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Preface

Over the past few years, JavaScript has been used more and more as a server-side com‐
puter programming language owing to platforms such as Node.js and SpiderMonkey.
Now that JavaScript programming is moving out of the browser, programmers will find
they need to use many of the tools provided by more conventional languages, such as
C++ and Java. Among these tools are classic data structures such as linked lists, stacks,
queues, and graphs, as well as classic algorithms for sorting and searching data. This
book discusses how to implement these data structures and algorithms for server-side
JavaScript programming.

JavaScript programmers will find this book useful because it discusses how to implement
data structures and algorithms within the constraints that JavaScript places them, such
as arrays that are really objects, overly global variables, and a prototype-based object
system. JavaScript has an unfair reputation as a “bad” programming language, but this
book demonstrates how you can use JavaScript to develop efficient and effective data
structures and algorithms using the language’s “good parts.”

Why Study Data Structures and Algorithms
I am assuming that many of you reading this book do not have a formal education in
computer science. If you do, then you already know why studying data structures and
algorithms is important. If you do not have a degree in computer science or haven’t
studied these topics formally, you should read this section.

The computer scientist Nicklaus Wirth wrote a computer programming textbook titled
Algorithms + Data Structures = Programs (Prentice-Hall). That title is the essence of
computer programming. Any computer program that goes beyond the trivial “Hello,
world!” will usually require some type of structure to manage the data the program is
written to manipulate, along with one or more algorithms for translating the data from
its input form to its output form.

ix



For many programmers who didn’t study computer science in school, the only data
structure they are familiar with is the array. Arrays are great for some problems, but for
many complex problems, they are simply not sophisticated enough. Most experienced
programmers will admit that for many programming problems, once they come up with
the proper data structure, the algorithms needed to solve the problem are easier to design
and implement.

An example of a data structure that leads to efficient algorithms is the binary search tree
(BST). A binary search tree is designed so that it is easy to find the minimum and
maximum values of a set of data, yielding an algorithm that is more efficient than the
best search algorithms available. Programmers unfamiliar with BSTs will instead prob‐
ably use a simpler data structure that ends up being less efficient.

Studying algorithms is important because there is always more than one algorithm that
can be used to solve a problem, and knowing which ones are the most efficient is im‐
portant for the productive programmer. For example, there are at least six or seven ways
to sort a list of data, but knowing that the Quicksort algorithm is more efficient than
the selection sort algorithm will lead to a much more efficient sorting process. Or that
it’s fairly easy to implement a sequential or linear search algorithm for a list of data, but
knowing that the binary sort algorithm can sometimes be twice as efficient as the se‐
quential search will lead to a better program.

The comprehensive study of data structures and algorithms teaches you not only which
data structures and which algorithms are the most efficient, but you also learn how to
decide which data structures and which algorithms are the most appropriate for the
problem at hand. There will often be trade-offs involved when writing a program, es‐
pecially in the JavaScript environment, and knowing the ins and outs of the various data
structures and algorithms covered in this book will help you make the proper decision
for any particular programming problem you are trying to solve.

What You Need for This Book
The programming environment we use in this book is the JavaScript shell based on
the SpiderMonkey JavaScript engine. Chapter 1 provides instructions on downloading
the shell for your environment. Other shells will work as well, such as the Node.js Java‐
Script shell, though you will have to make some translations for the programs in the
book to work in Node. Other than the shell, the only thing you need is a text editor for
writing your JavaScript programs.

x | Preface



Organization of the Book
• Chapter 1 presents an overview of the JavaScript language, or at least the features

of the JavaScript language used in this book. This chapter also demonstrates through
use the programming style used throughout the other chapters.

• Chapter 2 discusses the most common data structure in computer programming:
the array, which is native to JavaScript.

• Chapter 3 introduces the first implemented data structure: the list.
• Chapter 4 covers the stack data structure. Stacks are used throughout computer

science in both compiler and operating system implementations.
• Chapter 5 discusses queue data structures. Queues are an abstraction of the lines

you stand in at a bank or the grocery store. Queues are used extensively in simulation
software where data has to be lined up before it is processed.

• Chapter 6 covers Linked lists. A linked list is a modification of the list data structure,
where each element is a separate object linked to the objects on either side of it.
Linked lists are efficient when you need to perform multiple insertions and dele‐
tions in your program.

• Chapter 7 demonstrates how to build and use dictionaries, which are data structures
that store data as key-value pairs.

• One way to implement a dictionary is to use a hash table, and Chapter 8 discusses
how to build hash tables and the hash algorithms that are used to store data in the
table.

• Chapter 9 covers the set data structure. Sets are often not covered in data structure
books, but they can be useful for storing data that is not supposed to have duplicates
in the data set.

• Binary trees and binary search trees are the subject of Chapter 10. As mentioned
earlier, binary search trees are useful for storing data that needs to be stored orig‐
inally in sorted form.

• Chapter 11 covers graphs and graph algorithms. Graphs are used to represent data
such as the nodes of a computer network or the cities on a map.

• Chapter 12 moves from data structures to algorithms and discusses various algo‐
rithms for sorting data, including both simple sorting algorithms that are easy to
implement but are not efficient for large data sets, and more complex algorithms
that are appropriate for larger data sets.

• Chapter 13 also covers algorithms, this time searching algorithms such as sequential
search and binary search.

• The last chapter of the book, Chapter 14, discusses a couple more advanced algo‐
rithms for working with data—dynamic programming and greedy algorithms.
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These algorithms are useful for solving hard problems where a more traditional
algorithm is either too slow or too hard to implement. We examine some classic
problems for both dynamic programming and greedy algorithms in the chapter.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/data_structures_and_algorithms_using_javascript.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Data Structures and Algorithms Using Java‐
Script by Michael McMillian (O’Reilly). Copyright 2014 Michael McMillan,
978-1-449-36493-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.
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CHAPTER 1

The JavaScript Programming Environment
and Model

This chapter describes the JavaScript programming environment and the programming
constructs we’ll use in this book to define the various data structures and algorithms
examined.

The JavaScript Environment
JavaScript has historically been a programming language that ran only inside a web
browser. However, in the past few years, there has been the development of JavaScript
programming environments that can be run from the desktop, or similarly, from a
server. In this book we use one such environment: the JavaScript shell that is part of
Mozilla’s comprehensive JavaScript environment known as SpiderMonkey.

To download the JavaScript shell, navigate to the Nightly Build web page. Scroll to the
bottom of the page and pick the download that matches your computer system.

Once you’ve downloaded the program, you have two choices for using the shell. You
can use it either in interactive mode or to interpret JavaScript programs stored in a
file. To use the shell in interactive mode, type the command js at a command prompt.
The shell prompt, js>, will appear and you are ready to start entering JavaScript ex‐
pressions and statements.

The following is a typical interaction with the shell:

js> 1
1
js> 1+2
3
js> var num = 1;
js> num*124
124

1
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js> for (var i = 1; i < 6; ++i) {
    print(i);
}
1
2
3
4
5
js>

You can enter arithmetic expressions and the shell will immediately evaluate them. You
can write any legal JavaScript statement and the shell will immediately evaluate it as
well. The interactive shell is great for exploring JavaScript statements to discover how
they work. To leave the shell when you are finished, type the command quit().

The other way to use the shell is to have it interpret complete JavaScript programs. This
is how we will use the shell throughout the rest of the book.

To use the shell to intepret programs, you first have to create a file that contains a
JavaScript program. You can use any text editor, making sure you save the file as plain
text. The only requirement is that the file must have a .js extension. The shell has to see
this extension to know the file is a JavaScript program.

Once you have your file saved, you interpret it by typing the js command followed by
the full filename of your program. For example, if you saved the for loop code fragment
that’s shown earlier in a file named loop.js, you would enter the following:

c:\js>js loop.js

which would produce the following output:

1
2
3
4
5

After the program is executed, control is returned to the command prompt.

JavaScript Programming Practices
In this section we discuss how we use JavaScript. We realize that programmers have
different styles and practices when it comes to writing programs, and we want to de‐
scribe ours here at the beginning of the book so that you’ll understand the more complex
code we present in the rest of the book. This isn’t a tutorial on using JavaScript but is
just a guide to how we use the fundamental constructs of the language.
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Declaring and Intializing Variables
JavaScript variables are global by default and, strictly speaking, don’t have to be declared
before using. When a JavaScript variable is initialized without first being declared, it
becomes a global variable. In this book, however, we follow the convention used with
compiled languages such as C++ and Java by declaring all variables before their first
use. The added benefit to doing this is that declared variables are created as local vari‐
ables. We will talk more about variable scope later in this chapter.

To declare a variable in JavaScript, use the keyword var followed by a variable name,
and optionally, an assignment expression. Here are some examples:

var number;
var name;
var rate = 1.2;
var greeting = "Hello, world!";
var flag = false;

Arithmetic and Math Library Functions in JavaScript
JavaScript utilizes the standard arithmetic operators:

• + (addition)
• - (subtraction)
• * (multiplication)
• / (division)
• % (modulo)

JavaScript also has a math library you can use for advanced functions such as square
root, absolute value, and the trigonometric functions. The arithmetic operators follow
the standard order of operations, and parentheses can be used to modify that order.

Example 1-1 shows some examples of performing arithmetic in JavaScript, as well as
examples of using several of the mathematical functions.

Example 1-1. Arithmetic and math functions in JavaScript
var x = 3;
var y = 1.1;
print(x + y);
print(x * y);
print((x+y)*(x-y));
var z = 9;
print(Math.sqrt(z));
print(Math.abs(y/x));

The output from this program is:

JavaScript Programming Practices | 3



4.1
3.3000000000000003
7.789999999999999
3
0.3666666666666667

If you don’t want or need the precision shown above, you can format a number to a
fixed precision:

var x = 3;
var y = 1.1;
var z = x * y;
print(z.toFixed(2)); // displays 3.30

Decision Constructs
Decision constructs allow our programs to make decisions on what programming
statements to execute based on a Boolean expression. The two decision constructs we
use in this book are the if statement and the switch statement.

The if statement comes in three forms:

• The simple if statement
• The if-else statement
• The if-else if statement

Example 1-2 shows how to write a simple if statement.

Example 1-2. The simple if statement
var mid = 25;
var high = 50;
var low = 1;
var current = 13;
var found = -1;
if (current < mid) {
   mid = (current-low) / 2;
}

Example 1-3 demonstrates the if-else statement.

Example 1-3. The if-else statement
var mid = 25;
var high = 50;
var low = 1;
var current = 13;
var found = -1;
if (current < mid) {
   mid = (current-low) / 2;
}
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else {
   mid = (current+high) / 2;
}

Example 1-4 illustrates the if-else if statement.

Example 1-4. The if-else if statement
var mid = 25;
var high = 50;
var low = 1;
var current = 13;
var found = -1;
if (current < mid) {
   mid = (current-low) / 2;
}
else if (current > mid) {
   mid = (current+high) / 2;
}
else {
   found = current;
}

The other decision structure we use in this book is the switch statement. This statement
provides a cleaner, more structured construction when you have several simple deci‐
sions to make. Example 1-5 demonstrates how the switch statement works.

Example 1-5. The switch statement
putstr("Enter a month number: ");
var monthNum = readline();
var monthName;
switch (monthNum) {
   case "1":
      monthName = "January";
      break;
   case "2":
      monthName = "February";
      break;
   case "3":
      monthName = "March";
      break;
   case "4":
      monthName = "April";
      break;
   case "5":
      monthName = "May";
      break;
   case "6":
      monthName = "June";
      break;
   case "7":
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      monthName = "July";
      break;
   case "8":
      monthName = "August";
      break;
   case "9":
      monthName = "September";
      break;
   case "10":
      monthName = "October";
      break;
   case "11":
      monthName = "November";
      break;
   case "12":
      monthName = "December";
      break;
   default:
      print("Bad input");
}

Is this the most efficient way to solve this problem? No, but it does a great job of dem‐
onstrating how the switch statement works.

One major difference between the JavaScript switch statement and switch statements
in other programming languages is that the expression that is being tested in the state‐
ment can be of any data type, as opposed to an integral data type, as required by languages
such as C++ and Java. In fact, you’ll notice in the previous example that we use the
month numbers as strings, rather than converting them to numbers, since we can com‐
pare strings using the switch statement in JavaScript.

Repetition Constructs
Many of the algorithms we study in this book are repetitive in nature. We use two
repetition constructs in this book—the while loop and the for loop.

When we want to execute a set of statements while a condition is true, we use a while
loop. Example 1-6 demonstrates how the while loop works.

Example 1-6. The while loop
var number = 1;
var sum = 0;
while (number < 11) {
   sum += number;
   ++number;
}
print(sum); // displays 55
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When we want to execute a set of statements a specified number of times, we use a for
loop. Example 1-7 uses a for loop to sum the integers 1 through 10.

Example 1-7. Summing integers using a for loop
var number = 1;
var sum = 0;
for (var number = 1; number < 11; number++) {
   sum += number;
}
print(sum); // displays 55

for loops are also used frequently to access the elements of an array, as shown in
Example 1-8.

Example 1-8. Using a for loop with an array
var numbers = [3, 7, 12, 22, 100];
var sum = 0;
for (var i = 0; i < numbers.length; ++i) {
   sum += numbers[i];
}
print(sum); // displays 144

Functions
JavaScript provides the means to define both value-returning functions and functions
that don’t return values (sometimes called subprocedures or void functions).

Example 1-9 demonstrates how value-returning functions are defined and called in
JavaScript.

Example 1-9. A value-returning function
function factorial(number) {
   var product = 1;
   for (var i = number; i >= 1; --i) {
      product *= i;
   }
   return product;
}

print(factorial(4)); // displays 24
print(factorial(5)); // displays 120
print(factorial(10)); // displays 3628800

Example 1-10 illustrates how to write a function that is used not for its return value, but
for the operations it performs.
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Example 1-10. A subprocedure or void function in JavaScript
function curve(arr, amount) {
   for (var i = 0; i < arr.length; ++i) {
      arr[i] += amount;
   }
}

var grades = [77, 73, 74, 81, 90];
curve(grades, 5);
print(grades); // displays 82,78,79,86,95

All function parameters in JavaScript are passed by value, and there are no reference
parameters. However, there are reference objects, such as arrays, which are passed to
functions by reference, as was demonstrated in Example 1-10.

Variable Scope
The scope of a variable refers to where in a program a variable’s value can be accessed.
The scope of a variable in JavaScript is defined as function scope. This means that a
variable’s value is visible within the function definition where the variable is declared
and defined and within any functions that are nested within that function.

When a variable is defined outside of a function, in the main program, the variable is
said to have global scope, which means its value can be accessed by any part of a program,
including functions. The following short program demonstrates how global scope
works:

function showScope() {
   return scope;
}

var scope = "global";
print(scope); // displays "global"
print(showScope()); // displays "global"

The function showScope() can access the variable scope because scope is a global vari‐
able. Global variables can be declared at any place in a program, either before or after
function definitions.

Now watch what happens when we define a second scope variable within the show
Scope() function:

function showScope() {
   var scope = "local";
   return scope;
}

var scope = "global";
print(scope); // displays "global"
print(showScope()); // displays "local"
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The scope variable defined in the showScope() function has local scope, while the scope
variable defined in the main program is a global variable. Even though the two variables
have the same name, their scopes are different, and their values are different when
accessed within the area of the program where they are defined.

All of this behavior is normal and expected. However, it can all change if you leave off
the keyword var in the variable definitions. JavaScript allows you to define variables
without using the var keyword, but when you do, that variable automatically has global
scope, even if defined within a function.

Example 1-11 demonstrates the ramifications of leaving off the var keyword when
defining variables.

Example 1-11. The ramification of overusing global variables
function showScope() {
   scope = "local";
   return scope;
}

scope = "global";
print(scope); // displays "global"
print(showScope()); // displays "local"
print(scope); // displays "local"

In Example 1-11, because the scope variable inside the function is not declared with the
var keyword, when the string "local" is assigned to the variable, we are actually chang‐
ing the value of the scope variable in the main program. You should always begin every
definition of a variable with the var keyword to keep things like this from happening.

Earlier, we mentioned that JavaScript has function scope. This means that JavaScript
does not have block scope, unlike many other modern programming languages. With
block scope, you can declare a variable within a block of code and the variable is not
accessible outside of that block, as you typically see with a C++ or Java for loop:

for (int i = 1; i <=10; ++i) {
   cout << "Hello, world!" << endl;
}

Even though JavaScript does not have block scope, we pretend like it does when we write
for loops in this book:

for (var i = 1; i <= 10; ++i ) {
   print("Hello, world!");
}

We don’t want to be the cause of you picking up bad programming habits.
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Recursion
Function calls can be made recursively in JavaScript. The factorial() function defined
earlier can also be written recursively, like this:

function factorial(number) {
   if (number == 1) {
      return number;
   }
   else {
      return number * factorial(number-1);
   }
}

print(factorial(5));

When a function is called recursively, the results of the function’s computation are tem‐
porarily suspended while the recursion is in progress. To demonstrate how this works,
here is a diagram for the factorial() function when the argument passed to the func‐
tion is 5:

5 * factorial(4)
5 * 4 * factorial(3)
5 * 4 * 3 * factorial(2)
5 * 4 * 3 * 2 * factorial(1)
5 * 4 * 3 * 2 * 1
5 * 4 * 3 * 2
5 * 4 * 6
5 * 24
120

Several of the algorithms discussed in this book use recursion. For the most part, Java‐
Script is capable of handling fairly deep recursive calls (this is an example of a relatively
shallow recursive call); but in one or two situations, an algorithm requires a deeper
recursive call than JavaScript can handle and we instead pursue an iterative solution to
the algorithm. You should keep in mind that any function that uses recursion can be
rewritten in an iterative manner.

Objects and Object-Oriented Programming
The data structures discussed in this book are implemented as objects. JavaScript pro‐
vides many different ways for creating and using objects. In this section we demonstrate
the techniques used in this book for creating objects and for creating and using an
object’s functions and properties.

Objects are created by defining a constructor function that includes declarations for an
object’s properties and functions, followed by definitions for the functions. Here is the
constructor function for a checking account object:
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function Checking(amount) {
   this.balance = amount; // property
   this.deposit = deposit; // function
   this.withdraw = withdraw; // function
   this.toString = toString; // function
}

The this keyword is used to tie each function and property to an object instance. Now
let’s look at the function definitions for the preceding declarations:

function deposit(amount) {
   this.balance += amount;
}

function withdraw(amount) {
   if (amount <= this.balance) {
      this.balance -= amount;
   }
   if (amount > this.balance) {
      print("Insufficient funds");
   }
}

function toString() {
   return "Balance: " + this.balance;
}

Again, we have to use the this keyword with the balance property in order for the
interpreter to know which object’s balance property we are referencing.

Example 1-12 provides the complete definition for the checking object along with a test
program.

Example 1-12. Defining and using the Checking object
function Checking(amount) {
   this.balance = amount;
   this.deposit = deposit;
   this.withdraw = withdraw;
   this.toString = toString;
}

function deposit(amount) {
   this.balance += amount;
}

function withdraw(amount) {
   if (amount <= this.balance) {
      this.balance -= amount;
   }
   if (amount > this.balance) {
      print("Insufficient funds");
   }
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}

function toString() {
   return "Balance: " + this.balance;
}

var account = new Checking(500);
account.deposit(1000);
print(account.toString()); // Balance: 1500
account.withdraw(750);
print(account.toString()); // Balance: 750
account.withdraw(800); // displays "Insufficient funds"
print(account.toString()); // Balance: 750

Summary
This chapter provided an overview of the way we use JavaScript throughout the rest of
the book. We try to follow a programming style that is common to many programmers
who are accustomed to using C-style languages such as C++ and Java. Of course, Java‐
Script has many conventions that do not follow the rules of those languages, and we
certainly point those out (such as the declaration and use of variables) and show you
the correct way to use the language. We also follow as many of the good JavaScript
programming practices outlined by authors such as John Resig, Douglas Crockford,
and others as we can. As responsible programmers, we need to keep in mind that it is
just as important that our programs be readable by humans as it is that they be correctly
executed by computers.
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CHAPTER 2

Arrays

The array is the most common data structure in computer programming. Every pro‐
gramming language includes some form of array. Because arrays are built-in, they are
usually very efficient and are considered good choices for many data storage purposes.
In this chapter we explore how arrays work in JavaScript and when to use them.

JavaScript Arrays Defined
The standard definition for an array is a linear collection of elements, where the elements
can be accessed via indices, which are usually integers used to compute offsets. Most
computer programming languages have these types of arrays. JavaScript, on the other
hand, has a different type of array altogether.

A JavaScript array is actually a specialized type of JavaScript object, with the indices
being property names that can be integers used to represent offsets. However, when
integers are used for indices, they are converted to strings internally in order to conform
to the requirements for JavaScript objects. Because JavaScript arrays are just objects,
they are not quite as efficient as the arrays of other programming languages.

While JavaScript arrays are, strictly speaking, JavaScript objects, they are specialized
objects categorized internally as arrays. The Array is one of the recognized JavaScript
object types, and as such, there is a set of properties and functions you can use with
arrays.

Using Arrays
Arrays in JavaScript are very flexible. There are several different ways to create arrays,
access array elements, and perform tasks such as searching and sorting the elements
stored in an array. JavaScript 1.5 also includes array functions that allow programmers
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to work with arrays using functional programming techniques. We demonstrate all of
these techniques in the following sections.

Creating Arrays
The simplest way to create an array is by declaring an array variable using the [] oper‐
ator:

var numbers = [];

When you create an array in this manner, you have an array with length of 0. You can
verify this by calling the built-in length property:

print(numbers.length); // displays 0

Another way to create an array is to declare an array variable with a set of elements
inside the [] operator:

var numbers = [1,2,3,4,5];
print(numbers.length); // displays 5

You can also create an array by calling the Array constructor:

var numbers = new Array();
print(numbers.length); // displays 0

You can call the Array constructor with a set of elements as arguments to the constructor:

var numbers = new Array(1,2,3,4,5);
print(numbers.length); // displays 5

Finally, you can create an array by calling the Array constructor with a single argument
specifying the length of the array:

var numbers = new Array(10);
print(numbers.length); // displays 10

Unlike many other programming languages, but common for most scripting languages,
JavaScript array elements do not all have to be of the same type:

var objects = [1, "Joe", true, null];

We can verify that an object is an array by calling the Array.isArray() function, like
this:

var numbers = 3;
var arr = [7,4,1776];
print(Array.isArray(number)); // displays false
print(Array.isArray(arr)); // displays true

We’ve covered several techniques for creating arrays. As for which function is best, most
JavaScript experts recommend using the [] operator, saying it is more efficient than
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calling the Array constructor (see JavaScript: The Definitive Guide [O’Reilly] and Java‐
Script: The Good Parts [O’Reilly]).

Accessing and Writing Array Elements
Data is assigned to array elements using the [] operator in an assignment statement.
For example, the following loop assigns the values 1 through 100 to an array:

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = i+1;
}

Array elements are also accessed using the [] operator. For example:

var numbers = [1,2,3,4,5];
var sum = numbers[0] + numbers[1] + numbers[2] + numbers[3] +
          numbers[4];
print(sum); // displays 15

Of course, accessing all the elements of an array sequentially is much easier using a for
loop:

var numbers = [1,2,3,5,8,13,21];
var sum = 0;
for (var i = 0; i < numbers.length; ++i) {
   sum += numbers[i];
}
print(sum); // displays 53

Notice that the for loop is controlled using the length property rather than an integer
literal. Because JavaScript arrays are objects, they can grow beyond the size specified
when they were created. By using the length property, which returns the number of
elements currently in the array, you can guarantee that your loop processes all array
elements.

Creating Arrays from Strings
Arrays can be created as the result of calling the split() function on a string. This
function breaks up a string at a common delimiter, such as a space for each word, and
creates an array consisting of the individual parts of the string.

The following short program demonstrates how the split() function works on a simple
string:

var sentence = "the quick brown fox jumped over the lazy dog";
var words = sentence.split(" ");
for (var i = 0; i < words.length; ++i) {
   print("word " + i + ": " + words[i]);
}
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The output from this program is:

word 0: the
word 1: quick
word 2: brown
word 3: fox
word 4: jumped
word 5: over
word 6: the
word 7: lazy
word 8: dog

Aggregate Array Operations
There are several aggregate operations you can perform on arrays. First, you can assign
one array to another array:

var nums = [];
for (var i = 0; i < 10; ++i) {
   nums[i] = i+1;
}
var samenums = nums;

However, when you assign one array to another array, you are assigning a reference to
the assigned array. When you make a change to the original array, that change is reflected
in the other array as well. The following code fragment demonstrates how this works:

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = i+1;
}
var samenums = nums;
nums[0] = 400;
print(samenums[0]); // displays 400

This is called a shallow copy. The new array simply points to the original array’s elements.
A better alternative is to make a deep copy, so that each of the original array’s elements
is actually copied to the new array’s elements. An effective way to do this is to create a
function to perform the task:

function copy(arr1, arr2) {
   for (var i = 0; i < arr1.length; ++i) {
      arr2[i] = arr1[i];
   }
}

Now the following code fragment produces the expected result:

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = i+1;
}
var samenums = [];
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copy(nums, samenums);
nums[0] = 400;
print(samenums[0]); // displays 1

Another aggregate operation you can perform with arrays is displaying the contents of
an array using a function such as print(). For example:

var nums = [1,2,3,4,5];
print(nums);

will produce the following output:

1,2,3,4,5

This output may not be particularly useful, but you can use it to display the contents of
an array when all you need is a simple list.

Accessor Functions
JavaScript provides a set of functions you can use to access the elements of an array.
These functions, called accessor functions, return some representation of the target array
as their return values.

Searching for a Value
One of the most commonly used accessor functions is indexOf(), which looks to see if
the argument passed to the function is found in the array. If the argument is contained
in the array, the function returns the index position of the argument. If the argument is
not found in the array, the function returns -1. Here is an example:

var names = ["David", "Cynthia", "Raymond", "Clayton", "Jennifer"];
putstr("Enter a name to search for: ");
var name = readline();
var position = names.indexOf(name);
if (position >= 0) {
   print("Found " + name + " at position " + position);
}
else {
   print(name + " not found in array.");
}

If you run this program and enter Cynthia, the program will output:

Found Cynthia at position 1

If you enter Joe, the output is:

Joe not found in array.
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If you have multiple occurrences of the same data in an array, the indexOf() function
will always return the position of the first occurrence. A similar function, lastIndex
Of(), will return the position of the last occurrence of the argument in the array, or -1
if the argument isn’t found. Here is an example:

var names = ["David", "Mike", "Cynthia", "Raymond", "Clayton", "Mike",
             "Jennifer"];
var name = "Mike";
var firstPos = names.indexOf(name);
print("First found " + name + " at position " + firstPos);
var lastPos = names.lastIndexOf(name);
print("Last found " + name + " at position " + lastPos);

The output from this program is:

First found Mike at position 1
Last found Mike at position 5

String Representations of Arrays
There are two functions that return string representations of an array: join() and
toString(). Both functions return a string containing the elements of the array de‐
limited by commas. Here are some examples:

var names = ["David", "Cynthia", "Raymond", "Clayton", "Mike", "Jennifer"];
var namestr = names.join();
print(namestr);  // David,Cynthia,Raymond,Clayton,Mike,Jennifer
namestr = names.toString();
print(namestr); // David,Cynthia,Raymond,Clayton,Mike,Jennifer

When you call the print() function with an array name, it automatically calls the
toString() function for that array:

print(names); // David,Cynthia,Raymond,Clayton,Mike,Jennifer

Creating New Arrays from Existing Arrays
There are two accessor functions that allow you create new arrays from existing arrays:
concat() and splice(). The concat() function allows you to put together two or more
arrays to create a new array, and the splice() function allows you to create a new array
from a subset of an existing array.

Let’s look first at how concat() works. The function is called from an existing array,
and its argument is another existing array. The argument is concatenated to the end of
the array calling concat(). The following program demonstrates how concat() works:

var cisDept = ["Mike", "Clayton", "Terrill", "Danny", "Jennifer"];
var dmpDept = ["Raymond", "Cynthia", "Bryan"];
var itDiv = cis.concat(dmp);
print(itDiv);
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itDiv = dmp.concat(cisDept);
print(itDiv);

The program outputs:

Mike,Clayton,Terrill,Danny,Jennifer,Raymond,Cynthia,Bryan
Raymond,Cynthia,Bryan,Mike,Clayton,Terrill,Danny,Jennifer

The first output line shows the data from the cis array first, and the second output line
shows the data from the dmp array first.

The splice() function creates a new array from the contents of an existing array. The
arguments to the function are the starting position for taking the splice and the number
of elements to take from the existing array. Here is how the method works:

var itDiv = ["Mike","Clayton","Terrill","Raymond","Cynthia","Danny","Jennifer"];
var dmpDept = itDiv.splice(3,3);
var cisDept = itDiv;
print(dmpDept); // Raymond,Cynthia,Danny
print(cisDept); // Mike,Clayton,Terrill,Jennifer

There are other uses for splice() as well, such as modifying an array by adding
and/or removing elements. See the Mozilla Developer Network website for more in‐
formation.

Mutator Functions
JavaScript has a set of mutator functions that allow you to modify the contents of an
array without referencing the individual elements. These functions often make hard
techniques easy, as you’ll see below.

Adding Elements to an Array
There are two mutator functions for adding elements to an array: push() and un
shift(). The push() function adds an element to the end of an array:

var nums = [1,2,3,4,5];
print(nums); // 1,2,3,4,5
nums.push(6);
print(nums); // 1,2,3,4,5,6

Using push() is more intuitive than using the length property to extend an array:

var nums = [1,2,3,4,5];
print(nums); // 1,2,3,4,5
nums[nums.length] = 6;
print(nums); // 1,2,3,4,5,6

Adding data to the beginning of an array is much harder than adding data to the end
of an array. To do so without the benefit of a mutator function, each existing element
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of the array has to be shifted up one position before the new data is added. Here is some
code to illustrate this scenario:

var nums = [2,3,4,5];
var newnum = 1;
var N = nums.length;
for (var i = N; i >= 0; --i) {
   nums[i] = nums[i-1];
}
nums[0] = newnum;
print(nums); // 1,2,3,4,5

This code becomes more inefficient as the number of elements stored in the array in‐
creases.

The mutator function for adding array elements to the beginning of an array is un
shift(). Here is how the function works:

var nums = [2,3,4,5];
print(nums); // 2,3,4,5
var newnum = 1;
nums.unshift(newnum);
print(nums); // 1,2,3,4,5
nums = [3,4,5];
nums.unshift(newnum,1,2);
print(nums); // 1,2,3,4,5

The second call to unshift() demonstrates that you can add multiple elements to an
array with one call to the function.

Removing Elements from an Array
Removing an element from the end of an array is easy using the pop() mutator function:

var nums = [1,2,3,4,5,9];
nums.pop();
print(nums); // 1,2,3,4,5

Without mutator functions, removing elements from the beginning of an array requires
shifting elements toward the beginning of the array, causing the same inefficiency we
see when adding elements to the beginning of an array:

var nums = [9,1,2,3,4,5];
print(nums);
for (var i = 0; i < nums.length; ++i) {
   nums[i] = nums[i+1];
}
print(nums); // 1,2,3,4,5,

Besides the fact that we have to shift the elements down to collapse the array, we are also
left with an extra element. We know this because of the extra comma we see when we
display the array contents.
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The mutator function we need to remove an element from the beginning of an array is
shift(). Here is how the function works:

var nums = [9,1,2,3,4,5];
nums.shift();
print(nums); // 1,2,3,4,5

You’ll notice there are no extra elements left at the end of the array. Both pop() and
shift() return the values they remove, so you can collect the values in a variable:

var nums = [6,1,2,3,4,5];
var first = nums.shift(); // first gets the value 9
nums.push(first);
print(nums); // 1,2,3,4,5,6

Adding and Removing Elements from the Middle of an Array
Trying to add or remove elements at the end of an array leads to the same problems we
find when trying to add or remove elements from the beginning of an array—both
operations require shifting array elements either toward the beginning or toward the
end of the array. However, there is one mutator function we can use to perform both
operations—splice().

To add elements to an array using splice(), you have to provide the following argu‐
ments:

• The starting index (where you want to begin adding elements)
• The number of elements to remove (0 when you are adding elements)
• The elements you want to add to the array

Let’s look at a simple example. The following program adds elements to the middle of
an array:

var nums = [1,2,3,7,8,9];
var newElements = [4,5,6];
nums.splice(3,0,newElements);
print(nums); // 1,2,3,4,5,6,7,8,9

The elements spliced into an array can be any list of items passed to the function, not
necessarily a named array of items. For example:

var nums = [1,2,3,7,8,9];
nums.splice(3,0,4,5,6);
print(nums);

In the preceding example, the arguments 4, 5, and 6 represent the list of elements we
want to insert into nums.

Here is an example of using splice() to remove elements from an array:
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var nums = [1,2,3,100,200,300,400,4,5];
nums.splice(3,4);
print(nums); // 1,2,3,4,5

Putting Array Elements in Order
The last two mutator functions are used to arrange array elements into some type of
order. The first of these, reverse(), reverses the order of the elements of an array. Here
is an example of its use:

var nums = [1,2,3,4,5];
nums.reverse();
print(nums); // 5,4,3,2,1

We often need to sort the elements of an array into order. The mutator function for this
task, sort(), works very well with strings:

var names = ["David","Mike","Cynthia","Clayton","Bryan","Raymond"];
nums.sort();
print(nums); // Bryan,Clayton,Cynthia,David,Mike,Raymond

But sort() does not work so well with numbers:

var nums = [3,1,2,100,4,200];
nums.sort();
print(nums); // 1,100,2,200,3,4

The sort() function sorts data lexicographically, assuming the data elements are strings,
even though in the preceding example, the elements are numbers. We can make the
sort() function work correctly for numbers by passing in an ordering function as the
first argument to the function, which sort() will then use to sort the array elements.
This is the function that sort() will use when comparing pairs of array elements to
determine their correct order.

For numbers, the ordering function can simply subtract one number from another
number. If the number returned is negative, the left operand is less than the right
operand; if the number returned is zero, the left operand is equal to the right operand;
and if the number returned is positive, the left operand is greater than the right operand.

With this in mind, let’s rerun the previous small program using an ordering function:

function compare(num1, num2) {
   return num1 - num2;
}

var nums = [3,1,2,100,4,200];
nums.sort(compare);
print(nums); // 1,2,3,4,100,200

The sort() function uses the compare() function to sort the array elements numerically
rather than lexicographically.
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Iterator Functions
The final set of array functions we examine are iterator functions. These functions apply
a function to each element of an array, either returning a value, a set of values, or a new
array after applying the function to each element of an array.

Non–Array-Generating Iterator Functions
The first group of iterator functions we’ll discuss do not generate a new array; instead,
they either perform an operation on each element of an array or generate a single value
from an array.

