet {
 // String targetString = "http://www.darwinsys.com/javacook/secret.html";
 String targetString = "file:///c:/javasrc/network/ShowDocApplet.java";
 /** The URL to go to */
 URL targetURL;

 /** Initialize the Applet */
 public void init() {
 setBackground(Color.gray);
 try {
 targetURL = new URL(targetString);
 } catch (MalformedURLException mfu) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making an Applet Show a Document | 509

Figure 18-2 shows the program in operation.

If the URL is unreachable, the browser notifies the user with a dialog, and the cur-
rent page (including the applet) is left in view.

 throw new IllegalArgumentException(
 "ShowDocApplet got bad URL " + targetString);
 }
 Button b = new Button("View Secret");
 add(b);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getAppletContext().showDocument(targetURL);
 }
 });
 }

 public void stop() {
 System.out.println("Ack! Its been fun being an Applet. Goodbye!");
 }
}

Figure 18-2. ShowDocApplet program

Example 18-3. ShowDocApplet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 18: Network Clients II: Applets and Web Clients

18.5 Making an Applet Run JavaScript

Problem
You want to invoke JavaScript from within a browser applet.

Solution
For browsers that support JavaScript, use the netscape.javascript package.

Discussion
JavaScript is Netscape’s browser client-side scripting language. It can be used on the
client side by Java applets in some circumstances. The Netscape browser must
include the optional support for Java. The package netscape.javascript includes a
class called JSObject, a top-level class analogous to java.lang.Object.

To compile such an applet, you must include the appropriate JAR file in your class-
path at compile time. At runtime, the browser supplies its own version of this file
since it must be present in the browser-provided classpath to be run as trusted code.
The exact name of this JAR file varies. For Netscape 4.x, it is <netscapehome>/java/
classes/java40.jar. Netscape 7 does not include the file in its own path, deferring to
the Java Web Start (see Recipe 23.13) to provide it. In this case, look for the file
netscape.jar in your Java runtime; on Mac OS X, the file is /Library/Java/Home/lib/
netscape.jar.

This technique may not work with browsers such as KDE Konqueror, which use an
external JVM to run applets.

Finally, the applet code in the HTML page must have the mayscript="true" attribute
to grant this particular applet permission to use the JavaScript mechanism.

Still want to give it a try? Example 18-4 shows a code example using JavaScript to
close the entire browser window in which the applet appears—drastic and anti-
social, but you can see whether it works (I’ve tested it on Apple’s Safari browser).

Example 18-4. JScript.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import netscape.javascript.*;

/* An Applet to perform JavaScript directly.
 * The import of netscape.javascript.* requires a JAR file.
 * EXPECT COMPILE ERROR unless you have the Netscape JAR file.
 * This may be e.g., $NETSCAPEHOME/java/classes/java40.jar.
 * The use of JavaScript requires <applet ... mayscript="true">
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making an Applet Run a CGI Script | 511

See Also
O’Reilly’s JavaScript & DHTML Cookbook by Danny Goodman.

18.6 Making an Applet Run a CGI Script

Problem
You want an applet to run a CGI script.

Solution
Just use showDocument() with the correct URL.

Discussion
It doesn’t matter what type of target your URL refers to. It can be an HTML page, a
plain text file, a compressed tar file to be downloaded, a CGI script, servlet, or a
JavaServer Page. In all cases, you simply provide the URL. The Java applet for this
appears in Example 18-5.

public class JScript extends java.applet.Applet {
 JSObject jsObject;

 public void init() {
 jsObject = JSObject.getWindow(this);
 Button b = new Button("CLOSE BROWSER");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 jsObject.eval("window.close()");
 }
 });
 add(b);
 }
}

Example 18-5. TryCGI.java

/**
 * Try running a CGI-BIN script from within Java.
 */
public class TryCGI extends Applet implements ActionListener {
 protected Button goButton;

 public void init() {
 add(goButton = new Button("Go for it!"));
 goButton.addActionListener(this);
 }

Example 18-4. JScript.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 18: Network Clients II: Applets and Web Clients

Since this is an applet, it requires an HTML page to invoke it. I used the HTML
shown here:

<html>
<head><title>Java Applets Can Run CGI's (on some browsers)</title></head>

<body bgcolor="white">
<h1>Java Applets Can Run CGI's (on some browsers)</h1>
<p>Click on the button on this little Applet for p(r)oof!</p>
<applet code="TryCGI" width="100" height="30">
<p>If you can see this, you need to get a Java-powered(tm) Web Browser
before you can watch for real.</p>
</applet>
<hr/>
<p>Use The Source, Luke.</p>
</body>
</html>

18.7 Reading the Contents of a URL

Problem
You want to read the contents of a URL (which can include a CGI script, servlet, etc.).

Solution
Use the URL’s openConnection() or getContent() method. This is not dependent
upon being in an applet.

Discussion
The URL class has several methods that allow you to read. The first and simplest,
openStream(), returns an InputStream that can read the contents directly. The simple

 public void actionPerformed(ActionEvent evt) {
 try {
 URL myNewURL = new URL("http://server/cgi-bin/credit");

 // debug...
 System.out.println("URL = " + myNewURL);

 // "And then a miracle occurs..."
 getAppletContext().showDocument(myNewURL);

 } catch (Exception err) {
 System.err.println("Error! " + err);

 showStatus("Error, look in Java Console for details!");
 }
 }
}

Example 18-5. TryCGI.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

URI, URL, or URN? | 513

TextBrowser program shown here calls openStream() and uses this to construct a
BufferedReader to read text lines from what is presumed to be a web server. I also
demonstrate it reading a local file to show that almost any valid URL can be used:

$ java TextBrowser http://localhost/
*** Loading http://localhost/... ***
<html>
<head>
 <title>Ian Darwin's Webserver On The Road</title>
 <link rel="stylesheet" type="text/css" href="/stylesheet.css" title="Style"> </
head>
<body bgcolor="#c0d0e0">
<h1>Ian Darwin's Webserver On The Road</h1>
... (rest of body omitted) ...

$ java TextBrowser file:///etc/group
*** Loading file:///etc/group... ***
wheel:*:0:root
daemon:*:1:daemon

The next method, openConnection(), returns a URLConnection object. This allows you
more flexibility, providing methods such as getHeaderField(), getLastModified(),
and other detailed methods. The third URL method, getContent(), is more general.
It returns an object that might be an InputStream, or an object containing the data.
Use instanceof to determine which of several types was returned.

See Also
O’Reilly’s Java Network Programming by Elliotte Rusty Harold discusses this topic in
considerable detail.

18.8 URI, URL, or URN?

Problem
Having heard these terms, you want to know the difference between a URI, URL,
and URN.

Solution
Read on. Or see the Javadoc for java.net.uri.

Discussion
A URL is the traditional name for a network address consisting of a scheme (like
“http:”) and an address (site name) and resource or pathname. But there are three
distinct terms in all:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 18: Network Clients II: Applets and Web Clients

URI
Uniform Resource Identifier

URL
Uniform Resource Location

URN
Uniform Resource Name

Prior to 1.4, there was only a URL class; creating this class was primarily for pur-
poses of reading from it. In 1.4, the URI class was introduced, primarily for manipu-
lating resource identifiers, and a discussion near the end of the Java documentation
for the new class explains the relationship among URI, URL, and URN. URIs form
the set of all identifiers: URLs and URNs are subsets.

URIs are the most general; a URI is parsed for basic syntax without regard to the
scheme, if any, that it specifies, and it need not refer to a particular server. A URL
includes a hostname, scheme, and other components; the string is parsed according
to rules for its scheme. When you construct a URL, an InputStream is created auto-
matically. URNs name resources but do not explain how to locate them; typical
examples of URNs that you will have seen include mailto: and news: references.

The main operations provided by the URI class are normalization (removing extrane-
ous path segments including “..”) and relativization (this should be called “making
relative,” but somebody wanted a single word to make a method name). A URI object
does not have any methods for opening the URI; for that, you would normally use a
string representation of the URI to construct a URL object, like so:

URL x = new URL(theURI.toString());

The program in Example 18-6 shows examples of normalization, making relative,
and constructing a URL from a URI.

Example 18-6. URIDemo.java

public class URIDemo {
 public static void main(String[] args)
 throws URISyntaxException, MalformedURLException {

 URI u = new URI("http://www.darwinsys.com/java/../openbsd/../index.jsp");
 System.out.println("Raw: " + u);
 URI normalized = u.normalize();
 System.out.println("Normalized: " + normalized);
 final URI BASE = new URI("http://www.darwinsys.com");
 System.out.println("Relativized to " + BASE + ": " + BASE.relativize(u));

 // A URL is a type of URI
 URL url = new URL(normalized.toString());
 System.out.println("URL: " + url);
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting HTML from a URL | 515

18.9 Extracting HTML from a URL

Problem
You need to extract all the HTML tags from a URL.

Solution
Use this simple HTML tag extractor.

Discussion
A simple HTML extractor can be made by reading a character at a time and looking
for < and > tag delimiters. This is reasonably efficient if a BufferedReader is used.

The ReadTag program shown in Example 18-7 implements this; given a URL, it opens
the file (similar to TextBrowser in Recipe 18.7) and extracts the HTML tags. Each tag
is printed to the standard output.

Example 18-7. ReadTag.java

/** A simple but reusable HTML tag extractor.
 */
public class ReadTag {
 /** The URL that this ReadTag object is reading */
 protected URL myURL = null;
 /** The Reader for this object */
 protected BufferedReader inrdr = null;

 /* Simple main showing one way of using the ReadTag class. */
 public static void main(String[] args) throws MalformedURLException, IOException {
 if (args.length == 0) {
 System.err.println("Usage: ReadTag URL [...]");
 return;
 }

 for (int i=0; i<args.length; i++) {
 ReadTag rt = new ReadTag(args[0]);
 String tag;
 while ((tag = rt.nextTag()) != null) {
 System.out.println(tag);
 }
 rt.close();
 }
 }

 /** Construct a ReadTag given a URL String */
 public ReadTag(String theURLString) throws
 IOException, MalformedURLException {

 this(new URL(theURLString));
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 18: Network Clients II: Applets and Web Clients

When I ran it on one system (apparently part-way through converting to modern
lowercase HTML tags), I got the following output:

darian$ java ReadTag http://localhost/
<html>
<head>
<title>
</title>
</head>
<FRAMESET BORDER="0" ROWS="110, *" FRAMESPACING="0">
<FRAME NAME="header" SRC="header.html" SCROLLING="NO" MARGINHEIGHT="0"
 FRAMEBORDER="0">

 /** Construct a ReadTag given a URL */
 public ReadTag(URL theURL) throws IOException {
 myURL = theURL;
 // Open the URL for reading
 inrdr = new BufferedReader(new InputStreamReader(myURL.openStream()));
 }

 /** Read the next tag. */
 public String nextTag() throws IOException {
 int i;
 while ((i = inrdr.read()) != -1) {
 char thisChar = (char)i;
 if (thisChar == '<') {
 String tag = readTag();
 return tag;
 }
 }
 return null;
 }

 public void close() throws IOException {
 inrdr.close();
 }

 /** Read one tag. Adapted from code by Elliotte Rusty Harold */
 protected String readTag() throws IOException {
 StringBuffer theTag = new StringBuffer("<");
 int i = '<';

 while (i != '>' && (i = inrdr.read()) != -1) {
 theTag.append((char)i);
 }
 return theTag.toString();
 }

 /* Return a String representation of this object */
 public String toString() {
 return "ReadTag[" + myURL.toString() + "]";
 }
}

Example 18-7. ReadTag.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting URLs from a File | 517

<FRAMESET COLS="130, *" FRAMESPACING="0">
<FRAME NAME="menu" SRC="menu.html" SCROLLING="NO" MARGINHEIGHT="0" FRAMEBORDER="0">
<FRAME NAME="main" SRC="main.html" MARGINHEIGHT="15" MARGINWIDTH="15"
FRAMEBORDER="0">
</FRAMESET>
</FRAMESET>
</html>
darian$

18.10 Extracting URLs from a File

Problem
You need to extract just the URLs from a file.

Solution
Use ReadTag from Recipe 18.9 and just look for tags that might contain URLs.

Discussion
The program in Example 18-8 uses ReadTag from the previous recipe and checks each
tag to see if it is a “wanted tag” defined in the array wantedTags. These include A
(anchor), IMG (image), and APPLET tags. If it is determined to be a wanted tag, the
URL is extracted from the tag and printed.

Example 18-8. GetURLs.java

public class GetURLs {
 /** The tag reader */
 ReadTag reader;

 public GetURLs(URL theURL) throws IOException {
 reader = new ReadTag(theURL);
 }

 public GetURLs(String theURL) throws MalformedURLException, IOException {
 reader = new ReadTag(theURL);
 }

 /* The tags we want to look at */
 public final static String[] wantTags = {
 "<a ", "<A ",
 "<applet ", "<APPLET ",
 "<img ", "<IMG ",
 "<frame ", "<FRAME ",
 };

 public ArrayList getURLs() throws IOException {
 ArrayList al = new ArrayList();
 String tag;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 18: Network Clients II: Applets and Web Clients

The GetURLs program prints the URLs contained in a given web page:

darian$ java GetURLs http://daroad

darian$

The LinkChecker program in Recipe 18.13 extracts the HREF or SRC attributes and
validates them.

 while ((tag = reader.nextTag()) != null) {
 for (int i=0; i<wantTags.length; i++) {
 if (tag.startsWith(wantTags[i])) {
 al.add(tag);
 continue; // optimization
 }
 }
 }
 return al;
 }

 public void close() throws IOException {
 if (reader != null)
 reader.close();
 }
 public static void main(String[] argv) throws
 MalformedURLException, IOException {
 String theURL = argv.length == 0 ?
 "http://localhost/" : argv[0];
 GetURLs gu = new GetURLs(theURL);
 ArrayList urls = gu.getURLs();
 Iterator urlIterator = urls.iterator();
 while (urlIterator.hasNext()) {
 System.out.println(urlIterator.next());
 }
 }
}

Example 18-8. GetURLs.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MkIndex | 519

18.11 Converting a Filename to a URL

Problem
You require a URL, but you have a local file.

Solution
Use getResource() or File.toURL().

Discussion
Many operations require a URL, but it would be easier to refer to a file on the local
filesystem or disk. For these, the convenience method getResource() in the class
java.lang.Class can be used. This takes a filename and returns a URL:

public class GetResource {
 public static void main(String[] argv) {
 Class c = GetResource.class;
 java.net.URL u = c.getResource("GetResource.java");
 System.out.println(u);
 }
}

When I ran this code on my Windows system, it printed:

file:/C:/javasrc/netweb/GetResource.java

JDK 1.2 also introduced a toURL() method into the File class (Recipe 11.1). Unlike
getResource(), this method can throw a MalformedURLException. This makes sense,
since a File object can be constructed with arbitrary nonsense in the filename. So the
previous code can be rewritten as:

public class FileToURL
{
 public static void main(String[] argv) throws MalformedURLException {
 java.net.URL u = new File("GetResource.java").toURL();
 System.out.println(u);
 }
}

Both programs print essentially the same result:

> java FileToURL
file:/usr/home/ian/javasrc/netweb/GetResource.java
> java GetResource
file:/usr/home/ian/javasrc/netweb/GetResource.java

18.12 Program: MkIndex
This little program has saved me a great deal of time over the years. It reads a direc-
tory containing a large number of files, harking back from a time when I kept all my
demonstration Java programs in a fairly flat directory structure. MkIndex, shown in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 18: Network Clients II: Applets and Web Clients

Example 18-9, produces a better-formatted listing than the default directory that web
servers generate. For one thing, it includes an alphabet navigator that lets you jump
directly to the section of files whose names begin with a certain letter, saving a lot of
scrolling time or iterations with the browser’s find menu. This program uses a File
object (see Recipe 11.1) to list the files and another to decide which are files and
which are directories. It also uses Collections.sort (see Recipe 7.8) to sort the names
alphabetically before generating the output. It writes its output to the file index.html
in the current directory, even if an alternate directory argument is given. This is the
default filename for most standard web servers; if your web server uses something
different, of course, you can rename the file.

Example 18-9. MkIndex.java

import java.io.*;
import java.util.*;
import com.darwinsys.io.FileIO;

/** MkIndex -- make a static index.html for a Java Source directory
 * <p>
 * Started life as an awk script that used "ls" to get
 * the list of files, grep out .class and javadoc output files, |sort.
 * Now it's all in Java (including the ls-ing and the sorting).
 *
 * @author Ian F. Darwin, http://www.darwinsys.com/
 * @Version $Id: ch18,v 1.5 2004/05/04 20:13:14 ian Exp $
 */
public class MkIndex {

 class NameMap implements Comparable {
 String name, nameLC;
 String path;
 public NameMap(String nm, String p) {
 name = nm;
 nameLC = name.toLowerCase();
 path = p;
 }
 public int compareTo(Object other) {
 return nameLC.compareTo(((NameMap)other).nameLC);
 }
 }

 /** The output file that we create */
 public static final String OUTPUTFILE = "index-byname.html";
 /** The string for TITLE and H1 */
 public static final String TITLE =
 "Ian Darwin's Java Cookbook: Source Code: By Name";
 /** The main output stream */
 PrintWriter out;
 /** The background color for the page */
 public static final String BGCOLOR="#33ee33";
 /** The File object, for directory listing. */
 File dirFile;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MkIndex | 521

 /** Make an index */
 public static void main(String[] args) throws IOException {
 MkIndex mi = new MkIndex();
 String inDir = args.length > 0 ? args[0] : ".";
 mi.open(inDir, OUTPUTFILE); // open files
 mi.begin(); // print HTML header
 System.out.println("** Start Pass One **");
 for (int i=0; i<args.length; i++)
 mi.process(new File(args[i])); // "We do ALL the work..."
 mi.writeNav(); // Write navigator
 mi.writeList(); // Write huge list of files
 mi.end(); // print trailer.
 mi.close(); // close files
 }

 void open(String dir, String outFile) {
 dirFile = new File(dir);
 try {
 out = new PrintWriter(new FileWriter(outFile));
 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** Write the HTML headers */
 void begin() throws IOException {
 println("<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN'");
 println(" 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'");
 println(">");
 println();
 println("<html>");

 println("<head>");
 println(" <meta name='Generator' content='Java MkIndex'/>");
 println(" <title>" + TITLE + "</title>");
 println("</head>");
 println();
 println("<body bgcolor=\"" + BGCOLOR + "\">");
 println("<h1>" + TITLE + "</h1>");
 if (new File("about.html").exists()) {
 FileIO.copyFile("about.html", out, false);
 } else {
 println("<p>The following files are online.");
 println("Some of these files are still experimental!</p>");
 println("<p>Most of these files are Java source code.");
 println("If you load an HTML file from here, the applets will not run!");
 println("The HTML files must be saved to disk and the applets compiled,");
 println("before you can run them!</p>");
 }
 println("<p>All files are Copyright (c): All rights reserved.");
 println("See the accompanying Legal Notice.");
 println("May be used by readers of my Java Cookbook for educational purposes,");
 println("and for commercial use if certain conditions are met.");

Example 18-9. MkIndex.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 18: Network Clients II: Applets and Web Clients

 println("</p>");
 println("<hr />");
 }

 /** Array of letters that exist. Should
 * fold case here so don't get f and F as distinct entries!
 * This only works for ASCII characters (8-bit chars).
 */
 boolean[] exists = new boolean[255];

 /** List for temporary storage, and sorting */
 ArrayList list = new ArrayList();

 /** Do the bulk of the work */
 void process(File file) throws IOException {

 String name = file.getName();
 if (name.startsWith("index") ||
 name.endsWith(".class") ||
 name.endsWith(".bak")) {
 System.err.println("Ignoring " + file.getPath());
 return;
 } else if (name.equals("CVS")) { // Ignore CVS subdirectories
 return; // don't mention it
 } else if (name.charAt(0) == '.') { // UNIX dot-file
 return;
 }

 if (file.isDirectory()) {
 File[] files = file.listFiles();
 for (int i=0; i<files.length; i++) {
 String fn = files[i].getName();
 process(new File(file, fn));
 }
 } else {
 // file to be processed.
 list.add(new NameMap(name, file.getPath()));
 exists[name.charAt(0)] = true;
 }
 }

 void writeNav() throws IOException {

 System.out.println("Writing the Alphabet Navigator...");
 for (char c = 'A'; c<='Z'; c++)
 if (exists[c])
 print("" + c + " ");
 }

 void writeList() throws IOException {

Example 18-9. MkIndex.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MkIndex | 523

 // ... the beginning of the HTML Unordered List...
 println("");

 System.out.println("Sorting the list...");
 Collections.sort(list);

 System.out.println("Start PASS TWO -- from List to " +
 OUTPUTFILE + "...");
 Iterator it = list.iterator();
 while (it.hasNext()) {
 NameMap map = (NameMap)it.next();
 String fn = map.name;
 String path = map.path;
 // Need to make a link into this directory.
 // IF there is a descr.txt file, use it for the text
 // of the link, otherwise, use the directory name.
 // But, if there is an index.html or index.html file,
 // make the link to that file, else to the directory itself.
 if (fn.endsWith("/")) { // directory
 String descr = null;
 if (new File(fn + "descr.txt").exists()) {
 descr = FileIO.readLine(fn + "descr.txt");
 };
 if (new File(fn + "index.html").exists())
 mkDirLink(fn+"index.html", descr!=null?descr:fn);
 else if (new File(fn + "index.htm").exists())
 mkDirLink(fn+"index.htm", descr!=null?descr:fn);
 else
 mkLink(fn, descr!=null?descr:fn + " -- Directory");
 } else // file
 mkLink(fn, path);
 }
 System.out.println("*** process - ALL DONE***");
 }

 /** Keep track of each letter for #links */
 boolean done[] = new boolean[255];

 void mkLink(String name, String path) {
 print("");
 char c = name.charAt(0);
 if (!done[c]) {
 print("");
 done[c] = true;
 }
 println("" + name + "");
 }

 void mkDirLink(String index, String dir) {
 // TODO Open the index and look for TITLE lines!
 println("" + dir + "");
 }

Example 18-9. MkIndex.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 18: Network Clients II: Applets and Web Clients

18.13 Program: LinkChecker
One of the hard parts of maintaining a large web site is ensuring that all the hyper-
text links, images, applets, and so forth remain valid as the site grows and changes.
It’s easy to make a change somewhere that breaks a link somewhere else, exposing
your users to those “Doh!”-producing 404 errors. What’s needed is a program to
automate checking the links. This turns out to be surprisingly complex due to the
variety of link types. But we can certainly make a start.

 /** Write the trailers and a signature */
 void end() {
 System.out.println("Finishing the HTML");
 println("");
 flush();
 println("<p>This file generated by ");
 print("MkIndex, a Java program, at ");
 println(Calendar.getInstance().getTime().toString());
 println("</p>");
 println("</body>");
 println("</html>");
 }

 /** Close open files */
 void close() {
 System.out.println("Closing output files...");
 if (out != null)
 out.close();
 }

 /** Convenience routine for out.print */
 void print(String s) {
 out.print(s);
 }

 /** Convenience routine for out.println */
 void println(String s) {
 out.println(s);
 }

 /** Convenience routine for out.println */
 void println() {
 out.println();
 }

 /** Convenience for out.flush(); */
 void flush() {
 out.flush();
 }
}

Example 18-9. MkIndex.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: LinkChecker | 525

Since we already created a program that reads a web page and extracts the URL-
containing tags (Recipe 18.10), we can use that here. The basic approach of our new
LinkChecker program is this: given a starting URL, create a GetURLs object for it. If
that succeeds, read the list of URLs and go from there. This program has the addi-
tional functionality of displaying the structure of the site using simple indentation in
a graphical window, as shown in Figure 18-3.

So using the GetURLs class from Recipe 18.10, the rest is largely a matter of elabora-
tion. A lot of this code has to do with the GUI (see Chapter 14). The code uses recur-
sion: the routine checkOut() calls itself each time a new page or directory is started.

Example 18-10 shows the code for the LinkChecker program.

Figure 18-3. LinkChecker in action

Example 18-10. LinkChecker.java

/** A simple HTML Link Checker.
 * Need a Properties file to set depth, URLs to check. etc.
 * Responses not adequate; need to check at least for 404-type errors!
 * When all that is (said and) done, display in a Tree instead of a TextArea.
 * Then use Color coding to indicate errors.
 */
public class LinkChecker extends Frame implements Runnable {
 protected Thread t = null;
 /** The "global" activation flag: set true to halt. */
 boolean done = false;
 protected Panel p;
 /** The textfield for the starting URL.
 * Should have a Properties file and a JComboBox instead.
 */
 protected TextField textFldURL;
 protected Button checkButton;
 protected Button killButton;
 protected TextArea textWindow;
 protected int indent = 0;
 protected Map hash = new HashMap();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 18: Network Clients II: Applets and Web Clients

 public static void main(String[] args) {
 LinkChecker lc = new LinkChecker();
 lc.setSize(500, 400);
 lc.setLocation(150, 150);
 lc.setVisible(true);
 if (args.length == 0)
 return;
 lc.textFldURL.setText(args[0]);
 }

 public void startChecking() {
 done = false;
 checkButton.setEnabled(false);
 killButton.setEnabled(true);
 textWindow.setText("");
 doCheck();
 }

 public void stopChecking() {
 done = true;
 checkButton.setEnabled(true);
 killButton.setEnabled(false);
 }

 /** Construct a LinkChecker */
 public LinkChecker() {
 super("LinkChecker");
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 setLayout(new BorderLayout());
 p = new Panel();
 p.setLayout(new FlowLayout());
 p.add(new Label("URL"));
 p.add(textFldURL = new TextField(40));
 p.add(checkButton = new Button("Check URL"));
 // Make a single action listener for both the text field (when
 // you hit return) and the explicit "Check URL" button.
 ActionListener starter = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 startChecking();
 }
 };
 textFldURL.addActionListener(starter);
 checkButton.addActionListener(starter);
 p.add(killButton = new Button("Stop"));
 killButton.setEnabled(false); // until startChecking is called.
 killButton.addActionListener(new ActionListener() {

Example 18-10. LinkChecker.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: LinkChecker | 527

 public void actionPerformed(ActionEvent e) {
 if (t == null || !t.isAlive())
 return;
 stopChecking();
 }
 });
 // Now lay out the main GUI - URL & buttons on top, text larger
 add("North", p);
 textWindow = new TextArea(80, 40);
 add("Center", new JScrollPane(textWindow));
 }

 public void doCheck() {
 if (t!=null && t.isAlive())
 return;
 t = new Thread(this);
 t.start();
 }

 public synchronized void run() {
 textWindow.setText("");
 checkOut(textFldURL.getText());
 textWindow.append("-- All done --");
 }

 /** Start checking, given a URL by name.
 * Calls checkLink to check each link.
 */
 public void checkOut(String rootURLString) {
 URL rootURL = null;
 GetURLs urlGetter = null;

 if (done)
 return;
 if (rootURLString == null) {
 textWindow.append("checkOut(null) isn't very useful");
 return;
 }
 if (hash.get(rootURLString) != null) {
 return; // already visited
 }
 hash.put(rootURLString, Boolean.TRUE);
 // Open the root URL for reading
 try {
 rootURL = new URL(rootURLString);
 urlGetter = new GetURLs(rootURL);
 } catch (MalformedURLException e) {
 textWindow.append("Can't parse " + rootURLString + "\n");
 return;
 } catch (FileNotFoundException e) {
 textWindow.append("Can't open file " + rootURLString + "\n");
 return;

Example 18-10. LinkChecker.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 18: Network Clients II: Applets and Web Clients

 } catch (IOException e) {
 textWindow.append("openStream " + rootURLString + " " + e + "\n");
 return;
 }

 // If we're still here, the root URL given is OK.
 // Next we make up a "directory" URL from it.
 String rootURLdirString;
 if (rootURLString.endsWith("/") ||
 rootURLString.endsWith("\\"))
 rootURLdirString = rootURLString;
 else {
 rootURLdirString = rootURLString.substring(0,
 rootURLString.lastIndexOf('/')); // TODO might be \
 }

 try {
 ArrayList urlTags = urlGetter.getURLs();
 Iterator urlIterator = urlTags.iterator();
 while (urlIterator.hasNext()) {
 if (done)
 return;
 String tag = (String)urlIterator.next();
 System.out.println(tag);

 String href = extractHREF(tag);

 for (int j=0; j<indent; j++)
 textWindow.append("\t");
 textWindow.append(href + " -- ");

 // Can't really validate these!
 if (href.startsWith("mailto:")) {
 textWindow.append(href + " -- not checking\n");
 continue;
 }

 if (href.startsWith("..") || href.startsWith("#")) {
 textWindow.append(href + " -- not checking\n");
 // nothing doing!
 continue;
 }

 URL hrefURL = new URL(rootURL, href);

 // TRY THE URL.
 // (don't combine previous textWindow.append with this one,
 // since this one can throw an exception)
 textWindow.append(checkLink(hrefURL));

 // There should be an option to control whether to
 // "try the url" first and then see if off-site, or
 // vice versa, for the case when checking a site you're

Example 18-10. LinkChecker.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: LinkChecker | 529

 // working on on your notebook on a train in the Rockies
 // with no web access available.

 // Now see if the URL is off-site.
 if (!hrefURL.getHost().equals(rootURL.getHost())) {
 textWindow.append("-- OFFSITE -- not following");
 textWindow.append("\n");
 continue;
 }
 textWindow.append("\n");

 // If HTML, check it recursively. No point checking
 // PHP, CGI, JSP, etc., since these usually need forms input.
 // If a directory, assume HTML or something under it will work.
 if (href.endsWith(".htm") ||
 href.endsWith(".html") ||
 href.endsWith("/")) {
 ++indent;
 if (href.indexOf(':') != -1)
 checkOut(href); // RECURSE
 else {
 String newRef =
 rootURLdirString + '/' + href;
 checkOut(newRef); // RECURSE
 }
 --indent;
 }
 }
 urlGetter.close();
 } catch (IOException e) {
 System.err.println("Error " + ":(" + e +")");
 }
 }

 /** Check one link, given its DocumentBase and the tag */
 public String checkLink(URL linkURL) {

 try {
 // Open it; if the open fails we'll likely throw an exception
 URLConnection luf = linkURL.openConnection();
 if (linkURL.getProtocol().equals("http")) {
 HttpURLConnection huf = (HttpURLConnection)luf;
 String s = huf.getResponseCode() + " " + huf.getResponseMessage();
 if (huf.getResponseCode() == -1)
 return "Server error: bad HTTP response";
 return s;
 } else if (linkURL.getProtocol().equals("file")) {
 InputStream is = luf.getInputStream();
 is.close();
 // If that didn't throw an exception, the file is probably OK
 return "(File)";
 } else
 return "(non-HTTP)";

Example 18-10. LinkChecker.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 18: Network Clients II: Applets and Web Clients

Downloading an Entire Web Site
It would also be useful to have a program that reads the entire contents of a web site
and saves it on your local hard disk. Sounds wasteful, but disk space is quite inex-
pensive nowadays, and this would allow you to peruse a web site when not con-
nected to the Internet. Of course much of the dynamic content (Servlets, CGI scripts)
would no longer be dynamic in pages that you downloaded, but at least you could
navigate around the text and view the images. The LinkChecker program contains all
the seeds of such a program: you need only to download the contents of each non-
dynamic URL (see the test for HTML and directories near the end of routine
checkOut() and the code in Recipe 18.7), create the requisite directories (Recipe 11.9),
and create and write to a file on disk (see Chapter 10). This final step is left as an
exercise for the reader. Sites that use absolute references to their own pages would
need to be normalized and relativized (see Recipe 18.8) during the download process.

 }
 catch (SocketException e) {
 return "DEAD: " + e.toString();
 }
 catch (IOException e) {
 return "DEAD";
 }
 }

 /** Extract the URL from <sometag attrs HREF="http://foo/bar" attrs ...>
 * We presume that the HREF is correctly quoted!!!!!
 * TODO: Handle Applets.
 */
 public String extractHREF(String tag) throws MalformedURLException {
 String caseTag = tag.toLowerCase(), attrib;
 int p1, p2, p3, p4;

 if (caseTag.startsWith("<a "))
 attrib = "href"; // A
 else
 attrib = "src"; // image, frame
 p1 = caseTag.indexOf(attrib);
 if (p1 < 0) {
 throw new MalformedURLException("Can't find " + attrib + " in " + tag);
 }
 p2 = tag.indexOf ("=", p1);
 p3 = tag.indexOf("\"", p2); // TODO should also handle single-quotes here!
 p4 = tag.indexOf("\"", p3+1);
 if (p3 < 0 || p4 < 0) {
 throw new MalformedURLException("Invalid " + attrib + " in " + tag);
 }
 String href = tag.substring(p3+1, p4);
 return href;
 }
}

Example 18-10. LinkChecker.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

531

Chapter 19 CHAPTER 19

Java and Electronic Mail

19.0 Introduction
Sending and receiving email from a program is easy with Java. If you are writing an
applet, you can simply trick the browser into composing and sending it for you.
Otherwise, you can use the JavaMail Extension (package javax.mail) to both send
and read mail. JavaMail provides three general categories of classes: Messages,
Transports, and Stores. A Message, of course, represents one email message. A
Transport is a way of sending a Message from your application into the network or
Internet. A Store represents stored email messages and can be used to retrieve them
as Message objects. That is, a Store is the inverse of a Transport, or, looked at another
way, a Transport is for sending email and a Store is for reading it. One other class,
Session, is used to obtain references to the appropriate Store and/or Transport
objects that you need to use.

Being an extension, the JavaMail package must be downloaded separately from Sun’s
web site and is not part of the core API. It’s worth it, though. For the cost of a few
minutes’ downloading time, you get the ability to send and receive electronic mail
over a variety of network protocols. JavaMail is also included in the Java 2 Enter-
prise Edition (J2EE), so if you have J2EE you do not need to download JavaMail.

Finally, as you might have guessed from Chapter 16, it’s not that big a stretch to
write code that contacts an SMTP server yourself and pretends to be a mail program.
Hey, why pretend? You really have a mail program at that point!

19.1 Sending Email: Browser Version

Problem
You want an applet to permit the user to compose and send email.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 19: Java and Electronic Mail

Solution
Use a mailto: URL, but hide it in some Java code.

Discussion
Since most web browsers are now configured with either built-in or linked-in email
clients, you can use the mailto: URL as a poor-person’s email composer to have users
contact you. Many people prefer this to a fill-in-the-blank “mail” form connected to
a CGI script or servlet since they can use a specialized tool and save their own copy
of the mail either in their log file or by CC’ing their own account. While you could
use a mailto: URL directly in HTML, experience suggests that a species of parasite
called a spam perpetrator will attach itself permanently to your mailbox if you do.

<H1>Test</H1> <P>Here is how to <A HREF="mailto:spam-magnet@darwinsys.
com?subject=Testing Mailto URL&cc=dilbert@office.comics">contact us

My approach is to hide the mailto: URL inside a Java applet, where spam perps are
less likely to notice it. The applet uses showDocument() to activate the mailto: URL:

String theURL = "mailto:" + username;
URL targetURL = new URL(theURL);
getAppletContext.showDocument(targetURL);

Further, I break the email address into two parts and provide the @ directly, so it
won’t be seen even if the spam-spider is clever enough to look into the param parts of
the applet tag. Since I know you won’t actually deploy this code without changing
Target1 and Target2—the param tags for the mail receiver’s email name and host
domain—you’re fairly safe from spam with this. Example 19-1 is the Java applet
class.

Example 19-1. MailtoButton.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

/**
 * MailtoButton -- look like a mailto, but not visible to spiders.
 */
public class MailtoButton extends Applet {
 /** The label that is to appear in the button */
 protected String label = null;
 /** The width and height */
 protected int width, height;
 /** The string form of the URL to jump to */
 protected String targetName, targetHost;
 /** The URL to jump to when the button is pushed. */
 protected URL targetURL;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending Email: Browser Version | 533

 /** The name of the font */
 protected String fontName;
 protected String DEFAULTFONTNAME = "helvetica";
 /** The font */
 protected Font theFont;
 /** The size of the font */
 protected int fontSize = 18;
 /** The HTML PARAM for the user account -- keep it short */
 private String TARGET1 = "U"; // for User
 /** The HTML PARAM for the hostname -- keep it short */
 private String TARGET2 = "H"; // for Host
 // Dummy
 private String BOGON1 = "username"; // happy strings-ing, spam perps
 private String BOGON2 = "hostname"; // ditto.
 /** The string for the Subject line, if any */
 private String subject;

 /** Called from the browser to set up. We want to throw various
 * kinds of exceptions but the API predefines that we don't, so we
 * limit ourselves to the ubiquitous IllegalArgumentException.
 */
 public void init() {
 // System.out.println("In LinkButton::init");
 try {
 if ((targetName = getParameter(TARGET1)) == null)
 throw new IllegalArgumentException(
 "TARGET parameter REQUIRED");
 if ((targetHost = getParameter(TARGET2)) == null)
 throw new IllegalArgumentException(
 "TARGET parameter REQUIRED");

 String theURL = "mailto:" + targetName + "@" + targetHost;

 subject = getParameter("subject");
 if (subject != null)
 theURL += "?subject=" + subject;

 targetURL = new URL(theURL);

 } catch (MalformedURLException rsi) {
 throw new IllegalArgumentException("MalformedURLException " +
 rsi.getMessage());
 }

 label = getParameter("label"); // i.e., "Send feedback"
 if (label == null)
 throw new IllegalArgumentException("LABEL is REQUIRED");

 // Now handle font stuff.
 fontName = getParameter("font");
 if (fontName == null)
 fontName = DEFAULTFONTNAME;

Example 19-1. MailtoButton.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 19: Java and Electronic Mail

Example 19-2 shows the program in a simple HTML page to show you the syntax of
using it.

 String s;
 if ((s = getParameter("fontsize")) != null)
 fontSize = Integer.parseInt(s);
 if (fontName != null || fontSize != 0) {
 System.out.println("Name " + fontName + ", size " + fontSize);
 theFont = new Font(fontName, Font.BOLD, fontSize);
 }

 Button b = new Button(label);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (targetURL != null) {
 // showStatus("Going to " + target);
 getAppletContext().showDocument(targetURL);
 }
 }
 });
 if (theFont != null)
 b.setFont(theFont);
 add(b);
 }

 /** Give Parameter info to the AppletViewer, just for those
 * writing HTML without hardcopy documentation :-)
 */
 public String[][] getParameterInfo() {
 String info[][] = {
 { "label", "string", "Text to display" },
 { "fontname", "name", "Font to display it in" },
 { "fontsize", "10-30?", "Size to display it at" },

 // WARNING - these intentionally lie, to mislead spammers who
 // are incautious enough to download and run (or strings) the
 // .class file for this Applet.

 { "username", "email-account",
 "Where do you want your mail to go today? Part 1" },
 { "hostname", "host.domain",
 "Where do you want your mail to go today? Part 2" },
 { "subject", "subject line",
 "What your Subject: field will be." },
 };
 return info;
 }
}

Example 19-1. MailtoButton.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending Email: For Real | 535

Example 19-2 requires JavaMail API Version 1.2 or later due to a limi-
tation in earlier versions.

Of course, not everybody uses a full-featured browser, and the light version doesn’t
include the email composer. Therefore, the page features a traditional CGI-based
form for the benefit of those poor souls in need of a Java-based browser. Figure 19-1
is a screenshot in Netscape 4, showing the Compose window resulting from pressing
the Feedback button.

The CGI form is a workaround, so it’s better to provide a full-blown mail composer.

19.2 Sending Email: For Real

Problem
You need to send email, and the browser trick in Recipe 19.1 won’t cut it.

Example 19-2. MailtoButton.htm

<HTML><HEAD>
<TITLE>Darwin Open Systems: Feedback Page</TITLE></HEAD>
<BODY BGCOLOR="White">
<H1>Darwin Open Systems: Feedback Page</H1>
<P>So, please, send us your feedback!</P>
<APPLET CODE=MailtoButton WIDTH=200 HEIGHT=40>
 <PARAM NAME="H" VALUE="www.darwinsys.com">
 <PARAM NAME="U" VALUE="wile_e_coyote">
 <PARAM NAME="subject" VALUE="Acme Widgets Feedback">
 <PARAM NAME="label" VALUE="Send Feedback by Mail">
 <PARAM NAME="font" VALUE="Helvetica">
 <PARAM NAME="fontsize" VALUE="16">
 <P>Your browser doesn't recognize Java Applets.
 Please use the non-Java CGI-based feedback form.</P>
</APPLET>
<P>You should get an acknowledgement by email shortly. Thank you
for your comments!</P>
<HR>
<P>Here is a traditional "CGI"-style form to let you to send feedback
if you aren't running Java or if your browser doesn't support
email composition.</P>
<FORM METHOD=POST ACTION="http://www.darwinsys.com/bin/feedback.cgi">
 <TEXTAREA NAME=message ROWS=5 COLS=60></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Send Feedback"></INPUT>
</FORM>
<P>Thank you for your comments.</P>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 19: Java and Electronic Mail

Solution
Provide a real email client.

Discussion
A real email client allows the user considerably more control. Of course, it also
requires more work. In this recipe, I’ll build a simple version of a mail sender, relying
upon the JavaMail standard extension in package javax.mail and javax.mail.
internet (the latter contains classes that are specific to Internet email protocols).
This first example shows the steps of sending mail over SMTP, the standard Internet
mail protocol. The steps are listed in the sidebar.

As usual in Java, you must catch certain exceptions. This API requires that you catch
the MessagingException, which indicates some failure of the transmission. Class
Sender is shown in Example 19-3.

Figure 19-1. MailtoButton

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending Email: For Real | 537

Ian’s Basic Steps: Sending Email over SMTP
Here are the steps for sending email over SMTP:

1. Create a java.util.Properties object (see Recipe 7.3) to pass information about
the mail server, as the JavaMail API allows room for many settings.

2. Load the Properties with at least the hostname of the SMTP mail server.

3. Create a Session object.

4. Create a Message from the Session object.

5. Set the From, To, CC addresses, and Subject in the Message.

6. Set the message text into the message body.

7. Finally, use the static method Transport.send() to send the message!

Example 19-3. Sender.java

import java.io.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

/** sender -- send an email message.
 */
public class Sender {

 /** The message recipient. */
 protected String message_recip = "spam-magnet@darwinsys.com";
 /* What's it all about, Alfie? */
 protected String message_subject = "Re: your mail";
 /** The message CC recipient. */
 protected String message_cc = "nobody@erewhon.com";
 /** The message body */
 protected String message_body =
 "I am unable to attend to your message, as I am busy sunning " +
 "myself on the beach in Maui, where it is warm and peaceful. " +
 "Perhaps when I return I'll get around to reading your mail. " +
 "Or perhaps not.";

 /** The JavaMail session object */
 protected Session session;
 /** The JavaMail message object */
 protected Message mesg;

 /** Do the work: send the mail to the SMTP server. */
 public void doSend() {

 // We need to pass info to the mail server as a Properties, since
 // JavaMail (wisely) allows room for LOTS of properties...
 Properties props = new Properties();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 19: Java and Electronic Mail

Of course, a program that can only send one message to one address is not useful in
the long run. The second version (not shown here, but in the source tree accompany-
ing this book) allows the To, From, Mailhost, and Subject to come from the com-
mand line and reads the mail text either from a file or from the standard input.

 // Your LAN must define the local SMTP server as "mailhost"
 // for this simple-minded version to be able to send mail...
 props.put("mail.smtp.host", "mailhost");

 // Create the Session object
 session = Session.getDefaultInstance(props, null);
 session.setDebug(true); // Verbose!

 try {
 // create a message
 mesg = new MimeMessage(session);

 // From Address - this should come from a Properties...
 mesg.setFrom(new InternetAddress("nobody@host.domain"));

 // TO Address
 InternetAddress toAddress = new InternetAddress(message_recip);
 mesg.addRecipient(Message.RecipientType.TO, toAddress);

 // CC Address
 InternetAddress ccAddress = new InternetAddress(message_cc);
 mesg.addRecipient(Message.RecipientType.CC, ccAddress);

 // The Subject
 mesg.setSubject(message_subject);

 // Now the message body.
 mesg.setText(message_body);
 // TODO I18N: use setText(msgText.getText(), charset)

 // Finally, send the message!
 Transport.send(mesg);

 } catch (MessagingException ex) {
 while ((ex = (MessagingException)ex.getNextException()) != null) {
 ex.printStackTrace();
 }
 }
 }

 /** Simple test case driver */
 public static void main(String[] av) {
 Sender sm = new Sender();
 sm.doSend();
 }
}

Example 19-3. Sender.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail-Enabling a Server Program | 539

19.3 Mail-Enabling a Server Program

Problem
You want to send mail notification from within a program.

Solution
Use the javax.mail API directly, or use this Mailer wrapper.

Discussion
It is not uncommon to want to send email from deep within a non-GUI program
such as a server. Here, I package all the standard code into a class called Mailer,
which has a series of “set” methods to set the sender, recipient, mail server, etc. You
simply call the Mailer method doSend() after setting the recipient, sender, subject,
and the message text, and Mailer does the rest. Very convenient! So convenient, in
fact, that Mailer is part of the com.darwinsys.util package.

For extra generality, the lists of To, CC, and BCC recipients can be set in one of three
ways:

• By passing a string containing one or more recipients, such as “ian, robin”

• By passing an ArrayList containing all the recipients as strings

• By adding each recipient as a string

A “full” version allows the user to type the recipients, the subject, the text, and so on
into a GUI and have some control over the header fields. The MailComposeBean (in
Recipe 19.9) does all of these, using a Swing-based GUI. MailComposeBean uses this
Mailer class to interface with the JavaMail API. Example 19-4 contains the code for
the Mailer class.

Example 19-4. Mailer.java

package com.darwinsys.mail;

import java.io.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

/** Mailer. No relation to Norman. Sends an email message.
 */
public class Mailer {
 /** The javamail session object. */
 protected Session session;
 /** The sender's email address */
 protected String from;
 /** The subject of the message. */
 protected String subject;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 19: Java and Electronic Mail

 /** The recipient ("To:"), as Strings. */
 protected ArrayList toList = new ArrayList();
 /** The CC list, as Strings. */
 protected ArrayList ccList = new ArrayList();
 /** The BCC list, as Strings. */
 protected ArrayList bccList = new ArrayList();
 /** The text of the message. */
 protected String body;
 /** The SMTP relay host */
 protected String mailHost;
 /** The verbosity setting */
 protected boolean verbose;

 /** Get from */
 public String getFrom() {
 return from;
 }

 /** Set from */
 public void setFrom(String fm) {
 from = fm;
 }

 /** Get subject */
 public String getSubject() {
 return subject;
 }

 /** Set subject */
 public void setSubject(String subj) {
 subject = subj;
 }

 // LOTS OF OBVIOUS SETTERS/GETTERS NOT SHOWN HERE
 // They are in the online source version.

 /** Check if all required fields have been set before sending.
 * Normally called e.g., by a JSP before calling doSend.
 * Is also called by doSend for verification.
 */
 public boolean isComplete() {
 if (from == null || from.length()==0) {
 System.err.println("doSend: no FROM");
 return false;
 }
 if (subject == null || subject.length()==0) {
 System.err.println("doSend: no SUBJECT");
 return false;
 }
 if (toList.size()==0) {
 System.err.println("doSend: no recipients");
 return false;

Example 19-4. Mailer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail-Enabling a Server Program | 541

 }
 if (body == null || body.length()==0) {
 System.err.println("doSend: no body");
 return false;
 }
 if (mailHost == null || mailHost.length()==0) {
 System.err.println("doSend: no server host");
 return false;
 }
 return true;
 }

 public void setServer(String s) {
 mailHost = s;
 }

 /** Send the message.
 */
 public synchronized void doSend() throws MessagingException {

 if (!isComplete())
 throw new IllegalArgumentException(
 "doSend called before message was complete");

 /** Properties object used to pass props into the MAIL API */
 Properties props = new Properties();
 props.put("mail.smtp.host", mailHost);

 // Create the Session object
 if (session == null) {
 session = Session.getDefaultInstance(props, null);
 if (verbose)
 session.setDebug(true); // Verbose!
 }

 // create a message
 final Message mesg = new MimeMessage(session);

 InternetAddress[] addresses;

 // TO Address list
 addresses = new InternetAddress[toList.size()];
 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)toList.get(i));
 mesg.setRecipients(Message.RecipientType.TO, addresses);

 // From Address
 mesg.setFrom(new InternetAddress(from));

 // CC Address list
 addresses = new InternetAddress[ccList.size()];

Example 19-4. Mailer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 19: Java and Electronic Mail

 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)ccList.get(i));
 mesg.setRecipients(Message.RecipientType.CC, addresses);

 // BCC Address list
 addresses = new InternetAddress[bccList.size()];
 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)bccList.get(i));
 mesg.setRecipients(Message.RecipientType.BCC, addresses);

 // The Subject
 mesg.setSubject(subject);

 // Now the message body.
 mesg.setText(body);

 // Finally, send the message! (use static Transport method)
 // Do this in a Thread as it sometimes is too slow for JServ
 new Thread() {
 public void run() {
 try {
 Transport.send(mesg);
 } catch (MessagingException e) {
 throw new IllegalArgumentException(
 "Transport.send() threw: " + e.toString());
 }
 }
 }.start();
 }

 /** Convenience method that does it all with one call. */
 public static void send(String mailhost,
 String recipient, String sender, String subject, String message)
 throws MessagingException {
 Mailer m = new Mailer();
 m.setServer(mailhost);
 m.addTo(recipient);
 m.setFrom(sender);
 m.setSubject(subject);
 m.setBody(message);
 m.doSend();
 }

 /** Convert a list of addresses to an ArrayList. This will work
 * for simple names like "tom, mary@foo.com, 123.45@c$.com"
 * but will fail on certain complex (but RFC-valid) names like
 * "(Darwin, Ian) <ian@darwinsys.com>".
 * Or even "Ian Darwin <ian@darwinsys.com>".
 */
 protected ArrayList tokenize(String s) {
 ArrayList al = new ArrayList();
 StringTokenizer tf = new StringTokenizer(s, ",");

Example 19-4. Mailer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending MIME Mail | 543

19.4 Sending MIME Mail

Problem
You need to send a multipart, MIME-encoded message.

Solution
Use the Part.

Discussion
Way back in the old days when the Internet was being invented, most email was
composed using the seven-bit ASCII character set. You couldn’t send messages con-
taining characters from international character sets. Then some enterprising soul got
the idea to convert non-ASCII files into ASCII using a form of encoding known as
UUENCODE (the UU is a reference to UUCP, one of the main transport protocols
used for email and file transfer at a time when Internet access was prohibitively
expensive for the masses). But this was pretty cumbersome, so eventually the Multi-
media Internet Mail Extensions, or MIME, was born. MIME has grown over the
years to support, as its name implies, a variety of multimedia types in addition to
supporting odd characters. MIME typing has become very pervasive due to its use on
the Web. As you probably know, every file that your web browser downloads—and
a typical web page may contain from 1 to 20, 40, or more files depending on how
hog-wild the graphics are—is classified by the web server; this “MIME type” tells the
browser how to display the contents of the file. Normal HTML pages are given a
type of text/html. Plain text is, as you might guess, text/plain. Images have types
such as image/gif, image/jpeg, image/png, and so on. Other types include
application/ms-word, application/pdf, audio/au, etc.

Mail attachments are files attached to a mail message. MIME is used to classify
attachments so that they can be deciphered by a mail reader the same way that a
browser decodes files it downloads. Plain text and HTML text are the two most pop-
ular, but something called Visual Basic Script, or VBS, was popularized (along with
major weaknesses in the design of a certain desktop operating system) by several
famous viruses including the so-called “love bug” virus.

 // For each word found in the line
 while (tf.hasMoreTokens()) {
 // trim blanks, and add to list.
 al.add(tf.nextToken().trim());
 }
 return al;
 }
}

Example 19-4. Mailer.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 19: Java and Electronic Mail

The point of all this? The JavaMail extension is designed to make it easy for you to
send and receive all normal types of mail, including mail containing MIME-typed
data. For example, if you wish to encode a stream containing audio data, you can do
so. And, as importantly for Java, if you wish to encode a Reader containing charac-
ters in an 8- or 16-bit character encoding, you can do that, too.

The API makes you specify each separate MIME-encoded portion of your message as
a Part. A Part represents a chunk of data that may need special handling by MIME
encoders when being sent, and MIME decoders (in your email client) when being
read. Example 19-5 is an example of sending a text/html attachment along with
plain text.

Example 19-5. SendMime.java (partial listing)

/** The text/plain message body */
protected String message_body =
 "I am unable to attend to your message, as I am busy sunning " +
 "myself on the beach in Maui, where it is warm and peaceful. " +
 "Perhaps when I return I'll get around to reading your mail. " +
 "Or perhaps not.";
/* The text/html data. */
protected String html_data =
 "<HTML><HEAD><TITLE>My Goodness</TITLE></HEAD>" +
 "<BODY><P>You do look a little " +
 "GREEN " +
 "around the edges..." +
 "</BODY></HTML>";

/** Do the work: send the mail to the SMTP server. */
public void doSend() throws IOException, MessagingException {

 // create a session and message as before

 // Addresses, Subject set as before

 // Now the message body.
 Multipart mp = new MimeMultipart();

 BodyPart textPart = new MimeBodyPart();
 textPart.setText(message_body); // sets type to "text/plain"

 BodyPart pixPart = new MimeBodyPart();
 pixPart.setContent(html_data, "text/html");

 // Collect the Parts into the MultiPart
 mp.addBodyPart(textPart);
 mp.addBodyPart(pixPart);

 // Put the MultiPart into the Message
 mesg.setContent(mp);

 // Finally, send the message as before
 Transport.send(mesg);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Providing Mail Settings | 545

19.5 Providing Mail Settings

Problem
You want a way to automatically provide server host, protocol, user, and password.

Solution
Use a Properties object.

Discussion
You may remember from Recipe 7.7 that java.util.Properties is a list of name/
value pairs, and that my FileProperties extends Properties to provide loading and
saving. In several places in this chapter, I use a FileProperties object to preload a
large variety of settings, instead of hardcoding them or having to type them all on the
command line. When dealing with JavaMail, you must specify the mail hostname,
username and password, protocol to use (IMAP, POP, or mailbox for reading), and
so on. I store this information in a properties file, and most of the programs in this
chapter will use it. Here is my default file, MailClient.properties:

This file contains my default Mail properties.
#
Values for sending
Mail.address=ian@darwinsys.com
Mail.send.proto=smtp
Mail.send.host=localhost
Mail.send.debug=true
#
Values for receiving
Mail.receive.host=localhost
Mail.receive.protocol=mbox
Mail.receive.user=*
Mail.receive.pass=*
Mail.receive.root=/var/mail/ian

The last two, pass and root, can have certain predefined values. Since nobody con-
cerned with security would store unencrypted passwords in a file on disk, I allow you
to set pass=ASK (in uppercase), which causes some of my programs to prompt for a
password. The JavaMail API allows use of root=INBOX to mean the default storage
location for your mail.

The keys in this list of properties intentionally begin with a capital letter since the
property names used by the JavaMail API begin with a lowercase letter. The names
are rather long, so they, too, are coded. But it would be circular to encode them in a
Properties object; instead, they are embedded in a Java interface called
MailConstants, shown in Example 19-6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 19: Java and Electronic Mail

The fields in this interface can be referred to by their full names; e.g., MailConstants.
RECV_PROTO. However, that is almost as much typing as the original long string (Mail.
receive.protocol).* As a shortcut, programs that use more than a few of the fields
will claim to implement the interface, and then can refer to the fields as part of their
class; e.g., RECV_PROTO. This is a bit of a trick on the compiler: the interface has no
methods so anybody can implement it, but in so doing “inherit” all the fields
(remember that fields in an interface can only be final, not nonfinal).

19.6 Sending Mail Without Using JavaMail

Problem
You want to send mail, but don’t want to require javax.mail.

Solution
This is a Really Bad Idea. You can implement the SMTP protocol yourself, but you
shouldn’t.

Example 19-6. MailConstants.java

/** Simply a list of names for the Mail System to use.
 * If you "implement" this interface, you don't have to prefix
 * all the names with MailProps in your code.
 */
public interface MailConstants {
 public static final String PROPS_FILE_NAME = "MailClient.properties";

 public static final String SEND_PROTO = "Mail.send.protocol";
 public static final String SEND_USER = "Mail.send.user";
 public static final String SEND_PASS = "Mail.send.password";
 public static final String SEND_ROOT = "Mail.send.root";
 public static final String SEND_HOST = "Mail.send.host";
 public static final String SEND_DEBUG = "Mail.send.debug";

 public static final String RECV_PROTO = "Mail.receive.protocol";
 public static final String RECV_PORT = "Mail.receive.port";
 public static final String RECV_USER = "Mail.receive.user";
 public static final String RECV_PASS = "Mail.receive.password";
 public static final String RECV_ROOT = "Mail.receive.root";
 public static final String RECV_HOST = "Mail.receive.host";
 public static final String RECV_DEBUG = "Mail.receive.debug";
}

* A bit like typing BorderLayout.NORTH instead of just North.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending Mail Without Using JavaMail | 547

Discussion
Implementing an Internet protocol from the ground up is not for the faint of heart.
To get it right, you need to read and study the requisite Internet RFC* pseudo-
standards. I make no pretense that this mail sender fully conforms to the relevant
RFCs; in fact, it almost certainly does not. The toy implementation here uses a sim-
pler send-expect sequencing to keep in sync with the SMTP server at the other end.
Indeed, this program has little to recommend it for serious use; I can only say that I
had it around, and it’s a good illustration of how simple a mail sender can be. Read-
ing it may help you to appreciate the JavaMail API, which handles not just SMTP but
also POP, IMAP, and many other protocols. Do not use this code in production; use
the JavaMail API instead!

The basic idea of SMTP is that you send requests like MAIL, FROM, RCPT, and
DATA in ASCII over an Internet socket (see Recipe 16.1). Even if your mail contains
8- or 16-bit characters, the control information must contain only “pure ASCII”
characters. This suggests either using the byte-based stream classes from java.io (see
Recipe 10.1) or using Readers/Writers with ASCII encoding. Further, if the data con-
tains 8- or 16-bit characters, it should be encoded using MIME (see Recipe 19.4).
This trivial example uses only the ASCII character set to send a plain text message.

When I run this program, it traces the SMTP transaction in the same way sendmail
does with the -v option under Unix (this resemblance is intentional). The <<< and
>>> are not part of the protocol; they are printed by the program to show the direc-
tion of communication (>>> means outgoing, from client to server, and <<< means
the opposite). Lines starting with these symbols are the actual lines that an SMTP cli-
ent and server exchange. You may notice that the server sends lines with both a
three-digit numeric code and a text message, while the client sends four-letter com-
mands like HELO and MAIL to tell the server what do to. The data sent in response
to the line beginning with code 354 (the actual mail message) is not shown.

daroad.darwinsys.com$ jr SmtpTalk localhost ian
+ jikes +E SmtpTalk.java
+ java SmtpTalk localhost ian
SMTP Talker ready
<<< 220 darwinsys.com ESMTP Sendmail 8.9.3/8.9.3; Thu, 23 Dec 1999 16:02:00
>>> HELO darwinsys.com
<<< 250 darwinsys.com Hello ian@localhost [127.0.0.1], pleased to meet you
>>> MAIL From:<MAILER-DAEMON@daroad.darwinsys.com>
<<< 250 <MAILER-DAEMON@daroad.darwinsys.com>... Sender ok
>>> RCPT To:<ian>
<<< 250 <ian>... Recipient ok
>>> DATA
<<< 354 Enter mail, end with "." on a line by itself
>>> .

* RFC stands for “Request For Comments,” a reflection on the community-based standards process that was
the norm when the Internet was young.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 19: Java and Electronic Mail

<<< 250 QAA00250 Message accepted for delivery
>>> QUIT
<<< 221 darwinsys.com closing connection daroad.darwinsys.com$

The program, shown in Example 19-7, is straightforward, if not very elegant.

Example 19-7. SmtpTalk.java

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * SMTP talker class, usable standalone (as a SendMail(8) backend)
 * or inside applications such as JabaDex that need to send mail..
 *
 * OBSOLETE!! Use javax.mail instead, now that it's available!
 *
 */
public class SmtpTalk implements SysExits {
 // SysExits is a simple interface that just defines the
 // System.exit() codes to make this compatible with Sendmail.

 BufferedReader is;
 PrintStream os;
 private boolean debug = true;
 private String host;

 /** A simple main program showing the class in action.
 *
 * TODO generalize to accept From arg, read msg on stdin
 */
 public static void main(String[] argv) {
 if (argv.length != 2) {
 System.err.println("Usage: java SmtpTalk host user");
 System.exit(EX_USAGE);
 }

 try {
 SmtpTalk st = new SmtpTalk(argv[0]);

 System.out.println("SMTP Talker ready");

 st.converse("MAILER-DAEMON@daroad.darwinsys.com",
 argv[1], "Test message", "Hello there");
 } catch (SMTPException ig) {
 System.err.println(ig.getMessage());
 System.exit(ig.getCode());
 }
 }

 /** Constructor taking a server hostname as argument.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending Mail Without Using JavaMail | 549

 SmtpTalk(String server) throws SMTPException {
 host = server;
 try {
 Socket s = new Socket(host, 25);
 is = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
 os = new PrintStream(s.getOutputStream());
 } catch (NoRouteToHostException e) {
 die(EX_TEMPFAIL, "No route to host " + host);
 } catch (ConnectException e) {
 die(EX_TEMPFAIL, "Connection Refused by " + host);
 } catch (UnknownHostException e) {
 die(EX_NOHOST, "Unknown host " + host);
 } catch (IOException e) {
 die(EX_IOERR, "I/O error setting up socket streams\n" + e);
 }
 }

 /** Send a command with an operand */
 protected void send_cmd(String cmd, String oprnd) {
 send_cmd(cmd + " " + oprnd);
 }

 /* Send a command with no operand */
 protected void send_cmd(String cmd) {
 if (debug)
 System.out.println(">>> " + cmd);
 os.print(cmd + "\r\n");
 }

 /** Send_text sends the body of the message. */
 public void send_text(String text) {
 os.print(text + "\r\n");
 }

 /** Expect (read and check for) a given reply */
 protected boolean expect_reply(String rspNum) throws SMTPException {
 String s = null;
 try {
 s = is.readLine();
 } catch(IOException e) {
 die(EX_IOERR,"I/O error reading from host " + host + " " + e);
 }
 if (debug) System.out.println("<<< " + s);
 return s.startsWith(rspNum + " ");
 }

 /** Convenience routine to print message & exit, like
 * K&P error(), perl die(1,), ...
 * @param ret Numeric value to pass back
 * @param msg Error message to be printed on stdout.
 */

Example 19-7. SmtpTalk.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 19: Java and Electronic Mail

19.7 Reading Email

Problem
You need to read mail.

 protected void die(int ret, String msg) throws SMTPException {
 throw new SMTPException(ret, msg);
 }

 /** send one Mail message to one or more recipients via smtp
 * to server "host".
 */
 public void converse(String sender, String recipients,
 String subject, String body) throws SMTPException {

 if (!expect_reply("220")) die(EX_PROTOCOL,
 "did not get SMTP greeting");

 send_cmd("HELO", "darwinsys.com");
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "did not ack our HELO");

 send_cmd("MAIL", "From:<"+sender+">"); // no spaces!
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "did not ack our MAIL command");

 StringTokenizer st = new StringTokenizer(recipients);
 while (st.hasMoreTokens()) {
 String r = st.nextToken();
 send_cmd("RCPT", "To:<" + r + ">");
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "didn't ack RCPT " + r);
 }
 send_cmd("DATA");
 if (!expect_reply("354")) die(EX_PROTOCOL,"did not want our DATA!");

 send_text("From: " + sender);
 send_text("To: " + recipients);
 send_text("Subject: " + subject);
 send_text("");
 send_text(body + "\r");

 send_cmd(".");
 if (!expect_reply("250")) die(EX_PROTOCOL,"Mail not accepted");

 send_cmd("QUIT");
 if (!expect_reply("221")) die(EX_PROTOCOL,"Other end not closing down");
 }
}

Example 19-7. SmtpTalk.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading Email | 551

Solution
Use a JavaMail Store.

Discussion
The JavaMail API is designed to be easy to use. Store encapsulates the information
and access methods for a particular type of mail storage; the steps for using it are
listed in the sidebar.

Sun provides a Store class for the IMAP transport mechanism, and optionally for
POP3.* In these examples I use the Unix mbox protocol† (when I started with Unix
there was no POP3 protocol; it was traditional to access your mail spool file directly
on a server). However, you could use all these programs with the POP or IMAP
stores just by passing the appropriate protocol name where “mbox” appears in the
following examples. I’ve tested several of the programs using Sun’s POP store and
several POP servers (CUCIpop and PMDF).

I delete most of the email I get on one of my systems, so there were only two mes-
sages to be read when I ran my first “mailbox lister” program:

daroad.darwinsys.com$ java MailLister mbox localhost - - /var/mail/ian
Getting folder /var/mail/ian.
Name: ian(/var/mail/ian)
No New Messages
irate_client@nosuchd Contract in Hawaii
mailer-daemon@kingcr Returned mail: Data format error
daroad.darwinsys.com$

Ian’s Basic Steps: Reading Email Using Store
Here is how you read email using Store:

1. Get a Session object using Session.getDefaultInstance(). You can pass System.
getProperties() as the Properties argument.

2. Get a Store from the Session object.

3. Get the root Folder.

4. If the root Folder can contain subfolders, list them.

5. For each Folder that can contain messages, call getMessages(), which returns an
array of Message objects.

6. Do what you will with the messages (usually, display the headers and let the user
select which message to view).

* The POP3 Store classes must be downloaded and manually installed from http://java.sun.com/products/
javamail/.

† This is free (GPL) software, which can be downloaded from the Giant Java Tree, http://www.gjt.org.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 19: Java and Electronic Mail

The main program shown in Example 19-8 takes all five arguments from its com-
mand line.

Example 19-8. MailLister.java

import com.darwinsys.util.*;
import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

/**
* List all available folders.
*/
public class MailLister {
 static StringAlign fromFmt =
 new StringAlign(20, StringAlign.JUST_LEFT);
 static StringAlign subjFmt =
 new StringAlign(40, StringAlign.JUST_LEFT);

 public static void main(String[] argv) throws Exception {
 String fileName = MailConstants.PROPS_FILE_NAME;
 String protocol = null;
 String host = null;
 String user = null;
 String password = null;
 String root = null;

 // If argc == 1, assume it's a Properties file.
 if (argv.length == 1) {
 fileName = argv[0];
 FileProperties fp = new FileProperties(fileName);
 fp.load();
 protocol = fp.getProperty(MailConstants.RECV_PROTO);
 host = fp.getProperty(MailConstants.RECV_HOST);
 user = fp.getProperty(MailConstants.RECV_USER);
 password = fp.getProperty(MailConstants.RECV_PASS);
 root = fp.getProperty(MailConstants.RECV_ROOT);
 }
 // If not, assume listing all args in long form.
 else if (argv.length == 5) {
 protocol = argv[0];
 host = argv[1];
 user = argv[2];
 password = argv[3];
 root = argv[4];
 }
 // Otherwise give up.
 else {
 System.err.println(
 "Usage: MailLister protocol host user pw root");
 System.exit(0);
 }

 boolean recursive = false;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading Email | 553

 // Start with a Session object, as usual
 Session session = Session.getDefaultInstance(
 System.getProperties(), null);
 session.setDebug(false);

 // Get a Store object for the given protocol
 Store store = session.getStore(protocol);
 store.connect(host, user, password);

 // Get Folder object for root, and list it
 // If root name = "", getDefaultFolder(), else getFolder(root)
 Folder rf;
 if (root.length() != 0) {
 System.out.println("Getting folder " + root + ".");
 rf = store.getFolder(root);
 } else {
 System.out.println("Getting default folder.");
 rf = store.getDefaultFolder();
 }
 rf.open(Folder.READ_WRITE);

 if (rf.getType() == Folder.HOLDS_FOLDERS) {
 Folder[] f = rf.list();
 for (int i = 0; i < f.length; i++)
 listFolder(f[i], "", recursive);
 } else
 listFolder(rf, "", false);
 }

 static void listFolder(Folder folder, String tab, boolean recurse)
 throws Exception {
 folder.open(Folder.READ_WRITE);
 System.out.println(tab + "Name: " + folder.getName() + '(' +
 folder.getFullName() + ')');
 if (!folder.isSubscribed())
 System.out.println(tab + "Not Subscribed");
 if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0) {
 if (folder.hasNewMessages())
 System.out.println(tab + "Has New Messages");
 else
 System.out.println(tab + "No New Messages");
 Message[] msgs = folder.getMessages();
 for (int i=0; i<msgs.length; i++) {
 Message m = msgs[i];
 Address from = m.getFrom()[0];
 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress();
 else
 fromAddress = from.toString();
 StringBuffer sb = new StringBuffer();
 fromFmt.format(fromAddress, sb, null);

Example 19-8. MailLister.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 19: Java and Electronic Mail

This program has the core of a full mail reader but doesn’t actually fetch the articles.
To display a message, you have to get it (by number) from the folder, then call meth-
ods like getSubject(), getFrom(), and others. The listFolder() method does this to
obtain identifying information on each message, and formats them using the
StringAlign class from Recipe 3.5.

If we add a GUI and a bit of code to get all the relevant header fields, we can have a
working mail reader. We’ll show the messages in a tree view, since some protocols
let you have more than one folder containing messages. For this we’ll use a JTree
widget, the Swing GUI component for displaying text or icons in a tree-like view.
The objects stored in a JTree must be Node objects, but we also want them to be
Folders and Messages. I handled this by subclassing DefaultMutableNode and adding a
field for the folder or message, although you could also subclass Folder and imple-
ment the Node interface. Arguably, the way I did it is less “pure OO,” but also less
work. Example 19-9 is my MessageNode; FolderNode is similar, but simpler in that its
toString() method calls only the Folder’s getName() method.

 sb. append(" ");
 subjFmt.format(m.getSubject(), sb, null);
 System.out.println(sb.toString());
 }
 }
 if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
 System.out.println(tab + "Is Directory");
 if (recurse) {
 Folder[] f = folder.list();
 for (int i=0; i < f.length; i++)
 listFolder(f[i], tab + "", recurse);
 }
 }
 }
}

Example 19-9. MessageNode.java

import javax.mail.*;
import javax.mail.internet.*;
import javax.swing.tree.*;

/** A Mutable Tree Node that is also a Message. */
public class MessageNode extends DefaultMutableTreeNode {
 Message m;

 StringAlign fromFmt = new StringAlign(20, StringAlign.JUST_LEFT);
 StringAlign subjFmt = new StringAlign(30, StringAlign.JUST_LEFT);

 MessageNode(Message m) {
 this.m = m;
 }

Example 19-8. MailLister.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailReaderBean | 555

These are all put together into a mail reader in Recipe 19.8.

