
Deep Learning
Pipeline

Building a Deep Learning Model
with TensorFlow
—
Hisham El-Amir
Mahmoud Hamdy

www.allitebooks.com

http://www.allitebooks.org

Deep Learning Pipeline
Building a Deep Learning

Model with TensorFlow

Hisham El-Amir
Mahmoud Hamdy

www.allitebooks.com

http://www.allitebooks.org

Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow

ISBN-13 (pbk): 978-1-4842-5348-9		 ISBN-13 (electronic): 978-1-4842-5349-6
https://doi.org/10.1007/978-1-4842-5349-6

Copyright © 2020 by Hisham El-Amir and Mahmoud Hamdy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5348-9.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Hisham El-Amir
Jizah, Egypt

Mahmoud Hamdy
Jizah, Egypt

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5349-6
http://www.allitebooks.org

iii

Part I: �Introduction���1

Chapter 1: A Gentle Introduction���3

Information Theory, Probability Theory, and Decision Theory��������������������������������4

Information Theory���4

Probability Theory���6

Decision Theory��8

Introduction to Machine Learning��10

Predictive Analytics and Its Connection with Machine learning���������������������11

Machine Learning Approaches���12

From Machine Learning to Deep Learning���19

Lets’ See What Some Heroes of Machine Learning Say About the Field�������������19

Connections Between Machine Learning and Deep Learning������������������������20

Difference Between ML and DL��21

Why Should We Learn About Deep Learning (Advantages of
Deep learning)?��23

Disadvantages of Deep Learning (Cost of Greatness)������������������������������������24

Introduction to Deep Learning���25

Machine Learning Mathematical Notations���28

Summary���36

Table of Contents

About the Authors��xv

About the Technical Reviewer���xvii

Introduction��xix

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: Setting Up Your Environment���37

Background��37

Python 2 vs. Python 3���38

Installing Python��38

Python Packages��40

IPython��41

Jupyter���43

Packages Used in the Book��50

NumPy��50

SciPy���50

Pandas��51

Matplotlib���51

NLTK���52

Scikit-learn���52

Gensim���53

TensorFlow���53

Keras��56

Summary���56

Chapter 3: A Tour Through the Deep Learning Pipeline�����������������������57

Deep Learning Approaches��58

What Is Deep Learning���58

Biological Deep Learning��58

What Are Neural Networks Architectures?���62

Deep Learning Pipeline��68

Define and Prepare Problem��69

Summarize and Understand Data���70

Process and Prepare Data��71

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Evaluate Algorithms��72

Improve Results��73

Fast Preview of the TensorFlow Pipeline���74

Tensors—the Main Data Structure���75

First Session���76

Data Flow Graphs���78

Tensor Properties���81

Summary���83

Chapter 4: Build Your First Toy TensorFlow app����������������������������������85

Basic Development of TensorFlow���85

Hello World with TensorFlow��86

Simple Iterations��87

Prepare the Input Data���88

Doing the Gradients��91

Linear Regression��93

Why Linear Regression?���93

What Is Linear Regression?��93

Dataset Description��94

Full Source Code��99

XOR Implementation Using TensorFlow���101

Full Source Code��107

Summary���109

Part II: �Data���111

Chapter 5: Defining Data��113

Defining Data���114

Why Should You Read This Chapter?���114

Structured, Semistructured, and Unstructured Data��115

Table of ContentsTable of Contents

vi

Tidy Data��117

Divide and Conquer��118

Tabular Data���119

Quantitative​ vs. ​Qualitative​ Data��119

Example—the Titanic���119

Divide and Conquer��121

Making a Checkpoint��122

The Four Levels of Data��122

The Nominal Level��123

The Ordinal Level��125

Quick Recap and Check��129

The Interval Level���130

Examples of Interval Level Data���130

What Data Is Like at the Interval Level���131

Mathematical Operations Allowed for Interval���131

The Ratio Level���134

Summarizing All Levels Table 5-1���136

Text Data��137

What Is Text Processing and What Is the Level of Importance of
Text Processing?��137