The first of these functions is forEach(). This function takes a function as an argument
and applies the called function to each element of an array. Here is an example of how
it works:

function square(num) {
  print(num, num * num);
}

var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);

The output from this program is:

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

The next iterator function, every(), applies a Boolean function to an array and returns
true if the function can return true for every element in the array. Here is an example:

function isEven(num) {
   return num % 2 == 0;
}

var nums = [2,4,6,8,10];
var even = nums.every(isEven);
if (even) {
   print("all numbers are even");
}
else {
   print("not all numbers are even");
}
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The program displays:

all numbers are even

If we change the array to:

var nums = [2,4,6,7,8,10];

the program displays:

not all numbers are even

The some() function will take a Boolean function and return true if at least one of the
elements in the array meets the criterion of the Boolean function. For example:

function isEven(num) {
   return num % 2 == 0;
}

var nums = [1,2,3,4,5,6,7,8,9,10];
var someEven = nums.some(isEven);
if (someEven) {
   print("some numbers are even");
}
else {
   print("no numbers are even");
}
nums = [1,3,5,7,9];
someEven = nums.some(isEven);
if (someEven) {
   print("some numbers are even");
}
else {
   print("no numbers are even");
}

The output from this program is:

some numbers are even
no numbers are even

The reduce() function applies a function to an accumulator and the successive elements
of an array until the end of the array is reached, yielding a single value. Here is an example
of using reduce() to compute the sum of the elements of an array:

function add(runningTotal, currentValue) {
   return runningTotal + currentValue;
}

var nums = [1,2,3,4,5,6,7,8,9,10];
var sum = nums.reduce(add);
print(sum); // displays 55
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The reduce() function, in conjunction with the add() function, works from left to right,
computing a running sum of the array elements, like this:

add(1,2) -> 3
add(3,3) -> 6
add(6,4) -> 10
add(10,5) -> 15
add(15,6) -> 21
add(21,7) -> 28
add(28,8) -> 36
add(36,9) -> 45
add(45,10) -> 55

We can also use reduce() with strings to perform concatenation:

function concat(accumulatedString, item) {
   return accumulatedString + item;
}

var words = ["the ", "quick ","brown ", "fox "];
var sentence = words.reduce(concat);
print(sentence); // displays "the quick brown fox"

JavaScript also provides a reduceRight() function, which works similarly to re
duce(), only working from the righthand side of the array to the left, instead of from
left to right. The following program uses reduceRight() to reverse the elements of an
array:

function concat(accumulatedString, item) {
   return accumulatedString + item;
}

var words = ["the ", "quick ","brown ", "fox "];
var sentence = words.reduceRight(concat);
print(sentence); // displays "fox brown quick the"

Iterator Functions That Return a New Array
There are two iterator functions that return new arrays: map() and filter(). The map()
function works like the forEach() function, applying a function to each element of an
array. The difference between the two functions is that map() returns a new array with
the results of the function application. Here is an example:

function curve(grade) {
   return grade += 5;
}

var grades = [77, 65, 81, 92, 83];
var newgrades = grades.map(curve);
print(newgrades); // 82, 70, 86, 97, 88

Here is an example using strings:
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function first(word) {
   return word[0];
}

var words = ["for","your","information"];
var acronym = words.map(first);
print(acronym.join("")); // displays "fyi"

For this last example, the acronym array stores the first letter of each word in the words
array. However, if we want to display the elements of the array as a true acronym, we
need to get rid of the commas that will be displayed if we just display the array elements
using the implied toString() function. We accomplish this by calling the join() func‐
tion with the empty string as the separator.

The filter() function works similarly to every(), but instead of returning true if all
the elements of an array satisfy a Boolean function, the function returns a new array
consisting of those elements that satisfy the Boolean function. Here is an example:

function isEven(num) {
   return num % 2 == 0;
}

function isOdd(num) {
   return num % 2 != 0;
}

var nums = [];
for (var i = 0; i < 20; ++i) {
   nums[i] = i+1;
}
var evens = nums.filter(isEven);
print("Even numbers: ");
print(evens);
var odds = nums.filter(isOdd);
print("Odd numbers: ");
print(odds);

This program returns the following output:

Even numbers:
2,4,6,8,10,12,14,16,18,20
Odd numbers:
1,3,5,7,9,11,13,15,17,19

Here is another interesting use of filter():

function passing(num) {
   return num >= 60;
}

var grades = [];
for (var i = 0; i < 20; ++i) {
   grades[i] = Math.floor(Math.random() * 101);
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}
var passGrades = grades.filter(passing);
print("All grades: );
print(grades);
print("Passing grades: ");
print(passGrades);

This program displays:

All grades:
39,43,89,19,46,54,48,5,13,31,27,95,62,64,35,75,79,88,73,74
Passing grades:
89,95,62,64,75,79,88,73,74

Of course, we can also use filter() with strings. Here is an example that applies the
spelling rule “i before e except after c”:

function afterc(str) {
   if (str.indexOf("cie") > -1) {
      return true;
   }
   return false;
}

var words = ["recieve","deceive","percieve","deceit","concieve"];
var misspelled = words.filter(afterc);
print(misspelled); // displays recieve,percieve,concieve

Two-Dimensional and Multidimensional Arrays
JavaScript arrays are only one-dimensional, but you can create multidimensional arrays
by creating arrays of arrays. In this section we’ll describe how to create two-dimensional
arrays in JavaScript.

Creating Two-Dimensional Arrays
A two-dimensional array is structured like a spreadsheet with rows and columns. To 
create a two-dimensional array in JavaScript, we have to create an array and then make
each element of the array an array as well. At the very least, we need to know the number
of rows we want the array to contain. With that information, we can create a two-
dimensional array with n rows and one column:

var twod = [];
var rows = 5;
for (var i = 0; i < rows; ++i) {
   twod[i] = [];
}

The problem with this approach is that each element of the array is set to undefined. 
A better way to create a two-dimensional array is to follow the example from JavaScript:
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The Good Parts (O’Reilly, p. 64). Crockford extends the JavaScript array object with a
function that sets the number of rows and columns and sets each value to a value passed
to the function. Here is his definition:

Array.matrix = function(numrows, numcols, initial) {
   var arr = [];
   for (var i = 0; i < numrows; ++i) {
      var columns = [];
      for (var j = 0; j < numcols; ++j) {
         columns[j] = initial;
      }
      arr[i] = columns;
   }
   return arr;
}

Here is some code to test the definition:

var nums = Array.matrix(5,5,0);
print(nums[1][1]); // displays 0
var names = Array.matrix(3,3,"");
names[1][2] = "Joe";
print(names[1][2]); // display "Joe"

We can also create a two-dimensional array and initialize it to a set of values in one line:

var grades = [[89, 77, 78],[76, 82, 81],[91, 94, 89]];
print(grades[2][2]); // displays 89

For small data sets, this is the easiest way to create a two-dimensional array.

Processing Two-Dimensional Array Elements
There are two fundamental patterns used to process the elements of a two-dimensional
array. One pattern emphasizes accessing array elements by columns, and the other pat‐
tern emphasizes accessing array elements by rows. We will use the grades array created
in the preceding code fragment to demonstrate how these patterns work.

For both patterns, we use a set of nested for loops. For columnar processing, the outer
loop moves through the rows, and the inner loop processes the columns. For the grades
array, think of each row as a set of grades for one student. We can compute the average
for each student’s grades by adding each grade on the row to a total variable and then
dividing total by the total number of grades on that row. Here is the code for that
process:

var grades = [[89, 77, 78],[76, 82, 81],[91, 94, 89]];
var total = 0;
var average = 0.0;
for (var row = 0; row < grades.length; ++row) {
   for (var col = 0; col < grades[row].length; ++col) {
      total += grades[row][col];
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   }
   average = total / grades[row].length;
   print("Student " + parseInt(row+1) + " average: " +
         average.toFixed(2));
   total = 0;
   average = 0.0;
}

The inner loop is controlled by the expression:

col < grades[row].length

This works because each row contains an array, and that array has a length property
we can use to determine how many columns there are in the row.

The grade average for each student is rounded to two decimals using the toFixed(n)
function.

Here is the output from the program:

Student 1 average: 81.33
Student 2 average: 79.67
Student 3 average: 91.33

To perform a row-wise computation, we simply have to flip the for loops so that the
outer loop controls the columns and the inner loop controls the rows. Here is the cal‐
culation for each test:

var grades = [[89, 77, 78],[76, 82, 81],[91, 94, 89]];
var total = 0;
var average = 0.0;
for (var col = 0; col < grades.length; ++col) {
   for (var row = 0; row < grades[col].length; ++row) {
      total += grades[row][col];
   }

   average = total / grades[col].length;
   print("Test " + parseInt(col+1) + " average: " +
         average.toFixed(2));
   total = 0;
   average = 0.0;
}

The output from this program is:

Test 1 average: 85.33
Test 2 average: 84.33
Test 3 average: 82.67
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Jagged Arrays
A jagged array is an array where the rows in the array may have a different number of
elements. One row may have three elements, while another row may have five elements,
while yet another row may have just one element. Many programming languages have
problems handling jagged arrays, but JavaScript does not since we can compute the
length of any row.

To give you an example, imagine the grades array where students have an unequal
number of grades recorded. We can still compute the correct average for each student
without changing the program at all:

var grades = [[89, 77],[76, 82, 81],[91, 94, 89, 99]];
var total = 0;
var average = 0.0;
for (var row = 0; row < grades.length; ++row) {
   for (var col = 0; col < grades[row].length; ++col) {
      total += grades[row][col];
   }
   average = total / grades[row].length;
   print("Student " + parseInt(row+1) + " average: " +
         average.toFixed(2));
   total = 0;
   average = 0.0;
}

Notice that the first student only has two grades, while the second student has three
grades, and the third student has four grades. Because the program computes the length
of the row in the inner loop, this jaggedness doesn’t cause any problems. Here is the
output from the program:

Student 1 average: 83.00
Student 2 average: 79.67
Student 3 average: 93.25

Arrays of Objects
All of the examples in this chapter have consisted of arrays whose elements have been
primitive data types, such as numbers and strings. Arrays can also consist of objects,
and all the functions and properties of arrays work with objects.

For example:

function Point(x,y) {
   this.x = x;
   this.y = y;
}

function displayPts(arr) {
   for (var i = 0; i < arr.length; ++i) {

30 | Chapter 2: Arrays



      print(arr[i].x + ", " + arr[i].y);
   }
}

var p1 = new Point(1,2);
var p2 = new Point(3,5);
var p3 = new Point(2,8);
var p4 = new Point(4,4);
var points = [p1,p2,p3,p4];
for (var i = 0; i < points.length; ++i) {
   print("Point " + parseInt(i+1) + ": " + points[i].x + ", " +
         points[i].y);
}
var p5 = new Point(12,-3);
points.push(p5);
print("After push: ");
displayPts(points);
points.shift();
print("After shift: ");
displayPts(points);

The output from this program is:

Point 1: 1, 2
Point 2: 3, 5
Point 3: 2, 8
Point 4: 4, 4
After push:
1, 2
3, 5
2, 8
4, 4
12, -3
After shift:
3, 5
2, 8
4, 4
12, -3

The point 12, -3 is added to the array using push(), and the point 1, 2 is removed
from the array using shift().

Arrays in Objects
We can use arrays to store complex data in an object. Many of the data structures we
study in this book are implemented as class objects with an underlying array used to
store data.

The following example demonstrates many of the techniques we use throughout the
book. In the example, we create an object that stores the weekly observed high
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temperature. The object has functions for adding a new temperature and computing
the average of the temperatures stored in the object. Here is the code:

function weekTemps() {
   this.dataStore = [];
   this.add = add;
   this.average = average;
}

function add(temp) {
   this.dataStore.push(temp);
}

function average() {
   var total = 0;
   for (var i = 0; i < this.dataStore.length; ++i) {
      total += this.dataStore[i];
   }
   return total / this.dataStore.length;
}

var thisWeek = new weekTemps();
thisWeek.add(52);
thisWeek.add(55);
thisWeek.add(61);
thisWeek.add(65);
thisWeek.add(55);
thisWeek.add(50);
thisWeek.add(52);
thisWeek.add(49);
print(thisWeek.average()); // displays 54.875

You’ll notice the add() function uses the push() function to add elements to the data
Store array, using the name add() rather than push(). Using a more intuitive name for
an operation is a common technique when defining object functions. Not everyone will
understand what it means to push a data element, but everyone knows what it means
to add a data element.
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Exercises
1. Create a grades object that stores a set of student grades in an object. Provide a

function for adding a grade and a function for displaying the student’s grade average.
2. Store a set of words in an array and display the contents both forward and backward.
3. Modify the weeklyTemps object in the chapter so that it stores a month’s worth of

data using a two-dimensional array. Create functions to display the monthly aver‐
age, a specific week’s average, and all the weeks’ averages.

4. Create an object that stores individual letters in an array and has a function for
displaying the letters as a single word.
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CHAPTER 3

Lists

Lists are one of the most common organizing tools people use in their day-to-day lives.
We have to-do lists, grocery lists, top-ten lists, bottom-ten lists, and many other types.
Our computer programs can also use lists, particularly if we only have a few items to
store in list form. Lists are especially useful if we don’t have to perform searches on the
items in the list or put them into some type of sorted order. When we need to perform
long searches or complex sorts, lists become less useful, especially with more complex
data structures.

This chapter presents the creation of a simple list class. We start with the definition of
a list abstract data type (ADT) and then demonstrate how to implement the ADT. We
wrap up the chapter with some problems that are best solved with lists.

A List ADT
In order to design an ADT for a list, we have to provide a definition of the list, including
its properties, as well as the operations performed on it and by it.

A list is an ordered sequence of data. Each data item stored in a list is called an ele‐
ment. In JavaScript, the elements of a list can be of any data type. There is no predeter‐
mined number of elements that can be stored in a list, though the practical limit will be
the amount of memory available to the program using the list.

A list with no elements is an empty list. The number of elements stored in a list is called
the length of the list. Internally, the number of elements in a list is kept in a listSize
variable. You can append an element to the end of a list, or you can insert an element
into a list after an existing element or at the beginning of a list. Elements are deleted
from a list using a remove operation. You can also clear a list so that all of its current
elements are removed.
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The elements of a list are displayed using either a toString() operation, which displays
all the elements, or with a getElement() operation, which displays the value of the
current element.

Lists have properties to describe location. There is the front of a list and the end of a list.
You can move from one element of a list to the next element using the next() operation,
and you can move backward through a list using the prev() operation. You can also
move to a numbered position in a list using the moveTo(n) operation, where n specifies
the position to move to. The currPos property indicates the current position in a list.

The List ADT does not specify a storage function for a list, but for our implementation
will use an array named dataStore.

Table 3-1 shows the complete List ADT.

Table 3-1. ADT List
listSize (property) Number of elements in list

pos (property) Current position in list

length (property) Returns the number of elements in list

clear (function) Clears all elements from list

toString (function) Returns string representation of list

getElement (function) Returns element at current position

insert (function) Inserts new element after existing element

append (function) Adds new element to end of list

remove (function) Removes element from list

front (function) Sets current position to first element of list

end (function) Sets current position to last element of list

prev (function) Moves current position back one element

next (function) Moves current position forward one element

currPos (function) Returns the current position in list

moveTo (function) Moves the current position to specified position

A List Class Implementation
A List class implementation can be taken straight from the List ADT we just defined.
We’ll start with a definition of a constructor function, though it is not part of the ADT:

function List() {
   this.listSize = 0;
   this.pos = 0;
   this.dataStore = []; // initializes an empty array to store list elements
   this.clear = clear;
   this.find = find;
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   this.toString = toString;
   this.insert = insert;
   this.append = append;
   this.remove = remove;
   this.front = front;
   this.end = end;
   this.prev = prev;
   this.next = next;
   this.length = length;
   this.currPos = currPos;
   this.moveTo = moveTo;
   this.getElement = getElement;
   this.length = length;
   this.contains = contains;
}

Append: Adding an Element to a List
The first function we’ll implement is the append() function. This function appends a
new element onto the list at the next available position, which will be equal to the value
of the listSize variable:

function append(element) {
   this.dataStore[this.listSize++] = element;
}

After the element is appended, listSize is incremented by 1.

Remove: Removing an Element from a List
Next, let’s see how to remove an element from a list. remove() is one of the harder
functions to implement in the List class. First, we have to find the element in the list,
and then we have to remove it and adjust the space in the underlying array to fill the
hole left by removing an element. However, we can simplify the process by using the
splice() mutator function. To start, let’s define a helper function, find(), for finding
the element to remove:

function find(element) {
   for (var i = 0; i < this.dataStore.length; ++i) {
      if (this.dataStore[i] == element) {
         return i;
      }
   }
   return -1;
}
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Find: Finding an Element in a List
The find function simply iterates through dataStore looking for the specified ele‐
ment. If the element is found, the function returns the position where the element was
found. If the element wasn’t found, the function returns -1, which is a standard value
to return when an element can’t be found in an array. We can use this value for error
checking in the remove() function.

The remove() function uses the position returned by find() to splice the dataStore
array at that place. After the array is modified, listSize is decremented by 1 to reflect
the new size of the list. The function returns true if an element is removed, and false
otherwise. Here is the code:

function remove(element) {
   var foundAt = this.find(element);
   if (foundAt > -1) {
      this.dataStore.splice(foundAt,1);
      --this.listSize;
      return true;
   }
   return false;
}

Length: Determining the Number of Elements in a List
The length() function returns the number of elements in a list:

function length() {
   return this.listSize;
}

toString: Retrieving a List’s Elements
Now is a good time to create a function that allows us to view the elements of a list. Here
is the code for a simple toString() function:

function toString() {
    return this.dataStore;
}

Strictly speaking, this function returns an array object and not a string, but its utility is
in providing a view of the current state of an object, and just returning the array works
adequately for this purpose.

Let’s take a break from implementing our List class to see how well it works so far. Here
is a short test program that exercises the functions we’ve created so far:

var names = new List();
names.append("Cynthia");
names.append("Raymond");
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names.append("Barbara");
print(names.toString());
names.remove("Raymond");
print(names.toString());

The output from this program is:

Cynthia,Raymond,Barbara
Cynthia,Barbara

Insert: Inserting an Element into a List
The next function to discuss is insert(). What if, after removing Raymond from the
preceding list, we decide we need to put him back where he was to begin with? An
insertion function needs to know where to insert an element, so for now we will say that
insertion occurs after a specified element already in the list. With this in mind, here is
the definition of the insert() function:

function insert(element, after) {
   var insertPos = this.find(after);
   if (insertPos > -1) {
      this.dataStore.splice(insertPos+1, 0, element);
      ++this.listSize;
      return true;
   }
   return false;
}

insert() uses the helper function find() to determine the correct insertion position
for the new element by finding the element specified in the after argument. Once this
position is found, we use shift() to insert the new element into the list. Then we
increment listSize by 1 and return true to indicate the insertion was successful.

Clear: Removing All Elements from a List
Next, we need a function to clear out the elements of a list and allow new elements to
be entered:

function clear() {
   delete this.dataStore;
   this.dataStore = [];
   this.listSize = this.pos = 0;
}

The clear() function uses the delete operator to delete the dataStore array, and the
next line re-creates the empty array. The last line sets the values of listSize and pos to
0 to indicate the start of a new list.
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Contains: Determining if a Given Value Is in a List
The contains() function is useful when you want to check a list to see if a particular
value is part of the list. Here is the definition:

function contains(element) {
   for (var i = 0; i < this.dataStore.length; ++i) {
      if (this.dataStore[i] == element) {
         return true;
      }
   }
   return false;
}

Traversing a List
This final set of functions allows movement through a list, and the last function,
getElement(), displays the current element in a list:

function front() {
   this.pos = 0;
}

function end() {
   this.pos = this.listSize-1;
}

function prev() {
   if (this.pos > 0) {
      --this.pos;
   }
}

function next() {
   if (this.pos < this.listSize-1) {
      ++this.pos;
   }
}

function currPos() {
   return this.pos;
}

function moveTo(position) {
   this.pos = position;
}

function getElement() {
   return this.dataStore[this.pos];
}

Let’s create a new list of names to demonstrate how these functions work:
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var names = new List();
names.append("Clayton");
names.append("Raymond");
names.append("Cynthia");
names.append("Jennifer");
names.append("Bryan");
names.append("Danny");

Now let’s move to the first element of the list and display it:

names.front();
print(names.getElement()); // displays Clayton

Next, we move forward one element and display the element’s value:

names.next();
print(names.getElement());  // displays Raymond

Now we’ll move forward twice and backward once, displaying the current element to
demonstrate how the prev() function works:

names.next();
names.next();
names.prev();
print(names.getElement()); // displays Cynthia

The behavior we’ve demonstrated in these past few code fragments is captured in the
concept of an iterator. We explore iterators in the next section.

Iterating Through a List
An iterator allows us to traverse a list without referencing the internal storage mecha‐
nism of the List class. The functions front(), end(), prev(), next(), and currPos
provide an implementation of an iterator for our List class. Some advantages to using
iterators over using array indexing include:

• Not having to worry about the underlying data storage structure when accessing
list elements

• Being able to update the list and not having to update the iterator, where an index
becomes invalid when a new element is added to the list

• Providing a uniform means of accessing elements for different types of data stores
used in the implemenation of a List class

With these advantages in mind, here is how to use an iterator to traverse through a list:

for(names.front(); names.currPos() < names.length(); names.next()) {
   print(names.getElement());
}
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The for loop starts by setting the current position to the front of the list. The loop
continues while the value of currPos is less than the length of the list. Each time through
the loop, the current position is moved one element forward through the use of the
next() function.

We can also traverse a list backward using an iterator. Here is the code:

for(names.end(); names.currPos() >= 0; names.prev()) {
   print(names.getElement());
}

The loop starts at the last element of the list and moves backward using the prev()
function while the current position is greater than or equal to 0.

Iterators are used only to move through a list and should not be combined with any
functions for adding or removing items from a list.

A List-Based Application
To demonstrate how to use lists, we are going to build a system that can be used in the
simulation of a video-rental kiosk system such as Redbox.

Reading Text Files
In order to get the list of videos available in the kiosk into our program, we need to be
able to read the data from a file. We first have to create a text file that contains the list
of videos available using a text editor. We name the file films.txt. Here are the contents
of the files (these movies are the top 20 movies as voted on by IMDB users as of October
5, 2013):

1. The Shawshank Redemption
2. The Godfather
3. The Godfather: Part II
4. Pulp Fiction
5. The Good, the Bad and the Ugly
6. 12 Angry Men
7. Schindler’s List
8. The Dark Knight
9. The Lord of the Rings: The Return of the King

10. Fight Club
11. Star Wars: Episode V - The Empire Strikes Back
12. One Flew Over the Cuckoo’s Nest
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13. The Lord of the Rings: The Fellowship of the Ring
14. Inception
15. Goodfellas
16. Star Wars
17. Seven Samurai
18. The Matrix
19. Forrest Gump
20. City of God

Now we need a code fragment to read the contents of the file into our program:

var movies = read(films.txt).split("\n");

This line performs two tasks. First, it reads the contents of our movies text file into the
program, read(films.txt); and second, it splits the file into individual lines by using
the newline character as a delimiter. This output is then stored as an array in the mov
ies variable.

This line of code works up to a point, but it’s not perfect. When the elements of the text
file are split into the array, the newline character is replaced with a space. While a single
space seems innocuous enough, having an extra space in a string can cause havoc when
you are doing string comparisons. So we need to add a loop that strips the space from
each array element using the trim() function. This code will work better in a function,
so let’s create a function to read data from a file and store it in an array:

function createArr(file) {
   var arr = read(file).split("\n");
   for (var i = 0; i < arr.length; ++i) {
      arr[i] = arr[i].trim();
   }
   return arr;
}

Using Lists to Manage a Kiosk
The next step is to take the movies array and store its contents in a list. Here is how we
do it:

var movieList = new List();
for (var i = 0; i < movies.length; ++i) {
   movieList.append(movies[i]);
}

Now we can write a function to display the movie list available at the kiosk:
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function displayList(list) {
   for (list.front(); list.currPos() < list.length(); list.next()) {
      print(list.getElement());
   }

The displayList() function works fine with native types, such as lists made up of
strings, but it won’t work for Customer objects, which are defined below. Let’s modify
the function so that if it discovers that the list is made up of Customer objects, it will
display those objects accordingly. Here’s the new definition of displayList():

function displayList(list) {
   for (list.front(); list.currPos() < list.length(); list.next()) {
      if (list.getElement() instanceof Customer) {
         print(list.getElement()["name"] + ", " +
               list.getElement()["movie"]);
      }
      else {
         print(list.getElement());
      }
   }
}

For each object in the list, we use the instanceof operator to test whether the object is
a Customer object. If so, we retrieve the name and the movie the customer has checked
out using each of the two properties as an index for retrieving the associated value. If
the object is not a Customer, the code simply returns the element.

Now that we have our movie list taken care of, we need to create a list to store the
customers who check out movies at the kiosk:

var customers = new List();

This will contain Customer objects, which are made up of the customer’s name and the
movie checked out. Here is the constructor function for the Customer object:

function Customer(name, movie) {
   this.name = name;
   this.movie = movie;
}

Next, we need a function that allows a customer to check out a movie. This function
takes two arguments: the customer’s name and the movie he wants to check out. If the
movie is available, the function removes the movie from the kiosk’s list of movies and
adds it to the customer’s list. We’ll use the List class function contains() for this task.

Here is the definition for a function to check out a movie:

function checkOut(name, movie, filmList, customerList) {
   if (movieList.contains(movie)) {
      var c = new Customer(name, movie);
      customerList.append(c);
      filmList.remove(movie);
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   }
   else {
      print(movie + " is not available.");
   }
}

The function first checks to see if the movie requested is available. If the movie is avail‐
able, a Customer object is created with the movie’s title and the customer’s name. The
Customer object is appended to the customer list, and the movie is removed from the
movie list. If the movie is not available, a simple message is displayed indicating such.

We can test the checkOut() function with a short program:

var movies = createArr("films.txt");
var movieList = new List();
var customers = new List();
for (var i = 0; i < movies.length; ++i) {
   movieList.append(movies[i]);
}
print("Available movies: \n");
displayList(movieList);
checkOut("Jane Doe", "The Godfather", movieList, customers);
print("\nCustomer Rentals: \n");
displayList(customers);

The output of the program displays the movie list with "The Godfather" removed,
followed by the list of customers with movies checked out.

Let’s add some titles to our program’s output to make it easier to read, along with some
interactive input:

var movies = createArr("films.txt");
var movieList = new List();
var customers = new List();
for (var i = 0; i < movies.length; ++i) {
   movieList.append(movies[i]);
}
print("Available movies: \n");
displayList(movieList);
putstr("\nEnter your name: ");
var name = readline();
putstr("What movie would you like? ");
var movie = readline();
checkOut(name, movie, movieList, customers);
print("\nCustomer Rentals: \n");
displayList(customers);
print("\nMovies Now Available\n");
displayList(movieList);

Here is the result of running this program:

Available movies:
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The Shawshank Redemption
The Godfather
The Godfather: Part II
Pulp Fiction
The Good, the Bad and the Ugly
12 Angry Men
Schindler's List
The Dark Knight
The Lord of the Rings: The Return of the King
Fight Club
Star Wars: Episode V - The Empire Strikes Back
One Flew Over the Cuckoo's Nest
The Lord of the Rings: The Fellowship of the Ring
Inception
Goodfellas
Star Wars
Seven Samurai
The Matrix
Forrest Gump
City of God

Enter your name: Jane Doe
What movie would you like? The Godfather

Customer Rentals:

Jane Doe, The Godfather

Movies Now Available

The Shawshank Redemption
The Godfather: Part II
Pulp Fiction
The Good, the Bad and the Ugly
12 Angry Men
Schindler's List
The Dark Knight
The Lord of the Rings: The Return of the King
Fight Club
Star Wars: Episode V - The Empire Strikes Back
One Flew Over the Cuckoo's Nest
The Lord of the Rings: The Fellowship of the Ring
Inception
Goodfellas
Star Wars
Seven Samurai
The Matrix
Forrest Gump
City of God

We can add other functionality to make our video-rental kiosk system more robust. You
will get to explore some of this added functionality in the exercises that follow.

46 | Chapter 3: Lists



Exercises
1. Write a function that inserts an element into a list only if the element to be inserted

is larger than any of the elements currently in the list. Larger can mean either greater
than when working with numeric values, or further down in the alphabet, when
working with textual values.

2. Write a function that inserts an element into a list only if the element to be inserted
is smaller than any of the elements currently in the list.

3. Create a Person class that stores a person’s name and their gender. Create a list of
at least 10 Person objects. Write a function that displays all the people in the list of
the same gender.

4. Modify the video-rental kiosk program so that when a movie is checked out it is
added to a list of rented movies. Display this list whenever a customer checks out
a movie.

5. Create a check-in function for the video-rental kiosk program so that a returned
movies is deleted from the rented movies list and is added back to the available
movies list.
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CHAPTER 4

Stacks

Lists are a natural form of organization for data. We have already seen how to use the
List class to organize data into a list. When the order of the data being stored doesn’t
matter, or when you don’t have to search the data stored, lists work wonderfully. For
other applications, however, plain lists are too simple and we need a more complex, list-
like data structure.

A list-like structure that can be used to solve many problems in computing is the stack.
Stacks are efficient data structures because data can be added or removed only from the
top of a stack, making these procedures fast and easy to implement. Stacks are used
extensively in programming language implementations for everything from expression
evaluation to handling function calls.

Stack Operations
A stack is a list of elements that are accessible only from one end of the list, which is
called the top. One common, real-world example of a stack is the stack of trays at a
cafeteria. Trays are always removed from the top, and when trays are put back on the
stack after being washed, they are placed on the top of the stack. The stack is known as
a last-in, first-out (LIFO) data structure.

Because of the last-in, first-out nature of the stack, any element that is not currently at
the top of the stack cannot be accessed. To get to an element at the bottom of the stack,
you have to dispose of all the elements above it first.

The two primary operations of a stack are adding elements to a stack and taking elements
off a stack. Elements are added to a stack using the push operation. Elements are taken
off a stack using the pop operation. These operations are illustrated in Figure 4-1.
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Figure 4-1. Pushing and popping elements of a stack

Another common operation on a stack is viewing the element at the top of a stack. The
pop operation visits the top element of a stack, but it permanently removes the element
from a stack. The peek operation returns the value stored at the top of a stack without
removing it from the stack.

To keep track of where the top element is, as well as keeping track of where to add a new
element, we use a top variable that is incremented when we push new elements onto
the stack and is decremented when we pop elements off the stack.

While pushing, popping, and peeking are the primary operations associated with a stack,
there are other operations we need to perform and properties we need to examine. The
clear operation removes all the elements from a stack. The length property holds the
number of elements contained in a stack. We also define an empty property to let us
know if a stack has no elements in it, though we can use the length property for this as
well.

A Stack Implementation
To build a stack, we first need to decide on the underlying data structure we will use to
store the stack elements. We will use an array in our implementation.

We begin our stack implementation by defining the constructor function for a Stack
class:

function Stack() {
   this.dataStore = [];
   this.top = 0;
   this.push = push;
   this.pop = pop;
   this.peek = peek;
}
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The array that stores the stack elements is named dataStore. The constructor sets it to
an empty array. The top variable keeps track of the top of the stack and is initially set
to 0 by the constructor, indicating that the 0 position of the array is the top of the stack,
at least until an element is pushed onto the stack.

The first function to implement is the push() function. When we push a new element
onto a stack, we have to store it in the top position and increment the top variable so
that the new top is the next empty position in the array. Here is the code:

function push(element) {
   this.dataStore[this.top++] = element;
}

Pay particular attention to the placement of the increment operator after the call to
this.top. Placing the operator there ensures that the current value of top is used to
place the new element at the top of the stack before top is incremented.

The pop() function does the reverse of the push() function—it returns the element in
the top position of the stack and then decrements the top variable:

function pop() {
    return this.dataStore[--this.top];
}

The peek() function returns the top element of the stack by accessing the element at
the top-1 position of the array:

function peek() {
        return this.dataStore[this.top-1];
}

If you call the peek() function on an empty stack, you get undefined as the result. That’s
because there is no value stored at the top position of the stack since it is empty.

There will be situations when you need to know how many elements are stored in a
stack. The length() function returns this value by returning the value of top:

function length() {
        return this.top;
}

Finally, we can clear a stack by simply setting the top variable back to 0:

function clear() {
        this.top = 0;
}

Example 4-1 shows the complete implementation of the Stack class.

Example 4-1. The Stack class
function Stack() {
   this.dataStore = [];
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   this.top = 0;
   this.push = push;
   this.pop = pop;
   this.peek = peek;
   this.clear = clear;
   this.length = length;
}

function push(element) {
   this.dataStore[this.top++] = element;
}

function peek() {
   return this.dataStore[this.top-1];
}

function pop() {
   return this.dataStore[--this.top];
}

function clear() {
   this.top = 0;
}

function length() {
   return this.top;
}

Example 4-2 demonstrates a program that tests this implementation.

Example 4-2. Testing the Stack class implementation
var s = new Stack();
s.push("David");
s.push("Raymond");
s.push("Bryan");
print("length: " + s.length());
print(s.peek());
var popped = s.pop();
print("The popped element is: " + popped);
print(s.peek());
s.push("Cynthia");
print(s.peek());
s.clear();
print("length: " + s.length());
print(s.peek());
s.push("Clayton");
print(s.peek());

The output from Example 4-2 is:

length: 3
Bryan
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The popped element is: Bryan
Raymond
Cynthia
length: 0
undefined
Clayton

The next-to-last value, undefined, is returned because once a stack is cleared, there is
no value in the top position and when we peek at the top of the stack, undefined is
returned.

Using the Stack Class
There are several problems for which a stack is the perfect data structure needed for the
solution. In this section, we look at several such problems.

Multiple Base Conversions
A stack can be used to convert a number from one base to another base. Given a number,
n, which we want to convert to a base, b, here is the algorithm for performing the
conversion:

1. The rightmost digit of n is n % b. Push this digit onto the stack.
2. Replace n with n / b.
3. Repeat steps 1 and 2 until n = 0 and there are no significant digits remaining.
4. Build the converted number string by popping the stack until the stack is empty.

This algorithm will work only with bases 2 through 9.

We can implement this algorithm very easily using a stack in JavaScript. Here is the
definition of a function for converting a number to any of the bases 2 through 9:

function mulBase(num, base) {
   var s = new Stack();
   do {
      s.push(num % base);
      num = Math.floor(num /= base);
   } while (num > 0);
   var converted = "";
   while (s.length() > 0) {
      converted += s.pop();
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   }
   return converted;
}

Example 4-3 demonstrates how to use this function for base 2 and base 8 conversions.

Example 4-3. Converting numbers to base 2 and base 8
function mulBase(num, base) {
   var s = new Stack();
   do {
      s.push(num % base);
      num = Math.floor(num /= base);
   } while (num > 0);
   var converted = "";
   while (s.length() > 0) {
      converted += s.pop();
   }
   return converted;
}

var num = 32;
var base = 2;
var newNum = mulBase(num, base);
print(num + " converted to base " + base + " is " + newNum);
num = 125;
base = 8;
var newNum = mulBase(num, base);
print(num + " converted to base " + base + " is " + newNum);

The output from Example 4-3 is:

32 converted to base 2 is 100000
125 converted to base 8 is 175

Palindromes
A palindrome is a word, phrase, or number that is spelled the same forward and back‐
ward. For example, “dad” is a palindrome; “racecar” is a palindrome; “A man, a plan, a
canal: Panama” is a palindrome if you take out the spaces and ignore the punctuation;
and 1,001 is a numeric palindrome.

We can use a stack to determine whether or not a given string is a palindrome. We take
the original string and push each character onto a stack, moving from left to right. When
the end of the string is reached, the stack contains the original string in reverse order,
with the last letter at the top of the stack and the first letter at the bottom of the stack,
as shown in Figure 4-2.
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Figure 4-2. Using a stack to determine if a word is a palindrome

Once the complete original string is on the stack, we can create a new string by popping
each letter the stack. This process will create the original string in reverse order. We then
simply compare the original string with the reversed work, and if they are equal, the
string is a palindrome.

Example 4-4 presents a program, minus the Stack class code, that determines if a given
string is a palindrome.