19.8 Program: MailReaderBean
Example 19-10 shows the complete MailReaderBean program. As the name implies, it
can be used as a bean in larger programs but also has a main method for standalone
use. Clicking on a message displays it in the message view part of the window; this is
handled by the TreeSelectionListener called tsl.

 public String toString() {
 try {
 Address from = m.getFrom()[0];

 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress();
 else
 fromAddress = from.toString();

 StringBuffer sb = new StringBuffer();
 fromFmt.format(fromAddress, sb, null);
 sb. append(" ");
 subjFmt.format(m.getSubject(), sb, null);
 return sb.toString();
 } catch (Exception e) {
 return e.toString();
 }
 }
}

Example 19-10. MailReaderBean.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import javax.mail.*;
import javax.mail.internet.*;

/**
 * Display a mailbox or mailboxes.
 * This is the generic version in javasrc/email, split off from
 * JabaDex because of the latter's domain-specific "implements module" stuff.

 */
public class MailReaderBean extends JSplitPane {

 private JTextArea bodyText;

Example 19-9. MessageNode.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 19: Java and Electronic Mail

 /* Construct a mail reader bean with all defaults.
 */
 public MailReaderBean() throws Exception {
 this("smtp", "mailhost", "user", "nopasswd", "/");
 }

 /* Construct a mail reader bean with all values. */
 public MailReaderBean(
 String protocol,
 String host,
 String user,
 String password,
 String rootName)
 throws Exception {

 super(VERTICAL_SPLIT);

 boolean recursive = false;

 // Start with a Mail Session object
 Session session = Session.getDefaultInstance(
 System.getProperties(), null);
 session.setDebug(false);

 // Get a Store object for the given protocol
 Store store = session.getStore(protocol);
 store.connect(host, user, password);

 // Get Folder object for root, and list it
 // If root name = "", getDefaultFolder(), else getFolder(root)
 FolderNode top;
 if (rootName.length() != 0) {
 // System.out.println("Getting folder " + rootName + ".");
 top = new FolderNode(store.getFolder(rootName));
 } else {
 // System.out.println("Getting default folder.");
 top = new FolderNode(store.getDefaultFolder());
 }
 if (top == null || !top.f.exists()) {
 System.out.println("Invalid folder " + rootName);
 return;
 }

 if (top.f.getType() == Folder.HOLDS_FOLDERS) {
 Folder[] f = top.f.list();
 for (int i = 0; i < f.length; i++)
 listFolder(top, new FolderNode(f[i]), recursive);
 } else
 listFolder(top, top, false);

 // Now that (all) the foldernodes and treenodes are in,
 // construct a JTree object from the top of the list down,

Example 19-10. MailReaderBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailReaderBean | 557

 // make the JTree scrollable (put in JScrollPane),
 // and add it as the MailComposeBean's Northern child.
 JTree tree = new JTree(top);
 JScrollPane treeScroller = new JScrollPane(tree);
 treeScroller.setBackground(tree.getBackground());
 this.setTopComponent(treeScroller);

 // The Southern (Bottom) child is a textarea to display the msg.
 bodyText = new JTextArea(15, 80);
 this.setBottomComponent(new JScrollPane(bodyText));

 // Add a notification listener for the tree; this will
 // display the clicked-upon message
 TreeSelectionListener tsl = new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent evt) {
 Object[] po = evt.getPath().getPath(); // yes, repeat it.
 Object o = po[po.length - 1]; // last node in path
 if (o instanceof FolderNode) {
 // System.out.println("Select folder " + o.toString());
 return;
 }
 if (o instanceof MessageNode) {
 bodyText.setText("");
 try {
 Message m = ((MessageNode)o).m;

 bodyText.append("To: ");
 Object[] tos = m.getAllRecipients();
 for (int i=0; i<tos.length; i++) {
 bodyText.append(tos[i].toString());
 bodyText.append(" ");
 }
 bodyText.append("\n");

 bodyText.append("Subject: " + m.getSubject() + "\n");
 bodyText.append("From: ");
 Object[] froms = m.getFrom();
 for (int i=0; i<froms.length; i++) {
 bodyText.append(froms[i].toString());
 bodyText.append(" ");
 }
 bodyText.append("\n");

 bodyText.append("Date: " + m.getSentDate() + "\n");
 bodyText.append("\n");

 bodyText.append(m.getContent().toString());

 // Start reading at top of message(!)
 bodyText.setCaretPosition(0);
 } catch (Exception e) {
 bodyText.append(e.toString());

Example 19-10. MailReaderBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 19: Java and Electronic Mail

 }
 } else
 System.err.println("UNEXPECTED SELECTION: " + o.getClass());
 }
 };
 tree.addTreeSelectionListener(tsl);
 }

 static void listFolder(FolderNode top, FolderNode folder, boolean recurse)
 throws Exception {
 // System.out.println(folder.f.getName() + folder.f.getFullName());
 if ((folder.f.getType() & Folder.HOLDS_MESSAGES) != 0) {
 Message[] msgs = folder.f.getMessages();
 for (int i=0; i<msgs.length; i++) {
 MessageNode m = new MessageNode(msgs[i]);
 Address from = m.m.getFrom()[0];
 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress();
 else
 fromAddress = from.toString();
 top.add(new MessageNode(msgs[i]));
 }
 }
 if ((folder.f.getType() & Folder.HOLDS_FOLDERS) != 0) {
 if (recurse) {
 Folder[] f = folder.f.list();
 for (int i=0; i < f.length; i++)
 listFolder(new FolderNode(f[i]), top, recurse);
 }
 }
 }

 /* Test unit - main program */
 public static void main(String[] args) throws Exception {
 final JFrame jf = new JFrame("MailReaderBean");
 String mbox = "/var/mail/ian";
 if (args.length > 0)
 mbox = args[0];
 MailReaderBean mb = new MailReaderBean("mbox", "localhost",
 "", "", mbox);
 jf.getContentPane().add(mb);
 jf.setSize(640,480);
 jf.setVisible(true);
 jf.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 jf.setVisible(false);
 jf.dispose();
 System.exit(0);
 }
 });
 }
}

Example 19-10. MailReaderBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 559

It’s a minimal, but working, mail reader. I’ll merge it with a mail sender in Recipe 19.9
to make a complete mail client program.

19.9 Program: MailClient
This program is a simplistic GUI-based mail client. It uses the Swing GUI compo-
nents (see Chapter 14) along with JavaMail. The program loads a Properties file (see
Recipe 7.7) to decide which mail server to use for outgoing mail (see Recipe 19.2), as
well as the name of a mail server for incoming mail and a Store class (see this chap-
ter’s Introduction and Recipe 19.7). The main class, MailClient, is simply a
JComponent with a JTabbedPane to let you switch between reading mail and sending
mail.

When first started, the program behaves as a mail reader, as shown in Figure 19-2.

You can click on the Sending tab to make it show the Mail Compose window, shown
in Figure 19-3. I am typing a message to an ISP about some spam I received.

The code reuses the MailReaderBean presented earlier and a similar MailComposeBean
for sending mail. Example 19-11 is the main program.

Figure 19-2. MailClient in reading mode

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 19: Java and Electronic Mail

Figure 19-3. MailClient in compose mode

Example 19-11. MailClient.java

import com.darwinsys.util.FileProperties;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

/** Standalone MailClient GUI application.
 */
public class MailClient extends JComponent implements MailConstants {
 /** The quit button */
 JButton quitButton;
 /** The read mode */
 MailReaderBean mrb;
 /** The send mode */
 MailComposeFrame mcb;

 /** Construct the MailClient JComponent a default Properties filename */
 public MailClient() throws Exception {
 this(PROPS_FILE_NAME);
 }

 /** Construct the MailClient JComponent with no Properties filename */
 public MailClient(String propsFileName) throws Exception {
 super();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 561

 // Construct and load the Properties for the mail reader and sender.
 Properties mailProps = new FileProperties(propsFileName);

 // Gather some key values
 String proto = mailProps.getProperty(RECV_PROTO);
 String user = mailProps.getProperty(RECV_USER);
 String pass = mailProps.getProperty(RECV_PASS);
 String host = mailProps.getProperty(RECV_HOST);

 if (proto==null)
 throw new IllegalArgumentException(RECV_PROTO + "==null");

 // Protocols other than "mbox" need a password.
 if (!proto.equals("mbox") && (pass == null || pass.equals("ASK"))) {
 String np;
 do {
 // VERY INSECURE -- should use JDialog + JPasswordField!
 np = JOptionPane.showInputDialog(null,
 "Please enter password for " + proto + " user " +
 user + " on " + host + "\n" +
 "(warning: password WILL echo)",
 "Password request", JOptionPane.QUESTION_MESSAGE);
 } while (np == null || (np != null && np.length() == 0));
 mailProps.setProperty(RECV_PASS, np);
 }

 // Dump them all into System.properties so other code can find.
 System.getProperties().putAll(mailProps);

 // Construct the GUI
 // System.out.println("Constructing GUI");
 setLayout(new BorderLayout());
 JTabbedPane tbp = new JTabbedPane();
 add(BorderLayout.CENTER, tbp);
 tbp.addTab("Reading", mrb = new MailReaderBean());
 tbp.addTab("Sending", mcb = new MailComposeFrame());
 add(BorderLayout.SOUTH, quitButton = new JButton("Exit"));
 // System.out.println("Leaving Constructor");
 }

 /** "main program" method - run the program */
 public static void main(String[] av) throws Exception {

 final JFrame f = new JFrame("MailClient");

 // Start by checking that the javax.mail package is installed!
 try {
 Class.forName("javax.mail.Session");
 } catch (ClassNotFoundException cnfe) {
 JOptionPane.showMessageDialog(f,
 "Sorry, the javax.mail package was not found\n(" + cnfe + ")",
 "Error", JOptionPane.ERROR_MESSAGE);

Example 19-11. MailClient.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 19: Java and Electronic Mail

The MailReaderBean used in the Reading tab is exactly the same as the one shown in
Recipe 19.8.

The MailComposeBean used for the Sending tab is a GUI component for composing a
mail message. It uses the Mailer class from Recipe 19.3 to do the actual sending.
Example 19-12 shows the MailComposeBean program.

 return;
 }

 // create a MailClient object
 MailClient comp;
 if (av.length == 0)
 comp = new MailClient();
 else
 comp = new MailClient(av[0]);
 f.getContentPane().add(comp);

 // Set up action handling for GUI
 comp.quitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });

 // Set bounds. Best at 800,600, but works at 640x480
 // f.setLocation(140, 80);
 // f.setSize (500,400);
 f.pack();

 f.setVisible(true);
 }
}

Example 19-12. MailComposeBean.java

import com.darwinsys.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.io.*;
import javax.activation.*;

Example 19-11. MailClient.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 563

import javax.mail.*;
import javax.mail.internet.*;

/** MailComposeBean - Mail gather and send Component Bean.
 *
 * Can be used as a Visible bean or as a Non-Visible bean.
 * If setVisible(true), puts up a mail compose window with a Send button.
 * If user clicks on it, tries to send the mail to a Mail Server
 * for delivery on the Internet.
 *
 * If not visible, use add(), set(), and doSend() methods.
 *
 */
public class MailComposeBean extends JPanel {

 /** The parent frame to be hidden/disposed; may be JFrame, JInternalFrame
 * or JPanel, as necessary */
 private Container parent;

 private JButton sendButton, cancelButton;
 private JTextArea msgText; // The message!

 // The To, Subject, and CC lines are treated a bit specially,
 // any user-defined headers are just put in the tfs array.
 private JTextField tfs[], toTF, ccTF, subjectTF;
 // tfsMax MUST == how many are current, for focus handling to work
 private int tfsMax = 3;
 private final int TO = 0, SUBJ = 1, CC = 2, BCC = 3, MAXTF = 8;

 /** The JavaMail session object */
 private Session session = null;
 /** The JavaMail message object */
 private Message mesg = null;

 private int mywidth;
 private int myheight;

 /** Construct a MailComposeBean with no default recipient */
 MailComposeBean(Container parent, String title, int height, int width) {
 this(parent, title, null, height, width);
 }

 /** Construct a MailComposeBean with no arguments (needed for Beans) */
 MailComposeBean() {
 this(null, "Compose", null, 300, 200);
 }

 /** Constructor for MailComposeBean object.
 *
 * @param parent Container parent. If JFrame or JInternalFrame,
 * will setvisible(false) and dispose() when
 * message has been sent. Not done if "null" or JPanel.

Example 19-12. MailComposeBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 19: Java and Electronic Mail

 * @param title Title to display in the titlebar
 * @param recipient Email address of recipient
 * @param height Height of mail compose window
 * @param width Width of mail compose window
 */
 MailComposeBean(Container parent, String title, String recipient,
 int width, int height) {
 super();

 this.parent = parent;

 mywidth = width;
 myheight = height;

 // THE GUI
 Container cp = this;
 cp.setLayout(new BorderLayout());

 // Top is a JPanel for name, address, etc.
 // Centre is the TextArea.
 // Bottom is a panel with Send and Cancel buttons.
 JPanel tp = new JPanel();
 tp.setLayout(new GridLayout(3,2));
 cp.add(BorderLayout.NORTH, tp);

 tfs = new JTextField[MAXTF];

 tp.add(new JLabel("To: ", JLabel.RIGHT));
 tp.add(tfs[TO] = toTF = new JTextField(35));
 if (recipient != null)
 toTF.setText(recipient);
 toTF.requestFocus();

 tp.add(new JLabel("Subject: ", JLabel.RIGHT));
 tp.add(tfs[SUBJ] = subjectTF = new JTextField(35));
 subjectTF.requestFocus();

 tp.add(new JLabel("Cc: ", JLabel.RIGHT));
 tp.add(tfs[CC] = ccTF = new JTextField(35));

 // Centre is the TextArea
 cp.add(BorderLayout.CENTER, msgText = new JTextArea(70, 10));
 msgText.setBorder(BorderFactory.createTitledBorder("Message Text"));

 // Bottom is the apply/cancel button
 JPanel bp = new JPanel();
 bp.setLayout(new FlowLayout());
 bp.add(sendButton = new JButton("Send"));
 sendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 doSend();

Example 19-12. MailComposeBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 565

 } catch(Exception err) {
 System.err.println("Error: " + err);
 JOptionPane.showMessageDialog(null,
 "Sending error:\n" + err.toString(),
 "Send failed", JOptionPane.ERROR_MESSAGE);
 }
 }
 });
 bp.add(cancelButton = new JButton("Cancel"));
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 maybeKillParent();
 }
 });
 cp.add(BorderLayout.SOUTH, bp);
 }

 public Dimension getPreferredSize() {
 return new Dimension(mywidth, myheight);
 }
 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 /** Do the work: send the mail to the SMTP server.
 *
 * ASSERT: must have set at least one recipient.
 */
 public void doSend() {

 try {
 Mailer m = new Mailer();

 FileProperties props =
 new FileProperties(MailConstants.PROPS_FILE_NAME);
 String serverHost = props.getProperty(MailConstants.SEND_HOST);
 if (serverHost == null) {
 JOptionPane.showMessageDialog(parent,
 "\"" + MailConstants.SEND_HOST +
 "\" must be set in properties"
 "No server!",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 m.setServer(serverHost);

 String tmp = props.getProperty(MailConstants.SEND_DEBUG);
 m.setVerbose(tmp != null && tmp.equals("true"));

 String myAddress = props.getProperty("Mail.address");
 if (myAddress == null) {

Example 19-12. MailComposeBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 19: Java and Electronic Mail

 JOptionPane.showMessageDialog(parent,
 "\"Mail.address\" must be set in properties",
 "No From: address!",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 m.setFrom(myAddress);

 m.setToList(toTF.getText());
 m.setCcList(ccTF.getText());
 // m.setBccList(bccTF.getText());

 if (subjectTF.getText().length() != 0) {
 m.setSubject(subjectTF.getText());
 }

 // Now copy the text from the Compose TextArea.
 m.setBody(msgText.getText());
 // TODO I18N: use setBody(msgText.getText(), charset)

 // Finally, send the sucker!
 m.doSend();

 // Now hide the main window
 maybeKillParent();

 } catch (MessagingException me) {
 me.printStackTrace();
 while ((me = (MessagingException)me.getNextException()) != null) {
 me.printStackTrace();
 }
 JOptionPane.showMessageDialog(null,
 "Mail Sending Error:\n" + me.toString(),
 "Error", JOptionPane.ERROR_MESSAGE);
 } catch (Exception e) {
 JOptionPane.showMessageDialog(null,
 "Mail Sending Error:\n" + e.toString(),
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }

 private void maybeKillParent() {
 if (parent == null)
 return;
 if (parent instanceof Frame) {
 ((Frame)parent).setVisible(true);
 ((Frame)parent).dispose();
 }
 if (parent instanceof JInternalFrame) {
 ((JInternalFrame)parent).setVisible(true);
 ((JInternalFrame)parent).dispose();
 }
 }

Example 19-12. MailComposeBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 567

Further, the MailComposeBean program is a JavaBean, so it can be used in GUI build-
ers and even have its fields set within a JSP. It has a main method, which allows it to
be used standalone (primarily for testing).

To let you compose one or more email messages concurrently, messages being com-
posed are placed in a JDesktopPane, Java’s implementation of Multiple-Document
Interface (MDI). Example 19-13 shows how to construct a multiwindow email
implementation. Each MailComposeBean must be wrapped in a JInternalFrame, which
is what you need to place components in the JDesktopPane. This wrapping is han-
dled inside MailReaderFrame, one instance of which is created in the MailClient con-
structor. The MailReaderFrame method newSend() creates an instance of
MailComposeBean and shows it in the JDesktopFrame, returning a reference to the
MailComposeBean so that the caller can use methods such as addRecipient() and
send(). It also creates a Compose button and places it below the desktop pane so
that you can create a new composition window by clicking the button.

 /** Simple test case driver */
 public static void main(String[] av) {
 final JFrame jf = new JFrame("DarwinSys Compose Mail Tester");
 System.getProperties().setProperty("Mail.server", "mailhost");
 System.getProperties().setProperty("Mail.address", "nobody@home");
 MailComposeBean sm =
 new MailComposeBean(jf,
 "Test Mailer", "spam-magnet@darwinsys.com", 500, 400);
 sm.setSize(500, 400);
 jf.getContentPane().add(sm);
 jf.setLocation(100, 100);
 jf.setVisible(true);
 jf.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 jf.setVisible(false);
 jf.dispose();
 System.exit(0);
 }
 });
 jf.pack();
 }
}

Example 19-13. MailComposeFrame.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A frame for (possibly) multiple MailComposeBean windows.
 */
public class MailComposeFrame extends JPanel {
 JDesktopPane dtPane;
 JButton newButton;
 protected int nx, ny;

Example 19-12. MailComposeBean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 19: Java and Electronic Mail

The file TODO.txt in the email source directory lists a number of improvements that
would have to be added to the MailClient program to make it functional enough for
daily use (delete and reply functionality, menus, templates, aliases, and much more).
But it is a start and provides a structure to build on.

 /** To be useful here, a MailComposeBean has to be inside
 * its own little JInternalFrame.
 */
 public MailComposeBean newSend() {

 // Make the JInternalFrame wrapper
 JInternalFrame jf = new JInternalFrame();

 // Bake the actual Bean
 MailComposeBean newBean =
 new MailComposeBean(this, "Compose", 400, 250);

 // Arrange them on the diagonal.
 jf.setLocation(nx+=10, ny+=10);

 // Make the new Bean be the contents of the JInternalFrame
 jf.setContentPane(newBean);
 jf.pack();
 jf.toFront();

 // Add the JInternalFrame to the JDesktopPane
 dtPane.add(jf);
 return newBean;
 }

 /* Construct a MailComposeFrame, with a Compose button. */
 public MailComposeFrame() {

 setLayout(new BorderLayout());

 dtPane = new JDesktopPane();
 add(dtPane, BorderLayout.CENTER);

 newButton = new JButton("Compose");
 newButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 newSend();
 }
 });
 add(newButton, BorderLayout.SOUTH);
 }
}

Example 19-13. MailComposeFrame.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: MailClient | 569

See Also
Sun maintains a mailing list specifically for the JavaMail API. Read about the java-
mail-interest list near the bottom of the main API page at http://java.sun.com/
products/javamail/. This is also a good place to find other provider classes; Sun has a
POP3 provider, and there is a list of third-party products. You can also download the
complete source code for the JavaMail API from Sun’s community source project
through the link on the main API page.

There are now several books that discuss Internet mail. David Wood’s Programming
Internet Email (O’Reilly) discusses all aspects of Internet email, with an emphasis on
Perl but with a chapter and examples on JavaMail. Similarly, Kevin Johnson’s Inter-
net Email Protocols: A Developer’s Guide (Addison Wesley) covers the protocols and
has appendixes on various programming languages, including Java. The Program-
mer’s Guide to Internet Mail: Smtp, Pop, Imap, and Ldap, by John Rhoton (Digital
Press) and Essential E-Mail Standards: RFCs and Protocols Made Practical by Pete
Loshin (Wiley) cover the protocols without much detail on Java implementation.
Internet E-Mail: Protocols, Standards, and Implementation by Lawrence E. Hughes
(Artech House Telecommunications) covers a great deal of general material but
emphasizes Microsoft technologies and doesn’t say much about JavaMail. Finally,
the books Stopping Spam: Stamping Out Unwanted Email and News Postings by Alan
Schwartz and Simson Garfinkel (O’Reilly) and Removing the Spam: Email Processing
and Filtering (Addison Wesley) by Geoff Mulligan aren’t about JavaMail, but they
discuss what is now perhaps the biggest problem facing Internet mail users.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570

Chapter 20CHAPTER 20

Database Access

20.0 Introduction
Java can be used to access many kinds of databases. A database can be something as
simple as a text file or a fast key/value pairing on disk (DBM format), as sophisti-
cated as a relational database management system (DBMS), or as exotic as an object
database.

Regardless of how your data is actually stored, in many applications you’ll want to
write a class called an accessor to mediate between the database and the rest of the
application. For example, if you are using JDBC, the answers to your query come
back packaged in an object called a ResultSet, but it would not make sense to struc-
ture the rest of your application around the ResultSet because it’s JDBC-specific. In
a Personal Information Manager application, for example, the primary classes might
be Person, Address, and Meeting. You would probably write a PersonAccessor class to
request the names and addresses from the database (probably using JDBC) and gen-
erate Person and Address objects from them. The DataAccessor objects would also
take updates from the main program and store them into the database.*

Java DataBase Connectivity (JDBC) consists of classes in package java.sql and some
JDBC Level 2 extensions in package javax.sql. (SQL is the Structured Query Lan-
guage, used by relational database software to provide a standard command lan-
guage for creating, modifying, updating, and querying relational databases.)

Why was JDBC invented? Java is highly portable, but many databases previously
lacked a portable interface and were tied to one particular language or platform.
JDBC is designed to fill that gap.

* If this reminds you of Enterprise JavaBeans, you’re right. If you’re familiar with EJB, you can think of simple
entity beans as a specialized kind of data accessor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Easy Database Access with JDO | 571

JDBC is patterned very loosely on Microsoft’s Open DataBase Connectivity (ODBC).
Sun’s Java group borrowed several general ideas from Microsoft, who in turn bor-
rowed some of it from prior art in relational databases. While ODBC is C- and
pointer-based (void * at that), JDBC is based on Java and is therefore portable as well
as being network-aware and having better type checking.

JDBC comes in two parts: the portable JDBC API provided with Java and the database-
specific driver usually provided by the DBMS vendor or a third party. These drivers
have to conform to a particular interface (called Driver, unsurprisingly) and map
from the generic calls into something the existing database code can understand.

JDBC deals with relational databases only: no flat files (although several drivers have
been written that map from flat files to the JDBC API) and no DBM files (though you
could write a driver that used one DBM file for each table in a database). Through
this clever division of labor, JDBC can provide access to any relational database, be it
local or remote (remote databases are accessed using client sockets, as discussed in
Chapter 17). In addition to the drivers from database vendors, there is also a JDBC-
ODBC bridge in the standard JDK and JRE; this allows you to use JDBC with an
existing Windows database. Its performance is weaker because it adds an extra layer,
but it does work.

One fairly common form of database that I do not cover is the so-called Xbase
format, which is implemented by several commercial databases (dBase, FoxBase, etc.)
common in the MS-DOS and Windows world. If you wanted to decode such a data-
base in Java, you’d probably start with the Xbase file format, documented at http://
www.e-bachmann.dk/docs/xbase.htm. Alternately, you might find a useful driver in
the Microsoft ODBC-32 software and use the JDBC-to-ODBC bridge to convert your
data to a newer format such as a relational database.

Java Data Objects, or JDO, is an “accessor” layer that is much easier to use than
invoking JDBC directly. One way to think of JDO is that it’s a way of writing acces-
sors automatically, leaving you more time to concentrate on your application logic.

This chapter overviews several database techniques, emphasizing JDBC, so that you
know what this technology looks and feels like.

20.1 Easy Database Access with JDO

Problem
You want an easy way to access your relational database.

Solution
Use an implementation of the Java Data Objects specification.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 20: Database Access

Discussion
As mentioned, JDO provides easy access to databases. JDO is a specification from
Sun; there are many implementations of it. JDO works by inserting extra code into
your data classes, a process it calls “enhancement.” The extra code is what transpar-
ently interfaces with the database. The JDO spec is not tied to the relational model;
JDO data can be stored in a local file, a relational database, an object database, or
whatever else an implementation chooses to use.

The “Reference Implementation” from Sun uses a file store on local disks.
Example 20-1 is the Serialization program from Chapter 10 (Recipe 10.18) imple-
mented using JDO. Recall from that discussion that the save() method in the parent
class calls the write() method implemented in this subclass to save a variety of
objects.

Ian’s Basic Steps: JDO
To set up a JDO application:

1. Write and compile the data classes.

2. Create an XML file package.jdo (this name is mandatory), listing the data classes.

3. Enhance the data classes.

4. Create a jdo.properties file (this name is arbitrary).

5. Create bindings to the SQL database, if applicable.

6. Obtain a PersistenceManager using the properties.

7. To save data, get the transaction, make the objects persistent, and commit.

8. To load data, open an extent and/or execute a query.

Example 20-1. SerialDemoJDO

/**
 * A demonstration of serialization using JDO.
 */
public class SerialDemoJDO extends SerialDemoAbstractBase {

 public static void main(String[] args) throws IOException {
 SerialDemoJDO jd = new SerialDemoJDO();
 jd.save();
 jd.dump();
 }

 public PersistenceManager getPM() {
 Properties p = new Properties();
 try {
 p.load(new FileInputStream("jdo.properties"));
 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(p);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Easy Database Access with JDO | 573

Two things are not shown here: how the MyData class used in the earlier recipe gets
turned into a JDO class and how JDO knows how and where to store the data.

The Enhancement process requires an XML configuration file to tell it which classes
are to be enhanced—that is, which are the data classes. This, and the actual class
files, are read by the JDO enhancer, and new class files are generated. For example, a
setName() method that simply saves its argument in a field might be enhanced to
also send it as an update to a database. The enhancement process consists of run-
ning an enhancer program provided with your implementation; for the Sun Refer-
ence Implementation, this can be as simple as:

java com.sun.jdori.enhancer.Main -s build/classdir build/com/darwinsys/Mydata.class

Naturally there is an Ant task for automating this step.

To tell JDO where to store its data, a properties file is loaded, which specifies a mini-
mum of four parameters: the Service Provider to use, the database name, and a user
name and password. The Reference Implementation provides an FOStore class that
saves file objects on the local disk. A set of properties for this implementation could
be the following:

 return pmf.getPersistenceManager();
 } catch (IOException ex) {
 throw new RuntimeException(ex.toString());
 }
 }

 public void write(Object o) {
 PersistenceManager pm = getPM();
 pm.currentTransaction().begin();
 if (o instanceof Collection) {
 pm.makePersistentAll((Collection)o);
 } else {
 pm.makePersistent(o);
 }
 pm.currentTransaction().commit();
 pm.close();
 }

 public void dump() {
 PersistenceManager pm = getPM();
 Object[] data = new Object[3];
 pm.retrieveAll(data);
 for (int i = 0; i < data.length; i++) {
 System.out.println(data[i]);
 }
 pm.close();
 }
}

Example 20-1. SerialDemoJDO (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 20: Database Access

javax.jdo.PersistenceManagerFactoryClass=com.sun.jdori.fostore.FOStorePMF
javax.jdo.option.ConnectionURL=fostore:database/javasrc.io
For the JDO RI, it doesn't matter what name/passwd you use, but
both MUST be specified as some value.
javax.jdo.option.ConnectionUserName=ian
javax.jdo.option.ConnectionPassword=anything

Once all these pieces are in place, the program in Example 20-1 can be run. The
MyData objects are saved to disk and displayed by the program.

Where JDO really comes into its own is that it will just as easily access an SQL data-
base, assuming that your JDO implementation supports this. All that is necessary is
to extend the jdo.properties file to have a JDBC driver and a JDBC-style URL (details
of these are discussed in Recipe 20.5). For example:

javax.jdo.option.ConnectionURL=jdbc:postgresql:ecom
javax.jdo.option.ConnectionDriverName=org.postgresql.Driver

See Also
There is much more to JDO than I’ve covered here. The web site http://www.
jdocentral.com/ contains JDO information, articles, and links to many implementa-
tions. The O’Reilly book Java Data Objects, by David Jordan and Craig Russell (both
of whom are on the JDO standards committee), covers JDO in detail.

20.2 Text-File Databases

Problem
You wish to treat a text file as a database.

Solution
Write an Accessor class that returns objects of the correct type.

Discussion
The fictional JabaDot web site, like many web sites, has a list of registered users.
Each user has a login name, full name, password, email address, privilege level, and
so forth and is represented by a User object. These are stored in the User database.

This database has several versions, so I have an abstract class to represent all the user
data accessors, called UserDB. UserDB and all its subclasses implement the Data Acces-
sor Object (DAO) design pattern: use a class that encapsulates the complexity of
dealing with a particular database. The DAO’s main function is to read and write the
database; in the text-based version, the reading can be done in the constructor or in
the getUsers() method.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Text-File Databases | 575

Of course, for efficiency, we want to do this reading only once, even though we may
have many users visiting the site. As a result, the design pattern known as singleton
(ensure one single instance exists; see Recipe 9.10) is used. Anybody wanting a
UserDB object does not construct one (the constructor is private) but must call
getInstance(). Unsurprisingly, getInstance() returns the same value to anyone who
calls it. The only implication of this is that some of the methods must be
synchronized (see Chapter 24) to prevent complications when more than one user
accesses the (single) UserDB object concurrently.

The code in Example 20-2 uses a class called JDConstants (JabaDot constants), which
is a wrapper around a Properties object (see Recipe 7.7) to get values such as the
location of the database.

Example 20-2. UserDB.java

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException; // Only used by JDBC version
import java.lang.reflect.*; // For loading our subclass class.

/** A base for several DAOs for User objects.
 * We use a Singleton access method for efficiency and to enforce
 * single access on the database, which means we can keep an in-memory
 * copy (in an ArrayList) perfectly in synch with the database.
 *
 * We provide field numbers, which are 1-based (for SQL), not 0 as per Java.
 */
public abstract class UserDB {

 public static final int NAME = 1;
 public static final int PASSWORD = 2;
 public static final int FULLNAME = 3;
 public static final int EMAIL = 4;
 public static final int CITY = 5;
 public static final int PROVINCE = 6;
 public static final int COUNTRY = 7;
 public static final int PRIVS = 8;

 protected ArrayList users;

 protected static UserDB singleton;

 /** Static code block to intialize the Singleton. */
 static {
 String dbClass = null;
 try {
 dbClass = JDConstants.getProperty("jabadot.userdb.class");
 singleton = (UserDB)Class.forName(dbClass).newInstance();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 20: Database Access

 } catch (ClassNotFoundException ex) {
 System.err.println("Unable to instantiate UserDB singleton " +
 dbClass + " (" + ex.toString() + ")");
 throw new IllegalArgumentException(ex.toString());
 } catch (Exception ex) {
 System.err.println(
 "Unexpected exception: Unable to initialize UserDB singleton");
 ex.printStackTrace(System.err);
 throw new IllegalArgumentException(ex.toString());
 }
 }

 /** In some subclasses the constructor will probably load the database,
 * while in others it may defer this until getUserList().
 */
 protected UserDB() throws IOException, SQLException {
 users = new ArrayList();
 }

 /** "factory" method to get an instance, which will always be
 * the Singleton.
 */
 public static UserDB getInstance() {
 if (singleton == null)
 throw new IllegalStateException("UserDB initialization failed");
 return singleton;
 }

 /** Get the list of users. */
 public ArrayList getUserList() {
 return users;
 }

 /** Get the User object for a given nickname */
 public User getUser(String nick) {
 Iterator it = users.iterator();
 while (it.hasNext()) {
 User u = (User)it.next();
 if (u.getName().equals(nick))
 return u;
 }
 return null;
 }

 public synchronized void addUser(User nu) throws IOException, SQLException {
 // Add it to the in-memory list
 users.add(nu);

 // Add it to the on-disk version
 // N.B. - must be done in subclass.
 }

Example 20-2. UserDB.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Text-File Databases | 577

In the initial design, this information was stored in a text file. The UserDB class reads
this text file and returns a collection of User objects, one per user. It also has various
“get” methods, such as the one that finds a user by login name. The basic approach
is to open a BufferedReader (see Chapter 10), read each line, and (for nonblank, non-
comment lines) construct a StringTokenizer (see Recipe 3.2) to retrieve all the fields.
If the line is well-formed (has all its fields), construct a User object and add it to the
collection.

The file format is simple, with one user per line:

#name:passwd:fullname:email:City:Prov:Country:privs
admin:secret1:JabaDot Administrator:ian@darwinsys.com:Toronto:ON:CA:A
ian:secret2:Ian Darwin:ian@darwinsys.com:Toronto:ON:Canada:E

So the UserDBText class is a UserDB implementation that reads this file and creates a
User object for each noncomment line in the file. Example 20-3 shows how it works.

 public abstract void setPassword(String nick, String newPass)
 throws SQLException;

 public abstract void deleteUser(String nick)
 throws SQLException;
}

Example 20-3. UserDBText.java

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException;

/** A trivial "database" for User objects, stored in a flat file.
 * <P>
 * Since this is expected to be used heavily, and to avoid the overhead
 * of re-reading the file, the "Singleton" Design Pattern is used
 * to ensure that there is only ever one instance of this class.
 */
public class UserDBText extends UserDB {
 protected final static String DEF_NAME =
 "/home/ian/src/jabadot/userdb.txt";

 protected String fileName;

 protected UserDBText() throws IOException,SQLException {
 this(DEF_NAME);
 }

 /** Constructor */
 protected UserDBText(String fn) throws IOException,SQLException {
 super();
 fileName = fn;

Example 20-2. UserDB.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 20: Database Access

 BufferedReader is = new BufferedReader(new FileReader(fn));
 String line;
 while ((line = is.readLine()) != null) {
 //name:password:fullname:City:Prov:Country:privs

 if (line.startsWith("#")) { // comment
 continue;
 }

 StringTokenizer st =
 new StringTokenizer(line, ":");
 String nick = st.nextToken();
 String pass = st.nextToken();
 String full = st.nextToken();
 String email = st.nextToken();
 String city = st.nextToken();
 String prov = st.nextToken();
 String ctry = st.nextToken();
 User u = new User(nick, pass, full, email,
 city, prov, ctry);
 String privs = st.nextToken();
 if (privs.indexOf("A") != -1) {
 u.setAdminPrivileged(true);
 }
 users.add(u);
 }
 }

 protected PrintWriter pw;

 public synchronized void addUser(User nu) throws IOException,SQLException {
 // Add it to the in-memory list
 super.addUser(nu);

 // Add it to the on-disk version
 if (pw == null) {
 pw = new PrintWriter(new FileWriter(fileName, true));
 }
 pw.println(toDB(nu));
 // toDB returns: name:password:fullname:City:Prov:Country:privs
 pw.flush();
 }

 protected String toDB(User u) {
 // #name:password:fullName:email:City:Prov:Country:privs
 char privs = '-';
 if (adminPrivs)
 privs = 'A';
 else if (editPrivs)
 privs = 'E';

Example 20-3. UserDBText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

DBM Databases | 579

This version does not have any “set” methods, which would be needed to allow a
user to change his/her password, for example. Those will come later.

See Also
If your text-format data file is in a format similar to the one used here, you may be
able to massage it into a form where the SimpleText driver (see online source contrib/
JDBCDriver-Moss) can be used to access the data using JDBC (see Recipe 20.4).

20.3 DBM Databases

Problem
You need to access a DBM file.

Solution
Use my code, or SleepyCat’s code, to interface DBM from Java.

Discussion
Unix systems are commonly supplied with some form of DBM or DB* data file, often
called a database. These are not relational databases but are key/value pairs, rather
like a java.util.Hashtable that is automatically persisted to disk whenever you
called its put() method. This format is also used on Windows by a few programs; for
example, the Win32 version of Netscape keeps its history in a history.db or netscape.hst
file, which is in this format. Not convinced?

daroad.darwinsys.com$ pwd
/c/program files/netscape/users/ian
daroad.darwinsys.com$ file *.hst

 return new StringBuffer()
 .append(u.name).append(':')
 .append(u.password).append(':')
 .append(u.fullName).append(':')
 .append(u.email).append(':')
 .append(u.city).append(':')
 .append(u.prov).append(':')
 .append(u.country).append(':')
 .append(u.privs)
 .toString();
 }
}

* DBM is the original format; DB is a newer, more general format. DBM is actually now a frontend to DB, but
because it’s a bit simpler, I’ve used it for this example. GDBM is the FSF’s implementation.

Example 20-3. UserDBText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 20: Database Access

netscape.hst: Berkeley DB Hash file (Version 2, Little Endian, Bucket Size 4096,
Bucket Shift 12, Directory Size 256, Segment Size 256, Segment Shift 8, Overflow
Point 8, Last Freed 36, Max Bucket 184, High Mask 0xff, Low Mask 0x7f, Fill Factor
54, Number of Keys 733)
daroad.darwinsys.com$

The Unix file command* decodes file types; it’s what Unix people rely on instead of
(or in addition to) filename extensions.

So the DBM format is a nice, general mapping from keys to values. But how can we
use it in Java? There is no publicly defined mapping for Java, so I wrote my own. It
uses a fair bit of native code, that is, C code called from Java that in turn calls the
DBM library. I’ll discuss native code in Recipe 26.5. For now it suffices to know that
we can initialize a DBM file by calling the relevant constructor, passing the name of
our DB file. We can iterate over all the key/value pairs by calling firstkey() once
and then nextkey() repeatedly until it returns null. Both byte arrays and objects can
be stored and retrieved; it is up to the programmer to know which is which (hint: use
one or the other within a given DBM file). Objects are serialized using normal Java
object serialization (see Recipe 10.18). Here is the API for the DBM class:

public DBM(String fileName) throws IOException;
public Object nextkey(Object) throws IOException;
public byte[] nextkey(byte[]) throws IOException;
public Object firstkeyObject() throws IOException;
public byte[] firstkey() throws IOException;
public void store(Object,Object) throws IOException;
public void store(byte[],byte[]) throws IOException;
public Object fetch(Object) throws IOException;
public byte[] fetch(byte[]) throws IOException;
public void close();

A simple program to print out the sites we have visited as listed in our Netscape his-
tory is shown in Example 20-4.

* The version of file(1) in Linux and BSD systems was originally written by your humble scribe.

Example 20-4. ReadHistNS.java

import java.io.IOException;

/** Demonstration of reading the MS-Windows Netscape History
 * under UNIX using DBM.java.
 */
public class ReadHistNS {
 public static void main(String[] unused) throws IOException {
 DBM d = new DBM("netscape.hst");
 byte[] ba;
 for (ba = d.firstkey(); ba != null; ba = d.nextkey(ba)) {
 System.out.println("Key=\"" + new String(ba) + '"');
 byte[] val = d.fetch(ba);
 for (int i=0; i<16&&i<val.length; i++) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

DBM Databases | 581

The DBM format is an emulation of an older format, built on top of the DB library.
Because of this, the filename must end in .pag, so I copied the history file to the name
shown in the DBM constructor call.

A longer program, which includes both storing and retrieving in a DBM file, is the
DBM version of the UserDB class, UserDBDBM. This is shown in Example 20-5.

 System.out.print((short)val[i]);
 System.out.print(' ');
 }
 }
 }
}

Example 20-5. UserDBDBM.java

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException;

/** A trivial "database" for User objects, stored in a flat file.
 * <P>
 * Since this is expected to be used heavily, and to avoid the overhead
 * of re-reading the file, the "Singleton" Design Pattern is used
 * to ensure that there is only ever one instance of this class.
 */
public class UserDBDBM extends UserDB {
 protected final static String DEF_NAME =
 "/home/ian/src/jabadot/userdb"; // It appends .pag

 protected DBM db;

 /** Default Constructor */
 protected UserDBDBM() throws IOException,SQLException {
 this(DEF_NAME);
 }

 /** Constructor */
 protected UserDBDBM(String fn) throws IOException,SQLException {
 super();

 db = new DBM(fn);
 String k;
 Object o;

 // Iterate through contents of DBM, adding into list.
 for (o=db.firstkeyObject(); o!=null; o=db.nextkey(o)) {
 // firstkey/nextkey give Key as Object, cast to String.
 k = (String)o;
 o = db.fetch(k); // Get corresponding Value (a User)
 users.add((User)o); // Add to list.

Example 20-4. ReadHistNS.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 20: Database Access

See Also
SleepyCat software (http://www.sleepycat.com) provides an improved version of
Berkeley DBM and includes a Java driver for it. The Free Software Foundation pro-
vides GDBM, another DBM-like mechanism.

20.4 JDBC Setup and Connection

Problem
You want to access a database via JDBC.

Solution
Use Class.forName() and DriverManager.getConnection().

Discussion
While DB and friends have their place, most of the modern database action is in rela-
tional databases, and accordingly Java database action is in JDBC. So the bulk of this
chapter is devoted to JDBC.

This is not the place for a tutorial on relational databases. I’ll assume that you know
a little bit about SQL, the universal language used to control relational databases.
SQL has queries like “SELECT * from userdb”, which means to select all columns
(the *) from all rows (entries) in a database table named userdb (all rows are selected
because the SELECT statement has no “where” clause). SQL also has updates like
INSERT, DELETE, CREATE, and DROP. If you need more information on SQL or
relational databases, many good books can introduce you to the topic in more detail.

JDBC has two Levels, JDBC 1 and JDBC 2. Level 1 is included in all JDBC imple-
mentation and drivers; Level 2 is optional and requires a Level 2 driver. This chapter
concentrates on common features, primarily Level 1.

 }
 }

 /** Add one user to the list, both in-memory and on disk. */
 public synchronized void addUser(User nu) throws IOException, SQLException {
 // Add it to the in-memory list
 super.addUser(nu);

 // Add it to the on-disk version: store in DB with
 // key = nickname, value = object.
 db.store(nu.getName(), nu);
 }
}

Example 20-5. UserDBDBM.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

JDBC Setup and Connection | 583

The first step in using JDBC 1 is to load your database’s driver. This is performed
using some Java JVM magic. The class java.lang.Class has a method called forName()
that takes a string containing the full Java name for a class and loads the class,
returning a Class object describing it. This is part of the introspection or reflection
API (see Chapter 25) but can be used anytime to ensure that a class has been cor-
rectly configured into your CLASSPATH. This is the use that we’ll see here. And, in
fact, part of the challenge of installing JDBC drivers is ensuring that they are in your
CLASSPATH at deployment time. The advantage of my slightly convoluted
approach is that the drivers do not have to be on your CLASSPATH at compile time.
In some cases, this can allow customers to use your software with database drivers
that didn’t even exist when your software was written; how’s that for flexibility?

But wait, there’s more! In addition to checking your CLASSPATH, this method also
registers the driver with another class called the DriverManager. How does it work?
Each valid JDBC driver has a bit of method-like code called a static initializer. This is
used whenever the class is loaded—just what the doctor ordered! So the static block
registers the class with the DriverManager when you call Class.forName() on the
driver class.

For the curious, the static code block in a Driver called BarFileDriver looks some-
thing like this:

/** Static code block, to initialize with the DriverManager. */
static {
 try {
 DriverManager.registerDriver(new BarFileDriver());

Ian’s Basic Steps: Using a JDBC Query
To create a JDBC query:

1. Load the appropriate Driver class, which has the side effect of registering with
the DriverManager.

2. Get a Connection object, using DriverManager.getConnection():
Connection con = DriverManager.getConnection (dbURL, name, pass);

3. Get a Statement object, using the Connection object’s createStatement():
Statement stmt = con.createStatement();

4. Get a ResultSet object, using the Statement object’s executeQuery():
ResultSet rs = stmt.executeQuery("select * from MyTable");

5. Iterate over the ResultSet:
while (rs.next()) {
 int x = rs.getInt("CustNO");

6. Close the ResultSet.

7. Close the Statement.

8. Close the Connection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 20: Database Access

 } catch (SQLException e) {
 DriverManager.println("Can't load driver" +
 "darwinsys.sql.BarFileDriver");
 }
}

Example 20-6 shows a bit of code that tries to load two drivers. The first is the
JDBC-to-ODBC bridge described in the Introduction. The second is one of the com-
mercial drivers from Oracle.

The first load succeeds; the second fails since I don’t have the Oracle driver installed
on my notebook:

daroad.darwinsys.com$ java LoadDriver
Loaded class sun.jdbc.odbc.JdbcOdbcDriver
java.lang.ClassNotFoundException: oracle/jdbc/driver/OracleDriver
daroad.darwinsys.com$

It is also possible to preregister a driver using the -D option to load it into the System
Properties; in this case, you can skip the Class.forName() step:

java -Djdbc.drivers=com.acmewidgets.AcmeDriver:foo.bar.OhMyDriver MyClass

Once you have registered the driver, you are ready to connect to the database.

Example 20-6. LoadDriver.java

import java.awt.*;
import java.sql.*;

/** Load some drivers. */
public class LoadDriver {

 public static void main(String[] av) {
 try {

 // Try to load the jdbc-odbc bridge driver
 // Should be present on Sun JDK implementations.
 Class c = Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 System.out.println("Loaded " + c);

 // Try to load an Oracle driver.
 Class d = Class.forName("oracle.jdbc.driver.OracleDriver");
 System.out.println("Loaded " + d);
 } catch (ClassNotFoundException ex) {
 System.err.println(ex);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Connecting to a JDBC Database | 585

20.5 Connecting to a JDBC Database

Problem
You need to connect to the database.

Solution
Use DriverManager.getConnection().

Discussion
The static method DriverManager.getConnection() lets you connect to the database
using a URL-like syntax for the database name (for example, jdbc:dbmsnetproto://
server:4567/mydatabase) and a login name and password. The “dbURL” that you
give must begin with jdbc:. The rest of it can be in whatever form the driver ven-
dor’s documentation requires and is checked by the driver. The DriverManager asks
each driver you have loaded (if you’ve loaded any) to see if it can handle a URL of
the form you provided. The first one that responds in the affirmative gets to handle
the connection, and its connect() method is called for you (by DriverManager.
getConnection()).

Four types of drivers are defined by Sun (not in the JDBC specification but in their
less formal documentation); these are shown in Table 20-1.

Table 20-2 shows some interesting drivers. I’ll use the ODBC bridge driver and
InstantDB in examples for this chapter. Some drivers work only locally (like the
JDBC-ODBC bridge), while others work across a network. For details on different
types of drivers, please refer to the books listed at the end of this chapter. Most of
these drivers are commercial products. InstantDB is a clever freeware* product; the
driver and the entire database management system reside inside the same Java Vir-
tual Machine as the client (the database is stored on disk like any other, of course).
This eliminates the interprocess communication overhead of some databases. How-
ever, you can’t have multiple JVM processes updating the same database at the same
time.

Table 20-1. JDBC driver types

Type Name Notes

1 JDBC-ODBC bridge Provides JDBC API access.

2 Java and Native driver Java code calls Native DB driver.

3 Java and Middleware Java contacts Middleware server.

4 Pure Java Java contacts (possibly remote) DB directly.

* At this writing, it is also a freeware product in flux; use Google to see if you can find it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 20: Database Access

Example 20-7 is a sample application that connects to a database. Note that we now
have to catch the checked exception SQLException since we’re using the JDBC API.
(The Class.forName() method is in java.lang, and so it is part of the standard Java
API, not part of JDBC.)

Table 20-2. Some JDBC drivers

Driver class Start of dbURL Database

sun.jdbc.odbc.JdbcOdbcDriver jdbc:odbc: Bridge to Microsoft ODBC (included with
JDK)

jdbc.idbDriver jdbc:idb: Instant Database (IDB)

oracle.jdbc.Driver.OracleDriver jdbc:oracle:thin:
@server:port#:dbname

Oracle

postgresql.Driver jdbc:postgres://
host/database

PostGreSQL (freeware database; see
http://www.postgresql.org)

org.gjt.mm.mysql.Driver jdbc:mysql://host/
database

MySql (freeware database; see http://
www.mysql.com)

Example 20-7. Connect.java

import java.awt.*;
import java.sql.*;

/** Load a driver and connect to a database.
 */
public class Connect {

 public static void main(String[] av) {
 String dbURL = "jdbc:odbc:Companies";
 try {
 // Load the jdbc-odbc bridge driver
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Enable logging
 DriverManager.setLogWriter(new PrintWriter(System.err));

 System.out.println("Getting Connection");
 Connection conn =
 DriverManager.getConnection(dbURL, "ian", ""); // user, passwd

 // If a SQLWarning object is available, print its
 // warning(s). There may be multiple warnings chained.

 SQLWarning warn = conn.getWarnings();
 while (warn != null) {
 System.out.println("SQLState: " + warn.getSQLState());
 System.out.println("Message: " + warn.getMessage());
 System.out.println("Vendor: " + warn.getErrorCode());
 System.out.println("");
 warn = warn.getNextWarning();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Connecting to a JDBC Database | 587

I’ve enabled two verbosity options in this example. The use of DriverManager.
setLogStream() causes any logging to be done to the standard error, and the
Connection object’s getWarnings() prints any additional warnings that come up.

When I run it on a system that doesn’t have ODBC installed, I get the following out-
puts. They are all from the setLogStream() except for the last one, which is a fatal
error:

Getting Connection
JDBC to ODBC Bridge: Checking security
*Driver.connect (jdbc:odbc:Companies)
JDBC to ODBC Bridge: Checking security
JDBC to ODBC Bridge 1.2001
Current Date/Time: Fri Jun 16 16:18:45 GMT-5:00 2000
Loading JdbcOdbc library
Unable to load JdbcOdbc library
Unable to load JdbcOdbc library
Unable to allocate environment
Database access failed java.sql.SQLException: driver not found: jdbc:odbc:Companies

On a system with JDBC installed, the connection goes further and verifies that the
named database exists and can be opened.

See Also
Performance will suffer if a program repeatedly opens and closes JDBC connections,
because getting a Connection object involves “logging in” to the database. One solu-
tion is to use a connection pool: you preallocate a certain number of Connection
objects, hand them out on demand, and the servlet returns its connection to the pool
when done. Writing a simple connection pool is easy, but writing a connection pool
reliable enough to be used in production is very hard. For this reason, JDBC 2 intro-
duced the notion of having the driver provide connection pooling. However, this fea-
ture is optional—check your driver’s documentation. Also, Enterprise JavaBeans
(EJB) running in an application server usually provide connection pooling; for exam-
ple, if a servlet is using EJBs and the servlet engine runs in the same “application
server” process, this can be a very efficient solution. See the O’Reilly book Enterprise
JavaBeans by Richard Monson-Haefel for information.

 // Process the connection here...

 conn.close(); // All done with that DB connection

 } catch (ClassNotFoundException e) {
 System.out.println("Can't load driver " + e);
 } catch (SQLException e) {
 System.out.println("Database access failed " + e);
 }
 }
}

Example 20-7. Connect.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 20: Database Access

20.6 Sending a JDBC Query and Getting Results

Problem
You’re getting tired of all this setup and want to see results.

Solution
Get a Statement and use it to execute a query. You’ll get a set of results, a ResultSet
object.

Discussion
The Connection object can generate various kinds of statements. The simplest is a
Statement created by createStatement(), which is used to send your SQL query as an
arbitrary string:

Statement stmt = conn.createStatement();
stmt.executeQuery("select * from myTable");

The result of the query is returned as a ResultSet object. The ResultSet works like an
iterator in that it lets you access all the rows of the result that match the query. This
process is shown in Figure 20-1.

Typically, you use it like this:

while (rs.next()) {
 int i = rs.getInt(1); // or getInt("UserID");

As the comment suggests, you can retrieve elements from the ResultSet either by
their column index (which starts at one, unlike most Java things, which typically
start at zero) or column name. In JDBC 1, you must retrieve the values in increasing
order by the order of the SELECT (or by their column order in the database if the

Figure 20-1. ResultSet illustrated

cursor
.
.
.

ian *** Ian Darwin

jo *** Jo Jenkins

1-name
2-password

3-full name
other fields

Database

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sending a JDBC Query and Getting Results | 589

query is SELECT *). In JDBC 2, you can retrieve them in any order (and, in fact,
many JDBC 1 drivers don’t enforce the retrieving of values in certain orders). If you
want to learn the column names (a sort of introspection), you can use a ResultSet’s
getResultSetMetaData() method, described in Recipe 20.12. SQL handles many
types of data, and JDBC offers corresponding methods to get them from a ResultSet.
The common ones are shown in Table 20-3.

Assuming that we have a relational database containing the User data, we can
retrieve it as demonstrated in Example 20-8. This program retrieves any or all entries
that have a username of ian and prints the ResultSets in a loop. It prints lines like:

User ian is named Ian Darwin

The source code is shown in Example 20-8.

Table 20-3. Data type mappings between SQL and JDBC

JDBC method SQL type Java type

getBit() BIT boolean

getByte() TINYINT byte

getShort() SMALLINT short

getInt() INTEGER int

getLong() BIGINT long

getFloat() REAL float

getDouble() DOUBLE double

getString() CHAR String

getString() VARCHAR String

getString() LONGVARCHAR String

getDate() DATE java.sql.Date

getTimeStamp() TIME java.sql.Date

getObject() BLOB Object

Example 20-8. UserQuery.java

import jabadot.*;

import java.sql.*;
import java.io.*;
import java.util.*;

/** Look up one use from the relational database using JDBC.
 */
public class UserQuery {

 public static void main(String[] fn)
 throws ClassNotFoundException, SQLException, IOException {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 20: Database Access

Note that a ResultSet is tied to its Connection object; if the Connection is closed, the
ResultSet becomes invalid. You should either extract the data from the ResultSet
before closing it or cache it in a CachedRowSet (for more on RowSets, see Recipe 20.10).

20.7 Using JDBC Prepared Statements

Problem
You want to save the overhead of parsing, compiling, and otherwise setting up a
statement that will be called multiple times.

Solution
Use a PreparedStatement.

 // Load the database driver
 Class.forName(JDConstants.getProperty("jabadot.userdb.driver"));

 System.out.println("Getting Connection");
 Connection conn = DriverManager.getConnection(
 JDConstants.getProperty("jabadot.dburl"));

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(
 "SELECT * from userdb where name='ian'");

 // Now retrieve (all) the rows that matched the query
 while (rs.next()) {

 // Field 1 is login name
 String name = rs.getString(1);

 // Password is field 2 - do not display.

 // Column 3 is fullname
 String fullName = rs.getString(3);

 System.out.println("User " + name + " is named " + fullName);
 }

 rs.close(); // All done with that resultset
 stmt.close(); // All done with that statement
 conn.close(); // All done with that DB connection
 System.exit(0); // All done with this program.
 }
}

Example 20-8. UserQuery.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using JDBC Prepared Statements | 591

Discussion
An SQL query consists of textual characters. The database must first parse a query
and then compile it into something that can be run in the database. This can add up
to a lot of overhead if you are sending a lot of queries. In some types of applications,
you’ll use a number of queries that are the same syntactically but have different values:

select * from payroll where personnelNo = 12345;
select * from payroll where personnelNo = 23740;
select * from payroll where personnelNo = 97120;

In this case, the statement needs to be parsed and compiled only once. But if you
keep making up select statements and sending them, the database mindlessly keeps
parsing and compiling them. Better to use a prepared statement, in which the vari-
able part is replaced by a parameter marker (a question mark). Then the statement
need only be parsed (or organized, optimized, compiled, or whatever) once:

PreparedStatement ps = conn.prepareStatement(
 "select * from payroll where personnelNo = ?;")

Before you can use this prepared statement, you must fill in the blanks with the
appropriate set methods. These take a parameter number (starting at one, not zero
like most things in Java) and the value to be plugged in. Then use executeQuery()
with no arguments since the query is already stored in the statement:

ps.setInt(1, 12345);
rs = ps.executeQuery();

If there are multiple parameters, you address them by number; for example, if there
were a second parameter of type double, its value would be set by:

ps.setDouble(2, 12345);

Example 20-9 is the JDBC version of the User accessor, UserDBJDBC. It uses prepared
statements for inserting new users, changing passwords, and setting the last login
date.

Example 20-9. UserDBJDBC.java

package jabadot;

import java.sql.*;
import java.io.*;
import java.util.*;

/** A UserDB using JDBC and a relational DBMS.
 * We use the inherited getUser ("Find the User object for a given nickname")
 * since we keep everything in memory in this version.
 */
public class UserDBJDBC extends UserDB {

 protected final static String DB_URL =
 JDConstants.getProperty("jabadot.userdb.url");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 20: Database Access

 protected PreparedStatement setPasswordStatement;
 protected PreparedStatement addUserStmt;
 protected PreparedStatement setLastLoginStmt;
 protected PreparedStatement deleteUserStmt;

 /** Default constructor */
 protected UserDBJDBC()
 throws ClassNotFoundException, SQLException, IOException {
 this(DB_URL);
 }

 /** Constructor */
 public UserDBJDBC(String fn)
 throws ClassNotFoundException, SQLException, IOException {
 super();

 // Load the database driver
 Class.forName("jdbc.idbDriver");

 Connection conn = DriverManager.getConnection(fn,
 "www", ""); // user, password

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from userdb");

 while (rs.next()) {
 //name:password:fullname:City:Prov:Country:privs

 // Get the fields from the query.
 String nick = rs.getString(1);
 String pass = rs.getString(2);
 String full = rs.getString(3);
 String email = rs.getString(4);
 String city = rs.getString(5);
 String prov = rs.getString(6);
 String ctry = rs.getString(7);
 int iprivs = rs.getInt(8);

 // Construct a user object from the fields
 User u = new User(nick, pass, full, email,
 city, prov, ctry, iprivs);

 // Add it to the in-memory copy.
 users.add(u);
 }
 stmt.close();
 rs.close(); // All done with that resultset

 // Set up the PreparedStatements now so we don't have to
 // re-create them each time needed.
 addUserStmt = conn.prepareStatement(
 "insert into userdb values (?,?,?,?,?,?,?,?)");

Example 20-9. UserDBJDBC.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using JDBC Prepared Statements | 593

 setPasswordStatement = conn.prepareStatement(
 "update userdb SET password = ? where name = ?");
 setLastLoginStmt = conn.prepareStatement(
 "update userdb SET lastLogin = ? where name = ?");
 deleteUserStmt = conn.prepareStatement(
 "delete from userdb where name = ?");
 }

 /** Add one user to the list, both in-memory and on disk. */
 public synchronized void addUser(User nu)
 throws IOException, SQLException {
 // Add it to the in-memory list
 super.addUser(nu);

 // Copy fields from user to DB
 addUserStmt.setString(1, nu.name);
 addUserStmt.setString(2, nu.password);
 addUserStmt.setString(3, nu.fullName);
 addUserStmt.setString(4, nu.email);
 addUserStmt.setString(5, nu.city);
 addUserStmt.setString(6, nu.prov);
 addUserStmt.setString(7, nu.country);
 addUserStmt.setInt (8, nu.getPrivs());

 // Store in persistent DB
 addUserStmt.executeUpdate();
 }

 public void deleteUser(String nick) throws SQLException {
 // Find the user object
 User u = getUser(nick);
 if (u == null) {
 throw new SQLException("User " + nick + " not in in-memory DB");
 }
 deleteUserStmt.setString(1, nick);
 int n = deleteUserStmt.executeUpdate();
 if (n != 1) { // not just one row??
 /*CANTHAPPEN */
 throw new SQLException("ERROR: deleted " + n + " rows!!");
 }

 // IFF we deleted it from the DB, also remove from the in-memory list
 users.remove(u);
 }

 public synchronized void setPassword(String nick, String newPass)
 throws SQLException {

 // Find the user object
 User u = getUser(nick);

Example 20-9. UserDBJDBC.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 20: Database Access

Another example of prepared statements is given in Recipe 20.11.

20.8 Using Stored Procedures with JDBC

Problem
You want to use a procedure stored in the database (a stored procedure).

Solution
Use a CallableStatement.

Discussion
A stored procedure is a series of SQL statements* stored as part of the database for
use by any SQL user or programmer, including JDBC developers. Stored procedures
are used for the same reasons as prepared statements: efficiency and convenience.

 // Change it in DB first; if this fails, the info in
 // the in-memory copy won't be changed either.
 setPasswordStatement.setString(1, newPass);
 setPasswordStatement.setString(2, nick);
 setPasswordStatement.executeUpdate();

 // Change it in-memory
 u.setPassword(newPass);
 }

 /** Update the Last Login Date field. */
 public synchronized void setLoginDate(String nick, java.util.Date date)
 throws SQLException {

 // Find the user object
 User u = getUser(nick);

 // Change it in DB first; if this fails, the date in
 // the in-memory copy won't be changed either.
 // Have to convert from java.util.Date to java.sql.Date here.
 // Would be more efficient to use java.sql.Date everywhere.
 setLastLoginStmt.setDate(1, new java.sql.Date(date.getTime()));
 setLastLoginStmt.setString(2, nick);
 setLastLoginStmt.executeUpdate();

 // Change it in-memory
 u.setLastLoginDate(date);
 }
}

* And possibly some database-dependent utility statements.

Example 20-9. UserDBJDBC.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changing Data Using a ResultSet | 595

Typically, the database administrator (DBA) at a large database shop sets up stored
procedures and tells you what they are called, what parameters they require, and
what they return. Putting the stored procedure itself into the database is totally data-
base-dependent and not discussed here.

Suppose that I wish to see a list of user accounts that have not been used for a cer-
tain length of time. Instead of coding this logic into a JDBC program, I might define
it using database-specific statements to write and store a procedure in the database
and then use the following code. Centralizing this logic in the database has some
advantages for maintenance and also, in most databases, for speed:

CallableStatment cs = conn.prepareCall("{ call ListDefunctUsers }");
ResultSet rs = cs.executeQuery();

I then process the ResultSet in the normal way.

20.9 Changing Data Using a ResultSet

Problem
You want to change the data using a ResultSet.

Solution
If you have JDBC 2 and a conforming driver, you can request an updatable ResultSet
when you create the statement object. When you’re on the row you want to change,
use the update() methods and end with updateRow().

Discussion
You need to create the statement with the attribute ResultSet.CONCUR_UPDATABLE as
shown in Example 20-10. Do an SQL SELECT with this statement. When you are on
the row (only one row matches this particular query because it is selecting on the pri-
mary key), use the appropriate update method for the type of data in the column you
want to change, passing in the column name or number and the new value. You can
change more than one column in the current row this way. When you’re done, call
updateRow() on the ResultSet. Assuming that you didn’t change the autocommit
state, the data is committed to the database.

Example 20-10. ResultSetUpdate.java (partial listing)

try {
 con = DriverManager.getConnection(url, user, pass);
 stmt = con.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 rs = stmt.executeQuery("SELECT * FROM Users where nick=\"ian\"");

 // Get the resultset ready, update the passwd field, commit
 rs.first();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 20: Database Access

20.10 Storing Results in a RowSet

Problem
You need to save some results in a JDBC form without maintaining a database con-
nection. Or you want some JDBC results to have JavaBean semantics.

Solution
Use a RowSet—in particular, a CachedRowSet.

Discussion
The RowSet interface, a subinterface of ResultSet, was introduced with JDBC 2.
Because a RowSet is a ResultSet, you can use any of the ResultSet processing meth-
ods previously discussed. But RowSets tend to be more self-contained; you typically
do not need to specify a driver, and performing queries is done in a new way. You
call setCommand() to specify the query and execute() to perform the query (this takes
the place of creating a Statement and calling its executeQuery() method).

There five subinterfaces are listed in Table 20-4. For each of these, a reference imple-
mentation is provided in the com.sun.rowset package.

But these, like the JDBC-ODBC bridge driver mentioned in Recipe 20.5, are in the
com.sun package hierarchy, meaning that they are not fully supported. So although

 rs.updateString("password", "unguessable");
 rs.updateRow();

 rs.close();
 stmt.close();
 con.close();
} catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
}

Table 20-4. RowSet subinterfaces

Interface name Implementation class Purpose

CachedRowSet CachedRowSetImpl Caches results in memory; disconnected Rowset

FilteredRowSet FilteredRowSetImpl Implements lightweight querying, using javax.sql.
rowset.Predicate

JdbcRowSet JdbcRowSetImpl Makes results available as a JavaBean component

JoinRowSet JoinRowSetImpl Combine multiple RowSets into one, like an SQL join

WebRowSet WebRowSetImpl Convert between XML data and RowSet

Example 20-10. ResultSetUpdate.java (partial listing) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Results in a RowSet | 597

the Javadoc suggests using the new keyword to instantiate them, I prefer to use Class.
forName() to avoid importing from “unsupported” packages, and so I can compile
even if these classes are not available.*

The CachedRowSet looks the most interesting and useful. In Example 20-11, a
CachedRowSet is created and populated with setCommand() and execute(). Then
(hypothetically some time later) the user changes some data. After that is completed,
we call acceptChanges(), which tells the CachedRowSet to put the changes back into
the JDBC database.

* Now that these classes have been added to JDK 1.5, this precaution is not as important.

Example 20-11. CachedRowSetDemo

import javax.sql.*;

/** Demonstrate simple use of the CachedRowSet.
 * The RowSet family of interfaces is in JDK1.5, but the Implementation
 * classes are (as of Beta 1) still in the unsupported "com.sun" package.
 */
public class CachedRowSetDemo {
 public static void main(String[] args) throws Exception {
 CachedRowSet rs;

 // Create the class with class.forName to avoid importing
 // from the unsupported com.sun packages.
 Class c = Class.forName("com.sun.rowset.CachedRowSetImpl");
 rs = (CachedRowSet)c.newInstance();

 rs.setUrl("jdbc:postgresql:tmclub");
 rs.setUsername("ian");
 rs.setPassword("secret");

 rs.setCommand("select * from members where name like ?");
 rs.setString(1, "I%");

 // This will cause the RowSet to connect, fetch its data, and
 // disconnect
 rs.execute();

 // Some time later, the client tries to do something.

 // Suppose we want to update data:
 while (rs.next()) {
 if (rs.getInt("id") == 42) {
 rs.setString("firstname", "Marvin");
 rs.updateRow(); // Normal JDBC

 // This additional call tells the CachedRowSet to connect
 // to its database and send the updated data back.
 rs.acceptChanges();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 20: Database Access

The WebRowSet has several uses that involve converting database results to or from
XML. I have used a WebRowSet in conjunction with JUnit (see Recipe 1.14) to preload
a ResultSet (since a RowSet is a ResultSet) to a known populated state before testing
the SQL formatting code in Recipe 20.13. Because it writes data in a known format
(public DTD), it could also be used with web services to exchange data across differ-
ent vendors’ systems.

See Also
The documentation for JDBC that accompanies the JDK provides more details on
the various RowSet implementations and their usages.

20.11 Changing Data Using SQL

Problem
You wish to insert or update data, create a new table, delete a table, or otherwise
change the database.

Solution
Instead of using the Statement method executeQuery(), use executeUpdate() with
SQL commands to make the change.

Discussion
The executeUpdate() method is used when you want to make a change to the data-
base as opposed to getting a list of rows with a query. You can implement either data
changes like insert or update, data structure changes like create table, or almost
anything that you can do by sending SQL directly to the database through its own
update command interface or GUI.

The program listed in Example 20-12 converts the User database from the text file
format of Recipe 20.2 into a relational database. Note that I destroy the table before
creating it, just in case an older version was in place. If there was not, executeUpdate()
simply indicates this line in its return code; it doesn’t throw an exception. Then the
program creates the table and its index. Finally, it goes into a loop reading the lines
from the text file; for each, a prepared statement is used to insert the user’s informa-
tion into the database.

 }
 }

 // If we're all done...
 rs.close();
 }
}

Example 20-11. CachedRowSetDemo (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changing Data Using SQL | 599

Example 20-12. TextToJDBC.java

package jabadot;

import java.sql.*;
import java.io.*;
import java.util.*;

/** Convert the database from text form to JDBC form.
 */
public class TextToJDBC {

 protected final static String TEXT_NAME = "userdb.txt";
 protected final static String DB_URL = "jdbc:idb:userdb.prp";

 public static void main(String[] fn)
 throws ClassNotFoundException, SQLException, IOException {

 BufferedReader is = new BufferedReader(new FileReader(TEXT_NAME));

 // Load the database driver
 Class.forName("jdbc.idbDriver");

 System.out.println("Getting Connection");
 Connection conn = DriverManager.getConnection(
 DB_URL, "ian", ""); // user, password

 System.out.println("Creating Statement");
 Statement stmt = conn.createStatement();

 System.out.println("Creating table and index");
 stmt.executeUpdate("DROP TABLE userdb");
 stmt.executeUpdate("CREATE TABLE userdb (\n" +
 "name char(12) PRIMARY KEY,\n" +
 "password char(20),\n" +
 "fullName char(30),\n" +
 "email char(60),\n" +
 "city char(20),\n" +
 "prov char(20),\n" +
 "country char(20),\n" +
 "privs int\n" +
 ")");
 stmt.executeUpdate("CREATE INDEX nickIndex ON userdb (name)");
 stmt.close();

 // put the data in the table
 PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO userdb VALUES (?,?,?,?,?,?,?,?)");

 String line;
 while ((line = is.readLine()) != null) {
 //name:password:fullname:City:Prov:Country:privs

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 20: Database Access

Once the program has run, the database is populated and ready for use by the
UserDBJDBC data accessor shown in Recipe 20.7.

20.12 Finding JDBC Metadata

Problem
You want to learn about a database or table.

 if (line.startsWith("#")) { // comment
 continue;
 }

 StringTokenizer st =
 new StringTokenizer(line, ":");
 String nick = st.nextToken();
 String pass = st.nextToken();
 String full = st.nextToken();
 String email = st.nextToken();
 String city = st.nextToken();
 String prov = st.nextToken();
 String ctry = st.nextToken();
 // User u = new User(nick, pass, full, email,
 // city, prov, ctry);
 String privs = st.nextToken();
 int iprivs = 0;
 if (privs.indexOf("A") != -1) {
 iprivs |= User.P_ADMIN;
 }
 if (privs.indexOf("E") != -1) {
 iprivs |= User.P_EDIT;
 }
 ps.setString(1, nick);
 ps.setString(2, pass);
 ps.setString(3, full);
 ps.setString(4, email);
 ps.setString(5, city);
 ps.setString(6, prov);
 ps.setString(7, ctry);
 ps.setInt(8, iprivs);
 ps.executeUpdate();
 }
 ps.close(); // All done with that statement
 conn.close(); // All done with that DB connection
 return; // All done with this program.
 }
}

Example 20-12. TextToJDBC.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding JDBC Metadata | 601

Solution
Read the documentation provided by your vendor or database administrator. Or ask
the software for a MetaData object.