IMDB—Example���138

Images Data���139

Summary���144

Chapter 6: Data Wrangling and Preprocessing����������������������������������147

The Data Fields Pipelines Revisited���148

Giving You a Reason���148

Where Is Data Cleaning in the Process?���149

Table of ContentsTable of Contents

vii

Data Loading and Preprocessing���150

Fast and Easy Data Loading���150

Missing Data��158

Empties���159

Is It Ever Useful to Fill Missing Data Using a Zero Instead of an
Empty or Null?��159

Managing Missing Features���160

Dealing with Big Datasets��161

Accessing Other Data Formats��163

Data Preprocessing��164

Data Augmentation��169

Image Crop���172

Crop and Resize��172

Crop to Bounding Box���174

Flipping���175

Rotate Image��177

Translation��178

Transform���179

Adding Salt and Pepper Noise��180

Convert RGB to Grayscale���181

Change Brightness���181

Adjust Contrast���182

Adjust Hue��183

Adjust Saturation��184

Categorical and Text data���185

Data Encoding��186

Performing One-Hot Encoding on Nominal Features������������������������������������188

Can You Spot the Problem?��189

Table of ContentsTable of Contents

viii

A Special Type of Data: Text��190

So Far, Everything Has Been Pretty Good, Hasn’t It?������������������������������������195

Tokenization, Stemming, and Stop Words��201

Summary���206

Chapter 7: Data Resampling��207

Creating Training and Test Sets��208

Cross-Validation���209

Validation Set Technique��210

Leave-One-Out Cross-Validation (LOOCV)��213

K-Fold Cross-Validation��216

Bootstrap���217

Bootstrap in Statistics��218

Tips to Use Bootstrap (Resampling with Replacement)��������������������������������220

Generators���223

What Are Keras Generators?��223

Data Generator���225

Callback��226

Summary���231

Chapter 8: Feature Selection and Feature Engineering���������������������233

Dataset Used in This Chapter���234

Dimensionality Reduction—Questions to Answer���236

What Is Dimensionality Reduction?��237

When Should I Use Dimensionality Reduction?��239

Unsupervised Dimensionality Reduction via Principal Component
Analysis (PCA)��240

Total and Explained Variance��243

Feature Selection and Filtering��243

Table of ContentsTable of Contents

ix

Principal Component Analysis��247

Nonnegative Matrix Factorization���256

Sparse PCA��257

Kernel PCA���259

Atom Extraction and Dictionary Learning��261

Latent Dirichlet Allocation (LDA)��262

Latent Dirichlet Allocation (LDA in NLP)��263

Code Example Using gensim��267

LDA vs. PCA��269

ZCA Whitening��272

Summary���276

Part III: �TensorFlow���277

Chapter 9: Deep Learning Fundamentals���279

Perceptron���280

Single Perceptron���290

Multilayer Perceptron���291

Recap���292

Different Neural Network Layers��293

Input Layer��294

Hidden Layer(s)���294

Output Layer���295

Shallow vs. Deep Neural Networks��295

Activation Functions���297

Types of Activation Functions���299

Recap���305

Gradient Descent���305

Recap���307

Table of ContentsTable of Contents

x

Batch vs. Stochastic vs. Mini-Batch Gradient Descent��������������������������������������308