Example 4-4. Determining if a string is a palindrome
function isPalindrome(word) {
   var s = new Stack();
   for (var i = 0; i < word.length; ++i) {
      s.push(word[i]);
   }
   var rword = "";
   while (s.length() > 0) {
      rword += s.pop();
   }
   if (word == rword) {
      return true;
    }
   else {
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      return false;
   }
}

var word = "hello";
if (isPalindrome(word)) {
   print(word + " is a palindrome.");
}
else {
   print(word + " is not a palindrome.");
}
word = "racecar"
if (isPalindrome(word)) {
   print(word + " is a palindrome.");
}
else {
   print(word + " is not a palindrome.");
}

The output from this program is:

hello is not a palindrome.
racecar is a palindrome.

Demonstrating Recursion
Stacks are often used in the implementation of computer programming languages. One
area where stacks are used is in implementing recursion. It is beyond the scope of this
book to demonstrate exactly how stacks are used to implement recursive procedures,
but we can use stacks to simulate recursive processes. If you are interested in learning
more about recursion, a good starting point is this web page that actually uses JavaScript
to describe how recursion works.

To demonstrate how recursion is implemented using a stack, let’s consider a recursive
definition of the factorial function. First, here is a definition of factorial for the number
5:

5! = 5 * 4 * 3 * 2 * 1 = 120

Here is a recursive function to compute the factorial of any number:

function factorial(n) {
   if (n === 0) {
      return 1;
   }
   else {
      return n * factorial(n-1);
   }
}

When called with the argument 5, the function returns 120.
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To simulate computing 5! using a stack, first push the numbers 5 through 1 onto a stack.
Then, inside a loop, pop each number and multiply the number by the running product,
resulting in the correct answer, 120. Example 4-5 contains the code for the function,
along with a test program.

Example 4-5. Simulating recursive processes using a stack
function fact(n) {
   var s = new Stack();
   while (n > 1) {
      s.push(n--);
   }
   var product = 1;
   while (s.length() > 0) {
      product *= s.pop();
   }
   return product;
}

print(factorial(5)); // displays 120
print(fact(5)); // displays 120

Exercises
1. A stack can be used to ensure that an arithmetic expression has balanced paren‐

theses. Write a function that takes an arithmetic expression as an argument and
returns the postion in the expression where a parenthesis is missing. An example
of an arithmetic expression with unbalanced parentheses is 2.3 + 23 / 12 + (3.14159
* .24.

2. A postfix expression evaluator works on arithmetic expressions taking the following
form:
op1 op2 operator
Using two stacks—one for the operands and one for the operators—design and
implement a JavaScript function that converts infix expressions to postfix expres‐
sions, and then use the stacks to evaluate the expression.

3. An example of a real-world stack is a Pez dispenser. Imagine that your virtual Pez
dispenser is filled with red, yellow, and white colors and you don’t like the yellow
ones. Write a program that uses a stack (and maybe more than one) to remove the
yellow ones without changing the order of the other candies in the dispenser.
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CHAPTER 5

Queues

A queue is a type of list where data are inserted at the end and are removed from the
front. Queues are used to store data in the order in which they occur, as opposed to a
stack, in which the last piece of data entered is the first element used for processing.
Think of a queue like the line at your bank, where the first person into the line is the
first person served, and as more customers enter a line, they wait in the back until it is
their turn to be served.

A queue is an example of a first-in, first-out (FIFO) data structure. Queues are used to
order processes submitted to an operating system or a print spooler, and simulation
applications use queues to model scenarios such as customers standing in the line at a
bank or a grocery store.

Queue Operations
The two primary operations involving queues are inserting a new element into a queue
and removing an element from a queue. The insertion operation is called enqueue, and
the removal operation is called dequeue. The enqueue operation inserts a new element
at the end of a queue, and the dequeue operation removes an element from the front of
a queue. Figure 5-1 illustrates these operations.
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Figure 5-1. Inserting and removing elements from a queue

Another important queue operation is viewing the element at the front of a queue. This
operation is called peek. The peek operation returns the element stored at the front of
a queue without removing it from the queue. Besides examining the front element, we
also need to know how many elements are stored in a queue, which we can satisfy with
the length property; and we need to be able to remove all the elements from a queue,
which is performed with the clear operation.

An Array-Based Queue Class Implementation
Implementing the Queue class using an array is straightforward. Using JavaScript arrays
is an advantage many other programming languages don’t have because JavaScript con‐
tains a function for easily adding data to the end of an array, push(), and a function for
easily removing data from the front of an array, shift().

The push() function places its argument at the first open position of an array, which
will always be the back of the array, even when there are no other elements in the array.
Here is an example:

names = [];
name.push("Cynthia");
names.push("Jennifer");
print(names); // displays Cynthia,Jennifer

Then we can remove the element from the front of the array using shift():

names.shift();
print(names); // displays Jennifer
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Now we’re ready to begin implementing the Queue class by defining the constructor
function:

function Queue() {
   this.dataStore = [];
   this.enqueue = enqueue;
   this.dequeue = dequeue;
   this.front = front;
   this.back = back;
   this.toString = toString;
   this.empty = empty;
}

The enqueue() function adds an element to the end of a queue:

function enqueue(element) {
   this.dataStore.push(element);
}

The dequeue() function removes an element from the front of a queue:

function dequeue() {
   return this.dataStore.shift();
}

We can examine the front and back elements of a queue using these functions:

function front() {
   return this.dataStore[0];
}

function back() {
   return this.dataStore[this.dataStore.length-1];
}

We also need a toString() function to display all the elements in a queue:

function toString() {
   var retStr = "";
   for (var i = 0; i < this.dataStore.length; ++i) {
      retStr += this.dataStore[i] + "\n";
   }
   return retStr;
}

Finally, we need a function that lets us know if a queue is empty:

function empty() {
   if (this.dataStore.length == 0) {
      return true;
   }
   else {
      return false;
   }
}
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Example 5-1 presents the complete Queue class definition along with a test program.

Example 5-1. Queue class definition and a test program
function Queue() {
   this.dataStore = [];
   this.enqueue = enqueue;
   this.dequeue = dequeue;
   this.front = front;
   this.back = back;
   this.toString = toString;
   this.empty = empty;
}

function enqueue(element) {
   this.dataStore.push(element);
}

function dequeue() {
   return this.dataStore.shift();
}

function front() {
   return this.dataStore[0];
}

function back() {
   return this.dataStore[this.dataStore.length-1];
}

function toString() {
   var retStr = "";
   for (var i = 0; i < this.dataStore.length; ++i) {
      retStr += this.dataStore[i] + "\n";
   }
   return retStr;
}

function empty() {
   if (this.dataStore.length == 0) {
      return true;
   }
   else {
      return false;
   }
}

// test program

var q = new Queue();
q.enqueue("Meredith");
q.enqueue("Cynthia");
q.enqueue("Jennifer");
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print(q.toString());
q.dequeue();
print(q.toString());
print("Front of queue: " + q.front());
print("Back of queue: " + q.back());

The output from Example 5-1 is:

Meredith
Cynthia
Jennifer

Cynthia
Jennifer

Front of queue: Cynthia
Back of queue: Jennifer

Using the Queue Class: Assigning Partners at a Square
Dance
As we mentioned earlier, queues are often used to simulate situations when people have
to wait in line. Once scenario we can simulate with a queue is a square dance for singles.
When men and women arrive at this square dance, they enter the dance hall and stand
in the line for their gender. As room becomes available on the dance floor, dance partners
are chosen by taking the first man and woman in line. The next man and woman move
to the front of their respective lines. As dance partners move onto the dance floor, their
names are announced. If a couple leaves the floor and there is not both a man and a
woman at the front of each line, this fact is announced.

This simulation will store the names of the men and women participating in the square
dance in a text file. Here is the file we will use for the simulation:

F Allison McMillan
M Frank Opitz
M Mason McMillan
M Clayton Ruff
F Cheryl Ferenback
M Raymond Williams
F Jennifer Ingram
M Bryan Frazer
M David Durr
M Danny Martin
F Aurora Adney

Each dancer is stored in a Dancer object:

function Dancer(name, sex) {
   this.name = name;
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   this.sex = sex;
}

Next we need a function to load the dancers from the file into the program:

function getDancers(males, females) {
   var names = read("dancers.txt").split("\n");
   for (var i = 0; i < names.length; ++i) {
      names[i] = names[i].trim();
   }
   for (var i = 0; i < names.length; ++i) {
      var dancer = names[i].split(" ");
      var sex = dancer[0];
      var name = dancer[1];
      if (sex == "F") {
         females.enqueue(new Dancer(name, sex));
      }
      else {
         males.enqueue(new Dancer(name, sex));
      }
   }
}

The names are read from the text file into an array. The function then trims the newline
character from each line. The second loop splits each line into a two-element array, by
sex and by name. Then the function examines the sex element and assigns the dancer
to the appropriate queue.

The next function pairs up the male and female dancers and announces the pairings:

function dance(males, females) {
   print("The dance partners are: \n");
   while (!females.empty() && !males.empty()) {
      person = females.dequeue();
      putstr("Female dancer is: " + person.name);
      person = males.dequeue();
      print(" and the male dancer is: " + person.name);
   }
   print();
}

Example 5-2 presents all the preceding functions, as well as a test program and the Queue
class.

Example 5-2. A square dance simulation
function Queue() {
   this.dataStore = [];
   this.enqueue = enqueue;
   this.dequeue = dequeue;
   this.front = front;
   this.back = back;
   this.toString = toString;
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   this.empty = empty;
}

function enqueue(element) {
   this.dataStore.push(element);
}

function dequeue() {
   return this.dataStore.shift();
}

function front() {
   return this.dataStore[0];
}

function back() {
   return this.dataStore[this.dataStore.length-1];
}

function toString() {
   var retStr = "";
   for (var i = 0; i < this.dataStore.length; ++i) {
      retStr += this.dataStore[i] + "\n";
   }
   return retStr;
}

function empty() {
   if (this.dataStore.length == 0) {
      return true;
   }
   else {
      return false;
   }
}

function Dancer(name, sex) {
   this.name = name;
   this.sex = sex;
}

function getDancers(males, females) {
   var names = read("dancers.txt").split("\n");
   for (var i = 0; i < names.length; ++i) {
      names[i] = names[i].trim();
   }
   for (var i = 0; i < names.length; ++i) {
      var dancer = names[i].split(" ");
      var sex = dancer[0];
      var name = dancer[1];
      if (sex == "F") {
         femaleDancers.enqueue(new Dancer(name, sex));
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      }
      else {
         maleDancers.enqueue(new Dancer(name, sex));
      }
   }
}

function dance(males, females) {
   print("The dance partners are: \n");
   while (!females.empty() && !males.empty()) {
      person = females.dequeue();
      putstr("Female dancer is: " + person.name);
      person = males.dequeue();
      print(" and the male dancer is: " + person.name);
   }
   print();
}

// test program

var maleDancers = new Queue();
var femaleDancers = new Queue();
getDancers(maleDancers, femaleDancers);
dance(maleDancers, femaleDancers);
if (!femaleDancers.empty()) {
   print(femaleDancers.front().name + " is waiting to dance.");
}
if (!maleDancers.empty()) {
   print(maleDancers.front().name + " is waiting to dance.");
}

The output from Example 5-2 is:

The dance partners are:

Female dancer is: Allison and the male dancer is: Frank
Female dancer is: Cheryl and the male dancer is: Mason
Female dancer is: Jennifer and the male dancer is: Clayton
Female dancer is: Aurora and the male dancer is: Raymond

Bryan is waiting to dance.

One change we might want to make to the program is to display the number of male
and female dancers waiting to dance. We don’t have a function that displays the number
of elements in a queue, so we need to add it to the Queue class definition:

function count() {
   return this.dataStore.length;
}

Be sure to add the following line to the Queue class constructor function:

this.count = count;
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In Example 5-3, we change the test program to use this new function.

Example 5-3. Providing a count of dancers waiting to dance
var maleDancers = new Queue();
var femaleDancers = new Queue();
getDancers(maleDancers, femaleDancers);
dance(maleDancers, femaleDancers);
if (maleDancers.count() > 0) {
   print("There are " + maleDancers.count() +
         " male dancers waiting to dance.");
}
if (femaleDancers.count() > 0) {
   print("There are " + femaleDancers.count() +
         " female dancers waiting to dance.");
}

When we run Example 5-3, we get the following:

Female dancer is: Allison and the male dancer is: Frank
Female dancer is: Cheryl and the male dancer is: Mason
Female dancer is: Jennifer and the male dancer is: Clayton
Female dancer is: Aurora and the male dancer is: Raymond

There are 3 male dancers waiting to dance.

Sorting Data with Queues
Queues are not only useful for simulations; they can also be used to sort data. Back in
the old days of computing, programs were entered into a mainframe program via punch
cards, with each card holding a single program statement. The cards were sorted using
a mechanical sorter that utilized bin-like structures to hold the cards. We can simulate
this process by using a set of queues. This sorting technique is called a radix sort (see
Data Structures with C++ [Prentice Hall]). It is not the fastest of sorting algorithms,
but it does demonstrate an interesting use of queues.

The radix sort works by making two passes over a data set, in this case the set of integers
from 0 to 99. The first pass sorts the numbers based on the 1s digit, and the second pass
sorts the numbers based on the 10s digit. Each number is placed in a bin based on the
digit in each of these two places. Given these numbers:

91, 46, 85, 15, 92, 35, 31, 22

the first pass of the radix sort results in the following bin configuration:

Bin 0:
Bin 1: 91, 31
Bin 2: 92, 22
Bin 3:
Bin 4:
Bin 5: 85, 15, 35
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Bin 6: 46
Bin 7:
Bin 8:
Bin 9:

Now the numbers are sorted based on which bin they are in:

91, 31, 92, 22, 85, 15, 35, 46

Next, the numbers are sorted by the 10s digit into the appropriate bins:

Bin 0:
Bin 1: 15
Bin 2: 22
Bin 3: 31, 35
Bin 4: 46
Bin 5:
Bin 6:
Bin 7:
Bin 8: 85
Bin 9: 91, 92

Finally, take the numbers out of the bins and put them back into a list, and you get the
following sorted list of integers:

15, 22, 31, 35, 46, 85, 91, 92

We can implement this algorithm by using queues to represent the bins. We need nine
queues, one for each digit. We will store the queues in an array. We uses the modulus
and integer division operations for determining the 1s and 10s digits. The remainder
of the algorithm entails adding numbers to their appropriate queues, taking the numbers
out of the queues to re-sort them based on the 1s digit, and the repeating the process
for the 10s digit. The result is a sorted set of integers.

First, here is the function that distributes numbers by the place (1s or 10s) digit:

function distribute(nums, queues, n, digit) { // digit represents either the 1s
                                              // or 10s place
   for (var i = 0; i < n; ++i) {
      if (digit == 1) {
         queues[nums[i]%10].enqueue(nums[i]);
      }
      else {
         queues[Math.floor(nums[i] / 10)].enqueue(nums[i]);
      }
   }
}

Here is the function for collecting numbers from the queues:

function collect(queues, nums) {
   var i = 0;
   for (var digit = 0; digit < 10; ++digit) {
      while (!queues[digit].empty()) {
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         nums[i++] = queues[digit].dequeue();
      }
   }
}

Example 5-4 presents a complete program for performing a radix sort, along with a
function for displaying the contents of an array.

Example 5-4. Performing a radix sort
function distribute(nums, queues, n, digit) {
   for (var i = 0; i < n; ++i) {
      if (digit == 1) {
         queues[nums[i]%10].enqueue(nums[i]);
      }
      else {
         queues[Math.floor(nums[i] / 10)].enqueue(nums[i]);
      }
   }
}

function collect(queues, nums) {
   var i = 0;
   for (var digit = 0; digit < 10; ++digit) {
      while (!queues[digit].empty()) {
         nums[i++] = queues[digit].dequeue();
      }
   }
}

function dispArray(arr) {
   for (var i = 0; i < arr.length; ++i) {
      putstr(arr[i] + " ");
   }
}

// main program

var queues = [];
for (var i = 0; i < 10; ++i) {
   queues[i] = new Queue();
}
var nums = [];
for (var i = 0; i < 10; ++i) {
   nums[i] = Math.floor(Math.floor(Math.random() * 101));
}
print("Before radix sort: ");
dispArray(nums);
distribute(nums, queues, 10, 1);
collect(queues, nums);
distribute(nums, queues, 10, 10);
collect(queues, nums);
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print("\n\nAfter radix sort: ");
dispArray(nums);

Here are a couple of runs of the program:

Before radix sort:
45 72 93 51 21 16 70 41 27 31

After radix sort:
16 21 27 31 41 45 51 70 72 93

Before radix sort:
76 77 15 84 79 71 69 99 6 54

After radix sort:
6 15 54 69 71 76 77 79 84 99

Priority Queues
In the course of normal queue operations, when an element is removed from a queue,
that element is always the first element that was inserted into the queue. There are certain
applications of queues, however, that require that elements be removed in an order other
than first-in, first-out. When we need to simulate such an application, we need to create
a data structure called a priority queue.

A priority queue is one where elements are removed from the queue based on a priority
constraint. For example, the waiting room at a hospital’s emergency department (ED)
operates using a priority queue. When a patient enters the ED, he or she is seen by a
triage nurse. This nurse’s job is to assess the severity of the patient’s condition and assign
the patient a priorty code. Patients with a high priority code are seen before patients
with a lower priority code, and patients that have the same priority code are seen on a
first-come, first-served, or first-in, first-out, basis.

Let’s begin building a priority queue system by first defining an object that will store the
elements of the queue:

function Patient(name, code) {
   this.name = name;
   this.code = code;
}

The value for code will be an integer that represents the patient’s priority, or severity.

Now we need to redefine the dequeue() function that removes the element in the queue
with the highest priority. We will define the highest priority element as being the element
with the lowest priority code. This new dequeue() function will move through the
queue’s underlying array and find the element with the lowest code. Then the function
uses the splice() function to remove the highest-priority element. Here is the new
definition for dequeue():
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function dequeue() {
   var priority = this.dataStore[0].code;
   for (var i = 1; i < this.dataStore.length; ++i) {
      if (this.dataStore[i].code < priority) {
         priority = i;
      }
   }
   return this.dataStore.splice(priority,1);
}

The dequeue() function uses a simple sequential search to find the element with the
highest priority code (the lowest number; 1 has a higher priority than 5). The function
returns an array of one element—the one removed from the queue.

Finally, we add a toString() function modified to handle Patient objects:

function toString() {
   var retStr = "";
   for (var i = 0; i < this.dataStore.length; ++i) {
      retStr += this.dataStore[i].name + " code: "
             + this.dataStore[i].code + "\n";
   }
   return retStr;
}

Example 5-5 demonstrates how the priority queue system works.

Example 5-5. A priority queue implementation
var p = new Patient("Smith",5);
var ed = new Queue();
ed.enqueue(p);
p = new Patient("Jones", 4);
ed.enqueue(p);
p = new Patient("Fehrenbach", 6);
ed.enqueue(p);
p = new Patient("Brown", 1);
ed.enqueue(p);
p = new Patient("Ingram", 1);
ed.enqueue(p);
print(ed.toString());
var seen = ed.dequeue();
print("Patient being treated: " + seen[0].name);
print("Patients waiting to be seen: ")
print(ed.toString());
// another round
var seen = ed.dequeue();
print("Patient being treated: " + seen[0].name);
print("Patients waiting to be seen: ")
print(ed.toString());
var seen = ed.dequeue();
print("Patient being treated: " + seen[0].name);
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print("Patients waiting to be seen: ")
print(ed.toString());

Example 5-5 generates the following output:

Smith code: 5
Jones code: 4
Fehrenbach code: 6
Brown code: 1
Ingram code: 1

Patient being treated: Jones
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6
Brown code: 1
Ingram code: 1

Patient being treated: Ingram
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6
Brown code: 1

Patient being treated: Brown
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6

Exercises
1. Modify the Queue class to create a Deque class. A deque is a queue-like structure

that allows elements to be added and removed from both the front and the back of
the list. Test your class in a program.

2. Use the Deque class you created in Example 5-1 to determine if a given word is a
palindrome.

3. Modify the priority queue example from Example 5-5 so that the higher-priority
elements have higher numbers rather than lower numbers. Test your implementa‐
tion with the example in the chapter.

4. Modify the ED example (Example 5-5) so the user can control the activity in the
ED. Create a menu system that allows the user to choose from the following activ‐
ities:
a. Patient enters ED.
b. Patient is seen by doctor.
c. Display list of patients waiting to be seen. 
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CHAPTER 6

Linked Lists

In Chapter 3 we discussed the use of lists for storing data. The underlying data storage
mechanism we use for lists is the array. In this chapter we’ll discuss a different type of
list, the linked list. We’ll explain why linked lists are sometimes preferred to arrays, and
we’ll develop an object-based, linked-list implementation. We’ll end the chapter with
several examples of how linked lists can solve many programming problems you will
encounter.

Shortcomings of Arrays
There are several reasons arrays are not always the best data structure to use for organ‐
izing data. In many programming languages, arrays are fixed in length, so it is hard to
add new data when the last element of the array is reached. Adding and removing data
from an array is also difficult because you have to move array elements up or down to
reflect either an addition or a deletion. However, these problems do not come up with
JavaScript arrays, since we can use the split() function without having to perform
additional array element accesses.

The main problem with using JavaScript arrays, however, is that arrays in JavaScript are
implemented as objects, causing them to be less efficient than arrays built in languages
such as C++ and Java (see Crockford, Chapter 6).

When you determine that the operations performed on an array are too slow for prac‐
tical use, you can consider using the linked list as an alternative data structure. The
linked list can be used in almost every situation where a one-dimensional array is used,
except when you need random access to the elements of a list. When random access is
required, an array is the better data structure to use.
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Linked Lists Defined
A linked list is a collection of objects called nodes. Each node is linked to a successor
node in the list using an object reference. The reference to another node is called a link.
An example of a linked list is shown in Figure 6-1.

Figure 6-1. A linked list

While array elements are referenced by their position, linked list elements are referenced
by their relationship to the other elements of the linked list. In Figure 6-1, we say that
“bread” follows “milk”, not that “bread” is in the second position. Moving through a
linked list involves following the links of the list from the beginning node to the end
node (not including the header node, which is sometimes used as a hook for entry into
a linked list). Something else to notice in the figure is that we mark the end of a linked
list by pointing to a null node.

Marking the beginning of a linked list can be a problem. Many linked-list implemen‐
tations include a special node, called the head, to denote the beginning of a linked list.
The linked list shown in Figure 6-1 is redesigned in Figure 6-2 to include a head node.

Figure 6-2. A linked list with a head node

Inserting a new node into a linked list is a very efficient task. To insert a new node, the
link of the node before the inserted node (the previous node) is changed to point to the
new node, and the new node’s link is set to the node the previous node was pointing to
before the insertion. Figure 6-3 illustrates how “cookies” is added to the linked list after
“eggs.”

74 | Chapter 6: Linked Lists



Figure 6-3. Inserting “cookies” into the linked list

Removing an item from a linked list is also easy to do. The link of the node before the
removed node is redirected to point to the node the removed node is pointing to, while
also pointing the removed node to null, effectively taking the node out of the linked list.
Figure 6-4 shows how “bacon” is removed from the linked list.

Figure 6-4. Removing “bacon” from the linked list

There are other functions we can perform with a linked list, but insertion and removal
are the two functions that best describe why linked lists are so useful.

An Object-Based Linked List Design
Our design of a linked list will involve creating two classes. We’ll create a Node class for
adding nodes to a linked list, and we’ll create a LinkedList class, which will provide
functions for inserting nodes, removing nodes, displaying a list, and other housekeeping
functions.

The Node Class
The Node class consists of two properties: element, which store’s the node’s data, and
next, which stores a link to the next node in the linked list. To create nodes, we’ll use a
constructor function that sets the values for the two properties:

function Node(element) {
   this.element = element;
   this.next = null;
}
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The Linked List Class
The LList class provides the functionality for a linked list. The class includes functions
for inserting new nodes, removing nodes, and finding a particular data value in a list.
There is also a constructor function used for creating a new linked list. The only property
stored in a linked list is a node to represent the head of the list.

Here is the definition for the constructor function:

function LList() {
   this.head = new Node("head");
   this.find = find;
   this.insert = insert;
   this.remove = remove;
   this.display = display;
}

The head node starts with its next property set to null and is changed to point to the
first element inserted into the list, since we create a new Node element but don’t modify
its next property here in the constructor.

Inserting New Nodes
The first function we’ll examine is the insert function, which inserts a node into a
list. To insert a new node, you have to specify which node you want to insert the new
node before or after. We’ll start by demonstrating how to insert a new node after an
existing node.

To insert a node after an existing node, we first have to find the “after” node. To do this,
we create a helper function, find(), which searches through the linked list looking for
the specified data. When this data is found, the function returns the node storing the
data. Here is the code for the find() function:

function find(item) {
   var currNode = this.head;
   while (currNode.element != item) {
      currNode = currNode.next;
   }
   return currNode;
}

The find() function demonstrates how to move through a linked list. First, we create
a new node and assign it as the head node. Then we loop through the linked list, moving
from one node to the next when the value of the current node’s element property is not
equal to the data we are searching for. If the search is successful, the function returns
the node storing the data. If the data is not found, the function returns null.

Once the “after” node is found, the new node is inserted into the linked list. First, the
new node’s next property is set to the value of the next property of the “after” node.
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Then the “after” node’s next property is set to a reference to the new node. Here is the
definition of the insert() function:

function insert(newElement, item) {
   var newNode = new Node(newElement);
   var current = this.find(item);
   newNode.next = current.next;
   current.next = newNode;
}

We’re ready now to test our linked list code. However, before we do that, we need a
function that will display the elements of a linked list. The display() function is defined
below:

function display() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      print(currNode.next.element);
      currNode = currNode.next;
   }
}

This function starts by hooking into the linked list by assigning the head of the list to a
new node. We then loop through the linked list, only stopping when the value of the
current node’s next property is set to null. In order to display only nodes with data in
them (in other words, not the head node), we access the element property of the node
that the current node is pointing to:

currNode.next.element

Finally, we need to add some code to use the linked list. Example 6-1 contains a short
program that sets up a linked list of cities in western Arkansas that are located on In‐
terstate 40, along with the complete LList class definition up to this point. Notice that
the remove() function is commented out. It will be defined in the next section.

Example 6-1. The LList class and a test program
function LList() {
   this.head = new Node("head");
   this.find = find;
   this.insert = insert;
   //this.remove = remove;
   this.display = display;
}

function find(item) {
   var currNode = this.head;
   while (currNode.element != item) {
      currNode = currNode.next;
   }
   return currNode;
}
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function insert(newElement, item) {
   var newNode = new Node(newElement);
   var current = this.find(item);
   newNode.next = current.next;
   current.next = newNode;
}

function display() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      print(currNode.next.element);
      currNode = currNode.next;
   }
}

// main program

var cities = new LList();
cities.insert("Conway", "head");
cities.insert("Russellville", "Conway");
cities.insert("Alma", "Russellville");
cities.display()

The output from Example 6-1 is:

Conway
Russellville
Alma

Removing Nodes from a Linked List
In order to remove a node from a linked list, we need to find the node that is just before
the node we want to remove. Once we find that node, we change its next property to
no longer reference the removed node, and the previous node is modified to point to
the node after the removed node. We can define a function, findPrevious(), to perform
this task. This function traverses the linked list, stopping at each node to see if the next
node stores the data that is to be removed. When the data is found, the function returns
this node (the “previous” node), so that its next property can be modified. Here is the
definition for findPrevious():

function findPrevious(item) {
   var currNode = this.head;
   while (!(currNode.next == null) &&
           (currNode.next.element != item)) {
      currNode = currNode.next;
   }
   return currNode;
}

Now we’re ready to write the remove() function:
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function remove(item) {
   var prevNode = this.findPrevious(item);
   if (!(prevNode.next == null)) {
       prevNode.next = prevNode.next.next;
   }
}

The main line of code in this function looks odd, but makes perfect sense:

prevNode.next = prevNode.next.next

We are just skipping over the node we want to remove and linking the “previous” node
with the node just after the one we are removing. Refer back to Figure 6-4 if you need
help visualizing this operation.

We are ready to test our code again, but first we need to modify the constructor function
for the LList class to include these new functions:

function LList() {
   this.head = new Node("head");
   this.find = find;
   this.insert = insert;
   this.display = display;
   this.findPrevious = findPrevious;
   this.remove = remove;
}

Example 6-2 provides a short program that tests the remove() function:

Example 6-2. Testing the remove() function
var cities = new LList();
cities.insert("Conway", "head");
cities.insert("Russellville", "Conway");
cities.insert("Carlisle", "Russellville");
cities.insert("Alma", "Carlisle");
cities.display();
console.log();
cities.remove("Carlisle");
cities.display();

The output from Example 6-2 before the removal is:

Conway
Russellville
Carlisle
Alma

But Carlisle is in eastern Arkansas, so we need to remove it from the list, resulting in
the following output:

Conway
Russellville
Alma
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Example 6-3 contains a complete listing of the Node class, the LList class, and our test
program:

Example 6-3. The Node class and the LList class
function Node(element) {
   this.element = element;
   this.next = null;
}

function LList() {
   this.head = new Node("head");
   this.find = find;
   this.insert = insert;
   this.display = display;
   this.findPrevious = findPrevious;
   this.remove = remove;
}

function remove(item) {
   var prevNode = this.findPrevious(item);
   if (!(prevNode.next == null)) {
       prevNode.next = prevNode.next.next;
   }
}

function findPrevious(item) {
   var currNode = this.head;
   while (!(currNode.next == null) &&
           (currNode.next.element != item)) {
      currNode = currNode.next;
   }
   return currNode;
}

function display() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      print(currNode.next.element);
      currNode = currNode.next;
   }
}

function find(item) {
   var currNode = this.head;
   while (currNode.element != item) {
      currNode = currNode.next;
   }
   return currNode;
}

function insert(newElement, item) {
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   var newNode = new Node(newElement);
   var current = this.find(item);
   newNode.next = current.next;
   current.next = newNode;
}

var cities = new LList();
cities.insert("Conway", "head");
cities.insert("Russellville", "Conway");
cities.insert("Carlisle", "Russellville");
cities.insert("Alma", "Carlisle");
cities.display();
console.log();
cities.remove("Carlisle");
cities.display();

Doubly Linked Lists
Although traversing a linked list from the first node to the last node is straightforward,
it is not as easy to traverse a linked list backward. We can simplify this procedure if we
add a property to our Node class that stores a link to the previous node. When we insert
a node into the list, we’ll have to perform more operations to assign the proper links for
the next and previous nodes, but we gain efficiency when we have to remove a node
from the list, since we no longer have to search for the previous node. Figure 6-5
illustrates how a doubly linked list works.

Figure 6-5. A doubly linked list

Our first task is to assign a previous property to our Node class:

function Node(element) {
   this.element = element;
   this.next = null;
   this.previous = null;
}

The insert() function for a doubly linked list is similar to the insert() function for
the singly linked list, except that we have to set the new node’s previous property to
point to the previous node. Here is the definition:

function insert(newElement, item) {
   var newNode = new Node(newElement);
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   var current = this.find(item);
   newNode.next = current.next;
   newNode.previous = current;
   current.next = newNode;
}

The remove() function for a doubly linked list is more efficient than for a singly linked
list because we don’t have to find the previous node. We first need to find the node in
the list that is storing the data we want to remove. Then we set that node’s previous
property to the node pointed to by the deleted node’s next property. Then we need to
redirect the previous property of the node the deleted node points to and point it to
the node before the deleted node. Figure 6-6 makes this situation easier to understand.

Figure 6-6. Removing a node from a doubly linked list

Here is the code for the remove() function:

function remove(item) {
   var currNode = this.find(item);
   if (!(currNode.next == null)) {
       currNode.previous.next = currNode.next;
       currNode.next.previous = currNode.previous;
       currNode.next = null;
       currNode.previous = null;
   }
}

In order to perform tasks such as displaying a linked list in reverse order, we can use a
utility function that finds the last node in a doubly linked list. The following function,
findLast(), moves us to the last node of a list without going past the end of the list:

function findLast() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      currNode = currNode.next;
   }
   return currNode;
}

With the findLast() function written, we can write a function to display the elements
of a doubly linked list in reverse order. Here is the code for the dispReverse() function:
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function dispReverse() {
   var currNode = this.head;
   currNode = this.findLast();
   while (!(currNode.previous == null)) {
      print(currNode.element);
      currNode = currNode.previous;
   }
}

The last task to accomplish is to add these new functions to the constructor function
for the doubly linked list class. Example 6-4 presents this code, along with the rest of
the code for implementing a doubly linked list, as well as a short program to test the
code.

Example 6-4. The LList class as a doubly linked list
function Node(element) {
   this.element = element;
   this.next = null;
   this.previous = null;
}

function LList() {
   this.head = new Node("head");
   this.find = find;
   this.insert = insert;
   this.display = display;
   this.remove = remove;
   this.findLast = findLast;
   this.dispReverse = dispReverse;
}

function dispReverse() {
   var currNode = this.head;
   currNode = this.findLast();
   while (!(currNode.previous == null)) {
      print(currNode.element);
      currNode = currNode.previous;
   }
}

function findLast() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      currNode = currNode.next;
   }
   return currNode;
}

function remove(item) {
   var currNode = this.find(item);
   if (!(currNode.next == null)) {
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       currNode.previous.next = currNode.next;
       currNode.next.previous = currNode.previous;
       currNode.next = null;
       currNode.previous = null;
   }
}

// findPrevious is no longer needed
/*function findPrevious(item) {
   var currNode = this.head;
   while (!(currNode.next == null) &&
           (currNode.next.element != item)) {
      currNode = currNode.next;
   }
   return currNode;
}*/

function display() {
   var currNode = this.head;
   while (!(currNode.next == null)) {
      print(currNode.next.element);
      currNode = currNode.next;
   }
}

function find(item) {
   var currNode = this.head;
   while (currNode.element != item) {
      currNode = currNode.next;
   }
   return currNode;
}

function insert(newElement, item) {
   var newNode = new Node(newElement);
   var current = this.find(item);
   newNode.next = current.next;
   newNode.previous = current;
   current.next = newNode;
}

var cities = new LList();
cities.insert("Conway", "head");
cities.insert("Russellville", "Conway");
cities.insert("Carlisle", "Russellville");
cities.insert("Alma", "Carlisle");
cities.display();
print();
cities.remove("Carlisle");
cities.display();
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print();
cities.dispReverse();

The output from Example 6-4 is:

Conway
Russellville
Carlisle
Alma

Conway
Russellville
Alma

Alma
Russellville
Conway

Circularly Linked Lists
A circularly linked list is similar to a singly linked list and has the same type of nodes.
The only difference is that a circularly linked list, when created, has its head node’s next
property point back to itself. This means that the assignment:

head.next = head

is propagated throughout the circularly linked list so that every new node has its next
property pointing to the head of the list. In other words, the last node of the list is always
pointing back to the head of the list, creating a circular list, as shown in Figure 6-7.

Figure 6-7. A circularly linked list

The reason you might want to create a circularly linked list is if you want the ability to
go backward through a list but don’t want the extra overhead of creating a doubly linked
list. You can move backward through a circularly linked list by moving forward through
the end of the list to the node you are trying to reach.

To create a circularly linked list, change the constructor function of the LList class to
read:

function LList() {
   this.head = new Node("head");
   this.head.next = this.head;
   this.find = find;
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   this.insert = insert;
   this.display = display;
   this.findPrevious = findPrevious;
   this.remove = remove;
}

This is the only change we have to make in order to make a singly linked list into a
circularly linked list. However, some of the other linked list functions will not work
correctly unmodified. For example, one function that needs to be modified is dis
play(). As written, if the display() function is executed on a circularly linked list, the
function will never stop. The condition of the while loop needs to change so that the
head element is tested for and the loop will stop when it gets to the head.