Discussion
There are two classes relating to metadata (data about data) that you can ask for in
the JDBC API: DatabaseMetaData and ResultSetMetaData. Each of these has methods
that let you interrogate particular aspects. The former class is obtained from a get
method in a Connection object; the latter from a get method in the given ResultSet.

ResultSetMetaData

First, let’s look at the class ResultsDecoratorHTML, a “generic query” formatter shown
in Example 20-13. This is one of several “ResultSet Formatters” used in the
SQLRunner program of Recipe 20.13 (the parent class ResultsDecorator, discussed
with SQLRunner, simply defines a Constructor that saves the given PrintWriter as a
field, as well as providing two abstract methods that ResultsDecoratorHTML imple-
ments). When a program using ResultsDecoratorHTML calls the write() method, the
ResultSet is interrogated and formatted into a neat little HTML table, using the col-
umn names from the ResultSetMetaData as the headings for the HTML table. The
nice part about this program is that it responds to whatever columns are in the
ResultSet, which need not be in the same order as they are in the database. Consider
the two queries:

select name, address from userdb
select address, name from userdb

Any code that depends upon knowing the order in the database would look very
strange indeed if the user query requested fields in a different order than they were
stored in the database.

Example 20-13. ResultsDecoratorHTML.java

import java.io.PrintWriter;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;

/** Print ResultSet in HTML
 */
class ResultsDecoratorHTML extends ResultsDecorator {

 ResultsDecoratorHTML(PrintWriter out) {
 super(out);
 }

 public void write(ResultSet rs) throws SQLException {
 out.println("
Your response:");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 20: Database Access

DatabaseMetaData

Example 20-14 uses DatabaseMetaData to print out the name and version number of
the database product and its default transaction isolation (basically, the extent to
which users of a database can interfere with each other; see any good book on data-
bases for information on transactions and why it’s often really important to know
your database’s default transaction isolation).

 ResultSetMetaData md = rs.getMetaData();
 int count = md.getColumnCount();
 out.println("<table border=1>");
 out.print("<tr>");
 for (int i=1; i<=count; i++) {
 out.print("<th>");
 out.print(md.getColumnName(i));
 }
 out.println("</tr>");
 while (rs.next()) {
 out.print("<tr>");
 for (int i=1; i<=count; i++) {
 out.print("<td>");
 out.print(rs.getString(i));
 }
 out.println("</tr>");
 }
 out.println("</table>");
 out.flush();
 }

 /* (non-Javadoc)
 * @see ResultSetDecorator#write(int)
 */
 void write(int updateCount) throws SQLException {
 out.println("
RowCount: updateCount = " +
 updateCount + "</p>");
 }
}

Example 20-14. JDBCMeta.java

import com.darwinsys.util.FileProperties;

import java.awt.*;
import java.sql.*;

/** A database MetaData query
 */
public class JDBCMeta {

 public static void main(String[] av) {
 int i;

Example 20-13. ResultsDecoratorHTML.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding JDBC Metadata | 603

 try {
 FileProperties fp = new FileProperties("JDBCMeta.properties");

 // Load the driver
 Class.forName(fp.getProperty("driver"));

 // Get the connection
 Connection conn = DriverManager.getConnection (
 fp.getProperty("dburl"),
 fp.getProperty("user"),
 fp.getProperty("password"));

 // Get a Database MetaData as a way of interrogating
 // the names of the tables in this database.
 DatabaseMetaData meta = conn.getMetaData();

 System.out.println("We are using " + meta.getDatabaseProductName());
 System.out.println("Version is " + meta.getDatabaseProductVersion());

 int txisolation = meta.getDefaultTransactionIsolation();
 System.out.println("Database default transaction isolation is " +
 txisolation + " (" +
 transactionIsolationToString(txisolation) + ").");

 conn.close();

 System.out.println("All done!");

 } catch (java.io.IOException e) {
 System.out.println("Can't load PROPERTIES " + e);
 } catch (ClassNotFoundException e) {
 System.out.println("Can't load driver " + e);
 } catch (SQLException ex) {
 System.out.println("Database access failed:");
 System.out.println(ex);
 }
 }

 /** Convert a TransactionIsolation int (defined in java.sql.Connection)
 * to the corresponding printable string.
 */
 public static String transactionIsolationToString(int txisolation) {
 switch(txisolation) {
 case Connection.TRANSACTION_NONE:
 // transactions not supported.
 return "TRANSACTION_NONE";
 case Connection.TRANSACTION_READ_UNCOMMITTED:
 // All three phenomena can occur
 return "TRANSACTION_NONE";
 case Connection.TRANSACTION_READ_COMMITTED:
 // Dirty reads are prevented; non-repeatable reads and
 // phantom reads can occur.

Example 20-14. JDBCMeta.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 20: Database Access

When you run it, in addition to some debugging information, you’ll see something
like this. The details, of course, depend on your database:

> java JDBCMeta
Enhydra InstantDB - Version 3.13
The Initial Developer of the Original Code is Lutris Technologies Inc.
Portions created by Lutris are Copyright (C) 1997-2000 Lutris Technologies, Inc.All
Rights Reserved.
We are using InstantDB
Version is Version 3.13
Database default transaction isolation is 0 (TRANSACTION_NONE).
All done!
>

20.13 Program: SQLRunner
The SQLRunner program is a simple interface to any SQL database for which you have
a JDBC driver and a login name and password. Most databases provide such a pro-
gram, and most of them are more powerful. However, this program has the advan-
tage that it works with any database. The program reads SQL commands from a
console window (up to a semicolon), passes them to the driver, and prints the
results. If the result is a ResultSet, it is printed using a ResultsDecorator; otherwise,
it is printed as a RowCount.

The abstract ResultsDecorator class (ResultsFormatter might have been a better
name) is shown in Example 20-15. A text-mode decorator is used by default; an
HTML decorator (discussed earlier in Example 20-13) and an SQL generator (poten-
tially useful in dumping the data for insertion into another database) is also avail-
able. You can specify the decorator using command-line options or switch using the
escape mechanism; for example, a line with \mh; sets the mode to HTML for the
results of all following output.

 return "TRANSACTION_READ_COMMITTED";
 case Connection.TRANSACTION_REPEATABLE_READ:
 // Dirty reads and non-repeatable reads are prevented;
 // phantom reads can occur.
 return "TRANSACTION_REPEATABLE_READ";
 case Connection.TRANSACTION_SERIALIZABLE:
 // All three phenomena prvented; slowest!
 return "TRANSACTION_SERIALIZABLE";
 default:
 throw new IllegalArgumentException(
 txisolation + " not a valid TX_ISOLATION");
 }
 }
}

Example 20-14. JDBCMeta.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: SQLRunner | 605

To avoid hardcoding database parameters, they are fetched from a properties file,
which defaults to ${user.home}/.db.properties. For example, my .db.properties file
contains entries like the following:

Connection for the "lhbooks" database
lhbooks.DBDriver=org.postgresql.Driver
lhbooks.DBURL=jdbc:postgresql:ecom
lhbooks.DBUser=thisoneistopsecrettoo
lhbooks.DBPassword=fjkdjsj

Connection for the "tmclub " database
tmclub.DBDriver=org.postgresql.Driver
tmclub.DBURL=jdbc:postgresql:tmclub_alliston
tmclub.DBUser=dontshowthereaderstherealpassword
tmclub.DBPassword=dlkjklzj

I wish I could connect to one of these databases just by saying:

java SQLRunner -c tmclub

But that won’t work because I have to provide the driver jar files in the CLASS-
PATH. So a Unix shell script sqlrunner runs this java command and sets the class-
path to include my drivers. So I can say:

sqlrunner -c tmclub

This connects me to my Toastmasters* club database. In this example, I select all the
meetings that are scheduled for the year 2004; just to show the use of different
ResultsDecorators, I then switch to HTML and print the resultset as HTML, which
I paste into an HTML page (in a web application, a servlet would get the results and
call the ResultsDecorator directly):

SQLRunner: Loading driver org.postgresql.Driver
SQLRunner: Connecting to DB jdbc:postgresql:tmclub_alliston
SQLRunner: Connected to PostgreSQL
SQLRunner: ready.
select * from meetings where date > '2004-01-01';
Executing : <<select * from meetings where date > '2004-01-01'>>

id date theme maxspeakers roles_order
21 2004-01-07 Everything Old is New Again 7 null
22 2004-01-14 T.B.A. 7 null
23 2004-01-21 T.B.A. 7 null
24 2004-01-28 T.B.A. 7 null
25 2004-02-04 T.B.A. 7 null
26 2004-02-11 T.B.A. 7 null
27 2004-02-18 T.B.A. 7 null
28 2004-02-25 g Somehing New 7 null
29 2004-03-03 Spring is in the air? null null
2 2004-03-05 Peak Performance null null

* Toastmasters is an international nonprofit organization dedicated to public speaking and leadership; see
http://www.toastmasters.org/ for information on clubs and programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 20: Database Access

30 2004-03-10 Peak Performance 5 null
31 2004-03-17 Spring Break null null

\mh;
select * from meetings where date > '2004-01-01';
Executing : <<select * from meetings where date > '2004-01-01'>>
<table border=1>
<tr><th>id<th>date<th>theme<th>maxspeakers<th>roles_order</tr>
<tr><td>21<td>2004-01-07<td>Everything Old is New Again<td>7<td>null</tr>
<tr><td>22<td>2004-01-14<td>T.B.A.<td>7<td>null</tr>
<tr><td>23<td>2004-01-21<td>T.B.A.<td>7<td>null</tr>
<tr><td>24<td>2004-01-28<td>T.B.A.<td>7<td>null</tr>
<tr><td>25<td>2004-02-04<td>T.B.A.<td>7<td>null</tr>
<tr><td>26<td>2004-02-11<td>T.B.A.<td>7<td>null</tr>
<tr><td>27<td>2004-02-18<td>T.B.A.<td>7<td>null</tr>
<tr><td>28<td>2004-02-25<td>g Somehing New<td>7<td>null</tr>
<tr><td>29<td>2004-03-03<td>Spring is in the air?<td>null<td>null</tr>
<tr><td>2<td>2004-03-05<td>Peak Performance<td>null<td>null</tr>
<tr><td>30<td>2004-03-10<td>Peak Performance<td>5<td>null</tr>
<tr><td>31<td>2004-03-17<td>Spring Break<td>null<td>null</tr>
</table>

The code for ResultsDecorator and ResultsDecoratorText is shown in Example 20-15
and Example 20-16, respectively. These programs are quite general and have no
dependency on SQLRunner.

Example 20-15. ResultsDecorator.java

import java.io.PrintWriter;
import java.sql.ResultSet;
import java.sql.SQLException;

/** Base class for a series of ResultSet printers.
 * @version $Id: ch20,v 1.5 2004/05/04 20:13:30 ian Exp $
 */
public abstract class ResultsDecorator {
 ResultSet rs;
 PrintWriter out;
 ResultsDecorator(PrintWriter out){
 this.out = out;
 }
 abstract void write(ResultSet rs) throws SQLException;
 abstract void write(int rowCount) throws SQLException;
}

Example 20-16. ResultsDecoratorText.java

import java.io.PrintWriter;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;

/**
 * Print a ResultSet in plain text.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: SQLRunner | 607

Finally, the main program, SQLRunner, is shown in Example 20-17.

class ResultsDecoratorText extends ResultsDecorator {

 ResultsDecoratorText(PrintWriter out) {
 super(out);
 }

 public void write(ResultSet rs) throws SQLException {
 ResultSetMetaData md = rs.getMetaData();
 int cols = md.getColumnCount();
 for (int i = 1; i <= cols; i++) {
 out.print(md.getColumnName(i) + "\t");
 }
 out.println();
 while (rs.next()) {
 for (int i = 1; i <= cols; i++) {
 out.print(rs.getString(i) + "\t");
 }
 out.println();
 }
 out.flush();
 }

 void write(int rowCount) throws SQLException {
 out.println("OK: " + rowCount);
 out.flush();
 }
}

Example 20-17. SQLRunner.java

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import com.darwinsys.database.DataBaseException;
import com.darwinsys.lang.GetOpt;
import com.darwinsys.sql.ConnectionUtil;

/** Class to run an SQL script, like psql(1), SQL*Plus, or similar programs.
 * Command line interface accepts options -c config [-f configFile] [scriptFile].
 * <p>Input language is: escape commands (begin with \ and MUST end with semi-colon), or
 * standard SQL statements which must also end with semi-colon);

Example 20-16. ResultsDecoratorText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 20: Database Access

 * <p>Escape sequences:
 *
 * \m (output-mode), takes character t for text,
 * h for html, s for sql, x for xml (not in this version)
 * (the SQL output is intended to be usable to re-insert the data into an identical table,
 * but this has not been extensively tested!).
 * \o output-file, redirects output.
 * \q quit the program
 *
 * TODO: Fix parsing so escapes don't need to end with SQL semi-colon.
 * <p>This class can also be used from within programs such as servlets, etc.
 * <p>TODO: knobs to set debug mode (interactively & from getopt!)
 * <p>For example, this command and input:</pre>
 * SQLrunner -c testdb
 * \ms;
 * select *from person where person_key=4;
 * </pre>might produce this output:<pre>
 * Executing : <<select * from person where person_key=4>>
 * insert into PERSON(PERSON_KEY, FIRST_NAME, INITIAL, LAST_NAME, ...)
 * values (4, 'Ian', 'F', 'Darwin', ...);
 * </pre>
 * @author Ian Darwin, http://www.darwinsys.com/
 */
public class SQLRunner implements ResultsDecoratorPrinter {

 /** The set of all valid modes. Short, lowercase names were used
 * for simple use in \mX where X is one of the names.
 */
 enum mode {
 t, h, s, x;
 };
 mode outputMode = mode.t;

 /** Database connection */
 protected Connection conn;

 /** SQL Statement */
 protected Statement stmt;

 /** Where the output is going */
 protected PrintWriter out;

 private ResultsDecorator currentDecorator;

 private ResultsDecorator textDecorator;

 private ResultsDecorator sqlDecorator;

 private ResultsDecorator htmlDecorator;

 private ResultsDecorator xmlDecorator;

 boolean debug = false;

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: SQLRunner | 609

 private static void doHelp(int i) {
 System.out.println(
 "Usage: SQLRunner [-f configFile] [-c config] [SQLscript[...]");
 System.exit(i);
 }

 /**
 * main - parse arguments, construct SQLRunner object, open file(s), run scripts.
 * @throws SQLException if anything goes wrong.
 * @throws DatabaseException if anything goes wrong.
 */
 public static void main(String[] args) {
 String config = "default";
 String outputModeName = null;
 GetOpt go = new GetOpt("f:c:m:");
 char c;
 while ((c = go.getopt(args)) != GetOpt.DONE) {
 switch(c) {
 case 'h':
 doHelp(0);
 break;
 case 'f':
 ConnectionUtil.setConfigFileName(go.optarg());
 break;
 case 'c':
 config = go.optarg();
 break;
 case 'm':
 outputModeName = go.optarg();
 break;
 default:
 System.err.println("Unknown option character " + c);
 doHelp(1);
 }
 }

 try {

 Connection conn = ConnectionUtil.getConnection(config);

 SQLRunner prog = new SQLRunner(conn, outputModeName);

 if (go.getOptInd() == args.length) {
 prog.runScript(new BufferedReader(
 new InputStreamReader(System.in)));
 } else for (int i = go.getOptInd(); i < args.length; i++) {
 prog.runScript(args[i]);
 }
 prog.close();
 } catch (SQLException ex) {
 throw new DataBaseException(ex.toString());
 } catch (IOException ex) {
 throw new DataBaseException(ex.toString());

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 20: Database Access

 }
 System.exit(0);
 }

 /** Construct a SQLRunner object
 * @param driver String for the JDBC driver
 * @param dbUrl String for the JDBC URL
 * @param user String for the username
 * @param password String for the password, normally in cleartext
 * @param outputMode One of the MODE_XXX constants.
 * @throws ClassNotFoundException
 * @throws SQLException
 */
 public SQLRunner(String driver, String dbUrl, String user, String password,
 String outputMode)
 throws ClassNotFoundException, SQLException {
 conn = ConnectionUtil.createConnection(driver, dbUrl, user, password);
 finishSetup(outputMode);
 }

 public SQLRunner(Connection c, String outputMode) throws SQLException {
 // set up the SQL input
 conn = c;
 finishSetup(outputMode);
 }

 void finishSetup(String outputMode) throws SQLException {
 DatabaseMetaData dbm = conn.getMetaData();
 String dbName = dbm.getDatabaseProductName();
 System.out.println("SQLRunner: Connected to " + dbName);
 stmt = conn.createStatement();

 out = new PrintWriter(System.out);

 setOutputMode(outputMode);
 }

 /** Set the output mode.
 * @param outputMode Must be a value equal to one of the MODE_XXX values.
 * @throws IllegalArgumentException if the mode is not valid.
 */
 void setOutputMode(String outputModeName) {
 if (outputModeName == null ||
 outputModeName.length() == 0) { throw new IllegalArgumentException(
 "invalid mode: " + outputModeName + "; must be t, h, x or s"); }

 // Assign the correct ResultsDecorator, creating them on the fly
 // using the lazy evaluation pattern.
 ResultsDecorator newDecorator = null;
 outputMode = mode.valueOf(outputModeName);
 switch (outputMode) {
 case t:

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: SQLRunner | 611

 if (textDecorator == null) {
 textDecorator = new ResultsDecoratorText(this);
 }
 newDecorator = textDecorator;
 break;
 case h:
 if (htmlDecorator == null) {
 htmlDecorator = new ResultsDecoratorHTML(this);
 }
 newDecorator = htmlDecorator;
 break;
 case s:
 if (sqlDecorator == null) {
 sqlDecorator = new ResultsDecoratorSQL(this);
 }
 newDecorator = sqlDecorator;
 break;
 case x:
 if (xmlDecorator == null) {
 xmlDecorator = new ResultsDecoratorXML(this);
 }
 newDecorator = sqlDecorator;
 break;
 default:
 String values = mode.values().toString();
 throw new IllegalArgumentException("invalid mode: "
 + outputMode + "; must be " + values);
 }
 if (currentDecorator != newDecorator) {
 currentDecorator = newDecorator;
 System.out.println("Mode set to " + outputMode);
 }

 }

 /** Run one script file, by name. Called from cmd line main
 * or from user code.
 */
 public void runScript(String scriptFile)
 throws IOException, SQLException {

 BufferedReader is;

 // Load the script file first, it's the most likely error
 is = new BufferedReader(new FileReader(scriptFile));

 runScript(is);
 }

 /** Run one script, by name, given a BufferedReader. */
 public void runScript(BufferedReader is)
 throws IOException, SQLException {

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 20: Database Access

 String stmt;
 int i = 0;
 System.out.println("SQLRunner: ready.");
 while ((stmt = getStatement(is)) != null) {
 stmt = stmt.trim();
 if (stmt.startsWith("\\")) {
 doEscape(stmt);
 } else {
 runStatement(stmt);
 }
 }
 }

 /**
 * Process an escape like \ms; for mode=sql.
 */
 private void doEscape(String str) throws IOException {
 String rest = null;
 if (str.length() > 2) {
 rest = str.substring(2);
 }
 if (str.startsWith("\\m")) { // MODE
 if (rest == null){
 throw new IllegalArgumentException("\\m needs output mode arg");
 }
 setOutputMode(rest);
 } else if (str.startsWith("\\o")){
 if (rest == null){
 throw new IllegalArgumentException("\\o needs output file arg");
 }
 setOutputFile(rest);
 } else if (str.startsWith("\\q")){
 System.exit(0);
 } else {
 throw new IllegalArgumentException("Unknown escape: " + str);
 }

 }

 /** Set the output to the given filename.
 * @param fileName
 */
 private void setOutputFile(String fileName) throws IOException{
 File file = new File(fileName);
 out = new PrintWriter(new FileWriter(file), true);
 System.out.println("Output set to " + file.getCanonicalPath());
 }

 /** Set the output file back to System.out */
 private void setOutputFile() throws IOException{
 out = new PrintWriter(System.out, true);
 }

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: SQLRunner | 613

 /** Run one Statement, and format results as per Update or Query.
 * Called from runScript or from user code.
 */
 public void runStatement(String str) throws IOException, SQLException {

 System.out.println("Executing : <<" + str.trim() + ">>");
 System.out.flush();
 try {
 boolean hasResultSet = stmt.execute(str);
 if (!hasResultSet)
 currentDecorator.write(stmt.getUpdateCount());
 else {
 ResultSet rs = stmt.getResultSet();
 currentDecorator.write(rs);
 }
 } catch (SQLException ex) {
 if (debug){
 throw ex;
 } else {
 System.out.println("ERROR: " + ex.toString());
 }
 }
 System.out.println();
 }

 /** Extract one statement from the given Reader.
 * Ignore comments and null lines.
 * @return The SQL statement, up to but not including the ';' character.
 * May be null if not statement found.
 */
 public static String getStatement(BufferedReader is)
 throws IOException {
 String ret="";
 String line;
 boolean found = false;
 while ((line = is.readLine()) != null) {
 if (line == null || line.length() == 0) {
 continue;
 }
 if (!(line.startsWith("#") || line.startsWith("--"))) {
 ret += ' ' + line;
 found = true;
 }
 if (line.endsWith(";")) {
 // Kludge, kill off empty statements (";") by itself, continue scanning.
 if (line.length() == 1)
 line = "";
 ret = ret.substring(0, ret.length()-1);
 return ret;
 }
 }
 return null;
 }

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 20: Database Access

I use this program fairly regularly, so it continues to evolve; the code in the online
edition may differ from the version shown here.

See Also
As an example of a more specific program, the online source code includes JDAdmin,
an administrator’s interface using Swing to display and modify the JabaDot user data-
base used in some examples in this chapter.

The file docs/guide/jdbc/getstart/introTOC.doc.html is provided with the JDK and
gives some guidance on JDBC. JDBC is given extensive coverage in O’Reilly’s Data-
base Programming with JDBC and Java by George Reese. Addison Wesley’s JDBC
Database Access from Java: A Tutorial and Annotated Reference by Graham Hamil-
ton, Rick Cattell, and Maydene Fisher is also recommended. For general informa-
tion on databases, you might want to consult Joe Celko’s Data and Databases
(Morgan Kaufman) or any of many other good general books.

 public void close() throws SQLException {
 stmt.close();
 conn.close();
 out.flush();
 out.close();
 }

 /* (non-Javadoc)
 * @see DatabaseWriterImpl#println(java.lang.String)
 */
 public void print(String line) throws IOException {
 out.print(line);
 }

 public void println(String line) throws IOException {
 out.println(line);
 out.flush();
 }

 /* (non-Javadoc)
 * @see DatabaseWriterImpl#println()
 */
 public void println() throws IOException {
 out.println();
 out.flush();
 }

 /* (non-Javadoc)
 * @see ResultsDecoratorPrinter#getPrintWriter()
 */
 public PrintWriter getPrintWriter() {
 return out;
 }
}

Example 20-17. SQLRunner.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

615

Chapter 21 CHAPTER 21

XML

21.0 Introduction
The Extensible Markup Language, or XML, is a portable, human-readable format for
exchanging text or data between programs. XML is derived from the parent stan-
dard SGML, as is the HTML language used on web pages worldwide. XML, then, is
HTML’s younger but more capable sibling. And since most developers know at least
a bit of HTML, parts of this discussion compare XML with HTML. XML’s lesser-
known grandparent is IBM’s GML (General Markup Language), and one of its cous-
ins is Adobe FrameMaker’s Maker Interchange Format (MIF). Figure 21-1 depicts
the family tree.

One way of thinking about XML is that it’s HTML cleaned up, consolidated, and
with the ability for you to define your own tags. It’s HTML with tags that can and
should identify the informational content as opposed to the formatting. Another way
of perceiving XML is as a general interchange format for such things as business-to-

Figure 21-1. XML’s ancestry

GML

HTML

XML

SGMLMIF

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616 | Chapter 21: XML

business communications over the Internet or as a human-editable* description of
things as diverse as word-processing files and Java documents. XML is all these
things, depending on where you’re coming from as a developer and where you want
to go today—and tomorrow.

Because of the wide acceptance of XML, it is used as the basis for many other for-
mats, including the Open Office (http://www.openoffice.org) save file format, the
SVG graphics file format, and many more.

From SGML, both HTML and XML inherit the syntax of using angle brackets (< and
>) around tags, each pair of which delimits one part of an XML document, called an
element. An element may contain content (like a <P> tag in HTML) or may not (like
an <hr> in HTML). While HTML documents can begin with either an <html> tag or a
<DOCTYPE...> tag (or, informally, with neither), an XML file may begin with an XML
declaration. Indeed, it must begin with an XML processing instruction (<? ... ?>) if
the file’s character encoding is other than UTF-8 or UTF-16:

<?xml version="1.0" encoding="iso-8859-1"?>

The question mark is a special character used to identify the XML declaration (it’s
syntactically similar to the % used in ASP and JSP).

HTML has a number of elements that accept attributes, such as:

<BODY BGCOLOR=white> ... </body>

In XML, attribute values (such as the 1.0 for the version in the processing instruc-
tion or the white of BGCOLOR) must be quoted. In other words, quoting is optional in
HTML, but required in XML.

The BODY example shown here, while allowed in traditional HTML, would draw
complaints from any XML parser. XML is case-sensitive; in XML, BODY, Body, and
body represent three different element names. Yes, each XML start tag must have a
matching end tag. This is one of a small list of basic constraints detailed in the XML
specification. Any XML file that satisfies all of these constraints is said to be well-
formed and is accepted by an XML parser. A document that is not well-formed is
rejected by an XML parser.

Speaking of XML parsing, a great variety of XML parsers are available. A parser is
simply a program or class that reads an XML file, looks at it at least syntactically, and
lets you access some or all of the elements. Most of these parsers conform to the Java
bindings for one of the two well-known XML APIs, SAX and DOM. SAX, the Simple
API for XML, reads the file and calls your code when it encounters certain events,

* Although you can edit XML using vi, Emacs, notepad, or simpletext, it is considered preferable to use an
XML-aware editor. XML’s structure is more complex, and parsing programs are far less tolerant of picayune
error, than was ever the case in the HTML world. XML files are kept as plain text for debugging purposes,
for ease of transmission across wildly incompatible operating systems, and (as a last resort) for manual edit-
ing to repair software disasters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 617

such as start-of-element, end-of-element, start-of-document, and the like. DOM, the
Document Object Model, reads the file and constructs an in-memory tree or graph
corresponding to the elements and their attributes and contents in the file. This tree
can be traversed, searched, modified (even constructed from scratch, using DOM),
or written to a file.

An alternative API called JDOM has also been released into the open source field.
JDOM, by Brett McLaughlin and Jason Hunter, has the advantage of being aimed
primarily at Java (DOM itself is designed to work with many different programming
languages). JDOM is available at http://www.jdom.org and has been accepted as a
JSR (Java Standards Request) for the Sun Community Standards Process.

But how does the parser know if an XML file contains the correct elements? Well,
the simpler, “nonvalidating” parsers don’t—their only concern is the well-formedness
of the document. Validating parsers check that the XML file conforms to a given
Document Type Definition (DTD) or an XML Schema. DTDs are inherited from
SGML; their syntax is discussed in Recipe 21.5. Schemas are newer than DTDs and,
while more complex, provide such object-based features as inheritance. DTDs are
written in a special syntax derived from SGML while XML Schemas are expressed
using ordinary XML elements and attributes.

In addition to parsing XML, you can use an XML processor to transform XML into
some other format, such as HTML. This is a natural for use in a web servlet: if a
given web browser client can support XML, just write the data as-is, but if not, trans-
form the data into HTML. We’ll look at two approaches to XML transformation:
transformation using a generic XSLT processor and then later some parsing APIs
suitable for customized operations on XML.

If you need to control how an XML document is formatted, for screen or print, you
can use XSL (Extensible Style Language). XSL is a more sophisticated variation on
the HTML stylesheet concept that allows you to specify formatting for particular ele-
ments. XSL has two parts: tree transformation (for which XSLT was designed,
though it can also be used independently, as we’ll see) and formatting (the non-XSLT
part is informally known as XSL-FO or XSL Formatting Objects).

XSL stylesheets can be complex; you are basically specifying a batch formatting lan-
guage to describe how your textual data is formatted for the printed page. A compre-
hensive reference implementation is FOP (Formatting Objects Processor), which
produces Acrobat PDF output and is available from http://xml.apache.org.

Prior to JDK 1.4, writing portable XML-based Java programs was difficult because
there was no single standard API. JDK 1.4 introduced JAXP, the Java API for XML
Processing, which provides standard means for accessing the various components
discussed in this chapter. If you are still using JDK 1.3, you may need to acquire
additional JAR files and/or change the examples somewhat.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 21: XML

21.1 Generating XML from Objects

Problem
You want to generate XML directly from Java objects.

Solution
Use the XML Object Serializers.

Discussion
The Serialization demonstration in Recipe 10.18 showed an abstract base class that
called upon abstract methods to write the file out in some format. Example 21-1 is
the XML subclass for it.

Example 21-1. SerialDemoXML.java

import java.beans.XMLDecoder;
import java.beans.XMLEncoder;
import java.io.*;

/** Show the XML serialization added to "java.beans.*" in JDK1.4.
 * Subclass "SerialDemoAbstractBase" to get most of the infrastructure
 */
public class SerialDemoXML extends SerialDemoAbstractBase {

 public static final String FILENAME = "serial.xml";

 public static void main(String[] args) throws IOException {
 new SerialDemoXML().save();
 new SerialDemoXML().dump();
 }

 /** Save the data to disk. */
 public void write(Object theGraph) throws IOException {
 XMLEncoder os = new XMLEncoder(// NEEDS JDK 1.4
 new BufferedOutputStream(
 new FileOutputStream(FILENAME)));
 os.writeObject(theGraph);
 os.close();
 }

 /** Display the data */
 public void dump() throws IOException {
 XMLDecoder inp = new XMLDecoder(// NEEDS JDK 1.4
 new BufferedInputStream(
 new FileInputStream(FILENAME)));
 System.out.println(inp.readObject());
 inp.close();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming XML with XSLT | 619

21.2 Transforming XML with XSLT

Problem
You need to make significant changes to the output format.

Solution
Use XSLT; it is fairly easy to use and does not require writing much Java.

Discussion
XSLT, the Extensible Stylesheet Language for Transformations, allows you a great
deal of control over the output format. It can be used to change an XML file from
one vocabulary into another, as might be needed in a business-to-business (B2B)
application where information is passed from one industry-standard vocabulary to a
site that uses another. It can also be used to render XML into another format such as
HTML. Some open source projects even use XSLT as a tool to generate Java source
files from an XML description of the required methods and fields. Think of XSLT as
a scripting language for transforming XML.

This example uses XSLT to transform a document containing people’s names,
addresses, and so on—such as the file people.xml, shown in Example 21-2—into
printable HTML.

You can transform the people.xml file into HTML by using the following command:

$ java JAXPTransform people.xml people.xsl people.html

The output is something like the following:

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Our People</title>
</head>

Example 21-2. people.xml

<?xml version="1.0"?>
<people>
<person>
 <name>Ian Darwin</name>
 <email>http://www.darwinsys.com/contact.html</email>
 <country>Canada</country>
</person>
<person>
 <name>Another Darwin</name>
 <email type="intranet">afd@node1</email>
 <country>Canada</country>
</person>
</people>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 21: XML

<body>
<table border="1">
<tr>
<th>Name</th><th>EMail</th>
</tr>
<tr>
<td>Ian Darwin</td><td>http://www.darwinsys.com/</td>
</tr>
<tr>
<td>Another Darwin</td><td>afd@node1</td>
</tr>
</table>
</body>
</html>

Figure 21-2 shows the resulting HTML file opened in a browser.

Let’s look at the file people.xsl (shown in Example 21-3). Since an XSL file is an XML
file, it must be well-formed according to the syntax of XML. As you can see, it con-
tains some XML elements but is mostly (well-formed) HTML.

Figure 21-2. XML to HTML final result

Example 21-3. people.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="/">

<html>
<head><title>Our People</title></head>
<body>

 <table border="1">
 <tr>
 <th>Name</th>
 <th>EMail</th>
 </tr>

 <xsl:for-each select="people/person">
 <tr>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming XML with XSLT | 621

I haven’t shown the JAXPTransform program yet. To transform XML using XSL, you
use a set of classes called an XSLT processor. Java has included this since JDK 1.4, as
part of JAXP. Another freely available XSLT processor is the Apache XML Project’s
Xalan (formerly available from Lotus/IBM as the Lotus XSL processor). To use JAXP’s
XSL transformation, you create an XSL processor by calling the factory method
TransformerFactory.newInstance().newTransformer(), passing in a Streamsource for
the stylesheet. You then call its transform() method, passing in a StreamSource for the
XML document and a StreamResult for the output file. The code for JAXPTransform
appears in Example 21-4.

If you prefer to use Xalan, see the version of this program called XSLTransform in the
online source.

 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="email"/></td>
 </tr>
 </xsl:for-each>

 </table>

</body></html>
</xsl:template>
</xsl:stylesheet>

Example 21-4. JAXPTransform.java

import java.io.File;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

/** Illustrate simple use of JAXP to transform using XSL */
public class JAXPTransform {
 public static void main(String[] args) throws Exception {
 if (args.length != 3) {
 System.out.println(
 "Usage: java JAXPTransform inputFile.xml inputFile.xsl outputFile");
 System.exit(1);
 }
 // Create a transformer object
 Transformer tx = TransformerFactory.newInstance().newTransformer(
 new StreamSource(new File(args[1]))); // not 0

 // Use its transform() method to perform the transformation
 tx.transform(
 new StreamSource(new File(args[0])),
 new StreamResult(new File(args[2])));
 }
}

Example 21-3. people.xsl (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 21: XML

See Also
A recent development is the use of translets. Sun has developed a program that reads
a stylesheet and generates a Translet class, which is a compiled Java program that
transforms XML according to the stylesheet. This eliminates the overhead of reading
the stylesheet each time a document is translated. Translets have been incorporated
under the name XSLTC into the Apache XML Xerces-Java project; see http://xml.
apache.org/xerces-j/.

21.3 Parsing XML with SAX

Problem
You want to make one quick pass over an XML file, extracting certain tags or other
information as you go.

Solution
Simply use SAX to create a document handler and pass it to the SAX parser.

Discussion
The XML DocumentHandler interface specifies a number of “callbacks” that your code
must provide. In one sense, this is similar to the Listener interfaces in AWT and
Swing, as covered briefly in Recipe 14.4. The most commonly used methods are
startElement(), endElement(), and characters(). The first two, obviously, are called
at the start and end of an element, and characters() is called when there is charac-
ter data. The characters are stored in a large array, and you are passed the base of the
array and the offset and length of the characters that make up your text. Conve-
niently, there is a string constructor that takes exactly these arguments. Hmmm, I
wonder if they thought of that....

To demonstrate this, I wrote a simple program using SAX to extract names and email
addresses from an XML file. The program itself is reasonably simple and is shown in
Example 21-5.

Example 21-5. SAXLister.java

import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.helpers.XMLReaderFactory;
import com.darwinsys.util.Debug;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML with SAX | 623

When run against the people.xml file shown in Example 21-2, it prints the listing:

$ java -classpath .:../jars/darwinsys.jar:../jars/xerces.jar SAXLister people.xml
Parent: Ian Darwin
Parent: Another Darwin
$

/**
 * Simple lister - extract name and children tags from a user file. Version for SAX 2.0
 * @version $Id: ch21,v 1.5 2004/05/04 20:13:38 ian Exp $
 */
public class SAXLister {
 public static void main(String[] args) throws Exception {
 new SAXLister(args);
 }

 public SAXLister(String[] args) throws SAXException, IOException {
 XMLReader parser = XMLReaderFactory
 .createXMLReader("org.apache.xerces.parsers.SAXParser");
 // should load properties rather than hardcoding class name
 parser.setContentHandler(new PeopleHandler());
 parser.parse(args.length == 1 ? args[0] : "parents.xml");
 }

 /** Inner class provides DocumentHandler
 */
 class PeopleHandler extends DefaultHandler {
 boolean parent = false;
 boolean kids = false;
 public void startElement(String nsURI, String localName,
 String rawName, Attributes attributes) throws SAXException {
 Debug.println("docEvents", "startElement: " + localName + ","
 + rawName);
 // Consult rawName since we aren't using xmlns prefixes here.
 if (rawName.equalsIgnoreCase("name"))
 parent = true;
 if (rawName.equalsIgnoreCase("children"))
 kids = true;
 }
 public void characters(char[] ch, int start, int length) {
 if (parent) {
 System.out.println("Parent: " + new String(ch, start, length));
 parent = false;
 } else if (kids) {
 System.out.println("Children: " + new String(ch, start, length));
 kids = false;
 }
 }
 /** Needed for parent constructor */
 public PeopleHandler() throws org.xml.sax.SAXException {
 super();
 }
 }
}

Example 21-5. SAXLister.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 21: XML

In Version 2 of the XML DOM API, you can use the new XMLReaderFactory.
createXMLReader(). One difficulty is that the SAX specification and code are main-
tained by the SAX Project (http://www.saxproject.org), not Sun. The no-argument
form of createXMLReader() is expected first to try loading the class defined in the sys-
tem property org.xml.sax.driver, and if that fails, to load an implementation-defined
SAX parser. Unfortunately Sun’s implementation (on 1.4 and on 1.5 Beta) does not
do so; it simply throws an exception to the effect of System property org.xml.sax.
driver not specified. An overloaded form of createXMLReader() takes the name of
the parser as a string argument (e.g., "org.apache.xerces.parsers.SAXParser" or
"org.apache.crimson.parser.XMLReaderImpl"). This class name would normally be
loaded from a properties file (see Recipe 7.7) to avoid having the parser class name
compiled into your application.

One problem with SAX is that it is, well, simple, and therefore doesn’t scale well, as
you can see by thinking about this program. Imagine trying to handle 12 different
tags and doing something different with each one. For more involved analysis of an
XML file, the Document Object Model (DOM) or the JDOM API may be better
suited. (On the other hand, DOM requires keeping the entire tree in memory, so
there are some scalability issues with extremely large XML documents.) And with
SAX, you can’t really “navigate” a document since you have only a stream of events,
not a real structure. For that, you want DOM or JDOM.

21.4 Parsing XML with DOM

Problem
You want to examine an XML file in detail.

Solution
Use DOM to parse the document and process the resulting in-memory tree.

Discussion
The Document Object Model (DOM) is a tree-structured representation of the infor-
mation in an XML document. It consists of several interfaces, the most important of
which is the node. All are in the package org.w3c.dom, reflecting the influence of the
World Wide Web Consortium (http://www.w3.org) in creating and promulgating the
DOM. The major DOM interfaces are shown in Table 21-1.

Table 21-1. Major DOM interfaces

Interface Function

Document Top-level representation of an XML document

Node Representation of any node in the XML tree

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML with DOM | 625

You don’t have to implement these interfaces; the parser generates them. When you
start creating or modifying XML documents in Recipe 21.6, you can create nodes.
But even then there are implementing classes. Parsing an XML document with DOM
is syntactically similar to processing a file with XSL, that is, you get a reference to a
parser and call its methods with objects representing the input files. The difference is
that the parser returns an XML DOM, a tree of objects in memory. XParse in
Example 21-6 simply parses an XML document. Despite the simplicity, I use it a lot;
whenever I have an XML file whose validity is in question, I just pass it to XParse.

Element An XML element

Text A textual string

Example 21-6. XParse.java

import java.io.File
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

/** Parse an XML file using DOM, via JAXP.
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch21,v 1.5 2004/05/04 20:13:38 ian Exp $
 */
public class XParse {

 /** Parse the file */
 public static void parse(String fileName, boolean validate) {
 try {
 System.err.println("Parsing " + fileName + "...");

 // Make the document a URL so relative DTD works.
 String uri = "file:" + new File(fileName).getAbsolutePath();

 DocumentBuilderFactory f = DocumentBuilderFactory.newInstance();
 if (validate)
 f.setValidating(true);
 DocumentBuilder p = f.newDocumentBuilder();
 // Get local copies of DTDs...
 p.setEntityResolver(new MyDTDResolver());
 Document doc = p.parse(uri);
 System.out.println("Parsed OK");

 } catch (SAXParseException ex) {
 System.err.println("+================================+");
 System.err.println("| *SAX Parse Error* |");

Table 21-1. Major DOM interfaces (continued)

Interface Function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 21: XML

DOM also provides tools to traverse the document. You can use the defined
TreeWalker interface, or you can just use the algorithm shown in Example 21-7.

 System.err.println("+================================+");
 System.err.println(ex.toString());
 System.err.println("At line " + ex.getLineNumber());
 System.err.println("+================================+");
 } catch (SAXException ex) {
 System.err.println("+================================+");
 System.err.println("| *SAX Error* |");
 System.err.println("+================================+");
 System.err.println(ex.toString());
 System.err.println("+================================+");
 } catch (Exception ex) {
 System.err.println("+================================+");
 System.err.println("| *XML Error* |");
 System.err.println("+================================+");
 System.err.println(ex.toString());
 }
 }

 public static void main(String[] av) {
 if (av.length == 0) {
 System.err.println("Usage: XParse file");
 return;
 }
 boolean validate = false;
 for (int i=0; i<av.length; i++) {
 if (av[i].equals("-v"))
 validate = true;
 else
 parse(av[i], validate);
 }
 }
}

Example 21-7. XTW.java

import java.io.File;
import java.io.Reader;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import com.darwinsys.util.Debug;

/** XML Tree Walker
 * UPDATED FOR JAXP.

Example 21-6. XParse.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML with DOM | 627

 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch21,v 1.5 2004/05/04 20:13:38 ian Exp $
 */
public class XTW {

 public static void main(String[] av) {
 if (av.length == 0) {
 System.err.println("Usage: XTW file [...]");
 return;
 }
 for (int i=0; i<av.length; i++) {
 String name = av[i];
 new XTW().convert(name, true);
 }
 }

 /** Convert the file */
 protected void convert(String fileName, boolean verbose) {
 Reader is;
 try {
 if (verbose)
 System.err.println(">>>Parsing " + fileName + "...");
 // Make the document a URL so relative DTD works.
 String uri = "file:" + new File(fileName).getAbsolutePath();

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document doc = builder.parse(uri);

 if (verbose)
 System.err.println(">>>Walking " + fileName + "...");
 doRecursive(doc);

 } catch (Exception ex) {
 System.err.println("+============================+");
 System.err.println("| XTW Error |");
 System.err.println("+============================+");
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+============================+");
 }
 if (verbose) {
 System.err.println(">>>Done " + fileName + "...");
 }
 }

 /* Process all the nodes, recursively. */
 protected void doRecursive(Node p) {
 if (p == null) {
 return;
 }

Example 21-7. XTW.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 21: XML

21.5 Verifying Structure with a DTD

Problem
Up to now, I have simply provided XML and asserted that it is valid. Now you want
to verify the structure using a Document Type Definition (DTD).

Solution
Write the DTD and refer to it in one or more XML documents.

 NodeList nodes = p.getChildNodes();
 Debug.println("xml-tree", "Element has " +
 nodes.getLength() + " children");
 for (int i = 0; i < nodes.getLength(); i++) {
 Node n = nodes.item(i);
 if (n == null) {
 continue;
 }

 doNode(n);

 }
 }

 protected void doNode(Node n) {

 switch(n.getNodeType()) {
 case Node.ELEMENT_NODE:
 System.out.println("ELEMENT<" + n.getNodeName() + ">");
 doRecursive(n);
 break;
 case Node.TEXT_NODE:
 String text = n.getNodeValue();
 if (text.length() == 0 ||
 text.equals("\n") || text.equals("\\r")) {
 break;
 }
 System.out.println("TEXT: " + text);
 break;
 default:
 System.err.println("OTHER NODE " +
 n.getNodeType() + ": " + n.getClass());
 break;
 }
 }
}.

Example 21-7. XTW.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Verifying Structure with a DTD | 629

Discussion
This is not the place for a full dissertation on Document Type Definition syntax.
Briefly, a DTD is a means of restricting the structure of an XML document by listing
all the elements allowed, where they are permitted, and what attributes they have, if
any. The DTD uses a special syntax inherited from SGML. Example 21-8 is people.dtd,
a DTD for the people.xml file shown earlier in this chapter.

To verify that a file conforms to a DTD—that is, to validate the file—you do two
things:

1. Refer to the DTD from within the XML file, as is sometimes seen in HTML doc-
uments. The <!DOCTYPE> line should follow the <?xml ...> line but precede any
actual data:

<?xml version="1.0"?>
<!DOCTYPE people SYSTEM "people.dtd">

<people>
<person>
 <name>Ian Darwin</name>
 <email>someone@someplace.dom</email>
 <country>Canada</country>
</person>

2. Pass true as a second argument to the createXMLDocument() method; true means
“enforce document validity”:

XmlDocument doc = XmlDocument.createXmlDocument(uri, true);

Now any elements found in the document that are not valid according to the DTD
result in an exception being thrown.

See Also
Document Type Definitions are simpler to write than XML Schemas. In some parts
of the industry, people seem to be going on the assumption that XML Schemas will
completely replace DTDs. But many other developers continue to use DTDs. There
are other options for constraining structure and data types, including RelaxNG (an
ISO standard).

Example 21-8. people.dtd

<!ELEMENT people (person)*>
<!ELEMENT person (name, email, country)>

<!ELEMENT name (#PCDATA)>
<!ATTLIST email type CDATA #IMPLIED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT country (#PCDATA)>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 21: XML

21.6 Generating Your Own XML with DOM

Problem
You want to generate your own XML files or modify existing documents.

Solution
Use DOM or JDOM; parse or create the document and call its write method.

Discussion
Sun’s XmlDocument class has a write() method that can be called with either an
OutputStream or a Writer. To use it, create an XML document object using the
XmlDocument constructor. Create nodes, append them into the tree, and then call the
document’s write() method. For example, suppose you want to generate a poem in
XML. Running the program and letting the XML appear on the standard output
might look something like this:

$ java DocWrite
<?xml version="1.0" encoding="UTF-8"?>

<Poem>
 <Stanza>
 <Line>Once, upon a midnight dreary</Line>
 <Line>While I pondered, weak and weary</Line>
 </Stanza>
</Poem>
$

The code for this is fairly short; see Example 21-9 for the code using DOM. Code for
using JDOM is similar; see DocWriteJDOM.java in the online source code.

Example 21-9. DocWriteDOM.java

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;
import org.w3c.dom.Node;

/** Make up and write an XML document, using DOM
 * UPDATED FOR JAXP.
 * @author Ian Darwin, http://www.darwinsys.com/
 * @version $Id: ch21,v 1.5 2004/05/04 20:13:38 ian Exp $
 */
public class DocWriteDOM {

 public static void main(String[] av) throws IOException {
 DocWriteDOM dw = new DocWriteDOM();
 Document doc = dw.makeDoc();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Your Own XML with DOM | 631

A more complete program would create an output file and have better error report-
ing. It would also have more lines of the poem than I can remember.

Sun’s XmlDocument class is not a committed part of the standard, which is why the
code casts the object to org.apache.crimson.tree.XmlDocument before calling its write
method. However, other vendors’ APIs have similar functionality.

 // Sadly, the write() method is not in the DOM spec, so we
 // have to cast the Document to its implementing class
 // in order to call the Write method.
 //
 // WARNING
 //
 // This code therefore depends upon the particular
 // parser implementation.
 //
 ((org.apache.crimson.tree.XmlDocument)doc).write(System.out);
 }

 /** Generate the XML document */
 protected Document makeDoc() {
 try {
 DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = fact.newDocumentBuilder();
 Document doc = parser.newDocument();

 Node root = doc.createElement("Poem");
 doc.appendChild(root);

 Node stanza = doc.createElement("Stanza");
 root.appendChild(stanza);

 Node line = doc.createElement("Line");
 stanza.appendChild(line);
 line.appendChild(doc.createTextNode("Once, upon a midnight dreary"));
 line = doc.createElement("Line");
 stanza.appendChild(line);
 line.appendChild(doc.createTextNode("While I pondered, weak and weary"));

 return doc;

 } catch (Exception ex) {
 System.err.println("+============================+");
 System.err.println("| XML Error |");
 System.err.println("+============================+");
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+============================+");
 return null;
 }
 }
}

Example 21-9. DocWriteDOM.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 21: XML

21.7 Program: xml2mif
Adobe FrameMaker* uses an interchange language called MIF (Maker Interchange
Format), which is vaguely related to XML but is not well-formed. Let’s look at a pro-
gram that uses DOM to read an entire document and generate code in MIF for each
node. This program was used to create some earlier chapters of this book.

The main program, shown in Example 21-10, is called XmlForm; it parses the XML
and calls one of several output generator classes. This could be used as a basis for
generating other formats.

* Previously from Frame Technologies, a company that Adobe ingested.

Example 21-10. XmlForm.java

import java.io.*;
import org.w3c.dom.*;
import javax.xml.parsers.*;

/** Convert a simple XML file to text.
 * @version $Id: ch21,v 1.5 2004/05/04 20:13:38 ian Exp $
 */
public class XmlForm {
 protected Reader is;
 protected String fileName;

 protected static PrintStream msg = System.out;

 /** Construct a converter given an input filename */
 public XmlForm(String fn) {
 fileName = fn;
 }

 /** Convert the file */
 public void convert(boolean verbose) {
 try {
 if (verbose)
 System.err.println(">>>Parsing " + fileName + "...");
 // Make the document a URL so relative DTD works.
 //String uri = "file:" + new File(fileName).getAbsolutePath();
 InputStream uri = getClass().getResourceAsStream(fileName);
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document doc = builder.parse(uri);
 if (verbose)
 System.err.println(">>>Walking " + fileName + "...");
 XmlFormWalker c = new GenMIF(doc, msg);
 c.convertAll();

 } catch (Exception ex) {
 System.err.println("+================================+");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: xml2mif | 633

The actual MIF generator is not shown here—it’s not really XML-related—but is
included in the online source code for the book.

See Also
XML-related technology is an area of rapid change. New APIs (and acronyms!) con-
tinue to appear. XML-RPC and SOAP let you build distributed applications known
as web services using XML and HTTP as the program interchange. The W3C has
many new XML standards coming out. Several web sites track the changing XML
landscape, including the official W3C site (http://www.w3.org/xml/) and O’Reilly’s
XML site (http://www.xml.com).

Sun’s Java API for XML Parsing (JAXP), included with the JDK 1.4 and later, pro-
vides convenience routines for accessing a variety of different parsers. It also includes
SAX, DOM, and XSLT in the standard set of Java APIs.

For an interesting historical perspective on HTML by the person who primarily
invented the Web and HTML, see Tim Berners-Lee’s book, Weaving the Web
(Harper).

Many books compete to cover XML. These range from the simple XML: A Primer by
Simon St.Laurent to the comprehensive XML Bible by the prolific Elliotte Rusty
Harold. In between is Learning XML by Erik T. Ray (O’Reilly). O’Reilly’s Java and
XML by Brett McLaughlin covers these topics in more detail and also covers XML
publishing frameworks such as Apache’s Cocoon and developing XML information
channels using RSS, often used for blogging.

 System.err.println("| *Parse Error* |");
 System.err.println("+================================+");
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+================================+");
 }
 if (verbose)
 System.err.println(">>>Done " + fileName + "...");
 }

 public static void main(String[] av) {
 if (av.length == 0) {
 System.err.println("Usage: XmlForm file");
 return;
 }
 for (int i=0; i<av.length; i++) {
 String name = av[i];
 new XmlForm(name).convert(true);
 }
 msg.close();
 }
}

Example 21-10. XmlForm.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634

Chapter 22CHAPTER 22

Distributed Java: RMI

22.0 Introduction
A distributed system is a program or set of programs that runs using more than one
computing resource. Distributed computing covers a wide spectrum, from intra-
process distributed applications (which Java calls threaded applications, discussed in
Chapter 24), through intrasystem applications (such as a network client and server
on the same machine), to applications where a client program and a server program
run on machines far apart (such as a web application).

Distributed computing was around a long time before Java. Some traditional distrib-
uted mechanisms include RPC (remote procedure call) and CORBA. Java adds RMI
(Remote Method Invocation), its own CORBA support, and EJB (Enterprise Java-
Beans) to the mix. This chapter covers only RMI in detail, but these other technolo-
gies are discussed briefly.

At its simplest level, remote procedure call is the ability to run code on another
machine and have it behave as much as possible like a local method call. Most ver-
sions of Unix use remote procedure calls extensively: Sun’s NFS, YP/NIS, and NIS+
are all built on top of Sun’s RPC. Windows implements large parts of the Unix DCE
Remote Procedure Call specification and can interoperate with it. Each of these
defines its own slightly ad hoc method of specifying the interface to the remote call.
Sun’s RPC uses a program called rpcgen, which reads a protocol specification and
writes both the client and server network code. These are both Unix-specific; they
have their place but aren’t as portable as Java.

Java Remote Method Invocation (RMI) is a type of remote procedure call* that is net-
work-independent, lightweight, and totally portable, as it’s written in pure Java. I
discuss RMI in this chapter in enough detail to get you started.

* Both RMI and CORBA should really be called “remote method calls,” as they both emphasize remote
objects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Defining the RMI Contract | 635

CORBA is the Object Management Group’s (OMG) Common Object Request Bro-
ker Architecture, a sort of remote procedure call for programs written in C, C++,
Java, Ada, Smalltalk, and others to call methods in objects written in any of those
languages. It provides a transport service called the Internet Inter-Orb Protocol
(IIOP) that allows object implementations from different vendors to interoperate.
One version of RMI runs over IIOP, making it possible to claim that RMI is CORBA-
compliant.

Enterprise JavaBeans (EJB) is a distributed object mechanism used primarily for
building reusable distributed objects that provide both business logic and database
storage. Types of EJBs include session beans, which do something (a shopping cart
bean is a good example), and entity beans, which represent something (usually the
things stored in a database; in our shopping cart example, the entity beans would be
the objects available for purchase).

CORBA and EJB are of interest primarily to enterprise developers; they are covered
briefly in O’Reilly’s Java Enterprise in a Nutshell. A more detailed presentation will
have to wait until O’Reilly decides to develop an Enterprise Java Cookbook. You can
read about EJB in Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly).

22.1 Defining the RMI Contract

Problem
You want to define the communications exchange between client and server.

Solution
Define a Java interface.

Ian’s Basic Steps: RMI
To use RMI:

1. Define (or locate) the remote interface in agreement with the server.

2. Write your server.

3. Run rmic (Java RMI stub compiler) to generate the network glue.

4. Write the client.

5. Ensure that the RMI registry is running.

6. Start the server.

7. Run one or more clients.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 22: Distributed Java: RMI

Discussion
RMI procedures are defined using an existing Java mechanism: interfaces. An inter-
face is similar to an abstract class, but a class can implement more than one inter-
face. RMI remote interfaces must be subinterfaces of java.rmi.Remote. All parameters
and return values must be either primitives (int, double, etc.), or implement
Serializable (as do most of the standard types like String). Or, as we’ll see in Rec-
ipe 22.5, they can also be Remote.

Figure 22-1 shows the relationships between the important classes involved in an
RMI implementation. The developer need only write the interface and two classes,
the client application and the server object implementation. The RMI stub or proxy
and the RMI skeleton or adapter are generated for you by the rmic program (see Rec-
ipe 22.3), while the RMI Registry and other RMI classes at the bottom of the figure
are provided as part of RMI itself.

Example 22-1 is a simple RemoteDate getter interface, which lets us find out the date
and time on a remote machine.

This file must list all the methods that will be callable from the server by the client.
The lookup name is an arbitrary name that is registered by the server and looked up
by the client to establish communications between the two processes (when looked
up by the client it will normally be part of an rmi: URL). While most authors just
hardcode this string in both programs, I find this error-prone, so I usually include the
lookup name in the interface.

“So interfaces can contain variables?” you ask. No variables indeed, but interfaces
may contain nonvariable (final) fields such as the field LOOKUPNAME in Example 22-1.
Putting the lookup name here ensures that both server and client really agree, and
that is what this interface is all about, after all. I’ve seen other developers waste a
considerable amount of time tracking down spelling mistakes in the lookup names of
various remote services, so I prefer doing it this way.

Example 22-1. RemoteDate.java

package darwinsys.distdate;

import java.rmi.*;
import java.util.Date;

/** A statement of what the client & server must agree upon. */
public interface RemoteDate extends java.rmi.Remote {

 /** The method used to get the current date on the remote */
 public Date getRemoteDate() throws java.rmi.RemoteException;

 /** The name used in the RMI registry service. */
 public final static String LOOKUPNAME = "RemoteDate";
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an RMI Client | 637

22.2 Creating an RMI Client

Problem
You want to write a client to use an RMI service.

Solution
Locate the object and call its methods.

Discussion
Assume for now that the server object is running remotely. To locate it, you use
Naming.lookup(), passing in the lookup name. This gives you a reference to a proxy
object, an object that, like the real server object, implements the remote interface but
runs in the same Java Virtual Machine as your client application. Here we see the
beauty of interfaces: the proxy object implements the interface so that your code can
use it just as it would use a local object providing the given service. And the remote
object also implements the interface so that the proxy object’s remote counterpart
can use it exactly as the proxy is used. Example 22-2 shows the client for the
RemoteDate service.

Figure 22-1. RMI overview

Interface

Client
Application

RMI Stub
(”proxy”)

Server class
(”object

implementation”)

RMI Skeleton
(”object adaptor”)

RMI
Registry

RMIRMI Network

lookup() bind()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 22: Distributed Java: RMI

Also in the online source rmi directory are DateApplet.htm and DateApplet.java,
which together provide an example of using the server. In DateApplet, the connec-
tion is set up in the applet’s init() method. The actual RMI call to get the date is
done in the action handler for the push button so that you can refresh it on demand.

22.3 Creating an RMI Server

Problem
The client looks good on paper, but it will be lonely without a server to talk to.

Solution
You need to write two parts for the server, an implementation class and a main
method. These can be in the same class or separated for clarity.

Discussion
The server-side code has to do a bit more work; see the sidebar.

This implementation divides the server into the traditional two parts—a main pro-
gram and an implementation class. It is just as feasible to combine these in a single
class. The main program shown in Example 22-3 simply constructs an instance of
the implementation and registers it with the lookup service.

Example 22-2. DateClient.java

package darwinsys.distdate;

import java.rmi.*;
import java.util.*;

/* A very simple client for the RemoteDate service. */
public class DateClient {

 /** The local proxy for the service. */
 protected static RemoteDate netConn = null;

 public static void main(String[] args) {
 try {
 netConn = (RemoteDate)Naming.lookup(RemoteDate.LOOKUPNAME);
 Date today = netConn.getRemoteDate();
 System.out.println(today.toString()); // Could use a DateFormat...
 } catch (Exception e) {
 System.err.println("RemoteDate exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an RMI Server | 639

The Naming.bind() method creates an association between the lookup name and the
instance of the server object. This method fails if the server already has an instance of
the given name, requiring you to call rebind() to overwrite it. But since that’s exactly
where you’ll find yourself if the server crashes (or you kill it while debugging) and
you restart it, many people just use rebind() all the time.

The implementation class must implement the given remote interface. See
Example 22-4.

Ian’s Basic Steps: RMI Server
To implement an RMI server:

1. Define (or locate) the remote interface in agreement with the client.

2. Define the constructor for the remote object.

3. Provide implementations for the methods that can be invoked remotely.

4. Create and install a security manager.

5. Create one or more instances of a remote object.

6. Register at least one of the remote objects with the RMI remote object registry.

Example 22-3. DateServer.java

package darwinsys.distdate;

import java.rmi.*;

public class DateServer {
 public static void main(String[] args) {

 // You may want a SecurityManager for downloading of classes:
 // System.setSecurityManager(new RMISecurityManager());

 try {
 // Create an instance of the server object
 RemoteDateImpl im = new RemoteDateImpl();

 System.out.println("DateServer starting...");
 // Locate it in the RMI registry.
 Naming.rebind(RemoteDate.LOOKUPNAME, im);

 System.out.println("DateServer ready.");
 } catch (Exception e) {
 System.err.println(e);
 System.exit(1);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 22: Distributed Java: RMI

Using the server

Once you’ve compiled the implementation class, you can run rmic (the RMI com-
piler) to build some glue files and install the class files (for the interface, the stub,
and any data classes) into the client’s CLASSPATH:

$ jikes -d . RemoteDateImpl.java
$ ls darwinsys/distdate
DateApplet$1.class DateClient.class RemoteDate.class
DateApplet.class DateServer.class RemoteDateImpl.class
$ rmic -d . darwinsys.distdate.RemoteDateImpl
$ ls darwinsys/distdate
DateApplet$1.class DateServer.class RemoteDateImpl_Skel.class
DateApplet.class RemoteDate.class RemoteDateImpl_Stub.class
DateClient.class RemoteDateImpl.class
$

You must also ensure that TCP/IP networking is running and then start the RMI reg-
istry program. If you’re doing this by hand, just type the command rmiregistry in a
separate window or start it in the background on systems that support this.

See Also
See the JDK documentation in docs/guide/rmi/getstart.doc.html.

Example 22-4. RemoteDateImpl.java

package darwinsys.distdate;

import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

public class RemoteDateImpl extends UnicastRemoteObject implements RemoteDate
{
 /** Construct the object that implements the remote server.
 * Called from main, after it has the SecurityManager in place.
 */
 public RemoteDateImpl() throws RemoteException {
 super(); // sets up networking
 }

 /** The remote method that "does all the work". This won't get
 * called until the client starts up.
 */
 public Date getRemoteDate() throws RemoteException {
 return new Date();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: RMI Callbacks | 641

22.4 Deploying RMI Across a Network

Problem
As shown so far, the server and the client must be on the same machine—some dis-
tributed system!

Solution
Get the RMI registry to dish out the client stubs on demand.

Discussion
RMI does not provide true location transparency, which means that you must at
some point know the network name of the machine the server is running on. The
server machine must be running the RMI registry program as well, though there’s no
need for the RMI registry to be running on the client side.

The RMI registry needs to send the client stubs to the client. The best way to do this
is to provide an HTTP URL and ensure that the stub files can be loaded from your
web server. This can be done by passing the HTTP URL into the RMI server’s
startup by defining it in the system properties:

java -Djava.rmi.server.codebase=http://serverhost/stubsdir/ ServerMain

In this example, serverhost is the TCP/IP network name of the host where the RMI
server and registry are running, and stubsdir is some directory relative to the web
server from which the stub files can be downloaded.

Be careful to start the RMI registry in its own directory, away from where you are
storing (or building!) the RMI stubs. If RMI can find the stubs in its own CLASS-
PATH, it assumes they are universally available and won’t download them!

The only other thing to do is to change the client’s view of the RMI lookup name to
something like rmi://serverhost/foo_bar_name. And for security reasons, the installa-
tion of the RMI Security Manager, which was optional before, is now a requirement.

22.5 Program: RMI Callbacks
One major benefit of RMI is that almost any kind of object can be passed as a param-
eter or return value of a remote method. The recipient of the object will not know
ahead of time the class of the actual object it will receive. If the object is of a class
that implements Remote (java.rmi.Remote), the returned object will in fact be a proxy
object that implements at least the declared interface. If the object is not remote, it
must be serializable, and a copy of it is transmitted across the Net. The prime exam-
ple of this is a String. It makes no sense to write an RMI proxy object for String.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 22: Distributed Java: RMI

Why? Remember from Chapter 3 that String objects are immutable! Once you have
a String, you can copy it locally but never change it. So Strings, like most other core
classes, can be copied across the RMI connection just as easily as they are copied
locally. But Remote objects cause an RMI proxy to be delivered. So what stops the
caller from passing an RMI object that is also itself a proxy? Nothing at all, and this
is the basis of the powerful RMI callback mechanism.

An RMI callback occurs when the client of one service passes an object that is the
proxy for another service. The recipient can then call methods in the object it
received and be calling back (hence the name) to where it came from. Think about a
stock ticker service. You write a server that runs on your desktop and notifies you
when your stock moves up or down. This server is also a remote object. You then
pass this server object to the stock ticker service, which remembers it and calls its
methods when the stock price changes. See Figure 22-2 for the big picture.

The code for the callback service comes in several parts. Because there are two serv-
ers, there are also two interfaces. The first is the interface for the TickerServer ser-
vice. There is only one method, connect(), which takes one argument, a Client:

package com.darwinsys.callback;

import com.darwinsys.client.*;

import java.rmi.*;

public interface TickerServer extends Remote {
 public static final String LOOKUP_NAME = "TickerService";
 public void connect(Client d) throws RemoteException;
}

Client is the interface that displays a stock price change message on your desktop. It
also has only one method, alert(), which takes a String argument:

Figure 22-2. RMI callback service

run()
 while (true) {
 Sleep 10
 for each client
 generate data
 (Client) alert ()

RegisterImpl
connect (Client Interface) {

add to list
}

ServerMain
-instantiate RegisterImpl
-register it with RMI

ClientProgram
-lookup server
-server.connect (this)

alert() {
 notify user
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: RMI Callbacks | 643

package com.darwinsys.client;

import java.rmi.*;

/** Client -- the interface for the client callback */
public interface Client extends Remote {
 public void alert(String mesg) throws RemoteException;
}

Now that you’ve seen both interfaces, let’s look at the TickerServer implementation
(Example 22-5). Its constructor starts a background thread to “track” stock prices; in
fact, this implementation just calls a random number generator. A real implementa-
tion might use a third RMI service to track actual stock data. The connect() method
is trivial; it just adds the given client (which is really an RMI proxy for the client
server running on your desktop). The run method runs forever; on each iteration,
after sleeping for a while, it picks a random stock movement and reports it to any
and all registered clients. If there’s an error on a given client, the client is removed
from the list.

Example 22-5. TickerServerImpl.java

package com.darwinsys.callback;

import com.darwinsys.client.*;

import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

/** This is the main class of the server */
public class TickerServerImpl
 extends UnicastRemoteObject
 implements TickerServer, Runnable
{
 ArrayList list = new ArrayList();

 /** Construct the object that implements the remote server.
 * Called from main, after it has the SecurityManager in place.
 */
 public TickerServerImpl() throws RemoteException {
 super(); // sets up networking
 }

 /** Start background thread to track stocks :-) and alert users. */
 public void start() {
 new Thread(this).start();
 }

 /** The remote method that "does all the work". This won't get
 * called until the client starts up.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 22: Distributed Java: RMI

As written, this code is not threadsafe; things might go bad if one client connects while
we are running through the list of clients. I’ll show how to fix this in Recipe 24.5.

This program’s “server main” is trivial, so I don’t include it here; it just creates an
instance of the class we just saw and registers it. More interesting is the client appli-
cation shown in Example 22-6, which is both the RMI client to the connect()
method and the RMI server to the alert() method in the server in Example 22-5.

 public void connect(Client da) throws RemoteException {
 System.out.println("Adding client " + da);
 list.add(da);
 }

 boolean done = false;
 Random rand = new Random();

 public void run() {
 while (!done) {
 try {
 Thread.sleep(10 * 1000);
 System.out.println("Tick");
 } catch (InterruptedException unexpected) {
 System.out.println("WAHHH!");
 done = true;
 }
 Iterator it = list.iterator();
 while (it.hasNext()){
 String mesg = ("Your stock price went " +
 (rand.nextFloat() > 0.5 ? "up" : "down") + "!");
 // Send the alert to the given user.
 // If this fails, remove them from the list
 try {
 ((Client)it.next()).alert(mesg);
 } catch (RemoteException re) {
 System.out.println(
 "Exception alerting client, removing it.");
 System.out.println(re);
 it.remove();
 }
 }
 }
 }
}

Example 22-6. Callback ClientProgram.java

package com.darwinsys.client;

import com.darwinsys.callback.*;

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

Example 22-5. TickerServerImpl.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: RMI Callbacks | 645

In this version, the client server alert() method simply prints the message in its con-
sole window. A more realistic version would receive an object containing the stock
symbol, a timestamp, and the current price and relative price change; it could then
consult a GUI control to decide whether the given price movement is considered
noticeable and pop up a JOptionPane (see Recipe 14.7) if so.

/** This class tries to be all things to all people:
 * - main program for client to run.
 * - "server" program for remote to use Client of
 */
public class ClientProgram extends UnicastRemoteObject implements Client
{
 protected final static String host = "localhost";

 /** No-argument constructor required as we are a Remote Object */
 public ClientProgram() throws RemoteException {
 }

 /** This is the main program, just to get things started. */
 public static void main(String[] argv) throws IOException, NotBoundException {
 new ClientProgram().do_the_work();
 }

 /** This is the server program part */
 private void do_the_work() throws IOException, NotBoundException {

 System.out.println("Client starting");

 // First, register us with the RMI registry
 // Naming.rebind("Client", this);

 // Now, find the server, and register with it
 System.out.println("Finding server");
 TickerServer server =
 (TickerServer)Naming.lookup("rmi://" + host + "/" +
 TickerServer.LOOKUP_NAME);

 // This should cause the server to call us back.
 System.out.println("Connecting to server");
 server.connect(this);

 System.out.println("Client program ready.");
 }

 /** This is the client callback */
 public void alert(String message) throws RemoteException {
 System.out.println(message);
 }
}

Example 22-6. Callback ClientProgram.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 22: Distributed Java: RMI

22.6 Program: NetWatch
Here’s a program I put together while teaching Java courses for Learning Tree (http://
www.learningtree.com). In one exercise, each student starts the RMI registry on his
or her machine and uses Naming.rebind() (as in Recipe 22.3) to register with it. Some
students come up with interesting variations on the theme of registering. This pro-
gram contacts the RMI registry on each of a batch of machines and shows the
instructor graphically which machines have RMI running and what is registered. A
red flag shows machines that don’t even have the registry program running; a black
flag shows machines that are dead to the (networked) world.

This program also uses many ideas from elsewhere in the book. A Swing GUI
(Chapter 14) is used. The layout is a GridLayout (discussed briefly in Recipe 14.2). A
default list of machines to watch is loaded from a Properties object (Recipe 7.7). For
each host, an RMIPanel is constructed. This class is both a JComponent (Recipe 14.13)
and a thread (Chapter 24). As a JComponent, it can be run in a panel; as a thread, it
can run independently and then sleep for 30 seconds (by default; settable in the
properties file) so that it isn’t continually hammering away at the RMI registry on all
the machines (the network traffic could be awesome). This program combines all
these elements and comes out looking like the display in Figure 22-3 (alas, we don’t
have color pages in this book).

Example 22-7 is the main class, NetWatch, which creates the JFrame and all the
RMIPanels and puts them together.

Figure 22-3. NetWatch watching the class

Example 22-7. NetWatch.java

public class NetWatch {
 public static void main(String[] argv) {

 Properties p = null;

 NetFrame f = new NetFrame("Network Watcher", p);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: NetWatch | 647

 try {
 FileInputStream is = new FileInputStream("NetWatch.properties");
 p = new Properties();
 p.load(is);
 is.close();
 } catch (IOException e) {
 JOptionPane.showMessageDialog(f,
 e.toString(), "Properties error",
 JOptionPane.ERROR_MESSAGE);
 }

 // NOW CONSTRUCT PANELS, ONE FOR EACH HOST.