Batch Gradient Descent��308

Stochastic Gradient Descent��309

Mini-batch Gradient Descent��310

Recap���311

Loss function and Backpropagation���312

Loss Function���316

Backpropagation��319

Exploding Gradients���330

Re-Design the Network Model���332

Use Long Short-Term Memory Networks���332

Use Gradient Clipping���332

Use Weight Regularization��333

Vanishing Gradients���333

Vanishing Gradients Problem���334

TensorFlow Basics���336

Placeholder vs. Variable vs. Constant���337

Gradient-Descent Optimization Methods from a Deep-Learning
Perspective���338

Learning Rate in the Mini-batch Approach to Stochastic
Gradient Descent��343

Summary���343

Chapter 10: Improving Deep Neural Networks����������������������������������345

Optimizers in TensorFlow���345

The Notation to Use��346

Momentum���347

Nesterov Accelerated Gradient���348

Adagrad��349

Table of ContentsTable of Contents

xi

Adadelta���350

RMSprop���351

Adam��352

Nadam (Adam + NAG)��353

Choosing the Learning Rate���354

Dropout Layers and Regularization��357

Normalization Techniques��359

Batch Normalization���360

Weight Normalization���361

Layer Normalization���362

Instance Normalization���363

Group Normalization���364

Summary���365

Chapter 11: Convolutional Neural Network���������������������������������������367

What is a Convolutional Neural Network��368

Convolution Operation��369

One-Dimensional Convolution��369

Two-Dimensional Convolution��371

Padding and Stride���372

Common Image-Processing Filters��375

Mean and Median Filters��375

Gaussian Filter��382

Sobel Edge-Detection Filter��385

Identity Transform���390

Convolutional Neural Networks��390

Table of ContentsTable of Contents

xii

Layers of Convolutional Neural Networks��391

Input Layer��393

Convolutional layer���393

Pooling Layer��396

Backpropagation Through the Convolutional and Pooling Layers����������������������397

Weight Sharing Through Convolution and Its Advantages���������������������������������399

Translation Equivariance and Invariance���400

Case Study—Digit Recognition on the CIFAR-10 Dataset����������������������������������403

Summary���413

Chapter 12: Sequential Models��415

Recurrent Neural Networks���415

Language Modeling��420

Backpropagation Through Time���424

Vanishing and Exploding Gradient Problems in RNN���429

The Solution to Vanishing and Exploding Gradients Problems in RNNs�������������432

Long Short-Term Memory��433

Case Study—Digit Identification on the MNIST Dataset������������������������������������438

Gated Recurrent Unit��438

Bidirectional RNN (Bi-RNN)��445

Summary���446

Part IV: �Applying What You’ve Learned�������������������������������������447

Chapter 13: Selected Topics in Computer Vision�������������������������������449

Different Architectures in Convolutional Neural Networks���������������������������������450

LeNet��451

AlexNet���453

VGG���456

ResNet��458

Table of ContentsTable of Contents

xiii

Transfer Learning���460

What Is a Pretrained Model, and Why Use It?���461

How to Use a Pretrained Model?��462

Ways to Fine-Tune the Model���463

Pretrained VGG19��464

Summary���469

Chapter 14: Selected Topics in Natural Language Processing����������471

Vector Space Model���472

Vector Representation of Words���475

Word2Vec���476

Continuous Bag of Words���476

Skip-Gram Model for Word Embeddings��486

GloVe��492

Summary���494

Chapter 15: Applications���495

Case Study—Tabular Dataset��495

Understanding the Dataset���495

Preprocessing Dataset���505

Building the Model���510

Case Study—IMDB Movie Review Data with Word2Vec������������������������������������515

Case Study—Image Segmentation��525

Summary���535

Index��537

Table of ContentsTable of Contents

xv

About the Authors

Hisham El-Amir is a data scientist with expertise in machine learning,

deep learning, and statistics. He currently lives and works in Cairo, Egypt.

In his work projects, he faces challenges ranging from natural language

processing (NLP), behavioral analysis, and machine learning to distributed

processing. He is very passionate about his job and always tries to stay

updated about the latest developments in data science technologies,

attending meetups, conferences, and other events. 