Here is how the display() function is written for a circularly linked list:

function display() {
   var currNode = this.head;
   while (!(currNode.next == null) &&
          !(currNode.next.element == "head")) {
      print(currNode.next.element);
      currNode = currNode.next;
   }
}

Seeing how to modify the display() function, you should be able to modify other
functions from a standard linked list to make them work with a circularly linked list.

Other Linked List Functions
There are several other functions you might include in order to have a well-functioning
linked list. In the upcoming exercises, you will have the opportunity to develop some
of these functions, including:
advance(n)

Advances n nodes in the linked list

back(n)

Moves n nodes backward in a doubly linked list

show()

Displays the current node only

Exercises
1. Implement the advance(n) function so that when executed, the current node is

moved n nodes forward in the list.
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2. Implement the back(n) function so that when executed, the current node is moved
n spaces backward in the list.

3. Implement the show() function, which displays the data associated with the current
node.

4. Write a program that uses a singly linked list to keep track of a set of test grades
entered interactively into the program.

5. Rewrite your solution to Example 6-4 using a doubly linked list.
6. According to legend, the first-century Jewish historian Flavius Josephus was about

to be captured along with a band of 40 compatriots by Roman soldiers during the
Jewish-Roman War. The Jewish soldiers decided that they preferred suicide to being
captured and devised a plan for their demise. They were to form a circle and kill
every third soldier until they were all dead. Josephus and one other decided they
wanted no part of this and quickly calculated where they needed to place themselves
so they would be the last survivors. Write a program that allows you to place n
people in a circle and specify that every mth person will be killed. The program
should determine the number of the last two people left in the circle. Use a circularly
linked list to solve the problem. 
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CHAPTER 7

Dictionaries

A dictionary is a data structure that stores data as key-value pairs, such as the way a
phone book stores its data as names and phone numbers. When you look for a phone
number, you first search for the name, and when you find the name, the phone number
is found right next to the name. The key is the element you use to perform a search, and
the value is the result of the search.

The JavaScript Object class is designed to operate as a dictionary. In this chapter we’ll
use the features of the Object class to build a Dictionary class that simplifies working
with a dictionary-type object. You can perform the same functions shown in this chapter
using just JavaScript arrays and objects, but creating a Dictionary class makes doing
the work easier and more fun. For example, it’s a lot easier to use () to reference keys
rather than having to use [] notation. There is also, of course, the advantage of being
able to define functions for performing collective operations, such as displaying all
entries in a dictionary, rather than having to write loops in the main program to perform
the same operations.

The Dictionary Class
The basis for the Dictionary class is the Array class rather than the Object class. Later
in this chapter we are going to want to sort the keys of a dictionary, and JavaScript can’t
sort the properties of an Object. Keep in mind, though, that everything in JavaScript is
an object, so an array is an object.

We’ll start our definition of the Dictionary class with this code:

function Dictionary() {
    this.datastore = new Array();
}
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The first function to define is add(). This function takes two arguments, a key and a
value. The key is the index for the value element. Here is the code:

function add(key, value) {
        this.datastore[key] = value;
}

Next, we define the find() function. This function takes a key as its argument and
returns the value associated with it. The code looks like this:

function find(key) {
        return this.datastore[key];
}

Removing a key-value pair from a dictionary involves using a built-in JavaScript func‐
tion: delete. This function is part of the Object class and takes a reference to a key as
its argument. The function deletes both the key and the associated value. Here is the
definition of our remove() function:

function remove(key) {
        delete this.datastore[key];
}

Finally, we’d like to be able to view all the key-value pairs in a dictionary, so here is a
function that accomplishes this task:

function showAll() {
   for each (var key in Object.keys(this.datastore)) {
      print(key + " -> " + this.datastore[key]);
   }
}

The keys() function, when called with an object, returns all the keys stored in that
object.

Example 7-1 provides the definition of the Dictionary class up to this point.

Example 7-1. The Dictionary class
function Dictionary() {
   this.add = add;
   this.datastore = new Array();
   this.find = find;
   this.remove = remove;
   this.showAll = showAll;
}

function add(key, value) {
   this.datastore[key] = value;
}

function find(key) {
   return this.datastore[key];
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}

function remove(key) {
   delete this.datastore[key];
}

function showAll() {
   for each (var key in Object.keys(this.datastore)) {
      print(key + " -> " + this.datastore[key]);
   }
}

A program that uses the Dictionary class is shown in Example 7-2.

Example 7-2. Using the Dictionary class
load("Dictionary.js");
var pbook = new Dictionary();
pbook.add("Mike","123");
pbook.add("David", "345");
pbook.add("Cynthia", "456");
print("David's extension: " + pbook.find("David"));
pbook.remove("David");
pbook.showAll();

The output from this program is:

David's extension: 345
Mike -> 123
Cynthia -> 456

Auxiliary Functions for the Dictionary Class
We can define several functions that can help in special situations. For example, it is
nice to know how many entries there are in a dictionary. Here is a count() function
definition:

function count() {
   var n = 0;
   for each (var key in Object.keys(this.datastore)) {
      ++n;
   }
   return n;
}

You might be wondering why the length property wasn’t used for the count() function.
The reason is that length doesn’t work with string keys. For example:

var nums() = new Array();
nums[0] = 1;
nums[1] = 2;
print(nums.length); // displays 2
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var pbook = new Array();
pbook["David"] = 1;
pbook["Jennifer"] = 2;
print(pbook.length); // displays 0

Another helper function we can use is a clear() function. Here’s the definition:

function clear() {
   for each (var key in Object.keys(this.datastore)) {
      delete this.datastore[key];
   }
}

Example 7-3 updates the complete Dictionary class definition.

Example 7-3. Updated Dictionary class definition
function Dictionary() {
   this.add = add;
   this.datastore = new Array();
   this.find = find;
   this.remove = remove;
   this.showAll = showAll;
   this.count = count;
   this.clear = clear;
}

function add(key, value) {
   this.datastore[key] = value;
}

function find(key) {
   return this.datastore[key];
}

function remove(key) {
   delete this.datastore[key];
}

function showAll() {
   for each (var key in Object.keys(this.datastore)) {
      print(key + " -> " + this.datastore[key]);
   }
}

function count() {
   var n = 0;
   for each (var key in Object.keys(this.datastore)) {
      ++n;
   }
   return n;
}

function clear() {
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   for each (var key in Object.keys(this.datastore)) {
      delete this.datastore[key];
   }
}

Example 7-4 illustrates how these new auxiliary functions work.

Example 7-4. Using the count() and clear() functions
load("Dictionary.js");
var pbook = new Dictionary();
pbook.add("Raymond","123");
pbook.add("David", "345");
pbook.add("Cynthia", "456");
print("Number of entries: " + pbook.count());
print("David's extension: " + pbook.find("David"));
pbook.showAll();
pbook.clear();
print("Number of entries: " + pbook.count());

The output from this code is:

Number of entries: 3
David's extension: 345
Raymond -> 123
David -> 345
Cynthia -> 456
Number of entries: 0

Adding Sorting to the Dictionary Class
The primary purpose of a dictionary is to retrieve a value by referencing its key. The
actual order that the dictionary items are stored in is not a primary concern. However,
many people like to see a listing of a dictionary in sorted order. Let’s see what it takes to
display our dictionary items in sorted order.

Arrays can be sorted. For example:

var a = new Array();
a[0] = "Mike";
a[1] = "David";
print(a); // displays Mike,David
a.sort();
print(a); // displays David,Mike

We can’t perform the same test with string keys, however. The output from the program
is empty. This is much the same problem we had earlier trying to define a count()
function.

This isn’t really a problem, however. All that matters to the user of the class is that when
the dictionary’s contents are displayed, the results are in sorted order. We can use the
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Object.keys() function to solve this problem. Here is a new definition for the show
All() function:

function showAll() {
   for each (var key in Object.keys(this.datastore).sort()) {
      print(key + " -> " + this.datastore[key]);
   }
}

The only difference between this definition of the function and our earlier definition is
we’ve added a call to sort() after we obtain the keys from the datastore array.
Example 7-5 demonstrates how this new function definition is used to display a sorted
list of names and numbers.

Example 7-5. A sorted dictionary display
load("Dictionary.js");
var pbook = new Dictionary();
pbook.add("Raymond","123");
pbook.add("David", "345");
pbook.add("Cynthia", "456");
pbook.add("Mike", "723");
pbook.add("Jennifer", "987");
pbook.add("Danny", "012");
pbook.add("Jonathan", "666");
pbook.showAll();

Here is the output of the program:

Cynthia -> 456
Danny -> 012
David -> 345
Jennifer -> 987
Jonathan -> 666
Mike -> 723
Raymond -> 123

Exercises
1. Write a program that takes a set of names and phone numbers from a text file and

stores them in a Dictionary object. Include in your program the ability to display
one phone number, display all phone numbers, add new phone numbers, remove
phone numbers, and clear out the list of numbers.

2. Using the Dictionary class, write a program that stores the number of occurrences
of words in a text. Your program should display each word in a text just once as
well as the number of times the word occurs in the text. For example, given the text
“the brown fox jumped over the blue fox,” the output will be:
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the: 2
brown: 1
fox: 2
jumped: 1
over: 1
blue: 1

3. Rewrite exercise 2 so that it displays the words in sorted order. 
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CHAPTER 8

Hashing

Hashing is a common technique for storing data in such a way that the data can be
inserted and retrieved very quickly. Hashing uses a data structure called a hash table.
Although hash tables provide fast insertion, deletion, and retrieval, they perform poorly
for operations that involve searching, such as finding the minimum and maximum
values in a data set. For these operations, other data structures such as the binary search
tree are more appropriate. We’ll learn how to implement a hash table in this chapter
and learn when it’s appropriate to use hashing as a data storage and retrieval technique.

An Overview of Hashing
The hash table data structure is designed around an array. The array consists of elements
0 through some predetermined size, though we can increase the size when necessary.
Each data element is stored in the array based on an associated data element called the
key, which is similar to the concept of the key we examined with the dictionary data
structure. To store a piece of data in a hash table, the key is mapped into a number in
the range of 0 through the hash table size, using a hash function.

Ideally, the hash function stores each key in its own array element. However, because
there are an unlimited number of possible keys and a limited number of array elements
(theoretical in JavaScript), a more realistic goal of the hash function is to attempt to
distribute the keys as evenly as possible among the elements of the array.

Even with an efficient hash function, it is possible for two keys to hash (the result of the
hash function) to the same value. This is called a collision, and we need a strategy for
handling collisions when they occur. We’ll discuss how to deal with collisions in detail
later in the chapter.

The last thing we have to determine when creating a hash function is how large an array
to create for the hash table. One constraint usually placed on the array size is that it
should be a prime number. We will explain why this number should be prime when we
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examine the different hash functions. After that, there are several different strategies for
determining the correct array size, all of them based on the technique used to handle
collisions, so we will examine this issue when we discuss handling collisions. Figure 8-1
illustrates the concept of hashing using the example of a small phone book.

Figure 8-1. Hashing names and telephone numbers

A Hash Table Class
We need a class to represent the hash table. The class will include functions for com‐
puting hash values, a function for inserting data into the hash table, a function for
retrieving data from the hash table, and a function for displaying the distribution of
data in the hash table, as well as various utility functions we might need.

Here is the constructor function for our HashTable class:

function HashTable() {
   this.table = new Array(137);
   this.simpleHash = simpleHash;
   this.showDistro = showDistro;
   this.put = put;
   //this.get = get;
}

The get() function is commented out for now; we’ll describe its definition later in the
chapter.

Choosing a Hash Function
The choice of a hash function depends on the data type of the key. If your key is an
integer, then the simplest hash function is to return the key modulo the size of the array.
There are circumstances when this function is not recommended, such as when the keys
all end in 0 and the array size is 10. This is one reason the array size should always be a
prime number, such as 137, which is the value we used in the preceding constructor
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function. Also, if the keys are random integers, then the hash function should more
evenly distribute the keys. This type of hashing is known as modular hashing.

In many applications, the keys are strings. Choosing a hash function to work with string
keys proves to be more difficult and should be chosen carefully.

A simple hash function that at first glance seems to work well is to sum the ASCII value
of the letters in the key. The hash value is then that sum modulo the array size. Here is
the definition for this simple hash function:

function simpleHash(data) {
   var total = 0;
   for (var i = 0; i < data.length; ++i) {
      total += data.charCodeAt(i);
   }
   return total % this.table.length;
}

We can finish up this first attempt at the HashTable class with definitions for put() and
showDistro(), which place the data in the hash table and display the data from the hash
table respectively. Here is the complete class definition:

function HashTable() {
   this.table = new Array(137);
   this.simpleHash = simpleHash;
   this.showDistro = showDistro;
   this.put = put;
   //this.get = get;
}

function put(data) {
   var pos = this.simpleHash(data);
   this.table[pos] = data;
}

function simpleHash(data) {
   var total = 0;
   for (var i = 0; i < data.length; ++i) {
      total += data.charCodeAt(i);
   }
   return total % this.table.length;
}

function showDistro() {
   var n = 0;
   for (var i = 0; i < this.table.length; ++i) {
      if (this.table[i] != undefined) {
         print(i + ": " + this.table[i]);
      }
   }
}
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Example 8-1 demonstrates how the simpleHash() function works.

Example 8-1. Hashing using a simple hash function
load("HashTable.js");
var someNames = ["David", "Jennifer", "Donnie", "Raymond",
                 "Cynthia", "Mike", "Clayton", "Danny", "Jonathan"];
var hTable = new HashTable();
for (var i = 0; i < someNames.length; ++i) {
   hTable.put(someNames[i]);
}
hTable.showDistro();

Here is the output from Example 8-1:

35: Cynthia
45: Clayton
57: Donnie
77: David
95: Danny
116: Mike
132: Jennifer
134: Jonathan

The simpleHash() function computes a hash value by summing the ASCII value of each
name using the JavaScript function charCodeAt() to return a character’s ASCII value.
The put() function receives the array index value from the simpleHash() function and
stores the data element in that position. The showDistro() function displays where the
names are actually placed into the array using the hash function. As you can see, the
data is not particularly evenly distributed. The names are bunched up at the beginning
and at the end of the array.

There is an even bigger problem than just the uneven distribution of names in the array,
however. If you pay close attention to the output, you’ll see that not all the names in the
original array of names are displayed. Let’s investigate further by adding a print()
statement to the simpleHash() function:

function simpleHash(data) {
   var total = 0;
   for (var i = 0; i < data.length; ++i) {
      total += data.charCodeAt(i);
   }
   print("Hash value: " + data + " -> " + total);
   return total % this.table.length;
}

When we run the program again, we see the following output:

Hash value: David -> 488
Hash value: Jennifer -> 817
Hash value: Donnie -> 605
Hash value: Raymond -> 730
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Hash value: Cynthia -> 720
Hash value: Mike -> 390
Hash value: Clayton -> 730
Hash value: Danny -> 506
Hash value: Jonathan -> 819
35: Cynthia
45: Clayton
57: Donnie
77: David
95: Danny
116: Mike
132: Jennifer
134: Jonathan

The problem is now apparent—the strings "Clayton" and "Raymond" hash to the
same value, causing a collision. Because of the collision, only "Clayton" is stored in the
hash table. We can improve our hash function to avoid such collisions, as discussed in
the next section.

A Better Hash Function
To avoid collisions, you first need to make sure the array you are using for the hash table
is sized to a prime number. This is necessary due to the use of modular arithmetic in
computing the key. The size of the array needs to be greater than 100 in order to more
evenly disperse the keys in the table. Through experimentation, we found that the first
prime number greater than 100 that didn’t cause collisions for the data set used in
Example 8-1 is 137. When smaller prime numbers close to 100 were used, there were
still collisions in the data set.

After properly sizing the hash table, the next step to avoiding hashing collisions is to
compute a better hash value. An algorithm known as Horner’s method does the trick.
Without getting too deep into the mathematics of the algorithm, our new hash function
still works by summing the ASCII values of the characters of a string, but it adds a step
by multiplying the resulting total by a prime constant. Most algorithm textbooks suggest
a small prime number, such as 31, but for our set of names 31 didn’t work; however, 37
worked without causing collisions.

We now present a new, better hash function utilizing Horner’s method:

function betterHash(string, arr) {
   const H = 37;
   var total = 0;
   for (var i = 0; i < string.length; ++i) {
      total += H * total + string.charCodeAt(i);
   }
   total = total % arr.length;
   return parseInt(total);
}
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Example 8-2 contains the current definition of the HashTable class.

Example 8-2. The HashTable class with the betterHash() function
function HashTable() {
   this.table = new Array(137);
   this.simpleHash = simpleHash;
   this.betterHash = betterHash;
   this.showDistro = showDistro;
   this.put = put;
   //this.get = get;
}

function put(data) {
   var pos = this.betterHash(data);
   this.table[pos] = data;
}

function simpleHash(data) {
   var total = 0;
   for (var i = 0; i < data.length; ++i) {
      total += data.charCodeAt(i);
   }
   print("Hash value: " + data + " -> " + total);
   return total % this.table.length;
}

function showDistro() {
   var n = 0;
   for (var i = 0; i < this.table.length; ++i) {
      if (this.table[i] != undefined) {
         print(i + ": " + this.table[i]);
      }
   }
}

function betterHash(string) {
   const H = 37;
   var total = 0;
   for (var i = 0; i < string.length; ++i) {
      total += H * total + string.charCodeAt(i);
   }
   total = total % this.table.length;
   if (total < 0) {
      total += this.table.length-1;
   }
   return parseInt(total);
}

Notice that the put() function is now using betterHash() rather than simpleHash().

The program in Example 8-3 tests our new hash function.
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Example 8-3. Testing the betterHash() function
load("HashTable.js");
var someNames = ["David", "Jennifer", "Donnie", "Raymond",
                 "Cynthia", "Mike", "Clayton", "Danny", "Jonathan"];
var hTable = new HashTable();
for (var i = 0; i < someNames.length; ++i) {
   hTable.put(someNames[i]);
}
htable.showDistro();

The result of running this program is:

17: Cynthia
25: Donnie
30: Mike
33: Jennifer
37: Jonathan
57: Clayton
65: David
66: Danny
99: Raymond

All nine names are now present and accounted for.

Hashing Integer Keys
In the last section we worked with string keys. In this section, we introduce how to hash
integer keys. The data set we’re working with is student grades. The key is a nine-digit
student identification number, which we will generate randomly, along with the stu‐
dent’s grade. Here are the functions we use to generate the student data (ID and grade):

function getRandomInt (min, max) {
    return Math.floor(Math.random() * (max - min + 1)) + min;
}

function genStuData(arr) {
   for (var i = 0; i < arr.length; ++i) {
      var num = "";
      for (var j = 1; j <= 9; ++j) {
         num += Math.floor(Math.random() * 10);
      }
      num += getRandomInt(50, 100);
      arr[i] = num;
   }
}

The getRandomInt() function allows us to specify a maximum and minimum random
number. For a set of student grades, it is reasonable to say that the minimum grade is
50 and the maximum grade is 100.
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The getStuData() function generates student data. The inner loop generates the stu‐
dent ID number, and right after the inner loop finishes, a random grade is generated
and concatenated to the student ID. Our main program will separate the ID from the
grade. The hash function will total the individual digits in the student ID to compute a
hash value using the simpleHash() function.

Example 8-4 presents a program that uses the preceding functions to store a set of
students and their grades.

Example 8-4. Hashing integer keys
function getRandomInt (min, max) {
    return Math.floor(Math.random() * (max - min + 1)) + min;
}

function genStuData(arr) {
   for (var i = 0; i < arr.length; ++i) {
      var num = "";
      for (var j = 1; j <= 9; ++j) {
         num += Math.floor(Math.random() * 10);
      }
      num += getRandomInt(50,100);
      arr[i] = num;
   }
}

load("HashTable.js");
var numStudents = 10;
var arrSize = 97;
var idLen = 9;
var students = new Array(numStudents);
genStuData(students);
print ("Student data: \n");
for (var i = 0; i < students.length; ++i) {
   print(students[i].substring(0,8) + " " +
         students[i].substring(9));
}
print("\n\nData distribution: \n");
var hTable = new HashTable();
for (var i = 0; i < students.length; ++i) {
   hTable.put(students[i]);
}
hTable.showDistro();

The output from Example 8-4 is:

Student data:

24553918 70
08930891 70
41819658 84
04591864 82
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75760587 91
78918058 87
69774357 53
52158607 59
60644757 81
60134879 58

Data distribution:

41: 52158607059
42: 08930891470
47: 60644757681
50: 41819658384
53: 60134879958
54: 75760587691
61: 78918058787

Once again, our hash function creates a collision, and not all of the data is stored in the
array. Actually, if you run the program several times, all of the data will sometimes get
stored, but the results are far from consistent. We can play around with array sizes to
see if we can fix the problem, or we can simply change the hash function called by the
put() function and use betterHash(). When using betterHash() with the student
data, we get the following output:

Student data:

74980904 65
26410578 93
37332360 87
86396738 65
16122144 78
75137165 88
70987506 96
04268092 84
95220332 86
55107563 68

Data distribution:

10: 75137165888
34: 95220332486
47: 70987506996
50: 74980904265
51: 86396738665
53: 55107563768
67: 04268092284
81: 37332360187
82: 16122144378
85: 26410578393
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The lesson here is obvious: betterHash() is the superior hashing function for strings
and for integers.

Storing and Retrieving Data in a Hash Table
Now that we’ve covered hash functions, we can apply this knowledge to use a hash table
to actually store data. To do this, we have to modify the put() function so that it accepts
both a key and data, hashes the key, and then uses that information to store the data in
the table. Here is the definition of the new put() function:

function put(key, data) {
   var pos = this.betterHash(key);
   this.table[pos] = data;
}

The put() function hashes the key and then stores the data in the position of the table
computed by the hash function.

Next we need to define the get() function so that we can retrieve data stored in a hash
table. This function must, again, hash the key so that it can determine where the data is
stored, and then retrieve the data from its position in the table. Here is the definition:

function get(key) {
   return this.table[this.betterHash(key)];
}

Here is a program to test the put() and get() functions:

load("Hashing.js");
var pnumbers = new HashTable();
var name, number;
for (var i = 0; i < 3; i++) {
   putstr("Enter a name (space to quit): ");
   name = readline();
   putstr("Enter a number: ");
   number = readline();
}
name = "";
putstr("Name for number (Enter quit to stop): ");
while (name != "quit") {
   name = readline();
   if (name == "quit") {
      break;
   }
   print(name + "'s number is " + pnumbers.get(name));
   putstr("Name for number (Enter quit to stop): ");
}

This program allows you to enter three names and phone numbers and will retrieve
numbers based on names until you tell the program to quit.
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Handling Collisions
A collision occurs when a hash function generates the same key for two or more val‐
ues. The second part of a hash algorithm involves resolving collisions so that all keys
are stored in the hash table. In this section, we look at two means of collision resolution:
separate chaining and linear probing.

Separate Chaining
When a collision occurs, we still need to be able to store the key at the generated index,
but it is physically impossible to store more than one piece of data in an array ele‐
ment. Separate chaining is a technique where each array element of a hash table stores
another data structure, such as another array, which is then used to store keys. Using
this technique, if two keys generate the same hash value, each key can be stored in a
different position of the secondary array. Figure 8-2 illustrates how separate chaining
works.

Figure 8-2. Separate chaining

To implement separate chaining, after we create the array to store the hashed keys, we
call a function that assigns an empty array to each array element of the hash table. This
creates a two-dimensional array (see Chapter 3 for an explantion of two-dimenstional
arrays). The following code defines a function, buildChains(), to create the second
array (we’ll also refer to this array as a chain), as well as a small program that demon‐
strates how to use buildChains():

Handling Collisions | 107



function buildChains() {
   for (var i = 0; i < this.table.length; ++i) {
      this.table[i] = new Array();
   }
}

Add the preceding code, along with a declaration of the function, to the definition of
the HashTable class.

A program to test separate chaining is shown in Example 8-5.

Example 8-5. Using separate chaining to avoid collisions
load("HashTable.js");
var hTable = new HashTable();
hTable.buildChains();
var someNames = ["David", "Jennifer", "Donnie", "Raymond",
                 "Cynthia", "Mike", "Clayton", "Danny", "Jonathan"];
for (var i = 0; i < someNames.length; ++i) {
   hTable.put(someNames[i]);
}
hTable.showDistro();

In order to properly display the distribution after hashing with separate chaining, we
need to modify the showDistro() function in the following way to recognize that the
hash table is now a multidimensional array:

function showDistro() {
   var n = 0;
   for (var i = 0; i < this.table.length; ++i) {
      if (this.table[i][0] != undefined) {
         print(i + ": " + this.table[i]);
      }
   }
}

When we run the program in Example 8-5, we get the following output:

60: David
68: Jennifer
69: Mike
70: Donnie,Jonathan
78: Cynthia,Danny
88: Raymond,Clayton

Next we need to define the put() and get() functions that will work with separate
chaining. The put() function hashes the key and then attempts to store the data in the
first cell of the chain at the hashed position. If that cell already has data in it, the function
searches for the first open cell and stores the data in that cell. Here is the code for the
put() function:

function put(key, data) {
   var pos = this.betterHash(key);
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   var index = 0;
   if (this.table[pos][index] == undefined) {
      this.table[pos][index+1] = data;
   }
   ++index;
   else {
      while (this.table[pos][index] != undefined) {
         ++index;
      }
      this.table[pos][index] = data;
   }
}

Unlike the example earlier when we were just storing keys, this put() function has to
store both keys and values. The function uses a pair of the chain’s cells to store a key-
value pair; the first cell stores the key and the adjacent cell of the chain stores the value.

The get() function starts out by hashing the key to get the position of the key in the
hash table. Then the function searches the cells until it finds the key it is looking for.
When it finds the correct key, it returns the data from the adjacent cell to the key’s cell.
If the key is not found, the function returns undefined. Here is the code:

function get(key) {
   var index = 0;
   var hash = this.betterHash(key);
   if (this.table[pos][index] = key) {
      return this.table[pos][index+1];
   }
   index += 2;
   else {
      while (this.table[pos][index] != key) {
         index += 2;
      }
      return this.table[pos][index+1];
   }
   return undefined;
}

Linear Probing
A second technique for handling collisions is called linear probing. Linear probing is an
example of a more general hashing technique called open-addressing hashing. With
linear probing, when there is a collision, the program simply looks to see if the next
element of the hash table is empty. If so, the key is placed in that element. If the element
is not empty, the program continues to search for an empty hash-table element until
one is found. This technique makes use of the fact that any hash table is going to have
many empty elements and it makes sense to use the space to store keys.

Linear probing should be chosen over separate chaining when your array for storing
data can be fairly large. Here’s a formula commonly used to determine which collision
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method to use: if the size of the array can be up to half the number of elements to be
stored, you should use separate chaining; but if the size of the array can be twice the size
of the number of elements to be stored, you should use linear probing.

To demonstrate how linear probing works, we can rewrite the put() and get() func‐
tions to work with linear probing. In order to create a realistic data-retrieval system, we
have to modify the HashTable class by adding a second array to store values. The table
array and the values array work in parallel, so that when we store a key in a position
in the tables array, we store a value in the corresponding position in the values array.

Add the following code to the HashTable constructor:

this.values = [];

Now we can define the put() method for linear probing:

function put(key, data) {
   var pos = this.betterHash(key);
   if (this.table[pos] == undefined) {
      this.table[pos] = key;
      this.values[pos] = data;
   }
   else {
      while (this.table[pos] != undefined) {
         pos++;
      }
      this.table[pos] = key;
      this.values[pos] = data;
   }
}

The code for the get() function begins searching the hash table at the hashed position
of the key. If the data passed to the function matches the key found at that position, the
corresponding data in the values position is returned. If the keys don’t match, the
function loops through the hash table until it either finds the key or reaches a cell that
is undefined, meaning the key was never placed into the hash table. Here’s the code:

function get(key) {
   var hash = -1;
   hash = this.betterHash(key);
   if (hash > -1) {
      for (var i = hash; this.table[hash] != undefined; i++) {
         if (this.table[hash] == key) {
            return this.values[hash];
         }
      }
   }
   return undefined;
}
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Exercises
1. Use linear probing to create a simple dictionary to store the definitions of words.

Your program should have two parts. The first part reads a text file that contains a
list of words and definitions and stores them in a hash table. The second part of the
program allows a user to enter a word and see the definition of that word.

2. Repeat exercise 1 using separate chaining.
3. Write a program using hashing that reads a text file and compiles a list of the words

in the file with the number of times each word appears in the file.
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CHAPTER 9

Sets

A set is a collection of unique elements. The elements of a set are called members. The
two most important properties of sets are that the members of a set are unordered and
that no member can occur in a set more than once. Sets play a very important role in
computer science but are not considered a data type in many programming languages.
Sets can be useful when you want to create a data structure that consists only of unique
elements, such as a list of each unique word in a text. This chapter discusses how to
create a Set class for JavaScript.

Fundamental Set Definitions, Operations, and Properties
A set is an unordered collection of related members in which no member occurs more
than once. A set is denoted mathematically as a list of members surrounded by curly
braces, such as {0,1,2,3,4,5,6,7,8,9}. We can write a set in any order, so the previous set
can be written as {9,0,8,1,7,2,6,3,5,4} or any other combination of the members such
that all the members are written just once.

Set Definitions
Here are some definitions you need to know to work with sets:

• A set containing no members is called the empty set. The universe is the set of all
possible members.

• Two sets are considered equal if they contain exactly the same members.
• A set is considered a subset of another set if all the members of the first set are

contained in the second set.
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Set Operations
The fundamental operations performed on sets are:
Union

A new set is obtained by combining the members of one set with the members of
another set.

Intersection
A new set is obtained by adding all the members of one set that also exist in a second
set.

Difference
A new set is obtained by adding all the members of one set except those that also
exist in a second set.

The Set Class Implementation
The Set class implementation is built around an array for storing the data. We also create
functions for each of the set operations outlined above. Here is the definition for the
constructor function:

function Set() {
   this.dataStore = [];
   this.add = add;
   this.remove = remove;
   this.size = size;
   this.union = union;
   this.intersect = intersect;
   this.subset = subset;
   this.difference = difference;
   this.show = show;
}

Let’s look at the add() function first:

function add(data) {
   if (this.dataStore.indexOf(data) < 0) {
      this.dataStore.push(data);
      return true;
   }
   else {
      return false;
   }
}

Because a set can only contain unique members, before the add() function can store
data in the array, it must check to make sure the data isn’t already in the array. We use
the indexOf() function to check the array for the requested data. This function returns
the position of an element in an array, or the value -1 if the array doesn’t contain the
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element. If the data isn’t stored in the array, the function pushes the data onto the array
and returns true. Otherwise, the function returns false. We need to write add() as a
Boolean function so we have to way to know for sure whether or not the data was added
to the set.

The remove() function works similarly to the add() function. We first check to see if
the requested data is in the array. If it is, we call the splice() function to remove the
data and return true. Otherwise, we return false, indicating the requested data isn’t in
the set. Here is the definition of remove():

function remove(data) {
   var pos = this.dataStore.indexOf(data);
   if (pos > -1) {
      this.dataStore.splice(pos,1);
      return true;
   }
   else {
      return false;
   }
}

Before we can test these functions, let’s define the show() function so we can see the
members of a set:

function show() {
   return this.dataStore;
}

Example 9-1 demonstrates how the Set class works up to now.

Example 9-1. Using the Set class
load("set.js");
var names = new Set();
names.add("David");
names.add("Jennifer");
names.add("Cynthia");
names.add("Mike");
names.add("Raymond");
if (names.add("Mike")) {
   print("Mike added")
}
else {
   print("Can't add Mike, must already be in set");
}
print(names.show());
var removed = "Mike";
if (names.remove(removed)) {
   print(removed + " removed.");
}
else {
   print(removed + " not removed.");
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}
names.add("Clayton");
print(names.show());
removed = "Alisa";
if (names.remove("Mike")) {
   print(removed + " removed.");
}
else {
   print(removed + " not removed.");
}

The output from Example 9-1 is:

Can't add Mike, must already be in set
David,Jennifer,Cynthia,Mike,Raymond
Mike removed.
David,Jennifer,Cynthia,Raymond,Clayton
Alisa not removed.

More Set Operations
The more interesting functions to define are union(), intersect(), subset(), and
difference(). The union() function combines two sets using the union set operation
to form a new set. The function first builds a new set by adding all the members of the
first set. Then the function checks each member of the second set to see whether the
member is already a member of the first set. If it is, the member is skipped over, and if
not, the member is added to the new set.

Before we define union(), however, we need to define a helper function, contains(),
which looks to see if a specified member is part of a set. Here is the definition for
contains():

function contains(data) {
   if (this.dataStore.indexOf(data) > -1) {
      return true;
   }
   else {
      return false;
   }
}

Now we can define the union() function:

function union(set) {
   var tempSet = new Set();
   for (var i = 0; i < this.dataStore.length; ++i) {
      tempSet.add(this.dataStore[i]);
   }
   for (var i = 0; i < set.dataStore.length; ++i) {
      if (!tempSet.contains(set.dataStore[i])) {
         tempSet.dataStore.push(set.dataStore[i]);
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      }
   }
   return tempSet;
}

Example 9-2 demonstrates the use of union():

Example 9-2. Computing the union of two sets
load("set.js");
var cis = new Set();
cis.add("Mike");
cis.add("Clayton");
cis.add("Jennifer");
cis.add("Raymond");
var dmp = new Set();
dmp.add("Raymond");
dmp.add("Cynthia");
dmp.add("Jonathan");
var it = new Set();
it = cis.union(dmp);
print(it.show());
//displays Mike,Clayton,Jennifer,Raymond,Cynthia,Jonathan

Set intersection is performed using a function named intersect(). This function is
easier to define. Each time a member of the first set is found to be a member of the
second set it is added to a new set, which is the return value of the function. Here is the
definition:

function intersect(set) {
   var tempSet = new Set();
   for (var i = 0; i < this.dataStore.length; ++i) {
      if (set.contains(this.dataStore[i])) {
         tempSet.add(this.dataStore[i]);
      }
   }
   return tempSet;
}

Computing the intersection of two sets is shown in Example 9-3.

Example 9-3. Computing the intersection of two sets
load("set.js");
var cis = new Set();
cis.add("Mike");
cis.add("Clayton");
cis.add("Jennifer");
cis.add("Raymond");
var dmp = new Set();
dmp.add("Raymond");
dmp.add("Cynthia");
dmp.add("Bryan");
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var inter = cis.intersect(dmp);
print(inter.show()); // displays Raymond

The next operation to define is subset. The subset() function first has to check to make
sure that the proposed subset’s length is less than the larger set we are comparing with
the subset. If the subset length is greater than the original set, then it cannot be a subset.
Once it is determined that the subset size is smaller, the function then checks to see that
each member of the subset is a member of the larger set. If any one member of the subset
is not in the larger set, the function returns false and stops. If the function gets to the
end of the larger set without returning false, the subset is indeed a subset and the
function returns true. The definition is below:

function subset(set) {
   if (this.size() > set.size()) {
      return false;
   }
   else {
      for each (var member in this.dataStore) {
         if (!set.contains(member)) {
            return false;
         }
      }
   }
   return true;
}

The subset() function uses the size() function before checking to see if each element
of the sets match. Here is the code for the size() function:

function size() {
   return this.dataStore.length;
}

You’ll notice that the subset() function uses a for each loop instead of a for loop, as
we’ve used in the other definitions. Either loop will work here, but we just used the for
each loop to show that its use is fine here.