 // If arguments, use them as hostnames.
 if (argv.length!=0) {
 for (int i=0; i<argv.length; i++) {
 f.addHost(argv[i], p);
 }
 // No arguments. Can we use properties?
 } else if (p != null && p.size() > 0) {
 String net = p.getProperty("netwatch.net");
 int start = Integer.parseInt(p.getProperty("netwatch.start"));
 int end = Integer.parseInt(p.getProperty("netwatch.end"));
 for (int i=start; i<=end; i++) {
 f.addHost(net + "." + i, p);
 }
 for (int i=0; ; i++) {
 String nextHost = p.getProperty("nethost" + i);
 if (nextHost == null)
 break;
 f.addHost(nextHost, p);
 }
 }
 // None of the above. Fall back to localhost
 else {
 f.addHost("localhost", p);
 }

 // All done. Pack the Frame and show it.
 f.pack();
 // UtilGUI.centre(f);
 f.setVisible(true);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 }
}

Example 22-7. NetWatch.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 22: Distributed Java: RMI

The per-machine class, RMIPanel, is shown in Example 22-8. This class is instanti-
ated once for each machine being monitored. Its run method loops, getting the list of
registered objects from the given machine’s RMI registry, and checks the contents to
see if the expected string is present, setting the state to one of several integer values
defined in the parent class NetPanel (EMPTY, DUBIOUS, FINE, etc.) based on what
it finds. This state value is used to decide what color to paint this particular RMIPanel
in the setState() method of the parent class NetPanel, which we have no reason to
override.

Example 22-8. RMIPanel.java

/** Displays one machine's status, for RMI.
 */
public class RMIPanel extends NetPanel implements Runnable {

 public RMIPanel(String host, Properties p) {
 super(host, p);
 }

 /** Keep the screen updated forever, unless stop()ped. */
 public void run() {
 String thePort = props.getProperty("rmiwatch.port", "");
 String theURL = "rmi://" + hostName + ":" + thePort;
 while (!done) {
 try {
 String[] names = Naming.list(theURL);
 ta.setText("");
 for (int i=0; i<names.length; i++) {
 ta.append(i + ": " + names[i] + "\n");
 }
 // If we didn't get an exception, host is up.
 String expect = props.getProperty("rmiwatch.expect");
 String fullText = ta.getText();
 if (fullText.length() == 0) {
 ta.setText("(nothing registered!)");
 setState(EMPTY);
 } else if (expect != null && fullText.indexOf(expect)==-1) {
 setState(DUBIOUS);
 } else setState(FINE);
 } catch (java.rmi.ConnectIOException e) {
 setState(DOWN);
 ta.setText("Net error: " + e.detail.getClass());
 } catch (java.rmi.ConnectException e) {
 setState(NOREG);
 ta.setText("RMI error: " + e.getClass().getName() + "\n" +
 " " + e.detail.getClass());
 // System.err.println(hostName + ":" + e);
 } catch (RemoteException e) {
 setState(NOREG);
 ta.setText("RMI error: " + e.getClass().getName() + "\n" +
 " " + e.detail.getClass());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: NetWatch | 649

The last part is NetPanel, shown in Example 22-9. Notice the state variable defini-
tions, and the setState() method that calls setBackground() to set the correct color
given the state.

 } catch (MalformedURLException e) {
 setState(DOWN);
 ta.setText("Invalid host: " + e.toString());
 } finally {
 // sleep() in "finally" so common "down" states don't bypass.
 // Randomize time so we don't make net load bursty.
 try {
 Thread.sleep((int)(sleepTime * MSEC * 2 * Math.random()));
 } catch (InterruptedException e) {
 /*CANTHAPPEN*/
 }
 }
 }
 }
}

Example 22-9. NetPanel.java

/** Displays one machine's status.
 * Part of the NetWatch program: watch the network
 * on a bunch of machines (i.e., in a classroom or lab).
 * <P>Each non-abstract subclass just needs to implement run(),
 * which must, in a while (!done) loop:
 * Try to contact the host
 * call setState(); (argument below)
 * call ta.setText();
 * Thread.sleep(sleepTime * MSEC);
 *
 */
public abstract class NetPanel extends JPanel implements Runnable {
 /** The name of this host */
 protected String hostName;
 /** The text area to display a list of stuff */
 protected JTextArea ta;
 /** Properties, passed in to constructor */
 protected Properties props;
 /** Default sleep time, in seconds. */
 protected static int DEFAULT_SLEEP = 30;
 /** Sleep time, in seconds. */
 protected int sleepTime = DEFAULT_SLEEP;
 /** Conversion */
 protected int MSEC = 1000;
 /** The constant-width font, shared by all instances. */
 protected static Font cwFont;
 /** The states */
 /** The state for: has "expect"ed name registered. */
 protected final static int FINE = 1;

Example 22-8. RMIPanel.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 22: Distributed Java: RMI

 /** The state for: does not have expected name registered. */
 protected final static int DUBIOUS = 2;
 /** The state for: Server has nothing registered. */
 protected final static int EMPTY = 3;
 /** The state for: host is up but not running RMI */
 protected final static int NOREG = 4;
 /** The state for: host unreachable, not responding, ECONN, etc. */
 protected final static int DOWN = 5;
 /** The color for when a machine is FINE */
 protected static final Color COLOR_FINE = Color.green;
 /** The color for when a machine is DUBIOUS */
 protected static final Color COLOR_DUBIOUS = Color.yellow;
 /** The color for when a machine is EMPTY */
 protected static final Color COLOR_EMPTY = Color.white;
 /** The color for when a machine has NOREG */
 protected static final Color COLOR_NOREG = Color.red;
 /** The color for when a machine is NOREG */
 protected static final Color COLOR_DOWN = Color.black;

 /** State of the monitored host's RMI registry, up or down.
 * Initially set 0, which isn't one of the named states, to
 * force the background color to be set on the first transition.
 */
 protected int state = 0;

 public NetPanel(String host, Properties p) {
 hostName = host;
 props = p;
 String s = props.getProperty("rmiwatch.sleep");
 if (s != null)
 sleepTime = Integer.parseInt(s);
 // System.out.println("Sleep time now " + sleepTime);

 // Maybe get font name and size from props?
 if (cwFont == null)
 cwFont = new Font("lucidasansTypewriter", Font.PLAIN, 10);

 // Gooey gooey stuff.
 ta = new JTextArea(2, 26);
 ta.setEditable(false);
 ta.setFont(cwFont);
 add(BorderLayout.CENTER, ta);
 setBorder(BorderFactory.createTitledBorder(hostName));

 // Sparks. Ignition!
 new Thread(this).start();
 }

 boolean done = false;
 /** Stop this Thread */
 public void stop() {
 done = true;
 }

Example 22-9. NetPanel.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: NetWatch | 651

See Also
The term distributed computing covers a lot of terrain. Here I’ve shown only the
basics of RMI. For more on RMI, see Java Distributed Computing by Jim Farley
(O’Reilly). Jim’s book also offers some information on CORBA. It is possible to use
RMI to access CORBA objects, or vice versa, using a mechanism called RMI-IIOP.
See http://java.sun.com/products/rmi-iiop/.

The newest and potentially most important distributed mechanism for large-scale
computing projects is Enterprise JavaBeans, part of the Java 2 Enterprise Edition
(J2EE). See the O’Reilly book Enterprise JavaBeans by Richard Monson-Haefel.

You can also think of servlets and JSPs as a kind of distributed computing, used pri-
marily as the gateway into these other distributed object mechanisms.

 /** Record the new state of the current machine.
 * If this machine has changed state, set its color
 * @param newState - one of the five valid states in the introduction.
 */
 protected void setState(int newState) {
 if (state /*already*/ == newState)
 return; // nothing to do.
 switch(newState) {
 case FINE: // Server has "expect"ed name registered.
 ta.setBackground(COLOR_FINE);
 ta.setForeground(Color.black);
 break;
 case DUBIOUS: // Server does not have expected name registered.
 ta.setBackground(COLOR_DUBIOUS);
 ta.setForeground(Color.black);
 break;
 case EMPTY: // Server has nothing registered.
 ta.setBackground(COLOR_EMPTY);
 ta.setForeground(Color.black);
 break;
 case NOREG: // host is up but not running RMI
 ta.setBackground(COLOR_NOREG);
 ta.setForeground(Color.white);
 break;
 case DOWN: // host unreachable, not responding, ECONN, etc.
 ta.setBackground(COLOR_DOWN);
 ta.setForeground(Color.white);
 break;
 default:
 throw new IllegalStateException("setState("+state+") invalid");
 }
 state = newState;
 }
}

Example 22-9. NetPanel.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652

Chapter 23CHAPTER 23

Packages and Packaging

23.0 Introduction
One of the better aspects of the Java language is that it has defined a very clear pack-
aging mechanism for categorizing and managing the external API. Contrast this with
a language like C, where external symbols may be found in the C library itself or in
any of dozens of other libraries, with no clearly defined naming conventions.* APIs
consist of one or more packages; packages consist of classes; classes consist of meth-
ods and fields. Anybody can create a package, with one important restriction: you or
I cannot create a package whose name begins with the four letters java. Packages
named java. or javax. are reserved for use by Sun Microsystems’ Java developers.
When Java was new, there were about a dozen packages in a structure that is very
much still with us; some of these are shown in Table 23-1.

Many packages have since been added, but the initial structure has stood the test of
time fairly well. In this chapter, I show you how to create and document your own
packages, and then discuss a number of issues related to deploying your package in
various ways on various platforms.

* This is not strictly true. On Unix, at least, there is a distinction between normal include files and those in the
sys subdirectory, and many structures have names beginning with one or two letters and an underscore, like
pw_name, pw_passwd, pw_home, and so on in the password structure. But this is nowhere near as consistent as
Java’s java.* naming conventions.

Table 23-1. Java packages basic structure

Name Function

java.applet Applets for browser use

java.awt Graphical User Interface

java.lang Intrinsic classes (strings, etc.)

java.net Networking (sockets)

java.io Reading and writing

java.util Utilities (collections, date)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Documenting Classes with Javadoc | 653

23.1 Creating a Package

Problem
You want to be able to import classes and/or organize your classes, so you want to
create your own package.

Solution
Put a package statement at the front of each file, and recompile with -d.

Discussion
The package statement must be the very first noncomment statement in your Java
source file—preceding even import statements—and it must give the full name of the
package. Package names are expected to start with your domain name backward; for
example, my Internet domain is darwinsys.com, so most of my packages begin with
com.darwinsys and a project name. The utility classes used in this book are in one of
the com.darwinsys packages listed in Recipe 1.5, and each source file begins with a
statement, such as:

package com.darwinsys.util;

Once you have package statements in place, be aware that the Java runtime, and
even the compiler, will expect the class files to be found in their rightful place, that
is, in the subdirectory corresponding to the full name somewhere in your CLASS-
PATH settings. For example, the class file for com.darwinsys.util.FileIO must not be
in the file FileIO.class in my class path but must be in com/darwinsys/util/FileIO.class
relative to one of the directories or archives in my CLASSPATH. Accordingly, it is
customary to use the -d command-line argument when compiling. This argument
must be followed by a directory name (often . is used to signify the current direc-
tory) to specify where to build the directory tree. For example, I often say:

javac -d . *.java

which creates the path (e.g., com/darwinsys/util/) relative to the current directory,
and puts the class files into that subdirectory. This makes life easy for subsequent
compilations, and also for creating archives, which I will do in Recipe 23.4.

Note that a change was made to the compiler in JDK 1.4 such that classes that do
not belong to a package (the “anonymous package”) cannot be listed in an import
statement, although they can be referred to by other classes in that package.

23.2 Documenting Classes with Javadoc

Problem
You have heard about this thing called “code reuse” and would like to promote it by
allowing other developers to use your classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 23: Packages and Packaging

Solution
Use Javadoc.

Discussion
Javadoc is one of the great inventions of the early Java years. Like so many good
things, it was not wholly invented by the Java folk; earlier projects such as Knuth’s
Literate Programming had combined source code and documentation in a single
source file. But the Java folk did a good job on it and came along at the right time.
Javadoc is to Java classes what “manpages” are to Unix or Windows Help is to Win-
dows applications: it is a standard format that everybody expects to find and knows
how to use. Learn it. Use it. Write it. Live long and prosper (well, perhaps not). But
all that HTML documentation that you refer to when writing Java code, the com-
plete reference for the JDK—did you think they hired dozens of tech writers to pro-
duce it? Nay, that’s not the Java way. Java’s developers wrote the documentation
comments as they went along, and when the release was made, they ran Javadoc on
all the zillions of public classes and generated the documentation bundle at the same
time as the JDK. You can, should, and really must do the same when you are prepar-
ing classes for other developers to use.

All you have to do to use Javadoc is to put special “doc comments” into your Java
source files. These begin with a slash and two stars (/**) and must appear immedi-
ately before the definition of the class, method, or field that they document. Doc
comments placed elsewhere are ignored.

A series of keywords, prefixed by the at sign (@), can appear inside doc comments in
certain contexts. These are listed in Table 23-2.

Example 23-1 is a somewhat contrived example that shows almost every usage of a
javadoc keyword. The output of running this through Javadoc is shown in a browser
in Figure 23-1.

Table 23-2. Javadoc keywords

Keyword Use

@author Author name(s)

@version Version identifier

@param Argument name and meaning (methods only)

@since JDK version in which introduced (primarily for Sun use)

@return Return value

@throws Exception class and conditions under which thrown

@deprecated Causes deprecation warning

@see Cross-reference

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Documenting Classes with Javadoc | 655

Example 23-1. JavadocDemo.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/**
 * JavadocDemo - a simple applet to show JavaDoc comments.
 * <P>Note: this is just a commented version of HelloApplet.
 * @author Ian F. Darwin, http://www.darwinsys.com/
 * @version $Id: ch23,v 1.5 2004/05/04 20:13:53 ian Exp $
 * @see java.applet.Applet
 * @see javax.swing.JApplet
 */
public class JavadocDemo extends Applet {

 /** init() is an Applet method called by the browser to initialize.
 * Init normally sets up the GUI, and this version is no exception.
 */
 public void init() {
 // We create and add a pushbutton here,
 // but it doesn't do anything yet.
 Button b;
 b = new Button("Hello");
 add(b); // connect Button into Applet
 }

 /** paint() is an AWT Component method, called when the
 * component needs to be painted. This one just draws colored
 * boxes in the Applet's window.
 *
 * @param g A java.awt.Graphics that we use for all our
 * drawing methods.
 */
 public void paint(Graphics g) {
 int w = getSize().width, h=getSize().height;
 g.setColor(Color.YELLOW);
 g.fillRect(0, 0, w/2, h);
 g.setColor(Color.GREEN);
 g.fillRect(w/2, 0, w, h);
 g.setColor(Color.BLACK);
 g.drawString("Welcome to Java", 50, 50);
 }

 /** Show makes a component visible; this method became deprecated
 * in the Great Renaming of JDK1.1.
 * @since 1.0
 * @deprecated Use setvisible(true) instead.
 */
 public void show() {
 setVisible(true);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 23: Packages and Packaging

The Javadoc tool works fine for one class but really comes into its own when dealing
with a package or collection of packages. It generates thoroughly interlinked and
crosslinked documentation, just like that which accompanies the standard JDK.
There are several command-line options; I normally use -author and -version to get
it to include these items, and often -link to tell it where to find the standard JDK to
link to. Run javadoc –help for a complete list of options. Figure 23-1 shows one view
of the documentation that the previous class generates when run as :

$ javadoc -author -version JavadocDemo.java

Be aware that one of the (many) generated files have the same name as the class, with
the extension .html. If you write an applet and a sample HTML file to invoke it, the
.html file is silently overwritten with the Javadoc output. For this reason, I recom-
mend using a different filename or the filename extension .htm for the HTML page
that invokes the applet. Alternately, use the –d directory option to tell Javadoc
where to put the generated files if you don’t want them in the same directory.

See Also
Javadoc has numerous other command-line arguments. If documentation is for your
own use only and will not be distributed, you can use the -link option to tell it where
your standard JDK documentation is installed so that links can be generated to stan-
dard Java classes (like String, Object, and so on). If documentation is to be distrib-
uted, you can omit -link or use -link with a URL to the appropriate J2SE API page on
Sun’s web site. See the online tools documentation for all the command-line options.

The output that Javadoc generates is fine for most purposes. It is possible to write
your own Doclet class to make the Javadoc program into a class documentation veri-
fier, a Java-to-MIF or Java-to-RTF documentation generator, or whatever you like.
Those are actual examples; see the Javadoc tools documentation that comes with the
JDK for documents and examples, or go to http://java.sun.com/j2se/javadoc/.

Visit http://www.doclet.com/ for a fabulous collection of other Javadoc-based tools.

Javadoc is for programmers using your classes; for a GUI application, end users will
probably appreciate standard online help. This is the role of the Java Help API,
which is not covered in this book but is fully explained in the O’Reilly book Creat-
ing Effective JavaHelp, which every GUI application developer should read.

 /** An Applet must have a public no-argument constructor.
 * @throws java.lang.IllegalArgumentException if the current day of the week is
Sunday.
 */
 public JavadocDemo() {
 if (new java.util.Date().getDay() == 0) {
 throw new IllegalArgumentException("Never On A Sunday");
 }
 }
}

Example 23-1. JavadocDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Beyond JavaDoc: Annotations/Metadata (JDK 1.5) and XDoclet | 657

23.3 Beyond JavaDoc: Annotations/Metadata
(JDK 1.5) and XDoclet

Problem
You want to generate not just documentation, but also other code artifacts, from
your source code. You want to mark code for additional compiler verification.

Solution
Download and use XDoclet. Or, in 1.5, use the Annotations or Metadata facility.

Discussion
XDoclet is a free tool that you can download from http://xdoclet.sourceforge.net. In
addition to generating documentation, XDoclet can generate other “artifacts.” For
example, when writing an RMI program (see Chapter 22), you need to write not only

Figure 23-1. Javadoc in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 23: Packages and Packaging

the client and server but also the interface between them. With Enterprise Java-
Beans, you need to write both a home and a remote interface. XDoclet reads addi-
tional @ tags in your source code and uses these to generate these little artifacts
mechanically, the goal being to save you time and typing. For example, in generating
Enterprise JavaBeans (EJBs), each Enterprise Bean—which is normally written as a
single Bean class—may have a local and remote Home and Business interface. Each
of these four artifacts is just an interface for some of the methods in the Bean itself.
Also, at least one XML-based deployment descriptor is required by the EJB specifica-
tion, in addition to one for each different brand of application server that you wish to
deploy into. This makes for a great deal of busywork handcoding all these artifacts.

Enter XDoclet, the “attribute-oriented programming” tool.* XDoclet reads a variety
of special @ tags in a “doc comment” before the class—and before methods and
fields—describing, for example, which methods go into which interface in the case of
an EJB. A slightly marked up EJB might begin like this (imports omitted):

/**
 * This Shopping Cart Stateful Session bean is really an example of the XDoclet EJB
tags.
 * @see Product
 * @ejb.bean
 * name="store/Cart"
 * type="Stateful"
 * jndi-name="store/Cart"
 * @ejb.interface
 * remote-class="myejbs.Cart"
 * @version $Id: ch23,v 1.5 2004/05/04 20:13:53 ian Exp $
 */
public class XDocletDemo implements SessionBean {

 /** @ejb.interface-method
 */
 public void add(Product o) {
 cartItems.add(o);
 }

}

For both the class and the method, the @ejb... tags inform XDoclet how to fabricate
the various EJB artifacts. This extra markup, and a series of Ant elements, are all that
is needed to generate all the artifacts.

XDoclet has been successful and has grown immensely. Its EJB support now includes
all major types, all major application servers, and even code for automatically imple-
menting many EJB-related design patterns, such as Data Accessor Object (DAO).
XDoclet also supports other types of classes such as JavaBeans, web applications, and
others—in short, any time one class can be generated mechanically from another.

* Not to be confused with Aspect Oriented Programming (see http://aopalliance.sourceforge.net/). Aspect Ori-
ented Programming aims to provide a simpler alternative to EJBs and other heavyweight frameworks. But I
digress....

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Beyond JavaDoc: Annotations/Metadata (JDK 1.5) and XDoclet | 659

The Annotations Mechanism (JDK 1.5)
The continuing success of XDoclet has led to a demand for a similar mechanism to be
included as part of standard Java. The new 1.5 annotations are the result. The Anno-
tations mechanism uses an interface-like syntax in which both declaration and use of
Annotations see the name preceded by an at character (@). This was chosen, accord-
ing to the designers, to be reminiscent of “Javadoc tags, a preexisting ad hoc annota-
tion facility in the Java programming language.” Javadoc is ad hoc only in the sense
that its @ tags were never fully integrated into the language; most were ignored by the
compiler, but @deprecated was always understood by the compiler (see Recipe 1.9).

Annotations can be read at runtime by use of the Reflection API; this is not dis-
cussed here (but see Chapter 25 for general information on the Reflection API). More
commonly, annotations can be read before compile time by tools such as the RMI
and EJB stub generators (and others to be invented, perhaps by you, gentle reader, in
the post-1.5 release period!).

Annotations are also read by javac at compile time to provide extra information to
the compiler. For example, a common coding error is overloading a method when
you mean to override it, by mistakenly using the wrong argument type. Consider
overriding the equals method in Object, if you mistakenly write:

public boolean equals(MyClass obj) {
}

then you have created a new overload, that will likely never be called, and the default
version in object will be called. To prevent this, one of several new Annotations pro-
vided in java.lang is the Overrides annotation. This has no parameters but simply is
placed before the method call. For example:

/** Simple demonstation of Metadata being used to verify
 * that a method does in fact override (not overload) a method
 * from the parent class. This class provides the method.
 */
abstract class Top {
 public abstract void myMethod(Object o);
}

/** Simple demonstation of Metadata being used to verify
 * that a method does in fact override (not overload) a method
 * from the parent class. This class is supposed to do the overriding,
 * but deliberately introduces an error to show how the 1.5 compiler
 * behaves (-source 1.5 required).
 */
class Bottom {
 @Overrides public void myMethod(String s) { // EXPECT COMPILE ERROR
 // Do something here...
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 23: Packages and Packaging

Running this (with -source 1.5) results in a compiler error that the method in ques-
tion does not override a method, even though the annotation says it does; this is a
fatal compile-time error:

> javac OverridesDemo.java
OverridesDemo.java:16: method does not override a method from its superclass
 @Overrides public void myMethod(String s) { // EXPECT COMPILE ERROR
 ^
1 error
>

A list of other annotations provided in 1.5 for use by Java developers is included in
the online documentation that accompanies the release.

Finally, the Javadoc Doclet interface has been extended to allow reading of Annota-
tions before compile time by programs that wish to generate other code artifacts. See
the Doclet API documentation with JDK 1.5 for details on using this mechanism.

23.4 Archiving with jar

Problem
You want to create a Java archive (JAR) file.

Solution
Use jar.

Discussion
The jar archiver is Java’s standard tool for building archives. Archives serve the same
purpose as the program libraries that some other programming languages use. Java
normally loads its standard classes from archives, a fact you can verify by running a
simple Hello World program with the -verbose option:

java -verbose HelloWorld

Creating an archive is a simple process. The jar tool takes several command-line
arguments: the most common are c for create, t for table of contents, and x for
extract. The archive name is specified with -f and a filename. The options are fol-
lowed by the files and directories to be archived. For example:

jar cvf /tmp/MyClasses.jar .

The dot at the end is important; it means “the current directory.” This command cre-
ates an archive of all files in the current directory and its subdirectories into the file
/tmp/MyClasses.jar.

Some applications of JAR files require an extra file in the JAR called a manifest. This
file lists the contents of the JAR and their attributes. The attributes are in the form
name: value, as used in email headers, properties files (see Recipe 7.7), and elsewhere.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running an Applet with a Modern JDK | 661

Some attributes are required by the application, while others are optional. For exam-
ple, Recipe 23.7 discusses running a main program directly from a JAR; this requires
a Main-Program header. You can even invent your own attributes, such as:

MySillyAttribute: true
MySillynessLevel: high (5'11")

You store this in a file called, say, manifest.stub,* and pass it to jar with the -m switch.
jar includes your attributes in the manifest file it creates:

jar -cv -m manifest.stub -f /tmp/com.darwinsys.util.jar .

The jar program and related tools add additional information to the manifest,
including a listing of all the other files included in the archive.

23.5 Running an Applet from a JAR

Problem
You want to optimize downloading time for an applet by putting all the class files
into one JAR file.

Solution
jar the applet and supporting files. Deploy the JAR file in place of the class file on the
web server. Use <applet code="MyClass" archive="MyAppletJar.jar" ...>.

Discussion
Once you’ve deployed the JAR file on the web server in place of the class file, you
need to refer to it in the applet tag in the HTML. The syntax for doing this is to use
an archive="name of jar file" attribute on the applet tag.

See Also
You can also store other resources such as GIF images for use by the applet. You
then need to use getResource() instead of trying to open the file directly; see Step 5
in the sidebar in Recipe 23.13.

23.6 Running an Applet with a Modern JDK

Problem
You want to use an applet on an intranet or the Internet, but it needs a modern JDK
to run.

* Some people like to use names like MyPackage.mf so that it’s clear which package it is for; the extension .mf
is arbitrary, but it’s a good convention for identifying manifest files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 23: Packages and Packaging

Solution
Use the Java Plug-in.

Discussion
Sun’s Java Plug-in allows your applet to run with a modern JDK even if the user has
an ancient browser (Netscape 2, 3, or 4), or an anti-standard-Java browser (Internet
Explorer might come to mind). For Netscape, the plug-in runs as a Netscape Plug-in.
For Microsoft, the plug-in runs as an ActiveX control. The Java Plug-in was previ-
ously a separate download but is included in the Java Runtime Environment (JRE) in
all modern JDK versions.

The HTML code needed to make a single applet runnable in either of those two
modes rather boggles the mind. However, a convenient tool (which Sun provides for
free) converts a plain applet tag into a hairy mess of HTML that is “bilingual”: both
of the major browsers interpret it correctly and do the right thing. Note that since
browser plug-ins are platform-dependent, the Plug-in is platform-dependent. Sun
provides versions for Solaris and Windows; other vendors provide it ported to vari-
ous platforms. Learn more at Java’s Plug-in page, http://java.sun.com/products/plugin/.

To try it out, I started with a simple JApplet subclass, the HelloApplet program from
Recipe 25.8. Since this is a JApplet, it requires Swing support, which is not available
in older Netscape versions or newer MSIE versions. Here are some screenshots, and
the “before and after” versions of a simple HTML page with an applet tag run
through the converter. Example 23-2 shows a simple applet HTML page.

When I run this under Netscape 4.x, it dies because Netscape 4 doesn’t fully sup-
port Swing. So I need to convert it to use the Java Plug-in. Editing the HTML by
hand is possible (there is a spec on the Java web site, http://java.sun.com), but messy.
I decide to use the HTMLConverter instead. It pops up a simple dialog window
(shown in Figure 23-2), in which I browse to the directory containing the HTML
page. Note that the program will convert all the HTML files in a directory, so
approach with caution if you have a lot of files. When I click on the Convert button,
it chugs for a while and then pops up the window shown at the bottom of
Figure 23-2 to show what it did.

Example 23-2. HelloApplet.html

<html>
<title>Hello Applet</title>
<body bgcolor="white">
<h1>Hello Applet</h1>
<hr>
<applet code=HelloApplet width=300 height=200>
 <param name="buttonlabel" value="Toggle Drawing">
</applet>
<hr>
</html>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running an Applet with a Modern JDK | 663

By the time the HTMLConverter is finished, the once-simple HTML file is simple no
more (although the original is saved in _BAK). See Example 23-3 for the finished ver-
sion of the HTML.

Figure 23-2. HTML converter

Example 23-3. HTML converter output

<html>
<head><title>Hello Applet</title></head>
<body bgcolor="white">
<h1>Hello Applet</h1>
<hr/>
<!--"CONVERTED_APPLET"-->
<!-- HTML CONVERTER -->
<script language="JavaScript" type="text/javascript"><!--
 var _info = navigator.userAgent;
 var _ns = false;
 var _ns6 = false;
 var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 && _info.
indexOf("Windows 3.1") < 0);
//--></script>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 23: Packages and Packaging

Sun’s documentation makes the amusing claim that “this may look complicated, but
it’s not really.” Your mileage may vary; mine did. In fairness to Sun, if you use the
simpler templates you do get simpler converted output. But because I believe in
choice, I used the “Extended” template to get a version of the file that can be used in
almost any browser. The converter thus outputs the OBJECT version of the Applet

 <comment>
 <script language="JavaScript" type="text/javascript"><!--
 var _ns = (navigator.appName.indexOf("Netscape") >= 0 && ((_info.indexOf("Win") >
0 && _info.indexOf("Win16") < 0 && java.lang.System.getProperty("os.version").indexOf("3.
5") < 0) || (_info.indexOf("Sun") > 0) || (_info.indexOf("Linux") > 0) || (_info.
indexOf("AIX") > 0) || (_info.indexOf("OS/2") > 0) || (_info.indexOf("IRIX") > 0)));
 var _ns6 = ((_ns == true) && (_info.indexOf("Mozilla/5") >= 0));
//--></script>
 </comment>

<script language="JavaScript" type="text/javascript"><!--
 if (_ie == true) document.writeln('<object classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93" WIDTH = "300" HEIGHT = "200" codebase="http://java.sun.com/update/1.5.0/
jinstall-1_5-windows-i586.cab#Version=1,5,0,0"><noembed><xmp>');
 else if (_ns == true && _ns6 == false) document.writeln('<embed ' +
 'type="application/x-java-applet;version=1.5" \
 CODE = "HelloApplet" \
 WIDTH = "300" \
 HEIGHT = "200" \
 buttonlabel ="Toggle Drawing" ' +
 'scriptable=false ' +
 'pluginspage="http://java.sun.com/products/plugin/index.html#download"><noembed>
<xmp>');
//--></script>
<applet CODE = "HelloApplet" WIDTH = "300" HEIGHT = "200"></xmp>
 <PARAM NAME = CODE VALUE = "HelloApplet" >
 <param name="type" value="application/x-java-applet;version=1.5">
 <param name="scriptable" value="false">
 <PARAM NAME = "buttonlabel" VALUE="Toggle Drawing">

</applet>
</noembed>
</embed>
</object>

<!--
<APPLET CODE = "HelloApplet" WIDTH = "300" HEIGHT = "200">
<PARAM NAME = "buttonlabel" VALUE="Toggle Drawing">

</APPLET>
-->
<!--"END_CONVERTED_APPLET"-->

<hr/>
</body>
</html>

Example 23-3. HTML converter output (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running a Main Program from a JAR | 665

for MSIE and the EMBED version for Navigator; other browsers can use one or the
other. Both versions are cleverly interwoven to appear as ignorable comments to the
other. Figure 23-3 shows this page running under Netscape, and Figure 23-4 shows it
under MSIE.

23.7 Running a Main Program from a JAR

Problem
You want to distribute a single large file containing all the classes of your application
and run the main program from within the JAR.

Solution
Create a JAR file with a Main-Class: line in the manifest; run the program with the
java –jar option.

Discussion
The java command has a -jar option that tells it to run the main program found
within a JAR file. In this case, it will also find classes it needs to load from within the
same JAR file. How does it know which class to run? You must tell it. Create a one-
line entry like this, noting that the attribute fields are case-sensitive and that the colon
must be followed by a space:

Main-Class: HelloWorld

Figure 23-3. Applet working in Netscape using Java Plug-in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 23: Packages and Packaging

in a file called, say, manifest.stub, and assuming that you want to run the program
HelloWorld. Then give the following commands:

C:> javac HelloWorld.java
C:> jar cvmf manifest.stub hello.jar HelloWorld.class
C:> java -jar hello.jar
Hello, World of Java
C:>

You can now copy the JAR file anywhere and run it the same way. You do not need
to add it to your CLASSPATH or list the name of the main class.

On GUI platforms that support it, you can also launch this application by double-
clicking on the JAR file. This works at least on Mac OS X and on Windows with the
Sun Java runtime installed.

Mac OS X Specifics
On Mac OS X, you can use the Jar Bundler (under /Developer/Applications/Java
Tools/Jar Bundler.app). This provides a windowed tool to specify the options set by
my MacOSUI package (see Recipe 14.16) as well as CLASSPATH and other attributes.
See Figure 23-5.

Figure 23-4. Applet working in Microsoft Internet Explorer using Java Plug-in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preparing a Class as a JavaBean | 667

23.8 Preparing a Class as a JavaBean

Problem
You have a class that you would like to install as a JavaBean.

Solution
Make sure the class meets the JavaBeans requirements; create a JAR file containing
the class, a manifest, and any ancillary entries.

Discussion
Three kinds of Java components are called JavaBeans:

• Visual components for use in GUI builders, as discussed in this chapter.

• Components used in JavaServer Pages (JSPs).

Figure 23-5. Mac OS Jar Bundler (OS X 10.3.2 version)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 23: Packages and Packaging

• Enterprise JavaBeans (EJBs), containing features for building enterprise-scale
applications. Creating and using EJBs is more involved than regular JavaBeans
and would take us very far afield, so EJBs are not covered in this book. When
you need to learn about EJB functionality, turn to the O’Reilly book Enterprise
JavaBeans.

What all three kinds of beans have in common are certain naming paradigms. All
public properties should be accessible by get/set accessory methods. For a given
property Prop of type Type, the following two methods should exist (note the capitali-
zation):

public Type getProp();
public void setProp(Type)

For example, the various AWT and Swing components that have textual labels all
have the following pair of methods:

public String getText();
public void setText(String newText);

You should use this set/get design pattern (set/get methods) for methods that con-
trol a bean. Indeed, this technique is useful even in nonbean classes for regularity.
The “bean containers”—the Bean Builders, the JSP mechanism, and the EJB mecha-
nism—all use Java introspection (see Chapter 25) to find the set/get method pairs,
and some use these to construct properties editors for your bean. Bean-aware IDEs,
for example, provide editors for all standard types (colors, fonts, labels, etc.). You
can supplement this with a BeanInfo class to provide or override information.

The bare minimum a class requires to be usable as a JavaBean in a GUI builder is the
following:

• The class must implement java.io.Serializable.

• The class must have a no-argument constructor.

• The class should use the set/get paradigm.

• The class file should be packaged into a JAR file with the jar archiver program
(see Recipe 23.9).

Here is a sample bean that may be a useful addition to your Java GUI toolbox, the
LabelText widget. It combines a label and a one-line text field into a single unit, mak-
ing it easier to compose GUI applications. A test program in the online source direc-
tory sets up three LabelText widgets, as shown in Figure 23-6.

Figure 23-6. LabelText bean

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preparing a Class as a JavaBean | 669

The code for LabelText is shown in Example 23-4. Notice that it is serializable and
uses the set/get paradigm for most of its public methods. Most of the public set/get
methods simply delegate to the corresponding methods in the label or the text field.
There isn’t really a lot to this bean, but it’s a good example of aggregation, in addi-
tion to being a good example of a bean.

Example 23-4. LabelText.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A label and text combination, inspired by
 * the LabelText control in Guy Eddon's ActiveX Components book
 * (2nd Edition, p. 203). But done more simply.
 *
 */
public class LabelText extends JPanel implements java.io.Serializable {
 /** The label component */
 protected JLabel theLabel;
 /** The text field component */
 protected JTextField theTextField;

 /** Construct the object with no initial values.
 * To be usable as a JavaBean there MUST be a no-argument constructor.
 */
 public LabelText() {
 this("(LabelText)", 12);
 }

 /** Construct the object with the label and a default textfield size */
 public LabelText(String label) {
 this(label, 12);
 }

 /** Construct the object with given label and textfield size */
 public LabelText(String label, int numChars) {
 super();
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 theLabel = new JLabel(label);
 add(theLabel);
 theTextField = new JTextField(numChars);
 add(theTextField);
 }

 /** Get the label's horizontal alignment */
 public int getLabelAlignment() {
 return theLabel.getHorizontalAlignment();
 }

 /** Set the label's horizontal alignment */
 public void setLabelAlignment(int align) {
 switch (align) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 23: Packages and Packaging

Once it’s compiled, it’s ready to be pickled into a JAR. JavaBeans people really talk
like that!

 case JLabel.LEFT:
 case JLabel.CENTER:
 case JLabel.RIGHT:
 theLabel.setHorizontalAlignment(align);
 break;
 default:
 throw new IllegalArgumentException(
 "setLabelAlignment argument must be one of JLabel aligners");
 }
 }

 /** Get the text displayed in the text field */
 public String getText() {
 return theTextField.getText();
 }

 /** Set the text displayed in the text field */
 public void setText(String text) {
 theTextField.setText(text);
 }

 /** Get the text displayed in the label */
 public String getLabel() {
 return theLabel.getText();
 }

 /** Set the text displayed in the label */
 public void setLabel(String text) {
 theLabel.setText(text);
 }

 /** Set the font used in both subcomponents. */
 public void setFont(Font f) {
 theLabel.setFont(f);
 theTextField.setFont(f);
 }

 /** Adds the ActionListener to receive action events from the textfield */
 public void addActionListener(ActionListener l) {
 theTextField.addActionListener(l);
 }

 /** Remove an ActionListener from the textfield. */
 public void removeActionListener(ActionListener l) {
 theTextField.removeActionListener(l);
 }
}

Example 23-4. LabelText.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pickling Your Bean into a JAR | 671

23.9 Pickling Your Bean into a JAR

Problem
You need to package your bean for deployment.

Solution
“Pickle your bean into a JAR,” that is, create a JAR archive containing it and a mani-
fest file.

Discussion
In addition to the compiled file, you need a manifest prototype, which needs only the
following entries:

Name: LabelText.class
Java-Bean: true

If these lines are stored in a file called LabelText.stub, we can prepare the whole mess
for use as a bean by running the jar command (see Recipe 23.4). Because the JAR file
must contain the class files in their correct package location (see Recipe 23.1), and
because LabelText is part of my com.darwinsys package (see Recipe 1.5), I start off in
the source directory and refer to the class file by its full path (the Stub file can be any-
where, but I keep it with the source file so I can find it easily, thus I have to refer to it
by its full path, too):

$ cd $js/darwinsys/src
$ jar cvfm labeltext.jar com/darwinsys/swingui/LabelText.stub \

com/darwinsys/swingui/LabelText.class
added manifest
adding: com/darwinsys/swingui/LabelText.class(in =3D 1607) (out=3D
776)(deflated 51%)
$

Now we’re ready to install labeltext.jar as a JavaBean. However, the curious may
wish to examine the JAR file in detail. The x option to jar asks it to extract files:

$ jar xvf labeltext.jar
 created: META-INF/
extracted: META-INF/MANIFEST.MF
extracted: com/darwinsys/swingui/LabelText.class
$

The MANIFEST.MF file is based upon the manifest file (LabelText.stub); let’s
examine it:

$ more META-INF/MANIFEST.MF
Manifest-Version: 1.0
Created-By: 1.4.2_03 (Apple Computer, Inc.)
Java-Bean: true
Name: LabelText.class

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 23: Packages and Packaging

Not much exciting has happened besides the addition of a few lines. But the class is
now ready for use as a JavaBean. For a GUI builder, either copy it into the beans
directory or use the bean installation wizard, as appropriate.

See Also
Many good books on JavaBeans technology are available. O’Reilly’s entry is Develop-
ing JavaBeans by Robert Englander. You can also find information on JavaBeans at
Sun’s web site, http://java.sun.com/products/javabeans/.

23.10 Packaging a Servlet into a WAR File

Problem
You have a servlet and other web resources and want to package them into a single
file for deploying to the server.

Solution
Use jar to make a web archive (WAR) file.

Discussion
Servlets are server-side components for use in web servers. They can be packaged for
easy installation into a web server. A web application in the Servlet API specification
is a collection of HTML and/or JSP pages, servlets, and other resources. A typical
directory structure might include the following:

index.html, foo.jsp
Web pages

WEB-INF
Server directory

WEB-INF/web.xml
Descriptor

WEB-INF/classes
Directory for servlets and any classes used by them or by JSPs

WEB-INF/lib
Directory for any JAR files of classes needed by classes in the WEB-INF/classes
directory

Once you have prepared the files in this way, you just package them up with jar:

jar cvf MyWebApp.war .

You then deploy the resulting WAR file into your web server. For details on this,
consult the web server documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

“Write Once, Install on Mac OS X” | 673

23.11 “Write Once, Install Anywhere”

Problem
You want your application program to be installable on a variety of platforms by
users who have not yet earned a Ph.D. in software installation.

Solution
Use an installer.

Discussion
The process of installing software is nontrivial. Unix command-line geeks are quite
happy to extract a gzipped tar file and set their PATH manually, but if you want your
software to be used by the larger masses, you need something simpler. As in, point
and click. Several tools try to automate this process. The better ones will create
startup icons on Mac OS, Windows, and even some of the Unix desktops (CDE,
KDE, GNOME).

I’ve had good results with ZeroG Software’s commercial InstallAnywhere. It ensures
that a JVM is installed and has both web-based and application installation modes;
that is, you can install the application from a web page or you can run the installer
explicitly. See http://www.zerog.com.

Sitraka (formerly KL Group) DeployDirector is a newer entry that promises to auto-
mate deployment of client-side applications on hundreds or thousands of desktops.
It works with Java Web Start (see Recipe 23.13). I haven’t tried it. See http://www.
sitraka.com/deploy/.

InstallShield has long been the leader in the Windows installation world, but they
have had more competition in the Java world. They can be reached at http://www.
installshield.com.

Recipe 23.13 discusses Java Web Start, Sun’s new web-based application installer.

23.12 “Write Once, Install on Mac OS X”

Problem
You want to install your Java program as a first-class application under Mac OS X.

Solution
Structure your build directory as shown here. Or use a tool such as a commercial
installer (Recipe 23.11) or the Eclipse IDE Export Mac OS Application wizard.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 23: Packages and Packaging

Discussion
Mac OS X applications require a specific installation format, which is fairly easy to
understand. Each Mac OS X Application, regardless of programming language, is
installed in a separate directory called an “Application Bundle”, whose name should
end in “.app”. This is the preferred way of installing applications under Mac OS X.
Unlike simple JAR files, Application Bundles will be shown as icons in Finder
(“explorer”) windows and elsewhere, can be saved in the Dock for single-click
startup, and can have file types associated with them (so that double-clicking or
opening a file will launch your application and have it open the file).

Figure 23-7 shows a listing of the files in a simple Java application’s directory.

As you can see, there is one directory Contents with two subdirectories: MacOS and
Resources. Contents/MacOS contains the executable program, in the Java case
JavaApplicationStub, a native-language Java launcher for Mac OS (provided with the
Developer Tools package). Contents/Resources/xxx.icns contains icons in various res-
olutions for display by the Finder; this file can be created using the IconComposer pro-
gram (found in /Developer/Applications/Utilities/Icon Composer.app). The directory
Contents/Resources/Java contains your Java classes and/or JAR files. Contents/Info.
plist ties the whole thing together, specifying the names of the various files, the file
types your application can open, and other information.

The better commercial installer tools (discussed in Recipe 23.11) generate this struc-
ture for you. You can create this structure using Ant. Eclipse 3.0 (since “Milestone
7”) can generate a Mac OS X Application. Just select your Project in the Eclipse navi-
gator, select Export Mac OS X application from the Export menu, and fill in two
screens specifying the output destination and some other information, as shown in
Figure 23-8. In the case of Ant or Eclipse, you probably want to use Disk Copy to
build a dmg (disk image) file of your directory; dmg files can be downloaded by Mac
OS X users and are normally expanded automatically upon download to recreate the
Application Bundle.

Figure 23-7. Files in the Java application directory on Mac OS X

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Java Web Start | 675

See Also
Chapter 7 of the book Mac OS X for Java Geeks, by Will Iverson, covers Application
Bundles. This book is recommended for any Java developer concerned with making
good use of Java on OS X, and especially for anyone shipping applications who is
concerned with making a good impression on OS X users.

23.13 Java Web Start

Problem
You have an application (not an applet) and need to distribute it electronically.

Solution
Sun’s Java Web Start combines browser-based ease of use with applet-like “sand-
box” security (which can be overridden on a per-application basis) and “instant
update” downloading but also lets you run a full-blown application on the user’s
desktop.

Figure 23-8. Eclipse Application Bundle Export screen

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 23: Packages and Packaging

Discussion
Java Web Start (JWS*) provides application downloads over the Web. It is distinct
from applets (see Chapter 18), which require special methods and run in a browser
framework. JWS lets you run ordinary GUI-based applications. It is aimed at people
who want the convenience of browser access combined with full application capabil-
ities. The user experience is as follows. You see a link to an application you’d like to
launch. If you’ve previously installed JWS (explained toward the end of this recipe),
you can just click on its Launch link and be running the application in a few seconds
to a few minutes, depending on your download speed. Figure 23-9 shows the startup
screen that appears after clicking a Launch link for my JabaDex application.

After the application is downloaded successfully, it starts running. This is shown in
slightly compressed form in Figure 23-10.

For your convenience, JWS caches the JAR files and other pieces needed to run the
application. You can later restart the application (even when not connected to the
Web) using the JWS application launcher. In Figure 23-11, I have JabaDex in my
JWS launcher. JWS also allows you to create desktop shortcuts and start menu
entries on systems that support these.

The basic steps in setting up your application for JWS are shown in the following
sidebar.

* JWS used to stand for Java Web Server, which was discontinued, so the acronym has been recycled. Things
recycle quickly on the Web.

Figure 23-9. Starting JabaDex as a JWS application

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Java Web Start | 677

Figure 23-10. JabaDex up and running

Figure 23-11. JWS application control screen

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 23: Packages and Packaging

Let’s go over these instructions in detail. The first step is to package your applica-
tion in one or more JAR files. The jar program was described earlier in this chapter.
The main JAR file should include the application classes and any resources such as
properties files, images, and the like.

You should also include on the web site any JAR files containing extra APIs, such as
JavaMail, com.darwinsys.util, or any other APIs. You can even include native code
files, but they are platform-dependent.

Optionally, you can provide icons to represent your application in JWS format. The
application icons should be in GIF or JPEG format and should be 64 × 64 bits.

The next step is to describe your application in a JNLP (Java Net Launch Protocol)
description file. The JNLP file is an XML file. The official specification is at http://
java.sun.com/products/javawebstart/download-spec.html; a less formal description is
in the Developer’s Guide at the web site http://java.sun.com/products/javawebstart/
docs/developersguide.html. The file I used for enabling JabaDex to run with JWS is a
subset of the allowable XML elements but should be moderately self-explanatory.
See Example 23-5.

Ian’s Basic Steps: Java Web Start
To set up Java Web Start:

1. Package your application in one or more JAR files.

2. Optionally, provide icons to represent your application in JWS format.

3. Describe your application in a JNLP (Java Net Launch Protocol) description file.

4. If necessary, set your web server’s MIME types list to return JNLP files as type
application/x-java-jnlp-file.

5. If necessary, modify your application to use ClassLoader’s getResource()
method instead of opening files.

6. If necessary, sign the application’s JAR files.

7. Make links to your application’s JNLP file and a download link for JWS itself.

8. Enjoy using your application locally with easy web downloading!

Example 23-5. JabaDex.jnlp

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for JabaDex Application -->
<jnlp spec="1.0+"
 codebase="http://www.darwinsys.com/"
 href="/jabadex/">
 <information>
 <title>JabaDex Personal Information Manager Application</title>
 <vendor>Darwin Open Systems</vendor>
 <homepage href="/"/>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Java Web Start | 679

If necessary, set your web server’s MIME types list to return JNLP files as of type
application/x-java-jnlp-file. How you do this depends entirely on what web
server you are running; it should be just a matter of adding an entry for the filename
extension .jnlp to map to this type.

Also if necessary, modify your application to get its ClassLoader and use one of its
getResource() methods, instead of opening files. Any images or other resources that
you need should be opened this way. For example, to explicitly load a properties file,
you could use getClassLoader() and getResource(), as shown in Example 23-6.

 <description>JabaDex Personal Information Manager Application</description>
 <description kind="short">A simple personal information manager.</description>
 <icon href="images/jabadex.jpg"/>
 <offline-allowed/>
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <j2se version="1.3"/>
 <j2se version="1.2"/>
 <jar href="jabadex.jar"/>
 <jar href="com-darwinsys-util.jar"/>
 </resources>
 <application-desc main-class="JDMain"/>
 </jnlp>

Example 23-6. GetResourceDemo (partial listing)

// Find the ClassLoader that loaded us.
// Regard it as the One True ClassLoader for this app.
ClassLoader loader = this.getClass().getClassLoader();

// Use the loader's getResource() method to open the file.
InputStream is = loader.getResourceAsStream("widgets.properties");
if (is == null) {
 System.err.println("Can't load properties file");
 return;
}

// Create a Properties object
Properties p = new Properties();

// Load the properties file into the Properties object
try {
 p.load(is);
} catch (IOException ex) {
 System.err.println("Load failed: " + ex);
 return;
}

Example 23-5. JabaDex.jnlp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 23: Packages and Packaging

Notice that getResource() returns a java.net.URL object here while
getResourceAsStream() returns an InputStream.

If you want the application to have “nonsandbox” (i.e., full application) permis-
sions, you must sign the application’s JAR files. The procedure to sign a JAR file digi-
tally is described in Recipe 23.14. If you request full permissions and don’t sign all
your application JAR files, the sad note shown in Figure 23-12 displays.

If you self-sign (i.e., use a test certificate), the user sees a warning dialog like the one
in Figure 23-13.

Figure 23-12. Unsigned application failure

Figure 23-13. Unverifiable certificate warning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Signing Your JAR File | 681

Finally, make links to your application’s JNLP file in the web page and, optionally, a
download link for JWS itself. JWS is a compiled program that must be loaded before
the user can download any JWS-enabled applications; it runs as a “helper applica-
tion” for the browsers. You can download it as a binary program from the JWS home
page. In theory, you could write your own implementation of this helper from the
JNLP Specification, if you needed to.

Actually, if the user has JWS installed, you don’t need the download link; if they
don’t, the Launch link does not function correctly. The Developer’s Guide shows
how you can use client-side HTML scripting (JavaScript or VBScript) to make only
one of these links appear. The Launch link must refer to the JNLP file:

If you have JWS installed, you can launch JabaDex<
If not, you should
read about Java Web Start.

You should now be ready to use your application in a downloadable fashion!

See Also
See the JWS home page at http://java.sun.com/products/javawebstart/.

23.14 Signing Your JAR File

Problem
You want to digitally sign your JAR file.

Solution
Get or forge a digital certificate, and use the jarsigner program.

Discussion
A JAR file can be digitally signed to verify the identity of its creator. This is very simi-
lar to digital signing of web sites: consumers are trained not to enter sensitive infor-
mation such as credit card numbers into a web form unless the “padlock” icon
shows that it is digitally signed. Signing JAR files uses the Security API in the core
Java 2 platform. You can sign JAR files for use with Java applets (see Chapter 18) or
JWS (Recipe 23.13). In either case, the jarsigner tool included in the JDK is used.

You can purchase a certificate from one of the commercial signing agencies when
you are ready to go live. Meanwhile, for testing, you can “self-sign” a certificate.
Here are the steps needed to sign a JAR file with a test certificate:

1. Create a new key in a new “keystore” as follows:
keytool -genkey -keystore myKeystore -alias myself

The alias myself is arbitrary; its intent is to remind you that it is a self-signed key
so you don’t put it into production by accident.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 23: Packages and Packaging

2. The program prompts you in the terminal window for information about the
new key. It asks for a password for protecting the keystore. Then it asks for your
name, department, organization, city, state, country, and so on. This informa-
tion goes into the new keystore file on disk.

3. Create a self-signed test certificate:
keytool -selfcert -alias myself -keystore myKeystore

You enter the keystore password and keytool generates the certificate.

4. You may want to verify that the steps up to here worked correctly. You can list
the contents of the keystore:

keytool -list -keystore myKeystore

The output should look something like the following:
Keystore type: jks
Keystore provider: SUN
Your keystore contains 1 entry:

myself, Mon Dec 18 11:05:27 EST 2000, keyEntry,
Certificate fingerprint (MD5): 56:9E:31:81:42:07:BF:FF:42:01:CB:42:51:42:96:B6

5. You can now sign the JAR file with your test certificate:
jarsigner -keystore myKeystore test.jar myself

The jarsigner tool updates the META-INF directory of your JAR file to contain cer-
tificate information and digital signatures for each entry in the archive. This can take
a while, depending on the speed of your CPU, the number of entries in the archive,
and so on. The end result is a signed JAR file that is acceptable to applet-enabled
browsers, Java Web Start, and any other mechanisms that require a signed JAR file.

See Also
For more information on signing and permissions, see Java Security by Scott Oaks
(O’Reilly). For more information on the other JDK tools mentioned here, see the
documentation that accompanies the JDK you are using.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

683

Chapter 24 CHAPTER 24

Threaded Java

24.0 Introduction
We live in a world of multiple activities. A person may be talking on the phone while
doodling or reading a memo. A fax machine may scan one fax while receiving
another and printing a third. We expect the GUI programs we use to be able to
respond to a menu while updating the screen. But ordinary computer programs can
do only one thing at a time. The conventional computer programming model—that
of writing one statement after another, punctuated by repetitive loops and binary
decision making—is sequential at heart.

Sequential processing is straightforward but not as efficient as it could be. To
enhance performance, Java offers threading, the capability to handle multiple flows
of control within a single application or process. Java provides thread support and,
in fact, requires threads: the Java runtime itself is inherently multithreaded. For
example, window system action handling and Java’s garbage collection—that mira-
cle that lets us avoid having to free everything we allocate, as we must do when
working in languages at or below C level—run in separate threads.

Just as multitasking allows a single operating system to give the appearance of run-
ning more than one program at the same time on a single-processor computer, so
multithreading can allow a single program or process to give the appearance of work-
ing on more than one thing at the same time. With multithreading, applications can
handle more than one activity at the same time, leading to more interactive graphics
and more responsive GUI applications (the program can draw in a window while
responding to a menu, with both activities occurring more or less independently),
more reliable network servers (if one client does something wrong, the server contin-
ues communicating with the others), and so on.

Note that I did not say “multiprocessing” in the previous paragraph. The term multi-
tasking is sometimes erroneously called multiprocessing, but that term in fact refers
to the less common case of two or more CPUs running under a single operating sys-
tem. Actually, multiprocessing is nothing new: IBM mainframes did it in the 1970s,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 24: Threaded Java

Sun SPARCstations did it in the late 1980s, and Intel PCs did it in the 1990s. True
multiprocessing* allows you to have more than one process running concurrently on
more than one CPU. Java’s support for threading includes multiprocessing under
certain circumstances, if the operating system and the JVM support it as well. Con-
sult your system documentation for details.

While most modern operating systems—POSIX P1003, Sun Solaris, the Distributed
Computing Environment (OSF/DCE) for Unix, Windows, and Mac OS—provide
threads, Java is the first mainstream programming language to have intrinsic support
for threaded operations built right into the language. The semantics of java.lang.
Object, of which all objects are instances, includes the notion of “monitor locking” of
objects, and some methods (notify, notifyall, wait) that are meaningful only in the
context of a multithreaded application. Java also has language keywords such as
synchronized to control the behavior of threaded applications.

Now that the world has had a few years of experience with threaded Java, experts
have started building better ways of writing threaded applications. The Concurrency
Utilities, specified in JSR 166† and included in Java for the first time with JDK 1.5,
are heavily based on the util.concurrent package by Professor Doug Lea of the
Computer Science Department at the State University of New York at Oswego. This
package aims to do for the difficulties of threading what the Collections classes (see
Chapter 7) did for structuring data. This is no small undertaking, but they seem to
have pulled it off. JSR 166 has been discussed as open source (since Professor Lea’s
package was open source), and a number of experts have worked over the code prior
to its inclusion in the JDK.

The java.util.concurrent package includes several main sections:

• Executors, thread pools, and Futures

• Queues and BlockingQueues

• Locks and conditions, with JVM support for faster locking and unlocking

• Synchronizers, including Semaphores and Barriers

• Atomic variables

An implementation of the Executor interface is, of course, a class that can execute
code for you. The code to be executed can be the familiar Runnable or a new inter-
face Callable. One common kind of Executor is a “thread pool.” A Future represents
the future state of something that has been started; it has methods to wait until the
result is ready.

* By which I mean SMP, symmetric multiprocessing, in which either the operating system or the application
programs can be run on any of the available CPUs. At some point, the OS may be running on three of the
four processors on a given system while at some later time all four processors may be running user processes.
On systems such as Solaris, it is possible for one (threaded) process to be running on several CPUs concur-
rently.

† JSR stands for Java Specification Request. The Java Community Process calls standards, both proposed and
adopted, JSRs. See http://www.jcp.org for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running Code in a Different Thread | 685

These brief definitions are certainly oversimplifications. Addressing all the issues is
beyond the scope of this book, but I do provide several examples.

24.1 Running Code in a Different Thread

Problem
You need to write a threaded application.

Solution
Write code that implements Runnable; instantiate and start it.

Discussion
There are several ways to implement threading, and they all require you to imple-
ment the Runnable interface. Runnable has only one method, whose signature is:

public void run();

You must provide an implementation of the run() method. When this method
returns, the thread is used up and can never be restarted or reused. Note that there is
nothing special in the compiled class file about this method; it’s an ordinary method
and you could call it yourself. But then what? There wouldn’t be the special magic
that launches it as an independent flow of control, so it wouldn’t run concurrently
with your main program or flow of control. For this, you need to invoke the magic of
thread creation.

One way to do this is simply to subclass from java.lang.Thread (which also imple-
ments this interface; you do not need to declare redundantly that you implement it).
This approach is shown in Example 24-1. Class ThreadsDemo1 simply prints a series of
“Hello from X” and “Hello from Y” messages; the order in which they appear is
indeterminate since there is nothing in either Java or the program to determine the
order of things.

Example 24-1. ThreadsDemo1.java

/**
 * Threaded demo application, as a Threads subclass.
 */
public class ThreadsDemo1 extends Thread {
 String mesg;
 int count;

 /** Run does the work: print a message, "count" number of times */
 public void run() {
 while (count-- > 0) {
 println(mesg);
 try {
 Thread.sleep(100); // 100 msec

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 24: Threaded Java

What if you can’t subclass Thread because you’re already subclassing another class,
such as JApplet? There are two other ways to do it: have a class implement the
Runnable interface, or use an inner class to provide the Runnable implementation.
Example 24-2 is code that implements Runnable.

 } catch (InterruptedException e) {
 return;
 }
 }
 println(mesg + " all done.");
 }

 void println(String s) {
 System.out.println(s);
 }

 /**
 * Construct a ThreadsDemo1 object.
 * @param m Message to display
 * @param n How many times to display it
 */
 public ThreadsDemo1(String m, int n) {
 count = n;
 mesg = m;
 setName(m + " runner Thread");
 }

 /**
 * Main program, test driver for ThreadsDemo1 class.
 */
 public static void main(String[] argv) {
 // could say: new ThreadsDemo1("Hello from X", 10).run();
 // could say: new ThreadsDemo1("Hello from Y", 15).run();
 // But then it wouldn't be multi-threaded!
 new ThreadsDemo1("Hello from X", 10).start();
 new ThreadsDemo1("Hello from Y", 15).start();
 }
}

Example 24-2. ThreadsDemo2.java

public class ThreadsDemo2 implements Runnable {
 String mesg;
 Thread t;
 int count;

 /**
 * Construct a ThreadsDemo2 object
 *
 * @param String m Message to display
 * @param int n How many times to display it
 */

Example 24-1. ThreadsDemo1.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running Code in a Different Thread | 687

The run method itself does not change, so I’ve omitted it from this listing. To com-
plete the discussion, Example 24-3 is a version of this class that uses an inner class to
provide the run method.

 public ThreadsDemo2(String m, int n) {
 count = n;
 mesg = m;
 t = new Thread(this);
 t.setName(m + " printer thread");
 t.start();
 }

Example 24-3. ThreadsDemo3.java

public class ThreadsDemo3 {
 String mesg;
 Thread t;
 int count;

 /**
 * Main program, test driver for ThreadsDemo3 class.
 */
 public static void main(String argv[]) {
 new ThreadsDemo3("Hello from X", 10);
 new ThreadsDemo3("Hello from Y", 15);
 }

 /**
 * Construct a ThreadsDemo3 object
 * @param m message to display
 * @param n How many times to display it
 */
 public ThreadsDemo3(String m, int n) {
 count = n;
 mesg = m;
 t = new Thread(new Runnable() {
 public void run() {
 while (count-- > 0) {
 System.out.println(mesg);
 try {
 Thread.sleep(100); // 100 msec
 } catch (InterruptedException e) {
 return;
 }
 }
 System.out.println(mesg + " thread all done.");
 }
 });
 t.start();
 }

Example 24-2. ThreadsDemo2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 24: Threaded Java

Here the run method is part of the anonymous inner class declared in the statement
beginning t = new Thread(...). This runs with no interaction with other classes, so
it’s a good use of an inner class.

To summarize, you can create a Runnable in three ways:

• Extend Thread as ThreadsDemo1 did. This works best for standalone applications
that don’t need to extend another class.

• Implement the Runnable interface. This works for applets that extend JApplet
and cannot extend Thread due to single inheritance.

• Construct a Thread passing an inner class that is a Runnable. This is best for tiny
run methods with little outside interaction.

Thread lifecycle methods

I should mention a few other methods briefly, starting with the Thread constructors:
Thread(), Thread("Thread Name"), and Thread(Runnable). The no-argument and
name-argument constructors are used only when subclassing. But what’s in a name?
Well, by default, a thread’s name is composed of the class name and a number such
as a sequence number or the object’s hashcode; on Sun’s JDK it uses sequence num-
bers, such as Thread-0, Thread-1, and so on. These names are not very descriptive
when you need to look at them in a debugger, so assigning names like “Clock Ticker
Thread” or “Background Save Thread” will make your life easier when (not if) you
wind up having to debug your threaded application. Because of this, getName()/
setName(String) methods return or change the thread’s name, respectively.

We’ve seen already that the start() method begins the process of assigning CPU time
to a thread, resulting in its run() method being called. The corresponding stop()
method is deprecated; see Recipe 24.3, where I also discuss interrupt(), which inter-
rupts whatever the thread is doing. The method boolean isAlive() returns true if the
thread has neither finished nor been terminated by a call to its stop() method. Also
deprecated are suspend()/resume(), which pause and continue a thread; they are
prone to corruption and deadlocking, so they should not be used. If you’ve created
multiple threads, you can join() a thread to wait for it to finish; see Recipe 24.4.

The methods int getPriority()/void setPriority(int) show and set the priority of a
thread; higher priority threads get first chance at the CPU. Finally, wait()/notify()/
notifyAll() allow you to implement classical semaphore handling for such para-
digms as producer/consumer relationships. See the Javadoc page for the Thread class
for information on a few other methods.

24.2 Displaying a Moving Image with Animation

Problem
You need to update a graphical display while other parts of the program are running.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Displaying a Moving Image with Animation | 689

Solution
Use a background thread to drive the animation.

Discussion
One common use of threads is an animator, a class that displays a moving image.
This “animator” program does just that. It draws a graphical image (see Recipe 13.8)
at locations around the screen; the location is updated and redrawn from a Thread
for each such image. This version is an applet, so we see it here in the AppletViewer
(Figure 24-1).

The code for the animator program consists of two classes, Sprite (Example 24-4)
and Bounce* (Example 24-5). A Sprite is one image that moves around; Bounce is the
main program.

Figure 24-1. Animator

* The title belies some unfulfilled ambitions to make the animations follow the bouncing curves seen in some
flashier animation demonstrations.

Example 24-4. Sprite.java (part of animator applet)

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/** A Sprite is one Image that moves around the screen on its own */
class Sprite extends Component implements Runnable {
 protected static int spriteNumber = 0;
 protected Thread t;
 protected int x, y;
 protected Bounce parent;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 24: Threaded Java

 protected Image img;
 protected boolean done = false;

 /** Construct a Sprite with a Bounce parent: construct
 * and start a Thread to drive this Sprite.
 */
 Sprite(Bounce parent, Image img) {
 super();
 this.parent = parent;
 this.img = img;
 setSize(img.getWidth(this), img.getHeight(this));
 t = new Thread(this);
 t.setName("Sprite #" + ++spriteNumber);
 t.start();
 }

 /** Stop this Sprite's thread. */
 void stop() {
 System.out.println("Stopping " + t.getName());
 done = true;
 }

 /**
 * Run one Sprite around the screen.
 * This version is very stupid, and just moves them around
 * at some 45-degree angle.
 */
 public void run() {
 int width = parent.getSize().width;
 int height = parent.getSize().height;
 // Random location
 x = (int)(Math.random() * width);
 y = (int)(Math.random() * height);
 // Flip coin for x & y directions
 int xincr = Math.random()>0.5?1:-1;
 int yincr = Math.random()>0.5?1:-1;
 while (!done) {
 width = parent.getSize().width;
 height = parent.getSize().height;
 if ((x+=xincr) >= width)
 x=0;
 if ((y+=yincr) >= height)
 y=0;
 if (x<0)
 x = width;
 if (y<0)
 y = height;
 // System.out.println("Move " + t.getName() + " from " +
 // getLocation() + " to " + x + "," + y);
 setLocation(x, y);
 repaint();
 try {
 Thread.sleep(250);

Example 24-4. Sprite.java (part of animator applet) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Displaying a Moving Image with Animation | 691

 } catch (InterruptedException e) {
 return;
 }
 }
 }

 /** paint -- just draw our image at its current location */
 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

}

Example 24-5. Bounce.java (part of animator applet)

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/** This is the Bounce class; create and start Sprites, using Threads. */
public class Bounce extends Applet implements ActionListener {
 /** The main Panel */
 protected Panel p;
 /** The image, shared by all the Sprite objects */
 protected Image img;
 /** A Vector of Sprite objects. */
 protected Vector v;

 public void init() {
 Button b = new Button("Start");
 b.addActionListener(this);
 setLayout(new BorderLayout());
 add(b, BorderLayout.NORTH);
 add(p = new Panel(), BorderLayout.CENTER);
 p.setLayout(null);
 String imgName = getParameter("imagefile");
 if (imgName == null) imgName = "duke.gif";
 img = getImage(getCodeBase(), imgName);
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(img, 0);
 try {
 mt.waitForID(0);
 } catch(InterruptedException e) {
 throw new IllegalArgumentException(
 "InterruptedException while loading image " + imgName);
 }
 if (mt.isErrorID(0)) {
 throw new IllegalArgumentException(
 "Couldn't load image " + imgName);
 }
 v = new Vector();
 }

Example 24-4. Sprite.java (part of animator applet) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 24: Threaded Java

24.3 Stopping a Thread

Problem
You need to stop a thread.

Solution
Don’t use the Thread.stop() method; instead, use a boolean tested at the top of the
main loop in the run() method.

Discussion
While you can use the thread’s stop() method, Sun recommends against it. That’s
because the method is so drastic that it can never be made to behave reliably in a
program with multiple active threads. That is why, when you try to use it, the com-
piler will generate deprecation warnings. The recommended method is to use a
boolean variable in the main loop of the run() method. The program in
Example 24-6 prints a message endlessly until its shutDown() method is called; it
then sets the controlling variable done to false, which terminates the loop. This
causes the run() method to return, ending the thread. The ThreadStoppers program
in the source directory for this chapter has a main program that instantiates and
starts this class and then calls the shutDown() method.

 public void actionPerformed(ActionEvent e) {
 System.out.println("Creat-ing another one!");
 Sprite s = new Sprite(this, img);
 s.start();
 p.add(s);
 v.addElement(s);
 }

 public void stop() {
 for (int i=0; i<v.size(); i++) {
 ((Sprite)(v.get(i))).stop();
 }
 v.clear();
 }
}

Example 24-6. StopBoolean.java

public class StopBoolean extends Thread {
 protected boolean done = false;
 public void run() {
 while (!done) {
 System.out.println("StopBoolean running");
 try {
 sleep(720);

Example 24-5. Bounce.java (part of animator applet) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stopping a Thread | 693

Running it looks like this:

StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean finished.

But what if your thread is blocked reading from a network connection? You then
cannot check a Boolean, as the thread that is reading is asleep. This is what the stop
method was designed for, but, as we’ve seen, it is now deprecated. Instead, you can
simply close the socket. The program shown in Example 24-7 intentionally dead-
locks itself by reading from a socket that you are supposed to write to, simply to
demonstrate that closing the socket does in fact terminate the loop.

 } catch (InterruptedException ex) {
 // nothing to do
 }
 }
 System.out.println("StopBoolean finished.");
 }
 public void shutDown() {
 done = true;
 }
}

Example 24-7. StopClose.java

import java.io.*;
import java.net.*;

public class StopClose extends Thread {
 protected Socket io;

 public void run() {
 try {
 io = new Socket("localhost", 80); // HTTP
 BufferedReader is = new BufferedReader(
 new InputStreamReader(io.getInputStream()));
 System.out.println("StopClose reading");

 // The following line will deadlock (intentionally), since HTTP
 // enjoins the client to send a request (like "GET / HTTP/1.0")
 // and a null line, before reading the response.

 String line = is.readLine(); // DEADLOCK

 // Should only get out of the readLine if an interrupt
 // is thrown, as a result of closing the socket.

Example 24-6. StopBoolean.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 24: Threaded Java

When run, it prints a message that the close is happening:

StopClose reading
StopClose terminating: java.net.SocketException: Resource temporarily unavailable:

“But wait,” you say. “What if I want to break the wait, but not really terminate the
socket?” A good question, indeed, and there is no perfect answer. You can, however,
interrupt the thread that is reading; the read is interrupted by a java.io.
InterruptedIOException, and you can retry the read. The file Intr.java in this chap-
ter’s source code shows this.

24.4 Rendezvous and Timeouts

Problem
You need to know whether something finished or whether it finished in a certain
length of time.

Solution
Start that “something” in its own thread and call its join() method with or without
a timeout value.

Discussion
The join() method of the target thread is used to suspend the current thread until
the target thread is finished (returns from its run method). This method is over-
loaded; a version with no arguments waits forever for the thread to terminate, while
a version with arguments waits up to the specified time. For a simple example, I cre-
ate (and start!) a simple thread that just reads from the console terminal, and the
main thread simply waits for it. When I run the program, it looks like this:

darwinsys.com$ java Join
Starting
Joining

 // So we shouldn't get here, ever:
 System.out.println("StopClose FINISHED!?");
 } catch (IOException ex) {
 System.err.println("StopClose terminating: " + ex);
 }
 }

 public void shutDown() throws IOException {
 if (io != null) {
 // This is supposed to interrupt the waiting read.
 io.close();
 }
 }
}

Example 24-7. StopClose.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with the synchronized Keyword | 695

Reading
hello from standard input # waits indefinitely for me to type this line
Thread Finished.
Main Finished.
darwinsys.com$

Example 24-8 lists the code for the join() demo.

As you can see, it uses an inner class Runnable (see Recipe 24.1) in Thread t to be
runnable.

24.5 Synchronizing Threads with the
synchronized Keyword

Problem
You need to protect certain data from access by multiple threads.

Solution
Use the synchronized keyword on the method or code you wish to protect.