Mahmoud Hamdy is a machine learning engineer who works and lives

in Egypt. His primary area of study is the overlap between knowledge,

logic, language, and learning. He works helping to train machine learning

and deep learning models to distil large amounts of unstructured,

semistructured, and structured data into new knowledge about the world

by using methods ranging from deep learning to statistical relational

learning. He applies strong theoretical and practical skills in several areas

of machine learning, to find novel and effective solutions for interesting

and challenging problems in such interconnections.

xvii

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated in 2018 from BITS Pilani, where

he studied mechanical engineering. Since then, he has been working

with BigVision LLC on deep learning and computer vision, and is also

involved in creating official OpenCV courses. He has a keen interest

in programming and AI, and has applied that interest in mechanical

engineering projects. He has also written multiple blogs on OpenCV and

deep learning on LearnOpenCV, a leading blog on computer vision. He has

also co-authored Machine Learning for OpenCV4 (2nd edition). When he

is not writing blogs or working on projects, he likes to go on long walks or

play his acoustic guitar.

xix

Artificial intelligence (AI) is the field of embeddings human thinking into

computers: in other words, creating an artificial brain that mimics the

functions of the biological brain. Whatever the human can do intelligently

is now required to be moved into machines. First-generation AI focuses

on problems that can be formally described by humans. Using AI, steps

for doing something intelligent are described in a form of instructions

that machines follow. Machines follow humans without changes. These

features are characteristic of the first era of AI.

Humans can fully describe only simple problems such as chess,

and fail to describe more complicated problems. In chess, the problem

can be simply explained by representing the board as a matrix of size

8×8, describing each piece and how it moves and describing the goals.

Machines will be restricted to those tasks formally described by humans.

By programming such instructions, machines can play chess intelligently.

Machine intelligence is now artificial. The machine itself is not intelligent,

but humans have transferred their intelligence to the machine in the

form of several static lines of code. “Static” means that the behavior is the

same in all cases. The machine, in this case, is tied to the human and can’t

work on its own. This is like a master–slave relationship. The human is the

master and the machines are the slaves, which just follow the human’s

orders and no more.

To make the machine able to recognize objects, we can give it previous

knowledge from experts in a way the machine can understand. Such

knowledge-based systems form the second era of AI. One of the challenges

in such systems is how to handle uncertainty and unknowns. Humans

Introduction

xx

can recognize objects even in different and complex environments, and

are able to handle uncertainty and unknowns intelligently, but machines

can’t.

�The Goal
Deep learning is a branch of machine learning where you model the world

in terms of a hierarchy of concepts. This pattern of learning is similar to

the way a human brain learns, and it allows computers to model complex

concepts that often go unnoticed in other traditional methods of modeling.

Hence, in the modern computing paradigm, deep learning plays a vital

role in modeling complex real-world problems, especially by leveraging

the massive amount of unstructured data available today.

Because of the complexities involved in a deep learning model,

many times it is treated as a black box by people using it. However, to

derive the maximum benefit from this branch of machine learning,

one needs to uncover the hidden mystery by looking at the science and

mathematics associated with it. In this book, great care has been taken

to explain the concepts and techniques associated with deep learning

from a mathematical as well as a scientific viewpoint. Also, the first

chapter is totally dedicated to building the mathematical base required

to comprehend deep learning concepts with ease. TensorFlow has been

chosen as the deep learning package because of its flexibility for research

purposes and its ease of use. Another reason for choosing TensorFlow is its

capability to load models with ease in a live production environment using

its serving capabilities.

In summary, Deep Learning Pipeline should provide practical expertise

so you can learn deep learning pipeline from scratch in such a way that

you can deploy meaningful deep learning solutions. This book will

allow you to get up to speed quickly using TensorFlow and to optimize

different deep learning architectures. All the practical aspects of deep

IntroductionIntroduction

xxi

learning that are relevant in any industry are emphasized in this book.

You will be able to use the prototypes demonstrated to build new deep

learning applications. The code presented in the book is available in the

form of iPython notebooks and scripts that allow you to try out examples

and extend them in interesting ways. You will be equipped with the

mathematical foundation and scientific knowledge to pursue research in

this field and give back to the community.

All code in the book is implemented using Python. Because native

Python is complex for handling images, multiple libraries are used to

help to produce an efficient implementation for applications across the

chapters.

�Who This Book Is For
This book is for data scientists and machine learning professionals looking

at deep learning solutions to solve complex business problems, software

developers working on deep learning solutions through TensorFlow, and

graduate students and open source enthusiasts with a constant desire to

learn.