Example 9-4 computes the subset of two sets.

Example 9-4. Computing the subset of two sets
load("set.js");
var it = new Set();
it.add("Cynthia");
it.add("Clayton");
it.add("Jennifer");
it.add("Danny");
it.add("Jonathan");
it.add("Terrill");
it.add("Raymond");
it.add("Mike");
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var dmp = new Set();
dmp.add("Cynthia");
dmp.add("Raymond");
dmp.add("Jonathan");
if (dmp.subset(it)) {
   print("DMP is a subset of IT.");
}
else {
   print("DMP is not a subset of IT.");
}

Example 9-4 displays the following output:

DMP is a subset of IT.

If we add one new member to the dmp set:

dmp.add("Shirley");

then the program displays:

DMP is not a subset of IT.

The last operational function is difference(). This function returns a set that contains
those members of the first set that are not in the second set. The definition for differ
ence() is shown below:

function difference(set) {
   var tempSet = new Set();
   for (var i = 0; i < this.dataStore.length; ++i) {
      if (!set.contains(this.dataStore[i])) {
         tempSet.add(this.dataStore[i]);
      }
   }
   return tempSet;
}

Example 9-5 computes the difference of two sets.

Example 9-5. Computing the difference of two sets
load("set.js");
var cis = new Set();
var it = new Set();
cis.add("Clayton");
cis.add("Jennifer");
cis.add("Danny");
it.add("Bryan");
it.add("Clayton");
it.add("Jennifer");
var diff = new Set();
diff = cis.difference(it);
print("[" + cis.show() + "] difference [" + it.show()
      + "] -> [" + diff.show() + "]");
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Example 9-5 displays:

[Clayton,Jennifer,Danny] difference [Bryan,Clayton,Jennifer] ->
[Danny]

Exercises
1. Modify the Set class so that the class stores its elements in sorted order. Write a

program to test your implementation.
2. Modify the Set class so that it uses a linked list to store its elements rather than an

array. Write a program to test your implementation.
3. Add the function higher(element) to the Set class. This function returns the least

element in the set strictly greater than the given element. Test your function in a
program.

4. Add the function lower(element) to the Set class. This function returns the great‐
est element in the set strictly less than the given element. Test your function in a
program.
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CHAPTER 10

Binary Trees and Binary Search Trees

Trees are a commonly used data structure in computer science. A tree is a nonlinear
data structure that is used to store data in a hierarchical manner. Tree data structures
are used to store hierarchical data, such as the files in a file system, and for storing sorted
lists of data. We examine one particular tree structure in this chapter: the binary tree. 
Binary trees are chosen over other more primary data structures because you can search
a binary tree very quickly (as opposed to a linked list, for example) and you can quickly
insert and delete data from a binary tree (as opposed to an array).

Trees Defined
A tree is made up of a set of nodes connected by edges. An example of a tree is a company’s
organizational chart (see Figure 10-1).

The purpose of an organizational chart is to communicate the structure of an organi‐
zation. In Figure 10-1, each box is a node, and the lines connecting the boxes are the
edges. The nodes represent the positions that make up an organization, and the edges
represent the relationships between those positions. For example, the CIO reports di‐
rectly to the CEO, so there is an edge between those two nodes. The development man‐
ager reports to the CIO, so there is an edge connecting those two positions. The VP of
Sales and the development manager do not have a direct edge connecting them, so there
is not a direct relationship between those two positions.
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Figure 10-1. An organizational chart is a tree structure

Figure 10-2 displays another tree that defines more of the terms we need when discussing
trees. The top node of a tree is called the root node. If a node is connected to other nodes
below it, the preceding node is called the parent node, and the nodes following it are
called child nodes. A node can have zero, one, or more child nodes connected to it. A
node without any child nodes is called a leaf node.

Special types of trees, called binary trees, restrict the number of child nodes to no more
than two. Binary trees have certain computational properties that make them very ef‐
ficient for many operations. Binary trees are examined extensively in the sections to
follow.

Continuing to examine Figure 10-2, you can see that by following certain edges, you
can travel from one node to other nodes that are not directly connected. The series of
edges you follow to get from one node to another node is called a path. Paths are depicted
in the figure with dashed lines. Visiting all the nodes in a tree in some particular order
is known as a tree traversal.
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Figure 10-2. The parts of a tree

A tree can be broken down into levels. The root node is at level 0, its children are at level
1, those nodes’ children are at level 2, and so on. A node at any level is considered the
root of a subtree, which consists of that root node’s children, its children’s children, and
so on. We can define the depth of a tree as the number of layers in the tree.

This concept of the root node being at the top of a tree, while in real life a tree’s root is
at the bottom of the tree, is counterintuitive, but it is a time-honored convention in
computer science to draw trees with the root at the top. The computer scientist Donald
Knuth actually tried to change the convention but gave up after a few months when he
discovered that most computer scientists refused to adapt to the natural way of drawing
trees.

Finally, each node in a tree has a value associated with it. This value is sometimes referred
to as the key value.

Binary Trees and Binary Search Trees
As mentioned earlier, a binary tree is one where each node can have no more than two
children. By limiting the number of children to two, we can write efficient programs for
inserting data, searching for data, and deleting data in a tree.

Before we discuss building a binary tree in JavaScript, we need to add two terms to our
tree lexicon. The child nodes of a parent node are referred to as the left node and the
right node. For certain binary tree implementations, certain data values can be stored
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only in left nodes, and other data values must be stored in right nodes. An example
binary tree is shown in Figure 10-3.

Figure 10-3. A binary tree

Identifying the child nodes is important when we consider a more specific type of binary
tree, the binary search tree. A binary search tree is a binary tree in which data with lesser
values are stored in left nodes and data with greater values are stored in right nodes.
This property provides for very efficient searches and holds for both numeric data and
non-numeric data, such as words and strings.

Building a Binary Search Tree Implementation
A binary search tree is made up of nodes, so the first object we need to create is a Node
object, which is similar to the Node object we used with linked lists. The definition for
the Node class is:

function Node(data, left, right) {
   this.data = data;
   this.left = left;
   this.right = right;
   this.show = show;
}

function show() {
   return this.data;
}

The Node object stores both data and links to other nodes (left and right). There is
also a show() function for displaying the data stored in a node.

Now we can build a class to represent a binary search tree (BST). The class consists of
just one data member: a Node object that represents the root node of the BST. The
constructor for the class sets the root node to null, creating an empty node.

124 | Chapter 10: Binary Trees and Binary Search Trees



The first function we need for the BST is insert(), to add new nodes to the tree. This
function is complex and requires explanation. The first step in the function is to create
a Node object, passing in the data the node will store.

The second step in insertion is to check the BST for a root node. If a root node doesn’t
exist, then the BST is new and this node is the root node, which completes the function
definition. Otherwise, the function moves to the next step.

If the node being inserted is not the root node, then we have to prepare to traverse the
BST to find the proper insertion point. This process is similar to traversing a linked list.
The function uses a Node object that is assigned as the current node as the function
moves from level to level in the BST. The function also has to position itself inside the
BST at the root node.

Once inside the BST, the next step is to determine where to put the node. This is per‐
formed inside a loop that breaks once the correct insertion point is determined. The
algorithm for determining the corrent insertion point for a node is as follows:

1. Set the root node to be the current node.
2. If the data value in the inserted node is less than the data value in the current node,

set the new current node to be the left child of the current node. If the data value
in the inserted node is greater than the data value in the current node, skip to step
4.

3. If the value of the left child of the current node is null, insert the new node here
and exit the loop. Otherwise, skip to the next iteration of the loop.

4. Set the current node to be the right child of the current node.
5. If the value of the right child of the current node is null, insert the new node here

and exit the loop. Otherwise, skip to the next iteration of the loop.

With this algorithm complete, we’re ready to implement this part of the BST class.
Example 10-1 has the code for the class, including the code for the Node object.

Example 10-1. The BST and Node classes
function Node(data, left, right) {
   this.data = data;
   this.left = left;
   this.right = right;
   this.show = show;
}

function show() {
   return this.data;
}

function BST() {

Binary Trees and Binary Search Trees | 125



   this.root = null;
   this.insert = insert;
   this.inOrder = inOrder;
}

function insert(data) {
   var n = new Node(data, null, null);
   if (this.root == null) {
      this.root = n;
   }
   else {
      var current = this.root;
      var parent;
      while (true) {
         parent = current;
         if (data < current.data) {
            current = current.left;
            if (current == null) {
               parent.left = n;
               break;
            }
         }
         else {
            current = current.right;
            if (current == null) {
               parent.right = n;
               break;
            }
         }
      }
   }
}

Traversing a Binary Search Tree
We now have the beginnings of the BST class, but all we can do is insert nodes into the
tree. We need to be able to traverse the BST so that we can display the data in different
orders, such as numeric or alphabetic order.

There are three traversal functions used with BSTs: inorder, preorder, and postorder. An
inorder traversal visits all of the nodes of a BST in ascending order of the node key
values. A preorder traversal visits the root node first, followed by the nodes in the sub‐
trees under the left child of the root node, followed by the nodes in the subtrees under
the right child of the root node. A postorder traversal visits all of the child nodes of the
left subtree up to the root node, and then visits all of the child nodes of the right subtree
up to the root node.

Although it’s easy to understand why we would want to perform an inorder traversal,
it is less obvious why we need preorder and postorder traversals. We’ll implement all
three traversal functions now and explain their uses in a later section.
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The inorder traversal is best written using recursion. Since the function visits each node
in ascending order, the function must visit both the left node and the right node of each
subtree, following the subtrees under the left child of the root node before following the
subtrees under the right child of the root. If you are unsure about using recursion,
Chapter 1 discusses how to write a recursive function.

Here is the code for the inorder traversal function:

function inOrder(node) {
   if (!(node == null)) {
      inOrder(node.left);
      putstr(node.show() + " ");
      inOrder(node.right);
   }
}

Example 10-2 provides a short program to test the function.

Example 10-2. Inorder traversal of a BST
var nums = new BST();
nums.insert(23);
nums.insert(45);
nums.insert(16);
nums.insert(37);
nums.insert(3);
nums.insert(99);
nums.insert(22);
print("Inorder traversal: ");
inOrder(nums.root);

The output from Example 10-2 is:

Inorder traversal:
3 16 22 23 37 45 99

Figure 10-4 illustrates the path the inOrder() function followed.

Figure 10-4. Path of inorder traversal
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The definition of the preorder traversal function is:

function preOrder(node) {
   if (!(node == null)) {
      putstr(node.show() + " ");
      preOrder(node.left);
      preOrder(node.right);
   }
}

You’ll notice that the only difference between the inOrder() and preOrder() functions
is how the three lines of code inside the if statement are ordered. The call to the show()
function is sandwiched between the two recursive calls in the inOrder() function, and
the call to show() is before the two recursive calls in the preOrder() function.

Figure 10-5 illustrates the preorder traversal path.

Figure 10-5. Path of preorder traversal

If we add a call to preOrder() to the preceding program, we get the following results:

Inorder traversal:
3 16 22 23 37 45 99

Preorder traversal:
23 16 3 22 45 37 99

The path of a postorder traversal is shown in Figure 10-6.
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Figure 10-6. Path of postorder traversal

Here is the implementation of the postOrder() function:

function postOrder(node) {
   if (!(node == null)) {
      postOrder(node.left);
      postOrder(node.right);
      putstr(node.show() + " ");
   }
}

And here is the output when we add the function to our program:

Inorder traversal:
3 16 22 23 37 45 99

Preorder traversal:
23 16 3 22 45 37 99

Postorder traversal:
3 22 16 37 99 45 23

We will demonstrate some practical programming examples using BSTs that make use
of these traversal functions later in the chapter.

BST Searches
There are three types of searches typically performed with a BST:

1. Searching for a specific value
2. Searching for the minimum value
3. Searching for the maximum value

We explore these three searches in the following sections.
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Searching for the Minimum and Maximum Value
Searches in a BST for the minimum and maximum values stored are relatively simple
procedures. Since lower values are always stored in left child nodes, to find the minimum
value in a BST, you only have to traverse the left edge of the BST until you get to the last
node.

Here is the definition of a function, getMin(), that finds the minimum value of a BST:

function getMin() {
   var current = this.root;
   while (!(current.left == null)) {
      current = current.left;
   }
   return current.data;
}

The function travels down the left link of each node in the BST until it reaches the left
end of the BST, which is defined as:

current.left = null;

When this point is reached, the data stored in the current node must be the minimum
value.

To find the maximum value stored in a BST, the function must simply traverse the right
links of nodes until the function reaches the right end of the BST. The value stored in
this node must be the maximum value.

The definition for the getMax() function is below:

function getMax() {
   var current = this.root;
   while (!(current.right == null)) {
      current = current.right;
   }
   return current.data;
}

Example 10-3 tests the getMin() and getMax() functions with the BST data we used
earlier.

Example 10-3. Testing getMin() and getMax()
var nums = new BST();
nums.insert(23);
nums.insert(45);
nums.insert(16);
nums.insert(37);
nums.insert(3);
nums.insert(99);
nums.insert(22);
var min = nums.getMin();
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print("The minimum value of the BST is: " + min);
print("\n");
var max = nums.getMax();
print("The maximum value of the BST is: " + max);

The output from this program is:

The minimum value of the BST is: 3
The maximum value of the BST is: 99

These functions return the data stored in the minimum and maximum positions, re‐
spectively. Instead, we may want the functions to return the nodes where the minimum
and maximum values are stored. To make that change, just have the functions return
the current node rather than the value stored in the current node.

Searching for a Specific Value
Searching for a specific value in a BST requires that a comparison be made between the
data stored in the current node and the value being searched for. The comparison will
determine if the search travels to the left child node, or to the right child node if the
current node doesn’t store the searched-for value.

We can implement searching in a BST with the find() function, which is defined here:

function find(data) {
   var current = this.root;
   while (current.data != data) {
      if (data < current.data) {
         current = current.left;
      }
      else {
         current = current.right;
      }
      if (current == null) {
         return null;
      }
   }
   return current;
}

This function returns the current node if the value is found in the BST and returns null
if the value is not found.

Example 10-4 provides a program to test the find() function.

Example 10-4. Using find() to search for a value
load("BST");
var nums = new BST();
nums.insert(23);
nums.insert(45);
nums.insert(16);
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nums.insert(37);
nums.insert(3);
nums.insert(99);
nums.insert(22);
inOrder(nums.root);
print("\n");
putstr("Enter a value to search for: ");
var value = parseInt(readline());
var found = nums.find(value);
if (found != null) {
   print("Found " + value + " in the BST.");
}
else {
   print(value + " was not found in the BST.");
}

The output from this program is:

3 16 22 23 37 45 99

Enter a value to search for: 23
Found 23 in the BST.

Removing Nodes from a BST
The most complex operation on a BST is removing a node. The complexity of node
removal depends on which node you want to delete. If you want to remove a node with
no children, the removal is fairly simple. If the node has just one child node, either left
or right, the removal is a little more complex to accomplish. The removal of a node with
two children is the most complex removal operation to perform.

To aid in managing the complexity of removal, we remove nodes from a BST recursively.
The two functions we will define are remove() and removeNode().

The first step to take when removing a node from a BST is to check to see if the current
node holds the data we are trying to remove. If so, remove that node. If not, then we
compare the data in the current node to the data we are trying to remove. If the data we
want to remove is less than the data in the current node, move to the left child of the
current node and compare data. If the data we want to remove is greater than the data
in the current node, move to the right child of the current node and compare data.

The first case to consider is when the node to be removed is a leaf (a node with no
children). Then all we have to do is set the link that is pointing to the node of the parent
node to null.

When the node we want to remove has one child, then the the link that is pointing to
the node to be removed has to be adjusted to point to the removed node’s child node.
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Finally, when the node we want to remove has two children, the correct solution is to
either find the largest value in the subtree to the left of the removed node, or to find the
smallest value in the subtree to the right of the removed node. We will choose to go to
the right.

We need a function that finds the smallest value of a subtree, which we will then use to
create a temporary node containing that smallest value. We copy that value into the
position of the node we are replacing, and we delete the temporary node to complete
the operation. Figure 10-7 illustrates this scenario.

Figure 10-7. Removing a node with two children

The node removal process consists of two functions. The remove() function simply
receives the value to be removed and calls the second function, removeNode(), which
does all the work. The definitions of the two functions are shown here:

function remove(data) {
   root = removeNode(this.root, data);
}

function removeNode(node, data) {
   if (node == null) {
      return null;
   }
   if (data == node.data) {
      // node has no children
      if (node.left == null && node.right == null) {
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         return null;
      }
      // node has no left child
      if (node.left == null) {
         return node.right;
      }
      // node has no right child
      if (node.right == null) {
         return node.left;
      }
      // node has two children
      var tempNode = getSmallest(node.right);
      node.data = tempNode.data;
      node.right = removeNode(node.right, tempNode.data);
      return node;
   }
   else if (data < node.data) {
      node.left = removeNode(node.left, data);
      return node;
   }
   else {
      node.right = removeNode(node.right, data);
      return node;
   }
}

Counting Occurrences
One use of a BST is to keep track of the occurrences of data in a data set. For example,
we can use a BST to record the distribution of grades on an exam. Given a set of exam
grades, we can write a program that checks to see if the grade is in the BST, adding the
grade to the BST if it is not found, and incrementing the number of occurrrences of it
if the grade is found in the BST.

To solve this problem, we need to modify the Node object to include a field for keeping
track of the number of occurrences of a grade in the BST, and we need a function for
updating a node so that if we find a grade in the BST, we can increment the occurrences
field.

Let’s start by modifying our definition of the Node object to include a field for keeping
track of grade occurrences:

function Node(data, left, right) {
   this.data = data;
   this.count =   1;
   this.left = left;
   this.right = right;
   this.show = show;
}
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When a grade (a Node object) is inserted into a BST, its count is set to 1. The BST in
sert() function will work fine as is, but we need to add a function to update the BST
when the count field needs to be incremented. We’ll call this function update():

function update(data) {
   var grade = this.find(data);
   grade.count++;
   return grade;
}

The other functions of the BST class are fine as is. We just need a couple of functions to
generate a set of grades and to display the grades:

function prArray(arr) {
   putstr(arr[0].toString() + ' ');
   for (var i = 1; i < arr.length; ++i) {
      putstr(arr[i].toString() + ' ');
      if (i % 10 == 0) {
         putstr("\n");
      }
   }
}

function genArray(length) {
   var arr = [];
   for (var i = 0; i < length; ++i) {
      arr[i] = Math.floor(Math.random() * 101);
   }
   return arr;
}

Example 10-5 presents a program for testing out this new code for counting occurrences
of grades.

Example 10-5. Counting occurrences of grades in a data set
function prArray(arr) {
   putstr(arr[0].toString() + ' ');
   for (var i = 1; i < arr.length; ++i) {
      putstr(arr[i].toString() + ' ');
      if (i % 10 == 0) {
         putstr("\n");
      }
   }
}

function genArray(length) {
   var arr = [];
   for (var i = 0; i < length; ++i) {
      arr[i] = Math.floor(Math.random() * 101);
   }
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   return arr;
}

load("BST"); // be sure to add +update()+ to the BST
             // definition

var grades = genArray(100);
prArray(grades);
var gradedistro = new BST();
for (var i = 0; i < grades.length; ++i) {
   var g = grades[i];
   var grade = gradedistro.find(g);
   if (grade == null) {
      gradedistro.insert(g);
   }
   else {
      gradedistro.update(g);
   }
}
var cont = "y";

while (cont == "y") {
   putstr("\n\nEnter a grade: ");
   var g = parseInt(readline());
   var aGrade = gradedistro.find(g);
   if (aGrade == null) {
      print("No occurrences of " + g);
   }
   else {
      print("Occurrences of " + g + ": " + aGrade.count);
   }
   putstr("Look at another grade (y/n)? ");
   cont = readline();
}

Here is the output from one run of the program:

25 32 24 92 80 46 21 85 23 22 3
24 43 4 100 34 82 76 69 51 44
92 54 1 88 4 66 62 74 49 18
15 81 95 80 4 64 13 30 51 21
12 64 82 81 38 100 17 76 62 32
3 24 47 86 49 100 49 81 100 49
80 0 28 79 34 64 40 81 35 23
95 90 92 13 28 88 31 82 16 93
12 92 52 41 27 53 31 35 90 21
22 66 87 80 83 66 3 6 18

Enter a grade: 78
No occurrences of 78
Look at another grade (y/n)? y

Enter a grade: 65
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No occurrences of 65
Look at another grade (y/n)? y

Enter a grade: 23
Occurrences of 23: 2
Look at another grade (y/n)? y

Enter a grade: 89
No occurrences of 89
Look at another grade (y/n)? y

Enter a grade: 100
Occurrences of 100: 4
Look at another grade (y/n)? n

Exercises
1. Add a function to the BST class that counts the number of nodes in a BST.
2. Add a function to the BST class that counts the number of edges in a BST.
3. Add a max() function to the BST class that finds the maximum value in a BST.
4. Add a min() function to the BST class that finds the minimum value in a BST.
5. Write a program that stores the words from a large text file in a BST and displays

the number of times each word occurs in the text.
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CHAPTER 11

Graphs and Graph Algorithms

The study of networks has become one of the great scientific hotbeds of this century,
though mathematicians and others have been studying networks for many hundreds of
years. Recent developments in computer technology (the Internet, for example) and in
social theory (the social network, as popularized by the concept of “six degrees of sep‐
aration”), not to mention social media, have put a spotlight on the study of networks.

In this chapter we’ll look at how networks are modeled with graphs. We’ll define what
a graph is, how to represent graphs in JavaScript, and how to implement important
graph algorithms. We’ll also discuss the importance of choosing the correct data rep‐
resentation when working with graphs, since the efficiency of graph algorithms largely
depends on the data structure used to represent a graph.

Graph Definitions
A graph consists of a set of vertices and a set of edges. Think of a map of a US state. Each
town is connected with other towns via some type of road. A map is a type of graph
where each town is a vertex, and a road that connects two towns is an edge. Edges are
defined as a pair (v1, v2), where v1 and v2 are two vertices in a graph. A vertex can also
have a weight, which is sometimes called a cost. A graph whose pairs are ordered is
called a directed graph, or just a digraph. When pairs are ordered in a directed graph,
an arrow is drawn from one pair to another pair. Directed graphs indicate the flow
direction from vertex to vertex. A flowchart that indicates the direction of computations
in a computer program is an example of a directed graph. A directed graph is shown in
Figure 11-1.
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Figure 11-1. A digraph (directed graph)

If a graph is not ordered, it is called an unordered graph, or just a graph. An example of
an unordered graph is shown in Figure 11-2.

Figure 11-2. An unordered graph

A path is a sequence of vertices in a graph such that all vertices in the path are connected
by edges. The length of a path is the number of edges from the first vertex in the path
to the last vertex. A path can also consist of a vertex to itself, which is called a loop.
Loops have a length of 0.

A cycle is a path with at least one edge whose first and last vertices are the same. A simple
cycle is one with no repeated edges or vertices for both directed and undirected
graphs. Paths that repeat other vertices besides the first and last vertices are called general
cycles.

Two vertices are considered strongly connected if there is a path from the first vertex to
the second vertex, and vice versa. If the graph is a directed graph, and all its vertices are
strongly connected, then the directed graph is considered strongly connected.
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Real-World Systems Modeled by Graphs
Graphs are used to model many different types of real-world systems. One example is
traffic flow. The vertices represent street intersections, and the edges represent the
streets. Weighted edges can be used to represent speed limits or the number of lanes.
Modelers can use the system to determine the best routes and the streets most likely to
suffer from traffic jams.

Any type of transportation system can be modeled using a graph. For example, an airline
can model its flight system using a graph. Each airport is a vertex, and each flight from
one vertex to another is an edge. A weighted edge can represent the cost of a flight from
one airport to another, or perhaps the distance from one airport to another, depending
upon what is being modeled.

Computer networks, including local area networks and much broader networks such
as the Internet, are also frequently modeled with graphs. Another example of a real-
word system that can be modeled by a graph is a consumer market, where vertices
represent both institutions (vendors) and consumers.

The Graph Class
At first glance, a graph looks much like a tree or a binary tree, and you might be tempted
to try to build a graph class like a tree, using nodes to represent each vertex. There are
problems with using an object-based approach like that, however, because graphs can
grow quite large. Representing a graph using just objects can quickly become inefficient,
so we will look at a different scheme for representing both vertices and edges.

Representing Vertices
The first step in building a Graph class is to build a Vertex class to store the vertices of
a graph. This class has the same duties that the Node class had with linked lists and binary
search trees. The Vertex class needs two data members: one for identifying the vertex
and the other to store a Boolean value indicating whether or not the vertex has been
visited. These members are named label and wasVisited, respectively. The only func‐
tion we need for the class is the constructor function that allows us to set the values for
a vertex’s data members. Here is the code for the Vertex class:

function Vertex(label) {
   this.label = label;
}

We will store the list of vertices in an array and will reference them in the Graph class
by their position in the array.
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Representing Edges
The real information about a graph is stored in the edges, since the edges describe the
structure of a graph. As we mentioned earlier, it is tempting to represent a graph as a
binary tree, but doing so is a mistake. A binary tree has a mostly fixed representation,
since a parent node can have only two child nodes, while a graph structure provides
much more flexibility. There can be many edges linked to a single vertex or just one
edge, for example.

The method we will use for representing the edges of a graph is called an adjacency
list, or an array of adjacency lists. With this method, the edges are stored as a vertex-
indexed array of lists (arrays) of the vertices adjacent to each vertex. Using this scheme,
when we reference a vertex in a program, we can efficiently access the list of all the
vertices it is connected to. For example, if the vertex 2 is connected to vertices 0, 1, 3,
and 4, and is stored in array position 2, accessing this element gives us access to an array
stored at array position 2 that consists of the vertices 0, 1, 3, and 4. This is the repre‐
sentation method we choose to use in this chapter and is shown in Figure 11-3.

Figure 11-3. An adjacency list

Another method for representing the the edges of a graph is called an adjacency ma‐
trix. This is a two-dimensional array in which the elements of the array indicate whether
an edge exists between two vertices.
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Building a Graph
Once the decision is made on how to represent a graph in code, building a class to
represent a graph is straightforward. Here is a first definition of a Graph class:

function Graph(v) {
   this.vertices = v;
   this.edges = 0;
   this.adj = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.adj[i] = [];
      this.adj[i].push("");
   }
   this.addEdge = addEdge;
   this.toString = toString;
}

The class keeps track of how many edges are represented in a graph, as well as the number
of vertices, by utilizing an array whose length is equal to the number of vertices in the
graph. In each element of the array, the for loop adds a subarray to store all the adjacent
vertices, and it initializes each element to the empty string.

The addEdge() function is defined as:

function addEdge(v,w) {
   this.adj[v].push(w);
   this.adj[w].push(v);
   this.edges++;
}

When this function is called with two vertices, A and B, the function finds the adjacency
list for vertex A and adds B to the list, then it finds the adjacency list for B and adds A
to the list. Finally, the function increments the number of edges by 1.

The showGraph() function displays the graph by showing a list of all vertices and the
vertices that are adjacent to them:

function showGraph() {
   for (var i = 0; i < this.vertices; ++i) {
      putstr(i + " -> ");
      for (var j = 0; j < this.vertices; ++j) {
         if (this.adj[i][j] != undefined)
            putstr(this.adj[i][j] + ' ');
      }
      print();
   }
}

Example 11-1 displays the complete definition for the Graph class.
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Example 11-1. The Graph class
function Graph(v) {
   this.vertices = v;
   this.edges = 0;
   this.adj = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.adj[i] = [];
      this.adj[i].push("");
   }
   this.addEdge = addEdge;
   this.showGraph = showGraph;
}

function addEdge(v,w) {
   this.adj[v].push(w);
   this.adj[w].push(v);
   this.edges++;
}

function showGraph() {
   for (var i = 0; i < this.vertices; ++i) {
      putstr(i + " -> ");
      for (var j = 0; j < this.vertices; ++j) {
         if (this.adj[i][j] != undefined)
            putstr(this.adj[i][j] + ' ');
      }
      print();
   }
}

Here is a test program that demonstrates how to use the Graph class:

load("Graph.js");
g = new Graph(5);
g.addEdge(0,1);
g.addEdge(0,2);
g.addEdge(1,3);
g.addEdge(2,4);
g.showGraph();

The output from this program is:

0 ->  1 2
1 ->  0 3
2 ->  0 4
3 ->  1
4 ->  2

The output shows that vertex 0 has edges to vertices 1 and 2; vertex 1 has edges to vertices
0 and 3; vertex 2 has edges to vertices 0 and 4; vertex 3 has an edge to vertex 1; and vertex
4 has an edge to vertex 2. Of course, there is some redundancy in this display, as an edge
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between 0 and 1, for example, is the same as an edge between 1 and 0. For just display
purposes this is fine, but we will need to modify this output when we start exploring
the paths found in a graph.

Searching a Graph
Determining which vertices can be reached from a specified vertex is a common activity
performed on graphs. We might want to know which roads lead from one town to other
towns on the map, or which flights can take us from one airport to other airports.

These operations are performed on a graph using a search algorithm. There are two
fundamental searches we can perform on a graph: the depth-first search and the breadth-
first search. In this section we examine both algorithms.

Depth-First Search
Depth-first search involves following a path from the beginning vertex until it reaches
the last vertex, then backtracking and following the next path until it reaches the last
vertex, and so on until there are no paths left. Here we are not “searching” for a particular
item, but instead searching to see what paths we can follow in a graph. Figure 11-4
illustrates how depth-first search works.

Figure 11-4. Depth-first search

The algorithm for performing a depth-first search is relatively simple—visit a vertex
that has not already been visited, mark it as having been visited, then recursively visit
the other unvisited vertices that are in the original vertex’s adjacency list.
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To make this algorithm work, we will need to add an array to our Graph class that stores
visited vertices and initialize it to all false values. Here is a code fragment from the
Graph class showing this new array and its initialization:

this.marked = [];
for (var i = 0; i < this.vertices; ++i) {
   this.marked[i] = false;
}

Now we can write the depth-first search function:

function dfs(v) {
   this.marked[v] = true;
   // if statement for print is not required
   if (this.adj[v] != undefined)
      print("Visited vertex: " + v);
   for each (var w in this.adj[v]) {
      if (!this.marked[w]) {
         this.dfs(w);
      }
   }
}

Notice that I’ve included a print() function so we can see the vertices as they’re being
visited. This function is, of course, not required for the dfs() function to work properly.

A program that demonstrates the depthFirst() function, along with the complete
Graph class definition, is shown in Example 11-2.

Example 11-2. Performing a depth-first search
function Graph(v) {
   this.vertices = v;
   this.edges = 0;
   this.adj = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.adj[i] = [];
      this.adj[i].push("");
   }
   this.addEdge = addEdge;
   this.showGraph = showGraph;
   this.dfs = dfs;
   this.marked = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.marked[i] = false;
   }
}

function addEdge(v,w) {
   this.adj[v].push(w);
   this.adj[w].push(v);
   this.edges++;
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}

function showGraph() {
   for (var i = 0; i < this.vertices; ++i) {
      putstr(i + " -> ");
      for (var j = 0; j

      < this.vertices; ++j) {
         if (this.adj[i][j] != undefined)
            putstr(this.adj[i][j] + ' ');
      }
      print();
   }
}

function dfs(v) {
   this.marked[v] = true;
   if (this.adj[v] != undefined) {
      print("Visited vertex: " + v);
   }
   for each (var w in this.adj[v]) {
      if (!this.marked[w]) {
         this.dfs(w);
      }
   }
}

// program to test dfs() function

load("Graph.js");
g = new Graph(5);
g.addEdge(0,1);
g.addEdge(0,2);
g.addEdge(1,3);
g.addEdge(2,4);
g.showGraph();
g.dfs(0);

The output from this program is:

0 ->  1 2
1 ->  0 3
2 ->  0 4
3 ->  1
4 ->  2
Visited vertex: 0
Visited vertex: 1
Visited vertex: 3
Visited vertex: 2
Visited vertex: 4
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Breadth-First Search
A breadth-first search starts at a first vertex and tries to visit vertices as close to the first
vertex as possible. In essence, this search moves through a graph layer by layer, first
examining layers closer to the first vertex and then moving down to the layers farthest
away from the starting vertex. Figure 11-5 demonstrates how breadth-first search works.

Figure 11-5. Breadth-first search

The algorithm for breadth-first search uses a queue abstraction instead of an array
abstraction for storing visited vertices. The algorithm works as follows:

1. Find an unvisited vertex that is adjacent to the current vertex, add it to the list of
visited vertices, and add it to the queue.

2. Take the next vertex, v, from the graph and add it to the list of visited vertices.
3. Add all unmarked vertices that are are adjacent to v and add them to the queue.

Here is the definition for the breadth-first search function:

function bfs(s) {
   var queue = [];
   this.marked[s] = true;
   queue.push(s); // add to back of queue
   while (queue.length > 0) {
      var v = queue.shift(); // remove from front of queue
      if (v == undefined) {
         print("Visited vertex: " + v);
      }
      for each (var w in this.adj[v]) {
         if (!this.marked[w]) {
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            this.edgeTo[w] = v;
            this.marked[w] = true;
            queue.push(w);
         }
      }
   }
}

A test program for the breadth-first search function is shown in Example 11-3.

Example 11-3. Performing a breadth-first search
load("Graph.js");
g = new Graph(5);
g.addEdge(0,1);
g.addEdge(0,2);
g.addEdge(1,3);
g.addEdge(2,4);
g.showGraph();
g.bfs(0);

The output from this program is:

0 ->  1 2
1 ->  0 3
2 ->  0 4
3 ->  1
4 ->  2
Visited vertex: 0
Visited vertex: 1
Visited vertex: 2
Visited vertex: 3
Visited vertex: 4

Finding the Shortest Path
One of the most common operations performed on graphs is finding the shortest path
from one vertex to another. Consider the following example: for vacation, you are going
to travel to 10 major-league cities to watch baseball games over a two-week period. You
want to minimize the number of miles you have to drive to visit all 10 cities using a
shortest-path algorithm. Another shortest-path problem involves creating a network of
computers, where the cost could be the time to transmit data between two computers
or the cost of establishing and maintaining the connection. A shortest-path algorithm
can determine the most effective way to build the network.

Breadth-First Search Leads to Shortest Paths
When we perform a breadth-first search, we are automatically finding the shortest paths
from one vertex to another connected vertex. For example, when we want to find the
shortest path from vertex A to vertex D, we first look for any one-edge paths from A to
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D, then two-edge paths from A to D, and so on. This is exactly the way breadth-first
search works, so we can easily modify the breadth-first search algorithm to find shortest
paths.

Determining Paths
To find the shortest path, we need to modify the breadth-first search algorithm so that
it records the paths that lead from one vertex to another vertex. This requires a few
modifications to the Graph class.