Example 24-8. Join.java

public class Join {
 public static void main(String[] args) {
 Thread t = new Thread() {
 public void run() {
 System.out.println("Reading");
 try {
 System.in.read();
 } catch (java.io.IOException ex) {
 System.err.println(ex);
 }
 System.out.println("Thread Finished.");
 }
 };
 System.out.println("Starting");
 t.start();
 System.out.println("Joining");
 try {
 t.join();
 } catch (InterruptedException ex) {
 // should not happen:
 System.out.println("Who dares interrupt my sleep?");
 }
 System.out.println("Main Finished.");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 24: Threaded Java

Discussion
I discussed the synchronized keyword briefly in Recipe 17.4. This keyword specifies
that only one thread at a time is allowed to run the given method in a given object
(for static methods, only one thread is allowed to run the method at a time). You can
synchronize methods or smaller blocks of code. It is easier and safer to synchronize
entire methods, but this can be more costly in terms of blocking threads that could
run. Simply add the synchronized keyword on the method. For example, many of the
methods of Vector (see Recipe 7.3) are synchronized.* This ensures that the vector
does not become corrupted or give incorrect results when two threads update or
retrieve from it at the same time.

Bear in mind that threads can be interrupted at almost any time, in which case con-
trol is given to another thread. Consider the case of two threads appending to a data
structure at the same time. Let’s suppose we have the same methods as Vector, but
we’re operating on a simple array. The add() method simply uses the current num-
ber of objects as an array index, then increments it:

1 public void add(Object obj) {
2 data[max] = obj;
3 max = max + 1;
4 }

Threads A and B both wish to call this method. Now suppose that Thread A gets
interrupted after line 2 but before line 3, and then Thread B gets to run. Thread B
does line 2, overwriting the contents of data[max]; we’ve now lost all reference to the
object that Thread A passed in! Thread B then increments max in line 3 and returns.
Later, Thread A gets to run again; it resumes at line 3 and increments max past the
last valid object. So not only have we lost an object, but we have an uninitialized ref-
erence in the array. This state of affairs is shown in Figure 24-2.

Now you might think, “No problem, I’ll just combine lines 2 and 3”:

data[max++] = obj;

As the game show host sometimes says, “Bzzzzt! Thanks for playing!” This change
makes the code a bit shorter but has absolutely no effect on reliability. Interrupts
don’t happen conveniently on Java statement boundaries; they can happen between
any of the many JVM machine instructions that correspond to your program. The
code can still be interrupted after the store and before the increment. The only good
solution is to use Java synchronization.

Making the method synchronized means that any invocations of it will wait if one
thread has already started running the method:

public synchronized void add(Object obj) {
 ...
}

* The corresponding methods of ArrayList are not synchronized; this makes nonthreaded use of an ArrayList
about 20 to 30 percent faster (see Recipe 7.17).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with the synchronized Keyword | 697

Anytime you wish to synchronize some code, but not an entire method, use the
synchronized keyword on an unnamed code block within a method, as in:

synchronized (someObject) {
 // this code will execute in one thread at a time
}

The choice of object is up to you. Sometimes it makes sense to synchronize on the
object containing the code, as in Example 24-9. For synchronizing access to an
ArrayList, it would make sense to use the ArrayList instance, as in:

synchronized(myArrayList) {
 if (myArrayList.indexof(someObject) != -1) {
 // do something with it.
 } else {
 create an object and add it...
 }
}

Example 24-9 is a web servlet that I wrote for use in the classroom, following a sug-
gestion from Scott Weingust (scottw@sysoft.ca). It lets you play a quiz show game of
the style where the host asks a question and the first person to press her buzzer (buzz
in) gets to try to answer the question correctly. To ensure against having two people
buzz in simultaneously, the code uses a synchronized block around the code that
updates the Boolean buzzed variable. And for reliability, any code that accesses this
Boolean is also synchronized.

Figure 24-2. Nonthreadsafe add method in operation: normal and failed updates

Example 24-9. BuzzInServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

max

obj objBefore

obj obj
obja

?
objb

After conflict

max

max

obj obj obj
After normal

update

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 24: Threaded Java

/** A quiz-show "buzzer" servlet: the first respondent wins the chance
 * to answer the skill-testing question. Correct operation depends on
 * running in a Servlet container that CORRECTLY implements the Servlet
 * spec, that is, a SINGLE INSTANCE of this servlet class exists, and it
 * is run in a thread pool. This class does not implement "SingleThreadModel"
 * so a correct Servlet implementation will use a single instance.
 * <p>
 * If you needed to work differently, you could synchronize on an object
 * stored in the Servlet Application Context, at a slight increased cost
 * in terms of system overhead.
 */
public class BuzzInServlet extends HttpServlet {

 /** This controls the access */
 protected static boolean buzzed = false;
 /** who got the buzz? */
 protected static String winner;

 /** doGet is called from the contestants web page.
 * Uses a synchronized code block to ensure that
 * only one contestant can change the state of "buzzed".
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 boolean igotit = false;

 // Do the synchronized stuff first, and all in one place.
 synchronized(this) {
 if (!buzzed) {
 igotit = buzzed = true;
 winner = request.getRemoteHost() + '/' + request.getRemoteAddr();
 }
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Thanks for playing</title></head>");
 out.println("<body bgcolor=\"white\">");

 if (igotit) {
 out.println("YOU GOT IT");
 getServletContext().log("BuzzInServlet: WINNER " +
 request.getRemoteUser());
 // TODO - output HTML to play a sound file :-)
 } else {
 out.println("Thanks for playing, " + request.getRemoteAddr());
 out.println(", but " + winner + " buzzed in first");
 }
 out.println("</body></html>");
 }

Example 24-9. BuzzInServlet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with the synchronized Keyword | 699

Two HTML pages lead to the servlet. The contestant’s page simply has a large link
(). Anchor links generate an HTML GET, so the
servlet engine calls doGet():

<html><head><title>Buzz In!</title></head>
<body>
<h1>Buzz In!</h1>

 /** The Post method is used from an Administrator page (which should
 * only be installed in the instructor/host's localweb directory).
 * Post is used for administrative functions:
 * 1) to display the winner;
 * 2) to reset the buzzer for the next question.
 * <p>
 * In real life the password would come from a Servlet Parameter
 * or a configuration file, instead of being hardcoded in an "if".
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (request.getParameter("password").equals("syzzy")) {
 out.println("<html><head><title>Welcome back, host</title><head>");
 out.println("<body bgcolor=\"white\">");
 String command = request.getParameter("command");
 if (command.equals("reset")) {
 // Synchronize what you need, no more, no less.
 synchronized(this) {
 buzzed = false;
 winner = null;
 }
 out.println("RESET");
 } else if (command.equals("show")) {
 synchronized(this) {
 out.println("Winner is: " + winner);
 }
 }
 else {
 out.println("<html><head><title>ERROR</title><head>");
 out.println("<body bgcolor=\"white\">");
 out.println("ERROR: Command " + command + " invalid.");
 }
 } else {
 out.println("<html><head><title>Nice try, but... </title><head>");
 out.println("<body bgcolor=\"white\">");
 out.println(
 "Your paltry attempts to breach security are rebuffed!");
 }
 out.println("</body></html>");
 }
}

Example 24-9. BuzzInServlet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 24: Threaded Java

<p>

Press here to buzz in!

The HTML is pretty plain, but it does the job. Figure 24-3 shows the look and feel.

The game show host has access to an HTML form with a POST method, which calls
the doPost() method. This displays the winner to the game show host and resets the
“buzzer” for the next question. A password is provided; it’s hardcoded here, but in
reality the password would come from a properties file (Recipe 7.7) or a servlet ini-
tialization parameter (as described in O’Reilly’s Java Servlet Programming):

<html><head><title>Reset Buzzer</title></head>
<body>
<h1>Display Winner</h1>
<p>
The winner is:
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="show">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Show" value="Show">
</form>

Figure 24-3. BuzzInServlet in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simplifying Synchronization with 1.5 Locks | 701

<h1>Reset Buzzer</h1>
<p>
Remember to RESET before you ask the contestants each question!
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="reset">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Reset" value="RESET!">
</form>

The game show host functionality is shown in Figure 24-4.

For a more complete game, of course, the servlet would keep a Stack (Recipe 7.14) of
people in the order they buzzed in, in case the first person doesn’t answer the ques-
tion correctly. Access to this would have to be synchronized, too.

24.6 Simplifying Synchronization with 1.5 Locks

Problem
You want an easier means of synchronizing threads.

Solution
Use the Lock mechanism, new in 1.5.

Figure 24-4. BuzzInServlet game show host function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 24: Threaded Java

Discussion
JDK 1.5 introduced the java.util.concurrent.locks package; its major interface is
Lock. This interface has several methods for locking and one for unlocking. The gen-
eral pattern for using it is:

Lock lock =
try {

lock.lock();
// do the work that is protected by the lock

} finally {
lock.unlock();

}

The point of putting the unlock() call in the finally block is, of course, to ensure
that it is not bypassed if an exception occurs (the code may also include one or more
catch blocks, as required by the work being performed).

The improvement here, compared with the traditional synchronized methods and
blocks, is that using a Lock actually looks like a locking operation! And, as I men-
tioned, several means of locking are available, shown in Table 24-1.

The TimeUnit class lets you specify the units for the amount of time specified, includ-
ing: TimeUnit.SECONDS, TimeUnit.MILLISECONDS, TimeUnit.MICROSECONDS, and TimeUnit.
NANOSECONDS.

In all cases the lock must be released with unlock() before it can be locked again.

The standard Lock is useful in many applications, but depending on the applica-
tion’s requirements, other types of locks may be more appropriate. Applications with
asymmetric load patterns may benefit from a common pattern called the “reader-
writer lock”; I call this one a Readers-Writer lock to emphasize that there can be
many readers but only one writer. It’s actually a pair of interconnected locks; any
number of readers can hold the read lock and read the data, as long as it’s not being
written (shared read access). A thread trying to lock the write lock, however, waits
until all the readers are finished, then locks them out until the writer is finished

Table 24-1. Locking methods of the Lock class

Return type Method Meaning

void lock() Get the lock, even if you have to wait until another
thread frees it first.

boolean tryLock() Get the lock only if it is free right now.

boolean tryLock(long time, TimeUnit units)
throws InterruptedException

Try to get the lock, but only wait for the length of
time indicated.

void lockInterruptibly() throws
InterruptedException

Get the lock, waiting unless interrupted.

void unlock() Release the lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simplifying Synchronization with 1.5 Locks | 703

(exclusive write access). To support this pattern, JDK 1.5 provides the ReadWriteLock
interface and the implementing class ReentrantReadWriteLock. The interface has only
two methods, readLock() and writeLock(), which provide a reference to the appro-
priate Lock implementation. These methods do not, in themselves, lock or unlock the
locks; they only provide access to them, so it is common to see code like:

rwlock.readLock().lock();
...
rwlock.readLock().unlock();

To demonstrate ReadWriteLock in action, I wrote the business logic portion of a web-
based voting application. It could be used in voting for candidates or for the more
common web poll. Presuming that you display the results on the home page and
change the data only when somebody takes the time to click on a response to vote,
this application fits one of the intended criteria for ReadWriteLock—i.e., that you
have more readers than writers. The main class, ReadersWritersDemo, is shown in
Example 24-10. The helper class BallotBox is online; it simply keeps track of the
votes and returns an invariant Iterator upon request. Note that in the run() method
of the reading threads, I obtain the iterator while holding the lock but release the
lock before printing it; this allows greater concurrency and better performance.

Example 24-10. ReadersWriterDemo.java

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * Simulate multiple readers
 */
public class ReadersWriterDemo {

private static final int NUM_READER_THREADS = 3;
public static void main(String[] args) {

new ReadersWriterDemo().demo();
}
/** Set this to true to end the program */
private boolean done = false;
/** The data being protected. */
private BallotBox theData;
/** The read lock / write lock combination */
private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

/**
 * Constructor: set up some quasi-random initial data
 */
public ReadersWriterDemo() {

List questionsList = new ArrayList();
questionsList.add("Agree");
questionsList.add("Disagree");
theData = new BallotBox(questionsList);

}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 24: Threaded Java

/**
 * Run a demo with more readers than writers
 */
private void demo() {

// Start two reader threads
for (int i = 0; i < NUM_READER_THREADS; i++) {

new Thread() {
public void run() {

while(!done) {
Iterator results = null;
try {

lock.readLock().lock();
results = theData.iterator();

} finally {
// Unlock in finally to be sure.
lock.readLock().unlock();

}
// Now lock has been freed, take time to print
print(results);
try {

Thread.sleep(((long)(Math.random()* 1000)));
} catch (InterruptedException ex) {

// nothing to do
}

}
}

}.start();
}
// Start one writer thread to simulate occasional voting
new Thread() {

public void run() {
while(!done) {

try {
lock.writeLock().lock();
theData.voteFor(

(((int)(Math.random()*
theData.getCandidateCount()))));

} finally {
lock.writeLock().unlock();

}
try {

Thread.sleep(((long)(Math.random()*1500)));
} catch (InterruptedException ex) {

// nothing to do
}

}
}

}.start();

// In the main thread, wait a while then terminate the run.
try {

Thread.sleep(10 *1000);

Example 24-10. ReadersWriterDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with wait() and notifyAll() | 705

Since this is a simulation and the voting is random, it does not always come out 50-
50. In two consecutive runs, the following were the last line of each run:

Agree(6), Disagree(6)
Agree(9), Disagree(4)

See Also
The Lock interface also makes available Condition objects, which provide even more
flexibility. Consult the documentation for the 1.5 release for more information.

24.7 Synchronizing Threads with
wait() and notifyAll()

Problem
The synchronized keyword lets you lock out multiple threads but doesn’t give you
much communication between them.

Solution
Use wait() and notifyAll(). Very carefully.

Discussion
Three methods appear in java.lang.Object that allow you to use any object as a syn-
chronization target: wait(), notify(), and notifyAll().

} catch (InterruptedException ex) {
// nothing to do

} finally {
done = true;

}
}

/** print the current totals */
private void print(Iterator iter) {

boolean first = true;
while (iter.hasNext()) {

BallotPosition pair = (BallotPosition) iter.next();
if (!first)

System.out.print(", ");
System.out.print(pair.getName() + "(" + pair.getVotes() + ")");
first = false;

}
System.out.println();

}

}

Example 24-10. ReadersWriterDemo.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 24: Threaded Java

wait()
Causes the current thread to block in the given object until awakened by a
notify() or notifyAll().

notify()
Causes a randomly selected thread waiting on this object to be awakened. It
must then try to regain the monitor lock. If the “wrong” thread is awakened,
your program can deadlock.

notifyAll()
Causes all threads waiting on the object to be awakened; each will then try to
regain the monitor lock. Hopefully one will succeed.

The mechanism is a bit odd: there is no way to awaken only the thread that owns the
lock. However, that’s how it works, and it’s the reason almost all programs use
notifyAll() instead of notify(). Also, note that both wait() and the notification
methods can be used only if you are already synchronized on the object; that is, you
must be in a synchronized method within—or a code block synchronized on—the
object that you wish your current thread to wait() or notify() upon.

For a simple introduction to wait() and notify(), I’ll use a simple Producer-
Consumer model. This pattern can be used to simulate a variety of real-world situa-
tions in which one object is creating or allocating objects (producing them), usually
with a random delay, while another is grabbing the objects and doing something
with them (consuming them). A single-threaded Producer-Consumer model is
shown in Example 24-11. As you can see, no threads are created, so the entire pro-
gram—the read() in main as well as produce() and consume()—runs in the same
thread. You control the production and consumption by entering a line consisting of
letters. Each p causes one unit to be produced, while each c causes one unit to be
consumed. So if I run it and type pcpcpcpc, the program alternates between produc-
ing and consuming. If I type pppccc, the program will produce three units and then
consume them. See Example 24-11.

Example 24-11. ProdCons1.java

public class ProdCons1 {

 /** Throughout the code, this is the object we synchronize on so this
 * is also the object we wait() and notifyAll() on.
 */
 protected LinkedList list = new LinkedList();

 protected void produce() {
 int len = 0;
 synchronized(list) {
 Object justProduced = new Object();
 list.addFirst(justProduced);
 len = list.size();
 list.notifyAll();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with wait() and notifyAll() | 707

The part that may seem strange is using list instead of the main class as the syn-
chronization target. Each object has its own wait queue, so it does matter which
object you use. In theory, any object can be used as long as your synchronized target
and the object in which you run wait() and notify() are one and the same. Of
course, it is good to refer to the object that you are protecting from concurrent
updates, so I used list here.

Hopefully, you’re now wondering what this has to do with thread synchronization.
There is only one thread, but the program seems to work:

> javac +E -d . ProdCons1.java
> java ProdCons1
pppccc
List size now 1
List size now 2
List size now 3

 }
 System.out.println("List size now " + len);
 }

 protected void consume() {
 Object obj = null;
 int len = 0;
 synchronized(list) {
 while (list.size() == 0) {
 try {
 list.wait();
 } catch (InterruptedException ex) {
 return;
 }
 }
 obj = list.removeLast();
 len = list.size();
 }
 System.out.println("Consuming object " + obj);
 System.out.println("List size now " + len);
 }

 public static void main(String[] args) throws IOException {
 ProdCons1 pc = new ProdCons1();
 int i;
 while ((i = System.in.read()) != -1) {
 char ch = (char)i;
 switch(ch) {
 case 'p': pc.produce(); break;
 case 'c': pc.consume(); break;
 }
 }
 }
}

Example 24-11. ProdCons1.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 24: Threaded Java

Consuming object java.lang.Object@d9e6a356
List size now 2
Consuming object java.lang.Object@d9bea356
List size now 1
Consuming object java.lang.Object@d882a356
List size now 0

But this program is not quite right. If I enter even one more c than there are p’s, think
about what happens. The consume() method does a wait(), but it is no longer possi-
ble for the read() to proceed. The program, we say, is deadlocked: it is waiting on
something that can never happen. Fortunately, this simple case is detected by some
versions of the Java runtime:

ppccc
List size now 1
List size now 2
Consuming object java.lang.Object@18faf0
List size now 1
Consuming object java.lang.Object@15bc20
List size now 0
Dumping live threads:
'gc' tid 0x1a0010, status SUSPENDED flags DONTSTOP
 blocked@0x19c510 (0x1a0010->|)
'finaliser' tid 0x1ab010, status SUSPENDED flags DONTSTOP
 blocked@0x10e480 (0x1ab010->|)
'main' tid 0xe4050, status SUSPENDED flags NOSTACKALLOC
 blocked@0x13ba20 (0xe4050->|)
Deadlock: all threads blocked on internal events
Abort (core dumped)

Indeed, the read() is never executed because there’s no way for produce() to get
called and so the notifyAll() can’t happen. To fix this, I want to run the producer
and the consumer in separate threads. There are several ways to accomplish this. I’ll
just make consume() and produce() into inner classes Consume and Produce that
extend Thread, and their run() method will do the work of the previous methods. In
the process, I’ll replace the code that reads from the console with code that causes
both threads to loop for a certain number of seconds, and change it to be a bit more
of a simulation of a distributed Producer-Consumer mechanism. The result of all this
is the second version, ProdCons2, shown in Example 24-12.

Example 24-12. ProdCons2.java

import java.util.*;
import java.io.*;

public class ProdCons2 {

 /** Throughout the code, this is the object we synchronize on so this
 * is also the object we wait() and notifyAll() on.
 */
 protected LinkedList list = new LinkedList();
 protected int MAX = 10;
 protected boolean done = false; // Also protected by lock on list.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Threads with wait() and notifyAll() | 709

 /** Inner class representing the Producer side */
 class Producer extends Thread {

 public void run() {
 while (true) {
 Object justProduced = getRequestFromNetwork();
 // Get request from the network - outside the synch section.
 // We're simulating this actually reading from a client, and it
 // might have to wait for hours if the client is having coffee.
 synchronized(list) {
 while (list.size() == MAX) // queue "full"
 try {
 System.out.println("Producer WAITING");
 list.wait(); // Limit the size
 } catch (InterruptedException ex) {
 System.out.println("Producer INTERRUPTED");
 }
 list.addFirst(justProduced);
 if (done)
 break;
 list.notifyAll(); // must own the lock
 System.out.println("Produced 1; List size now " + list.size());
 // yield(); // Useful for green threads & demo programs.
 }
 }
 }

 Object getRequestFromNetwork() { // Simulation of reading from client
 // try {
 // Thread.sleep(10); // simulate time passing during read
 // } catch (InterruptedException ex) {
 // System.out.println("Producer Read INTERRUPTED");
 // }
 return(new Object());
 }
 }

 /** Inner class representing the Consumer side */
 class Consumer extends Thread {
 public void run() {
 while (true) {
 Object obj = null;
 int len = 0;
 synchronized(list) {
 while (list.size() == 0) {
 try {
 System.out.println("CONSUMER WAITING");
 list.wait(); // must own the lock
 } catch (InterruptedException ex) {
 System.out.println("CONSUMER INTERRUPTED");
 }
 }

Example 24-12. ProdCons2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 24: Threaded Java

I’m happy to report that all is well with this. It runs for long periods of time, neither
crashing nor deadlocking. After running for some time, I captured this tiny bit of the
log:

Produced 1; List size now 118
Consuming object java.lang.Object@2119d0
List size now 117
Consuming object java.lang.Object@2119e0
List size now 116

 if (done)
 break;
 obj = list.removeLast();
 list.notifyAll();
 len = list.size();
 System.out.println("List size now " + len);
 }
 process(obj); // Outside synch section (could take time)
 //yield();
 }
 }

 void process(Object obj) {
 // Thread.sleep(nnn) // Simulate time passing
 System.out.println("Consuming object " + obj);
 }
 }

 ProdCons2(int nP, int nC) {
 for (int i=0; i<nP; i++)
 new Producer().start();
 for (int i=0; i<nC; i++)
 new Consumer().start();
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {

 // Start producers and consumers
 int numProducers = 2;
 int numConsumers = 2;
 ProdCons2 pc = new ProdCons2(numProducers, numConsumers);

 // Let it run for, say, 30 seconds
 Thread.sleep(30*1000);

 // End of simulation - shut down gracefully
 synchronized(pc.list) {
 pc.done = true;
 pc.list.notifyAll(); // Wake up any waiters!
 }
 }
}

Example 24-12. ProdCons2.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simplifying Producer-Consumer with the 1.5 Queue Interface | 711

By varying the number of producers and consumers started in the constructor
method, you can observe different queue sizes that all seem to work correctly.

24.8 Simplifying Producer-Consumer
with the 1.5 Queue Interface

Problem
You need to control producer-consumer implementations involving multiple threads.

Solution
Use JDK 1.5’s new Queue interface or the BlockingQueue subinterface.

Discussion
As an example of the simplifications possible with 1.5’s java.util.Concurrent pack-
age, consider the producer-consumer program in Recipe 24.7. Example 24-13,
ProdCons15.java, uses the new java.util.BlockingQueue (itself a subinterface of the
new-in-1.5 java.util.Queue interface) to reimplement the program ProdCons2 from
Example 24-12 in about two-thirds of the number of lines of code. With these new
features, the application need not be concerned with wait() or the vagaries of
notify() and the use of notifyAll() in its place.

The application simply puts items into a queue and takes them from it. In the exam-
ple, I have (as before) 4 producers and only 3 consumers, so the producers eventu-
ally wait. Running the application on one of my older notebooks, the producers’ lead
over the consumers increases to about 350 over the ten seconds or so of running it.

Example 24-13. Prodcons15.java

import java.util.*;
import java.io.*;
import java.util.concurrent.*;

/** Producer-Consumer in Java, for J2SE 1.5 using concurrent.
 */
public class ProdCons15 {

protected boolean done = false;

/** Inner class representing the Producer side */
class Producer implements Runnable {

protected BlockingQueue queue;

Producer(BlockingQueue theQueue) { this.queue = theQueue; }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 24: Threaded Java

public void run() {
try {

while (true) {
Object justProduced = getRequestFromNetwork();
queue.put(justProduced);
System.out.println("Produced 1 object; List size now " + queue.size());
if (done) {
return;
}

}
} catch (InterruptedException ex) {

System.out.println("Producer INTERRUPTED");
}

}

Object getRequestFromNetwork() {// Simulation of reading from client
try {

Thread.sleep(10); // simulate time passing during read
} catch (InterruptedException ex) {

System.out.println("Producer Read INTERRUPTED");
}
return(new Object());

}
}

/** Inner class representing the Consumer side */
class Consumer implements Runnable {

protected BlockingQueue queue;

Consumer(BlockingQueue theQueue) { this.queue = theQueue; }

public void run() {
try {

while (true) {
Object obj = queue.take();
int len = queue.size();
System.out.println("List size now " + len);
process(obj);
if (done) {

return;
}

}
} catch (InterruptedException ex) {

System.out.println("CONSUMER INTERRUPTED");
}

}

void process(Object obj) {
// Thread.sleep(xxx) // Simulate time passing
System.out.println("Consuming object " + obj);

}
}

Example 24-13. Prodcons15.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Background Saving in an Editor | 713

24.9 Background Saving in an Editor

Problem
You need to save the user’s work periodically in an interactive program.

Solution
Use a background thread.

Discussion
This code fragment creates a new thread to handle background saves, as in most
word processors:

public class AutoSave extends Thread {
 /** The FileSave interface is implemented by the main class. */
 protected FileSaver model;
 /** How long to sleep between tries */
 public static final int MINUTES = 5;
 private static final int SECONDS = MINUTES * 60;

 public AutoSave(FileSaver m) {
 super("AutoSave Thread");
 // setDaemon(true); // so we don't keep the main app alive
 model = m;
 }

ProdCons15(int nP, int nC) {
BlockingQueue myQueue = new LinkedBlockingQueue();
for (int i=0; i<nP; i++)

new Thread(new Producer(myQueue)).start();
for (int i=0; i<nC; i++)

new Thread(new Consumer(myQueue)).start();
}

public static void main(String[] args)
throws IOException, InterruptedException {

// Start producers and consumers
int numProducers = 4;
int numConsumers = 3;
ProdCons15 pc = new ProdCons15(numProducers, numConsumers);

// Let the simulation run for, say, 10 seconds
Thread.sleep(10*1000);

// End of simulation - shut down gracefully
pc.done = true;

}

Example 24-13. Prodcons15.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 24: Threaded Java

 public void run() {
 while (true) { // entire run method runs forever.
 try {
 sleep(SECONDS*1000);
 } catch (InterruptedException e) {
 // do nothing with it
 }
 if (model.wantAutoSave() && model.hasUnsavedChanges())
 model.saveFile(null);
 }
 }

As you can see in the run() method, this code sleeps for five minutes (300 seconds),
then checks whether it should do anything. If the user has turned autosave off, or
hasn’t made any changes since the last save, nothing needs to be done. Otherwise,
we call the saveFile() method in the main program, which saves the data to the cur-
rent file. It would be smarter to save it to a recovery file of some name, as the better
word processors do.

What’s not shown is that now the saveFile() method must be synchronized, and
what’s more, whatever method shuts down the main program must also be synchro-
nized on the same object. It’s easy to see why if you think about how the save
method would work if the user clicked on the Save button at the same time that the
autosave method called it, or if the user clicked on Exit while the file save method
had just opened the file for writing. The “save to recovery file” strategy gets around
some of this, but it still needs a great deal of care.

24.10 Program: Threaded Network Server

Problem
You want a network server to be multithreaded.

Solution
Either create a thread when you accept a connection or create a pool of threads in
advance and have each wait on the accept() call.

Discussion
Networking (see Chapter 16 and Chapter 18) and threads are two very powerful
APIs that are a standard part of the Java platform. Used alone, each can increase the
reach of your Java programming skills. A common paradigm is a threaded network
server, which can either preallocate a certain number of threads or can start a new
thread each time a client connects. The big advantage is that each thread can block
on read without causing other client threads to delay.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Threaded Network Server | 715

One example of a threaded socket server was discussed in Recipe 17.4; another is
shown here. It seems to be some kind of rite (or wrong) of passage for Java folk to
write a web server entirely in Java. This one is fairly small and simple; if you want a
full-bodied flavor, check out the Apache Foundation’s Apache (written in C) and
Tomcat (pure Java) servers (I may be biased because I coauthored O’Reilly’s Tom-
cat: The Definitive Guide, recommended for administering Tomcat). The main pro-
gram of mine constructs one instance of class Httpd. This creates a socket and waits
for incoming clients in the accept() method. Each time there is a return from
accept(), we have another client, so we create a new thread to process that client.
This happens in the main() and runserver() methods, which are near the beginning
of Example 24-14.

Example 24-14. Httpd.java

import java.net.ServerSocket;
import java.net.Socket;
import java.util.Properties;

import com.darwinsys.util.FileProperties;

/**
 * A very very simple Web server.
 * <p>
 * NO SECURITY. ALMOST NO CONFIGURATION. NO CGI. NO SERVLETS.
 *<p>
 * This version is threaded. I/O is done in Handler.
 */
public class Httpd {
 /** The default port number */
 public static final int HTTP = 80;
 /** The server socket used to connect from clients */
 protected ServerSocket sock;
 /** A Properties, for loading configuration info */
 private Properties wsp;
 /** A Properties, for loading mime types into */
 private Properties mimeTypes;
 /** The root directory */
 private String rootDir;

 public static void main(String argv[]) throws Exception {
 System.out.println("DarwinSys JavaWeb Server 0.1 starting...");
 Httpd w = new Httpd();
 if (argv.length == 2 && argv[0].equals("-p")) {
 w.startServer(Integer.parseInt(argv[1]));
 } else {
 w.startServer(HTTP);
 }
 w.runServer();
 // NOTREACHED
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 24: Threaded Java

 /** Run the main loop of the Server. Each time a client connects,
 * the ServerSocket accept() returns a new Socket for I/O, and
 * we pass that to the Handler constructor, which creates a Thread,
 * which we start.
 */
 void runServer() throws Exception {
 while (true) {
 final Socket clntSock = sock.accept();
 Thread t = new Thread(){
 public void run() {
 new Handler(Httpd.this).process(clntSock);
 }
 };
 t.start();
 }
 }

 /** Construct a server object for a given port number */
 Httpd() throws Exception {
 super();
 wsp=new FileProperties("httpd.properties");
 rootDir = wsp.getProperty("rootDir", ".");
 mimeTypes = new FileProperties(wsp.getProperty("mimeProperties",
 "mime.properties"));
 }

 public void startServer(int portNum) throws Exception {
 String portNumString = null;
 if (portNum == HTTP) {
 portNumString = wsp.getProperty("portNum");
 if (portNumString != null) {
 portNum = Integer.parseInt(portNumString);
 }
 }
 sock = new ServerSocket(portNum);
 System.out.println("Listening on port " + portNum);

 }

 public String getMimeType(String type) {
 return mimeTypes.getProperty(type);
 }
 public String getMimeType(String type, String dflt) {
 return mimeTypes.getProperty(type, dflt);
 }
 public String getServerProperty(String name) {
 return wsp.getProperty(name);
 }

 public String getRootDir() {
 return rootDir;
 }
}

Example 24-14. Httpd.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Threaded Network Server | 717

The Handler class—shown in Example 24-15—is the part that knows the HTTP pro-
tocol, or at least a small subset of it. You may notice near the middle that it parses
the incoming HTTP headers into a Hashmap but does nothing with them. Here is a log
of one connection with debugging enabled (see Recipe 1.11 for information on the
Debug class):

Connection accepted from localhost/127.0.0.1
Request: Command GET, file /, version HTTP/1.0
hdr(Connection,Keep-Alive)
hdr(User-Agent,Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav))
hdr(Pragma,no-cache)
hdr(Host,127.0.0.1)
hdr(Accept,image/gif, image/jpeg, image/pjpeg, image/png, */*)
hdr(Accept-Encoding,gzip)
hdr(Accept-Language,en)
hdr(Accept-Charset,iso-8859-1,*,utf-8)
Loading file //index.html
END OF REQUEST

At this stage of evolution, the server is getting ready to create an HttpServletRequest
object, but it is not sufficiently evolved to do so. This file is a snapshot of work in
progress. More interesting is the Hashtable used as a cache; to save disk I/O over-
head, once a file has been read from disk, the program does not reread it. This means
you have to restart the server if you change files; comparing the timestamps (see Rec-
ipe 11.1) and reloading files if they have changed is left as an exercise for the reader.

Example 24-15. Handler.java

import java.io.*;
import java.net.*;
import java.util.*;

import com.darwinsys.util.Debug;

/** Called from Httpd in a Thread to handle one connection.
 * We are created with just a Socket, and read the
 * HTTP request, extract a name, read it (saving it
 * in Hashtable h for next time), and write it back.
 * <p>
 * TODO split into general handler stuff and "FileServlet",
 * then handle w/ either user HttpServlet subclasses or FileServlet.
 * @version $Id: ch24,v 1.4 2004/05/04 20:14:01 ian Exp $
 */
public class Handler {

 /** inputStream, from Viewer */
 protected BufferedReader is;
 /** outputStream, to Viewer */
 protected PrintStream os;
 /** Main program */
 protected Httpd parent;
 /** The default filename in a directory. */
 protected final static String DEF_NAME = "/index.html";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 24: Threaded Java

 /** The Hashtable used to cache all URLs we've read.
 * Static, shared by all instances of Handler (one Handler per request;
 * this is probably quite inefficient, but simple. Need ThreadPool).
 * Note that Hashtable methods *are* synchronized.
 */
 private static Hashtable h = new Hashtable();
 static {
 h.put("", "<html><body>Unknown server error".getBytes());
 }
 /** Construct a Handler */
 Handler(Httpd parent) {
 this.parent = parent;
 }

 protected static final int RQ_INVALID = 0, RQ_GET = 1, RQ_HEAD = 2,
 RQ_POST = 3;

 public void process(Socket clntSock) {
 String request; // what Viewer sends us.
 int methodType = RQ_INVALID;
 try {
 System.out.println("Connection accepted from " +
 clntSock.getInetAddress());
 is = new BufferedReader(new InputStreamReader(
 clntSock.getInputStream()));
 // Must do before any chance of errorResponse being called!
 os = new PrintStream(clntSock.getOutputStream());

 request = is.readLine();
 if (request == null || request.length() == 0) {
 // No point nattering: the sock died, nobody will hear
 // us if we scream into cyberspace... Could log it though.
 return;
 }

 // Use a StringTokenizer to break the request into its three parts:
 // HTTP method, resource name, and HTTP version
 StringTokenizer st = new StringTokenizer(request);
 if (st.countTokens() != 3) {
 errorResponse(444, "Unparseable input " + request);
 return;
 }
 String rqCode = st.nextToken();
 String rqName = st.nextToken();
 String rqHttpVer = st.nextToken();
 System.out.println("Request: Command " + rqCode +
 ", file " + rqName + ", version " + rqHttpVer);

 // Read headers, up to the null line before the body,
 // so the body can be read directly if it's a POST.
 HashMap map = new HashMap();
 String hdrLine;

Example 24-15. Handler.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Threaded Network Server | 719

 while ((hdrLine = is.readLine()) != null &&
 hdrLine.length() != 0) {
 int ix;
 if ((ix=hdrLine.indexOf(':')) != -1) {
 String hdrName = hdrLine.substring(0, ix);
 String hdrValue = hdrLine.substring(ix+1).trim();
 Debug.println("hdr", hdrName+","+hdrValue);
 map.put(hdrName, hdrValue);
 } else {
 System.err.println("INVALID HEADER: " + hdrLine);
 }
 }

 // check that rqCode is either GET or HEAD or ...
 if ("get".equalsIgnoreCase(rqCode))
 methodType = RQ_GET;
 else if ("head".equalsIgnoreCase(rqCode))
 methodType = RQ_HEAD;
 else if ("post".equalsIgnoreCase(rqCode))
 methodType = RQ_POST;
 else {
 errorResponse(400, "invalid method: " + rqCode);
 return;
 }

 // A bit of paranoia may be a good thing...
 if (rqName.indexOf("..") != -1) {
 errorResponse(404, "can't seem to find: " + rqName);
 return;
 }

 // XXX new MyRequest(clntSock, rqName, methodType);
 // XXX new MyResponse(clntSock, os);

 // XXX if (isServlet(rqName)) [
 // doServlet(rqName, methodType, map);
 // else
 doFile(rqName, methodType == RQ_HEAD, os /*, map */);
 os.flush();
 clntSock.close();
 } catch (IOException e) {
 System.out.println("IOException " + e);
 }
 System.out.println("END OF REQUEST");
 }

 /** Processes one file request */
 void doFile(String rqName, boolean headerOnly, PrintStream os) throws IOException {
 File f;
 byte[] content = null;
 Object o = h.get(rqName);
 if (o != null && o instanceof byte[]) {

Example 24-15. Handler.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 24: Threaded Java

 content = (byte[])o;
 System.out.println("Using cached file " + rqName);
 sendFile(rqName, headerOnly, content, os);
 } else if ((f = new File(parent.getRootDir() + rqName)).isDirectory()) {
 // Directory with index.html? Process it.
 File index = new File(f, DEF_NAME);
 if (index.isFile()) {
 doFile(rqName + DEF_NAME, index, headerOnly, os);
 return;
 }
 else {
 // Directory? Do not cache; always make up dir list.
 System.out.println("DIRECTORY FOUND");
 doDirList(rqName, f, headerOnly, os);
 sendEnd();
 }
 } else if (f.canRead()) {
 // REGULAR FILE
 doFile(rqName, f, headerOnly, os);
 }
 else {
 errorResponse(404, "File not found");
 }
 }

 void doDirList(String rqName, File dir, boolean justAHead, PrintStream os) {
 os.println("HTTP/1.0 200 directory found");
 os.println("Content-type: text/html");
 os.println("Date: " + new Date().toString());
 os.println();
 if (justAHead)
 return;
 os.println("<html>");
 os.println("<title>Contents of directory " + rqName + "</title>");
 os.println("<h1>Contents of directory " + rqName + "</h1>");
 String fl[] = dir.list();
 Arrays.sort(fl);
 for (int i=0; i<fl.length; i++)
 os.println("
" +
 "<DEFANGED_IMG align='center' border='0' src='/images/file.jpg'>" +
 ' ' + fl[i] + "");
 }

 /** Send one file, given a File object. */
 void doFile(String rqName, File f, boolean headerOnly, PrintStream os) throws
 IOException {
 System.out.println("Loading file " + rqName);
 InputStream in = new FileInputStream(f);
 byte c_content[] = new byte[(int)f.length()];
 // Single large read, should be fast.
 int n = in.read(c_content);
 h.put(rqName, c_content);

Example 24-15. Handler.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: Threaded Network Server | 721

 sendFile(rqName, headerOnly, c_content, os);
 in.close();
 }

 /** Send one file, given the filename and contents.
 * @param justHead - if true, send heading and return.
 */
 void sendFile(String fname, boolean justHead,
 byte[] content, PrintStream os) throws IOException {
 os.println("HTTP/1.0 200 Here's your file");
 os.println("Content-type: " + guessMime(fname));
 os.println("Content-length: " + content.length);
 os.println();
 if (justHead)
 return;
 os.write(content);
 }

 /** The type for unguessable files */
 final static String UNKNOWN = "unknown/unknown";

 protected String guessMime(String fn) {
 String lcname = fn.toLowerCase();
 int extenStartsAt = lcname.lastIndexOf('.');
 if (extenStartsAt<0) {
 if (fn.equalsIgnoreCase("makefile"))
 return "text/plain";
 return UNKNOWN;
 }
 String exten = lcname.substring(extenStartsAt);
 String guess = parent.getMimeType(exten, UNKNOWN);

 return guess;
 }

 /** Sends an error response, by number, hopefully localized. */
 protected void errorResponse(int errNum, String errMsg) {

 // Check for localized messages
 ResourceBundle messages = ResourceBundle.getBundle("errors");

 String response;
 try { response = messages.getString(Integer.toString(errNum)); }
 catch (MissingResourceException e) { response=errMsg; }

 // Generate and send the response
 os.println("HTTP/1.0 " + errNum + " " + response);
 os.println("Content-type: text/html");
 os.println();
 os.println("<html>");
 os.println("<head><title>Error " + errNum + "--" + response +
 "</title></head>");

Example 24-15. Handler.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 24: Threaded Java

From a performance point of view, it may be better to precreate a pool of threads
and cause each one to run the Handler when a connection comes along. This is how
servlet engines drive ordinary servlets to high levels of performance; it avoids the
overhead of creating a Thread object for each request. This can be done easily in JDK
1.5, using the Concurrency Utilities.

24.11 Simplifying Servers Using the
Concurrency Utilities (JDK 1.5)

Problem
You need to implement a multithreaded server.

Solution
Use the JDK 1.5 Thread Pool implementation of the Executor interface.

Discussion
The java.util.concurrent package includes Executors; an Executor is, of course, a
class that can execute code for you. The code to be executed can be the familiar
Runnable or a new interface Callable. One common kind of Executor is a “thread
pool.” The code in Example 24-16 subclasses the main class of the Threaded Web
Server from Recipe 24.10 to use a pool of Threads to schedule multiple clients con-
currently.

 os.println("<h1>" + errNum + " " + response + "</h1>");
 sendEnd();
 }

 /** Send the tail end of any page we make up. */
 protected void sendEnd() {
 os.println("<HR>");
 os.println("<address>Java Web Server,");
 String myAddr = "http://www.darwinsys.com/freeware/";
 os.println("" +
 myAddr + "");
 os.println("</address>");
 os.println("</html>");
 os.println();
 }
}

Example 24-16. HttpdConcurrent.java

import java.net.Socket;
import java.util.concurrent.*;

Example 24-15. Handler.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simplifying Servers Using the Concurrency Utilities (JDK 1.5) | 723

You can see this program in action in Figure 24-5.

See Also
For details on java.util.concurrent, see the online documentation accompanying
the JDK. For background on JSR 166, see Doug Lea’s home page at http://gee.cs.
oswego.edu/ and his JSR 166 page at http://gee.cs.oswego.edu/dl/concurrency-interest/
index.html.

I have not discussed several general Threads issues. Scheduling of threads is not nec-
essarily preemptive; it may be cooperative. This means that, on some platforms, the
threads mechanism does not interrupt the running thread periodically to give other
threads a “fair” chance to get CPU time. Therefore, in order to be portable to all Java
platforms, your code must use yield() or wait() periodically (or some other method
that causes the thread to be suspended, such as reading or writing). I also didn’t get
into priorities. The priority model is more limited than that of some other thread
models, such as POSIX threads.

/**
 * HttpConcurrent - Httpd Subclass using java.lang.concurrent
 */
public class HttpdConcurrent extends Httpd {

Executor myThreadPool = Executors.newFixedThreadPool(5);

public HttpdConcurrent() throws Exception {
super();

}

public static void main(String[] argv) throws Exception {
System.out.println("DarwinSys JavaWeb Server 0.1 starting...");
HttpdConcurrent w = new HttpdConcurrent();
if (argv.length == 2 && argv[0].equals("-p")) {

w.startServer(Integer.parseInt(argv[1]));
} else {

w.startServer(HTTP);
}
w.runServer();

}
public void runServer() throws Exception {

while (true) {
final Socket clientSocket = sock.accept();
myThreadPool.execute(new Runnable() {

public void run() {
new Handler(HttpdConcurrent.this).process(clientSocket);

}
});

}
}

}

Example 24-16. HttpdConcurrent.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 24: Threaded Java

All in all, it’s important to understand that threaded classes require careful design. For
this reason, you should refer to a good book on threaded Java before unleashing any-
thing threaded upon the world. Recommendations include Concurrent Programming
in Java by Doug Lea (Addison Wesley), Multithreaded Programming with Java Tech-
nology by Lewis et al (Prentice Hall), and Java Threads by Scott Oaks and Henry
Wong (O’Reilly).

Figure 24-5. HttpdConcurrent in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

725

Chapter 25Bleeding Tab Text CHAPTER 25

Introspection, or “A Class
Named Class”

25.0 Introduction
The class java.lang.Class, and the reflection package java.lang.reflect, provide a
number of mechanisms for gathering information from the Java Virtual Machine.
Known collectively as introspection or reflection, these facilities allow you to load
classes on the fly, to find methods and fields in classes, to generate listings of them,
and to invoke methods on dynamically loaded classes. There is even a mechanism to
let you construct a class from scratch (well, actually, from an array of bytes) while
your program is running. This is about as close as Java lets you get to the magic,
secret internals of the Java machine.

The JVM implementation is a large program, normally written in C and/or C++, that
implements the Java Virtual Machine abstraction. You can get the source for Sun’s
and other JVMs via the Internet, which you could study for months. Here we con-
centrate on just a few aspects, and only from the point of view of a programmer
using the JVM’s facilities, not how it works internally; that is an implementation
detail that varies from one vendor’s JVM to another.

I’ll start with loading an existing class dynamically, move on to listing the fields and
methods of a class and invoking methods, and end by creating a class on the fly using
a ClassLoader. One of the more interesting aspects of Java, and one that accounts for
both its flexibility (applets, servlets) and part of its perceived speed problem, is the
notion of dynamic loading. For example, even the simplest “Hello Java” program has
to load the class file for your HelloJava class, the class file for its parent (usually
java.lang.Object), the class for PrintStream (since you used System.out), the class
for PrintStream’s parent, and so on. To see this in action, try something like:

java -verbose HelloJava | more

To take another example, a browser can download an applet’s bytecode file over the
Internet and run it on your desktop. How does it load the class file into the running
JVM? We discuss this little bit of Java magic in Recipe 25.3. The chapter ends with
replacement versions of the JDK tools javap and AppletViewer—the latter doing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 25: Introspection, or “A Class Named Class”

what a browser does, loading applets at runtime—and a cross-reference tool that you
can use to become a famous Java author by publishing your very own reference to
the complete Java API.

25.1 Getting a Class Descriptor

Problem
You want to get a Class object from a class name or instance.

Solution
If the type name is known at compile time, you can get the class instance using the
compiler keyword .class, which works on any type that is known at compile time,
even the eight primitive types.

Otherwise, if you have an object (an instance of a class), you can call the java.lang.
Object method getClass(), which returns the Class object for the object’s class (now
that was a mouthful!):

import java.util.*;
/**
 * Show the Class keyword and getClass() method in action.
 */
public class ClassKeyword {
 public static void main(String[] argv) {
 System.out.println("Trying the ClassName.class keyword:");
 System.out.println("Object class: " + Object.class);
 System.out.println("String class: " + String.class);
 System.out.println("String[] class: " + String[].class);
 System.out.println("Calendar class: " + Calendar.class);
 System.out.println("Current class: " + ClassKeyword.class);
 System.out.println("Class for int: " + int.class);

 System.out.println();

 System.out.println("Trying the instance.getClass() method:");
 System.out.println("Robin the Fearless".getClass());
 System.out.println(Calendar.getInstance().getClass());
 }
}

When we run it, we see:

C:\javasrc\reflect>java ClassKeyword
Trying the ClassName.class keyword:
Object class: class java.lang.Object
String class: class java.lang.String
String[] class: class [Ljava.lang.String;
Calendar class: class java.util.Calendar
Current class: class ClassKeyword
Class for int: int

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding and Using Methods and Fields | 727

Trying the instance.getClass() method:
class java.lang.String
class java.util.GregorianCalendar

C:\javasrc\reflect>

Nothing fancy, but as you can see, you can get the Class object for any class known
at compile time, whether it’s part of a package or not.

25.2 Finding and Using Methods and Fields

Problem
You need more to find arbitrary method or field names in arbitrary classes.

Solution
Use the reflection package java.lang.reflect.

Discussion
If you just wanted to find fields and methods in one particular class, you wouldn’t
need this recipe; you could simply create an instance of the class using new and refer
to its fields and methods directly. But this allows you to find methods and fields in
any class, even classes that have not yet been written! Given a class object created as
in Recipe 25.1, you can obtain a list of constructors, a list of methods, or a list of
fields. The method getMethods() lists the methods available for a given class as an
array of Method objects. Similarly, getFields() returns a list of Field objects. Since
constructor methods are treated specially by Java, there is also a getConstructors()
method, which returns an array of Constructor objects. Even though “class” is in the
package java.lang, the Constructor, Method, and Field objects it returns are in java.
lang.reflect, so you need an import of this package. The ListMethods class
(Example 25-1) shows how get a list of methods in a class whose name is known at
runtime.

Example 25-1. ListMethods.java

import java.lang.reflect.*;

/**
 * List the Constructors and methods
 */
public class ListMethods {
 public static void main(String[] argv) throws ClassNotFoundException {
 if (argv.length == 0) {
 System.err.println("Usage: ListMethods className");
 return;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 25: Introspection, or “A Class Named Class”

For example, you could run Example 25-1 on a class like java.lang.String and get a
fairly lengthy list of methods; I’ll only show part of the output so you can see what it
looks like:

> java ListMethods java.lang.String
*** Constructors ***
public java.lang.String()
public java.lang.String(java.lang.String)
public java.lang.String(java.lang.StringBuffer)
public java.lang.String(byte[])
// and many more...
*** Methods ***
public static java.lang.String java.lang.String.copyValueOf(char[])
public static java.lang.String java.lang.String.copyValueOf(char[],int,int)
public static java.lang.String java.lang.String.valueOf(char)
// and more valueOf() forms...
public boolean java.lang.String.equals(java.lang.Object)
public final native java.lang.Class java.lang.Object.getClass()
// and more java.lang.Object methods...
public char java.lang.String.charAt(int)
public int java.lang.String.compareTo(java.lang.Object)
public int java.lang.String.compareTo(java.lang.String)

You can see that this could be extended (almost literally) to write a BeanMethods class
that would list only the set/get methods defined in a JavaBean (see Recipe 23.8).

Alternatively, you can find a particular method and invoke it, or find a particular
field and refer to its value. Let’s start by finding a given field, since that’s the easiest.
Example 25-2 is code that, given an Object and the name of a field, finds the field
(gets a Field object) and then retrieves and prints the value of that Field as an int.

 Class c = Class.forName(argv[0]);
 Constructor[] cons = c.getConstructors();
 printList("Constructors", cons);
 Method[] meths = c.getMethods();
 printList("Methods", meths);
 }
 static void printList(String s, Object[] o) {
 System.out.println("*** " + s + " ***");
 for (int i=0; i<o.length; i++)
 System.out.println(o[i].toString());
 }
}

Example 25-2. FindField.java

import java.lang.reflect.*;
import java.util.*;

/** This class shows using Reflection to get a field from another class. */
public class FindField {

Example 25-1. ListMethods.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding and Using Methods and Fields | 729

What if we need to find a method? The simplest way is to use the methods
getMethod() and invoke(). But this is not altogether trivial. Suppose that somebody
gives us a reference to an object. We don’t know its class but have been told that it
should have this method:

public void work(String s) { }

We wish to invoke work(). To find the method, we must make an array of Class
objects, one per item in the calling list. So, in this case, we make an array containing
only a reference to the class object for String. Since we know the name of the class at
compile time, we’ll use the shorter invocation String.class instead of Class.
forName(). This, plus the name of the method as a string, gets us entry into the
getMethod() method of the Class object. If this succeeds, we have a Method object.
But guess what? In order to invoke the method, we have to construct yet another
array, this time an array of Object references actually containing the data to be
passed to the invocation. We also, of course, need an instance of the class in whose
context the method is to be run. For this demonstration class, we need to pass only a
single string, as our array consists only of the string. Example 25-3 is the code that
finds the method and invokes it.

 public static void main(String[] unused)
 throws NoSuchFieldException, IllegalAccessException {

 // Create instance of FindField
 FindField gf = new FindField();

 // Create instance of target class (YearHolder defined below).
 Object o = new YearHolder();

 // Use gf to extract a field from o.
 System.out.println("The value of 'currentYear' is: " +
 gf.intFieldValue(o, "currentYear"));
 }

 int intFieldValue(Object o, String name)
 throws NoSuchFieldException, IllegalAccessException {
 Class c = o.getClass();
 Field fld = c.getField(name);
 int value = fld.getInt(o);
 return value;
 }
}

/** This is just a class that we want to get a field from */
class YearHolder {
 /** Just a field that is used to show getting a field's value. */
 public int currentYear = Calendar.getInstance().get(Calendar.YEAR);
}

Example 25-2. FindField.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 25: Introspection, or “A Class Named Class”

Not tiny, but it’s still not bad. In most programming languages, you couldn’t do that
in the 40 lines it took us here.

A word of caution: when the arguments to a method are of a primitive type, such as
int, you do not pass Integer.class into getMethod(). Instead, you must use the class
object representing the primitive type int. The easiest way to find this class is in the
Integer class, as a public constant named TYPE, so you’d pass Integer.TYPE. The
same is true for all the primitive types; for each, the corresponding wrapper class has
the primitive class referred to as TYPE.

Example 25-3. GetMethod.java

import java.lang.reflect.*;

/** This class is just here to give us something to work on,
 * with a println() call that will prove we got here. */
class X {
 public void work(String s) {
 System.out.println("Working on \"" + s + "\"");
 }
}

/**
 * Get a given method, and invoke it.
 */
public class GetMethod {

 public static void main(String[] argv) {
 try {
 Class clX = X.class; // or Class.forName("X");
 // To find a method we need the array of matching Class types.
 Class[] argTypes = {
 String.class
 };

 // Now find a Method object for the given method.
 Method worker = clX.getMethod("work", argTypes);

 // To INVOKE the method, we need its actual arguments, as an array.
 Object[] theData = {
 "Chocolate Chips"
 };

 // The obvious last step: invoke the method.
 worker.invoke(new X(), theData);
 } catch (Exception e) {
 System.err.println("Invoke() failed: " + e);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Loading and Instantiating a Class Dynamically | 731

25.3 Loading and Instantiating
a Class Dynamically

Problem
You want to load classes dynamically, just like browsers load your applets and web
servers load your servlets.

Solution
Use class.forName("ClassName"); and the class’s newInstance() method.

Discussion
Suppose you are writing a Java application and want other developers to be able to
extend your application by writing Java classes that run in the context of your appli-
cation. In other words, these developers are, in essence, using Java as an extension
language, in the same way that Applets are an extension of a web browser. You
would probably want to define a small set of methods that these extension programs
would have and that you could call for such purposes as initialization, operation, and
termination. The best way to do this is, of course, to publish a given, possibly
abstract, class that provides those methods and get the developers to subclass from
it. Sound familiar? It should. This is just how web browsers such as Netscape allow
the deployment of applets.

We’ll leave the thornier issues of security and of loading a class file over a network
socket for now, and assume that the user can install the classes into the application
directory or into a directory that appears in CLASSPATH at the time the program is
run. First, let’s define our class. We’ll call it Cooklet (see Example 25-4) to avoid
infringing on the overused word applet. And we’ll initially take the easiest path from
ingredients to cookies before we complicate it.

Example 25-4. Cooklet.java

/** A simple class, just to provide the list of methods that
 * users need to provide to be usable in our application.
 * Note that the class is abstract so you must subclass it,
 * but the methods are non-abstract so you don't have to provide
 * dummy versions if you don't need a particular functionality.
 */
public abstract class Cooklet {

 /** The initialization method. The Cookie application will
 * call you here (AFTER calling your no-argument constructor)
 * to allow you to initialize your code
 */
 public void initialize() {
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 25: Introspection, or “A Class Named Class”

Now, since we’ll be baking, err, making this available to other people, we’ll proba-
bly want to cook up a demonstration version too; see Example 25-5.

But how does our application use it? Once we have the name of the user’s class, we
need to create a Class object for that class. This can be done easily using the static
method Class.forName(). Then we can create an instance of it using the Class
object’s newInstance() method; this calls the class’s no-argument constructor. Then
we simply cast the newly constructed object to our Cooklet class, and we can call its
methods! It actually takes longer to describe this code than to look at the code, so
let’s do that now; see Example 25-6.

 /** The work method. The cookie application will call you
 * here when it is time for you to start cooking.
 */
 public void work() {
 }

 /** The termination method. The cookie application will call you
 * here when it is time for you to stop cooking and shut down
 * in an orderly fashion.
 */
 public void terminate() {
 }
}

Example 25-5. DemoCooklet.java

public class DemoCooklet extends Cooklet {
 public void work() {
 System.out.println("I am busy baking cookies.");
 }
 public void terminate() {
 System.out.println("I am shutting down my ovens now.");
 }
}

Example 25-6. Cookies.java

/**
 * This is the part of the Cookies application that loads
 * the user-defined subclass.
 */
public class Cookies {
 public static void main(String[] argv) {
 System.out.println("Cookies Application Version 0.0");
 Cooklet cooklet = null;
 String cookletClassName = argv[0];
 try {
 Class cookletClass = Class.forName(cookletClassName);
 Object cookletObject = cookletClass.newInstance();
 cooklet = (Cooklet)cookletObject;

Example 25-4. Cooklet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Constructing a Class from Scratch | 733

And if we run it?

$ java Cookies DemoCooklet
Cookies Application Version 0.0
I am busy baking cookies.
I am shutting down my ovens now.
$

Of course, this version has rather limited error handling. But you already know how
to fix that. Your ClassLoader can also place classes into a package by constructing a
Package object; you should do this if loading any medium-sized set of application
classes.

25.4 Constructing a Class from Scratch

Problem
You need to load a class and run its methods.

Solution
Write and use your own ClassLoader.

Discussion
A ClassLoader, of course, is a program that loads classes. One class loader is built
into the Java Virtual Machine, but your application can create others as needed.
Learning to write and run a working class loader and using it to load a class and run
its methods is a nontrivial exercise. In fact, you rarely need to write a class loader,
but knowing how is helpful in understanding how the JVM finds classes, creates
objects, and calls methods.

ClassLoader itself is abstract; you must subclass it, presumably providing a
loadClass() method that loads classes as you wish. It can load the bytes from a net-
work connection, a local disk, RAM, a serial port, or anywhere else. Or you can con-
struct the class file in memory yourself, if you have access to a compiler.

You must call this class loader’s loadClass() method for any classes you wish to load
from it. Note that it is called to load all classes required for classes you load (parent

 } catch (Exception e) {
 System.err.println("Error " + cookletClassName + e);
 }
 cooklet.initialize();
 cooklet.work();
 cooklet.terminate();
 }
}

Example 25-6. Cookies.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 25: Introspection, or “A Class Named Class”

classes that aren’t already loaded, for example). However, the JVM still loads classes
that you instantiate with the new operator “normally” via CLASSPATH.

When writing a class loader, your loadClass() method needs to get the class file into
a byte array (typically by reading it), convert the array into a Class object, and return
the result.

What? That sounds a bit like “And Then a Miracle Occurs...” And it is. The miracle
of class creation, however, happens down inside the JVM, where you don’t have
access to it. Instead, your ClassLoader has to call the protected defineClass()
method in your superclass (which is java.lang.ClassLoader). This is illustrated in
Figure 25-1, where a stream of bytes containing a hypothetical Chicken class is con-
verted into a ready-to-run Chicken class in the JVM by calling the defineClass()
method.

What next?

To use your ClassLoader subclass, you need to instantiate it and call its loadClass()
method with the name of the class you want to load. This gives you a Class object
for the named class; the Class object in turn lets you construct instances, find and
call methods, etc. Refer back to Recipe 25.2.

25.5 Performance Timing

Problem
You need to know how long a Java program takes to run.

Solution
Call System.currentTimeMillis() before and after invoking the target class dynami-
cally.

Figure 25-1. ClassLoader in action

JVM

CAFEBA
BE. . . .
. CHICK
EN. . .

 . . .

byte []

Chicken class in JVM,
ready to use

defineClass()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performance Timing | 735

Discussion
The simplest technique is to save the JVM’s accumulated time before and after
dynamically loading a main program, and calculate the difference between those
times. Code to do just this is presented in Example 25-7; for now, just remember
that we have a way of timing a given Java class.

One way of measuring the efficiency of a particular operation is to run it many times
in isolation. The overall time the program takes to run thus approximates the total
time of many invocations of the same operation. Gross numbers like this can be
compared if you want to know which of two ways of doing something is more effi-
cient. Consider the case of string concatenation versus println(). The code:

println("Time is " + n.toString() + " seconds");

creates a StringBuffer, appends the string "Time is ", the value of n as a string, and
" seconds", and finally converts the finished StringBuffer to a String and passes that
to println(). Suppose you have a program that does a lot of this, such as a Java serv-
let that creates a lot of HTML this way, and you expect (or at least hope) your web
site to be sufficiently busy so that doing this efficiently will make a difference. There
are two ways of thinking about this:

• Theory A: This string concatenation is inefficient.

• Theory B: String concatenation doesn’t matter; println() is inefficient, too.

A proponent of Theory A might say that since println() just puts stuff into a buffer,
it is very fast and that string concatenation is the expensive part.

How to decide between Theory A and Theory B? Assume you are willing to write a
simple test program that tests both theories. One way of proceeding might be to dis-
assemble the resulting bytecodes and count the CPU cycles each uses. This is an
interesting theoretical exercise, and a good subject for a computer science disserta-
tion. But we need the results quickly, so we will just write a simple program both
ways and time it. StringPrintA is the timing program for Theory A:

public class StringPrintA {
 public static void main(String[] argv) {
 Object o = "Hello World";
 for (int i=0; i<100000; i++) {
 System.out.println("<p>" + o.toString() + "</p>");
 }
 }
}

StringPrintAA is the same but explicitly uses a StringBuffer for the string concatena-
tion. StringPrintB is the tester for Theory B:

public class StringPrintB {
 public static void main(String[] argv) {
 Object o = "Hello World";
 for (int i=0; i<100000; i++) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 25: Introspection, or “A Class Named Class”

 System.out.print("<p>");
 System.out.print(o.toString());
 System.out.print("</p>");
 System.out.println();
 }
 }
}

Timing results

I ran StringPrintA, StringPrintAA, and StringPrintB twice, each on a single 400
MHz Intel Celeron. Here are the results:

Moral: Don’t guess. If it matters, time it.

Another moral: Multiple calls to System.out.print() cost more than the same num-
ber of calls to a StringBuffer’s append() method, by a factor of roughly 1.5 (or
150%). Theory B wins; the extra println calls appear to save a string concatenation
but make the program take substantially longer.

A shell script to run these timing tests appears in file stringprinttimer.sh in the online
source.

Timing program

It’s pretty easy to build a simplified time command in Java, given that you have
System.currentTimeMillis() to start with. Run my Time program, and, on the com-
mand line, specify the name of the class to be timed, followed by the arguments (if
any) that class needs for running. The time that the class took is displayed. But
remember that System.currentTimeMillis() returns clock time, not necessarily CPU
time. So you must run it on a machine that isn’t running a lot of background pro-
cesses. And note also that I use dynamic loading (see Recipe 25.3) to let you put the
Java class name on the command line.

StringPrintA 17.23, 17.20 seconds

StringPrintAA 17.23, 17.23 seconds

StringPrintB 27.59, 27.60 seconds

Example 25-7. Time.java

import com.darwinsys.util.QuickTimeFormat;
import java.lang.reflect.*;

/**
 * Time the main method of another class, for performance tuning.
 */
public class Time {
 public static void main(String[] argv) throws Exception {
 // Instantiate target class, from argv[0]
 Class c = Class.forName(argv[0]);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing Class Information | 737

Of course, you can’t directly compare the results from the operating system time
command with results from running this program. There is a rather large, but fairly
constant, initialization overhead—the JVM startup and the initialization of Object
and System.out, for example—that is included in the former and excluded from the
latter. One could even argue that my Time program is more accurate since it excludes
this constant overhead. But, as noted, it must be run on a single-user machine to
yield repeatable results. And no fair running an editor in another window while wait-
ing for your timed program to complete!

25.6 Printing Class Information

Problem
You want to print all the information about a class, similar to the way javap does.

 // Find its static main method (use our own argv as the signature).
 Class[] classes = { argv.getClass() };
 Method main = c.getMethod("main", classes);

 // Make new argv array, dropping class name from front.
 String nargv[] = new String[argv.length - 1];
 System.arraycopy(argv, 1, nargv, 0, nargv.length);

 Object[] nargs = { nargv };

 System.err.println("Starting class " + c);

 // About to start timing run. Important to not do anything
 // (even a println) that would be attributed to the program
 // being timed, from here until we've gotten ending time.

 // Get current (i.e., starting) time
 long t0 = System.currentTimeMillis();

 // Run the main program
 main.invoke(null, nargs);

 // Get ending time, and compute usage
 long t1 = System.currentTimeMillis();

 long runTime = t1 - t0;

 System.err.println(
 "runTime=" + QuickTimeFormat.msToSecs(runTime));
 }
}

Example 25-7. Time.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 25: Introspection, or “A Class Named Class”

Solution
Get a Class object, call its getFields() and getMethods(), and print the results.

Discussion
The JDK includes a program called javap, the Java Printer. Sun’s JDK version nor-
mally prints the outline of a class file—a list of its methods and fields—but can also
print out the Java bytecodes or machine instructions. The Kaffe package did not
include a version of javap, so I wrote one and contributed it (see Example 25-8). The
Kaffe folk have expanded it somewhat, but it still works basically the same. My ver-
sion doesn’t print the bytecodes; it behaves rather like Sun’s behaves when you don’t
give theirs any command-line options.

The getFields() and getMethods() methods return arrays of Field and Method,
respectively; these are both in package java.lang.reflect. I use a Modifiers object to
get details on the permissions and storage attributes of the fields and methods. In
many Java implementations, you can bypass this and simply call toString() in each
Field and Method object (as I do here for Constructors). Doing it this way gives me a
bit more control over the formatting.

Example 25-8. MyJavaP.java

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;

/**
 * JavaP prints structural information about classes.
 * For each class, all public fields and methods are listed.
 * "Reflectance" is used to look up the information.
 */
public class MyJavaP {

 /** Simple main program, construct self, process each class name
 * found in argv.
 */
 public static void main(String[] argv) {
 MyJavaP pp = new MyJavaP();

 if (argv.length == 0) {
 System.err.println("Usage: MyJavaP className [...]");
 System.exit(1);
 } else for (int i=0; i<argv.length; i++)
 pp.doClass(argv[i]);
 }

 /** Format the fields and methods of one class, given its name.
 */
 protected void doClass(String className) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: CrossRef | 739

25.7 Program: CrossRef
You’ve probably seen those other Java books that consist entirely of listings of the
Java API for version thus-and-such of the JDK. I don’t suppose you thought the
authors of these works sat down and typed the entire contents from scratch. As a pro-
grammer, you would have realized, I hope, that there must be a way to obtain that
information from Java. But you might not have realized how easy it is! If you’ve read
this chapter faithfully, you now know that there is one true way: make the computer
do the walking. Example 25-9 is a program that puts most of the techniques together.
This version generates a cross-reference listing, but by overriding the last few meth-
ods, you could easily convert it to print the information in any format you like,
including an API Reference book. You’d need to deal with the details of this or that
publishing software—FrameMaker, troff, TEX, or whatever—but that’s the easy part.

 try {
 Class c = Class.forName(className);
 System.out.println(Modifier.toString(c.getModifiers()) + ' ' + c + " {");

 int mods;
 Field fields[] = c.getDeclaredFields();
 for (int i = 0; i < fields.length; i++) {
 if (!Modifier.isPrivate(fields[i].getModifiers())
 && !Modifier.isProtected(fields[i].getModifiers()))
 System.out.println("\t" + fields[i]);
 }
 Constructor[] constructors = c.getConstructors();
 for (int j = 0; j < constructors.length; j++) {
 Constructor constructor = constructors[j];
 System.out.println("\t" + constructor);

 }
 Method methods[] = c.getDeclaredMethods();
 for (int i = 0; i < methods.length; i++) {
 if (!Modifier.isPrivate(methods[i].getModifiers())
 && !Modifier.isProtected(methods[i].getModifiers()))
 System.out.println("\t" + methods[i]);
 }
 System.out.println("}");
 } catch (ClassNotFoundException e) {
 System.err.println("Error: Class " +
 className + " not found!");
 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

Example 25-8. MyJavaP.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 25: Introspection, or “A Class Named Class”

This program makes fuller use of the Reflection API than did MyJavaP in Recipe 25.6.
It also uses the java.util.zip classes (see Recipe 10.20) to crack the JAR archive
containing the class files of the API. Each class file found in the archive is loaded and
listed; the listing part is similar to MyJavaP.

Example 25-9. CrossRef.java

import java.io.*;
import java.util.*;
import java.util.zip.*;
import java.lang.reflect.*;

/**
 * CrossRef prints a cross-reference about all classes named in argv.
 * For each class, all public fields and methods are listed.
 * "Reflectance" is used to look up the information.
 *
 * It is expected that the output will be post-processed e.g.,
 * with sort and awk/perl. Try:
 java CrossRef |
 uniq | # squeeze out polymorphic forms early
 sort | awk '$2=="method" { ... }' > crossref-methods.txt
 * The part in "{ ... }" is left as an exercise for the reader. :-(
 *
 */
public class CrossRef {
 /** Counter of fields/methods printed. */
 protected static int n = 0;

 /** A "Modifier" object, to decode modifiers of fields/methods */
 protected Modifier m = new Modifier();

 /** True if we are doing classpath, so only do java. and javax. */
 protected static boolean doingStandardClasses = true;

 /** Simple main program, construct self, process each .ZIP file
 * found in CLASSPATH or in argv.
 */
 public static void main(String[] argv) {
 CrossRef xref = new CrossRef();

 xref.doArgs(argv);
 }

 protected void doArgs(String[] argv) {

 if (argv.length == 0) {
 // No arguments, look in CLASSPATH
 String s = System.getProperties().getProperty("java.class.path");
 // break apart with path sep.
 String pathSep = System.getProperties().
 getProperty("path.separator");
 StringTokenizer st = new StringTokenizer(s, pathSep);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: CrossRef | 741

 // Process each classpath
 while (st.hasMoreTokens()) {
 String cand = st.nextToken();
 System.err.println("Trying path " + cand);
 if (cand.endsWith(".zip") || cand.endsWith(".jar"))
 processOneZip(cand);
 }
 } else {
 // We have arguments, process them as zip files
 doingStandardClasses = false;
 for (int i=0; i<argv.length; i++)
 processOneZip(argv[i]);
 }

 System.err.println("All done! Found " + n + " entries.");
 System.exit(0);
 }

 /** For each Zip file, for each entry, xref it */
 public void processOneZip(String classes) {
 ArrayList entries = new ArrayList();

 try {
 ZipFile zippy =
 new ZipFile(new File(classes));
 Enumeration all = zippy.entries();
 // For each entry, get its name and put it into "entries"
 while (all.hasMoreElements()) {
 entries.add(((ZipEntry)(all.nextElement())).getName());
 }
 } catch (IOException err) {
 System.err.println("IO Error: " + err);
 return;
 }

 // Sort the entries (by class name)
 Collections.sort(entries);

 // Process the entries
 for (int i=0; i< entries.size(); i++) {
 doClass((String)entries.get(i));
 }
 }

 /** Format the fields and methods of one class, given its name.
 */
 protected void doClass(String zipName) {
 if (System.getProperties().getProperty("debug.names") != null)
 System.out.println("doClass(" + zipName + ");");

 // Ignore package/directory, other odd-ball stuff.
 if (zipName.endsWith("/")) {

Example 25-9. CrossRef.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 25: Introspection, or “A Class Named Class”

 System.err.println("Starting directory " + zipName);
 return;
 }
 // Ignore META-INF stuff
 if (zipName.startsWith("META-INF/")) {
 return;
 }
 // Ignore images, HTML, whatever else we find.
 if (!zipName.endsWith(".class")) {
 System.err.println("Ignoring " + zipName);
 return;
 }
 // If doing CLASSPATH, Ignore com.sun.* which are "internal API".
 if (doingStandardClasses && zipName.startsWith("com.sun")){
 return;
 }

 // Convert the zip file entry name, like
 // java/lang/Math.class
 // to a class name like
 // java.lang.Math
 String className = zipName.replace('/', '.').
 substring(0, zipName.length() - 6); // 6 for ".class"
 if (System.getProperties().getProperty("debug.names") != null)
 System.err.println("ZipName " + zipName +
 "; className " + className);
 try {
 Class c = Class.forName(className);
 printClass(c);
 } catch (ClassNotFoundException e) {
 System.err.println("Error: Class " +
 className + " not found!");
 } catch (Exception e) {
 System.err.println(e);
 }
 // System.err.println("in gc...");
 System.gc();
 // System.err.println("done gc");
 }

 /**
 * Print the fields and methods of one class.
 */
 protected void printClass(Class c) {
 int i, mods;
 startClass(c);
 try {
 Object[] fields = c.getFields();
 Arrays.sort(fields);
 for (i = 0; i < fields.length; i++) {
 Field field = (Field)fields[i];
 if (!m.isPrivate(field.getModifiers())

Example 25-9. CrossRef.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: CrossRef | 743

 && !m.isProtected(field.getModifiers()))
 putField(field, c);
 else System.err.println("private field ignored: " + field);
 }

 Method methods[] = c.getDeclaredMethods();
 // Arrays.sort(methods);
 for (i = 0; i < methods.length; i++) {
 if (!m.isPrivate(methods[i].getModifiers())
 && !m.isProtected(methods[i].getModifiers()))
 putMethod(methods[i], c);
 else System.err.println("pvt: " + methods[i]);
 }
 } catch (Exception e) {
 System.err.println(e);
 }
 endClass();
 }

 /** put a Field's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putField(Field fld, Class c) {
 println(fld.getName() + " field " + c.getName() + " ");
 ++n;
 }
 /** put a Method's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putMethod(Method method, Class c) {
 String methName = method.getName();
 println(methName + " method " + c.getName() + " ");
 ++n;
 }
 /** Print the start of a class. Unused in this version,
 * designed to be overridden */
 protected void startClass(Class c) {
 }

 /** Print the end of a class. Unused in this version,
 * designed to be overridden */
 protected void endClass() {
 }

 /** Convenience routine, short for System.out.println */
 protected final void println(String s) {
 System.out.println(s);
 }
}

Example 25-9. CrossRef.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 25: Introspection, or “A Class Named Class”

You probably noticed the methods startClass() and endClass(), which are null.
These methods are placeholders designed to make subclassing easy for when you
need to write something at the start and end of each class. One example might be a
fancy text formatting application in which you need to output a bold header at the
beginning of each class. Another would be XML (see Chapter 21), where you’d want
to write a tag like <class> at the front of each class, and </class> at the end.
Example 25-10 is, in fact, a working XML-specific subclass that generates (limited)
XML for each field and method.