�Prerequisites
Python and all the deep learning tools mentioned in the book, from

IPython to TensorFlow to model that you will use, are free of charge

and can be freely downloaded from the Internet. To run the code that

accompanies the book, you need a computer that uses a Windows, Linux,

or Mac OS operating system. The book will introduce you step-by-step to

the process of installing the Python interpreter and all the tools and data

that you need to run the examples.

IntroductionIntroduction

xxii

�How this Book Is Organized
�Parts

•	 Part I: Introduction—In this part, we prepare the

readers by giving them all the prerequisites needed

to start the journey with machine learning to deep

learning.

•	 Part II: Data—As the first step of the pipeline, readers

need to know everything about data, from data

collection and understanding information from data to

data processing and preparation.

•	 Part III: TensorFlow—In this part, we start the

interesting stuff. First, we illustrate the fundamental

and important concepts of deep learning; then we deep

dive into the core of neural networks and the types of

neural networks, describing each type; and show the

important concepts of the equation of deep learning.

Also, we can’t forget to show a real-life example of each

type.

•	 Part IV: Applying What You’ve Learned—This part

is designed to ensure readers practice by using

TensorFlow and build the pipeline.

�Chapters
•	 Chapter 1: A gentle introduction—This chapter provides

the big picture that shows readers what is the field that

the book describes; introduction to this field; and the

mathematical equations and notations that describe

how machine learning works.

IntroductionIntroduction

xxiii

•	 Chapter 2: Setting Up Your Environment—This chapter

introduces the programming tools and packages

you need in this book and some theories to help in

understanding; it also includes a bit of introduction to

the Python programming language.

•	 Chapter 3: A Nice Tour Through the Deep Learning

Pipeline—In chapter 3 we introduce the pipeline that

the whole book is for; the deep learning approaches

and subfields; the steps of the deep learning pipeline;

and the extras added to TensorFlow that make it unique

compared with other deep learning frameworks.

•	 Chapter 4: Build Your First Toy TensorFlow App—To

make sure that we will not drop readers in the middle

of the book, we show them a small example using

TensorFlow that will go fast at each step of the deep

learning pipeline; and make sure that the audience

knows each step of the pipeline, how it is important,

and how to use it.

•	 Chapter 5: Defining Data—This chapter, as its name

implies, is about defining data. Readers should know

what type of data they are dealing with, and that’s very

important so they can choose the right approach for

preparing the data.

•	 Chapter 6: Data Wrangling and Preprocessing—After

understanding the data, the readers now should choose

the approaches and methodologies for preparing it, so

this chapter helps ensure that the readers will choose

the right approaches in this step.

IntroductionIntroduction

xxiv

•	 Chapter 7: Data Resampling—After cleaning and

preparing the dataset, now the reader should know

how to sample this dataset in the right way. Choosing

the wrong samples from your data may influence the

result of your models, so in this chapter we illustrate

all techniques and approaches needed to sample your

dataset in the right way.

•	 Chapter 8: Feature Selection and Feature Engineering—

In this chapter we describe a very important topic

in data step of the pipeline: feature selection and

engineering. Readers should know how to select and

choose the important input feature that contributes

most to the output feature in which they are interested.

Feature engineering is the process of using domain

knowledge of the data to create features that make

machine learning algorithms work. Feature selection

and engineering are fundamental to the application of

machine and deep learning, and readers should know

when and how to use them.

•	 Chapter 9: Deep Learning Fundamentals—In this

chapter we describe a very important topic in deep

learning fundamentals, the basic functions that deep

learning is built on. Then we try to build layers from

these functions and combine these layers together

to get a more complex model that will help us solve

more complex problems. All that will be described by

TensorFlow examples.

•	 Chapter 10: Improving Deep Neural Networks—In this

chapter we describe an important topic: after building

the deep learning models, the improvement starts. This

chapter concerns optimization, tuning and choosing

IntroductionIntroduction

xxv

hyperparameter techniques, and weight normalization

and how that will make the learning process easier

and faster. After that, the reader should know how to

evaluate, optimize, and tune the model parameters to

reach the optimal solution and a satisfying accuracy.