First, we need an array that keeps track of edges from one vertex to the next. We’ll name
this array edgeTo. As we work through the breadth-first search function, every time we
come across a vertex that is not marked, besides marking it, we will add an edge to that
vertex from the vertex that we are exploring in the adjacency list. Here is the new bfs()
function, along with the code you need to add to the Graph class:

// add this to Graph class
this.edgeTo = [];

// bfs function
function bfs(s) {
   var queue = [];
   this.marked[s] = true;
   queue.push(s); // add to back of queue
   while (queue.length > 0) {
      var v = queue.shift(); // remove from front of queue
      if (v == undefined) {
         print("Visited vertex: " + v);
      }
      for each (var w in this.adj[v]) {
         if (!this.marked[w]) {
            this.edgeTo[w] = v;
            this.marked[w] = true;
            queue.push(w);
         }
      }
   }
}

Now we need a function that can show us the paths that connect the different vertices
of a graph. This function, pathTo(), creates a stack that stores all the vertices that have
edges in common with a specified vertex. Here is the code for the function, along with
a simple helper function:

function pathTo(v) {
   var source = 0;
   if (!this.hasPathTo(v)) {
      return undefined;
   }
   var path = [];
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   for (var i = v; i != source; i = this.edgeTo[i]) {
      path.push(i);
   }
   path.push(s);
   return path;
}

function hasPathTo(v) {
   return this.marked[v];
}

Be sure to add the appropriate declarations to the Graph() function:

this.pathTo = pathTo;
this.hasPathTo = hasPathTo;

With this function, all we have to do is write some client code to show the shortest path
from the source to a particular vertex. Example 11-4 shows a program that creates a
graph and shows the shortest path for a specified vertex.

Example 11-4. Finding the shortest path for a vertex
load("Graph.js");
g = new Graph(5);
g.addEdge(0,1);
g.addEdge(0,2);
g.addEdge(1,3);
g.addEdge(2,4);
var vertex = 4;
var paths = g.pathTo(vertex);
while (paths.length > 0) {
   if (paths.length > 1) {
      putstr(paths.pop() + '-');
   }
   else {
      putstr(paths.pop());
   }
}

The output from this program is:

0-2-4

which is the shortest path from the source vertex 0 to vertex 4.

Topological Sorting
Topological sorting puts the vertices of a directed graph into an order such that all the
directed edges point from a vertex earlier in the order to a vertex later in the order. For
example, Figure 11-6 shows a directed-graph model of a typical computer science cur‐
riculum.
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Figure 11-6. A directed graph model of a computer science curriculum

A topological sort of this graph would result in the following sequence:

1. CS 1
2. CS 2
3. Assembly language
4. Data structures
5. Operating systems
6. Algorithms

Courses 3 and 4 can be taken at the same time, as can courses 5 and 6.

This type of problem is called precedence-constrained scheduling, and every college stu‐
dent is familiar with it. You can’t take English Composition II until you’ve taken English
Composition I.

An Algorithm for Topological Sorting
The algorithm for topological sorting is similar to the algorithm for depth-first
search. However, instead of immediately printing a vertex as it is visited, the algorithm
visits all the adjacent vertices to the current vertex, and once that list is exhausted, we
push the current vertex onto a stack.

Implementing the Topological Sorting Algorithm
The topological sort algorithm is broken up into two functions. The first function,
topSort(), sets up the sorting process and calls a helper function, topSortHelper(),
and then displays the sorted list of vertices.

The major work is done in the recursive function topSortHelper(). This function
marks the current vertex as visited and then recursively visits each adjacent vertex in
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the current vertex’s adjacency list, marking them as visited. Finally, the current vertex
is pushed onto a stack.

Example 11-5 shows the code for the two functions.

Example 11-5. topSort() and topSortHelper()
function topSort() {
   var stack = [];
   var visited = [];
   for (var i = 0; i < this.vertices; i++) {
      visited[i] = false;
   }
   for (var i = 0; i < this.vertices; i++) {
      if (visited[i] == false) {
         this.topSortHelper(i, visited, stack);
      }
   }
   for (var i = 0; i < stack.length; i++) {
      if (stack[i] != undefined && stack[i] != false) {
         print(this.vertexList[stack[i]]);
      }
   }
}

function topSortHelper(v, visited, stack) {
   visited[v] = true;
   for each (var w in this.adj[v]) {
      if (!visited[w]) {
         this.topSortHelper(visited[w], visited, stack);
      }
   }
   stack.push(v);
}

The Graph class has also been modified so that we can work with symbolic vertices and
not just numbers. Inside the code, each vertex is still only numbered, but we add an
array, vertexList, which associates each vertex with a symbol (for our example it’s a
course name).

To make sure the new definition of the class is clear, we present the full definition,
including the functions for topological sorting, below. The definition of the function
showGraph() has changed so that symbolic names are shown instead of just vertex
numbers. Example 11-6 shows the code.

Example 11-6. The Graph class
function Graph(v) {
   this.vertices = v;
   this.vertexList = [];
   this.edges = 0;
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   this.adj = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.adj[i] = [];
      this.adj[i].push("");
   }
   this.addEdge = addEdge;
   this.showGraph = showGraph;
   this.dfs = dfs;
   this.marked = [];
   for (var i = 0; i < this.vertices; ++i) {
      this.marked[i] = false;
   }
   this.bfs = bfs;
   this.edgeTo = [];
   this.hasPathTo = hasPathTo;
   this.pathTo = pathTo;
   this.topSortHelper = topSortHelper;
   this.topSort = topSort;

}

function topSort() {
   var stack = [];
   var visited = [];
   for (var i = 0; i < this.vertices; i++) {
      visited[i] = false;
   }
   for (var i = 0; i < this.vertices; i++) {
      if (visited[i] == false) {
         this.topSortHelper(i, visited, stack);
      }
   }
   for (var i = 0; i < stack.length; i++) {
      if (stack[i] != undefined && stack[i] != false) {
         print(this.vertexList[stack[i]]);
      }
   }
}

function topSortHelper(v, visited, stack) {
   visited[v] = true;
   for each (var w in this.adj[v]) {
      if (!visited[w]) {
         this.topSortHelper(visited[w], visited, stack);
      }
   }
   stack.push(v);
}

function addEdge(v,w) {
   this.adj[v].push(w);
   this.adj[w].push(v);
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   this.edges++;
}

/*function showGraph() {
   for (var i = 0; i < this.vertices; ++i) {
      putstr(i + " -> ");
      for (var j = 0; j < this.vertices; ++j) {
         if (this.adj[i][j] != undefined)
            putstr(this.adj[i][j] + ' ');
      }
      print();
   }
}*/

// a new function to display symbolic names instead of numbers
function showGraph() {
   var visited = [];
   for (var i = 0; i < this.vertices; ++i) {
      putstr(this.vertexList[i] + " -> ");
      visited.push(this.vertexList[i]);
      for (var j = 0; j < this.vertices; ++j) {
         if (this.adj[i][j] != undefined) {
            if (visited.indexOf(this.vertexList[j]) < 0) {
               putstr(this.vertexList[j] + ' ');
            }
         }
      }
      print();
      visited.pop();
   }
}

function dfs(v) {
   this.marked[v] = true;
   if (this.adj[v] != undefined) {
      print("Visited vertex: " + v);
   }
   for each (var w in this.adj[v]) {
      if (!this.marked[w]) {
         this.dfs(w);
      }
   }
}

function bfs(s) {
   var queue = [];
   this.marked[s] = true;
   queue.unshift(s);
   while (queue.length > 0) {
      var v = queue.shift();
      if (typeof(v) != "string") {
         print("Visited vertex: " + v);
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      }
      for each (var w in this.adj[v]) {
         if (!this.marked[w]) {
            this.edgeTo[w] = v;
            this.marked[w] = true;
            queue.unshift(w);
         }
      }
   }
}

function hasPathTo(v) {
   return this.marked[v];
}

function pathTo(v) {
   var source = 0;
   if (!this.hasPathTo(v)) {
      return undefined;
   }
   var path = [];
   for (var i = v; i != source; i = this.edgeTo[i]) {
      path.push(i);
   }
   path.push(s);
   return path;
}

A program that tests our implementation of topological sorting is shown in
Example 11-7.

Example 11-7. Topological sorting
load("Graph.js");
g = new Graph(6);
g.addEdge(1,2);
g.addEdge(2,5);
g.addEdge(1,3);
g.addEdge(1,4);
g.addEdge(0,1);
g.vertexList = ["CS1", "CS2", "Data Structures",
                "Assembly Language", "Operating Systems",
                "Algorithms"];
g.showGraph();
g.topSort();

The output from this program is:

CS1
CS2
Data Structures
Assembly Language
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Operating Systems
Algorithms

Exercises
1. Write a program that determines which type of graph search is faster—breadth-

first or depth-first. Test your program with graphs of many different sizes.
2. Write a program that stores a graph in a file.
3. Write a program that reads a graph from a file.
4. Build a graph that models the map of the area where you live. Determine the shortest

path from a starting vertex to the last vertex.
5. Perform a depth-first search and a breadth-first search of the graph created in ex‐

ample 4.
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CHAPTER 12

Sorting Algorithms

Two of the most common operations performed on data stored in a computer are sorting
and searching. This has been true since the beginning of the computer industry, so this
means that sorting and searching are two of the most studied operations in computer
science. Many of the data structures discussed in this book are designed primarily to
make sorting and/or searching the data stored in the data structure easier and more
efficient.

This chapter will introduce you to some of the basic and advanced algorithms for sorting
data. These algorithms depend only on the array as the means of storing data. In this
chapter we’ll also look at ways of timing our programs to determine which algorithm
is most efficient.

An Array Test Bed
We start this chapter by developing an array test bed to use in support of our study of
basic sorting algorithms. We’ll build a class for array data and functions that encapsulates
some of the normal array operations: inserting new data, displaying array data, and
calling the different sorting algorithms. Included in the class is a swap() function we
will use to exchange elements in the array.

Example 12-1 shows the code for this class.
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Example 12-1. Array test bed class
function CArray(numElements) {
   this.dataStore = [];
   this.pos = 0;
   this.numElements = numElements;
   this.insert = insert;
   this.toString = toString;
   this.clear = clear;
   this.setData = setData;
   this.swap = swap;

   for (var i = 0; i < numElements; ++i) {
      this.dataStore[i] = i;
   }
}

function setData() {
   for (var i = 0; i < this.numElements; ++i) {
      this.dataStore[i] = Math.floor(Math.random() *
                          (this.numElements+1));
   }
}

function clear() {
   for (var i = 0; i < this.dataStore.length; ++i) {
      this.dataStore[i] = 0;
   }
}

function insert(element) {
   this.dataStore[this.pos++] = element;
}

function toString() {
   var retstr = "";
   for (var i = 0; i < this.dataStore.length; ++i) {
      retstr += this.dataStore[i] + " ";
      if (i > 0 && i % 10 == 0) {
         retstr += "\n";
      }
   }
   return retstr;
}

function swap(arr, index1, index2) {
   var temp = arr[index1];
   arr[index1] = arr[index2];
   arr[index2] = temp;
}
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Here is a simple program that uses the CArray class (the class is named CArray because
JavaScript already has an Array class):

Example 12-2. Using the test bed class
var numElements = 100;
var myNums = new CArray(numElements);
myNums.setData();
print(myNums.toString());

The output from this program is:

76 69 64 4 64 73 47 34 65 93 32
59 4 92 84 55 30 52 64 38 74
40 68 71 25 84 5 57 7 6 40
45 69 34 73 87 63 15 96 91 96
88 24 58 78 18 97 22 48 6 45
68 65 40 50 31 80 7 39 72 84
72 22 66 84 14 58 11 42 7 72
87 39 79 18 18 9 84 18 45 50
43 90 87 62 65 97 97 21 96 39
7 79 68 35 39 89 43 86 5

Generating Random Data
You will notice that the setData() function generates random numbers to store in the
array. The random() function, which is part of the Math class, generates random numbers
in a range from 0 to 1, exclusive. In other words, no random number generated by the
function will equal 0, and no random number will equal 1. These random numbers are
not very useful, so we scale the numbers by multiplying the random number by the
number of elements we want plus 1, and then use the floor() function from the Math
class to finalize the number. As you can see from the preceding output, this formula
succeeds in generating a set of random numbers between 1 and 100.

For more information on how JavaScript generates random numbers, see the Mozilla
page, Using the Math.random() function, for random number generation.

Basic Sorting Algorithms
The fundamental concept of the basic sorting algorithms covered next is that there is a
list of data that needs to be rearranged into sorted order. The technique used in these
algorithms to rearrange data in a list is a set of nested for loops. The outer loop moves
through the list item by item, while the inner loop is used to compare elements. These
algorithms very closely simulate how humans sort data in real life, such as how a card
player sorts cards when dealt a hand or how a teacher sorts papers in alphabetical or
grade order.
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Bubble Sort
The first sorting algorithm we will examine is the bubble sort. The bubble sort is one of
the slowest sorting algorithms, but it is also one of the easiest sorts to implement.

The bubble sort gets its name because when data are sorted using the algorithm, values
float like a bubble from one end of the array to the other. Assuming you are sorting a
set of numbers into ascending order, larger values float to the right of the array and
lower values float to the left. This behavior is the result of the algorithm moving through
the array many times, comparing adjacent values, and swapping them if the value to the
left is greater than the value to the right.

Here is a simple example of the bubble sort. We start with the following list:

E A D B H

The first pass of the sort yields the following list:

A E D B H

The first and second elements are swapped. The next pass of the sort leads to:

A D E B H

The second and third elements are swapped. The next pass leads to the following order:

A D B E H

as the third and fourth elements are swapped. And finally, the second and third elements
are swapped again, leading to the final order:

A B D E H

Figure 12-1 illustrates how the bubble sort works with a larger data set of numbers. In
the figure, we examine two particular values inserted into the array: 2 and 72. Each
number is circled. You can watch how 72 moves from the beginning of the array to the
middle of the array, and you can watch how 2 moves from just past the middle of the
array to the beginning of the array.
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Figure 12-1. Bubble sort in action

Example 12-3 shows the code for the bubble sort:

Example 12-3. The bubbleSort() function
function bubbleSort() {
   var numElements = this.dataStore.length;
   var temp;
   for (var outer = numElements; outer >= 2; --outer) {
      for (var inner = 0; inner <= outer-1; ++inner) {
         if (this.dataStore[inner] > this.dataStore[inner+1]) {
            swap(this.dataStore, inner, inner+1);
         }
      }
   }
}

Be sure to add a call to this function to the CArray constructor. Example 12-4 is a short
program that sorts 10 numbers using the bubbleSort() function.

Example 12-4. Sorting 10 numbers with bubbleSort()
var numElements = 10;
var mynums = new CArray(numElements);
mynums.setData();
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print(mynums.toString());
mynums.bubbleSort();
print();
print(mynums.toString());

The output from this program is:

10 8 3 2 2 4 9 5 4 3

2 2 3 3 4 4 5 8 9 10

We can see that the bubble sort algorithm works, but it would be nice to view the in‐
termediate results of the algorithm, since a record of the sorting process is useful in
helping us understand how the algorithm works. We can do that by the careful place‐
ment of the toString() function into the bubbleSort() function, which will display
the current state of the array as the function proceeds (shown in Example 12-5).

Example 12-5. Adding a call to the toString() function to bubbleSort()
function bubbleSort() {
   var numElements = this.dataStore.length;
   var temp;
   for (var outer = numElements; outer >= 2; --outer) {
      for (var inner = 0; inner <= outer-1; ++inner) {
         if (this.dataStore[inner] > this.dataStore[inner+1]) {
            swap(this.dataStore, inner, inner+1);
         }
      }
      print(this.toString());
   }
}

When we rerun the preceding program with the toString() function included, we get
the following output:

1 0 3 3 5 4 5 0 6 7
0 1 3 3 4 5 0 5 6 7
0 1 3 3 4 0 5 5 6 7
0 1 3 3 0 4 5 5 6 7
0 1 3 0 3 4 5 5 6 7
0 1 0 3 3 4 5 5 6 7
0 0 1 3 3 4 5 5 6 7
0 0 1 3 3 4 5 5 6 7
0 0 1 3 3 4 5 5 6 7
0 0 1 3 3 4 5 5 6 7

0 0 1 3 3 4 5 5 6 7

With this output, you can more easily see how the lower values work their way to the
beginning of the array and how the higher values work their way to the end of the array.

164 | Chapter 12: Sorting Algorithms



Selection Sort
The next sorting algorithm we examine is the selection sort. This sort works by starting
at the beginning of the array and comparing the first element with the remaining ele‐
ments. After examining all the elements, the smallest element is placed in the first po‐
sition of the array, and the algorithm moves to the second position. This process con‐
tinues until the algorithm arrives at the next to last position in the array, at which point
all the data is sorted.

Nested loops are used in the selection sort algorithm. The outer loop moves from the
first element in the array to the next to last element; the inner loop moves from the
second array element to the last element, looking for values that are smaller than the
element currently being pointed to by the outer loop. After each iteration of the inner
loop, the smallest value in the array is assigned its proper place in the array. Figure 12-2
illustrates how the selection sort algorithm works.

Here is a simple example of how selection sort works on a list of five items. The original
list is:

E A D H B

The first pass looks for the minimal value and swaps it with the value at the front of the
list:

A E D H B

The next pass finds the minimal value after the first element (which is now in place)
and swaps it:

A B D H E

The D is in place so the next step swaps the E and the H, leading to the list being in
order:

A B D E H

Figure 12-2 shows how selection sort works on a larger data set of numbers.
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Figure 12-2. The selection sort algorithm

Example 12-6 shows the code for the selectionSort() function.

Example 12-6. The selectionSort() function
function selectionSort() {
   var min, temp;
   for (var outer = 0; outer <= this.dataStore.length-2; ++outer) {
      min = outer;
      for (var inner = outer + 1;
           inner <= this.dataStore.length-1; ++inner) {
         if (this.dataStore[inner] < this.dataStore[min]) {
            min = inner;
         }
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      }
      swap(this.dataStore, outer, min);
   }
}

Below is the output from one run of our program using the selectionSort() function.
Add the following line right after the swap:

print(this.toString());

6 8 0 6 7 4 3 1 5 10
0 8 6 6 7 4 3 1 5 10
0 1 6 6 7 4 3 8 5 10
0 1 3 6 7 4 6 8 5 10
0 1 3 4 7 6 6 8 5 10
0 1 3 4 5 6 6 8 7 10
0 1 3 4 5 6 6 8 7 10
0 1 3 4 5 6 6 8 7 10
0 1 3 4 5 6 6 7 8 10
0 1 3 4 5 6 6 7 8 10

0 1 3 4 5 6 6 7 8 10

Insertion Sort
The insertion sort is analogous to the way humans sort data numerically or alphabeti‐
cally. Let’s say I have asked each student in a class to turn in an index card with his or
her name, student ID, and a short biographical sketch. The students return the cards in
random order, but I want them alphabetized so I can compare them to my class roster
easily.

I take the cards back to my office, clear off my desk, and pick the first card. The last
name on the card is Smith. I place it at the top left corner of the desk and pick the second
card. The last name on the card is Brown. I move Smith over to the right and put Brown
in Smith’s place. The next card is Williams. It can be inserted at the far right of the desk
without have to shift any of the other cards. The next card is Acklin. It has to go at the
beginning of the list, so each of the other cards must be shifted one position to the right
to make room for Acklin’s card. This is how the insertion sort works.

The insertion sort has two loops. The outer loop moves element by element through
the array, while the inner loop compares the element chosen in the outer loop to the
element next to it in the array. If the element selected by the outer loop is less than the
element selected by the inner loop, array elements are shifted over to the right to make
room for the inner-loop element, just as described in the previous name card example.

Example 12-7 shows the code for the insertion sort.
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Example 12-7. The insertionSort() function
function insertionSort() {
   var temp, inner;
   for (var outer = 1; outer <= this.dataStore.length-1; ++outer) {
      temp = this.dataStore[outer];
      inner = outer;
      while (inner > 0 && (this.dataStore[inner-1] >= temp)) {
         this.dataStore[inner] = this.dataStore[inner-1];
         --inner;
      }
      this.dataStore[inner] = temp;
   }
}

Now let’s look at how the insertion sort works by running our program with a data set:

6 10 0 6 5 8 7 4 2 7
0 6 10 6 5 8 7 4 2 7
0 6 6 10 5 8 7 4 2 7
0 5 6 6 10 8 7 4 2 7
0 5 6 6 8 10 7 4 2 7
0 5 6 6 7 8 10 4 2 7
0 4 5 6 6 7 8 10 2 7
0 2 4 5 6 6 7 8 10 7
0 2 4 5 6 6 7 7 8 10

0 2 4 5 6 6 7 7 8 10

This output clearly shows that the insertion sort works not by making data exchanges,
but by moving larger array elements to the right to make room for the smaller elements
on the left side of the array.

Timing Comparisons of the Basic Sorting Algorithms
These three sorting algorithms are very similar in complexity, and theoretically, they 
should perform similarly. To determine the differences in performance among these
three algorithms, we can use an informal timing system to compare how long it takes
them to sort data sets. Being able to time these algorithms is important because, while
you won’t see much of a difference in times of the sorting algorithms when you’re sorting
100 elements or even 1,000 elements, there can be a huge difference in the times these
algorithms take to sort millions of elements.

The timing system we will use in this section is based on retrieving the system time
using the JavaScript Date object’s getTime() function. Here is how the function works:

var start = new Date().getTime();

The getTime() function returns the system time in milliseconds. The following code
fragment:
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var start = new Date().getTime();
print(start);

results in the following output:

135154872720

To record the time it takes code to execute, we start the timer, run the code, and then
stop the timer when the code is finished running. The time it takes to sort data is the
difference between the recorded stopping time and the recorded starting time.
Example 12-8 shows an example of timing a for loop that displays the numbers 1
through 100.

Example 12-8. Timing a for loop
var start = new Date().getTime();
for (var i = 1; i < 100; ++i) {
   print(i);
}
var stop = new Date().getTime();
var elapsed = stop - start;
print("The elapsed time was: " + elapsed +
      " milliseconds.");

The output, not including the starting and stopping time values, from the program is:

The elapsed time was: 91 milliseconds.

Now that we have a tool for measuring the efficiency of these sorting algorithms, let’s
run some tests to compare them.

For our comparison of the three basic sorting algorithms, we will time the three algo‐
rithms sorting arrays with data set sizes of 100, 1,000, and 10,000. We expect not to see
much difference among the algorithms for data set sizes of 100 and 1,000, but we do
expect there to be some difference when using a data set size of 10,000.

Let’s start with an array of 100 randomly chosen integers. We also add a function for
creating a new data set for each algorithm. Example 12-9 shows the code for this new
function.

Example 12-9. Timing the sorting functions with 100 array elements
var numElements = 100;
var nums = new CArray(numElements);
nums.setData();
var start = new Date().getTime();
nums.bubbleSort();
var stop = new Date().getTime();
var elapsed = stop - start;
print("Elapsed time for the bubble sort on " +
      numElements + " elements is: " + elapsed + " milliseconds.");
start = new Date().getTime();
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nums.selectionSort();
stop = new Date().getTime();
elapsed = stop - start;
print("Elapsed time for the selection sort on " +
      numElements + " elements is: " +  elapsed + " milliseconds.");
start = new Date().getTime();
nums.insertionSort();
stop = new Date().getTime();
elapsed = stop - start;
print("Elapsed time for the insertion sort on " +
       numElements + " elements is: " + elapsed + " milliseconds.");

Here are the results (note that I ran these tests on an Intel 2.4 GHz processor):

Elapsed time for the bubble sort on 100 elements is: 0 milliseconds.
Elapsed time for the selection sort on 100 elements is: 1 milliseconds.
Elapsed time for the insertion sort on 100 elements is: 0 milliseconds.

Clearly, there is not any significant difference among the three algorithms.

For the next test, we change the numElements variable to 1,000. Here are the results:

Elapsed time for the bubble sort on 1000 elements is: 12 milliseconds.
Elapsed time for the selection sort on 1000 elements is: 7 milliseconds.
Elapsed time for the insertion sort on 1000 elements is: 6 milliseconds.

For 1,000 numbers, the selection sort and the insertion sort are almost twice as fast as
the bubble sort.

Finally, we test the algorithms with 10,000 numbers:

Elapsed time for the bubble sort on 10000 elements is: 1096 milliseconds.
Elapsed time for the selection sort on 10000 elements is: 591 milliseconds.
Elapsed time for the insertion sort on 10000 elements is: 471 milliseconds.

The results for 10,000 numbers are consistent with the results for 1,000 numbers. Se‐
lection sort and insertion sort are faster than the bubble sort, and the insertion sort is
the fastest of the three sorting algorithms. Keep in mind, however, that these tests must
be run several times for the results to be considered statistically valid.

Advanced Sorting Algorithms
In this section we will cover more advanced algorithms for sorting data. These sorting
algorithms are generally considered the most efficient for large data sets, where data
sets can have millions of elements rather than just hundreds or even thousands. The
algorithms we study in this chapter include Quicksort, Shellsort, Mergesort, and Heap‐
sort. We discuss each algorithm’s implementation and then compare their efficiency by
running timing tests.
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The Shellsort Algorithm
The first advanced sorting algorithm we’ll examine is the Shellsort algorithm. Shellsort
is named after its inventor, Donald Shell. This algorithm is based on the insertion sort
but is a big improvement over that basic sorting algorithm. Shellsort’s key concept is
that it compares distant elements first, rather than adjacent elements, as is done in the
insertion sort. Elements that are far out of place can be put into place more efficiently
using this scheme than by simply comparing neighboring elements. As the algorithm
loops through the data set, the distance between each element decreases until, when at
the end of the data set, the algorithm is comparing elements that are adjacent.

Shellsort works by defining a gap sequence that indicates how far apart compared ele‐
ments are when starting the sorting process. The gap sequence can be defined dynam‐
ically, but for most practical applications, you can predefine the gap sequence the algo‐
rithm will use. There are several published gap sequences that produce different results.
We are going to use the sequence defined by Marcin Ciura in his paper on best incre‐
ments for average case of Shellsort (“Best Increments for the Average Case of Shell
Sort”, 2001). The gap sequence is: 701, 301, 132, 57, 23, 10, 4, 1. However, before we
write code for the average case, we are going to examine how the algorithm works with
a small data set.

Figure 12-3 demonstrates how the gap sequence works with the Shellsort algorithm.

Let’s start with a look at the code for the Shellsort algorithm:

function shellsort() {
   for (var g = 0; g < this.gaps.length; ++g) {
      for (var i = this.gaps[g]; i < this.dataStore.length; ++i) {
         var temp = this.dataStore[i];
         for (var j = i; j >= this.gaps[g] &&
                         this.dataStore[j-this.gaps[g]] > temp;
              j -= this.gaps[g]) {
            this.dataStore[j] = this.dataStore[j - this.gaps[g]];
         }
         this.dataStore[j] = temp;
      }
   }
}
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Figure 12-3. The Shellsort algorithm with an initial gap sequence of 3

For this program to work with our CArray class test bed, we need to add a definition of
the gap sequence to the class definition. Add the following code into the constructor
function for CArray:

this.gaps = [5,3,1];

And add this function to the code:

function setGaps(arr) {
   this.gaps = arr;
}

Finally, add a reference to the shellsort() function to the CArray class constructor as
well as the shellsort() code itself.

The outer loop controls the movement within the gap sequence. In other words, for the
first pass through the data set, the algorithm is going to examine elements that are five
elements away from each other. The next pass will examine elements that are three
elements away from each other. The last pass performs a standard insertion sort on
element that are one place away, which means they are adjacent. By the time this last
pass begins, many of the elements will already be in place, and the algorithm won’t have
to exchange many elements. This is where the algorithm gains efficiency over insertion
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sort. Figure 12-3 illustrates how the Shellsort algorithm works on a data set of 10 random
numbers with a gap sequence of 5, 3, 1.

Now let’s put the algorithm to work on a real example. We add a print() statement to
shellsort() so that we can follow the progress of the algorithm while it sorts the data
set. Each gap pass is noted, followed by the order of the data set after sorting with that 
particular gap. The program is shown in Example 12-10.

Example 12-10. Running shellsort() on a small data set
load("CArray.js")
var nums = new CArray(10);
nums.setData();
print("Before Shellsort: \n");
print(nums.toString());
print("\nDuring Shellsort: \n");
nums.shellsort();
print("\nAfter Shellsort: \n");
print(nums.toString());

The output from this program is:

Before Shellsort:

6 0 2 9 3 5 8 0 5 4

During Shellsort:

5 0 0 5 3 6 8 2 9 4 // gap 5
4 0 0 5 2 6 5 3 9 8 // gap 3
0 0 2 3 4 5 5 6 8 9 // gap 1

After Shellsort:

0 0 2 3 4 5 5 6 8 9

To understand how Shellsort works, compare the initial state of the array with its state
after the gap sequence of 5 was sorted. The first element of the initial array, 6, was
swapped with the fifth element after it, 5, because 5 < 6.

Now compare the gap 5 line with the gap 3 line. The 3 in the gap 5 line is swapped with
the 2 because 2 < 3 and 2 is the third element after the 3. By simply counting the current
gap sequence number down from the current element in the loop, and comparing the
two numbers, you can trace any run of the Shellsort algorithm.

Having now seen some details of how the Shellsort algorithm works, let’s use a larger
gap sequence and run it with a larger data set (100 elements). Here is the output:

Before Shellsort:

19 19 54 60 66 69 45 40 36 90 22
93 23 0 88 21 70 4 46 30 69
75 41 67 93 57 94 21 75 39 50
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17 8 10 43 89 1 0 27 53 43
51 86 39 86 54 9 49 73 62 56
84 2 55 60 93 63 28 10 87 95
59 48 47 52 91 31 74 2 59 1
35 83 6 49 48 30 85 18 91 73
90 89 1 22 53 92 84 81 22 91
34 61 83 70 36 99 80 71 1

After Shellsort:

0 0 1 1 1 1 2 2 4 6 8
9 10 10 17 18 19 19 21 21 22
22 22 23 27 28 30 30 31 34 35
36 36 39 39 40 41 43 43 45 46
47 48 48 49 49 50 51 52 53 53
54 54 55 56 57 59 59 60 60 61
62 63 66 67 69 69 70 70 71 73
73 74 75 75 80 81 83 83 84 84
85 86 86 87 88 89 89 90 90 91
91 91 92 93 93 93 94 95 99

We will revisit the shellsort() algorithm again when we compare it to other advanced
sorting algorithms later in the chapter.

Computing a dynamic gap sequence

Robert Sedgewick, coauthor of Algorithms, 4E (Addison-Wesley), defines a shell
sort() function that uses a formula to dynamically compute the gap sequence to use
with Shellsort. Sedgewick’s algorithm determines the initial gap value using the follow‐
ing code fragment:

var N = this.dataStore.length;
var h = 1;
while (h < N/3) {
   h = 3 * h + 1;
}

Once the gap value is determined, the function works like our previous shellsort()
function, except the last statement before going back into the outer loop computes a
new gap value:

h = (h-1)/3;

Example 12-11 provides the complete definition of this new shellsort() function,
along with a swap() function it uses, and a program to test the function definition.

Example 12-11. shellsort() with a dynamically computed gap sequence
function shellsort1() {
   var N = this.dataStore.length;
   var h = 1;
   while (h < N/3) {
      h = 3 * h + 1;
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   }
   while (h >= 1) {
      for (var i = h; i < N; i++) {
         for (var j = i; j >= h && this.dataStore[j] < this.dataStore[j-h];
              j -= h) {
            swap(this.dataStore, j, j-h);
         }
      }
      h = (h-1)/3;
   }
}

load("CArray.js")
var nums = new CArray(100);
nums.setData();
print("Before Shellsort1: \n");
print(nums.toString());
nums.shellsort1();
print("\nAfter Shellsort1: \n");
print(nums.toString());

The output from this program is:

Before Shellsort1:

92 31 5 96 44 88 34 57 44 72 20
83 73 8 42 82 97 35 60 9 26
14 77 51 21 57 54 16 97 100 55
24 86 70 38 91 54 82 76 78 35
22 11 34 13 37 16 48 83 61 2
5 1 6 85 100 16 43 74 21 96
44 90 55 78 33 55 12 52 88 13
64 69 85 83 73 43 63 1 90 86
29 96 39 63 41 99 26 94 19 12
84 86 34 8 100 87 93 81 31

After Shellsort1:

1 1 2 5 5 6 8 8 9 11 12
12 13 13 14 16 16 16 19 20 21
21 22 24 26 26 29 31 31 33 34
34 34 35 35 37 38 39 41 42 43
43 44 44 44 48 51 52 54 54 55
55 55 57 57 60 61 63 63 64 69
70 72 73 73 74 76 77 78 78 81
82 82 83 83 83 84 85 85 86 86
86 87 88 88 90 90 91 92 93 94
96 96 96 97 97 99 100 100 100

Before we leave the Shellsort algorithm, we need to compare the efficiency of our two
shellsort() functions. A program that compares running times of the two functions
is shown in Example 12-12. Both algorithms use Ciura’s sequence for the gap sequence.
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Example 12-12. Comparing shellsort() algorithms
load("CArray.js");
var nums = new CArray(10000);
nums.setData();
var start = new Date().getTime();
nums.shellsort();
var stop = new Date().getTime();
var elapsed = stop - start;
print("Shellsort with hard-coded gap sequence: " + elapsed + " ms.");
nums.clear();
nums.setData();
start = new Date().getTime();
nums.shellsort1();
stop = new Date().getTime();
print("Shellsort with dynamic gap sequence: " + elapsed + " ms.");

The results from this program are:

Shellsort with hard-coded gap sequence: 3 ms.
Shellsort with dynamic gap sequence: 3 ms.

Both algorithms sorted the data in the same amount of time. Here is the output from
running the program with 100,000 data elements:

Shellsort with hard-coded gap sequence: 43 ms.
Shellsort with dynamic gap sequence: 43 ms.

Clearly, both of these algorithms sort data with the same efficiency, so you can use either
of them with confidence.

The Mergesort Algorithm
The Mergesort algorithm is so named because it works by merging sorted sublists to‐
gether to form a larger, completely sorted list. In theory, this algorithm should be easy
to implement. We need two sorted subarrays and a third array into which we merge the
two subarrays by comparing data elements and inserting the smallest element value. In
practice, however, Mergesort has some problems because if we are trying to sort a very
large data set using the algorithm, the amount of space we need to store the two merged
subarrays can be quite large. Since space is not such an issue in these days of inexpensive
memory, it is worth implementing Mergesort to see how it compares in efficiency to
other sorting algorithms.

Top-down Mergesort
It is customary, though not necessary, to implement Mergesort as a recursive algo‐
rithm. However, it is not possible to do so in JavaScript, as the recursion goes too deep
for the language to handle. Instead, we will implement the algorithm in a nonrecursive
way, using a strategy called bottom-up Mergesort.
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Bottom-up Mergesort
The nonrecursive, or iterative, version of Mergesort is referred to as a bottom-up pro‐
cess. The algorithm begins by breaking down the data set being sorted into a set of one-
element arrays. Then these arrays are slowly merged by creating a set of left and right
subarrays, each holding the partially sorted data until all that is left is one array with the
data perfectly sorted. Figure 12-4 illustrates how the bottom-up Mergesort algorithm
works.

Figure 12-4. The bottom-up Mergesort algorithm

Before we show you the JavaScript code for Mergesort, here is the output from a Java‐
Script program that uses bottom-up Mergesort to sort an array of 10 integers:

6,10,1,9,4,8,2,7,3,5

left array -  6,Infinity
right array -  10,Infinity
left array -  1,Infinity
right array -  9,Infinity
left array -  4,Infinity
right array -  8,Infinity
left array -  2,Infinity
right array -  7,Infinity
left array -  3,Infinity
right array -  5,Infinity
left array -  6,10,Infinity
right array -  1,9,Infinity
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left array -  4,8,Infinity
right array -  2,7,Infinity
left array -  1,6,9,10,Infinity
right array -  2,4,7,8,Infinity
left array -  1,2,4,6,7,8,9,10,Infinity
right array -  3,5,Infinity

1,2,3,4,5,6,7,8,9,10

The value Infinity is used as a sentinel value to indicate the end of either the left or
right subarray.

Each array element starts out in its own left or right array. Then the two arrays are
merged, first into two elements each, then into four elements each, except for 3 and 5,
which stay apart until the last iteration, when they are combined into the right array
and then merged into the left array to re-form the original array.