By the way, if you publish a book using either of these and get rich, “Remember,
remember me!”

Example 25-10. CrossRefXML.java

import java.io.*;
import java.lang.reflect.*;

/** This class subclasses CrossRef to output the information in XML.
 */
public class CrossRefXML extends CrossRef {

 public static void main(String[] argv) {
 CrossRef xref = new CrossRefXML();
 xref.doArgs(argv);
 }

 /** Print the start of a class.
 */
 protected void startClass(Class c) {
 println("<class><classname>" + c.getName() + "</classname>");
 }

 protected void putField(Field fld, Class c) {
 println("<field>" + fld + "</field>");
 ++n;
 }

 /** put a Method's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putMethod(Method method, Class c) {
 println("<method>" + method + "</method>");
 ++n;
 }

 /** Print the end of a class.
 */
 protected void endClass() {
 println("</class>");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: AppletViewer | 745

25.8 Program: AppletViewer
Another JDK tool that can be replicated is the AppletViewer. This uses the reflection
package to load a class that is subclassed from Applet, instantiate an instance of it,
and add() this to a frame at a given size. This is a good example of reflection in
action: you can use these techniques to dynamically load any subclass of a given
class. Suppose we have a simple applet like HelloApplet in Example 25-11.

Example 25-11. HelloApplet.java

import java.applet.*;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/**
 * HelloApplet is a simple applet that toggles a message
 * when you click on a Draw button.
 */
public class HelloApplet extends JApplet {

 /** The flag which controls drawing the message. */
 protected boolean requested;

 /** init() is an Applet method called by the browser to initialize */
 public void init() {
 JButton b;
 requested = false;
 Container cp = (Container)getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b = new JButton("Draw/Don't Draw"));
 b.addActionListener(new ActionListener() {
 /* Button - toggle the state of the "requested" flag, to draw or
 * not to draw.
 */
 public void actionPerformed(ActionEvent e) {
 String arg = e.getActionCommand();
 // Invert the state of the draw request.
 requested = !requested;
 do_the_work();
 }
 });
 }

 /** paint() is an AWT Component method, called when the
 * component needs to be painted.
 */
 public void do_the_work() {
 /* If the Draw button is selected, draw something */
 if (requested) {
 showStatus("Welcome to Java!");
 } else {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 25: Introspection, or “A Class Named Class”

If we run it in my AppletViewer,* it shows up as a window with just the Draw button
showing; if you press the button an odd number of times, the screen shows the wel-
come label (Figure 25-2).

Example 25-12 is the code for the main part of the AppletViewer, which creates a
JFrame and then loads the Applet class dynamically and adds it to the JFrame.

 showStatus(""); // retract welcome? :-)
 }
 }
}

* My AppletViewer doesn’t parse HTML like the real one does, so you invoke it with just the name of the
Applet subclass on its command line. The size is therefore hardcoded, at least until somebody gets around
to writing code to extract the class, width, and height attributes from the applet tag in the HTML page like
the real McCoy does.

Figure 25-2. My AppletViewer showing simple applet

Example 25-12. AppletViewer.java main program

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.applet.*;
import java.lang.reflect.*;
import java.net.*;
import java.util.*;

/*
 * AppletViewer - a simple Applet Viewer program.
 */
public class AppletViewer {
 /** The main Frame of this program */
 JFrame f;
 /** The AppletAdapter (gives AppletStub, AppletContext, showStatus) */
 static AppletAdapter aa = null;
 /** The name of the Applet subclass */
 String appName = null;
 /** The Class for the actual applet type */
 Class ac = null;
 /** The Applet instance we are running, or null. Can not be a JApplet
 * until all the entire world is converted to JApplet. */

Example 25-11. HelloApplet.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: AppletViewer | 747

 Applet ai = null;
 /** The width of the Applet */
 final int WIDTH = 250;
 /** The height of the Applet */
 final int HEIGHT = 200;

 /** Main is where it all starts.
 * Construct the GUI. Load the Applet. Start it running.
 */
 public static void main(String[] av) {
 new AppletViewer(av.length==0?"HelloApplet":av[0]);
 }

 /** Construct the GUI for an Applet Viewer */
 AppletViewer(String appName) {
 super();

 this.appName = appName;

 f = new JFrame("AppletViewer");
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 Container cp = f.getContentPane();
 cp.setLayout(new BorderLayout());

 // Instantiate the AppletAdapter which gives us
 // AppletStub and AppletContext.
 if (aa == null)
 aa = new AppletAdapter();

 // The AppletAdapter also gives us showStatus.
 // Therefore, must add() it very early on, since the Applet's
 // Constructor or its init() may use showStatus()
 cp.add(BorderLayout.SOUTH, aa);

 showStatus("Loading Applet " + appName);

 loadApplet(appName , WIDTH, HEIGHT); // sets ac and ai
 if (ai == null)
 return;

 // Now right away, tell the Applet how to find showStatus et al.
 ai.setStub(aa);

 // Connect the Applet to the Frame.
 cp.add(BorderLayout.CENTER, ai);

Example 25-12. AppletViewer.java main program (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 25: Introspection, or “A Class Named Class”

For Applet methods to work, two additional classes must be defined: AppletStub and
AppletContext. The AppletStub is the tie-in between the applet and the browser, and
the AppletContext is a set of methods used by the applet. In a real browser, they are
probably implemented separately, but I have combined them into one class (see
Example 25-13). Note that the scope of applets that will work without throwing
exceptions is rather limited, since so many of the methods here are, at present, dum-
mied out. This AppletViewer is not a full replacement for Sun’s AppletViewer; it has
been tested only with a basic Hello World applet, and it is simply provided as a start-
ing point for those who want to fill in the gaps and make a full-blown applet viewer
program.

 Dimension d = ai.getSize();
 d.height += aa.getSize().height;
 f.setSize(d);
 f.setVisible(true); // make the Frame and all in it appear

 showStatus("Applet " + appName + " loaded");

 // Here we pretend to be a browser!
 ai.init();
 ai.start();
 }

 /*
 * Load the Applet into memory. Should do caching.
 */
 void loadApplet(String appletName, int w, int h) {
 // appletName = ... extract from the HTML CODE= somehow ...;
 // width = ditto
 // height = ditto
 try {
 // get a Class object for the Applet subclass
 ac = Class.forName(appletName);
 // Construct an instance (as if using no-argument constructor)
 ai = (Applet) ac.newInstance();
 } catch(ClassNotFoundException e) {
 showStatus("Applet subclass " + appletName + " did not load");
 return;
 } catch (Exception e){
 showStatus("Applet " + appletName + " did not instantiate");
 return;
 }
 ai.setSize(w, h);
 }

 public void showStatus(String s) {
 aa.getAppletContext().showStatus(s);
 }
}

Example 25-12. AppletViewer.java main program (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: AppletViewer | 749

Example 25-13. AppletAdapter.java, partial AppletStub, and AppletContext

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;
import java.util.*;

/*
 * AppletAdaptor: partial implementation of AppletStub and AppletContext.
 *
 * This code is far from finished, as you will see.
 *
 */
public class AppletAdapter extends Panel implements AppletStub, AppletContext {
 /** The status window at the bottom */
 Label status = null;

 /** Construct the GUI for an Applet Status window */
 AppletAdapter() {
 super();

 // Must do this very early on, since the Applet's
 // Constructor or its init() may use showStatus()
 add(status = new Label());

 // Give "status" the full width
 status.setSize(getSize().width, status.getSize().height);

 showStatus("AppletAdapter constructed"); // now it can be said
 }

 /****************** AppletStub ***********************/
 /** Called when the applet wants to be resized. */
 public void appletResize(int w, int h) {
 // applet.setSize(w, h);
 }

 /** Gets a reference to the applet's context. */
 public AppletContext getAppletContext() {
 return this;
 }

 /** Gets the base URL. */
 public URL getCodeBase() {
 return getClass().getResource(".");
 }

 /** Gets the document URL. */
 public URL getDocumentBase() {
 return getClass().getResource(".");
 }

 /** Returns the value of the named parameter in the HTML tag. */
 public String getParameter(String name) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 25: Introspection, or “A Class Named Class”

 String value = null;
 return value;
 }
 /** Determines if the applet is active. */
 public boolean isActive() {
 return true;
 }

 /************************ AppletContext ************************/

 /** Finds and returns the applet with the given name. */
 public Applet getApplet(String an) {
 return null;
 }

 /** Finds all the applets in the document */
 public Enumeration getApplets() {
 class AppletLister implements Enumeration {
 public boolean hasMoreElements() {
 return false;
 }
 public Object nextElement() {
 return null;
 }
 }
 return new AppletLister();
 }

 /** Create an audio clip for the given URL of a .au file */
 public AudioClip getAudioClip(URL u) {
 return null;
 }

 /** Look up and create an Image object that can be paint()ed */
 public Image getImage(URL u) {
 return null;
 }

 /** Request to overlay the current page with a new one - ignored */
 public void showDocument(URL u) {
 }

 /** as above but with a Frame target */
 public void showDocument(URL u, String frame) {
 }

 /** Called by the Applet to display a message in the bottom line */
 public void showStatus(String msg) {
 if (msg == null)
 msg = "";
 status.setText(msg);
 }
}

Example 25-13. AppletAdapter.java, partial AppletStub, and AppletContext (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: AppletViewer | 751

It is left as an exercise for the reader to implement getImage() and other methods in
terms of other recipes used in this book.

See Also
We have not investigated all the ins and outs of reflection or the ClassLoader mecha-
nism, but I hope I’ve given you a basic idea of how it works.

Perhaps the most important omissions are SecurityManager and ProtectionDomain.
Only one SecurityManager can be installed in a given instance of the JVM (e.g., to
prevent a malicious applet from providing its own!). A browser, for example, pro-
vides a SecurityManager that is far more restrictive than the standard one. Writing
such a SecurityManager is left as an exercise for the reader—an important exercise for
anyone planning to load classes over the Internet! (For more information about secu-
rity managers and the Java Security APIs, see Java Security by Scott Oaks.) A
ProtectionDomain can be provided with a ClassLoader to specify all the permissions
needed for the class to run.

I’ve also left unexplored some other topics in the JVM; see the O’Reilly books The
Java Virtual Machine and The Java Language, or Sun’s JVM Specification document
(http://java.sun.com/docs/books/vmspec/) for a lifetime of reading enjoyment and
edification!

The Apache Software Foundation maintains a variety of useful software packages
that are free to get and use. Source code is always available without charge from its
web site. Two packages you might want to investigate include the Commons Bean-
Utils and the Byte Code Engineering Library (BCEL). The Commons BeanUtils,
available from http://jakarta.apache.org/commons/beanutils/, claims to provide easier-
to-use wrappers around some of the Reflection API. BCEL is a third-party toolkit for
building and manipulating “bytecode” class files. Written by Markus Dahm, BCEL has
become part of the Jakarta Project and is available from http://jakarta.apache.org/bcel/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752

Chapter 26CHAPTER 26

Using Java with Other Languages

26.0 Introduction
Java has several methods of running programs written in other languages. You can
invoke a compiled program or executable script using Runtime.exec(), as I’ll
describe in Recipe 26.1. Or you can drop down to C level with Java’s “native code”
mechanism and call compiled functions written in C/C++. From there, you can call
to functions written in just about any language. Not to mention that you can contact
programs written in any language over a socket (see Chapter 17), with HTTP ser-
vices (see Chapter 18), or with Java clients in RMI or CORBA clients in a variety of
languages (see Chapter 22).

There is an element of system dependency here, of course. You can only run Win-
dows applications under Windows and Unix applications under Unix. So some of
the recipes in this chapter aren’t portable, although in a few cases I try to make them
at least run on Windows or Unix.

26.1 Running a Program

Problem
You want to run a program.

Solution
Use one of the exec() methods in the java.lang.Runtime class. Or, on JDK 1.5, use
the start() method of ProcessBuilder.

Discussion
The exec() method in the Runtime class lets you run an external program. The com-
mand line you give is broken into strings by a simple StringTokenizer (Recipe 3.2)
and passed on to the operating system’s “execute a program” system call. As an

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running a Program | 753

example, here is a simple program that uses exec() to run kwrite, a windowed text
editor program.* On Windows, you’d have to change the name to notepad or
wordpad, possibly including the full pathname; e.g., c:/windows/notepad.exe (you can
also use backslashes, but be careful to double them because the backslash is special
in Java strings):

// file ExecDemoSimple.java
public class ExecDemoSimple {
 public static void main(String av[]) throws java.io.IOException {

 // Run an editor
 Process p = Runtime.getRuntime().exec("kwrite");

 }
}

When you compile and run it, the appropriate editor window appears:

$ jr ExecDemoSimple
+ jikes +E -d . ExecDemoSimple.java
+ java ExecDemoSimple # causes a KWrite window to appear.
$

This version of exec() assumes that the pathname contains no blanks because these
break proper operation of the StringTokenizer. To overcome this potential problem,
use an overloaded form of exec(), taking an array of strings as arguments.
Example 26-1 runs the Windows or Unix version of Netscape, assuming Netscape
was installed in the default directory. It passes the name of a help file as an argu-
ment, offering a kind of primitive help mechanism, as displayed in Figure 26-1.

* kwrite is Unix-specific; it’s a part of the K Desktop Environment (KDE). See http://www.kde.org.

Example 26-1. ExecDemoNS.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.net.*;
import java.util.*;

import com.darwinsys.util.Debug;

/**
 * ExecDemoNS shows how to execute a program from within Java.
 */
public class ExecDemoNS extends JFrame {
 /** The name of the help file. */
 protected final static String HELPFILE = "./help/index.html";

 /** A stack of process objects; each entry tracks one external running process */
 Stack<Process> pStack = new Stack<Process>();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 26: Using Java with Other Languages

 /** main - instantiate and run */
 public static void main(String av[]) throws Exception {
 String program = av.length == 0 ? "netscape" : av[0];
 new ExecDemoNS(program).setVisible(true);
 }

 /** The path to the binary executable that we will run */
 protected static String program;

 /** Constructor - set up strings and things. */
 public ExecDemoNS(String prog) {
 super("ExecDemo: " + prog);
 String osname = System.getProperty("os.name");
 if (osname == null)
 throw new IllegalArgumentException("no os.name");
 if (prog.equals("netscape"))
 program = // Windows or UNIX only for now, sorry Mac fans
 (osname.toLowerCase().indexOf("windows")!=-1) ?
 "c:/program files/netscape/communicator/program/netscape.exe" :
 "/usr/local/netscape/netscape";
 else
 program = prog;

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 JButton b;
 cp.add(b=new JButton("Exec"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 runProg();
 }
 });
 cp.add(b=new JButton("Wait"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 doWait();
 }
 });
 cp.add(b=new JButton("Exit"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.exit(0);
 }
 });
 pack();
 }

 /** Start the help, in its own Thread. */
 public void runProg() {

 new Thread() {
 public void run() {

Example 26-1. ExecDemoNS.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running a Program and Capturing Its Output | 755

JDK 1.5 includes a new class, ProcesssBuilder, that is designed to replace most non-
trivial uses of Runtime.exec(). ProcessBuilder uses the 1.5 Generic Collections dis-
cussed in Chapter 8 to let you modify or replace the environment. For details, see the
Javadoc for java.lang.ProcessBuilder.

26.2 Running a Program and Capturing
Its Output

Problem
You want to run a program but also capture its output.

 try {
 // Get the URL for the Help File
 URL helpURL = this.getClass().getClassLoader().
 getResource(HELPFILE);

 // Start Netscape from the Java Application.

 pStack.push(Runtime.getRuntime().exec(program + " " + helpURL));

 Debug.println("trace", "In main after exec " + pStack.size());

 } catch (Exception ex) {
 JOptionPane.showMessageDialog(ExecDemoNS.this,
 "Error" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }.start();

 }

 public void doWait() {
 if (pStack.size() == 0) return;
 Debug.println("trace", "Waiting for process " + pStack.size());
 try {
 pStack.peek().waitFor();
 // wait for process to complete
 // (does not work as expected for Windows programs)
 Debug.println("trace", "Process " + pStack.size() + " is done");
 } catch (Exception ex) {
 JOptionPane.showMessageDialog(this,
 "Error" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 pStack.pop();
 }

}

Example 26-1. ExecDemoNS.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 26: Using Java with Other Languages

Solution
Use the Process object’s getInputStream(); read and copy the contents to System.out
or wherever you want them.

Discussion
A program’s standard and error output does not automatically appear anywhere.
Arguably, there should be an automatic way to make this happen. But for now, you
need to add a few lines of code to grab the program’s output and print it:

// part of ExecDemoLs.java
p = Runtime.getRuntime().exec(PROGRAM);

// getInputStream gives an Input stream connected to
// the process p's standard output (and vice versa). We use
// that to construct a BufferedReader so we can readLine() it.
BufferedReader is =
 new BufferedReader(new InputStreamReader(p.getInputStream()));

while ((line = is.readLine()) != null)
 System.out.println(line);

This is such a common occurrence that I’ve packaged it up into a class called
ExecAndPrint, which is part of my package com.darwinsys.lang. ExecAndPrint has sev-
eral overloaded forms of its run() method (see the documentation for details), but
they all take at least a command and optionally an output file to which the com-
mand’s output is written. Example 26-2 shows the code for some of these methods.

Figure 26-1. ExecDemoNS in action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Running a Program and Capturing Its Output | 757

As a simple example of using exec() directly along with ExecAndPrint, I’ll create
three temporary files, list them (directory listing), and then delete them. When I run
the ExecDemoFiles program, it lists the three files it has created:

-rw------- 1 ian wheel 0 Jan 29 14:29 file1
-rw------- 1 ian wheel 0 Jan 29 14:29 file2
-rw------- 1 ian wheel 0 Jan 29 14:29 file3

Its source code is in Example 26-3.

Example 26-2. ExecAndPrint.java (partial listing)

/** Need a Runtime object for any of these methods */
protected static Runtime r = Runtime.getRuntime();

/** Run the command given as a String, printing its output to System.out */
public static int run(String cmd) throws IOException {
 return run(cmd, new OutputStreamWriter(System.out));
}

/** Run the command given as a String, print its output to "out" */
public static int run(String cmd, Writer out) throws IOException {

 String line;

 Process p = r.exec(cmd);

 FileIO.copyFile(new InputStreamReader(p.getInputStream()), out, true);
 try {
 p.waitFor(); // wait for process to complete
 } catch (InterruptedException e) {
 return -1;
 }
 return p.exitValue();
}

Example 26-3. ExecDemoFiles.java

// Get and save the Runtime object.
Runtime rt = Runtime.getRuntime();

// Create three temporary files
Process p = rt.exec("mktemp file1"); p.waitFor();
p = rt.exec("mktemp file2"); p.waitFor();
p = rt.exec("mktemp file3"); p.waitFor();

// Run the "ls" (directory lister) program
// with its output printed back to us.
String[] args = { "ls", "-l", "file1", "file2", "file3" };
ExecAndPrint.run(args);

rt.exec("rm file1 file2 file3");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 26: Using Java with Other Languages

A process isn’t necessarily destroyed when the Java program that created it exits or
bombs out. Simple text-based programs will be, but window-based programs like
kwrite, Netscape, or even a Java-based JFrame application will not. For example, our
ExecDemoNS program started Netscape, and when ExecDemoNS’ Exit button is pressed,
ExecDemoNS exits but Netscape stays running. What if you want to be sure a process
has completed? The Process object has a waitFor() method that lets you do so, and
an exitValue() method that tells you the “return code” from the process. Finally,
should you wish to forcibly terminate the other process, you can do so with the
Process object’s destroy() method, which takes no argument and returns no value.
Example 26-4 is ExecDemoWait, a program that runs whatever program you name on
the command line (along with arguments), captures the program’s standard output,
and waits for the program to terminate.

See Also
You wouldn’t normally use any form of exec() to run one Java program from
another in this way; instead, you’d probably create it as a thread within the same
process, since this is generally quite a bit faster (the Java interpreter is already up and
running, so why wait for another copy of it to start up?). See Chapter 24.

Example 26-4. ExecDemoWait.java

// A Runtime object has methods for dealing with the OS
Runtime r = Runtime.getRuntime();
Process p; // Process tracks one external native process
BufferedReader is; // reader for output of process
String line;

// Our argv[0] contains the program to run; remaining elements
// of argv contain args for the target program. This is just
// what is needed for the String[] form of exec.
p = r.exec(argv);

System.out.println("In Main after exec");

// getInputStream gives an Input stream connected to
// the process p's standard output. Just use it to make
// a BufferedReader to readLine() what the program writes out.
is = new BufferedReader(new InputStreamReader(p.getInputStream()));

while ((line = is.readLine()) != null)
 System.out.println(line);

System.out.println("In Main after EOF");
try {
 p.waitFor(); // wait for process to complete
} catch (InterruptedException e) {
 return;
}
System.err.println("Process done, exit status was " + p.exitValue());
return;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mixing Java and Scripts with BSF | 759

When building industrial-strength applications, note the cautionary remarks in the
Java API docs for the Process class concerning the danger of losing some of the I/O
due to insufficient buffering by the operating system.

26.3 Mixing Java and Scripts with BSF

Problem
You want to interface Java components to an existing scripting language.

Solution
Use the Bean Scripting Framework (BSF).

Discussion
Many scripting languages are used in the computing field today: VB, Perl, Python,
JavaScript, Tcl/TK, REXX, and others. A project that originated at IBM but has now
been taken over by the Apache Foundation, the Bean Scripting Framework (BSF), aims
to provide a way to allow a number of scripting languages to interoperate with Java.

The BSF consists of a management API, an engine API for driving different scripting
languages, and a series of plug-ins for different scripting languages. The manage-
ment API lets you either evaluate an expression in the given scripting language, such
as “2+2” (which is so simple as to be valid in most supported languages), or run a
script stored in a script file. In this example, I’ll use Jython, a pure-Java (certified)
implementation of the scripting language Python (see http://www.python.org and
http://www.jython.org or the O’Reilly book Learning Python).

While it is convenient (and efficient) to run Jython in the same JVM as the calling
program, this is not by any means a requirement; for example, it is possible to use
BSF with scripting languages written in some native language. BSF and the scripting
plug-in are responsible for dealing with whatever “plumbing”—external connec-
tions or processes—this requires. Among others, BSF currently supports the lan-
guages listed in Table 26-1.

Table 26-1. Some languages supported by BSF

Language Description

Jython Java implementation of Python

Jacl Java implementation/interface for Tcl

Xalan (LotusXSL) XML stylesheets (see Recipe 21.2)

NetRexx REXX variant

Mozilla JavaScript implementation

Pnuts Scripting language for accessing Java APIs

JScript, VBScript, PerlScript Windows scripting languages

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 26: Using Java with Other Languages

BSF could also support Mac OS Apple Scripting or almost any other language,
although I don’t know of an implementation at present.

Example 26-5 uses Jython to evaluate and print the value of 22/7, a crude but time-
honored approximation of Math.PI, using the management API’s eval() function.
The imports assume you are using BSF 2.3; prior to this, the namespace of com.ibm
was used instead of org.apache.

This program prints the following output:

$ java BSFSample
'import exceptions' failed; using string-based exceptions
Result type is org.python.core.PyFloat
Result value is 3.142857142857143
Scripting demo done.
$

The exceptions failure is probably due to my having installed Jython in a nonstand-
ard location and not setting the environment variable(s) needed to find it. Further,
the first time you run it, Jython spits out a bunch of nattering about your CLASS-
PATH, one line for each JAR file that it finds. These can be a bit surprising when
they pop up from a script, but Jython doesn’t seem to know or care whether it’s
being run interactively or dynamically:

packageManager: processing new jar, "/usr/local/java/swingall.jar"

Example 26-5. BSFSample.java

import org.apache.bsf.util.*;
import org.apache.bsf.*;
import java.io.*;

/** Sample of using Bean Scripting Framework with Jython */
public class BSFSample {
 public static void main(String[] args) {
 BSFManager manager = new BSFManager();

 // register scripting language
 String[] fntypes = { ".py" };
 manager.registerScriptingEngine("jython",
 "com.ibm.bsf.engines.jython.JythonEngine", fntypes);

 try {
 // try an expression
 Object r = manager.eval("jython", "testString", 0, 0, "22.0/7");
 System.out.println("Result type is " + r.getClass().getName());
 System.out.println("Result value is " + r);
 } catch (Exception ex) {
 System.err.println(ex.toString());
 }
 System.out.println("Scripting demo done.");
 return;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mixing Java and Scripts with BSF | 761

The following longer example uses the LabelText bean from Recipe 23.8 and a push
button to run a Python script that collects the text from the LabelText instance and
displays it on the standard output. Here is the little script, buttonhandler.py:

print "Hello";
print bean.getText();

When I ran this, I typed the famous words that Alexander Graham Bell apparently
sent to his assistant Watson and had the Java program send them to the Python
script.

Sure enough, when I clicked on the button, I got this on the standard output (as
shown in Figure 26-2):

Script output: -->
Hello
Mr. Watson, come here
<-- End of Script output.

Nothing you couldn’t do in Java, of course, but in this example, the LabelText bean
is registered with the BSF as a bean, and the JButton’s action handler runs a script
that gets that text and displays it. Example 26-6 shows the source code for the script-
using program.

Figure 26-2. BSFSample in action

Example 26-6. BSFAction.java

import org.apache.bsf.util.*;
import org.apache.bsf.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

/** Longer sample of using Bean Scripting Framework with Jython */
public class BSFAction {
 protected String FILENAME = "buttonhandler.py";
 protected BSFManager manager;
 protected BSFEngine jythonengine;
 protected String language;
 protected String script;

 public static void main(String[] args) {
 new BSFAction();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 26: Using Java with Other Languages

 BSFAction() {

 // Construct the Bean instance
 LabelText bean = new LabelText("Message to Python script");

 try {
 manager = new BSFManager();

 // register scripting language
 String[] fntypes = { ".py" };
 manager.registerScriptingEngine("jython",
 "com.ibm.bsf.engines.jython.JythonEngine", fntypes);
 jythonengine = manager.loadScriptingEngine("jython");

 // Tell BSF about the bean.
 manager.declareBean("bean", bean, LabelText.class);

 // Read the script file into BSF
 language = manager.getLangFromFilename(FILENAME);
 script = IOUtils.getStringFromReader(
 new FileReader(FILENAME));

 } catch (Exception ex) {
 System.err.println(ex.toString());
 System.exit(0);
 }

 System.out.println("Scripting setup done, building GUI.");

 final JFrame jf = new JFrame(getClass().getName());

 Container cp = jf.getContentPane();
 cp.setLayout(new FlowLayout());

 cp.add(bean); // add the LabelText

 JButton b = new JButton("Click me!");
 cp.add(b); // and the button under it.
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {

 // When the button is pressed, run the script.
 System.out.println("Script output: -->");
 manager.exec(language, FILENAME, 0, 0, script);
 System.out.println("<-- End of Script output.");
 } catch (BSFException bse) {
 JOptionPane.showMessageDialog(jf,
 "ERROR: " + bse, "Script Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });

Example 26-6. BSFAction.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Marrying Java and Perl | 763

See Also
Information on the Bean Scripting Framework is located at the Jakarta Project’s web
site at http://jakarta.apache.org/bsf/.

Many other projects aim to blend Java with other languages. As a single example,
check out the Omega Project’s interface at http://www.omegahat.org/RSJava/. R, itself
a clone of S, is the statistical package used to produce the charts back in Figure 5-1.
This interface lets you use Java inside R or S and to call R or S from Java code.

26.4 Marrying Java and Perl

Problem
You want to make use of your existing Perl code base from a Java application, or vice
versa.

Solution
Use the Perl Inline::Java module.

Discussion
Perl is often called a “glue language” that can be used to bring together diverse parts
of the software world. But, in addition, it is a full-blown language in its own right for
creating software. A wealth of extension modules provide ready-to-run solutions for
quite diverse problems, and most of these modules are available for free from
CPAN, the Comprehensive Perl Archive Network (http://www.cpan.org/). Also, as a
scripting language, it is ideally suited for rapid prototyping. On the other hand, while
building graphical user interfaces is definitely possible in Perl, it is not exactly one of
the language’s strengths. So you might want to construct your GUI using Java Swing,
and, at the same time, reuse business logic implemented in Perl.

 // A Quit button at the bottom
 JButton qb = new JButton("Quit");
 cp.add(qb);
 qb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.exit(0);
 }
 });

 // Routine JFrame setup
 jf.pack();
 jf.setVisible(true);
 }
}

Example 26-6. BSFAction.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 26: Using Java with Other Languages

Fortunately, among the many CPAN modules, Inline::Java makes the integration of
Perl and Java a breeze. Let’s assume first that you want to call into Java from Perl.
For business logic, I have picked a CPAN module that measures the similarity of two
strings (the so-called Levenshtein edit distance). Example 26-7 shows the complete
source. You need at least Version 0.44 of the module Inline::Java; previous ver-
sions did not support threaded applications properly, so use of Swing wasn’t possible.

Example 26-7. Swinging.pl

#! /usr/bin/perl
Calling Java from Perl, and back again

use strict;
use warnings;

use Text::Levenshtein qw();
 # Perl module from CPAN to measure string similarity

use Inline 0.44 "JAVA" => "DATA"; # pointer to the Inline java source
use Inline::Java qw(caught); # helper function to determine exception type

my $show = new Showit; # construct Java object using Perl syntax
$show->show("Just another Perl hacker"); # call method on that object

eval {
 # Call a method that will call back to Perl;
 # catch exceptions, if any.
 print "matcher: ", $show->match("Japh", shift||"Java"), " (displayed from Perl)\n";
};
if ($@) {
 print STDERR "Caught:", caught($@), "\n";
 die $@ unless caught("java.lang.Exception");
 print STDERR $@->getMessage(), "\n";
}

__END_ _

__JAVA_ _
// Java starts here
import javax.swing.*;
import org.perl.inline.java.*;

class Showit extends InlineJavaPerlCaller {
 // extension only neeeded if calling back into Perl

 /** Simple Java class to be called from Perl, and to call back to Perl
 */
 public Showit() throws InlineJavaException { }

 /** Simple method */
 public void show(String str) {
 System.out.println(str + " inside Java");
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Marrying Java and Perl | 765

In simple cases like this, you don’t even need to write a separate Java source file: you
combine all the code, Perl and Java alike, in one single file. You do not need to com-
pile anything, either; just execute it by typing:

perl Swinging.pl

(You can also add a string argument.) After a little churning, a Java message box
pops up, telling you that the distance between “Japh” and “Java” is 2. At the same
time, your console shows the string “Just another Perl hacker inside Java.” When
you close the message box, you get the final result “matcher: 2 (displayed from Perl).”

In between, your Perl program has created an instance of the Java class Showit by
calling its constructor. It then called that object’s show() method to display a string
from within Java. It then proceeded to call the match() method, but this time, some-
thing more complicated happens: the Java code calls back into Perl, accessing
method distance of module Text::Levenshtein and passing it two strings as argu-
ments. It receives the result, displays it in a message box, and finally, for good mea-
sure, returns it to the Perl main program that it had been called from.

Incidentally, the eval { } block around the method call is the Perlish way of catch-
ing exceptions. In this case, the exception is thrown from within Java.

If you restart the program, you will notice that startup time is much shorter, which is
always good news. Why is that so? On the first call, Inline::Java took the input
apart, precompiled the Java part, and saved it to disk (usually, in a subdirectory
called _Inline). On subsequent calls, it just makes sure that the Java source has not
changed and then calls the class file that is already on disk. (Of course, if you surrep-
titiously changed the Java code, it is recompiled just as automagically.) Behind the
scenes, even stranger things are going on, however. When the Perl script is executed,
a Java server is constructed and started unbeknownst to the user, and the Perl part
and the Java bits communicate through a TCP socket (see Chapter 17).

 /** Method calling back into Perl */
 public int match(String target, String pattern)
 throws InlineJavaException, InlineJavaPerlException {

 // Calling a function residing in a Perl Module
 String str = (String)CallPerl("Text::Levenshtein", "distance",
 new Object [] {target, pattern});

 // Show result
 JOptionPane.showMessageDialog(null, "Edit distance between '" + target +
 "' and '" + pattern + "' is " + str,
 "Swinging Perl", JOptionPane.INFORMATION_MESSAGE);
 return Integer.parseInt(str);
 }

}

Example 26-7. Swinging.pl (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

766 | Chapter 26: Using Java with Other Languages

Let’s look at the other way around now: you conceive of your Java code as the “main
program,” and you want to call some Perl code. As the Perl folks have it,
“TMTOWTDI” (for the uninitiated: “There’s more than one way to do it”), but I
think it is easiest to actually start from Perl, using a very simple stub that, besides
supplying all the Perl business logic you need, basically just starts up your Java code
and hands control over to Java.

StringDistance.java is a fairly short Swing application that displays the dialog shown
in Figure 26-3.

The full source is included online; Example 26-8 shows just the essential part that
deals with Perl. This time, since it is a separate source file, you have to compile it
yourself.

Figure 26-3. StringDistance.java/.pl in action

Example 26-8. StringDistance.java (extract)

// requires classpath to include InlineJavaServer.jar; usually something like
// .;<perldir>/site/lib/Inline/Java/InlineJavaServer.jar
public class StringDistance extends InlineJavaPerlCaller {
 JFrame frame; // visual container
 JTextField tf[], dist; // text input fields, result output field
 JButton go, exit; // action buttons

 /* The constructor with possibly 2 initial strings */
 public StringDistance(String[] strs) throws InlineJavaException {
 // omitted from printed version
 }
 /** The central interface function to Perl. */
 public int match(String s0, String s1) {
 try {
 String str = (String)CallPerl("Text::Levenshtein", "distance",
 new Object [] {s0, s1});
 return Integer.parseInt(str);
 } catch (InlineJavaPerlException e) {
 System.err.println("Inline Java Perl Exception: " + e);
 } catch (InlineJavaException e) {
 System.err.println("Inline Java Exception: " + e);
 }
 return 0;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Blending in Native Code (C/C++) | 767

Example 26-9 shows the full Perl code that is needed for getting things running—just
12 lines of code.

Marrying two platform-independent languages, like Perl and Java, in a portable way
skirts many portability problems. When distributing inlined applications, be sure to
supply not just the source files but also the contents of the _Inline directory. (It is
advisable to purge that directory and to rebuild everything just before distribution
time; otherwise, old compiled versions left lying around might make it into the distri-
bution.) Each target machine needs to repeat the magic steps of Inline::Java, which
requires a Java compiler. In any case, the Inline::Java module must be installed.

Since Perl has Inline modules for a number of other languages (ordinary languages
like C, but others as exotic as Befunge), one might even consider using Perl as glue
for interoperation between those other languages, jointly or separately, and Java. I am
sure many happy hours can be spent working out the intricacies of such interactions.

See Also
Full information on Inline::Java can be found on CPAN (http://search.cpan.org/) or
in the POD (plain old documentation) that is installed along with the module itself.

26.5 Blending in Native Code (C/C++)

Problem
You wish to call native C/C++ functions from Java, either for efficiency or to access
hardware- or system-specific features.

Example 26-9. StringDistance.pl

#! /usr/bin/perl
Perl main program acting as a stub for callbacks from Java

use strict;
use warnings;

all modules called from either Perl or from Java must go here:
use Text::Levenshtein qw();

use Inline "Java" => "STUDY", # glean interface from Java class file
 "AUTOSTUDY" => 1, # glean more interfaces, too, just in case
 "STUDY" => ["StringDistance"], # name of our main Java class
 "CLASSPATH" => ".", # needed in order to find main Java class
 ;

my $sd = StringDistance->new(\@ARGV); # construct instance of main Java class
$sd->show(); # call routine to show it
$sd->StartCallbackLoop(); # prepare to listen for threaded callbacks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 26: Using Java with Other Languages

Solution
Use JNI, the Java Native Interface.

Discussion
Java lets you load native or compiled code into your Java program. Why would you
want to do such a thing? One reason might be to access OS-dependent functionality.
Another is speed: native code will likely run faster than Java, at least at present. Like
everything else in Java, this mechanism is subject to security restrictions; for exam-
ple, applets are not allowed to access native code.

The native code language bindings are defined for code that has been written in C or
C++. If you need to access a language other than C/C++, write a bit of C/C++ and
have it pass control to other functions or applications, using any mechanism defined
by your operating system.

Due to such system-dependent features as the interpretation of header files and the
allocation of the processor’s general-purpose registers, your native code may need to
be compiled by the same C compiler used to compile the Java runtime for your plat-
form. For example, on Solaris you can use SunPro C or maybe gcc. On Win32 plat-
forms, use Microsoft Visual C++ Version 4.x or higher (32 bit). For Linux and Mac
OS X, you should be able to use the provided gcc-based compiler. For other plat-
forms, see your Java vendor’s documentation.

Also note that the details in this section are for the Java Native Interface (JNI) of Java
1.1 and later, which differs in some details from 1.0 and from Microsoft’s native
interface.

The steps to call native code are summarized in the following sidebar and detailed
below.

Ian’s Basic Steps: Java Calling Native Code
To call native code from Java:

1. Write Java code that calls a native method.

2. Compile this Java code.

3. Create an .h file using javah.

4. Write a C function that does the work.

5. Compile the C code into a loadable object.

6. Try it!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Blending in Native Code (C/C++) | 769

The first step is to write Java code that calls a native method. To do this, use the key-
word native to indicate that the method is native, and provide a static code block
that loads your native method using System.loadLibrary(). (The dynamically load-
able module is created in Step 5.) Static blocks are executed when the class contain-
ing them is loaded; loading the native code here ensures it is in memory when
needed!

Object variables that your native code may modify should carry the volatile modi-
fier. The file HelloWorld.java, shown in Example 26-10, is a good starting point.

The second step is simple; just use javac HelloWorld.java as you normally would.
You probably won’t get any compilation errors on a simple program like this; if you
do, correct them and try the compilation again.

Next, you need to create an .h file. Use javah to produce this file:

javah HelloWorld // produces HelloWorld.h

The .h file produced is a “glue” file, not really meant for human consumption and
particularly not for editing. But by inspecting the resulting .h file, you’ll see that the
C method’s name is composed of the name Java, the package name (if any), the class
name, and the method name:

JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld(JNIEnv *env,
 jobject this);

Then create a C function that does the work. You must use the same function signa-
ture as is used in the .h file.

Example 26-10. HelloWorld.java

/**
 * A trivial class to show Java Native Interface 1.1 usage from Java.
 */
public class HelloWorld {
 int myNumber = 42; // used to show argument passing

 // declare native class
 public native void displayHelloWorld();

 // Application main, call its display method
 public static void main(String[] args) {
 HelloWorld hw = new HelloWorld();
 hw.displayHelloWorld(); // call the native function
 System.out.println("Back in Java, \"myNumber\" now " + hw.myNumber);
 }

 // Static code blocks are executed once, when class file is loaded
 static {
 System.loadLibrary("hello");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 26: Using Java with Other Languages

This function can do whatever it wishes. Note that it is passed two arguments: a
JVM environment variable and a handle for the this object. Table 26-2 shows the
correspondence between Java types and the C types (JNI types) used in the C code.

Example 26-11 is a complete C native implementation. Passed an object of type
HelloWorld, it increments the integer myNumber contained in the object.

Table 26-2. Java and JNI types

Java type JNI Java array type JNI

byte jbyte byte[] jbyteArray

short jshort short[] jshortArray

int jint int[] jintArray

long jlong long[] jlongArray

float jfloat float[] jfloatArray

double jdouble double[] jdoubleArray

char jchar char[] jcharArray

boolean jboolean boolean[] jbooleanArray

void jvoid

Object jobject Object[] jobjectArray

Class jclass

String jstring

array jarray

Throwable jthrowable

Example 26-11. HelloWorld.c

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

/*
 * This is the 1.1 implementation of displayHelloWorld.
 */
JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject this)
{
 jfieldID fldid;
 jint n, nn;

 (void)printf("Hello from a Native Method\n");

 if (this == NULL) {
 fprintf(stderr, "Input pointer is null!\n");
 return;
 }
 if ((fldid = (*env)->GetFieldID(env,
 (*env)->GetObjectClass(env, this), "myNumber", "I")) == NULL) {
 fprintf(stderr, "GetFieldID failed");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Blending in Native Code (C/C++) | 771

Finally, you compile the C code into a loadable object. Naturally, the details depend
on platform, compiler, etc. For example, on Windows:

> set JAVA_HOME=C:\java # or wherever
> set INCLUDE=%JAVA_HOME%\include;%JAVA_HOME%\include\Win32;%INCLUDE%
> set LIB=%JAVA_HOME%\lib;%LIB%
> cl HelloWorld.c -Fehello.dll -MD -LD

And on Unix:

$ export JAVAHOME=/local/java # or wherever
$ cc -I$JAVAHOME/include -I$JAVAHOME/include/solaris \
-G HelloWorld.c -o libhello.so

Example 26-12 is a makefile for Unix.

 return;
 }

 n = (*env)->GetIntField(env, this, fldid); /* retrieve myNumber */
 printf("\"myNumber\" value is %d\n", n);

 (*env)->SetIntField(env, this, fldid, ++n); /* increment it! */
 nn = (*env)->GetIntField(env, this, fldid);

 printf("\"myNumber\" value now %d\n", nn); /* make sure */
 return;
}

Example 26-12. Unix makefile

Makefile for the Java Native Methods examples for
Learning Tree International Course 471/478.
Has been tested on Solaris both with "gcc" and with SunSoft "cc".
On other platforms it will certainly need some tweaking; please
let me know how much! :-)

Configuration Section

CSRCS = HelloWorld.c
JAVAHOME = /local/jdk1.1.2
INCLUDES = -I$(JAVAHOME)/include -I$(JAVAHOME)/include/solaris

all: testhello testjavafromc

This part of the Makefile is for C called from Java, in HelloWorld
testhello: hello.all
 @echo
 @echo "Here we test the Java code \"HelloWorld\" that calls C code."
 @echo
 LD_LIBRARY_PATH='pwd':. java HelloWorld

hello.all: HelloWorld.class libhello.so

Example 26-11. HelloWorld.c (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 26: Using Java with Other Languages

And you’re done! Just run the Java interpreter on the class file containing the main
program. Assuming that you’ve set whatever system-dependent settings are neces-
sary (possibly including both CLASSPATH and LD_LIBRARY_PATH or its equiva-
lent), the program should run as follows:

C> java HelloWorld
Hello from a Native Method // from C
"myNumber" value is 42 // from C
"myNumber" value now 43 // from C
Value of myNumber now 43 // from Java

Congratulations! You’ve called a native method. However, you’ve given up portabil-
ity; the Java class file now requires you to build a loadable object for each operating
system and hardware platform. Multiply {Windows NT, 2000, XP, and 2003, Mac
OS X, Sun Solaris, HP/UX, Linux, OpenBSD, NetBSD, FreeBSD} times {Intel, Intel-
64, AMD64, SPARC, PowerPC, HP-PA} and you begin to see the portability issues.

HelloWorld.class: HelloWorld.java
 javac HelloWorld.java

HelloWorld.h: HelloWorld.class
 javah -jni HelloWorld

HelloWorld.o:: HelloWorld.h

libhello.so: $(CSRCS) HelloWorld.h
 $(CC) $(INCLUDES) -G $(CSRCS) -o libhello.so

This part of the Makefile is for Java called from C, in javafromc
testjavafromc: javafromc.all hello.all
 @echo
 @echo "Now we test HelloWorld using javafromc instead of java"
 @echo
 ./javafromc HelloWorld
 @echo
 @echo "That was, in case you didn't notice, C->Java->C. And,"
 @echo "incidentally, a replacement for JDK program \"java\" itself!"
 @echo

javafromc.all: javafromc

javafromc: javafromc.o
 $(CC) -L$(LIBDIR) javafromc.o -ljava -o $@

javafromc.o: javafromc.c
 $(CC) -c $(INCLUDES) javafromc.c

clean:
 rm -f core *.class *.o *.so HelloWorld.h
clobber: clean
 rm -f javafromc

Example 26-12. Unix makefile (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: DBM | 773

Also note that native code can be used in server code and desktop applications but is
normally not permitted in web browsers.

Beware that problems with your native code can and will crash the runtime process
right out from underneath the Java Virtual Machine. The JVM can do nothing to
protect itself from poorly written C/C++ code. Memory must be managed by the
programmer; there is no automatic garbage collection of memory obtained by the
system runtime allocator. You’re dealing directly with the operating system and
sometimes even the hardware, so, “Be careful. Be very careful.”

See Also
If you need more information on Java Native Methods, you might be interested in
the comprehensive treatment found in Essential JNI: Java Native Interface by Rob
Gordon (Prentice Hall).

26.6 Calling Java from Native Code

Problem
You need to go the other way, calling Java from C/C++ code.

Solution
Use JNI again.

Discussion
Starting from 1.1, JNI provides an interface for calling Java from C, with calls to:

1. Create a JVM

2. Load a class

3. Find and call a method from that class (e.g., main)

JNI lets you add Java to legacy code. That can be useful for a variety of purposes and
lets you treat Java code as an extension language (just define or find an interface or
class like Applet or Servlet, and let your customers implement it or subclass it).

26.7 Program: DBM
This program lets you use the original Unix DBM (database access method) routines
from Java. DBM is actually emulated using the newer Berkeley Database (DB) rou-
tines, but the DBM interface is more traditional and simpler. DBM was used in Rec-
ipe 20.3 to provide a name-to-login database, which is similar to how many modern
Unixes actually store name and password information. That recipe also showed how
to use it to display your Netscape history, even under Windows.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 26: Using Java with Other Languages

I’ll now show the Java version of the DBM library, DBM.java, in Example 26-13. To
compile it, you need the DBM routines installed.

Example 26-13. DBM.java

import java.io.*;

/** This class provides a dbm-compatible interface to the Unix-style
 * database access methods described in dbm(3) (which is on some Unixes
 * a front-end to db(3)).
 * <p>Each unique record in the database is a unique key/value pair,
 * similar to a java.util.Hashtable but stored on a persistent medium, not
 * kept in memory. Dbm was originally optimized for Unix for fast
 * access to individual key/value pairs.</p>
 */
public class DBM {
 /** Since you can only have one DBM database in use at a time due
 * to implementation restrictions, we enforce this rule with a
 * class-wide boolean.
 */
 protected static boolean inuse = false;

 /** Save the filename for messages, etc. */
 protected String fileName;

 /** Construct a DBM given its filename */
 public DBM(String file) {
 synchronized(this) {
 if (inuse)
 throw new IllegalArgumentException(
 "Only one DBM object at a time per Java Machine");
 inuse = true;
 }
 fileName = file;
 int retCode = dbminit(fileName);
 if (retCode < 0)
 throw new IllegalArgumentException(
 "dbminit failed, code = " + retCode);
 }

 // Static code blocks are executed once, when class file is loaded.
 // This is here to ensure that the shared library gets loaded.
 static {
 System.loadLibrary("jdbm");
 }

 protected ByteArrayOutputStream bo;

 /** serialize an Object to byte array. */
 protected byte[] toByteArray(Object o) throws IOException {
 if (bo == null)
 bo = new ByteArrayOutputStream(1024);
 bo.reset();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Program: DBM | 775

 ObjectOutputStream os = new ObjectOutputStream(bo);
 os.writeObject(o);
 os.close();
 return bo.toByteArray();
 }

 /** un-serialize an Object from a byte array. */
 protected Object toObject(byte[] b) throws IOException {
 Object o;

 ByteArrayInputStream bi = new ByteArrayInputStream(b);
 ObjectInputStream os = new ObjectInputStream(bi);
 try {
 o = os.readObject();
 } catch (ClassNotFoundException ex) {
 // Convert ClassNotFoundException to I/O error
 throw new IOException(ex.getMessage());
 }
 os.close();
 return o;
 }

 protected native int dbminit(String file);

 protected native int dbmclose();

 /** Public wrapper for close method. */
 public void close() {
 this.dbmclose();
 inuse = false;
 }

 protected void checkInUse() {
 if (!inuse)
 throw new IllegalStateException("Method called when DBM not open");
 }

 protected native byte[] dbmfetch(byte[] key);

 /** Fetch using byte arrays */
 public byte[] fetch(byte[] key) throws IOException {
 checkInUse();
 return dbmfetch(key);
 }

 /** Fetch using Objects */
 public Object fetch(Object key) throws IOException {
 checkInUse();
 byte[] datum = dbmfetch(toByteArray(key));
 return toObject(datum);
 }

Example 26-13. DBM.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

776 | Chapter 26: Using Java with Other Languages

Notice how the methods toByteArray() and toObject(), the inverses of each other,
convert between an object and an array of bytes using ByteArrayStreams. These pro-
vide the functionality of reading from or writing to a buffer that is in memory,
instead of the usual buffer that has been read from or written to a disk file or socket.

See Also
A more complete and widely used implementation of DBM for Java is available from
SleepyCat Software, the heirs-apparent to the Berkeley DBM software. Their Sleepy-
Cat DBM can be downloaded for free, in source form, under the Berkeley (Univer-
sity of California at Berkeley) software license. Check out http://www.sleepycat.com.

 protected native int dbmstore(byte[] key, byte[] content);

 /** Store using byte arrays */
 public void store(byte[] key, byte[] value) throws IOException {
 checkInUse();
 dbmstore(key, value);
 }

 /** Store using Objects */
 public void store(Object key, Object value) throws IOException {
 checkInUse();
 dbmstore(toByteArray(key), toByteArray(value));
 }

 protected native int delete(Object key);

 public native byte[] firstkey() throws IOException;

 public Object firstkeyObject() throws IOException {
 return toObject(firstkey());
 }

 public native byte[] nextkey(byte[] key) throws IOException;

 public Object nextkey(Object key) throws IOException {
 byte[] ba = nextkey(toByteArray(key));
 if (ba == null)
 return null;
 return toObject(ba);
 }

 public String toString() {
 return "DBM@" + hashCode() + "[" + fileName + "]";
 }
}

Example 26-13. DBM.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

777

Afterword

Writing this book has been a humbling experience. It has taken far longer than I had
predicted, or than I would like to admit. And, of course, it’s not finished yet. Despite
my best efforts and those of the technical reviewers, editors, and many other tal-
ented folks, a book this size is bound to contain errors, omissions, and passages that
are less clear than they might be. Please, let us know by email if you happen across
any of these things. Subsequent editions will incorporate changes sent in by readers
just like you!

It has been said that you don’t really know something until you’ve taught it. I have
found this true of lecturing, and find it equally true of writing.

I tell my students that when Java was very young, it was possible for one person to
study hard and know almost everything about Java. When JDK 1.1 came out, this
was no longer true. Today, anybody who tells you they “know all about Java” should
cause your “bogosity” detector to go off at full volume. And the amount you need to
know keeps growing. How can you keep up? Java books? Java magazines? Java
courses? Conferences? There is no single answer; all of these are useful to some peo-
ple. Sun’s Java software division has several programs that you should be aware of:

• JavaOne, Sun’s annual conference (http://java.sun.com/javaone/)

• The Java Developer Connection, a free web-based service for getting the latest
APIs, news, and views (http://developer.java.sun.com)

• The Java Community Process (http://jcp.org), the home of open Java standardiza-
tion and enhancement

• Java Developer Essentials, a fee-based CD-ROM subscription to all the Java
APIS, tools, and other material (http://www.sun.com/developers/tools/)

• O’Reilly books (http://java.oreilly.com) and conferences (http://conferences.
oreilly.com)—among the very best available!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

778 | Afterword

As you know, the Java API is divided into packages. A package is normally consid-
ered “core” if its package name begins with java, and an optional extension if its
package name begins with javax. But there are already exceptions to that rule, such
as javax.swing.*, which is core.

As you can see, there is no end of Java APIs to learn about. And there are still more
books to be written...and read.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

779

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
() (parentheses), capture groups in regular

expressions, 98
< and > (angle brackets)

<? ... ?>, in XML processing
instructions, 616

> (greater than) operator, 166
< (less than) operator, 166
around HTML tags, 502
around XML tags, 616

* (asterisk), use in regular expressions, 97
@ (at sign)

annotations and, 659
in doc comments, 654
XDoclet reading of tags in source

code, 658
\ (backslash)

continuing lines with, 275
escaping metacharacters in regular

expressions, 92
operating systems, differences in use, 40
root directory, Microsoft platforms, 308
string escapes, using in, 73

: (colon)
after properties file key

names/values, 188
differences in use on operating

systems, 40
- (dash)

command arguments, use in, 43
Unix option delimiter, 40

$ (dollar sign)
end-of-line regex pattern matching, 107
format codes, use in, 254

. (dot)
.* in regular expression pattern

matching, 97
regular expressions, matching any regular

character or the newline, 105
. (dot) commands, formatting control

with, 82
= (equal sign)

== (equals) operator, 166, 225
after property file key names/values, 188

^ in beginning-of-line regex pattern
matching, 91, 107

or !, beginning comment lines in properties
file, 188

% (percent sign), use in format codes, 254
+ (plus sign)

+= (assignment) operator, 240
++ (increment) operator, 239
+? non-greedy regex quantifier, 109
+E option, Jikes compiler, 2
multiplier or quantifier in regular

expressions, 92
string concatenation operator, 56

/ (slash)
//+ and //- in special Java comments, 74
/** (beginning doc comments), 654
/**, in Javadoc comments, 223
command arguments, use in, 43
operating systems, differences in use, 40
Unix root directory, 308

| (vertical bar), pipeline character, 271

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

780 | Index

Numbers
2D graphics, 342

drawing text with, 349–352

A
abstract classes

building management classes, 236
guidelines for using, 235

abstract methods, 238
Plotter class (example), 245

Abstract Windowing Toolkit (see AWT)
AbstractStringBuilder class, 57
accented characters, matching, 105
accept()

FileFilter interface, 398
FilenameFilter interface, 307
multithreaded network server, 714
ServerSocket class, 468, 470, 477

acceptChanges() (RowSet), 597
access type or mode, setting for parallel

port, 322
Accessor class, 574
action handling, 7, 379–381

anonymous inner classes, using, 381–382
inner classes, using for, 380

ActionListener interface, 326, 380
buttons, action handling for, 379
implementing with anonymous inner

class, 381
adapter classes

AppletAdapter (example), 748–751
MacOSAppAdapter class (example), 409

add()
Calendar class, 164, 165
Collections class, 181
Container class, 374

addActionListener(), 326, 381
addChoosableFileFilter()

(JFileChooser), 397
addElement() (Vector), 181
addLayoutComponent()

(LayoutManager), 415
addresses

host, getting all, 445
network interface, 469

addShutdownHook(), 232
addTab() (JTabbedPane), 378
Adobe FrameMaker, MIF (Maker

Interchange Format), transforming
XML document to, 632

after() (Date), 166
Agile Methods, xxv
algorithms, books about, xxiv
alignment

decimal points in numbers, 149
strings, 60–62

alternation in regular expression pattern
matching, 88

animation, 688–692
animator program (Sprite

example), 689–691
annotations, 659
anonymous inner classes, 234

action handling with, 381–382
class names for, 382

Ant program, 16
make utility vs., 18

ANTLR (scanning tool), 261
Apache

Logging Services Project, 485, 489
Tomcat server, 480, 715
web server, parsing log file with regular

expressions, 108
Xalan (XSLT processor), 621
XML Xerces-Java project, 622

Apache Foundation Jakarta Project
Ant software, downloading, 16
Regular Expressions and ORO

packages, 87
APIs, 652

application JAR files, including in, 678
division into packages, 778
importance of using, 222
JDK 1.4 Logging API, 492
packaged, using, 42
printing, 342
Regular Expressions, 94–97
XML

JDOM, 617
SAX and DOM, 616

append() (StringBuilder), 56, 63
appendReplacement(), 99
appendTail(), 99
Apple Macintosh (see Mac OS X; Macintosh)
<applet> tag, 502

JAR file attribute on, 661
AppletContext class

implementing in AppletAdapter
(example), 748–751

showDocument(), 508
AppletMethods class (example), 504

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 781

applets, xxv, 501–530
animator applet (Bounce class), 691
Applet class, 503

FlowLayout, default layout
manager, 376

getImage(), 354
JApplet class vs., 505
lifecycle methods, 503

ButtonDemo class (example), 379
ChatRoom class (example), 462–466
contacting server on applet host, 505–507
converting filename to URL, 519
deploying, 501–503

<applet> tag, using, 502
DropShadow class (example), 347
email, sending with, 531–535

MailtoButton (HTML page), 534
extracting HTML tags from

URL, 515–517
extracting URLs from a file, 517–518
file indexer, making, 519–524
HTML template files, 19

HelloApplet.html (example), 662
java.applet package, 652
link checker, automating, 524–530
loading classes subclassed from

Applet, 745–751
AppletAdapter class

(example), 748–751
AppletViewer class (main

program), 746–748
loading of, 731
playing sound files, 359
reading URL content, 512
running, 17–20

from command line, 347
from JAR file, 661

running CGI script, 511
running JavaScript, 510–511
running with JDK, 661

HTML, converting for Java
Plug-in, 662–666

Java Plug-in, using, 662
showing new web page, 508
text drawn with application font,

problems with, 354
thread security and, 51
URI, URL, or URN, 513
writing, 503–505

AppletStub class, implementing in
AppletAdapter (example), 748–751

AppletViewer tool, 19, 347
writing your own, 745–751

AppletAdapter class
(example), 748–751

AppletViewer class (source
code), 746–748

Application Bundles (Mac OS X), 674
applications, xxv

black box testing, 28
distributed, building with XML and

HTTP, 633
(see also distributed computing)

distributing electronically with Java Web
Start, 675–681

permissions, setting for, 680
JAR file (main), contents of, 678
threaded

animation, 688–692
background thread, saving user’s work

in, 713
network servers, 714–723
rendezvous and timeouts, 694
stopping, 692–694
synchronizing with wait() and

notifyAll(), 705–711
writing, 685–688

application-specific exceptions, writing, 243
Appt class (example), 192
archives

JAR or zip, reading/writing files, 289–291
(see also JAR files)

area of triangle, Heron’s formula for, 124
arguments

command line (see command line)
variable arguments mechanism in

Java, 257
arithmetic, using on chars, 63
arrayCopy() (System), 179
ArrayHunt class (example), 196
ArrayIndexOutOfBoundsException, 178
ArrayList class, 180

contains(), 196
converting to array of type Object, 198
indexOf(), 196
methods, lacking synchronization, 696
multidimensional, 202–204
performance time, array vs., 206
synchronizing access to, 697
Vector class vs., 181

ArrayListGenericDemo program
(example), 209

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

782 | Index

arrays, xix, 176
accessing all elements with foreach

loop, 210
byte, converting to/from objects, 776
changing array reference declaration for

main method argument, 86
of characters, Java strings vs., 50, 51
converting collections to, 198
data structuring with, 177

resizing arrays, 178
types in, 177

indexes, incrementing, 696
multidimensional, 202–204
of objects, cloning, 231
performance, collections vs., 206
of strings (StringTokenizer example), 54
two-dimensional, multiplying, 141

Arrays class, 177
binarySearch(), 196
sort(), 190, 196

ArrayVec class (example), 207
ASCII characters, 63

SMTP requests, using for, 547
asterisk (see * under Symbols)
atoi/atof functions (C language), Java

equivalent, 118
attachments, email, 543
attributes

file, changing, 305
HTML, 501
HTML applet template files, 19
manifest file, JAR, 660
storage, class fields and methods, 738
XML, quoting, 616

audio and video media, playing, 342
AudioClip class, 342

play(), 359
autoboxing, 208, 214
AutoSave class (example), 713
awakening thread waiting on object, 706
AWT (Abstract Windowing Toolkit), 343,

372
Applet class, 503
exception handling, 390
FileDialog, internationalization and, 440
Frame component, 373
layout manager classes, 376
listener relationships, 379
paint model for drawing, 349
PlotterAWT class (example), 366–368
windows, closing, 386

B
background thread, driving animation

with, 689–691
backslash (\) (see \ under Symbols)
batch files, 13
Bean Scripting Framework (see BSF)
BeanInfo class, 668
before() (Date), 166
beginning-of-line regex pattern

matching, 91, 107
Bell Laboratories, sam text editor, 107
bell-curve of Gaussian values, 139
Berkeley Database (DB), 773
Berkeley DBM software, 582, 776
bidirectional I/O, 324
big numbers, support in Java, 119
BigDecimal class, 145–147

stack-based calculator using, 146
use of, 147

BigInteger class, 145–147
binary data

converting string to, 119
exchanging between C and Java, 282–284
reading and writing with network

client, 449–451
reading or writing, 280
strings, converting to integers, 130
transmitting via server-side sockets, 472

binary files, compare program (cmp), 269
binarySearch()

Arrays class, 196
Collections class, 196, 198

bind() (Naming), 639
bitmaps, represented by Image objects, 354
BitSet class, 131, 177
bitsets, 113
bit-shifting operators (Java), reading and

reassembling unsigned bytes, 450
black box testing of applications, 28
BlockingQueue interface, 711
Book class, 364
BookRank class (example), 111
booleans, storing in collections, 180
BorderLayout layout manager, 376, 377

NetBeans IDE, 7
Borland JBuilder IDE, 8
Bounce class (animator applet), 691
bounds checking, arrays, 178
boxing (see autoboxing)
BoxLayout layout manager, 376
break characters (string tokenizing), 54

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 783

brightness (colors), 399
browsers

applets
AppletStub and AppletContext classes,

implementing, 748
constructing, 503
displaying in, 19
removing, 504

Java Plug-in, using with, 662
Java-enabled, 19
resource bundle for (example), 428
sending email, 531–535
TextBrowser program (example), 513

BSD systems
Jikes compiler, 2
OpenBSD, 443

BSF (Bean Scripting Framework), 759–763
components of, 759
Jython, using with, 760–763
LabelText bean, running with Python

script (BSFAction class), 761, 764
languages supported by, 759

BufferedInputStream(), 250, 292
BufferedOutputStream class, 266
BufferedReader class, 52, 250, 251, 266, 292

database access, 577
readLine(), 107
socket input stream, creating from, 447

buffering
NIO Buffer used as a CharSequence, 103
streams (DataInput and

DataOutput), 449
UDP datagram packets, 453

bugs, reporting, xxvi
build tools, make vs. Ant, 18
building management system

(example), 235–237
classes for, 236

BusCard program (example), 436–439
ButtonDemo class (example), 379
ButtonDemo2a class (example), 380
ButtonDemo2c class (example), 381, 382
buttons

internationalization, convenience routines
for creating, 422, 425

making them work, 379–381
menu items as, 424

BuzzInServlet class (quiz show buzzer
example), 697–701

byte arrays, converting to/from objects, 776
byte-ordering macros (network), 282

bytes
reading, 250
storing ints as, 121
translating to/from characters, 273

C
C/C++

arrays of chars, Java strings vs., 51
binary data, exchanging between C and

Java, 282–284
program using network byte order

macros, 283
C code, calling from Java, 580
calling Java from, 773
client sockets (C), programming

(example), 441
compilers for different operating

systems, 768
CSV program in C++, 76, 78
destructors (C++), Java finalizers vs., 232
enumerations, 215
functions, calling from Java, 752,

767–773
compiling C code into loadable

object, 771
native C implementation in Java, 770

getopt (C-library function), 43
inline keyword, 23
Java code written in, open source JDK, 32
Java compilers written in, 2
printf/scanf functions, 128
servers handling multiple clients, 475
strings, C language, 52
unsigned int (C), 450

CachedRowSet interface, 590, 596–598
caching

JAR files for applications (JWS), 676
requests, HTTP, 717

cal command (Unix), 169
calculator (stack-based), 258

using BigDecimal values, 146
Calendar class, 154

adding to date, 164
calendar for given month of given year or

current month and year, 168
converting between date and time

fields, 21
converting YMDHMS to, 160
current date, finding, 155

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

784 | Index

Calendar class (continued)
day of week/month/year or week number

(for a date), 167
getTime(), 156

calendar classes (IBM), 159
CalendarPage class (example), 169–171
Callable interface, 684
CallableStatement class, 594
callbacks, providing via interfaces, 234–237
callbacks, RMI, 641–645

stock ticker service, 642–645
Client interface (example), 642
ClientProgram class (example), 644
TickerServer interface (example), 642
TickerServerImpl class

(example), 643–644
calling by reference (Java methods), 229
canonical equality (regular expression pattern

matching), 105
canonical index file (index.html), 15
canonical name, files, 300
canRead(), 305
capture groups (in regular expressions), 98
CardLayout layout manager, 376
carriage return, in strings transmitted by

server-side sockets, 472
case

changing in strings, 50
regular expression matches, controlling

in, 104
string comparisons, ignoring in, 191
string conversions or comparisons, 70

case-insensitive matching, 105
case-sensitivity

environment variables names, 37
in XML, 616

casting
avoiding by using generics, 211–214

MyStack class (example), 212
MyStackDemo program

(example), 213
ClassCastExceptions, preventing with

serialVersionUID, 287
Enumeration results to String, 53
floating value to integer value, 127
object references in arrays, 177
references obtained from Collection or

Iterator to specific types, 210
catching exceptions, 31
CC and BCC email recipients, setting lists

for, 539

CD-ROM drives, 308
Celsius temperatures, converting to

Fahrenheit, 147–151
centering

main window on screen, 403–404
strings, 60–62
text in components, 345

certificates, 483
getting, 681
self-signed, warnings about, 680

CGI scripts
form, email composer, 535
running with applets, 511

char data type, 63
storing int as, 121

Character class, 63
Unicode character properties,

determining, 90
character encodings, 273

supported, listing in JDK
documentation, 273

character sets, 248
reading/writing different, 273

CharacterIterator interface, substring(), 100
characters

arrays of, Java strings vs., 50
assembling into words (tokens), 258
converting to/from Unicode, 63, 248
escaping for PostScript, 293
nonprintable, entering into strings, 73
special, escaping in regular expressions

used in Java, 91
in strings

changing within, 50
processing one at a time, 59
reversing one at a time, 64

Unicode, listing with supporting
documentation, 64

charAt() (String), 50, 59, 63, 91
CharBuffer class, 96
CharSequence interface, 96
chat clients, 461–466

ChatRoom class (example), 462–466
chat server (Java), 495–499
checked exceptions, 243
checksums, confirming file contents with, 59
ChoiceFormat class, formatting plurals, 136
Class class, 725–751

forName(), 597, 732
getting fields and methods and printing

results, 738

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 785

class descriptors, getting, 726
class files, setting CLASSPATH for, 11–13
.class keyword, 726
class loaders

getResource() (ClassLoader), using
instead of opening files, 679

writing your own, 733
(see also classes, loading dynamically)

ClassCastException, 213
preventing with serialVersionUID, 287

classes, 652
anonymous inner classes, GUI action

handling, 381–382
archiving with jar, 660
association of particular type at class

instantiation, 212
from this book, downloading and

installing, 14
building management system

(example), 236
checking for presence/absence of, 39
collection-based, 204
constructing from scratch, 733
cross-reference for Java API

CrossRefXML (example), 744
printing, 739–744

documenting with Javadoc, 653–656
implementing Comparable interface, 192
inner, 233, 373

(see also anonymous inner classes;
inner classes)

input/output, 249
intrinsic (java.lang package), 652
introspection, 583
loading dynamically, 725, 731–733

Applet subclasses, 745–751
Cooklet class (example), 731
DemoCooklet class (example), 732
user-defined subclass (Cookies), 732

methods and fields, finding and
using, 727–730

in packages named java. or javax., 43
placing into packages, 733
preparing a class as a JavaBean, 667–670

LabelText widget (example), 668–670
primitive data types (TYPE), 730
printing class information, 737–739

MyJavaP class (example), 738
reflection (see reflection)
StringBuilder, 56
unit testing, 28–30

JUnit tool, 29–30

ClassKeyword class (example), 726
CLASSPATH, 2, 653

Ant, setting with, 18
class configuration, ensuring correct, 583
effective use of, 11–13
Korn shell script, managing with, 13
source code JAR files, setting for, 15

client stub classes, RMI, 641
ClientProgram class (example), RMI callback

service, 644
clients, xxv, 441–466

C language socket setup, 441
chat, 461–466
connections, 443
contacting server using TCP/IP, 443
email, 536–538

GUI-based, 559–568
SMTP (Sender example), 536–538

NetLogSimple class (example), 485
network addresses, finding and

reporting, 444
network errors, handling, 446
reading and writing binary data, 449–451
reading and writing serialized object

data, 451
reading and writing textual data, 447–449
RMI

ClientProgram class (example), 644
stock ticker service, 642
writing, 637

Telnet, 459–461
TFTP UDP, 455–459

RemCat class (example), 455–459
UDP, 453–455

steps in creating, 454
web applet, 501–530

contacting server on applet
host, 505–507

converting filename to URL, 519
deploying an applet, 501–503
extracting HTML tags from