•	 Chapter 11: Convolutional Neural Network—One of the

important classes of deep learning is the convolutional

neural network. In this chapter we illustrate everything

about CNN from the one-dimensional mask to the

advanced stuff like weight sharing and the difference

between equivariance and invariance. We illustrate a

case study using the famous dataset CIFAR-10.

•	 Chapter 12: Sequential Models—Another class of

deep learning is sequential models. In this chapter we

describe the problem of sequential data and the rise

of recurrent neural networks, the problem and also

the evolution of the GRU and LSTM, and of course we

include a case study.

•	 Chapter 13: Selected Topics in Computer Vision—After

finishing CNN in Part III, it’s good to add some extra

knowledge that makes it easier for readers when they work,

like using prebuilt architectures and transfer learning.

•	 Chapter 14: Selected Topics in Natural Language

Processing—This chapter fills the gaps that readers need

in working with text, giving readers all the advanced

approaches and techniques of natural language processing.

•	 Chapter 15: Applications—Here we show some case

studies to make sure that readers get the full knowledge

and understanding of how to build a pipeline, with

real-life examples.

IntroductionIntroduction

PART I

Introduction

3© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_1

CHAPTER 1

A Gentle Introduction
If you have ever tried to read a deep learning or even machine learning

book, you will find that these books define machine learning (ML) as the

science that teaches machines how to carry out tasks by themselves. That’s

a simple idea if you think of it this way, but the complexity is in the details

of this mysterious science; it’s within the black art of how these machines

can act like humans.

Because you are reading this book now, you are probably one of the

following:

	 1.	 A beginner to deep learning who wants to learn the

art of deep learning in easy and straight steps

	 2.	 A developer who wants to choose a part of

deep learning to work on and wants to gain the

knowledge to compare between approaches to deep

learning and choose the best option for him or her

	 3.	 An advanced engineer who wants to enhance their

skills by learning the best practices of deep learning

and how to build effective pipelines in a deep

learning approach

4

Upon starting the book, we have to make sure that you know where

machine learning and deep learning come from and that's by describing

the three theories: information, probability, and decision theory. After

that, we will illustrate what is machine learning and what is deep learning,

and also the evolution from machine learning to deep learning.

�Information Theory, Probability Theory,
and Decision Theory
The first question that should spark in your mind is where does deep

learning come from?

If we wanted to write a good answer for this question, we could write

another book titled The Rise of Deep Learning. Instead, we will show you

the combination that made deep learning the state-of-art approach that

many want to learn and understand how it works.

Deep learning—or we can generalize to machine learning—is built

from three theories:

	 1.	 Information theory

	 2.	 Probability theory

	 3.	 Decision theory

Each of these theories contributed to the rise of the deep learning

approach and made it the rich science it is today.

�Information Theory
In this section, we start by answering a very good question: what are the

components of the deep learning approach?

The first thing you do in any project is to get and prepare your dataset.

And here, we start these theories by introducing some additional concepts

from the field of information theory, which will also prove useful in our

Chapter 1 A Gentle Introduction

5

development of machine and deep learning approaches. We shall focus only

on the key concepts, which barely scratch the surface of these theories, and

we’ll refer the reader elsewhere for more detailed discussions.

We begin by considering input observations and asking a question:

how much information does the model receive when it’s trying to learn the

pattern of the data?

The answer depends on many things. For example you should know

that information the model gains from a dataset is related to many

variables, so don’t be surprised if the model learned a lot more than you

thought, or less. That’s why this amount of information can be viewed as

the “degree of surprise” on learning the value of your dataset.

Because you want to make sure that a desired model should make

accurate decisions based on what it learned from a dataset, you have to

ensure that the data that entered your model has the proper information

that the model needs. Also, the information the model gains is a variant

from another dataset, and the type of dataset may also make it hard for some

models to learn the inside patterns, for example, images and text datasets. If

you did not have a proper model for these data, you will never extract these

information and you will never find the pattern or even learn it.