Now that we have seen how the bottom-up Mergesort works, Example 12-13 presents
the code that created the preceding output.

Example 12-13. A bottom-up Mergesort JavaScript implementation
function mergeSort(arr) {
   if (arr.length < 2) {
      return;
   }
   var step = 1;
   var left, right;
   while (step < arr.length) {
      left = 0;
      right = step;
      while (right + step <= arr.length) {
         mergeArrays(arr, left, left+step, right, right+step);
         left = right + step;
         right = left + step;
      }
      if (right < arr.length) {
         mergeArrays(arr, left, left+step, right, arr.length);
      }
      step *= 2;
   }
}

function mergeArrays(arr, startLeft, stopLeft, startRight, stopRight) {
   var rightArr = new Array(stopRight - startRight + 1);
   var leftArr = new Array(stopLeft - startLeft + 1);
   k = startRight;
   for (var i = 0; i < (rightArr.length-1); ++i) {
      rightArr[i] = arr[k];
      ++k;
   }
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   k = startLeft;
   for (var i = 0; i < (leftArr.length-1); ++i) {
      leftArr[i] = arr[k];
      ++k;
   }

   rightArr[rightArr.length-1] = Infinity; // a sentinel value
   leftArr[leftArr.length-1] = Infinity; // a sentinel value
   var m = 0;
   var n = 0;
   for (var k = startLeft; k < stopRight; ++k) {
      if (leftArr[m] <= rightArr[n]) {
         arr[k] = leftArr[m];
         m++;
      }
      else {
         arr[k] = rightArr[n];
         n++;
      }
   }
   print("left array - ", leftArr);
   print("right array - ", rightArr);
}

var nums = [6,10,1,9,4,8,2,7,3,5];
print(nums);
print();
mergeSort(nums);
print();
print(nums);

The key feature of the mergeSort() function is the step variable, which is used to control
the size of the leftArr and rightArr subarrays found in the mergeArrays() func‐
tion. By controlling the size of the subarrays, the sort process is relatively efficient, since
it doesn’t take much time to sort a small array. This makes merging efficient also, since
it is much easier to merge data into sorted order when the unmerged data is already
sorted.

Our next step with Mergesort is to add it to the CArray class and time it on a larger data
set. Example 12-14 shows the CArray class with the mergeSort() and mergeArrays()
functions added to its definition.

Example 12-14. Mergesort added to the CArray class
function CArray(numElements) {
   this.dataStore = [];
   this.pos = 0;
   this.gaps = [5,3,1];
   this.numElements = numElements;
   this.insert = insert;
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   this.toString = toString;
   this.clear = clear;
   this.setData = setData;
   this.setGaps = setGaps;
   this.shellsort = shellsort;
   this.mergeSort = mergeSort;
   this.mergeArrays = mergeArrays;
   for (var i = 0; i < numElements; ++i) {
      this.dataStore[i] = 0;
   }

}

// other function definitions go here

function mergeArrays(arr,startLeft, stopLeft, startRight, stopRight) {
   var rightArr = new Array(stopRight - startRight + 1);
   var leftArr = new Array(stopLeft - startLeft + 1);
   k = startRight;
   for (var i = 0; i < (rightArr.length-1); ++i) {
      rightArr[i] = arr[k];
      ++k;
   }

   k = startLeft;
   for (var i = 0; i < (leftArr.length-1); ++i) {
      leftArr[i] = arr[k];
      ++k;
   }

   rightArr[rightArr.length-1] = Infinity; // a sentinel value
   leftArr[leftArr.length-1] = Infinity; // a sentinel value
   var m = 0;
   var n = 0;
   for (var k = startLeft; k < stopRight; ++k) {
      if (leftArr[m] <= rightArr[n]) {
         arr[k] = leftArr[m];
         m++;
      }
      else {
         arr[k] = rightArr[n];
         n++;
      }
   }
   print("left array - ", leftArr);
   print("right array - ", rightArr);
}

function mergeSort() {
   if (this.dataStore.length < 2) {
      return;
   }
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   var step = 1;
   var left, right;
   while (step < this.dataStore.length) {
      left = 0;
      right = step;
      while (right + step <= this.dataStore.length) {
         mergeArrays(this.dataStore, left, left+step, right, right+step);
         left = right + step;
         right = left + step;
      }
      if (right < this.dataStore.length) {
         mergeArrays(this.dataStore, left, left+step, right, this.dataStore.length);
      }
      step *= 2;
   }
}

var nums = new CArray(10);
nums.setData();
print(nums.toString());
nums.mergeSort();
print(nums.toString());

The Quicksort Algorithm
The Quicksort algorithm is one of the fastest sorting algorithms for large data sets.
Quicksort is a divide-and-conquer algorithm that recursively breaks a list of data into
successively smaller sublists consisting of the smaller elements and the larger elements.
The algorithm continues this process until all the data in the list is sorted.

The algorithm divides the list into sublists by selecting one element of the list as a pivot.
Data is sorted around the pivot by moving elements less than the pivot to the bottom
of the list and elements that are greater than the pivot to the top of the list.

Figure 12-5 demonstrates how data is sorted around a pivot.
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Figure 12-5. Sorting data around a pivot

Algorithm and pseudocode for the Quicksort algorithm
The algorithm for Quicksort is:

1. Pick a pivot element that divides the list into two sublists.
2. Reorder the list so that all elements less than the pivot element are placed before

the pivot and all elements greater than the pivot are placed after it.
3. Repeat steps 1 and 2 on both the list with smaller elements and the list of larger

elements.

This algorithm then translates into the following JavaScript program:

function qSort(list) {
    if (list.length == 0) {
        return [];
    }
    var lesser = [];
    var greater = [];
    var pivot = list[0];
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    for (var i = 1; i < list.length; i++) {
        if (list[i] < pivot) {
           lesser.push(list[i]);
        } else {
           greater.push(list[i]);
        }
    }
    return qSort(lesser).concat(pivot, qSort(greater));
}

The function first tests to see if the array has a length of 0. If so, then the array doesn’t
need sorting and the function returns. Otherwise, two arrays are created, one to hold
the elements lesser than the pivot and the other to hold the elements greater than the
pivot. The pivot is then selected by selecting the first element of the array. Next, the
function loops over the array elements and places them in their proper array based on
their value relative to the pivot value. The function is then called recursively on both
the lesser array and the greater array. When the recursion is complete, the greater array
is concatenated to the lesser array to form the sorted array and is returned from the
function.

Let’s test the algorithm with some data. Because our qSort program uses recursion, we
won’t use the array test bed; instead, we’ll just create an array of random numbers and
sort the array directly. The program is shown in Example 12-15.

Example 12-15. Sorting data with Quicksort
function qSort(arr)
{
    if (arr.length == 0) {
        return [];
    }
    var left = [];
    var right = [];
    var pivot = arr[0];
    for (var i = 1; i < arr.length; i++) {

        if (arr[i] < pivot) {

           left.push(arr[i]);
        } else {

           right.push(arr[i]);
        }
    }
    return qSort(left).concat(pivot, qSort(right));
}
var a = [];
for (var i = 0; i < 10; ++i) {
   a[i] = Math.floor((Math.random()*100)+1);
}
print(a);
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print();
print(qSort(a));

The output from this program is:

68,80,12,80,95,70,79,27,88,93

12,27,68,70,79,80,80,88,93,95

The Quicksort algorithm is best to use on large data sets; its performance degrades for
smaller data sets.

To better demonstrate how Quicksort works, this next program highlights the pivot as
it is chosen and how data is sorted around the pivot:

function qSort(arr)
{
    if (arr.length == 0) {
        return [];
    }
    var left = [];
    var right = [];
    var pivot = arr[0];
    for (var i = 1; i < arr.length; i++) {
        print("pivot: " + pivot + " current element: " + arr[i]);
        if (arr[i] < pivot) {
           print("moving " + arr[i] + " to the left");
           left.push(arr[i]);
        } else {
           print("moving " + arr[i] + " to the right");
           right.push(arr[i]);
        }
    }
    return qSort(left).concat(pivot, qSort(right));
}
var a = [];
for (var i = 0; i < 10; ++i) {
   a[i] = Math.floor((Math.random()*100)+1);
}
print(a);
print();
print(qSort(a));

The output from this program is:

9,3,93,9,65,94,50,90,12,65

pivot: 9 current element: 3
moving 3 to the left
pivot: 9 current element: 93
moving 93 to the right
pivot: 9 current element: 9
moving 9 to the right
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pivot: 9 current element: 65
moving 65 to the right
pivot: 9 current element: 94
moving 94 to the right
pivot: 9 current element: 50
moving 50 to the right
pivot: 9 current element: 90
moving 90 to the right
pivot: 9 current element: 12
moving 12 to the right
pivot: 9 current element: 65
moving 65 to the right
pivot: 93 current element: 9
moving 9 to the left
pivot: 93 current element: 65
moving 65 to the left
pivot: 93 current element: 94
moving 94 to the right
pivot: 93 current element: 50
moving 50 to the left
pivot: 93 current element: 90
moving 90 to the left
pivot: 93 current element: 12
moving 12 to the left
pivot: 93 current element: 65
moving 65 to the left
pivot: 9 current element: 65
moving 65 to the right
pivot: 9 current element: 50
moving 50 to the right
pivot: 9 current element: 90
moving 90 to the right
pivot: 9 current element: 12
moving 12 to the right
pivot: 9 current element: 65
moving 65 to the right
pivot: 65 current element: 50
moving 50 to the left
pivot: 65 current element: 90
moving 90 to the right
pivot: 65 current element: 12
moving 12 to the left
pivot: 65 current element: 65
moving 65 to the right
pivot: 50 current element: 12
moving 12 to the left
pivot: 90 current element: 65
moving 65 to the left
3,9,9,12,50,65,65,90,93,94
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Exercises
1. Run the three algorithms discussed in this chapter with string data rather than

numeric data and compare the running times for the different algorithms. Are the
results consistent with the results of using numeric data?

2. Create an array of 1,000 integers already sorted into numeric order. Write a program
that runs each sorting algorithm with this array, timing each algorithm and com‐
paring the times. How do these times compare to the times for sorting an array in
random order?

3. Create an array of 1,000 integers sorted in reverse numerical order. Write a program
that runs each sorting algorithm with this array, timing each algorithm, and com‐
pare the times.

4. Create an array of over 10,000 randomly generated integers and sort the array using
both Quicksort and the JavaScript built-in sorting function, timing each function.
Is there a time difference between the two functions? 
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CHAPTER 13

Searching Algorithms

Searching for data is a fundamental computer programming task that has been studied
for many years. This chapter looks at just one aspect of the search problem—searching
for a specified value in a list.

There are two ways to search for data in a list: sequential search and binary search. A
sequential search is used when the items in a list are in random order; a binary search
is used when the items in a list are in sorted order. Binary search is the more efficient
algorithm, but you also have to take into account the extra time it takes to sort the data
set before being able to search it for a value.

Sequential Search
The most obvious way to search for data in a list is to begin at the first element and move
to each element in the list until you either find the data you are looking for or you reach
the end of the list. This is called a sequential search, sometimes also called a linear search.
It is an example of a brute-force search technique, where potentially every element in
the data structure is visited on the way to a solution.

A sequential search is very easy to implement. Simply start a loop at the beginning of
the list and compare each element to the data you are searching for. If you find a match,
the search is over. If you get to the end of the list without generating a match, then the
data searched for is not in the list.

Example 13-1 shows a function for performing sequential search on an array.

Example 13-1. The seqSearch() function
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return true;
      }
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   }
   return false;
}

If the data argument is found in the array, the function returns true immediately. If the
function gets to the end of the array without finding a match, the function returns false.

Example 13-2 presents a program to test our sequential search function, including a
function to make it easy to display the array’s contents. As in Chapter 12, we use random
number generation to populate an array with random numbers in the range of 1 to 100.
We also use a function to display the contents of the array, just as we did in Chapter 12.

Example 13-2. Executing the +seqSearch() function
function dispArr(arr) {
  for (var i = 0; i < arr.length; ++i) {
     putstr(arr[i] + " ");
     if (i % 10 == 9) {
        putstr("\n");
    }
  }
  if (i % 10 != 0) {
     putstr("\n");
  }
}

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
dispArr(nums);
putstr("Enter a number to search for: ");
var num = parseInt(readline());
print();
if (seqSearch(nums, num)) {
   print(num + " is in the array.");
}
else {
   print(num + " is not in the array.");
}
print();
dispArr(nums);

This program creates an array with random numbers in the range of 0 to 100. The user
enters a value, the value is searched for, and the result is displayed. Finally, the program
displays the complete array as proof of the validity of the function’s return value. Here
is a sample run of the program:

Enter a number to search for: 23

23 is in the array.
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13 95 72 100 94 90 29 0 66 2 29
42 20 69 50 49 100 34 71 4 26
85 25 5 45 67 16 73 64 58 53
66 73 46 55 64 4 84 62 45 99
77 62 47 52 96 16 97 79 55 94
88 54 60 40 87 81 56 22 30 91
99 90 23 18 33 100 63 62 46 6
10 5 25 48 9 8 95 33 82 32
56 23 47 36 88 84 33 4 73 99
60 23 63 86 51 87 63 54 62

We can also write the sequential search function so that it returns the position where a
match is found. Example 13-3 provides the definition of this new version of seq
Search().

Example 13-3. Modifying the seqSearch() function to return the position found (or
-1)
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return i;
      }
   }
   return -1;
}

Notice that if the element searched for is not found, the function returns -1. This is the
best value to return for the function since an array element cannot be stored in position
-1.

Example 13-4 presents a program that uses this second definition of seqSearch().

Example 13-4. Testing the modified seqSearch() function
var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
putstr("Enter a number to search for: ");
var num = readline();
print();
var position = seqSearch(nums, num);
if (position > -1) {
   print(num + " is in the array at position " + position);
}
else {
   print(num + " is not in the array.");
}
print();
dispArr(nums);
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Here is one run of the program:

Enter a number to search for: 22

22 is in the array at position 35

35 36 38 50 24 81 78 43 26 26 89
88 39 1 56 92 17 77 53 36 73
61 54 32 97 27 60 67 16 70 59
4 76 7 38 22 87 30 42 91 79
6 61 56 84 6 82 55 91 10 42
37 46 4 85 37 18 27 76 29 2
76 46 87 16 1 78 6 43 72 2
51 65 70 91 73 67 1 57 53 31
16 64 89 84 76 91 15 39 38 3
19 66 44 97 29 6 1 72 62

Keep in mind that the seqSearch() function is not as fast as the built-in Array.index
Of() function, but is shown here to demonstrate how search works.

Searching for Minimum and Maximum Values
Computer programming problems often involve searching for minimum and maxi‐
mum values. In a sorted data structure, searching for these values is a trivial task.
Searching an unsorted data structure, on the other hand, is a more challenging task.

Let’s start by determining how we should search an array for a minimum value. Here is
one algorithm:

1. Assign the first element of the array to a variable as the minimum value.
2. Begin looping through the array, starting with the second element, comparing each

element with the current minimum value.
3. If the current element has a lesser value than the current minimum value, assign

the current element as the new minimum value.
4. Move to the next element and repeat step 3.
5. The minimum value is stored in the variable when the program ends.

The operation of this algorithm is demonstrated in Figure 13-1.
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Figure 13-1. Searching for the minimum value of an array

This algorithm is easily transformed into a JavaScript function, as shown in
Example 13-5.

Example 13-5. The findMin() function
function findMin(arr) {
   var min = arr[0];
   for (var i = 1; i < arr.length; ++i) {
      if (arr[i] < min) {
         min = arr[i];
      }
   }
   return min;
}

The key thing to notice about this function is that it begins with the second array element,
since we are assigning the first array element as the current minimum value.
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Let’s test the function in a program, shown in Example 13-6.

Example 13-6. Finding the minimum value of an array
var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
var minValue = findMin(nums);
dispArr(nums);
print();
print("The minimum value is: " + minValue);

Here is the output from running this program:

89 30 25 32 72 70 51 42 25 24 53
55 78 50 13 40 48 32 26 2 14
33 45 72 56 44 21 88 27 68 15
93 98 73 28 16 46 87 28 65 38
67 16 85 63 23 69 64 91 9 70
81 27 97 82 6 88 3 7 46 13
11 64 31 26 38 28 13 17 69 90
1 6 7 64 43 9 73 80 98 46
27 22 87 49 83 6 39 42 51 54
84 34 53 78 40 14 5 76 62

The minimum value is: 1

The algorithm for finding the maximum value works in a similar fashion. We assign the
first element of the array as the maximum value and then loop through the rest of the
array, comparing each element to the current maximum value. If the current element is
greater than the current maximum value, that element’s value is stored in the variable.
Example 13-7 shows the function definition.

Example 13-7. The findMax() function
function findMax(arr) {
   var max = arr[0];
   for (var i = 1; i < arr.length; ++i) {
      if (arr[i] > max) {
         max = arr[i];
      }
   }
   return max;
}

Example 13-8 shows a program that finds both the minimum value and the maximum
value of an array.

Example 13-8. Using the findMax() function
var nums = [];
for (var i = 0; i < 100; ++i) {
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   nums[i] = Math.floor(Math.random() * 101);
}
var minValue = findMin(nums);
dispArr(nums);
print();
print();
print("The minimum value is: " + minValue);
var maxValue = findMax(nums);
print();
print("The maximum value is: " + maxValue);

The output from this program is:

26 94 40 40 80 85 74 6 6 87 56
91 86 21 79 72 77 71 99 45 5
5 35 49 38 10 97 39 14 62 91
42 7 31 94 38 28 6 76 78 94
30 47 74 20 98 5 68 33 32 29
93 18 67 8 57 85 66 49 54 28
17 42 75 67 59 69 6 35 86 45
62 82 48 85 30 87 99 46 51 47
71 72 36 54 77 19 11 52 81 52
41 16 70 55 97 88 92 2 77

The minimum value is: 2

The maximum value is: 99

Using Self-Organizing Data
The fastest successful sequential searches on unordered data occur when the data being
searched for is located at the beginning of the data set. You can ensure that a successfully
found data item will be found quickly in the future by moving it to the beginning of a
data set after it has been found in a search.

The concept behind this strategy is that we can minimize search times by locating items
that are frequently searched for at the beginning of a data set. For example, if you are a
librarian and you are asked several times a day for the same reference book, you will
keep that book close to your desk for easy access. After many searches, the most fre‐
quently searched-for items will have moved from wherever they were stored to the
beginning of the data set. This is an example of self-organized data: data that is organized
not by the programmer before the program is executed, but by the program itself while
the program is running.

It makes sense to allow your data to self-organize since the data being searched most
likely follow the “80-20 rule,” meaning that 80% of the searches made on a data set are
searching for just 20% of the data in the set. Self-organization will eventually put that
20% at the beginning of the data set, where a simple sequential search will find them
quickly.
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Probability distributions such as the 80-20 rule are called Pareto distributions, named
for Vilfredo Pareto, who discovered these distributions studying the spread of income
and wealth in the late 19th century. See The Art of Computer Programming: Volume 3,
Sorting and Searching by Donald Knuth (Addison-Wesley, 399-401) for more informa‐
tion on probability distributions in data sets.

We can modify our seqSearch() function to include self-organization fairly easily.
Example 13-9 is our first attempt at the function definition.

Example 13-9. The seqSearch() function with self-organization
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         if (i > 0) {
            swap(arr,i,i-1);
         }
         return true;
      }
   }
   return false;
}

You’ll notice that the function checks to make sure that the found data is not already in
position 0.

The preceding definition uses a swap() function to exchange the found data with the
data currently stored in the previous position. Here is the definition for the swap()
function:

function swap(arr, index, index1) {
   temp = arr[index];
   arr[index] = arr[index1];
   arr[index1] = temp;
}

You’ll notice that when using this technique, which is similar to how data is sorted with
the bubble sort algorithm, the most frequently accessed elements will eventually work
their way to the beginning of the data set. For example, this program:

var numbers = [5,1,7,4,2,10,9,3,6,8];
print(numbers);
for (var i = 1; i <= 3; i++) {
   seqSearch(numbers, 4);
   print(numbers);
}

generates the following output:

5,1,7,4,2,10,9,3,6,8
5,1,4,7,2,10,9,3,6,8
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5,4,1,7,2,10,9,3,6,8
4,5,1,7,2,10,9,3,6,8

Notice how the value 4 “bubbles” up to the beginning of the list because it is being
searched for three times in a row.

This technique also guarantees that if an element is already at the beginning of the data
set, it won’t get moved farther down.

Another way we can write the seqSearch() function with self-organizing data is to
move a found item to the beginning of the data set, though we wouldn’t want to exchange
an element if it is already close to the beginning. To achieve this goal, we can swap found
elements only if they are located at least some specified distance away from the beginning
of the data set. We only have to determine what is considered to a be far enough away
from the beginning of the data set to warrant moving the element closer to the beginning.
Following the 80-20 rule again, we can make a rule that states that a data element is
relocated to the beginning of the data set only if its location lies outside the first 20% of
the items in the data set.

Example 13-10 shows the definition for this new version of seqSearch().

Example 13-10. seqSearch() with better self-organization
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data && i > (arr.length * 0.2)) {
         swap(arr,i,0);
         return true;
      }
      else if (arr[i] == data) {
         return true;
      }
   }
   return false;
}

Example 13-11 shows a program that tests this definition on a small data set of 10
elements.

Example 13-11. Searching with self-organization
var nums = [];
for (var i = 0; i < 10; ++i) {
   nums[i] = Math.floor(Math.random() * 11);
}
dispArr(nums);
print();
putstr("Enter a value to search for: ");
var val = parseInt(readline());
if (seqSearch(nums, val)) {
   print("Found element: ");
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   print();
   dispArr(nums);
}
else {
   print(val + " is not in array.");
}

Here are the results of a sample run of this program:

4 5 1 8 10 1 3 10 0 1
Enter a value to search for: 3

Found element:

3 5 1 8 10 1 4 10 0 1

Let’s run the program again and search for an element closer to the front of the data set:

4 2 9 5 0 6 9 4 5 6
Enter a value to search for: 2
Found element:

4 2 9 5 0 6 9 4 5 6

Because the searched-for element is so close to the front of the data set, the function
does not change its position.

The searches we have discussed so far require that the data being searched be kept in
an unordered sequence. However, we can speed up searches on large data sets signifi‐
cantly if we first sort the data set before performing a search. In the next section we
discuss an algorithm for searching ordered data—the binary search.

Binary Search
When the data you are searching for are sorted, a more efficient search than the se‐
quential search is the binary search. To understand how binary search works, imagine
you are playing a number-guessing game where the possible number is between 1 and
100, and you have to guess the number as chosen by a friend. According to the rules,
for every guess you make, your friend has three responses:

1. The guess is correct.
2. The guess is too high.
3. The guess is too low.

Following these rules, the best strategy is to choose the number 50 as your first guess.
If that guess is too high, choose 25. If 50 is too low, you should guess 75. For each guess,
you choose a midpoint by adjusting the lower range or the upper range of the numbers
(depending on whether your guess is too low or too high). This midpoint becomes your
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new guess. As long as you follow this strategy, you will guess the correct number in the
minimum possible number of guesses. Figure 13-2 demonstrates how this strategy
works if the number to be guessed is 82.

Figure 13-2. Binary search algorithm applied to guessing a number

We can implement this strategy as the binary search algorithm. This algorithm only
works on a sorted data set. Here is the algorithm:

1. Set a lower bound to the first position of the array (0).
2. Set an upper bound to the last element of the array (length of array minus 1).
3. While the lower bound is less than or equal to the upper bound, do the following

steps:
a. Set the midpoint as (upper bound minus lower bound) divided by 2.
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b. If the midpoint element is less than the data being searched for, set a new lower
bound to the midpoint plus 1.

c. If the midpoint element is greater than the data being searched for, set a new
upper bound to the midpoint minus 1.

d. Otherwise, return the midpoint as the found element.

Example 13-12 shows the JavaScript definition for the binary search algorithm, along
with a program to test the definition.

Example 13-12. Using the binary search algorithm
function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
      var mid = Math.floor((upperBound + lowerBound) / 2);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
insertionsort(nums);
dispArr(nums);
print();
putstr("Enter a value to search for: ");
var val = parseInt(readline());
var retVal = binSearch(nums, val);
if (retVal >= 0) {
   print("Found " + val + " at position " + retVal);
}
else {
   print(val + " is not in array.");
}

Here is the output from one run of the program:

0 1 2 3 5 7 7 8 8 9 10
11 11 13 13 13 14 14 14 15 15
18 18 19 19 19 19 20 20 20 21
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22 22 22 23 23 24 25 26 26 29
31 31 33 37 37 37 38 38 43 44
44 45 48 48 49 51 52 53 53 58
59 60 61 61 62 63 64 65 68 69
70 72 72 74 75 77 77 79 79 79
83 83 84 84 86 86 86 91 92 93
93 93 94 95 96 96 97 98 100
Enter a value to search for: 37
Found 37 at position 45

It will be interesting to watch the function as it works its way through the search space
looking for the value specified, so in Example 13-13, let’s add a statement to the bin
Search() function that displays the midpoint each time it is recalculated:

Example 13-13. binSearch() displaying the midpoint value
function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
      var mid = Math.floor((upperBound + lowerBound) / 2);
      print("Current midpoint: " + mid);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

Now let’s run the program again:

0 0 2 3 5 6 7 7 7 10 11
14 14 15 16 18 18 19 20 20 21
21 21 22 23 24 26 26 27 28 28
30 31 32 32 32 32 33 34 35 36
36 37 37 38 38 39 41 41 41 42
43 44 47 47 50 51 52 53 56 58
59 59 60 62 65 66 66 67 67 67
68 68 68 69 70 74 74 76 76 77
78 79 79 81 81 81 82 82 87 87
87 87 92 93 95 97 98 99 100
Enter a value to search for: 82
Current midpoint: 49
Current midpoint: 74
Current midpoint: 87
Found 82 at position 87

Binary Search | 199



From this output, we see that the original midpoint value was 49. That’s too low since
we are searching for 82, so the next midpoint is calculated to be 74. That’s still too low,
so a new midpoint is calculated, 87, and that value holds the element we are searching
for, so the search is over.

Counting Occurrences
When the binSearch() function finds a value, if there are other occurrences of the same
value in the data set, the function will be positioned in the immediate vicinity of other
like values. In other words, other occurrences of the same value will either be to the
immediate left of the found value’s position or to the immediate right of the found value’s
position.

If this fact isn’t readily apparent to you, run the binSearch() function several times and
take note of the position of the found value returned by the function. Here’s an example
of a sample run from earlier in this chapter:

0 1 2 3 5 7 7 8 8 9 10
11 11 13 13 13 14 14 14 15 15
18 18 19 19 19 19 20 20 20 21
22 22 22 23 23 24 25 26 26 29
31 31 33 37 37 37 38 38 43 44
44 45 48 48 49 51 52 53 53 58
59 60 61 61 62 63 64 65 68 69
70 72 72 74 75 77 77 79 79 79
83 83 84 84 86 86 86 91 92 93
93 93 94 95 96 96 97 98 100
Enter a value to search for: 37
Found 37 at position 45

If you count the position of each element, the number 37 found by the function is the
one that is in the middle of the three occurrences of 37. This is just the nature of how
the binSearch() function works.

So what does a function that counts the occurrences of values in a data set need to do
to make sure that it counts all the occurrences? The easiest solution is to write two loops
that move both down, or to the left of, the data set, counting occurrences, and up, or
the right of, the data set, counting occurrences. Example 13-14 shows a definition of the
count() function.

Example 13-14. The count() function
function count(arr, data) {
   var count = 0;
   var position = binSearch(arr, data);
   if (position > -1) {
      ++count;
      for (var i = position-1; i > 0; --i) {
         if (arr[i] == data) {
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            ++count;
         }
         else {
            break;
         }
      }
      for (var i = position+1; i < arr.length; ++i) {
         if (arr[i] == data) {
            ++count;
         }
         else {
            break;
         }
      }
   }
   return count;
}

The function starts by calling the binSearch() function to search for the specified value.
If the value is found in the data set, the the function begins counting occurrences by
calling two for loops. The first loop works its way down the array, counting occurrences
of the found value, stopping when the next value in the array doesn’t match the found
value. The second for loop works its way up the array, counting occurrences and stop‐
ping when the next value in the array doesn’t match the found value.

Example 13-15 shows how we can use count() in a program.

Example 13-15. Using the count() function
var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
insertionsort(nums);
dispArr(nums);
print();
putstr("Enter a value to count: ");
var val = parseInt(readline());
var retVal = count(nums, val);
print("Found " + retVal + " occurrences of " + val + ".");

Here is a sample run of the program:

0 1 3 5 6 8 8 9 10 10 10
12 12 13 15 18 18 18 20 21 21
22 23 24 24 24 25 27 27 30 30
30 31 32 35 35 35 36 37 40 40
41 42 42 44 44 45 45 46 47 48
51 52 55 56 56 56 57 58 59 60
61 61 61 63 64 66 67 69 69 70
70 72 72 73 74 74 75 77 78 78
78 78 82 82 83 84 87 88 92 92
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93 94 94 96 97 99 99 99 100
Enter a value to count: 45
Found 2 occurrences of 45.

Here is another sample run:

0 1 1 2 2 3 6 7 7 7 7
8 8 8 11 11 11 11 11 12 14
15 17 18 18 18 19 19 23 25 27
28 29 30 30 31 32 32 32 33 36
36 37 37 38 38 39 43 43 43 45
47 48 48 48 49 50 53 55 55 55
59 59 60 62 65 66 67 67 71 72
73 73 75 76 77 79 79 79 79 83
85 85 87 88 89 92 92 93 93 93
94 94 94 95 96 97 98 98 99
Enter a value to count: 56
Found 0 occurrences of 56.

Searching Textual Data
Up to this point, all of our searches have been conducted on numeric data. We can also
use the algorithms discussed in this chapter with textual data. First, let’s define the data
set we are using:

The nationalism of Hamilton was undemocratic. The democracy of Jefferson was,
in the beginning, provincial. The historic mission of uniting nationalism and
democracy was in the course of time given to new leaders from a region beyond
the mountains, peopled by men and women from all sections and free from those
state traditions which ran back to the early days of colonization. The voice
of the democratic nationalism nourished in the West was heard when Clay of
Kentucky advocated his American system of protection for industries; when
Jackson of Tennessee condemned nullification in a ringing proclamation that
has taken its place among the great American state papers; and when Lincoln
of Illinois, in a fateful hour, called upon a bewildered people to meet the
supreme test whether this was a nation destined to survive or to perish. And
it will be remembered that Lincoln's party chose for its banner that earlier
device--Republican--which Jefferson had made a sign of power. The "rail splitter"
from Illinois united the nationalism of Hamilton with the democracy of Jefferson,
and his appeal was clothed in the simple language of the people, not in the
sonorous rhetoric which Webster learned in the schools.

This paragraph of text was taken from the big.txt file found on Peter Norvig’s website.
This file is stored as a text file (.txt) that is located in the same directory as the JavaScript
interpreter (js.exe).

To read the file into a program, we need just one line of code:

var words = read("words.txt").split(" ");

This line stores the text in an array by reading in the text from the file—
read("words.txt")—and then breaking up the file into words using the split()
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function, which uses the space between each word as the delimiter. This code is not
perfect because puncuation is left in the file and is stored with the nearest word, but it
will suffice for our purposes.

Once the file is stored in an array, we can begin searching through the array to find
words. Let’s begin with a sequential search and search for the word “rhetoric,” which is
in the paragraph close to the end of the file. Let’s also time the search so we can compare
it with a binary search. We covered timing code in Chapter 12 if you want to go back
and review that material. Example 13-16 shows the code.

Example 13-16. Searching a text file using seqSearch()
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return i;
      }
   }
   return -1;
}

var words = read("words.txt").split(" ");
var word = "rhetoric";
var start = new Date().getTime();
var position = seqSearch(words, word);
var stop = new Date().getTime();
var elapsed = stop - start;
if (position >= 0) {
   print("Found " + word + " at position " + position + ".");
   print("Sequential search took " + elapsed + " milliseconds.");
}
else {
   print(word + " is not in the file.");
}

The output from this program is:

Found rhetoric at position 174.
Sequential search took 0 milliseconds.

Even though binary search is faster, we won’t be able to measure any difference between
seqSearch() and binSearch(), but we will run the program using binary search anyway
to ensure that the binSearch() function works correctly with text. Example 13-17 shows
the code and the output.

Example 13-17. Searching textual data with binSearch()
function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
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      var mid = Math.floor((upperBound + lowerBound) / 2);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

function insertionsort(arr) {
   var temp, inner;
   for (var outer = 1; outer <= arr.length-1; ++outer) {
      temp = arr[outer];
      inner = outer;
      while (inner > 0 && (arr[inner-1] >= temp)) {
         arr[inner] = arr[inner-1];
         --inner;
      }
      arr[inner] = temp;
   }
}

var words = read("words.txt").split(" ");
insertionsort(words);
var word = "rhetoric";
var start = new Date().getTime();
var position = binSearch(words, word);
var stop = new Date().getTime();
var elapsed = stop - start;
if (position >= 0) {
   print("Found " + word + " at position " + position + ".");
   print("Binary search took " + elapsed + " milliseconds.");
}
else {
   print(word + " is not in the file.");
}

Found rhetoric at position 124.
Binary search took 0 milliseconds.

In this age of superfast processors, it is harder and harder to measure the difference
between sequential search and binary search on anything but the largest data sets.
However, it has been proven mathematically that binary search is faster than sequential
search on large data sets just due to the fact that the binary search algorithm eliminates
half the search space (the elements of the array) with each iteration of the loop that
controls the algorithm.
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Exercises
1. The sequential search algorithm always finds the first occurrence of an element in

a data set. Rewrite the algorithm so that the last occurrence of an element is returned.
2. Compare the time it takes to perform a sequential search with the total time it takes

to both sort a data set using insertion sort and perform a binary search on the data
set. What are your results?

3. Create a function that finds the second-smallest element in a data set. Can you
generalize the function definition for the third-smallest, fourth-smallest, and so
on? Test your functions with a data set of at least 1,000 elements. Test on both
numbers and text.
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CHAPTER 14

Advanced Algorithms

In this chapter we’ll look at two advanced topics: dynamic programming and greedy
algorithms. Dynamic programming is a technique that is sometimes considered the
opposite of recursion. Where a recursive solution starts at the top and breaks the prob‐
lem down, solving all small problems until the complete problem is solved, a dynamic
programming solution starts at the bottom, solving small problems and combining
them to form an overall solution to the big problem. This chapter departs from most of
the other chapters in this book in that we don’t really discuss an organizing data structure
for working with these algorithms other than the array. Sometimes, a simple data struc‐
ture is enough to solve a problem if the algorithm you are using is powerful enough.

A greedy algorithm is an algorithm that looks for “good solutions” as it works toward
the complete solution. These good solutions, called local optima, will hopefully lead to
the correct final solution, called the global optimum. The term “greedy” comes from the
fact that these algorithms take whatever solution looks best at the time. Often, greedy
algorithms are used when it is almost impossible to find a complete solution, owing to
time and/or space considerations, and yet a suboptimal solution is acceptable.

A good source for more information on advanced algorithms and data structures is
Introduction to Algorithms (MIT Press).

Dynamic Programming
Recursive solutions to problems are often elegant but inefficient. Many languages, in‐
cluding JavaScript, cannot efficiently translate recursive code to machine code, resulting
in an inefficient though elegant computer program. This is not to say that using recur‐
sion is bad, per se, just that some imperative and object-oriented programming lan‐
guages do not do a good job implementing recursion, since they do not feature recursion
as a high-priority programming technique.
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Many programming problems that have recursive solutions can be rewritten using the
techniques of dynamic programming. A dynamic programming solution builds a table,
usually using an array, that holds the results of the many subsolutions as the problem
is broken down. When the algorithm is complete, the solution is found in a distinct spot
in the table, as we’ll see in the Fibonacci example next.