URL, 515–517
extracting URLs from a file, 517–518
file indexer, making, 519–524
link checker, automating, 524–530
reading content of a URL, 512
running CGI script, 511
running JavaScript, 510–511
showing new web page, 508
URI, URL, or URN, 513
writing an applet, 503–505

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

786 | Index

client/server communication, defining for
RMI, 635–636

client-side applications, DeployDirector
installer, 673

clock time, CPU time vs., 736
clone()

Object class, 229–231
Singleton pattern and, 243

Cloneable interface, 230
CloneNotSupportedException, 230
closing windows, 383–387
cmp (binary compare program), 269
code

JDK release-dependent, 39
operating system-dependent, 40–42
platform-independent, writing, 274
synchronized, 695

BuzzInServlet class
(example), 697–699

code examples
from this book, xxv

downloading and installing, 14, 32
Debug program, 33
finding more, 32

code reusability, 222
documenting classes with

Javadoc, 653–656
installing main GUI component into

JFrame, 387
LayoutManager interface, promoting, 415

coding cleanups, xxiv
Cogent Logic, JNDI service provider, 190
Collection interface

downcasting references obtained from to
specific type, 210

size(), 198
toArray(), 198

collections, 176, 204
access methods, 180
accessing all elements with foreach

loop, 210
bitsets, 113
classes based on, 204
cloning and, 231
Collections API, data structuring

with, 222
converting to arrays, 198
finding object in, 196–198
generic, using, 208, 209, 212
java.util package, 652
multidimensional structures, 203
performance, arrays vs., 206

sets, using with, 195
sorting, 190–193

Collections class
binarySearch(), 196, 198
Singleton methods, 243
sort(), 190

Collections Framework, 176, 204
avoiding casting by using generics, 212
optional methods, 200
(see also collections)

color-highlighting editors, 3
NetBeans IDE, creating GUI action

handler, 7
colors

choosing, 399–401
graphics, 343

column index, result sets, 588
com.apple.eawt package, 409
combining graphics drawings for special

effects, 349
com.darwinsys packages, 14
command line

alternatives to javac compiler, 2
arguments

conditional debugging, use in, 22
grep command, Unix, 112
jar tool, 660
parsing, 43–49

enableassertions (-ea) switch, 25
jdb debugger tool, 26–28
JDK, compiling and running Java

programs from, 2
options

disabling JIT temporarily, 31
jar, extracting files (x option), 671
javadoc, 656

replacing tools with color-highlighting
editor, 3

systems, environment variables in, 35
Terminal application, Mac OS X, 3

commas in numbers, 128
comma-separated list, converting list to, 58
comma-separated values (CSV), parsing data

that contains, 75–80
regular expressions, using, 78–80

comments
doc comments, 654

deprecating code, 22
ignoring in pattern matching, 105
Javadoc, 223
marking special (GetMark.java

program), 74

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 787

Properties files, 188
XML, syntax for, 16

Common Gateway Interface (see CGI scripts)
Common Object Request Broker

Architecture (CORBA), 635
CommPort class, 314
CommPortDial class (example), 330
CommPortIdentifier class, 314, 315

open(), 318
parallel port, opening, 322

CommPortModem class (example), 328
CommPortOpen class (example), 319
CommPortOwnershipListener class, 326
CommPortThreaded class (example), 335
Communications API, 314

downloading from Sun or system
vendor, 314

resources for further reading, 315
Comparable interface, 192

Comparator interface vs., 193
Comparator interface, 191

Comparable interface vs., 193
CompareDates class (example), 166
CompareFileDates class (example), 167
compareTo()

Comparable interface, 192
String class, 194

comparing
American-style names (Soundex

program), 82–84
class objects, 225–227
dates, 165–167
files, binary and text, 269
floating-point numbers for equality, 125
long data types (dates), 166
strings, 71

ignoring case, 191
compile() (Pattern), 96

CANON_EQ flag, 105
CASE_INSENSITIVE flag, 104
flags, 105
MULTILINE flag, 107
UNIX_LINES flag, 107

compiled programs, invoking, 752–755
compilers

annotations, extra information from, 659
assignment of class names to anonymous

inner classes, 382
.class keyword, getting class instance

with, 726

javac compiler (JDK), 2
new constructs in JDK 1.5, backward

compatibility with JDK 1.4
code, 208

rmic, 640
compiling Java programs, 1–11

automating with Ant, 16
C/C++, compilers based on, 2
color-highlighting editor, using, 3
conditional compilation, 22

inline code generation, 23
deprecation warnings, 20–22
editors for, 3
flow analysis in, 22
IDE, using, 4–11
Java code calling native function, 769
JDK, using, 1–3
source code examples from this book, 15

compiling native code (C) into loadable
object, 771

complex numbers, 143
Complex class (example), 144

Component class, 342
components

adding to containers, 374
adding to GUI, drawing vs., 349
creating and displaying, 373–375
drawing centered text in, 345
drawing in, 343
drawing text in, 344
formatting text in JComponents with

HTML, 402
graphical, testing, 344
GUI, 372

size of, 416
image size, getting, 356
labels in GUI component

architectures, 346
layout managers, creating

custom, 414–420
size of, 376
tab layout, 378
TiledImageComponent class

(example), 356
window layout, 375–377

composite characters, matching, 105
compressed files (gzip), reading/writing, 292
compression/decompression, classes

providing access to, 293
CompTest class (example), 344

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

788 | Index

computeArea() (Shape), 238
concatenating strings, 56

converting numbers to strings, 118
example showing three methods of, 57
println() method, 253
timing, println() vs.), 735

concurrency, threads
java.util.concurrent package, 684
locks, 702–705
Queue and BlockingQueue

interfaces, 711–713
simplifying servers with, 722–724

conditional compilation, 22
conditional statements, formatting plurals

with, 136
connect(), 443, 585
ConnectException, 446
ConnectFriendly class (example), 446
connecting to JDBC database, 585–587

Connect class (example), 586
connection pools, 587
connections

datagram (UDP), 453
socket, encrypted (JSSE), 466

console, reading from, 248
ConsoleAppender class, 490
constants

conditional debugging, use in, 22
INFINITY, 123

constraints, layout manager, 415
constructors

getting, 727
no argument, calling for class, 732
passing values, 239

container classes
layout managers (see layout managers)
nonparameterized, errors with, 213

containers
adding components to, 374
JFrame component, 373
window layout, 375–377

JTabbedPane, 378
contains(), 196
containsKey(), 196
containsValue(), 196
ContentPane container, 373
continued lines, reading, 275–280
ContLineReader class, 277
control and message strings, getting localized

versions, 422

controllers for movie players, 362
controls (user interface), configuring from

resource bundle, 436–439
convenience routines, writing for

internationalization, 425
converse() (example method), 335, 448
converting

between primitives and object wrappers,
using autoboxing, 214

text to/from Unicode, 248, 273
to/from Primitive to Object and vice

versa, 208
Cookies class (example), 732
Cooklet class (example), 731
copying files, 266–269

FileIO class (example), 266–269
CORBA (Common Object Request Broker

Architecture), 635
core Java API, xxii
country codes, 430
CPAN (Comprehensive Perl Archive

Network), 763
cpio utility, 292
CPUs

running two or more with single operating
system, 683

time, assigning to threads, 688
timing use of, clock time vs., 736

CREATE statement, SQL, 582
createFont() (Font), 352
createImage() (Graphics), 354
createNewFile() (File), 300
createStatement() (Connection), 588
createStatement() (Connection), 583
createTempFile() (File), 304
createXMLReader() (XMLReaderFactory

class), 624
CrossRef class (example), printing Java API

cross-reference, 739–744
CrossRefXML class (example), outputting

class information in XML, 744
cryptography

BigInteger class, creating prime pairs for
public keys, 147

SecureRandom class, using, 140
CSV (comma-separated values), 75–80

CSV class (example), 75
source code, 76

parsing with regular expressions, 78–80
currencies, formatting, 128

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 789

current date
finding, 155
locales, returning for, 156
printing in non-localized form, 156
(see also dates and times)

currentTimeMillis() (System), 736
CygWin or GnuWin32 package (grep for

Win32), 86

D
-D command-line argument

environment variables, getting, 36
system-provided properties, retrieving, 38

-d (dir) option, javac, 13, 653
Data Accessor Object (DAO), 574

implementing with XDoclet for EJB, 658
data loggers, 333
data mining program (regular expression

pattern matching), 110–112
data streams

reading and writing binary data, 449–451
writing from C, 282–284

data structuring, xx, 176–207, 208–221
ArrayList, using, 180
arrays, 176, 177

resizing arrays, 178
automatic boxing, using, 214
collections, 176, 204

arrays vs., 206
converting to arrays, 198
finding object in, 196–198
sorting, 190–193

Collections API, importance of using, 222
enumeration or iterator, writing, 199–201
foreach loops, using, 210
generics, using

avoiding casting with, 211–214
generic collections, 209

iterators, using, 181
linked lists, using, 176, 183–185

LinkedList class, program using, 184
LinkList class (example), 183

mapping with Hashtable and
HashMap, 185

MediaInvoicer program
(example), 219–221

multidimensional, 202–204
ordering data to avoid sorting, 193
sets, using to prevent duplication, 195
Stack class, using, 201

strings, storing in properties and
preferences, 186–190

typesafe enumerations, using, 215–218
data types

in arrays, 177
association of particular type at class

instantiation, 212
binary integer and binary floating-point

value, writing into file, 281
in format codes, 254
Java and JNI, 770
JDBC and SQL, mappings between, 589
numeric, 117–119
primitive

char, 63
conversions between primitive and

object, 208
as method arguments, 730
returned by next*() (Random), 139
TYPE (public constant), using for, 730

println() method for, 253
strings, 51
unchecked raw types, warnings

about, 213
database access, 570–614

DBM files, 579–582
ReadHistNS class (example), 580
UserDBDBM class (example), 581

JDBC
changing data with result sets, 595
changing data with SQL, 598–600
connecting to database, 585–587
metadata, finding, 600–604
prepared statements, 590–594
query and results, 588–590
setup and connection, 582–584
stored procedures, using with, 594

JDO, using, 571–574
remote databases, 571
SQLRunner program, 604–614
synchronizing methods, 575
text-file databases, 574–579

UserDB class (example), 575–577
UserDBText class (example), 577–579

Xbase format, 571
database drivers (see drivers, database)
DatabaseMetaData class, 601

name, version number, and transaction
isolation, printing out, 602

databases, exporting CSV data, 75
datagram connection (UDP), 453–455

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

790 | Index

DatagramPacket class, 453
DatagramSocket class, 453
DataInput interface, 281
DataInputStream class, 280, 449–451

readInt(), 450
DataOutput interface, 281
DataOutputStream class, 280, 449–451
DataThread class (example), 335
Date class

deprecation of methods and
constructors, 21

getTime(), 155
DateDemo class (example), 157
DateFormat class, 21, 61, 156–159, 256

parse(), 166
strings, parsing into date format, 161

DateParse2 class (example), 162
dates and times, 154–175

adding to/subtracting from a date, 163
binary data, representing with, 449, 472
Calendar class, 154
calendar for given month of given year or

current month and year, 168–171
comparing dates, 165–167
current date

finding, 155
printing in non-localized form, 156

currentTimeMillis() (System), 736
Date class, 21, 154
DateClient class (example), 637
DateFormat class, 155
dates in non-Western epoch, 159
DateServer class (example), 638
day of week/month/year or week

number, 167
Daytime server, getting from, 447
DaytimeObjectServer class

(example), 474
difference between two dates,

computing, 165
epoch, 154
epoch seconds, converting to

DMYHMS, 162
formatting codes for, 255
formatting for locales

SimpleDateFormat class, 157
UseLocales class (example), 431
(see also internationalization;

localization)
GregorianCalendar class, 154
java.util package, 652

measuring elapsed time, 171–173
parsing strings into dates, 161
printing in localized format, 156–159

SimpleDateFormat format codes, 158
reminder service, 173–175
remote machine, getting on, 636
RemoteDateImpl, 639
serialized object data, transferring as, 451
sleeping and, 173
UDP connection, reading/writing on, 453
YMDHMS, converting to Calendar or

Date, 160
DaytimeBinary class (example), 450
DaytimeObject class (example), 452
DaytimeObjectServer class (example), 474
DaytimeServer class (example), 472
DaytimeText class (example), 447
DaytimeUDP class (example), 453
DB databases, 579
DBM databases, 571

accessing, 579–582
ReadHistNS class (example), 580
UserDBDBM class (example), 581

DBM class, 580
SleepyCat Software, download site, 776
using original Unix DBM routines from

Java, 773–776
dbURL, 585
deadlocks, 331

caused by awakening wrong thread, 706
ProdCons1 program (example), 708
thread socket, 693

debug() (Logger), 489
Debug class (example), 33

character/tab conversion printouts, 65
conditional debugging with, 24

debugging
applets in browsers, 19
jdb command-line-based

debugger, 26–28
network-based logger, using, 484–489

JDK 1.4, 491
log4j, 489–491

print statements, conditional compilation
and, 22

printouts for, 24
textual socket servers (with Telnet), 459
threaded applications, thread names

and, 688
unit testing to avoid debugger use, 28–30

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 791

decimal numbers
BigDecimal class, 145–147
converting integers to, 131
double as default type for, 121

DecimalFormat class
formatting converted temperatures, 148
pattern characters, 129
printing number with two decimal

places, 130
DefaultMutableNode class, 554
defineClass() (ClassLoader), 734
Deflater class, 293
delegation, 223

AppletContext and AppletStub
objects, 504

delegation event model, 373
DELETE statement, SQL, 582
delete()

File class, 302
StringBuilder class, 58

Delete2 class (example), 302
deleteCharAt() (StringBuilder), 58
deleteOnExit() (File), 304
delta t (time difference), formatting, 173
denial-of-service attacks, network logging

and, 489
DeployDirector (software installer), 673
deploying

applet JAR file on web server, 661
applets, 501–503
client-side applications, 673
RMI across network, 641

deprecation warnings, 20–22
Date class, event handling, and Thread

class methods, 22
@deprecated tag, 22

design patterns, xxiv
Data Accessor Object (DAO), 574
delegation, 223, 504
Interpreter, 93
Singleton

enforcing, 242–243
used with Data Access Object, 575

from standard API, 223
Typesafe Enumeration, 208

desktop applications, xxv
destroy()

Applet class, 503
Process class, 758

Detab class (example), with sample
program, 68

device registers, setting, 315
dialing telephone numbers with

modems, 330
dialogs, 387–389

custom, JDialog class, 389
FontChooser (example), 410–414
internationalizing, 427, 440
JColorChooser, 399–401
JFileChooser, 396–399
prebuilt, JOptionPane class, 388

diff comparison program (Unix), 269, 459
digital certificates

getting, 681
self-signed, warnings about, 680

digital signatures, JAR files, 680, 681–682
digits, matching in regular expressions, 92
dir command (DOS), 307
directories

deleting, 302
last modified dates, comparing, 167
listing filesystem entries in, 306
making new, 309
root, getting for Windows, 308
(see also files)

discontinuous ranges of numbers
(BitSet), 131

diskless workstations, booting, 443
dispose() (Window), 387
distributed applications, building with XML

and HTTP, 633
distributed computing

books about, 651
EJB (Enterprise JavaBeans), 635
servlets and JSP, use in, 651
(see also RMI)

dividing by zero, 123
doc comments, 654

deprecating code, 22
Doclet class, 656
Doclet interface, 660
Document interface, 624
Document Type Definitions (see DTDs)
documentation (see Javadoc; javadoc

command)
DocumentHandler interface, 622
doGet() (BuzzInServlet example class), 699
DOM (Document Object Model), 617

parsing XML with, 624–628
major DOM interfaces, 624
XParse class (example), 625
XTW class (example), 626–628

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

792 | Index

DOM (Document Object Model) (continued)
reading XML document and generating

MIF code, 632
XML files, generating with, 630–631

doPost() (BuzzInServlet example class), 700
DOS

batch files, 13
dir command, 307
redirecting or piping standard

streams, 270
doSend() (Mailer example class), 539
Double class

equals(), NaNs and, 127
isNaN(), 124

double data type
casting to a float, 121
converting string to, 119
handling values larger than Double.MAX_

VALUE, 145
maximum and minimum values, 125
random number generation, 138

downloading
applications over the Web with JWS, 676
classes and examples from this book, 15

drawImage() (Graphics), 354
drawing

graphics on the screen, 342
program (example), abstract methods in

subclasses, 238
text in components, 344
(see also graphics; images)

drawLine() (Graphics), 343
drawString() (Graphics), 343, 345
DrawStringDemo2 class (example), 345
driver program (PlotDriver example), 246
DriverManager class

getConnection(), 582, 583, 585
registering driver with, 583
setLogStream(), 587

drivers, database, 571
JDBC, types for, 585
loading for JDBC, 583
loading (LoadDriver example), 584

drop shadow effect, drawing, 347–349
DropShadow class (example), 347

DROP statement, SQL, 582
DTDs (Document Type Definitions), 617

XML documents, verifying structure
with, 628

duplicating stream while writing, 270

dynamic class loading, 725, 731–733
Cooklet class (example), 731
DemoCooklet class (example), 732
Time class (example), use in, 736
user-defined subclass (Cookies), 732

E
e and PI, displaying values, 140
+E option, Jikes compiler, 2
EchoClient class (example), establishing

multiple server socket
connections, 476

EchoClientOneLine class (example), 448
EchoServer class (example), 470
EchoServerThreaded class (example), 476
EchoServerThreaded2 class (example), 478
Eclipse, 7

Export Mac OS Application wizard, 673
externalization mechanism, 430
SWT, use in, 372

editors
background threads, saving user’s work

in, 713
color highlighting, NetBeans IDE, 7
with Java support, 3
for JavaBean properties, 668
sam text editor, 107
text (kwrite program), running with

Java, 753
XML, 616

efficiency, measuring for Java programs, 735
EJB (see Enterprise JavaBeans)
Element interface, 624
elementAt() (Vector), 181
elements

HTML, 501
XML, 616

emacs editor, 4
email, 531–569

addresses, extracting from XML file with
SAX, 622

clients
GUI-based, 559–568
SMTP, 536–538

multipart MIME-encoded messages,
sending, 543–544

reading
JavaMail Store, using, 550–555
MailReaderBean program

(example), 555–559

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 793

sending with applets, 531–535
sending without using JavaMail, 546–550
server program, enabling for, 539–543
settings, providing automatically, 545
SMTP server, connecting from Telnet

client, 459
SPAM, testing for, 392–395

EMBED (embedding keyword in
HTML), 665

<embed> tag, 502
embedding Java in web page, 501
enableassertions (-ea) command-line flag, 25
encoding, character, 273
end(), 97
end of file, 257
endClass(), 744
endElement(), 622
ending index, 53

text, regular expression pattern match, 98
end-of-line characters, 274
end-of-line regex pattern matching, 107
energy-efficient building management system

(example), 235–237
enhancement, 572

XML configuration file for, 573
EnTab class (example) with sample

program, 65–68
Enterprise JavaBeans (EJB), 635

book about, 651
connection pooling, 587
home and remote interfaces, generating

with XDoclet, 658
JavaBeans and, 668

entity beans, 635
EntryLayout class (example), 417–420
EntryLayout (layout manager example), 416
EntryLayoutTest class (example), 416
Enum class, 216

valueOf(), 219
enum keyword, 216
Enumeration interface, 182, 199

hasMoreElements(), 59
implementation by StringTokenizer, 53

enumerations
typesafe, 208, 215–218

adding operations to, 218
EnumList class (example), 218
Media class (example), 216
MediaInvoicer program

(example), 219–221
program using Media class

(example), 217

environment, program interaction
with, 35–49

default Locale object set by Java
runtime, 128

environment variables, 35–37
extensions or packaged APIs, using, 42
JDK-dependent code, writing, 39
operating system-dependent code,

writing, 40–42
parsing command-line arguments, 43–49
Swing components, checking for, 40
system properties, 37
(see also system properties)

environment variables, 35–37
CLASSPATH, effective use of, 11–13
PATH, 12

epoch
converting epoch seconds to

DMYHMS, 162
converting epoch seconds to

YMDHMS, 160
non-Western, representing date in, 159
returning number of seconds since, 164
Western calendars, 154

epsilon, 126
equality, comparing floating-point numbers

for, 125
equality operator (==), 166, 225
equals()

caution in returns, 226
Date class, 166
floating-point comparisons, 126
hash codes and, 228
implementing your own, 225–227

EqualsDemo class (example), 226
unit testing EqualsDemo, 227

natural class ordering and, 192
rules for proper implementation, 226
sets and, 195
String class, 71

equalsIgnoreCase() (String), 71
error() (Logger), 489
error messages

external programs, capturing output, 756
standard error output, 250

errors
line numbers, reporting for, 277
network, handling, 446
with nonparameterized container

classes, 213
reporting for code examples or Java

implementations, xxvi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

794 | Index

escapes
metacharacters in regular expressions, 92
in regular expressions, 89
special characters in regular expressions

translated to Java, 91
string, 73

quoted CSV values, 75
text characters, conversion to

PostScript, 293
EscContLineReader class (example), 275
event handling, deprecation warnings (JDK

1.0), 22
event listener model, 326
event model

delegation, 373
GUIs, JDK 1.0, 372

event-driven reading and writing, 331–335
EventQueue class, 375
example code, finding more, 32
examples from this book

conventions for, xxv
downloading and installing, 14

Exception class, subclassing, 243
Javadoc documentation for, 244

exceptions
catching and logging with log4j, 491
GUI, catching and formatting, 389–391
logging caught exceptions with JDK

1.4, 493
network errors, catching, 446
stack traces, printing with line

numbers, 30
writing your own, 243

checked and unchecked, 243
excerpts (code examples), xxv
exec()

ExecDemoFiles class (example), use
in, 757

Runtime class, 752–755
replacement by ProcessBuilder, 755

ExecAndPrint class (example), running
external program and capturing
output, 756

ExecDemoFiles class (example), creating,
listing, and deleting temporary
files, 757

ExecDemoNS class (example), running
Netscape from Java, 753–756

ExecDemoWait class (example), 758
execute() (RowSet), 597
executeQuery() (Statement), 583

executeUpdate(), 598
Executor interface, 722

classes implmenting, 684
exit()

Runtime class, 35
System class, 35, 232

exiting an application, 383–387
exitValue() (Process), 758
Extensible Markup Language (see XML)
Extensible Style Language (see XSL)
Extensible Stylesheet Language for

Transformations (see XSLT)
extensions, Java, 42

standard and non-standard, non-core
APIs, xxii

externalization, 429
Extreme Programming (XP), xxv

Continuous Refactoring, 16

F
factory methods, NumberFormat class, 128
Fahrenheit temperatures, converting from

Celsius, 147–151
fatal() (Logger), 489
fetch() (example method), debugging, 24
FieldPosition class, 133

aligning decimal points, 149
fields, class, 652

finding and using, 727–730
FindField class (example), 728

getting information about, 738
File class, 297–312

createNewFile(), 300
filename and path separator information

for platforms, 41
informational methods, 298
listRoots(), 308
mkdir() or mkdirs(), 309

file descriptors, 250
file formats

Open Office, 616
SVG graphics file format, 616

file types, decoding, 580
FileDialog class (AWT), 440
FileFilter interface, 397

in two packages, 398
FileInputStream class, 265
FileIO class (example), 111, 266–269

reading file content to string, 269
FilenameFilter interface, 307

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 795

filenames
converting to URLs, 519
operating systems, differences in, 40
separators, 40

FileOutputStream class, 265
FileProperties class, 189
FileReader class, 265
files

attributes, changing, 305
automatically saving with background

thread, 713
choosing, JFileChooser dialog, 396–399
compressed (gzip), reading/writing, 292
confirming contents with checksum, 59
copying, 266–269

FileIO class (example), 266–269
creating new, 300
deleting, 302
extracting from JAR files, 671
extracting URLs from, 517–518
finding, 310–312
getting information about, 297–300
indexer, creating, 520–524
input/output operations on (see

input/output)
last modification time, 167
lines containing pattern match,

printing, 103
listing and extracting from archive, 290
listing filesystem entries in a

directory, 306
opening by name, 265
reading content into string, 269
reading or writing to particular location

in, 281
renaming, 301
temporary, creating, listing, and deleting

(ExecDemoFiles example), 757
transient, creating, 303

FileStatus class (example), 298–300
filesystem design, operating systems, 247
FileWriter class, 265
filtering files, 397
final boolean variables, 23
final classes (String class), 51
final methods, 23
finalize(), 231
find() (Matcher), 97
find command (Unix), 310
FindFilter class (example), 311
finding files, 310–312

first(), 194
firstkey(), 580
flat and Gaussian distributions, 139
flat file databases, 571
flats in key signatures (Western music),

listing in order, 65
floating-point numbers, 118

binary, writing into file, 281
checking numbers for, 120
comparing for equality, 125
ensuring accuracy of, 123–125

dividing by zero and NaN, 123
larger than Double.MAX_VALUE,

handling, 145
multiplying number by fraction without

using, 122
flow analysis in Java compilers, 22
FlowLayout layout manager, 376
flush(), 472
folders, email, 551

nodes in JTree component, 554
Font class

createFont(), 352
manually selecting a font, 410
TRUETYPE_FONT field, 352

fonts
application, drawing text with, 352–354
FontChooser dialog (example), 410–414
graphics, setting/getting, 343

for loops
operating on contiguous set of

integers, 131
processing string characters one at a

time, 59
foreach loops, 208, 210
Format class

Roman numerals, working with, 133
StringAlign class (example), 61

format codes
for dates and times, 255
for Formatter class, 254

format() (PrintStream), 253
formatted text, drawing in GUI

program, 346
Formatter class, 247, 253–257

format codes, 254
for logger Handlers, 492
program using (FormatterDemo), 255

formatting
classes providing, overloaded

getInstance() method, 430

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

796 | Index

formatting (continued)
DateFormat class, 155

printing localized date or
time, 156–159

dates and times
date strings, 21
SimpleDateFormat class, 157

messages (internationalized), 432
numbers, 128–130
object, printing with toString(), 224
plurals, 136
temperatures converted from Celsius to

Fahrenheit, 148
text

dot command formatters, 82
Fmt program (example), 80–82

time difference, 173
forName() (Class), 39, 582, 597, 732
Forte IDE (see NetBeans IDE)
forward/backward buttons for players, 362
FOStore class, 573
fractions, multiplying integer by a fraction

(without using floating point), 122
Frame component (AWT), 373

terminating a program, 383
free software

Java, web sites for distribution, 32
Jikes compiler, 2
licensing, understanding, 33

functions
native code (C/C++), calling from

Java, 752, 767–773
printf/scanf (C language), 128
recursive, 152
trigonometric, calculating, 140
(see also methods)

Future class, 684

G
garbage collector (GC), 232
Gaussian distribution, 139
gc() (System), 232
generics, 208

avoiding casting by using, 211–214
MyStack class (example), 212
MyStackDemo program

(example), 213
MediaInvoicer program

(example), 219–221
ProcessBuilder class, use with, 755
using generic collections, 209

ArrayListGenericDemo program
(example), 209

GET method, HTML, 699
get()

Calendar class, 167, 168
Collections class, 181
Map interface, 210

getAllByName() (InetAddress), 445
getAppletContext(), 504
getAvailableLocales() (Locale), 423
getBeginIndex() (FieldPosition), 134
getBundle() (ResourceBundle), 422, 428
getByName() (InetAddress), 444, 470
getClass()

Object class, 726
testing subclass fields, 227

getCodeBase(), 504
Applet class, 506

getColor() (Graphics), 343
getComponents(), 416
getConnection() (DriverManager), 582, 583,

585
getConstructors(), 727
getContent() (URL), 512
getContentPane() (JFrame), 374
getDefaultInstance() (Session), 551
getDescription() (FileFilter), 398
getDevNull(), 172
getDocumentBase(), 504
getEndIndex() (FieldPosition), 134
getenv() (System), 36
getFields() (Class), 727, 738
getFilePointer(), 281
getFont() (Graphics), 343
getFrom(), 554
getHeight(), 356
getHost(), 506
getHostAddress() (InetAddress), 445
gethostbyname() system call, 443
getHostName() (InetAddress), 445
getImage(), 354, 357, 504

Applet class, 354
GetImage class (example), 354
getImageLoadStatus() (ImageIcon), 358
getInetAddress() (Socket), 445
getInputStream()

CommPort class, 314
Process class, 756
SerialPort class, 319
server-side sockets, 470
Socket class, 447
ZipEntry class, 289

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 797

getInstance()
Calendar class, 155, 156
DateFormat class, 156
Locale class, 430
NumberFormat class, 128
Singleton pattern and, 242

getLastModified(), 305
getLineNumber() (LineNumberReader), 277
getLocalHost() (InetAddress), 445
getLogger() (Logger), 489
GetMark.java program (example), 74
getMethod(), 729
getMethods(), 727

Class class, 738
getName() (ZipEntry), 289
GetOpt class (example), 43–49

program using, 44–46
source code, 46–49

getopt function (C library), 43
getOutputStream()

CommPort class, 314
SerialPort class, 319
server-side sockets, 470
Socket class, 447

getParameter(), 504
getPortIdentifiers()

(CommPortIdentifier), 314, 315
getPreferredSize(), 376
getPriority() (Thread), 688
getProperties() (System), 37, 551
getProperty() (System), 24, 37, 39
getResource()

Class class, 519
class loaders, 679

getResourceAsStream(), 680
getResultSetMetaData() (ResultSet), 589
getScreenSize() (Toolkit), 403
get/set accessory methods, JavaBean public

properties, 668
getSize(), 356
getSubject(), 554
getTime()

Calendar class, 155, 156
Date class, 155, 164, 165

getTimeMillis() (System), 171
GetURLs class (example), 517–518
getWarnings() (Connection), 587
getWidth(), 356
GfxDemoCanvas (Java 2), printing, 363
GlassPane container, 373
“glue” files, 769

GNU, gzip/gunzip utilities, 292
graphics, 342–358

components, testing, 344
drawing drop shadow effect, 347–349
Grapher class (example), 368–371
images, drawing, 354–358
painting with a Graphics object, 342
PlotterAWT class (example), 366–368
printing in Java, 363–365
SVG graphics file format, 616
text

drawing in components, 344
drawing with 2D, 349–352
drawing with an application

font, 352–354
video file, displaying within Java

program, 360–362
Graphics class, 342

drawImage(), 354
drawing primitives, 343
drawString(), 345

Graphics2D class, 342, 350
setPaint(), 350

greedy multipliers, regular expression, 88, 90
GregorianCalendar class, 154

converting YMDHMS to, 160
toString(), 156

grep program, 85
Grep2 class (example), 113–116
GrepNIO program (example), 102
line-at-a-time matching, 107
Unix, command-line options, 112
writing full program, 112–116
writing simple grep-like program, 103

GridBagLayout layout manager, 376
GridLayout layout manager, 376
group(), 98, 100
groupCount(), 97
grouping, in regular expressions, 88
GUI Builders, class requirements for use as

JavaBean, 668
GUIs (graphical user interfaces), 372–420

action handling, 379–381
anonymous inner classes,

using, 381–382
adding components, drawing vs., 349
catching and formatting

exceptions, 389–391
color, choosing, 399–401
components, displaying, 373–375

thread safety, 375

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

798 | Index

GUIs (graphical user interfaces) (continued)
dialogs, 387–389
email client based on, 559–568

MailComposeBean, 562–567
MailComposeFrame class

(example), 567
event model, Java versions, 372
events and event listeners, 326
FontChooser dialog (example), 410–414
formatting JComponents with

HTML, 402
Interface Builder, Mac OS X, 8
internationalization

configuring from resource
bundle, 436–439

menu (example), 188
java.awt package, 652
JFileChooser dialog, 396–399
JILKIT, for JILT, 429
labels, 346
layout managers, creating

custom, 414–420
Mac OS X, checking for, 42
main window, centering on

screen, 403–404
NetBeans IDE, GUI builder, 7
program output, getting into a

window, 391–395
Swing

enhancing for Mac OS X, 408
JFrame component, 373
JTree component, use in mail

reader, 554
look and feel, changing for

program, 404–408
(see also Swing GUI)

Swing and Cocoa, Mac OS X, 3
tab layout, 378
terminating a program, 383–387
unit testing classes, 30
window layout, designing, 375–377

gzip/gunzip utilities, GNU, 292
GZipInputStream class, 292
GZipOutputStream class, 292

H
.h file, creating with javah, 769
-h (help) command-line argument, checking

for, 44
Handler class (example), 475, 492, 717–722
hardware details for I/O ports on

platforms, 315

hashCode(), 224
overriding and implementing your

own, 228
HashMap class, 185

containsKey(), containsValue(), 196
converting to TreeMap, 195
equals() and hashCode(), 226

HashSet class, contains(), 196
Hashtable class, 181, 185

contains(), 196
containsKey(), containsValue(), 196
converting to TreeMap, 195
equals() and hashCode(), 226

hasMoreElements() (Enumeration), 59
hasMoreTokens() (StringTokenizer), 53
hasNext() (Iterator), 59, 75, 199
headMap(), 194
headSet(), 194
HelloApplet class (example), 745
HelloApplet program, HTML page for, 662
HelloWorld class (example)

C native implementation of, 770
compiling into Unix makefile, 771
JNI (Java Native Interface), using, 769

HelloWorld program, running from JAR
file, 666

HELO command, 547
help files, internationalization of, 440
-help option, javadoc, 656
Heron’s formula for area of triangle, 124
hexadecimal, converting integers

to/from, 131
hostnames (socket connections), 443
hosts

addresses, getting all for, 445
Internet address of, 444
localhost alias, 448

HotSpot Just-In-Time translator, preserving
line numbers in tracebacks, 31

HSB (hue, saturation, or brightness) mode,
for colors, 399

htm filename suffix (instead of html), 347,
656

HTML
applets, (HelloApplet example), 662
applets, template file for, 19
BuzzInServlet (example), linking to, 699
converting for Java Plug-in, 662–666
embedding Java applet in page, 501
extracting all tags from a URL, 515–517
formatting JComponents with, 402
invoking applets with HTML pages, 512

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 799

MailtoButton.htm (example), 534
transforming XML to, 619
XML vs., 615

.html filename extension (Javadoc), 656
htons (host to network short) byte order

macro, 283
HTTP

multithreaded network server (Handler
example), 717

requests, Handler class
(example), 717–722

socket-based server for, 480–482
XML distributed applications, using

with, 633
Httpd class (example), 715–717
HttpdConcurrent class (example), 722
hue, 399
hypertext links, automated

checker, 524–530

I
I18N class (example), 425
I18N (see internationalization)
IBM

calendar classes, 159
Jikes compiler, 2
SWT (Standard Windowing Toolkit), 372
WebSphere Studio Application

Developer, 8
ICU4J (International Components for

Unicode for Java), 159
IDEs (integrated development

environments), 1
applet template files (HTML), writing, 19
compiling, running, and testing

with, 4–11
Eclipse, 7

Export Mac OS Application
wizard, 673

externalization mechanisms, 430
GUI construction in, 373
Java-based, 5

Image class, 354
prepareImage(), 357

ImageIcon class, 358
images

drawing, 354–358
GetImage class (example), 354
loading image, ensuring with

MediaTracker, 357

TiledImageComponent class
(example), 356

moving
displaying with animation, 688–692
displaying with video, 360–362

size, finding, 356
IMAP transport mechanism, 551
immutability

of BigInteger and BigDecimal objects, 146
of File objects, 305
of strings, 50

incrementing array index, 696
incrementing integers, 239
IndentContLineReader class (example), 275

source code, 278–280
indenting text documents, 71–73
indexer for files, creating, 520–524
indexes

array, incrementing, 696
beginning and end, getting for

strings, 134
index.html file, 15
starting and ending, for text matching a

pattern, 98
for strings, 53

characters, retrieving by number, 59
indexOf(), 196

String class, 53, 162
Inet6Address class, 445
InetAddress class, 444

getByName(), 470
inetd (Unix), 459
INFINITY constants, 123
Inflater class, 293
info() (Logger), 489
inheritance

toString() (Object), by other classes, 224
XML schemas, 617

init() (Applet), 503
initialization

Hayes-type modem, 330
JDBC drivers, 583
overhead, in Java program timing, 737

inline code generation, 23
Inline::Java module, 764, 765, 767
inner classes, 233, 373

action handlers, using as, 380
anonymous, using for action

handling, 381–382
member of another class, 380

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

800 | Index

inner classes (continued)
providing Runnable interface

implementation, 687
Join class (example), 695

Thread class, extending with (ProdCons2
example), 708

input/output, 247–296
binary data, reading or writing, 280
ClassCastExceptions, preventing with

serialVersionUID, 287
compressed files (gzip),

reading/writing, 292
continued lines, reading, 275–280
converting text to PostScript, 293–296
copying files, 266–269

FileIO class (example), 266–269
discarding output with operating systems’

null device, 42
end-of-line characters, 274
exchanging binary data between C and

Java, 282–284
external program output,

capturing, 755–758
extracting words or operators from input

stream, 147
file content, reading into string, 269
getting streams with Socket methods, 447
hardware details for I/O ports on

platforms, 315
hashing classes and Properties subclass,

output, 189
JAR or zip archives, reading or writing

files, 289–291
Java classes, 249
java.io package, 52, 652
New I/O (NIO) package, 248

CharBuffer class, 96
GrepNIO (example), 102
ReaderIter class, 101

ObjectInputStream and
ObjectOutputStream, 451

opening files by name, 265
parallel ports

preparing and opening, 322–325
resolving conflicts in, 325–328

platform-independent code, writing, 274
printing with Formatter class, 253–257
program output, displaying in

window, 391–395
reading or writing to particular location in

file, 281

reading/writing different character
set, 273

reassigning standard streams, 270
scanning files with

StreamTokenizer, 257–261
calculator (example), 258–261

scanning input with Scanner
class, 262–265

scanning tools, 261
serial port, preparing and opening

for, 318–322
serialized objects, saving and

restoring, 284–287
standard input, reading, 248–252
standard output, writing to, 252
streams

duplicating while writing, 270
getting with Socket class, 447
readers/writers and, 247

Unicode, use in Java, 248
XML document output, 630

InputStreamReader class, 250, 251, 273
character encoding, specifying, 273

INSERT statement, SQL, 582
insert() (StringBuilder), 58
InstallAnywhere software installer, 673
installing software, 673
InstallShield (MS-Windows software

installer), 673
instanceof operator, 210
Instant Database, 586
instantiating classes dynamically, 731–733
int data type

arrays of, multiplying, 143
C program reading long integers as

int, 283
converting between an Integer object, 122
converting to Integer with

autoboxing, 214
hash code values, 228
stacking (example), 201
storing as short, char, or byte, 121
wrapper class for value, 239

Integer class, 130, 239
parseInt(), 219
valueOf(), 215

integers
BigInteger class, 145–147
binary, writing into file, 281
char and, 63
checking numbers for, 120

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 801

converting between binary, octal, decimal,
and hexadecimal, 130

converting between int and Integer
object, 122

converting from int value to an Integer
with autoboxing, 214

converting to binary, octal, and
hexadecimal strings, 131

division by zero, 123
Java data types, 117
operating on series of, 131
random numbers, scaling and rounding

doubles for, 138
reading C-language unsigned int, 450
reading from standard input, 251

integrated development environments (see
IDEs)

interfaces
commonly-used, listing of, 234
comparison, summary of, 193
defining functionality in unrelated

classes, 236
DOM, 624
network, 469

finding, 493
providing callbacks via, 234–237
remote, 636

proxy objects implementing, 637
situations for using, 235

International Components for Unicode for
Java (ICU4J), 159

internationalization, 128, 421–440
button with I18N resources, creating, 422
convenience routines, writing for, 425

I18N class (example), 425
dates and times, 256

Date class, limitations of, 21
java.text and java.util package

classes, 155
(see also dates and times)

dialogs, 427
documentation for, 440
Internationalization Home Page

(Sun), 439
JILT toolkit, 429
JOptionDemo class (example), 427
locales, 128

changing default for Java runtime, 431
default, using at runtime, 422
listing available, 423
nondefault, using, 430

property filenames for different, 422
returning date for, 156
setting, 423

menus, 424
in a GUI-based program

(example), 188
MenuIntl class (example), 434–436

message text in dialogs and help files, 440
messages, formatting, 432
resource bundles, creating for, 428
steps in, 421
strings, comparing, 71
user interface controls, configuring from

resource bundle, 436–439
Internet email protocols, classes for, 536
Internet Explorer

applet working in, using Java Plug-in, 666
(see also browsers)

Internet header files, C byte-order macros
in, 283

Internet Inter-Orb Protocol (IIOP), 635
Internet mail, books about, 569
Interpreter design pattern, 93
interrupt() (Thread), 688
InterruptedIOException, 694
interrupting threads, 694

Java statement boundaries and, 696
introspection, 583, 725–751

class methods and fields, finding and
using, 727–730

constructing a class from scratch, 733
cross-referenced listing, Java

API, 739–744
dynamically loading Applet

subclasses, 745–751
getting class descriptor, 726
JUnit testing tool, use with, 29
loading and instantiating a class

dynamically, 731–733
performance timing for

programs, 734–737
printing class information, 737
set/get method pairs, finding with, 668

invoicing program (MediaInvoicer), 219–221
invoke(), 729
invokeLater() (EventQueue), 375
IOException, use with socket

connections, 443
IP addresses, getting, 445
IP (Internet protocol), 453
IPV6, 445

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

802 | Index

isAlive() (Thread), 688
isNaN(), 123

Double class, 124
Float class, 124

ISO language codes (locale names), 423
isProbablyPrime() (BigInteger), 147
istabstop() (Tabs example class), 69
Item class, run(), 175
iterations

foreach, using on arrays and
collections, 211

over key/value pairs (DBM file), 580
over ResultSet, 583
Scanner class, use by, 263

Iterator class
downcasting references obtained from to

specific type, 210
hasNext(), 59
hasNext() and next(), 75

iterators
data structuring with

Iterator interface, 182
data-independent access with, 181
writing, 199–201

J
J2EE (Java 2 Enterprise Edition), xxii
J2ME (Java 2 Micro Edition), xxii
J2SE (Java 2 platform, Standard

Edition), xxii
JabaDex application (example)

JNLP file for, 678
starting with Java Web Start, 676

JabberPoint program, 346
Japhar (Java runtime clone), 3
JApplet class, 503, 505, 662

FlowLayout, default layout manager, 376
jar archiver, 660
JAR files

applications packaged for JWS, 678
CLASSPATH, setting for desired

classes, 11
creating with jar tool, 660
extensions or packaged APIs, using, 42
JavaBeans, creating for, 667
JWS, caching for applications, 676
packaging JavaBeans in, 671
reading or writing, 289–291
running applets from, 661
running programs from, 665
signing, 680, 681–682

test certificate, signing with, 681

jarsigner program, 681
Java

binary data, exchanging with C, 282–284
calling C language code from, 580
calling from native code, 773
Communications API, 313, 314

downloading from Sun’s web site, 314
data types

JDBC methods for getting, 589
numeric, 117–119
(see also data types; primitive data

types)
input/output (see input/output)
object-oriented design, xxiv
regular expression packages, 87
regular expressions, using in, 94–97

steps for regex matching in production
program, 96

Remote Method Invocation (see RMI)
resources for further reading, xxiii
resources for learning, Sun Java software

division, 777
running programs in other

languages, 752–776
capturing output, 755–759
DBM program, 773–776
interfacing Java components with

scripting language, 759–763
kwrite program, 752
native code (C/C++), 767–773
Netscape, 753–756
Perl, 763–767

scripting languages vs., xviii
thread support, built-in, 684
versions of, xxi
XML APIs

JDOM, 617
SAX and DOM, 616

Java 2 Enterprise Edition (see J2EE)
Java 2 Micro Edition (see J2ME)
Java 2 platform, Standard Edition (see J2SE)
Java API, xxii

noncore, xxii
Java API for XML Processing (JAXP), 617
java command, 2

-jar option, 665
Java Data Objects (JDO), 287
Java DataBase Connectivity (see JDBC)
Java Development Environment for Emacs

(JDEE), 4
Java Development Kit (see JDK)
Java Extensions Mechanism directory, 43
Java Foundation Classes, 372

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 803

Java Grande Forum (web site), 153
Java Help API, 656
Java Internationalization and Localization

Toolkit (JILT), 429
Java Media Framework (JMF), 342

displaying QuickTime or MPEG
movie, 362

displaying video file within Java
program, 360–362

Java Native Interface (see JNI)
Java Net Launch Protocol files (see JNLP

files)
Java New Operating system Development

Idea (JNODE), 3
java. or javax. packages, 43, 652
Java Plug-in

HTML, converting for, 662–666
JApplet-based applets, need for, 505
platform dependency, 662
running applet with modern JDK, 662

Java Runtime Environment (JRE), 662
Java Secure Socket Extension (see JSSE)
Java Virtual Machine (see virtual machines)
Java Web Start (see JWS)
java.applet package, 652
java.awt package, 652
JavaBeans

MailComposeBean class
(example), 562–567

MailReaderBean program
(example), 555–559

packaging in JAR file, 671
preparing a class as a JavaBean, 667–670

components, types of, 667
LabelText widget (example), 668–670
requirements in GUI Builders, 668

javac compiler, 2
annotations, reading, 659
-d (dir) option, 13, 653

JavaCC (scanning tool), 261
Javadoc, 21, 653–656

Doclet interface, extended for reading of
annotations, 660

Properties class, 38
reading and writing, 223

javadoc command
command-line options, 656
keywords, 654

program showing usages of, 654
Java-enabled web browsers (see browsers)
javah tool, creating .h files, 769

JavaHelp API, 440
java.io package, 52, 652

FileFilter interface, 398
java.lang package, 652
java.lang.reflect package, 727–730
JavaMail Extension, 531

email, sending without using, 546–550
mail settings, providing, 545
MIME-typed data, dealing with, 544
Sun mailing list for, 569

java.math package, 119
BigInteger and BigDecimal classes, 145

java.net package, 652
javap utility, 12, 738
JavaScript, invoking from within browser

applet, 510–511
java.sql and javax.sql packages, 570
java.text package

date and time classes, 155
Format classes, 61
formatting, flexibility of, 128

java.util package, 652
date and time classes, 155

java.util.concurrent package, 684, 711
executors, 722

java.util.logging package, 492
java.util.zip package, 292, 740
javaw command, 2
javax* packages, xxii
javax.comm package, 313

Communications API, 314
javax.mail package, 531
javax.mail.internet package, 536
javax.media package, 342
javax.swing.filechooser package

(FileFilter), 398
JAXP (Java API for XML Processing), 617
JBuilder IDE, 8
JButton component, interfacing with

scripting language, 761–763
JColorChooser dialog, 399–401
JColorDemo class (example), 400
JComponent class, 559

formatting with HTML, 402
RMIPanel as example of, 646

jdb debugger, 26–28
JDBC (Java DataBase Connectivity), 570

connecting to database, 585–587
Connect class (example), 586

metadata, finding, 600–604
JDBCMeta class (example), 602–604

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

804 | Index

JDBC (Java DataBase Connectivity)
(continued)

prepared statements, 590–594
query and results, 588–590

UserQuery class (example), 589
result sets, changing data with, 595
setup and connection, 582–584

driver, loading, 583
Level 1 and Level 2, 582
loading drivers, 584
queries, 583

SQL, changing data with, 598–600
stored procedures, using with, 594

JDBC-ODBC bridge, 571
loading, 584

JDEE (Java Development Environment for
Emacs), 4

JDesktopPane component, GUI-based email
client, 567

JDialog class, 389
JDK (Java Development Kit)

annotations (1.5), 659
assertions mechanism (1.4), 25
command-line-based debugger

(jdb), 26–28
compiling and running programs, 1–3
concurrency (1.5), 702–705

Queue and BlockingQueue
interfaces, 711–713

server simplification with, 722–724
core Java API, xxii
event model, GUIs, 372
generics, foreach, and enumerations

(1.5), 208–221
internationalization, online

documentation for, 440
javap utility, 12
network logging (1.4), 491
release-dependent code, writing, 39
running applets with, 661

Java Plug-in, using, 662
source code, downloading, 32
source option for use with 1.4 and 1.5, 25

JDO (Java Data Objects)
easy database access with, 571–574
serialization example, 572

JDOM API, 617
JFileChooser dialog, 396–399
JFileChooserDemo class (example), 397
JFileFilter class (example), 398

JFrame component, 344, 373
BorderLayout, default layout

manager, 377
installing main GUI component into, 387
window closing, setting default

behavior, 383
JFrameDemo class (example), 374
JFrameFlowLayout class (example), 377
Jikes compiler, 2
JILT (Java Internationalization and

Localization Toolkit), 429
JInternalFrame class, 567
JIT (just-in-time) runtime system, 31
JMenuBar component (on Mac OS X), 408
JMF (see Java Media Framework)
JMFPlayer class (example), 360–362
JModem program (online example), 340
JMS (Java Message Service), 500
JNDI (Java Naming and Directory

Interface), 190
JNI (Java Native Interface), 768–773

calling Java from native code, 773
correspondence between Java and JNI

types, 770
HelloWorld (example), using with, 769

JNLP (Java Net Launch Protocol) files
application permissions, setting, 680
JabaDex application (example), 678
Launch link, 681

JNODE (Java New Operating system
Development Idea), 3

join(), 694
Join class (example), 695

JOptionDemo class (example), 388
internationalized version, 427

JOptionPane class, 175, 387–389
prebuilt dialogs, displaying, 388
showDialog(), 389
showInputDialog, 389

JPanel component, 344
FlowLayout, default layout manager, 376

JSObject class, 510
JSP (JavaServer Pages)

distributed computing, use in, 651
JavaBeans, using with, 667

JSSE (Java Secure Socket Extension), 466
securing a web server with, 482

jSyncManager (Palm Computing Platform
device API), 341

JTabbedPane component, 378, 559

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 805

jtest script, 30
JTree component, use in mail reader, 554
JUnit testing tool, 29–30
just-in-time (JIT) runtime system, 31
JVM (Java Virtual Machine) (see virtual

machines)
JWindow component, default layout

manager, 377
JWS (Java Web Start), 675–681

download link for application,
creating, 681

home page (web site), 681
JNLP (Java Net Launch Protocol)

files, 678
setting up application for, basic

steps, 676
Jython, 759–763

using with BSF, 760–763

K
Kaffe, Java implementation, 3
keySet() (Map), 210
key/value pairs

DBM file format, 579
mapping, TreeMap class, 194
string, storing in Properties and

Preferences, 186–190
keywords, javadoc, 654
Korn shell script, managing CLASSPATH

with, 13
kwrite (windowed text editor program),

running with Java, 753

L
L10N (see localization)
labels, GUI components, 346
LabelText bean, running with Python

script, 761
LabelText class (example), 668–670

packaging in JAR file, 671
language codes, 423, 430
languages

creating properties files for, 428
formatting messages in different, 432
user.language system property, 431

large-scale number computing, Java web site
for, 153

last modified dates, comparing for
directories, 167

last(), 194
last-in, first-out (LIFO) stack, 64, 201
lastIndexOf(), 53
lastModified() (File), 167
Launch link, electronically distributed

applications, 681
layout managers, 375–377

BorderLayout, 7
custom, creating, 414–420

EntryLayout class (example), 417–420
GridLayout, use in RMIWatch

program, 646
JTabbedPane class as, 378

layoutContainer() (LayoutManager), 415
LayoutManager interface, 376, 414

methods, listed, 415
LayoutManager2 interface, 376
leading spaces

continuing lines with, 275
trimming from strings, 74

leading zeros, formatting numbers with, 128
Learning Tree, xxx
left-aligned strings, 60–62
length() (String), 59
length of text in pattern matches, 98
Level class (log4j), 489
levels of logging, 489

fatal error messages, 491
lex (file scanning tool), 261
licensing

Apache Software Foundation license, 491
free software, understanding, 33
GNU Public License, 3
Sun Java Community Source License, 32

lifecycle methods
Applet class, 503
Thread, 688

LIFO (last-in, first-out) stack, 64, 201
line mode, reading/writing text in, 274
line numbers, preserving in stack

tracebacks, 31
line termination characters, 274

matching only \n in text strings, 107
LineNumberReader class, 277
line-oriented tools, Unix, 107
lines

beginning with periods (dot
commands), 82

continued, reading, 275–280
drawing, 343

LinkChecker class (example), 525–530

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

806 | Index

linked lists, 176
data structuring with, 183–185

LinkedList class, program using, 184
LinkList class (example), 183

LinkedList class, indexOf(), 196
LinkList class, contains(), 196
links, automated checker, 524–530
Linux, 443
list() (File), 306
list, converting to comma-separated list, 58
List interface

access methods, 180
classes that implement, 205
indexOf(), 196

Listen class (socket-based server
example), 468

listeners
event, registering, 373
PortOwnershipListener, 326

listFiles() (File), 306
listFolder(), 554
ListMethods class (example), 727
listRoots() (File), 308
LNFSwitcher class (example), 405–408
load() (Properties), 38
loadClass(), 733
LoadDriver class (example), 584
loading classes

Applet subclass, 745–751
AppletAdapter class

(example), 748–751
AppletViewer class (main

program), 746–748
dynamically, 725, 731–733
writing your own class loader, 733

loadLibrary() (System), 769
local variables, flow analysis for, 22
Locale class, 128, 421

predefined locale variables, 430
localhost, 448

InetAddress for, 445
localization, 421–440

JILT toolkit, 429
locales

case conversion in strings, specifying
for, 71

current date, returning for, 156
default, changing for Java

runtime, 431
default (platform-dependent), 422
listing available, 423
non-default, using, 430

property filenames for different, 422
setting, 423

printing date or time for locales, 156–159
steps in, 421

location transparency, RMI and, 641
lock() (Lock), 702
Lock interface

Condition objects, 705
locking methods, 702

locks, 702–705
awakening threads that own, 705
objects and methods, 684
ReadWriteLock interface, 703

lock-step protocol, reading and writing
in, 328–331

log() (Math), 141
log4j, 485

catching and logging an exception, 491
properties file, 490

logarithms, taking, 141
LogBase class (example), 141
Logger class, 333, 489

instance methods, writing to the log, 492
level associated with it, 489

loggers, network-based, 484–489
JDK 1.4, 491
log4j, 489–491

logging
programs for, 333
standard error, JDBC connection, 587
written stream to file, 270

LogRecord class, 492
long data type

Date class, use of, 155
dates, comparing, 166
epoch seconds returned as, 164
last modification time of files, 167
network-to-host byte order macro, 283
numbers larger than, handling, 145
seconds since epoch, adding to or

subtracting from, 164
unsigned int (C language), storing as, 450

long integers, 119
long numbers, formatting, 128
look and feel

Java, official Sun guidelines, 373
Mac OS, requesting under Windows, 405
Mac OS X, 405
Swing programs, changing for, 404–408
Swing-based GUI application, 379
switcher (LNFSwitcher), 405–408

lookingAt() (Matcher), 96

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 807

lookup name
associating with server object, 639
hardcoded vs. declared in interface, 636

lookup() (Naming), 637
loops, iterating over, 75
lowercase (see case)
Ls class (example), 306
ls command (Unix), 307

M
Mac OS X, xxii, xxix

applet launcher, 20
checking for, 42
enhancing Swing GUI for, 408
IDEs for, 8
installing Java programs on, 673–675
Jar packager, using, 666
Java implementation on, 3
Jikes compiler, 2
look and feel, selections, 405

Macintosh
Appletalk File System, 247
Mac OS

look and feel, requesting under
Windows, 405

MacOSAppAdapter class (example), 409
MacOSUITest class (example), 409
MAIL command, 547
mailbox lister program (example), 551
MailClient class (example), 559–562

compose mode, 560
reading mode, 559

MailClient properties file (example), 545
MailComposeBean class (example), 562–567
MailComposeFrame class (example), 567
MailConstants interface, 545
Mailer class (example), 539–543
MailLister class (example), 552–554
mailto: and news: references, 514
mailto: URL, using for email, 532
MailtoButton class (example), 532–534
main()

changing array argument declaration for
all files, 86

testing class functionality, 28
make utility, Ant program vs., 18
makefile, Unix, 771
MalformedURLException, 519
manifest file, JAR, 660

LabelText class (example), 671
Main-Class line in, 665

Map interface
classes that implement, 205
Generic Types and, 210

mapping data with Hashtable and
HashMap, 185

markers, interfaces as, 235
marking engine (PostScript), 342
match()

Matcher class, 96
RE class (ReaderIter example), 100

Matcher class, 94
finder methods, 96

matches() (String), 94
MATCH_MULTILINE, 108
Math class, 119

log(), 141
random(), 138
trigonometric functions, methods

for, 140
Matrix class (example), 142

multiplying two arrays of ints, program
using, 143

mbox protocol, Unix, 551
MediaInvoicer program (example), 219–221
MediaTracker class

status, getting, 358
using to ensure successful image

loading, 357
member inner classes, 380
menus, internationalizing, 424

convenience routines for, 425
in GUI-based program (example), 188
MenuIntl class (example), 434–436

MessageFormat class, 433
MessageFormatDemo class (example), 433
MessageFormatDemoIntl class

(example), 434
MessageNode class (example), 554
messages

classes for, 531
email, nodes in JTree component, 554
internationalizing, 432, 440

MessagingException class, 536
metacharacters, regular expression, 88–90

escaping, 92
metadata, JDBC, 600–604

JDBCMeta class (example), 602–604
META-INF directory (JAR file), updating

with certificate information, 682
methodology theories, xxv

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

808 | Index

methods, 652
abstract, 238
call-by-reference semantics, 229
class

finding and using, 727–730
getting information about, 738

final, 23
lifecycle, applets, 503
monitor locking, 684
native, calling from Java, 769–773
optional, 200
overloaded

getInstance(), 430
join(), 694
substring(), 53

polymorphism, 238
protected, 230
stub or dummy versions, 384
synchronized, 477, 696

auto saving and, 714
(see also functions)

Microsoft
Internet Explorer, 666

(see also browsers)
Open DataBase Connectivity

(ODBC), 571
operating systems, filename separator, 40
Windows (see Windows systems)

MIF (Maker Interchange Format),
transforming XML document
to, 632

MIME
multipart email messages, sending, 535,

543–544
text/html and plain text

attachments, 544
Parts, encoded messages, 544

minimumLayoutSize()
(LayoutManager), 415

mkdir() (File), 309
mkdirs() (File), 309
MkIndex class (example), 520–524
mkMenu() (convenience routine

example), 425
mnemonic for order of sharps and flats, 65
Model-View-Controller (MVC) pattern, 231,

346
modems

Hayes-type
initializing and dialing telephone

number, 330
send/expect handling for, 328

using serial ports, 313
modes, printer interface and interaction, 322
modification time of files, manipulating, 305
modifiers (attributes), HTML, 501
monitor locks

awakened thread, regaining, 706
objects and methods, 684

month values, handling for Date or
GregorianCalendar, 160

movies (QuickTime or MPEG), displaying
with JMF, 362

multidimensional arrays, 202
MULTILINE flag (Pattern.compile()), 107
multiline mode (regular expressions and

pattern matching), 105
multiline regular expressions, 107
Multimedia Internet Mail Extensions format

(see MIME)
multiple strings, writing, 275
Multiple-Document Interface (MDI), 567
multipliers in regular expressions, 92

greedy, 88, 90
non-greedy, 89

+?, 109
possessive, 89

multiplying matrices, 141
multiprocessing, 51

multitasking vs., 683
SMP (symmetric), 684

music (Western), listing order of sharps and
flats in key signatures, 65

MVC (Model-View-Controller) pattern, 231,
346

MySql database, 586

N
\n (newlines), 107, 274

making only valid newline sequence in
regular expression matching, 105

platform-independent code and, 274
strings transmitted by server-side sockets,

including in, 472
named inner class, 234
names

American-style, Soundex program for
comparing, 82–84

extracting from XML file with SAX, 622
InetAddress, getting, 445
package, 653
sorting using TreeSet, 194
threads, conventions for, 688

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 809

Naming interface, 637
binding lookup name to server object

instance, 639
NaN (Not a Number), 123

equality comparisons and, 127
nanoTime() (System), 171
native code (C/C++), 32

calling from Java, 767–773
steps in process, 768

calling Java from, 773
Java mechanism for, 752

native keyword, 769
native methods

clone(), 230
(see also methods; native code)

native2ascii tool, 273
native-language Java launcher for Mac

OS, 674
natural ordering (classes implementing

Comparable), 192
negate()

BigDecimal class, 146
BigInteger class, 146

negative values (hash code), 229
NEGATIVE_INFINITY constant, 123
NetATalk (Appletalk File System for

Unix), 247
NetBeans IDE, 5–9

GUI builder, 7
NetLogServer class (example), 486–489
NetLogSimple class (example), 485
Netscape browsers, 510

applet working in, using Java Plug-in, 665
running Windows or Unix version from

Java, 753–756
Swing GUI, lacking support for, 662

netscape.javascript package, 510
network addresses, 469

finding and reporting, 444
network byte-ordering macros, 282
network clients (see clients)
Network File System (NFS), 247
network interface, 469
network loggers, 484–489

JDK 1.4, 491
log4j, 489–491

networking (sockets), java.net package, 652
NetworkInterface class, 494
networks

routers, 469
security, server-side, 499
(see also clients; servers)

New I/O (NIO) package (see under
input/output)

new keyword, 597
newAudioClip(), 359
newInstance(), 731, 732
newlines (see \n)
next() (Iterator), 75, 199
nextBoolean() (Random), 139
nextBytes (Random), 139
nextDouble() (Random), 139
nextFloat() (Random), 139
nextGaussian() (Random), 139
nextInt() (Random), 139
nextkey(), 580
nextLong() (Random), 139
nextToken() (StringTokenizer), 53
NIO (New I/O) package (see New I/O

package, under input/output)
Node interface, 624
nodes (JTree), 554
noncore APIs, xxii
non-greedy multipliers, 89

+?, 109
“non-validating” parsers, XML, 617
NoRouteToHostException, 446
notify(), synchronizing threads, 705–711
notifyAll(), synchronizing threads, 705–711
ntohl (32 bits), byte-order macro, 283
null device, discarding output with, 42
null fields, preserving in string

tokenization, 54
null values

ParsePosition, indicating failure, 162
returned by equals(), 226, 227

NullPointerException, 226, 227
Number class

subclasses of, 239
(see also numbers)

NumberFormat class, 61, 128
NumberFormatException, 119
numbers, 117–153

checking string for integer or
floating-point number, 120

complex, working with, 143
converting between objects, 121
converting to strings, 118
digits, matching in regular

expressions, 92
floating-point, 118

comparing for equality, 125
ensuring accuracy of, 123–125
rounding, 127

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

810 | Index

numbers (continued)
formatting, 128–130

correct plurals, 136
for locales, 431
(see also dates and times;

internationalization; localization)
integers

converting between binary, octal,
decimal, and hexadecimal, 130

operating on series of, 131
Java numeric data types, 117–119
large, handling, 145–147
logarithms, taking, 141
multiplying by fraction without using

floating point, 122
multiplying matrices, 141
palindromes of, 151–153
random

generating, 138
generating better, 139

Roman numerals, working with, 132–136
storing larger data type in smaller

type, 120
string, checking if valid number, 119–120
temperatures, converting from Celsius to

Fahrenheit, 147–151
trigonometric functions, calculating, 140

numeric expression, 253
numeric IP address, 445
NumFormatTest program (example), 130
NumSeries class (example), operating on

integer series, 131

O
Object class

clone(), overriding, 229–231
toString(), 224

OBJECT, embedding keyword in
HTML, 664

object serialization, 451
DBM database, 580
JDO, using, 572
RMI and, 641
saving and restoring serialized

objects, 284–287
<object> tag, 502
object wrappers, 118

(see also wrapper classes)
ObjectInputStream class, 284, 451
object-oriented design (OOD)

books about, xxiv
(see also design patterns)

object-oriented programming
CORBA IIOP, interoperability among

languages, 635
Java techniques, 222–246

API, importance of using, 222
aplication-specific exceptions,

writing, 243
callbacks, providing via

interfaces, 234–237
clone(), overriding and implementing

your own, 229–231
comparing class objects, 225–227
design patterns, standard API, 223
finalize(), 231
generality vs. application

specificitity, 222
hashCode(), overriding and

implementing your own, 228
inner classes, using, 233
Javadoc, importance of, 223
passing values, 239–241
plotter program (example), 244–246
polymorphism/abstract methods, 238
printing object formatting with

toString(), 224
Singleton pattern, enforcing, 242–243
subclassing and delegation, 223

ObjectOutputStream class, 284, 451, 474
objects

adding to/removing from stacks, 202
arrays of, 177
class, getting Class object for, 726
containing code, synchronizing, 697
converting to/from byte arrays, 776
converting to/from numbers, 121
converting to/from object wrappers and

primitives with autoboxing, 214
converting to/from primitives and vice

versa, 208
finding in collections, 196–198
hash codes for, 228
Java strings as, 50
keeping in order (TreeSet), 194
monitor locking, 684
passing as parameter or return value of

remote methods, 641
proxy, references to, 637
references to

comparing for equality, 225
mapping with HashMap or

Hashtable, 185
removing from service, 231

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 811

returning with socket-based servers, 474
synchronization target, using as, 705, 706

Observable class, 231
octals, converting integers to, 131
ODBC (Open DataBase Connectivity), 571

JDBC-ODBC bridge, 571
OOD (see design patterns; object-oriented

design)
Open Office save file format, 616
open source software

CollabNet web site, 33
Eclipse IDE, 7
Java, web sites for distribution, 32
JDK source code, 32
Kaffe, 3
licensing, understanding, 33
NetBeans IDE, 5
Unix servers, 443

open() (CommPortIdentifier), 314, 318, 322
OpenBSD, xxix, 443
openConnection() (URL), 512
opening files (by name), 265
openStream() (URL), 512
operating systems

code dependent on, writing, 40–42
filename separators and, 40

default locales for, 422
determining current, 41
Java Plug-in, versions for, 662
jikes compiler, downloading and

installing, 2
JNODE, 3
native code compilers for, 768
network applications, differences in, 441
null device, discarding output with, 42
read() system call, 32
system internals or filesystem design, 247
system properties and, 37
threads, 684
time command, 207

operators
extracting from input stream, 147
overloading, 240

optimization, inline code generation, 23
optional methods, 200
options, command line (see command line)
Oracle database, 586
ordering data, 194
ordinaryCharacter() (StringTokenizer), 258
org.apache.log4j.net package, 491
org.w3c.dom package, 624
output (see input/output)

OutputStreamWriter class, 273
specifying character encoding, 273

overloading methods
getInstance(), formatting service

classes, 430
join(), 694
substring(), 53

overloading operators, 240
Overrides annotation, 659
overriding methods

clone() (Object), 229–231
equals(), 225–227
hashCode(), 228
paintComponent(), 343
toString(), 224
windowClosing(), 384

ownership of ports, resolving conflicts
in, 325–328

P
pack(), 376

Window class, 387
package statement, 653
packages, 652–682

basic, listing of, 652
classes, placing in, 733
creating your own, 653

naming conventions, 653
Java APIs in, 778
java. or javax., 43, 652
standard extensions, naming syntax, xxii

packaging
application for installation on different

platforms, 673
distributing application electronically with

JWS, 675–681
Jar packager, using on Mac OS X, 666
JavaBeans into a JAR file, 671
preparing a class as a JavaBean, 667–670
programs for installation on Mac OS

X, 673–675
servlets into WAR files, 672

packets
forwarding to other networks with

routers, 469
TFTP protocol, 455
UDP datagram, 453

PageFormat class, 364
pages, printing, 363
pagination, difficulties handling with Java

Printing APIs, 365

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

812 | Index

paint()
AWT class, 343
checking for null image and nonnegative

width and height, 357
Component class, 342
Graphics class, 342
Graphics2D class, 350

paint model for drawing (AWT), 349
paintComponent(), 343
palindromes of numbers, 151–153
Palm Computing Platform devices, special

APIs for, 341
Paper class, 364
parallel ports, 313

preparing and opening, 322–325
ParallelPort class, 314
ParallelPrint class (example), 324
parameterized statements (JDBC), 590–594
parameters, <applet> tag, 502
parse() (DateFormat), 161, 166
ParseException, 162
parseInt() (Integer), 219
parseObject(), 136
ParsePosition class, 240
parsing

command-line arguments, 43–49
comma-separated data, 75–80

regular expressions, using, 78–80
date strings, 21
XML, 616

with DOM, 624–628
“non-validating” and validating

parsers, 617
with SAX, 622–624
XmlForm class (example), 632

Parts, MIME-encoded messages, 544
passing values, 239–241

MutableInteger class (example), 239
passwords

BuzzInServlet class (example), providing
for, 700

mail settings, providing for, 545
unencrypted, preventing from being

saved, 285
PATH environment variable, CLASSPATH

vs., 12
PATH separator (:), 40
pattern characters, DecimalFormat class, 129
Pattern class, 94

compile(), 96
CANON_EQ flag, 105
CASE_INSENSITIVE flag, 104

flags, 105
MULTILINE flag, 107
UNIX_LINES flag, 107

pattern matching (see regular expressions)
peek() (Stack), 201
pen plotter (see plotters)
Penman plotter program (example), 337–340
percentages, formatting for locales, 128
performance

collections vs. arrays, 206
timing Java programs, 734–737

string concatenation vs. println(), 735
Time class (example), 736

peripheral devices, controlling, 313–341
Communications API, 314
event-driven reading and

writing, 331–335
parallel ports, preparing and

opening, 322–325
Penman plotter program

(example), 337–340
ports, choosing, 315–318
reading and writing, lock-step, 328–331
reading and writing with

threads, 335–336
resolving port conflicts, 325–328
serial port, preparing and

opening, 318–322
Perl, xviii

discussions of regexes, 87
running Perl code from Java, 763–767

permissions
class fields and methods, getting, 738
JNLP, setting, 680

Person class (example), unit testing, 28
personal information managers (see JabaDex

application)
personalization properties, 188
PersonTest class (example), writing test

case, 29
PI, displaying value, 140
PipedInputStream class, 391
PipedOutputStream class, 391
pipelining, using Unix tee command, 271
piping, 270
plain text email attachment, 544
platform-independent code, writing, 274
platforms

default locales for, 422
Java Plug-in, dependence on, 662

play() (AudioClip), 359

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 813

players for QuickTime or MPEG
movies, 362

plotters
example program, 244–246

abstract methods, use of, 245
PlotDriver class, 246
Plotter class, 244

Penman plotter program, 337–340
PlotterAWT class (example), 366–368

plurals, formatting, 136
plus sign (see + under Symbols)
poll() (system call), 475
polymorphism