A Dynamic Programming Example: Computing Fibonacci Numbers
The Fibonacci numbers can be defined by the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

As you can tell, the sequence is generated by adding the previous two numbers in the
sequence together. This sequence has a long history dating back to at least 700 AD and
is named after the Italian mathematician Leornardo Fibonacci, who in 1202 used the
sequence to describe the idealized growth of a rabbit population.

There is a simple recursive solution you can use to generate any specific number in the
sequence. Here is the JavaScript code for a Fibonacci function:

function recurFib(n) {
   if (n < 2) {
      return n;
   }
   else {
      return recurFib(n-1) + recurFib(n-2);
   }
}

print(recurFib(10)); // displays 55

The problem with this function is that it is extremely inefficient. We can see exactly how
inefficient it is by examining the recursion tree shown in Figure 14-1 for fib(5).

Figure 14-1. Recursion tree generated by recursive Fibonacci function
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It is clear that too many values are recomputed during the recursive calls. If the compiler
could keep track of the values that are already computed, the function would not be
nearly so inefficient. We can design a much more efficient algorithm using dynamic
programming techniques.

An algorithm designed using dynamic programming starts by solving the simplest sub‐
problem it can solve, then using that solution to solve more complex subproblems until
the entire problem is solved. The solutions to each subproblem are typically stored in
an array for easy access.

We can demonstrate the essence of dynamic programming by examing the dynamic
programming solution to computing Fibonacci numbers, as shown in the function def‐
inition in the following section:

function dynFib(n) {
   var val = [];
   for (var i = 0; i <= n; ++i) {
      val[i] = 0;
   }
   if (n == 1 || n == 2) {
      return 1;
   }
   else {
      val[1] = 1;
      val[2] = 2;
      for (var i = 3; i <= n; ++i) {
         val[i] = val[i-1] + val[i-2];
      }
      return val[n-1];
   }
}

The val array is where we store intermediate results. The first part of the if statement
returns the value 1 if the Fibonacci number to be computed is 1 or 2. Otherwise, the
values 1 and 2 are stored in positions 1 and 2 of val. The for loop runs from 3 to the
input argument, assigning each array element the sum of the previous two array ele‐
ments, and when the loop is complete, the last value in the array will be the last computed
Fibonacci number, which is the number asked for and is the value returned by the
function.

The arrangement of the Fibonacci sequence in the val array is shown here:

val[0] = 0 val[1] = 1 val[2] = 2 val[3] = 3 val[4] = 5 val[5] = 8 val[6] = 13

Let’s compare the time it takes to compute a Fibonacci number using both the recursive
function and the dynamic programming function. Example 14-1 lists the code for the
timing test.
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Example 14-1. Timing test for recursive and dynamic programming versions of Fibo‐
nacci function
function recurFib(n) {
   if (n < 2) {
      return n;
   }
   else {
      return recurFib(n-1) + recurFib(n-2);
   }
}

function dynFib(n) {
   var val = [];
   for (var i = 0; i <= n; ++i) {
      val[i] = 0;
   }
   if (n == 1 || n == 2) {
      return 1;
   }
   else {
      val[1] = 1;
      val[2] = 2;
      for (var i = 3; i <= n; ++i) {
         val[i] = val[i-1] + val[i-2];
      }
      return val[n-1];
   }
}

var start = new Date().getTime();
print(recurFib(10));
var stop = new Date().getTime();
print("recursive time - " + (stop-start) + "milliseconds");
print();
start = new Date().getTime();
print(dynFib(10));
stop = new Date().getTime();
print("dynamic programming time - " + (stop-start) + " milliseconds");

The output from this program is:

832040
recursive time - 0 milliseconds

832040
dynamic programming time - 0 milliseconds

If we run the program again, this time computing fib(20), we get:

6765
recursive time - 1 milliseconds
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6765
dynamic programming time - 0 milliseconds

Finally, we compute fib(30) and we get:

832040
recursive time - 17 milliseconds

832040
dynamic programming time - 0 milliseconds

Clearly, the dynamic programming solution is much more efficient than the recursive
solution when we compute anything over fib(20).

Finally, you may have already figured out that it’s not necessary to use an array when
computing a Fibonacci number using the iterative solution. The array was used because
dynamic programming algorithms usually store intermediate results in an array. Here
is the definition of an iterative Fibonacci function that doesn’t use an array:

function iterFib(n) {
   var last = 1;
   var nextLast = 1;
   var result = 1;
   for (var i = 2; i < n; ++i) {
      result = last + nextLast;
      nextLast = last;
      last = result;
   }
   return result;
}

This version of the function will compute Fibonacci numbers as efficiently as the dy‐
namic programming version.

Finding the Longest Common Substring
Another problem that lends itself to a dynamic programming solution is finding the
longest common substring in two strings. For example, in the words “raven” and “hav‐
oc,” the longest common substring is “av.” A common use of finding the longest common
substring is in genetics, where DNA molecules are described using the first letter of the
nucleobase of a nucleotide.

We’ll start with the brute-force solution to this problem. Given two strings, A and B,
we can find the longest common substring by starting at the first character of A and
comparing each character to the corresponding character of B. When a nonmatch is
found, move to the second character of A and start over with the first character of B,
and so on.

There is a better solution using dynamic programming. The algorithm uses a two-
dimensional array to store the results of comparisons of the characters in the same
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position in the two strings. Initially, each element of the array is set to 0. Each time a
match is found in the same position of the two arrays, the element at the corresponding
row and column of the array is incremented by 1; otherwise the element stays set to 0.
Along the way, a variable is keeping track of how many matches are found. This variable,
along with an indexing variable, are used to retrieve the longest common substring once
the algorithm is finished.

Example 14-2 presents the complete definition of the algorithm. After the code, we’ll
explain how it works.

Example 14-2. A function for determining the longest common substring of two strings
function lcs(word1, word2) {
   var max = 0;
   var index = 0;
   var lcsarr = new Array(word1.length+1);
   for (var i = 0; i <= word1.length+1; ++i) {
      lcsarr[i] = new Array(word2.length+1);
      for (var j = 0; j <= word2.length+1; ++j) {
         lcsarr[i][j] = 0;
      }
   }
   for (var i = 0; i <= word1.length; ++i) {
      for (var j = 0; j <= word2.length; ++j) {
         if (i == 0 || j == 0) {
            lcsarr[i][j] = 0;
         }
         else {
            if (word1[i-1] == word2[j-1]) {
               lcsarr[i][j] = lcsarr[i-1][j-1] + 1;
            }
            else {
               lcsarr[i][j] = 0;
            }
         }
         if (max < lcsarr[i][j]) {
            max = lcsarr[i][j];
            index = i;
         }
      }
   }
   var str = "";
   if (max == 0) {
      return "";
   }
   else {
      for (var i = index-max; i <= max; ++i) {
         str += word2[i];
      }
      return str;
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   }
}

The first section of the function sets up a couple of variables and the two-dimensional
array. Most languages have a simple declaration for two-dimensional arrays, but Java‐
Script makes you jump through a few hoops by declaring an array inside an array. The
last for loop in the code fragment initializes the array. Here’s the first section:

function lcs(word1, word2) {
   var max = 0;
   var index = 0;
   var lcsarr = new Array(word1.length+1);
   for (var i = 0; i <= word1.length+1; ++i) {
      lcsarr[i] = new Array(word2.length+1);
      for (var j = 0; j <= word2.length+1; ++j) {
         lcsarr[i][j] = 0;
      }
   }

Now here is the code for the second section of the function:

for (var i = 0; i <= word1.length; ++i) {
   for (var j = 0; j <= word2.length; ++j) {
      if (i == 0 || j == 0) {
         lcsarr[i][j] = 0;
      }
      else {
         if (word1[i-1] == word2[j-1]) {
            lcsarr[i][j] = lcsarr[i-1][j-1] + 1;
         }
         else {
            lcsarr[i][j] = 0;
         }
      }
      if (max < lcsarr[i][j]) {
         max = lcsarr[i][j];
         index = i;
      }
   }
}

The second section builds the table that keeps track of character matches. The first
elements of the array are always set to 0. Then if the corresponding characters of the
two strings match, the current array element is set to 1 plus the value stored in the
previous array element. For example, if the two strings are “back” and “cace,” and the
algorithm is on the second character, then a 1 is placed in the current element, since the
previous element wasn’t a match and a 0 is stored in that element (0 + 1). The algorithm
then moves to the next position, and since it also matches for both strings, a 2 is placed
in the current array element (1 + 1). The last characters of the two strings don’t match,
so the longest common substring is 2. Finally, if max is less than the value now stored in
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the current array element, it is assigned the value of the current array element, and index
is set to the current value of i. These two variables will be used in the last section to
determine where to start retrieving the longest common substring.

For example, given the two strings “abbcc” and “dbbcc,” here is the state of the lcsarr
array as the algorithm progresses:

0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 1 2 0 0
0 0 0 3 1
0 0 0 1 4

The last section builds the longest common substring by determining where to start.
The value of index minus max is the starting point, and the value of max is the stopping
point:

var str = "";
if (max == 0) {
   return "";
}
else {
   for (var i = index-max; i <= max; ++i) {
      str += word2[i];
   }
   return str;
}

Given again the two strings “abbcc” and “dbbcc,” the program returns “bbcc.”

The Knapsack Problem: A Recursive Solution
A classic problem in the study of algorithms is the knapsack problem. Imagine you are
a safecracker and you break open a safe filled with all sorts of treasure, but all you have
to carry the loot is a small backpack. The items in the safe differ in both size and value.
You want to maximize your take by filling the backpack with those items that are worth
the most.

There is, of course, a brute-force solution to this problem, but the dynamic program‐
ming solution is more efficient. The key idea to solving the knapsack problem with a
dynamic programming solution is to calculate the maximum value for every item up
to the total capacity of the knapsack.

If the safe in our example has five items, the items have a size of 3, 4, 7, 8, and 9,
respectively, and values of 4, 5, 10, 11, and 13, respectively, and the knapsack has a
capacity of 16, then the proper solution is to pick items 3 and 5 with a total size of 16
and a total value of 23.
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The code for solving this problem is quite short, but it won’t make much sense without
the context of the whole program, so let’s take a look at the program to solve the knapsack
problem. Our solution uses a recursive function:

function max(a, b) {
   return (a > b) ? a : b;
}

function knapsack(capacity, size, value, n) {
   if (n == 0 || capacity == 0) {
      return 0;
   }
   if (size[n-1] > capacity) {
      return knapsack(capacity, size, value, n-1);
   }
   else {
      return max(value[n-1] +
                 knapsack(capacity-size[n-1], size, value, n-1),
                 knapsack(capacity, size, value, n-1));
   }
}

var value = [4,5,10,11,13];
var size = [3,4,7,8,9];
var capacity = 16;
var n = 5;
print(knapsack(capacity, size, value, n));

The output from this program is:

23

The problem with this recursive solution to the knapsack problem is that, because it is
recursive, many subproblems are revisited during the course of the recursion. A better
solution to the knapsack problem is to use a dynamic programming technique to solve
the problem, as shown below.

The Knapsack Problem: A Dynamic Programming Solution
Whenever we find a recursive solution to a problem, we can usually rewrite the solution
using a dynamic programming technique and end up with a more efficient program.
The knapsack problem can definitely be rewritten in a dynamic programming manner.
All we have to do is use an array to store temporary solutions until we get to the final
solution.

The following program demonstrates how the knapsack problem we encountered ear‐
lier can be solved using dynamic programming. The optimum value for the given con‐
straints is, again, 23. Example 14-3 shows the code.
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Example 14-3. A dynamic programming solution to the knapsack problem
function max(a, b) {
   return (a > b) ? a : b;
}

function dKnapsack(capacity, size, value, n) {
   var K = [];
   for (var i = 0; i <= capacity+1; i++) {
      K[i] = [];
   }
   for (var i = 0; i <= n; i++) {
      for (var w = 0; w <= capacity; w++) {
         if (i == 0 || w == 0) {
            K[i][w] = 0;
         }
         else if (size[i-1] <= w) {
            K[i][w] = max(value[i-1] + K[i-1][w-size[i-1]],
                          K[i-1][w]);
         }
         else {
            K[i][w] = K[i-1][w];
         }
         putstr(K[i][w] + " ");
      }
      print();
   }

   return K[n][capacity];
}

var value = [4,5,10,11,13];
var size = [3,4,7,8,9];
var capacity = 16;
var n = 5;
print(dKnapsack(capacity, size, value, n));

As the program runs, it displays the values being stored in the table as the algorithm
works toward a solution. Here is the output:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 4 5 5 5 9 9 9 9 9 9 9 9 9 9
0 0 0 4 5 5 5 10 10 10 14 15 15 15 19 19 19
0 0 0 4 5 5 5 10 11 11 14 15 16 16 19 21 21
0 0 0 4 5 5 5 10 11 13 14 15 17 18 19 21 23
23

The optimal solution to the problem is found in the last cell of the two-dimensional
table, which is found in the bottom-right corner of the table. You will also notice that
using this technique does not tell you which items to pick to maximize output, but from
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inspection, the solution is to pick items 3 and 5, since the capacity is 16, item 3 has a
size 7 (value 10), and item 5 has a size 9 (value 13).

Greedy Algorithms
In the previous sections, we examined dynamic programming algorithms that can be
used to optimize solutions that are found using a suboptimal algorithm—solutions that
are often based on recursion. For many problems, resorting to dynamic programming
is overkill and a simpler algorithm will suffice.

One example of a simpler algorithm is the greedy algorithm. A greedy algorithm is one
that always chooses the best solution at the time, with no regard to how that choice will
affect future choices. Using a greedy algorithm generally indicates that the implementer
hopes that the series of “best” local choices made will lead to a final “best” choice. If so,
then the algorithm has produced an optimal solution; if not, a suboptimal solution has
been found. However, for many problems, it is just not worth the trouble to find an
optimal solution, so using a greedy algorithm works just fine.

A First Greedy Algorithm Example: The Coin-Changing Problem
A classic example of following a greedy algorithm is making change. Let’s say you buy
some items at the store and the change from your purchase is 63 cents. How does the
clerk determine the change to give you? If the clerk follows a greedy algorithm, he or
she gives you two quarters, a dime, and three pennies. That is the smallest number of
coins that will equal 63 cents without using half-dollars.

Example 14-4 demonstrates a program that uses a greedy algorithm to make change
(under the assumption that the amount of change is less than one dollar).

Example 14-4. A greedy algorithm for solving the coin-changing problem
function makeChange(origAmt, coins) {
   var remainAmt = 0;
   if (origAmt % .25 < origAmt) {
      coins[3] = parseInt(origAmt / .25);
      remainAmt = origAmt % .25;
      origAmt = remainAmt;
   }
   if (origAmt % .1 < origAmt) {
      coins[2] = parseInt(origAmt / .1);
      remainAmt = origAmt % .1;
      origAmt = remainAmt;
   }
   if (origAmt % .05 < origAmt) {
      coins[1] = parseInt(origAmt / .05);
      remainAmt = origAmt % .05;
      origAmt = remainAmt;
   }
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   coins[0] = parseInt(origAmt / .01);
}

function showChange(coins) {
   if (coins[3] > 0) {
      print("Number of quarters - " + coins[3] + " - " + coins[3] * .25);
   }
   if (coins[2] > 0) {
      print("Number of dimes - " + coins[2] + " - " + coins[2] * .10);
   }
   if (coins[1] > 0) {
      print("Number of nickels - " + coins[1] + " - " + coins[1] * .05);
   }
   if (coins[0] > 0) {
      print("Number of pennies - " + coins[0] + " - " + coins[0] * .01);
   }
}

var origAmt = .63;
var coins = [];
makeChange(origAmt, coins);
showChange(coins);

The output from this program is:

Number of quarters - 2 - 0.5
Number of dimes - 1 - 0.1
Number of pennies - 3 - 0.03

The makeChange() function starts with the highest denomination, quarters, and tries
to make as much change with them as possible. The total number of quarters is stored
in the coins array. Once the amount left becomes less than a quarter, the algorithm
moves to dimes, making as much change with dimes as possible. The total number of
dimes is then stored in the coins array. The algorithm then moves to nickels and pennies
in the same manner.

This solution always finds the optimal solution as long as the normal coin denomina‐
tions are used and all the possible denominations are available. Not being able to use
one particular denomination, such as nickels, can lead to a suboptimal solution.

A Greedy Algorithm Solution to the Knapsack Problem
Earlier in this chapter we examined the knapsack problem and provided both recursive
and dynamic programming solutions for it. In this section, we’ll examine how we can
implement a greedy algorithm to solve this problem.

A greedy algorithm can be used to solve the knapsack problem if the items we are placing
in the knapsack are continuous in nature. In other words, the items must be things that
cannot be counted discretely, such as cloth or gold dust. If we are using continous items,
we can simply divide the unit price by the unit volume to determine the value of the
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item. An optimal solution in this case is to place as much of the item with the highest
value into the knapsack as possible until the item is depleted or the knapsack is full,
followed by as much of the second-highest-value item as possible, and so on. The reason
we can’t find an optimal greedy solution using discrete items is because we can’t put
“half a television” into a knapsack. Discrete knapsack problems are known as 0-1 prob‐
lems because you must take either all or none of an item.

This type of knapsack problem is called a fractional knapsack problem. Here is the
algorithm for solving fractional knapsack problems:

1. Knapsack has a capacity W and items have values V and weights w.
2. Rank items by v/w ratio.
3. Consider items in terms of decreasing ratio.
4. Take as much of each item as possible.

Table 14-1 gives the weights, values, and ratios for four items.

Table 14-1. Fractional knapsack items
Item A B C D

Value 50 140 60 60

Size 5 20 10 12

Ratio 10 7 6 5

Given the table above, and assuming that the knapsack being used has a capacity of 30,
the optimal solution for the knapsack problem is to take all of item A, all of item B, and
half of item C. This combination of items will result in a value of 220.

The code for finding the optimal solution to this knapsack problem is shown below:

function ksack(values, weights, capacity) {
   var load = 0;
   var i = 0;
   var w = 0;
   while (load < capacity && i < 4) {
      if (weights[i] <= (capacity-load)) {
         w += values[i];
         load += weights[i];
      }
      else {
         var r = (capacity-load)/weights[i];
         w += r * values[i];
         load += weights[i];
      }
   ++i;
   }
   return w;
}
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var items = ["A", "B", "C", "D"];
var values = [50, 140, 60, 60];
var weights = [5, 20, 10, 12];
var capacity = 30;
print(ksack(values, weights, capacity)); // displays 220

Exercises
1. Write a program that uses a brute-force technique to find the longest common

substring.
2. Write a program that allows the user to change the constraints of a knapsack prob‐

lem in order to explore how changing the constraints will change the results of the
solution. For example, you can change the capacity of the knapsack, the values of
the items, or the weights of the items. It is probably a good idea to change only one
of these constraints at a time.

3. Using the greedy algorithm technique for coin changing, but not allowing the al‐
gorithm to use dimes, find the solution for 30 cents. Is this solution optimal?
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defined, 13
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Dictionary class based on, 89
dynamic programming interim solutions in,

211
in hash tables

separate chaining of elements, 107
using linear probing with, 109

iterator functions returning new arrays, 25
iterator functions, non-array-generating, 23
jagged, 30
limitations of, 73
of objects, 30
ordering array elements, 22
Queue class implementation based on, 60
removing elements from, 20
search for both mimimum and maximum

value, 192
searching for maximum value, 192
searching for minimum value, 190
storing data in objects, 31
storing text file in, 203
string representations of, 18
two-dimensional, 213

creating, 27
processing elements, 28

using, 13
using for hash tables, 101
vertex list, 153

assigning one array to another array, 16

B
back() function, 86

Queue class, 61
base conversions for numbers, 53
betterHash() function, 102

hashing integer keys, 105
binary search, 196–204

algorithm, 197
binSearch() function displaying midpoint

value, 199
counting occurrences, 200
JavaScript definition for algorithm, 198
searching textual data, 202

binary search trees
building an implementation, 124–129

BST and Node classes, 125
traversing a binary search tree, 126

counting occurrences, 134
defined, 124
removing nodes form, 132

searches, 129–132
for a specific value, 131
for minimum and maximum value, 130

binary trees, xi, 121, 122
example of, 123
representing graphs as, 141

block scope, simulating in JavaScript, 9
breadth-first search, 148

leading to shortest paths, 149
brute-force search, 187

(see also sequential search)
finding longest common substring, 211

bubble sort, 162
bubbleSort() function, 163

adding call to toString() function, 164
sorting 10 numbers with bubbleSort(), 163

buildChain() function, HashTable class, 107

C
chain, 107
charCodeAt() function, 100
checkOut() function, movie application (exam‐

ple), 45
child nodes, 122

left and right nodes, 123
circularly linked lists, 85

creating, 85
Ciura, Marcin, 171
clear() function

Dictionary class, 92
example of use, 93

lists, 35
queues, 60
removing all elements from a list, 39
Stack class, 51

code examples and supplemental materials, xii
coin-changing problem, 217
collisions, 97

avoiding, 101
handling in hashing, 107–111

linear probing, 109
separate chaining, 107

in hashing integer keys, 105
in simple hash function, 100

compare() function, 22
concat() function, 18
concatenating strings, using reduce() function,

25
constructor functions, 10
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contains() function
checking for set member, 116
lists, 40, 44

copying, shallow versus deep copies, 16
count field in Node object, 134
count() function

counting occurrences in a binary search, 200
Dictionary class, 91

example of use, 93
Queue class, 66

counting occurrences in a data set, 134, 200
curPos() function, 40
Customer object, movie application (example),

45
cycles (in graphs), 140

D
data structures, reasons for studying, ix
datatypes, array elements, 14
Date object, getTime() function, 168
decision constructs, 4
deep copies, 16
delete operator, 39
delete() function, 90
depth-first search, 145
dequeue() function, 59

defining for priority queue, 70
implementation for Queue class, 61

dictionaries, xi, 89–95
Dictionary class, 89

add() function, 90
adding sorting capability, 93
auxiliary functions, 91

class definition updated with, 92
clear(), 92
count(), 91
examples of using count() and clear(), 93

delete() function, 90
find() function, 90
keys() function, 90
program that uses, 91
showAll() function, 90

difference, 114
difference() function, Set class, 119
digraphs, 139
directed graphs, 139

topological sorting of, 151
discrete knapsack problems (0-1 problems), 219

display() function
displaying elements of linked list, 77
for circularly linked list, 86

displayList() function, 44
doubly linked lists, 81–85

displaying elements in reverse order, 82
LList class as, 83

dynamic programming, xi, 207–217
computing Fibonacci numbers, 208–211

dynamic programming solution, 209
inefficiency of recursive solution, 208
recursive solution, 208
timing comparison of solutions, 209

defined, 207
finding longest common substring, 211–214
knapsack problem, 215

E
edges

connecting nodes in trees, 121
in graphs, 139

representing, 142
element property, Node class, 75
elements (list), 35
empty lists, 35
empty sets, 113
empty() function, checking if queue is empty, 61
end() function, 40
enqueue() function, 59

implementation for Queue class, 61
every() function, 23

F
factorial() function, recursive definition of, 56
Fibonacci numbers, computing, 208–211
filter() function

using with arrays, 26
using with strings, 27

find() function
binary search tree, 131
Dictionary class, 90
finding element in a list, 38
finding nodes in linked lists, 76

findLast() function, doubly linked list, 82
findMax() function, 192
findMin() function, 191
findPrevious() function, linked lists, 78
first-in, first-out (FIFO) data structures, 70

Index | 223



floor() function, Math class, 161
for each loop, using with subset() function, 118
for loop, 7

accessing array elements, 15
counting occurrences in a binary search, 201
initializing two-dimensional array, 213
iterating through a list, 42
nested for loops, 28
timing execution of, 169

forEach() function
iterating over arrays, 23
map() function versus, 25

fractional knapsack problems, 219
front() function, 40

Queue class, 61
function scope, 8
functions, 7

constructor, 10
parameters, 8
recursive, 10

G
general cycles, 140
get() function, HashTable class, 106

defining to work with separate chaining, 109
rewriting for linear probling, 110

getElement() function
displaying current list element, 36
using in list traversal, 40

getMax() function, binary search tree, 130
getMin() function, binary search tree, 130
getRandomInt() function, 103
getTime() function, Date object, 168
global scope, 8
global variables, 8
graph algorithms, xi
graphs, xi, 139–157

definitions of terms, 139
finding the shortest path, 149
Graph class, 141–145

building a graph, 143
representing edges, 142
representing vertices, 141

real-world systems modeled by, 141
searching, 145–149

breadth-first search, 148
depth-first search, 145

topological sorting, 151–157
algorithm for, 152

program testing the implementation, 156
greedy algorithms, xi, 217–220

coin-changing problem, 217
defined, 207
knapsack problem, solution to, 218

H
hash functions, 97
hash tables, 97

storing and retrieving data, 106
hashing, 97–111

handling collisions, 107–111
linear probing, 109
separate chaining, 107

HashTable class, 98
better hash function, 101
choosing a hash function, 98
complete definition, 99
hashing integer keys, 103
simpleHash() function, 100
storing and retrieving data in hash table,

106
testing betterHash() function, 102

names and telephone numbers, 98
head node, 74
Horner’s Method, using for better hash func‐

tion, 101

I
if statements, 4
if-else if statement, 5
if-else statement, 4
indexOf() function, 17

checking array for requested data, 114
indices, array, 13
Infinity, 178
inorder traversal, 126
inOrder() traversal function, 127
insert() function

BST (binary search tree) class, 125
for doubly linked list, 81
inserting list element, 39
inserting nodes into linked lists, 76
lists, 35

insertion sort, 167
instanceof operator, 44
integer keys, hashing, 103
interactive mode (JavaScript shell), 1
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intersect() function, Set class, 117
intersection, 114
iterator functions, 23

non-array-generating, 23
returning new arrays, 25
some(), 24

iterators, iterating through a list, 41

J
jagged arrays, 30
JavaScript programming environment, 1
JavaScript programming practices, 2
JavaScript shell, x

download site, 1
interactive mode, 1

join() function, 18

K
key value, 123
key-value pairs, 89
keys() function, 90, 94
knapsack problem

dynamic programming solution, 215
greedy algorithm solution, 218
recursive solution, 214

L
last-in, first-out (LIFO) data structures, 49
lastIndexOf() function, 18
leaf nodes, 122

removing from binary search tree, 132
left nodes, 123
length property

arrays, 14, 15
lists, 35
queues, 60
stacks, 50
string keys in dictionaries and, 91
using push() instead of to extend arrays, 19

length() function
returning number of elements in list, 38
Stack class, 51

levels (in trees), 123
linear probing, 109
linear search, 187

(see also sequential search)

linked lists, xi, 73–87, 73
circularly linked, 85
defined, 74
doubly linked, 81–85

displaying elements in reverse order, 82
LList class as doubly linked list, 83

head node, 74
inserting and removing nodes, 74
object-based design, 75–81

complete code for Node class and LList
class, 80

inserting nodes, 76
linked list class (LList), 76
LList class and test program, 77
Node class, 75
removing nodes, 78

other functions for, 86
using instead of arrays, 73

links, 74
List class, 36–42

append() function, 37
clear() function, 39
contains() function, 40
finding element in a list, 38
insert() function, 39
length() function, 38
remove() function, 38

find() helper function, 37
traversing, 40

lists, 35–47
abstract data type (ADT), 35
building a list-based application, 42–47

managing a video rental kiosk, 43–46
reading text files, 42

iterating through, 41
listSize property, 35

decrementing after removing list element, 38
incrementing after appending list element,

37
local scope, 9
loops, 6

in graphs, 140

M
map() function, 25
Math class

floor() function, 161
random() function, 161

math functions, examples of use, 3
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math library, 3
maximum value, searching for, 130, 192
members (of sets), 113
Mergesort algorithm, 176–181

bottom-up, 177
JavaScript implementation of bottom-up

Mergesort, 178
adding mergeSort() and mergeArrays()

to CArray class, 179
mergeSort() function, 179

top-down, 176
minimum value, searching for, 130, 190
modular hashing, 99
moveTo() function, 40
Mozilla Developer Network website, 19
multidimensional arrays, 27, 108

N
next property, Node class, 75
next() function, 40
Nightly Build web page, 1
Node class, 75, 80

defining for binary search tree, 124
field to track occurrences, 134

previous property, 81
nodes, 74

determining correct insertion point in bina‐
ry search tree, 125

in trees, 121
left and right nodes, 123
types of nodes, 122

inserting and removing in linked lists, 74
inserting into a linked list, 76
removing from binary search tree, 132

leaf node, 132
node with two children, 133

removing from linked list, 78
Norvig, Peter, 202
numbers, converting from one base to another,

53

O
Object class

keys() function, 94
operation as dictionary, 89

object-oriented programming, 10
objects, 10

arrays in, 31

arrays of, 30
defining, complete example, 11

open-addressing hashing, 109

P
palindromes, using a stack to check for, 54
parameters, 8
parent node, 122
Pareto distributions, 194
paths

in graphs, 140
determining, 150

in trees, 122
peek() function, 50

implementation for Stack class, 51
performance

comparing for basic sorting algorithms, 168
comparing shellsort() functions, 175

pivot, 181
pop() function, 20

implementation for Stack class, 51
taking elements off stacks, 49

postorder traversal, 126
postOrder() traversal function, 128
precedence-constrained scheduling, 152
precision for numbers (fixed), 4
preorder traversal, 126
preOrder() traversal function, 128
prev() function, 40
print() function

displaying array’s contents, 17
displaying string representations of arrays,

18
priority queues, 70–72
programming environment, x
properties, tying to object instance, 11
push() function, 19

adding elements to stacks, 49
implementing for Stack class, 51
pushing data onto an array, 115
using with add(), 32
using with arrays, 60

put() function, HashTable class, 99, 102
defining to work with separate chaining, 108
modifying to accept key and data, 106
rewriting for linear probling, 110
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Q
Queue class, 60

complete definition and test of implementa‐
tion, 62

defining constructor function for, 61
dequeue() function, 61
empty() function, 61
enqueue() function, 61
front() and back() functions, 61
toString() function, 61
using, assigning partners for square dance,

63–67
queues, xi, 59–72

array-based Queue class implementation, 60
inserting and removing elements, 60
priority, 70–72
sorting data with, 67–70

implementing radix sort, 68
using Queue class implementation, 63–67

Quicksort algorithm, 181–186
algorithm and pseudocode for, 182
choosing pivot and sorting of data around it,

184
sorting data with qSort() function, 183

R
radix sort, 67

implementing using queues, 68–70
random numbers, 103
random() function, Math class, 161
read() function, 43, 202
real-world systems modeled by graphs, 141
recursion, 10

demonstrating with Stack class, 56
reduce() function, 24
reduceRight() function, 25
remove() function

Dictionary class, 90
for doubly linked list, 82
List class, 37
removing nodes from binary search tree, 133
removing nodes from linked list, 78
Set class, 115

removeNode() function, binary search tree, 133
repetition constructs, 6
right nodes, 123
root node, 122

S
scope, 8
searches, binary search tree, 129–132

for minimim and maximum value, 130
for specific value, 131

searching, xi
searching algorithms, 187–205

binary search, 196–204
sequential search, 187–196

searching graphs, 145–149
breadth-first search, 148

leading to shortest paths, 149
depth-first search, 145

Sedgewick, Robert, 174
selection sort, 165

selectionSort() function, 166
self-organized data, 193
separate chaining, 107
sequential search, 187–196

executing seqSearch() function, 188
modifying seqSearch() to return position

found, 189
performing on array with seqSearch() funci‐

ton, 187
program testing modified seqSearch(), 189
searching a text file, 203
searching for minimum and maximum val‐

ues, 190
using self-organizing data, 193

sets, xi, 113–120
definitions of terms, 113
operations performed on, 114
Set class implementation, 114

add() function, 114
difference() function, 119
intersect() function, 117
more set operations, 116
remove() function, 115
subset() function, 118
union() function, 116

shallow copies, 16
Shell, Donald, 171
Shellsort algorithm, 171–176

comparing array before and after sorting,
173

comparing efficiency of shellsort() functions,
175

gap sequence, 171, 174
adding to CArray class definition, 172
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running shellsort() on small data set, 173
shellsort() function, adding to CArray class,

172
using larger gap sequence and larger data

set, 173
shift() function, 21

removing element from front of an array, 60
shortest-path algorithm, 149
show() function, 86

Node class in binary search tree, 124
showAll() function, Dictionary class, 90, 94
showDistro() function, HashTable class, 99
showGraph() function, Graph class, 143, 153
simple cycles, 140
simpleHash() function, 99, 100

adding print() statement to, 100
collisions, 101
hashing integer keys, 104

size() function, using with sets, 118
some() function, 24
sort() function

Dictionary class, 94
sorting strings, 22
using to order numbers, 22

sorting, xi
adding to Dictionary class, 93
topological, 151–157
using queues, 67–70

sorting algorithms, 159–186
advanced, 170–186

Mergesort algorithm, 176–181
Quicksort algorithm, 181–186
Shellsort algorithm, 171–176

array test bed, 159
basic, 161–170

bubble sort, 162
insertion sort, 167
selection sort, 165
timing comparisons of, 168

SpiderMonkey JavaScript engine, x
download site, 1

splice() function, 18, 37
adding or removing array elements, 21
defining for priority queue, 70
other uses for, 19

split() function
breaking text file into words, 203
creating arrays from strings, 15

Stack class, 50
complete implementation, 51
dataStore array, 51
peek() function, 51
pop() function, 51
push() function, 51, 51
testing the implementation, 52
using, 53

checking for palindromes, 54
demonstrating recursion, 56
multiple base conversions, 53

stacks, xi, 49–57
implementation of, Stack class, 50–53
operations, 49
using the Stack class, 53–57

strings
concatenating, using reduce() function, 25
creating arrays from, 15
determining if they are palindromes, 54
finding longest common substring, 211–214
hash function for string keys, 99
representing arrays as, 18
sorting, 22
using filter() function with, 27
using map() function with, 25

strongly connected vertices, 140
subprocedures, 7
subset() function, Set class, 118
subsets, 113
subtrees, 123
swap() function

using in sequential search, 194
using in Shellsort, 174

switch statement, 5

T
text files, reading, 42
textual data, searching, 202
this keyword, 11
timing comparisons of basic sorting algorithms,

168
toFixed() function, 29
top element of a stack, 49
topological sorting, 151–157

algorithm for, implementing, 152–156
program testing implementation of, 156

toString() function, 18
adding to bubbleSort() function call, 164
defining for priority queue, 71
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displaying elements in a queue, 61
displaying list elements, 36, 38

traversing a list, 40
traversing binary search trees, 126
tree traversal, 122

binary search tree, 126
trees

binary trees, 122
(see also binary trees)

defined, 121
levels in, 123
parts of, 122

trim() function, 43
two-dimensional arrays, 27–30

creating, 27
processing elements of, 28

U
undefined, array elements, 27
union, 114
union() function, Set class, 116
universe, 113

unordered graphs, 140
unshift() function, 20
update() function, BST class, 135

V
value-returning functions, defining, 7
var keyword

in variable declarations, 3
leaving off when defining variables, 9

variables
declaring and initializing, 3
global, 9
scope, 8

vertices, 139
strongly connected, 140
Vertex class representing, 141

void functions, 7

W
web page for this book, xiii
while loop, 6
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