Java methods, 238
println method, 253

pop() (Stack), 201
POP3 protocol, 551
pop-up “tooltips”, 401
port number (socket connections), 443
portability of Java, operating systems and, 40
PortChooser class (example), 315–318
PortOwner class (example), 326
PortOwnershipListener class, 325
ports

choosing for peripherals, 315–318
conflicts, resolving, 325–328
serial and parallel, 313
(see also parallel ports; serial ports)

position of (imaginary) cursor in string, 161
position of one numeric field in a String, 133
position sliders for players, 362
POSITIVE_INFINITY constant, 123
POSIX-style character classes (US-ASCII), 90
possessive multipliers, regular expression, 89
POST method, HTML, 700
PostGreSQL database, 586
PostScript

converting text to, 293–296
free font renderers, 352
marking engine, graphics, 342
printer output, 322

preferences
Preferences class, 187
PrefsDemo program (example), 187

preferredLayoutSize()
(LayoutManager), 415

prepared statements, JDBC, 590–594
prepareImage(), 357
prependSpaces(), 149
prime number pairs for public key

cryptography, 147

primitive data types
char, 63
class objects representing, using for

method arguments, 730
converting to/from Object and vice

versa, 208
converting to/from object wrappers with

autoboxing, 214
returned by next*() (Random), 139

print(), 149
calling once for each page (Java 2), 363
end-of-line characters and, 274

print statements, debugging, 22
Printable interface, 363
PrintDemoGfx class (example), 363
printerDialog() (PrinterJob), 363
PrinterJob class, 363
printers, use of parallel ports (LPT), 313
printf, method in java.util.Formatter, 253
printf/scanf functions (C language), 128
printing, 363–365

APIs, 342
class information, 737–739

MyJavaP class (example), 738
date and time in localized

format, 156–159
external program output, 756
with Formatter class, 253–257
a friendly message, 379
hash codes for objects, 228
lines in files containing pattern

match, 103
object formatting with toString(), 224
patterns matching regular expressions, all

occurrences of, 100
println(), 253

end-of-line characters and, 274
strings transmitted via server-side

sockets, 472
timing, string concatenation vs., 735

printStackTrace() (Throwable), 31
PrintStream class

format(), 253
subclassing and having write() methods

write to two streams, 271–272
PrintWriter class, 253

socket output stream, creating from, 447
priority (threads), getting and setting, 688
private class, writing, 233
PRNG (pseudo-random number

generators), 118

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

814 | Index

ProcessBuilder class, 755
start(), 752

processes, ending when program exits, 758
processors, XSLT, 621
producer-consumer model, threads, 706–711

simplifying with Queue
interface, 711–713

programming
conventions in this book, xxv
general, books about, xxiv

programs, xxv
compiling

automating with Ant, 16
conditional compilation, 22
deprecation warnings, 20–22
editors with color highlighting,

using, 3
compiling and running with JDK, 1–3
compiling, running, and testing with

IDEs, 4–11
interacting with the environment (see

environment, program interaction
with)

JILT toolkit, 430
in other languages, running with Java (see

Java, running programs in other
languages)

running from JAR files, 665
timing, 734–737

prompts, Unix and Windows, xxvi
properties

definition of, 37
JavaBeans

editors for, 668
get/set accessory methods for

public, 668
personalization, 188
Properties class, 187
Properties file, format and syntax of, 188
PropsCompanies program (example), 188
system (see system properties)

Properties class, 37, 186, 545
contains(), 196
containsKey(), containsValue(), 196
mail server, information about, 537

properties files
explicitly loading (GetResourceDemo

example), 679
locales in, 422
log4j, 490
MailClient (example), 545
for other languages, creating, 428

RMIWatch program, use in, 646
for simple browser, 428

protected methods, 230
ProtectionDomain class, 751
protocols, providing for mail settings, 545
proxy objects, RMI

getting references to, 637
implementing remote interface, 641
strings and, 641

pseudo-random number generators (PRNG),
cryptographically strong, 140

pseudo-random numbers, 118
PSFormatter class (example), 293–296
public constant (TYPE), 730
public key cryptography, creating prime

number pairs for, 147
push() (Stack), 201
put()

Hashtable class, 189
Map interface, 210

Python, interfacing with Java components
(Jython), 759–763

Q
quantifiers (see multipliers in regular

expressions)
queries, JDBC, 583

sending and getting results, 588–590
UserQuery class (example), 589

Queue interface, 711
BlockingQueue subinterface, 711

QuickTime or MPEG movie, displaying with
JMF, 362

quiz show buzzer servlet (example), 697–701
quotation marks, XML attributes, 616
quoted CSV values, 75

R
\r (carriage return), 107

strings sent across network connections,
including in, 472

using with \n, 274
R statistics package, 139
random() (Math), 138
Random class, 139
random numbers, 118

generating, 138
better, 139

pseudo- vs. real randomness, 140
SecureRandom class, 140

RandomAccessFile class, 281

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 815

ranges of numbers, continuous and
discontinuous, 131

raw type (unchecked), warnings about, 213
read() (Reader), 32, 257
read() system call, 32
Readable interface, 263
readerAsString() (FileIO), 111
ReaderIter class, 101
readers, 247

bridging to streams, 273
BufferedReader class, 250, 251, 266

database access, 577
socket input stream, creating

from, 447
FileReader class, 265
InputStreamReader class, 250, 251, 273
Reader class, 32
XMLReaderFactory class, 624

readerToString() (FileIO), example class
method, 269

ReadGZIP class (example), 292
reading

binary data, 280
with network client, 449–451

continued lines, 275–280
different character set, 273
email

JavaMail Store, using, 550–555
MailReaderBean program

(example), 555–559
file content into a string, 269
java.io package, 652
from particular location in file, 281
serialized object data with network

client, 451
standard input, 248–252
text files, 52
textual data with network client, 447–449

readInt() (DataInputStream), 450
readLine(), 251

BufferedReader class, 52, 107
combining with StringTokenizer, 258
end-of-line characters, avoiding, 274
platform-independent code, 274

readLock() (ReadWriteLock), 703
read-only files and directories, 305
ReadRandom class (example), 281
ReadTag class (example), 515–517
ReadWriteLock interface, 703
real numbers, 118
rebind() (Naming), 639

Rect(angle), Arc, Ellipse, and Polygon,
drawing methods for, 343

recursion, 152
listing filesystem entries in

directories, 307
redirection and/or piping, 270
refactoring, xxiv

code examples from this book, 16
references

object
in arrays, 177
class, finding for given method, 729
cloning, 231
comparing for equality, 225
mapping with HashMap or

Hashtable, 185
to proxy objects, getting, 637
to StringBuilder, returning, 57

reflection, 583
class fields and methods

finding and using, 727–730
getting information about, 738
printing information about, 737–739

cross-reference for Java API,
printing, 739–744

loading Applet subclass, 745–751
AppletAdaper class

(example), 748–751
AppletViewer class (main

program), 746–748
reading of annotations at runtime, 659
(see also introspection)

regexes (see regular expressions)
registering

JDBC drivers, 583
listeners, 373
RMI server instance with lookup

service, 638
registry, RMI, 640

client stubs, sending with, 641
regular expressions (and pattern

matching), 85–116
accented or composite characters,

matching, 105
case, controlling in, 104
data mining program, 110–112
extracting words or operators from input

stream, 147
finding text that matched, 97–99
grep program, pattern matching with, 85
Java code, using in, 94–97

steps for regex matching in production
program, 96

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

816 | Index

regular expressions (and pattern matching)
(continued)

Java packages for, 87
lexical structure of input, specifying, 261
multiline, sam text editor, 107
newlines, matching in text, 106
numbers, working with, 120
parsing Apache log file, 108
parsing CSV data with, 75

CSVRE (example), 78
printing all occurrences of a pattern, 100
printing lines containing a pattern, 103
REDemo program (example), 90
replacing matched text, 99
replacing StringTokenizer with, 56
syntax of, 87–90

metacharacters, 88–90
writing full grep program, 112–116

relational databases, 571
DBM files vs., 579
SQL (Structured Query Language), 582
text file (User database), converting

to, 598–600
reloading applets in browsers, 19
RemCat class (TFTP UDP client

example), 455–459
ReminderService class (example), 173–175
remote interfaces, 235, 636
Remote Method Invocation (see RMI)
remote objects, 641
remote procedure call (RPC), 634

CORBA, interoperability among
languages, 635

remotely controlled building management
system (example), 235–237

remove() (Iterator), 199
removeLayoutComponent()

(LayoutManager), 415
renameTo() (File), 301
rendezvous socket (C-based server), 475
rendezvous, threads, 694

Join class (example), 695
repeatability, hashCode(), 228
replace() (StringBuilder), 58
replaceAll(), 99
replacing matching text (regular

expressions), 99
resource bundles

configuring user interface controls
from, 436–439

creating for internationalization, 428

dialog, internationalizing with, 427
getting file for named, 422
GUI controls or user interface text, 422
menu items, getting, 424
MessageFormatDemo class

(example), 434
ResourceBundle class, getBundle(), 428
resources, storing for applets in JAR file, 661
result sets, JDBC queries, 583, 588

caching, 590
changing data with, 595
retrieving elements from, 588

ResultsDecorator and ResultsDecoratorText
class (example), 606

ResultSet interface
getResultSetMetaData(), 589
RowSet subinterface, 596

ResultSetMetadata class, 601
ResultSetUpdate program (example), 595
resume()/suspend() (Thread), deprecated

methods, 688
reusability of code (see code reusability)
reverse order, numbers reading the same

in, 151–153
reverse() (StringBuilder), 58, 64
RGB (red, green, and blue) mode, for

colors, 400
right-aligned strings, 60–62
RMI (Remote Method Invocation), 634–651

callbacks, 641–645
stock ticker service, 642–645

client, writing, 637
client/server communication,

defining, 635–636
lookup names, 636
remote interfaces, 636

deploying across network, 641
IIOP, using over, 635

web site information on, 651
NetWatch program (example), 646–651

NetPanel class, 649–651
RMIPanel class, 648

registry program, 640
servers

running, 640
writing, 638–640

steps in, 635
RMI Security Manager, 641
rmic (RMI compiler), 640
\r\n (line termination characters), 107
roll(), 164

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 817

Roman numerals, 132–136
RomanNumberFormat class

(example), 133–136
RomanYear program (example), 133

root directories, 308
Windows systems, UNC filenames, 309

round() (Math), 127
rounding numbers

errors in, 118, 124
floating-point to integer or a particular

precision, 127
routers, 469
RowSet interface, 596
RPC (remote procedure call), 634, 635
run()

background thread, using to save user’s
work, 714

Item class, 175
reader-writer thread locks and, 703
Runnable interface, 685
Thread class, 335, 688, 692

runFinalizersOnExit() (System), 232
Runnable interface, 475, 685

implementing (ThreadsDemo2), 686
implementing with inner class

Join class (example), 695
ThreadsDemo3 (example), 687

running Java programs
applets, 17–20
debugging statements, enabling at

runtime, 24
Japhar freeware package, 3
JDK, java command, 2

Runtime class, 35
as example of Singleton, 242
exec(), replacement by

ProcessBuilder, 755
running external programs with exec()

methods, 752–755
runtime environment, 35

CLASSPATH, use of, 11
command-line arguments, parsing, 43
(see also environment, program

interaction with)
RuntimeException class, subclassing, 243

S
sam text editor, multiline regular

expressions, 107
Samba program (Windows network

filesystem for Unix), 247
sandboxes, application (Java Web Start), 675

saturation (colors), 399
saveFile(), 714
saving user’s work in editor with background

threads, 713
SAX (Simple API for XML), 616

parsing XML, 622–624
ScaledNumberFormat class (online

example), 136
scanf function (C language), Java

equivalent, 118
scanf/printf functions (C-style), 128
Scanner class, 247, 262–265

methods, listing of, 262
reading value of known type from

standard input, 250
simple calculator that uses

(example), 263–265
scanning

files with StreamTokenizer, 257–261
calculator (example), 258–261

input with Scanner class, 262–265
tools for, 261

schemas, XML, 617
developments in, 633

scientific numeric computing, Java web site
for, 153

screen, getting size of, 403
scripting languages

interfacing Java components to, 759–763
Jython, 759–763

Java vs., xviii
Perl

discussion of regexes, 87
using with Java, 763–767

regular expressions in, 86
situations for using, xviii

scripts (executable), invoking, 752–755
search() (Stack), 196
seconds since 1970 (epoch), converting to

date, 162
Secure Sockets Layer (SSL), 482
SecureRandom class, 140
security

BigInteger class, use in applications, 147
denial of service attacks, network logging

server, 489
digital signatures (see certificates; digital

signatures, JAR files; JAR files)
sandboxes for applications, Java Web

Start, 675
server-side network mechanisms, 499
thread security, 51

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

818 | Index

security managers
file modification and, 297
RMI, 641

SecurityManager class, 51, 751
select() (system call), 475
SELECT statement, SQL, 582
self-signed certificates, 483

steps for signing JAR file with, 681
warnings about, 680

send() (Transport), 537
Sender class (example), 536–538
serial ports, 313

preparing and opening for I/O, 318–322
Serializable interface, 285, 288
SerializableUser class (example), 288
serialized objects

reading and writing data with network
client, 451

saving and restoring, 284–287
SerialLogger class (example), 333–335
SerialPort class, 314

getInputStream(), 319
getOutputStream(), 319

SerialReadByEvents class (example), 331
serialVersionUID, preventing

ClassCastExceptions, 287
server host, providing for email, 545
servers, xxv

Apache Tomcat, 715
daytime (date and time), 447
email, enabling for, 539–543
network, multithreaded, 714–723
POP, 551
RMI

loading client stubs, 641
running, 640
TickerServerImpl class (example), 643
TickerService interface (example), 642
writing, 638–640

socket-based, 467–500
chat server (Java), 495–499
contacting on applet host, 505–507
finding network interfaces, 493
handling multiple clients, 475–479
HTTP protocol, 480–482
multithreaded (Handler

example), 717–722
multithreaded, using Concurrency

utilities, 722–724
network logging, 484–489
network logging with JDK 1.4, 491

network logging with log4j, 489–491
object information, returning, 474
securing with JSSE, 482
security issues, 499
writing, 467–470
writing string or binary data to

client, 470–473
TCP/IP, contacting, 443

TFTP, 459
Unix (free, open source), setting up, 443
(see also web servers)

ServerSocket class, 467–470
thread access, controlling, 477

services, looking up, 445
servlets, xxv

BuzzInServlet class (example), 697–701
distributed computing, use in, 651
loading of, 731
packaging into WAR file, 672

session beans, 635
set and get methods, JavaBeans, 668
Set interface, 195

classes that implement, 205
set() (Calendar), 160
setColor() (Graphics), 343

substituting setPaint() for, 350
setCommand() (RowSet), 597
setContentPane(), 344
setDefault() (Locale), 431
setDefaultCloseOperation() (JFrame), 383
setDefaultUncaughtExceptionHandler()

(Thread), 390
setFont() (Graphics), 343
setLastModified(), 305
setLayout(), 378
SetLocale class (example), 432
setLogStream() (DriverManager), 587
setLookAndFeel() (UIManager), 404
setMinimumIntegerDigits()

(NumberFormat), 128
setPaint() (Graphics2D), 350
setPriority() (Thread), 688
setReadOnly(), 305
setSize(), 376
setStub(), 504
settabpos() (Tabs example class), 69
setVisible() (Window), 375, 387
SGML, 615

DTDs, 617
Shape class, computeArea(), 238
shapes, drawing methods for, 343

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 819

sharps in key signatures (Western music),
listing in order, 65

shell scripts
Korn shell script, controlling

CLASSPATH with, 13
timing tests (stringprinttimer.sh), online

source, 736
short data type

host to network short byte order
macro, 283

storing int as, 121
shorthands, regular expression, 89
showDialog() (JOptionPane), 389
ShowDocApplet class (example), 508
showDocument(), 504, 532

AppletContext class, 508
showInputDialog() (JOptionPane), 389
showMessageDialog() (JOptionPane), 388
showStatus(), 379, 504
shutdown hooks, running as part of

termination, 232
signing

application JAR files, 680
JAR files, 681–682

simple parallel port mode, 322
SimpleDateFormat class, 157, 173

format codes, 158
SimpleText driver, 579
Singleton pattern

Data Access Object, using with, 575
enforcing, 242–243

Sitraka, DeployDirector (software
installer), 673

size
GUI components, 376, 416
images, getting for, 356, 357
of the screen, 403

size() (Collection), 198
slashSlashComment()

(StringTokenizer), 258
sleep() (Thread), 173
SleepyCat Software, Berkeley DBM, 582, 776
SMTP (Simple Mail Transfer Protocol)

connecting to server from Telnet
client, 459

implementing your own, 546–550
sending email over, 536–538

SmtpTalk class (example), 548–550
Socket class, 443

getInetAddress(), 445
input/output streams, getting, 447

socket() system call, 443
SocketApplet class (example), 506
SocketException class, 446
sockets

client, 441–466
C language, programming, 441
contacting server using TCP/IP, 443
reading and writing on same, 448

HTTP, contacting programs in any
language, 752

Java Secure Socket Extension (JSSE), 466
network, java.net package, 652
servers based on

contacting on applet host, 505–507
Handler class (example), 717–722
Httpd class (example), 715–717
multithreaded, using Concurrency

utilities, 722–724
server-side, 467–500

chat server (Java), 495–499
code to implement new

connections, 475
finding network interfaces, 493
handling multiple clients, 475–479
HTTP protocol, 480–482
network logging, 484–489
network logging with JDK 1.4, 491
network logging with log4j, 489–491
object information, returning, 474
securing with JSSE, 482
security issues, 499
writing socket-based server, 467–470
writing string or binary to

client, 470–473
thread, deadlocking, 693

software, installing, 673
Solaris, native code compilers (SunPro C and

gcc), 768
sort()

Arrays class, 190, 196
Collections class, 190

sorting
collections, 190–193
ordering data to avoid, 193

TreeSet class, program using, 194
sound

playable sound file (AudioClip), 342
playing a file, 358
video file, playing within Java

program, 360–362

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

820 | Index

Soundex class (name comparison
program), 82–84

source code
examples, finding more, 32
examples in this book

Debug program, 33
downloading and compiling, 15

Java code examples, downloading, xxvii
source files

inserting doc comments, 654
naming conventions, 653

source option (used with JDK 1.4 and
1.5), 25

SourceForge web site, free public hosting of
open source projects, 33

spaces
after properties file key

names/values, 188
converting between space and tab

characters, 65–70
leading and/or trailing spaces, trimming

from strings, 74
leading, continuing lines with, 275
prepending to align decimal points, 149

SPAM
books about, 569
mailto: URLs, danger of using, 532
testing for, 392–395

special effects
combining graphics drawings to

create, 349
drop shadow text, drawing, 347–349

spreadsheets, exporting CSV data, 75
Sprite class (animator example), 689–691
SQL (Structured Query Language), 582

changing data with, 598–600
data types, mappings between JDBC and

SQL, 589
prepared statements, creating, 591
statements as stored database

procedures, 594
SQLException, 586
SQLRunner program (example), 604–614
square roots, timer for processing, 172
src.zip or src.jar file, 32
SSL (Secure Sockets Layer), 482
SSLServerSocketFactory class, 482
Stack class, 147, 201

indexOf(), 196
search(), 196

stack traces, printing with line numbers, 30
stack-based calculator, 258

using BigDecimal, 146
stacks, 64

MyStack class (example), 212
MyStackDemo program (example), 213

standard error, 250
logging to, JDBC connection, 587

standard extensions, 43
Java Communications API, 314
javax.media, 342
package names beginning with javax, xxii

standard input
reading, 248–252

integers, 251
lines of text, 251
text, 250

standard output
definition, 250
external programs, capturing, 756
writing to, 252

standard streams (System.in, System.out, or
System.err), reassigning, 270

Standard Windowing Toolkit (SWT), 372
start(), 97

Applet class, 503
ProcessBuilder class, 752
Thread class, 335, 688

startClass(), 744
startElement(), 622
starting index, 53

text, regular expression pattern match, 98
startsWith() (String), 91
state

cloned objects, 231
File objects, immutability of, 305
initializing for applets, 503

statements
assigning value to local variables, 22
creating with Connection object, 588
executing JDBC query with, 588
package, 653
parameterized, JDBC (UserDBJDBC class

example), 591–594
SQL, 582

stored procedures, 594
static initializer, JDBC drivers, 583
static methods, Singleton pattern and, 242
status() (MediaTracker), 358
statusAll() (MediaTracker), 358
statusID() (MediaTracker), 358

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 821

stock ticker service (RMI callback), 642–645
Client interface, 642
ClientProgram class (example), 644
TickerServer interface (example), 642
TickerServerImpl class

(example), 643–644
stop()

Applet class, 503
Thread class, deprecated method, 688,

692
StopBoolean class (example), 692
StopClose class (example), 693
stopping threads, 692–694
storage attributes, class fields and

methods, 738
Store class, reading email with, 550–555
store-and-forward message processing

(JMS), 500
stored procedures, using with JDBC, 594
stores, classes for, 531
streams, 247

binary data, writing from C, 282–284
bridging to readers, 273
BufferedOutputStream class, 266
buffering, DataInput and

DataOutput, 449
connections based on, 453
crossover class to reader

(InputStreamReader), 251
data input/output, 280, 449–451
data streams for processing binary

data, 472
duplicating while writing, 270
FileInputStream and

FileOutputStream, 265
GZipInputStream and

GZipOutputStream, 292
InflaterStream/DeflaterStream, 293
object, serialization of, 286
ObjectInputStream and

ObjectOutputStream, 284, 451
PipedInputStream and

PipedOutputStream, 391
Socket methods for getting input/output

streams, 447
standard, reassigning, 270
System.out, 252

StreamTokenizer class, 147, 258
scanning files with, 257–261

calculator (example), 258–261
strictfp keyword, 125

StrictMath class, 140
String class, 51

case, methods for handling, 70
charAt(), 63
compareTo(), 194
length(), 59
matches(), 94
methods, lising of, 728
pattern matching methods, 91, 96
static methods, default number

formatting, 131
substring(), in regular expression pattern

matches, 98
trim(), 74

string concatenation (see concatenating
strings)

StringAlign class (example), 60–62
StringBuffer class, 50

modifying strings with, 51
reassembling strings from pieces, 56
synchronized methods, 57

StringBuilder class, 56
appending characters into, 63
reverse(), 64

StringEscapes.java program (example), 74
StringFormat class, formatting email

messages, 554
StringReverse program (example), 65
strings, 50–84

aligning, 60–62
arrays of (StringTokenizer example), 54
binary, converting to integers, 130
blanks, trimming from end, 74
breaking into substrings, 52
breaking into words or tokens, 53–55
case, controlling, 70
checking if valid number, 119–120

converting to double, 119
comma-separated data, parsing, 75–80
concatenating (see concatenating strings)
converting between Unicode characters

and, 63
converting numbers to, 118
escapes for, 73
externalization of, 429
format codes in, 254
immutability of, 50
modifying, 51
multiline, avoiding, 275
parsing into dates, 161
println() method, concatenating for, 253

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

822 | Index

strings (continued)
processing one character at a time, 59
putting pieces back together, 56
reading file content into, 269
reversing, one character or word at a

time, 64
RMI proxy objects and, 641
sorting in arrays and collections, 190
Soundex class (name comparison), 82–84
storing in properties

preferences, 186–190
String class, arrays vs., 50
String class, StringBuffer class, and C

language strings, overview of, 52
tabs, expanding and compressing, 65–70
text documents, indenting, 71–73
text formatting program, Fmt

(example), 80–82
text, measuring width and height of, 345
thread security and, 51
written with server-side sockets, carriage

return and newline character, 472
StringTokenizer class, 53–55

database fields, retrieving, 577
program that processes and ignores

consecutive tokens, 54
readLine(), combining with, 258
replacement with regular expressions, 56

stub or dummy versions (methods), 384
stubs (RMI client), sending with registry

program, 641
subclasses

abstract methods and, 238
clone(), providing for, 231
situations for using, 235

subclassing
importance of, 223
strings, prohibition of, 51

subMap(), 194
subSet(), 194
substitution methods, regular expression

API, 99
substring()

CharacterIterator interface, 100
indenting or removing indent in

strings, 72
String class, 52, 98, 161

SubstringComparator class (example), 191
Sun Microsystems

core Java API, download site, xxii
Internationalization Home Page, 439
Java Community Source License, 32

Java Internationalization and Localization
Toolkit (JILT), 429

Java Software division, resources for
learning Java, 777

One Studio IDE, 5
Studio IDE, 8

suspend()/resume() (Thread), deprecated
methods, 688

SVG graphics file format, 616
swatches mode (colors), 399
Swing GUI, 343, 372

checking runtime environment for, 40
enhancing for Mac OS X, 408
FileFilter interface, 398
formatting component text with

HTML, 402
ImageIcon class, 358
JApplet class, 503, 662
JFrame component, 373
JFrame template, 5
JOptionPane class, 175
JTree components, use in mail

reader, 554
layout manager classes, 376
look and feel, changing for

program, 404–408
resources for further reading, 420
RMIWatch program, use in, 646
thread safety issues, 375
WindowConstants class, 383

SwingUtilities class, 404
switcher, look and feel, 405–408
SWT (Standard Windowing Toolkit), 372
symmetric multiprocessing (SMP), 684
synchronization

methods, 696
accessing databases, 575
auto saving and, 714

objects as targets of, 706
ProdCons1 class (example), 707

StringBuffer vs. StringBuilder
methods, 57

threads, 695–701
multithreaded applications, 684
wait() and notifyAll(),

using, 705–711
Vector class methods, 181

synchronized keyword, 696
thread communication, limiting, 705
un-named code block within method,

using on, 697
synchronized methods, 477

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 823

SysPropDemo program (example), 38
system calls

gethostbyname() and socket(), 443
select() or poll(), 475

System class
arrayCopy(), 179
current time in milliseconds, 171
currentTimeMillis(), 736
exit(), 232
gc(), 232
getenv(), 36, 37
getProperty(), 39
input/output, static variables, 250
loadLibrary(), 769
properties, 37
relative time in nanoseconds, 171
runFinalizersOnExit() (deprecated

method), 232
Runtime class and, 35

system properties, 37
checking for Mac OS X, 408
debugging with, 24
determining current operating system, 41
disabling JIT, 31
predefining value, 38
preregistering database driver, 584
user.language, 431

System.in, System.out, and System.err, 250
reassigning, 270

System.out, 252
logging messages written to, 490

systems, command line (see command line)

T
tab layout (JTabbedPane), 378
tabs

expanding and compressing in
strings, 65–70

stripping from lines of Java source
code, 74

Tabs class (example), 65, 69
tags

HTML, 501
extracting all from URL, 515–517

XML, 615, 616
tailMap(), 194
tailSet(), 194
tar utility, extracting compressed files, 292
TCP/IP clients, contacting server with, 443
tee command (Unix), 271

TeePrintStream class (example), 271–272
telephone numbers, dialing with a

modem, 330
Telnet client, 459–461, 476
temperatures, converting from Celsius to

Fahrenheit, 147–151
templates, xx

HTML files for applets, 19
NetBeans IDE, Swing JFrame, 5

temporary files
creating, listing and deleting, 757
TempFiles class (example), 304

Terminal application (Mac OS X), 3
terminating programs, 758
terminology, programming, xxv
ternary conditional operator, 137
test certificates, signing JAR file with, 681
testing

applications (black box testing), 28
classes (JUnit tool), 29–30
file copying, 266
graphical components, 344

TestOpenMailRelayGUI class
(example), 392–395

text
converting to PostScript, 293–296
converting to/from Unicode, 273
drawing in components, 344

centered text, 345
drawing with 2D graphics, 349–352
drawing with an application

font, 352–354
drop shadow effect, drawing, 347–349
formatting

dot command formatters, 82
formatter program (Fmt

example), 80–82
indenting or removing indent, 71–73
java.text package, capabilities of, 128
StringAlign class (example), 60–62
in Swing components, 402

matching newlines in, 106
message dialog, internationalizing, 440
printing on screen, 343
readers and writers, use for, 248
reading (standard input), 250
reading/writing data with network

client, 447–449
text editors, 4

kwrite program, running with Java, 753

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

824 | Index

text files
database, using as, 574–579
diff (compare program), 269
reading, 52
User database, converting to relational

database, 598–600
Text interface, 624
text(), 622
TextBrowser program (example), 513
text/html email attachment, 544
TextPad editor, 4
TexttoJDBC class (example), 598–600
TexturedText class (example), 350–352
TFTP (trivial file transfer protocol), 443
TFTP UDP client, 455–459

RemCat class (example), 455–459
Thread class, 173

deprecated methods, 22
inner classes, extending with (ProdCons2

example), 708
setDefaultUncaughtExceptionHandler(),

390
subclassing (ThreadsDemo1

example), 685
thread pools, 722
thread safety

GUIs and, 375
StringBuilder and, 57

ThreadBasedCatcher class (example), 390
threads, 683–724

animation, 688–692
application with, writing, 685–688
background saving in editor, 713
concurrency

locks, 702–705
Queue and BlockingQueue,

using, 711–713
definition of, 683
designing, books about, 724
handling multiple clients, 475–479

implementing, 475
synchronizing, 477

lifecycle methods, 688
multiple, accessing vector from, 181
multiprocessing, 51
network server (multithreaded), 714–723

Handler class (example), 717–722
Httpd class (example), 715–717
simplifying with Concurrency

utilities, 722–723
reading and writing with, 335–336

rendezvous and timeouts, 694
Join class (example), 695

RMIPanel class (example), 646, 648
Runnable interface, implementing, 685

ThreadsDemo2 (example), 686
using inner class, 687

scheduling, 723
stopping, 692–694

StopBoolean class (example), 692
StopClose class (example),

deadlocking socket, 693
using interruption, 694

synchronized, 684, 695–701
BuzzInServlet class

(example), 697–701
method, synchronizing, 696
wait() and notifyAll(),

using, 705–711
Thread class, subclassing (ThreadsDemo1

example), 685
Throwable interface, 243

printStackTrace() methods, 31
TickerServerImpl class (example), 643
TickerService interface (example), 642
TiledImageComponent class (example), 356
time command (operating systems), 207
timeouts, threads, 694

Join class (example), 695
Timer class, 174
TimerTask class, 174
TimeUnit class, 702
timing comparison, arrays vs.

collections, 206
timing Java programs, 734–737

initialization overhead, taking into
account, 737

Time class (example), 736
TLS (Transport Layer Security), 482
toArray() (Collection), 198
toBinaryString() (Integer), 130, 131
toByteArray(), 776
toHexString() (Integer), 131
tokens

assembling characters into, 258
breaking strings into, 53–55

toLowerCase() (String), 70
Tomcat server, 480, 715
toObject(), 776
toOctalString() (Integer), 131
Toolkit class, 403
tools, JILT, 430

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 825

tooltips, 401
toString(), 50, 57, 738

Date class, 155, 157
GregorianCalendar class, 156
line-based display and, 275
printing object formatting with, 224
String class, 218
StringBuffer class, 51

toUpperCase() (String), 50, 70
toURL() (File), 519
ToyStack class (example), 201
tracebacks, printing with line numbers, 30
trailing spaces, trimming from strings, 74
transaction isolation (in databases), 602
transforming XML with XSLT, 617, 619–622

Translet class, 622
transient files, creating, 303
transient keyword, data that should not be

serialized, 285
translating compiled class file into machine

language (JIT), 31
Translet class, 622
Transport class, send(), 537
Transport Layer Security (TLS), 482
transport service, IIOP, 635
transports, classes for, 531
Transvirtual, Kaffe (Java implementation), 3
TreeMap class, 194

containsKey(), containsValue(), 196
converting Hashtable or HashMap

to, 195
TreeSelectionListener, 555
TreeSet class, 194

sorting names (TreeSetDemo
example), 194

tree-structured representation, XML
document information
(DOM), 624

TreeWalker interface, 626
triangle, Heron’s formula for area, 124
trigonometric functions, calculating, 140
trim() (String), 74
trivial file transfer protocol (TFTP), 443
TrueType fonts, 352
try/catch block, 250
TryCGI class (example), 511
TTFontDemo class (example), 352–354
two-dimensional arrays

allocating (example), 202
multiplying, 141
object references, casting, 177

two-dimensional graphics (see 2D graphics)
type checking arrays in Java, 178
TYPE (public constant), using for primitive

types, 730
type safety, increasing for collections with

generics, 208
typesafe enumerations, 208, 215–218

adding operations to, 218
EnumList class (example), 218
Media class (example), 216

program using, 217
MediaInvoicer program

(example), 219–221

U
UDP client, 453–455

TFTP, 455–459
UIManager class, 404
UML, books on, xxv
UNC filenames, 309
unchecked exceptions, 243
unchecked raw types, warnings about, 213
Unicode, 248

characters, converting to/from strings, 63
converting to/from character set, 273
International Components for Unicode for

Java, 159
online resources for, 64
regular expression matching, Apache

package, 90
Unicode-aware case folding in regular

expression pattern matching, 105
Unicode blocks, 89
Uniform Resource Identifier (URI), 514
Uniform Resource Locator (see URLs)
unit testing, 28–30

EqualsDemo class (example), 227
JUnit tool, 29–30

Universal Resource Name (URN), 514
Universal Serial Bus (USB), 313

standard for Java (in progress), 341
Unix

cal command, 169
canonical filenames, 300
compiling C code into loadable

object, 771
converting between Unicode characters

and strings, 63
DBM databases, 579, 773–776
dot command formatters (roff, nroff, troff,

and groff), 82

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

826 | Index

Unix (continued)
environment variables, 35
file command, 580
filename separator, 40
filesystem, 247
find command, 310
grep program, command-line

options, 112
Jikes compiler, 2
kill signal, terminating VM, 232
Korn shell script for managing

CLASSPATH, 13
line-oriented tools (sed and grep), 107
locale, setting, 423
ls command, 307
makefile, 771
mbox protocol, 551
Netscape, running with Java

(ExecDemoNS example), 753–755
network applications, synchronous

sockets, 441
OpenBSD clone, xxix
prompt, xxvi
regular expressions, information on, 87
remote procedure calls, use of, 634
root directory, 308
standard streams, redirecting or

piping, 270
syslog, 485
system property, predefining value, 38
tee command, 271
time (epoch seconds), 163
who program, 271

UNIX_LINES flag (Pattern.compile()), 107
UnknownHostException, 445
unlock() (Lock), 702
unsigned int (C language), reading and

converting to Java type, 450
UnsupportedOperationException, 201
UnZip class (example), 290
updateComponentTree() (SwingUtilities

class), 404
updateRow(), 595
updating databases

result sets, using, 595
SQL, using, 582, 598–600

uppercase (see case)
URI (Uniform Resource Identifier), 514
URL class, methods for reading

contents, 512

URLs
applet host, retrieving for, 506
for CGI scripts, 511
code, running from, 444
content, reading, 512
converting filenames to, 519
dbURL (for database connections), 585
extracting from a file, 517–518
extracting HTML tags from, 515–517
mailto:, using for email, 532
for sound files, 359
URIs and URNs vs., 513

URN (Universal Resource Name), 514
USB (Universal Serial Bus), 313

standard for Java (in progress), 341
UseLocales class (example), 431
user, providing for mail settings, 545
user.language (system property), 431
UserQuery class (example), 589
UtilGUI class (example), 403
utilities (collections, date), java.util

package, 652

V
validating classes with unit testing, 28–30
validating parsers, XML, 617
validating XML document structure (with

DTD), 628
valueOf()

Enum class, 219
Integer class, 130, 215
String class, 131

values
assigning to local variables, 22
passing, 239–241

values() (EnumList), 218
variable arguments, 257
variables

interfaces and, 636
local, flow analysis for, 22

Vector class, 181
contains(), 196
indexOf(), 196
synchronized methods, 696

vectors
ArrayVec class (example), 207
bitsets vs., 113
Observable class, inability to clone, 231

verbosity options, JDBC connection, 587
versions, Java, xxi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 827

vi editor, xxix, 4
video

playing and recording, 342
playing video clip within a Java

program, 360–362
vim editor, xxix, 4
virtual machines (JVMs)

books and information about, 751
databases updates and, 585
exiting without running finalizers, 232
immutability of strings, 50
loading existing class dynamically, 725
multiprocessing, support for, 684
network byte order, use in, 283
security managers and protection

domains, 751
timing Java program run, 735

Visual Basic Script (VBS), 543
Visual Cafe IDE, 8
Visual Slick Edit editor, 4
volatile modifier, 769
volume controls for players, 362

W
wait()

giving threads a chance at CPU time, 723
synchronizing threads, 705–711

waitFor() (Process), 758
WAR (Web ARchive) files, packaging servlets

in, 672
warn() (Logger), 489
wc (word count) program (Unix), 271
web applet clients, 501–530

converting filename to URL, 519
deploying an applet, 501–503
extracting HTML tags from

URL, 515–517
extracting URLs from a file, 517–518
file indexer, making, 519–524
link checker, automating, 524–530
reading URL content, 512
running CGI script, 511
running JavaScript, 510–511
server on applet host,

contacting, 505–507
showing new web page, 508
URI, URL, or URN, 513
writing an applet, 503–505

web applications, 672

web browsers
classes in packages named java. or

javax., 43
(see also browsers)

Web, downloading applications over (see
JWS)

web pages, embedding Java in, 501
web servers

deploying applet JAR file on, 661
Httpd class (socket server

example), 715–717
securing with JSSE, 482
WebServer0 class (example), 480–482

web site, downloading and saving on hard
disk, 530

web sites for this book, xxvi
WebGain Visual Cafe IDE, 8
WebRowSet interface, 598
WebSphere Studio Application Developer, 8

Eclipse and, 7
well-formed XML, 620
whitespace

ignoring in pattern matching, 105
leading and/or trailing spaces, trimming

from strings, 74
leading spaces, continuing lines with, 275
(see also spaces)

who program (Unix), 271
width and height of text string,

measuring, 345
Window class, 383

dispose(), 387
WindowAdapter class, 384
WindowCloser class (example), 386
windowClosing() (WindowListener), 384
WindowConstants class, 383
WindowDemo class (example), 384
windowed editors, 4
windowing systems

AWT, 343
centering main window on

screen, 403–404
GUIs, 372–420

displaying components, 373–375
tab layout, 378
window layout, 375–377

program output, getting into
window, 391–395

Swing, 343
terminating a program, 383–387

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

828 | Index

WindowListener interface, 383
windowClosing(), 384

windows
closing, 383–387
multi-window email implementation, 567

Windows systems
canonical filenames, 300
command arguments set off with slashes

(/), 43
compiling C code into loadable

object, 771
conversion between Unicode characters

and strings, 64
DB databases, 579
Event Log server, 485
filesystem, 247
Find Files dialog, 310
InstallShield (software installer), 673
Java, Windows, and Motif look and feel

under, 405
javaw command, 2
Jikes compiler, 2
KillProcess on Win32, 232
kwrite program, running on, 753
locale, setting, 423
Netscape, running with Java

(ExecDemoNS example), 753–755
network applications, asynchronous

sockets, 441
pop-up tooltips, 401
prompt, xxvi
registry access, commercial solution

for, 190
root directory, getting, 308
system property, predefining value, 38
time (epoch seconds), 163
Win32

CygWin or GnuWin32 package (grep
program), 86

Java implementation, xxii
native code compilers (Visual

C++), 768
word count (wc) program (Unix), 271
words

assembling characters into, 258
breaking strings apart as, 53–55
extracting from input stream, 147
in strings, reversing one at a time, 65

wrapper classes
converting between int and Integer

object, 122

Float and Double
overridden equals() method, 125
values for infinity constants and

NaN, 124
implementing Comparable interface, 192
Integer (for int value), 239
for numeric data types, 117

write() (XmlDocument), 630
WriteBinary class (example), 281
writeLock() (ReadWriteLock), 703
writers, 247

FileWriter class, 265
OutputStreamWriter class, 273
(see also input/output)

writing
applets, 503–505
binary data, 280

with network client, 449–451
DataStreams from C, 282–284
different character set, 273
files (FileOutputStream), 266
java.io package, 652
to particular location in file, 281
serialized object data with network

client, 451
to standard output, 252
textual data with network client, 447–449
threaded applications, 685–688

X
X Windows

windowing toolkits, 403
XFree86 PostScript font renderer, 352

Xalan (XSLT processor), 621
Xbase format databases, 571
Xcode IDE, 8
XDoclet tool, 657
XHTML, 502
XML, xix, 615–633

Ant program, build.xml file, 16
class fields and methods, generating

for, 744
comments, syntax of, 16
declaration, 616
DocumentHandlerInterface, 622
DTDs, verifying document structure

with, 628
generating with DOM, 630–631
HTML vs., 615

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 829

Java APIs
JDOM, 617
SAX and DOM, 616

JNLP (Java Net Launch Protocol)
description file, 678

parsing with DOM, 624–628
major DOM interfaces, 624
XParse class (example), 625
XTW class (example), 626–628

parsing with SAX, 622–624
processing instruction (<? ... ?>), 616
reading document with DOM and

transforming to MIF, 632
resources for further information, 633
schema, 617
standards, changes in (web sites

tracking), 633
transforming with XSLT, 619–622

XmlDocument class, 630, 631
XMLReaderFactory class, 624
XP (see Extreme Programming)
XParse class (example), parsing XML with

DOM, 625
XSL (Extensible Style Language)

people.xsl file (example), 620
XSL-FO (Formatted Objects), 617

XSLT, 619–622
processors, 621

Y
yacc (file scanning tool), 261
year, formatting in Roman numerals, 133
year, month, day, hour, minute, and seconds

(YMDHMS), converting to
Calendar or Date, 160

yield(), giving threads chance at CPU
access, 723

Z
ZeroG Software, InstallAnywhere, 673
zeros (leading), formatting numbers

with, 128
zip files, unpacking, xxvii
zip format archives, reading or writing

files, 289–291
ZipEntry class, 289
ZipFile class, 289

About the Author
Ian F. Darwin divides his non-family time among writing (books, courses, and maga-
zine articles), teaching Java and Unix courses, and consulting for Java and Unix
projects. He is the original author of two four-day Java programming courses taught
by Learning Tree International. He’s also the author of Checking C Programs with
Lint, published by O’Reilly in 1988. Of his second O’Reilly book, X Window System
User’s Guide: Volume 3, OPEN LOOK, little can be said except that he placed the
final manuscript in Tim O’Reilly’s hands the same week that Sun announced they
were discontinuing OPEN LOOK in favor of the Common Desktop Environment;
the ill-fated “Vol3OL” was published only in a CD-ROM compilation available from
http://www.darwinsys.com. (Sun later announced its move from CDE to GNOME,
which makes Ian glad he did not write a Volume 3, CDE Edition.) Ian’s open source
freeware contributions include the file(1) command used on Linux and BSD, a
variety of Java programs, and contributions to various open source projects. He used
to fly small airplanes and teach scuba diving, but he’s been too busy lately as a
computerist and family man to enjoy such ups and downs.

Ian’s wife and three children raise Plymouth Barred Rock chickens. They believe that
it complements Ian’s book writing, since the Plymouth Barred Rock breed was
“cooked up” by blending the Dominique and Black Java breeds.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java Cookbook, Second Edition, is a domestic chicken
(Gallus domesticus). Domestic chickens are descended from the wild red jungle fowl
of India. Domesticated over 8,000 years ago in the area that is now Vietnam and
Thailand, chickens are raised for meat and eggs, and the males for sport as well
(although cockfighting is currently illegal in many places).

With their big, heavy bodies and small wings, these birds are well suited to living on
the ground, and they can fly only short distances. Their four-toed feet are designed
for scratching in the dirt, where they find the elements of their usual diet: worms,
bugs, seeds, and various plant matter.

A male chicken is called a rooster or cock, and a female is known as a hen. The incu-
bation period for a chicken egg is about three weeks; newly hatched chickens are
precocial, meaning they have downy feathers and can walk around on their own
right after emerging from the egg. They’re also not dependent on their mothers for
food; not only can they procure their own, but they also can live for up to a week
after hatching on egg yolk that remains in their abdomen after birth.

The topic of chickens comes up frequently in ancient writings. Chinese documents
date their introduction to China to 1400 B.C., Babylonian carvings mention them in
600 B.C., and Aristophanes wrote about them in 400 B.C. The rooster has long
symbolized courage: the Romans thought chickens were sacred to Mars, god of war,
and the first French Republic chose the rooster as its emblem.

Marlowe Shaeffer was the production editor and proofreader for Java Cookbook,
Second Edition. Genevieve d’Entremont, Jamie Peppard, and Claire Cloutier
provided quality control. Ellen Troutman Zaig wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks
to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher
Bing. This colophon was written by Leanne Soylemez.

	Table of Contents
	Preface
	Preface to the Second Edition
	Preface to the First Edition
	Who This Book Is For
	What’s in This Book?
	Platform Notes
	Other Books
	Other Java Books
	General Programming Books
	Design Books

	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions

	Comments and Questions
	Getting the Source Code
	Acknowledgments

	Getting Started: Compiling, Running, and Debugging
	1.0 Introduction
	1.1 Compiling and Running Java: JDK
	Problem
	Solution
	JDK
	Command-line alternatives
	Mac OS X

	1.2 Editing and Compiling with a Color-Highlighting Editor
	Problem
	Solution
	Discussion

	1.3 Compiling, Running, and Testing with an IDE
	Problem
	Solution
	Discussion
	See Also

	1.4 Using CLASSPATH Effectively
	Problem
	Solution
	Discussion

	1.5 Using the com.darwinsys API Classes from This Book
	Problem
	Solution
	Discussion

	1.6 Compiling the Source Code Examples from This Book
	Problem
	Solution
	Discussion
	A caveat

	1.7 Automating Compilation with Ant
	Problem
	Solution
	Discussion
	See Also

	1.8 Running Applets
	Problem
	Solution
	Discussion
	See Also

	1.9 Dealing with Deprecation Warnings
	Problem
	Solution
	Discussion

	1.10 Conditional Debugging Without #ifdef
	Problem
	Solution
	Discussion
	Conditional compilation?

	See Also

	1.11 Debugging Printouts
	Problem
	Solution
	Discussion
	See Also

	1.12 Maintaining Program Correctness with Assertions
	Problem
	Solution
	Discussion

	1.13 Debugging with JDB
	Problem
	Solution
	Discussion

	1.14 Unit Testing: Avoid the Need for�Debuggers
	Problem
	Solution
	Discussion
	See Also

	1.15 Getting Readable Tracebacks
	Problem
	Solution
	Discussion

	1.16 Finding More Java Source Code
	Problem
	Solution
	Discussion

	1.17 Program: Debug

	Interacting with the Environment
	2.0 Introduction
	2.1 Getting Environment Variables
	Problem
	Solution
	Discussion
	1.4 and earlier
	Back to the future: 1.5

	2.2 System Properties
	Problem
	Solution
	Discussion
	See Also

	2.3 Writing JDK Release-Dependent Code
	Problem
	Solution
	Discussion

	2.4 Writing Operating System-Dependent Code
	Problem
	Solution
	Discussion

	2.5 Using Extensions or Other Packaged APIs
	Problem
	Solution
	Discussion

	2.6 Parsing Command-Line Arguments
	Problem
	Solution
	Discussion
	See Also

	Strings and Things
	3.0 Introduction
	3.1 Taking Strings Apart with Substrings
	Problem
	Solution
	Discussion

	3.2 Taking Strings Apart with StringTokenizer
	Problem
	Solution
	See Also

	3.3 Putting Strings Together with +, StringBuilder (JDK 1.5), and StringBuffer
	Problem
	Solution
	Discussion

	3.4 Processing a String One Character at a Time
	Problem
	Solution
	Discussion

	3.5 Aligning Strings
	Problem
	Solution
	Discussion
	See Also

	3.6 Converting Between Unicode Characters and Strings
	Problem
	Solution
	See Also

	3.7 Reversing a String by Word or by Character
	Problem
	Solution
	Discussion

	3.8 Expanding and Compressing Tabs
	Problem
	Solution
	Discussion

	3.9 Controlling Case
	Problem
	Solution
	See Also

	3.10 Indenting Text Documents
	Problem
	Solution

	3.11 Entering Nonprintable Characters
	Problem
	Solution
	Discussion

	3.12 Trimming Blanks from the End of�a�String
	Problem
	Solution
	Discussion

	3.13 Parsing Comma-Separated Data
	Problem
	Solution
	Discussion

	3.14 Program: A Simple Text Formatter
	3.15 Program: Soundex Name Comparisons

	Pattern Matching with Regular Expressions
	4.0 Introduction
	See Also

	4.1 Regular Expression Syntax
	Problem
	Solution
	Discussion

	4.2 Using regexes in Java: Test for a Pattern
	Problem
	Solution
	Discussion

	4.3 Finding the Matching Text
	Problem
	Solution

	4.4 Replacing the Matched Text
	4.5 Printing All Occurrences of a Pattern
	Problem
	Solution

	4.6 Printing Lines Containing a Pattern
	Problem
	Solution
	Discussion

	4.7 Controlling Case in Regular Expressions
	Problem
	Solution

	4.8 Matching “Accented” or Composite Characters
	Problem
	Solution
	Discussion

	4.9 Matching Newlines in Text
	Problem
	Solution
	Discussion

	4.10 Program: Apache Logfile Parsing
	4.11 Program: Data Mining
	4.12 Program: Full Grep

	Numbers
	5.0 Introduction
	See Also

	5.1 Checking Whether a String Is a Valid Number
	Problem
	Solution
	Discussion
	See Also

	5.2 Storing a Larger Number in a Smaller Number
	Problem
	Solution
	Discussion

	5.3 Converting Numbers to Objects and Vice Versa
	Problem
	Solution
	Discussion

	5.4 Taking a Fraction of an Integer Without Using Floating Point
	Problem
	Solution
	Discussion

	5.5 Ensuring the Accuracy of Floating-Point Numbers
	Problem
	Solution

	5.6 Comparing Floating-Point Numbers
	Problem
	Solution

	5.7 Rounding Floating-Point Numbers
	Problem
	Solution

	5.8 Formatting Numbers
	Problem
	Solution
	See Also

	5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal
	Problem
	Solution
	Discussion

	5.10 Operating on a Series of Integers
	Problem
	Solution
	Discussion

	5.11 Working with Roman Numerals
	Problem
	Solution
	Discussion
	See Also

	5.12 Formatting with Correct Plurals
	Problem
	Solution

	5.13 Generating Random Numbers
	Problem
	Solution
	See Also

	5.14 Generating Better Random Numbers
	Problem
	Solution
	See Also

	5.15 Calculating Trigonometric Functions
	Problem
	Solution

	5.16 Taking Logarithms
	Problem
	Solution
	Discussion

	5.17 Multiplying Matrices
	Problem
	Solution
	Discussion
	See Also

	5.18 Using Complex Numbers
	Problem
	Solution

	5.19 Handling Very Large Numbers
	Problem
	Solution
	Discussion

	5.20 Program: TempConverter
	5.21 Program: Number Palindromes
	See Also

	Dates and Times
	6.0 Introduction
	6.1 Finding Today’s Date
	Problem
	Solution
	Discussion

	6.2 Printing Date/Time in a Given Format
	Problem
	Solution
	Discussion

	6.3 Representing Dates in Other Epochs
	Problem
	Solution
	Discussion

	6.4 Converting YMDHMS to a Calendar or Epoch Seconds
	Problem
	Solution

	6.5 Parsing Strings into Dates
	Problem
	Solution
	Discussion

	6.6 Converting Epoch Seconds to DMYHMS
	Problem
	Solution
	Discussion

	6.7 Adding to or Subtracting from a Date or Calendar
	Problem
	Solution
	Discussion

	6.8 Difference Between Two Dates
	Problem
	Solution
	Discussion

	6.9 Comparing Dates
	Problem
	Solution
	Discussion

	6.10 Day of Week/Month/Year or�Week�Number
	Problem
	Solution
	Discussion

	6.11 Creating a Calendar Page
	Problem
	Solution
	Discussion

	6.12 Measuring Elapsed Time
	Problem
	Solution
	Discussion

	6.13 Sleeping for a While
	Problem
	Solution
	Discussion

	6.14 Program: Reminder Service
	See Also

	Structuring Data with Java
	7.0 Introduction
	7.1 Using Arrays for Data Structuring
	Problem
	Solution
	Discussion

	7.2 Resizing an Array
	Problem
	Solution
	Discussion

	7.3 Like an Array, but More Dynamic
	Problem
	Solution
	Discussion

	7.4 Using Iterators for Data-Independent Access
	Problem
	Solution
	Discussion

	7.5 Structuring Data in a Linked List
	Problem
	Solution
	Discussion

	7.6 Mapping with Hashtable and HashMap
	Problem
	Solution
	Discussion

	7.7 Storing Strings in Properties and Preferences
	Problem
	Solution
	Discussion
	Preferences
	Properties
	Commercial solution for Windows registry access

	7.8 Sorting a Collection
	Problem
	Solution
	Discussion

	7.9 Avoiding the Urge to Sort
	Problem
	Solution
	Discussion

	7.10 Eschewing Duplication
	Problem
	Solution
	Discussion

	7.11 Finding an Object in a Collection
	Problem
	Solution
	Discussion

	7.12 Converting a Collection to an Array
	Problem
	Solution
	Discussion

	7.13 Rolling Your Own Iterator
	Problem
	Solution
	Discussion

	7.14 Stack
	Problem
	Solution
	Discussion

	7.15 Multidimensional Structures
	Problem
	Solution
	Discussion

	7.16 Finally, Collections
	Problem
	Solution
	Discussion
	See Also

	7.17 Program: Timing Comparisons

	Data Structuring with Generics, foreach, and Enumerations (JDK 1.5)
	8.0 Introduction
	See Also

	8.1 Using Generic Collections
	Problem
	Solution
	Discussion

	8.2 Using “foreach” Loops
	Problem
	Solution
	Discussion

	8.3 Avoid Casting by Using Generics
	Problem
	Solution
	Discussion

	8.4 Let Java Convert with AutoBoxing and AutoUnboxing
	Problem
	Solution
	Discussion

	8.5 Using Typesafe Enumerations
	Problem
	Solution
	Discussion

	8.6 Program: MediaInvoicer

	Object-Oriented Techniques
	9.0 Introduction
	Advice, or Mantras
	Use the API
	Generalize
	Read and write Javadoc
	Use subclassing and delegation
	Use design patterns

	9.1 Printing Objects: Formatting with toString(��)
	Problem
	Solution
	Discussion

	9.2 Overriding the Equals Method
	Problem
	Solution
	Discussion

	9.3 Overriding the hashCode Method
	Problem
	Discussion

	9.4 The Clone Method
	Problem
	Solution
	Discussion
	Using cloning
	Difficulty in the standard API

	9.5 The Finalize Method
	Problem
	Solution
	Discussion

	9.6 Using Inner Classes
	Problem
	Solution
	Discussion

	9.7 Providing Callbacks via Interfaces
	Problem
	Solution
	Discussion

	9.8 Polymorphism/Abstract Methods
	Problem
	Solution
	Discussion

	9.9 Passing Values
	Problem
	Solution
	Discussion
	See Also

	9.10 Enforcing the Singleton Pattern
	Problem
	Solution
	Discussion
	Variation
	See Also

	9.11 Roll Your Own Exceptions
	Problem
	Solution
	Discussion
	See Also

	9.12 Program: Plotter

	Input and Output
	10.0 Introduction
	Streams and Readers/Writers
	See Also

	10.1 Reading Standard Input
	Problem
	Solution
	Discussion

	10.2 Writing Standard Output
	Problem
	Solution
	Discussion

	10.3 Printing with the 1.5 Formatter
	Problem
	Solution
	Discussion

	10.4 Scanning a File with StreamTokenizer
	Problem
	Solution
	Discussion

	10.5 Scanning Input with the 1.5 Scanner Class
	Problem
	Solution
	Discussion

	10.6 Opening a File by Name
	Problem
	Solution
	Discussion

	10.7 Copying a File
	Problem
	Solution
	Discussion

	10.8 Reading a File into a String
	Problem
	Solution
	Discussion

	10.9 Reassigning the Standard Streams
	Problem
	Solution
	Discussion
	See Also

	10.10 Duplicating a Stream as It Is Written
	Problem
	Solution
	Discussion

	10.11 Reading/Writing a Different Character Set
	Problem
	Solution
	Discussion

	10.12 Those Pesky End-of-Line Characters
	Problem
	Solution
	Discussion

	10.13 Beware Platform-Dependent File Code
	Problem
	Solution
	Discussion

	10.14 Reading “Continued” Lines
	Problem
	Solution
	Discussion

	10.15 Binary Data
	Problem
	Solution
	Discussion

	10.16 Seeking
	Problem
	Solution
	Discussion

	10.17 Writing Data Streams from C
	Problem
	Solution
	Discussion

	10.18 Saving and Restoring Java Objects
	Problem
	Solution
	Discussion
	See Also

	10.19 Preventing ClassCastExceptions with SerialVersionUID
	Problem
	Solution
	Discussion

	10.20 Reading and Writing JAR or Zip Archives
	Problem
	Solution
	Discussion
	See Also

	10.21 Reading and Writing Compressed Files
	Problem
	Solution
	Discussion
	See Also

	10.22 Program: Text to PostScript
	See Also

	Directory and Filesystem Operations
	11.0 Introduction
	11.1 Getting File Information
	Problem
	Solution
	Discussion

	11.2 Creating a File
	Problem
	Solution
	Discussion

	11.3 Renaming a File
	Problem
	Solution
	Discussion

	11.4 Deleting a File
	Problem
	Solution
	Discussion

	11.5 Creating a Transient File
	Problem
	Solution
	Discussion

	11.6 Changing File Attributes
	Problem
	Solution
	Discussion

	11.7 Listing a Directory
	Problem
	Solution
	Discussion

	11.8 Getting the Directory Roots
	Problem
	Solution
	Discussion

	11.9 Creating New Directories
	Problem
	Solution
	Discussion

	11.10 Program: Find

	Programming External Devices: Serial and Parallel Ports
	12.0 Introduction
	The Communications API
	About the Code Examples in This Chapter
	See Also

	12.1 Choosing a Port
	Problem
	Solution
	Discussion

	12.2 Opening a Serial Port
	Problem
	Solution
	Discussion

	12.3 Opening a Parallel Port
	Problem
	Solution
	Discussion

	12.4 Resolving Port Conflicts
	Problem
	Solution
	Discussion

	12.5 Reading and Writing: Lock-Step
	Problem
	Solution
	Discussion

	12.6 Reading and Writing: Event-Driven
	Problem
	Solution
	Discussion

	12.7 Reading and Writing: Threads
	Problem
	Solution
	Discussion

	12.8 Program: Penman Plotter
	See Also

	Graphics and Sound
	13.0 Introduction
	13.1 Painting with a Graphics Object
	Problem
	Solution
	Discussion
	When to draw?

	13.2 Testing Graphical Components
	Problem
	Solution
	Discussion

	13.3 Drawing Text
	Problem
	Solution

	13.4 Drawing Centered Text in a Component
	Problem
	Solution
	Discussion
	See Also

	13.5 Drawing a Drop Shadow
	Problem
	Solution
	Discussion

	13.6 Drawing Text with 2D
	Problem
	Solution
	Discussion
	See Also

	13.7 Drawing Text with an Application Font
	Problem
	Solution
	Discussion

	13.8 Drawing an Image
	Problem
	Solution
	Discussion

	13.9 Playing a Sound File
	Problem
	Solution
	Discussion
	See Also

	13.10 Playing a Video Clip
	Problem
	Solution
	Discussion
	See Also

	13.11 Printing in Java
	Problem
	Solution
	Discussion
	See Also

	13.12 Program: PlotterAWT
	13.13 Program: Grapher

	Graphical User Interfaces
	14.0 Introduction
	See Also

	14.1 Displaying GUI Components
	Problem
	Solution
	Discussion

	14.2 Designing a Window Layout
	Problem
	Solution
	Discussion
	See Also

	14.3 A Tabbed View of Life
	Problem
	Solution
	Discussion
	See Also

	14.4 Action Handling: Making Buttons Work
	Problem
	Solution
	Discussion

	14.5 Action Handling Using Anonymous Inner Classes
	Problem
	Solution
	Discussion
	See Also

	14.6 Terminating a Program with “Window Close”
	Problem
	Solution
	Discussion
	See Also

	14.7 Dialogs: When Later Just Won’t Do
	Problem
	Solution
	Discussion
	See Also

	14.8 Catching and Formatting GUI Exceptions
	Problem
	Solution
	Discussion

	14.9 Getting Program Output into a Window
	Problem
	Solution
	Discussion

	14.10 Choosing a Value with JSpinner
	Problem
	Solution
	Discussion
	See Also

	14.11 Choosing a File with JFileChooser
	Problem
	Solution
	Discussion

	14.12 Choosing a Color
	Problem
	Solution
	Discussion
	See Also

	14.13 Formatting JComponents with HTML
	Problem
	Solution
	Discussion

	14.14 Centering a Main Window
	Problem
	Solution
	Discussion

	14.15 Changing a Swing Program’s Look and Feel
	Problem
	Solution
	Discussion
	See Also

	14.16 Enhancing Your GUI for Mac OS X
	Problem
	Solution
	Discussion
	See Also

	14.17 Program: Custom Font Chooser
	Problem
	Solution
	Discussion

	14.18 Program: Custom Layout Manager
	Problem
	Solution
	Discussion
	See Also

	Internationalization and Localization
	15.0 Introduction
	15.1 Creating a Button with I18N Resources
	Problem
	Solution
	What happens at runtime?
	Setting the locale

	15.2 Listing Available Locales
	Problem
	Solution
	Discussion

	15.3 Creating a Menu with I18N Resources
	Problem
	Solution
	Discussion

	15.4 Writing Internationalization Convenience Routines
	Problem
	Solution
	Discussion

	15.5 Creating a Dialog with I18N Resources
	Problem
	Solution
	Discussion

	15.6 Creating a Resource Bundle
	Problem
	Solution
	Discussion

	15.7 Extracting Strings from Your Code
	Problem
	Solution
	Discussion

	15.8 Using a Particular Locale
	Problem
	Solution
	Discussion

	15.9 Setting the Default Locale
	Problem
	Solution
	Discussion

	15.10 Formatting Messages
	Problem
	Solution
	Discussion

	15.11 Program: MenuIntl
	15.12 Program: BusCard
	See Also
	Internationalization Caveats
	Documentation
	The Last Word

	Network Clients
	16.0 Introduction
	16.1 Contacting a Server
	Problem
	Solution
	Discussion
	See Also

	16.2 Finding and Reporting Network Addresses
	Problem
	Solution
	Discussion
	See Also

	16.3 Handling Network Errors
	Problem
	Solution

	16.4 Reading and Writing Textual Data
	Problem
	Solution
	Discussion

	16.5 Reading and Writing Binary Data
	Problem
	Solution
	Discussion

	16.6 Reading and Writing Serialized Data
	Problem
	Solution
	Discussion

	16.7 UDP Datagrams
	Problem
	Solution
	Discussion

	16.8 Program: TFTP UDP Client
	16.9 Program: Telnet Client
	16.10 Program: Chat Client
	See Also

	Server-Side Java: Sockets
	17.0 Introduction
	17.1 Opening a Server for Business
	Problem
	Solution
	Discussion

	17.2 Returning a Response (String or Binary)
	Problem
	Solution
	Discussion

	17.3 Returning Object Information
	Problem
	Solution
	Discussion

	17.4 Handling Multiple Clients
	Problem
	Solution
	Discussion

	17.5 Serving the HTTP Protocol
	Problem
	Solution
	Discussion

	17.6 Securing a Web Server with SSL and JSSE
	Problem
	Solution
	Discussion
	See Also

	17.7 Network Logging
	Problem
	Solution
	Discussion
	See Also

	17.8 Network Logging with log4j
	Problem
	Solution
	Discussion

	17.9 Network Logging with JDK 1.4
	Problem
	Solution
	Discussion

	17.10 Finding Network Interfaces
	Problem
	Solution
	Discussion

	17.11 Program: A Java Chat Server
	See Also

	Network Clients II: Applets and Web Clients
	18.0 Introduction
	18.1 Embedding Java in a Web Page
	Problem
	Solution
	Discussion

	18.2 Applet Techniques
	Problem
	Solution
	Discussion
	See Also

	18.3 Contacting a Server on the Applet Host
	Problem
	Solution
	Discussion

	18.4 Making an Applet Show a Document
	Problem
	Solution
	Discussion

	18.5 Making an Applet Run JavaScript
	Problem
	Solution
	Discussion
	See Also

	18.6 Making an Applet Run a CGI Script
	Problem
	Solution
	Discussion

	18.7 Reading the Contents of a URL
	Problem
	Solution
	Discussion
	See Also

	18.8 URI, URL, or URN?
	Problem
	Solution
	Discussion

	18.9 Extracting HTML from a URL
	Problem
	Solution
	Discussion

	18.10 Extracting URLs from a File
	Problem
	Solution
	Discussion

	18.11 Converting a Filename to a URL
	Problem
	Solution
	Discussion

	18.12 Program: MkIndex
	18.13 Program: LinkChecker
	Downloading an Entire Web Site

	Java and Electronic Mail
	19.0 Introduction
	19.1 Sending Email: Browser Version
	Problem
	Solution
	Discussion

	19.2 Sending Email: For Real
	Problem
	Solution
	Discussion

	19.3 Mail-Enabling a Server Program
	Problem
	Solution
	Discussion

	19.4 Sending MIME Mail
	Problem
	Solution
	Discussion

	19.5 Providing Mail Settings
	Problem
	Solution
	Discussion

	19.6 Sending Mail Without Using JavaMail
	Problem
	Solution
	Discussion

	19.7 Reading Email
	Problem
	Solution
	Discussion

	19.8 Program: MailReaderBean
	19.9 Program: MailClient
	See Also

	Database Access
	20.0 Introduction
	20.1 Easy Database Access with JDO
	Problem
	Solution
	Discussion
	See Also

	20.2 Text-File Databases
	Problem
	Solution
	Discussion
	See Also

	20.3 DBM Databases
	Problem
	Solution
	Discussion
	See Also

	20.4 JDBC Setup and Connection
	Problem
	Solution
	Discussion

	20.5 Connecting to a JDBC Database
	Problem
	Solution
	Discussion
	See Also

	20.6 Sending a JDBC Query and�Getting�Results
	Problem
	Solution
	Discussion

	20.7 Using JDBC Prepared Statements
	Problem
	Solution
	Discussion

	20.8 Using Stored Procedures with JDBC
	Problem
	Solution
	Discussion

	20.9 Changing Data Using a ResultSet
	Problem
	Solution
	Discussion

	20.10 Storing Results in a RowSet
	Problem
	Solution
	Discussion
	See Also

	20.11 Changing Data Using SQL
	Problem
	Solution
	Discussion

	20.12 Finding JDBC Metadata
	Problem
	Solution
	Discussion
	ResultSetMetaData
	DatabaseMetaData

	20.13 Program: SQLRunner
	See Also

	XML
	21.0 Introduction
	21.1 Generating XML from Objects
	Problem
	Solution
	Discussion

	21.2 Transforming XML with XSLT
	Problem
	Solution
	Discussion
	See Also

	21.3 Parsing XML with SAX
	Problem
	Solution
	Discussion

	21.4 Parsing XML with DOM
	Problem
	Solution
	Discussion

	21.5 Verifying Structure with a DTD
	Problem
	Solution
	Discussion
	See Also

	21.6 Generating Your Own XML with DOM
	Problem
	Solution
	Discussion

	21.7 Program: xml2mif
	See Also

	Distributed Java: RMI
	22.0 Introduction
	22.1 Defining the RMI Contract
	Problem
	Solution
	Discussion

	22.2 Creating an RMI Client
	Problem
	Solution
	Discussion

	22.3 Creating an RMI Server
	Problem
	Solution
	Discussion
	Using the server

	See Also

	22.4 Deploying RMI Across a Network
	Problem
	Solution
	Discussion

	22.5 Program: RMI Callbacks
	22.6 Program: NetWatch
	See Also

	Packages and Packaging
	23.0 Introduction
	23.1 Creating a Package
	Problem
	Solution
	Discussion

	23.2 Documenting Classes with Javadoc
	Problem
	Solution
	Discussion
	See Also

	23.3 Beyond JavaDoc: Annotations/Metadata (JDK 1.5) and XDoclet
	Problem
	Solution
	Discussion
	The Annotations Mechanism (JDK 1.5)

	23.4 Archiving with jar
	Problem
	Solution
	Discussion

	23.5 Running an Applet from a JAR
	Problem
	Solution
	Discussion
	See Also

	23.6 Running an Applet with a Modern JDK
	Problem
	Solution
	Discussion

	23.7 Running a Main Program from a JAR
	Problem
	Solution
	Discussion
	Mac OS X Specifics

	23.8 Preparing a Class as a JavaBean
	Problem
	Solution
	Discussion

	23.9 Pickling Your Bean into a JAR
	Problem
	Solution
	Discussion
	See Also

	23.10 Packaging a Servlet into a WAR File
	Problem
	Solution
	Discussion

	23.11 “Write Once, Install Anywhere”
	Problem
	Solution
	Discussion

	23.12 “Write Once, Install on Mac OS X”
	Problem
	Solution
	Discussion
	See Also

	23.13 Java Web Start
	Problem
	Solution
	Discussion
	See Also

	23.14 Signing Your JAR File
	Problem
	Solution
	Discussion
	See Also

	Threaded Java
	24.0 Introduction
	24.1 Running Code in a Different Thread
	Problem
	Solution
	Discussion
	Thread lifecycle methods

	24.2 Displaying a Moving Image with Animation
	Problem
	Solution
	Discussion

	24.3 Stopping a Thread
	Problem
	Solution
	Discussion

	24.4 Rendezvous and Timeouts
	Problem
	Solution
	Discussion

	24.5 Synchronizing Threads with the synchronized Keyword
	Problem
	Solution
	Discussion

	24.6 Simplifying Synchronization with 1.5 Locks
	Problem
	Solution
	Discussion
	See Also

	24.7 Synchronizing Threads with wait(�) and notifyAll(�)
	Problem
	Solution
	Discussion

	24.8 Simplifying Producer-Consumer with the 1.5 Queue Interface
	Problem
	Solution
	Discussion

	24.9 Background Saving in an Editor
	Problem
	Solution
	Discussion

	24.10 Program: Threaded Network Server
	Problem
	Solution
	Discussion

	24.11 Simplifying Servers Using the Concurrency Utilities (JDK 1.5)
	Problem
	Solution
	Discussion
	See Also

	Introspection, or “A Class Named Class”
	25.0 Introduction
	25.1 Getting a Class Descriptor
	Problem
	Solution

	25.2 Finding and Using Methods and�Fields
	Problem
	Solution
	Discussion

	25.3 Loading and Instantiating a Class Dynamically
	Problem
	Solution
	Discussion

	25.4 Constructing a Class from Scratch
	Problem
	Solution
	Discussion
	What next?

	25.5 Performance Timing
	Problem
	Solution
	Discussion
	Timing results
	Timing program

	25.6 Printing Class Information
	Problem
	Solution
	Discussion

	25.7 Program: CrossRef
	25.8 Program: AppletViewer
	See Also

	Using Java with Other Languages
	26.0 Introduction
	26.1 Running a Program
	Problem
	Solution
	Discussion

	26.2 Running a Program and Capturing Its Output
	Problem
	Solution
	Discussion
	See Also

	26.3 Mixing Java and Scripts with BSF
	Problem
	Solution
	Discussion
	See Also

	26.4 Marrying Java and Perl
	Problem
	Solution
	Discussion
	See Also

	26.5 Blending in Native Code (C/C++)
	Problem
	Solution
	Discussion
	See Also

	26.6 Calling Java from Native Code
	Problem
	Solution
	Discussion

	26.7 Program: DBM
	See Also

	Afterword
	Index