It’s good to make it easier for your model to learn from any dataset by

munging and cleaning the data. This will make it clear for your model to

see information and also distinguish it from any noise that exists in the

data; and that’s what Part II of this book is about.

Part II of this book is about dealing with data, starting by defining the

data and the hidden information and type of data, then how to visualize

and extract the information. After seeing the truth by visualization, then

you now know the road to take and you only need to make this road,

and that can done by cleaning the data. At the end of this part we show

you some advanced techniques to make it easier for the model to learn

by extracting and engineering the features of the data to ensure that the

model can see and learn the pattern.

Chapter 1 A Gentle Introduction

6

�Probability Theory
As deep learning is concerned with learning from data, it has to learn the

pattern behind these data. And as you learn about this field of science,

you will find yourself facing the key concept of uncertainty. While you are

building a deep learning algorithm that should learn from and about a

given dataset, you will find the most famous fact in the deep learning and

machine learning world, which is the following:

There’s a relationship between the certainty of any

learned model on a given dataset and both noise on

measurements and the finite size of the dataset.

Let us re-illustrate it to make it clearer. Given a dataset that you are

working on in some project, you tried to build a deep learning algorithm

that should predict something based on the training dataset that you

have. After the model had trained for a certain time, you tried to test its

understanding of the dataset that it trained on, and you are surprised that

it learned nothing at all.

So you asked yourself why after all the training time did the model fail

to learn? The answer may be one of the following:

•	 The model is too small for the data, and that means that

it cannot capture all the knowledge or the patterns from

the dataset.

•	 The model could not capture the pattern of the dataset

due to the fact that the pattern of the data is hidden

through a huge variation of noise, so the model failed

to understand all that.

•	 The model could not capture the pattern due to the

small sample of your dataset, and that means the

model cannot learn and generalize using a small

number of observations.

Chapter 1 A Gentle Introduction

7

So, after understanding the problems you have to face that make your

model unable to perform accurately, you have another question: how can I

overcome these obstacles and make my model achieve the desired accuracy?

The answer is behind the art of statistics, as before the invention of

neural networks, statisticians used to make prediction based on a dataset.

Statisticians used what are called distributions to simulate the trend of

the dataset and extract properties like the skew of the data and parameters

such as the measurement of center (mean, median, and mode) and

measurement of spread (variance and standard deviation). All these are

on one-dimensional data, and if the data is in multidimensional space

they use the covariance to see how each pair of variables goes together.

They detect the correlation between each pair to detect the relationship

and the association between the variable pairs. Also, they use what's called

hypothesis testing to infer the result of a hypothesis performed on sample

data from a dataset.

As we use deep learning to predict the future outcome based on a

given observation, we use a huge combination of linear algebra and

statistics as a black box to build and optimize the model.

We can’t say that deep learning consists 100% of statistics. A main

point to address is that deep learning is not just statistics—the same-old

stuff, just with bigger computers and a fancier name. This notion comes

from statistical concepts and terms that are prevalent in machine/deep

learning, such as regression, weights, biases, models, etc. Additionally,

many models approximate what can generally be considered statistical

functions: the softmax output of a classification model consists of logits,

making the process of training an image classifier a logistic regression. Also,

the least square algorithm is a statistical approach to optimize the fitted

line on linear regression.

Though the preceding paragraph is technically correct, reducing deep

learning as a whole to nothing more than a subsidiary of statistics is quite

wrong, and to think that deep learning just consists of statistics is a huge

Chapter 1 A Gentle Introduction

8

mistake. In fact, the comparison doesn’t make much sense. Statistics is the

field of mathematics that deals with the understanding and interpretation

of data.

Deep learning is nothing more than a class of computational

algorithms (hence its emergence from computer science). In many cases,

these algorithms are completely useless in aiding with the understanding

of data and assist only in certain types of uninterpretable predictive

modeling. Let's take a few examples:

•	 In reinforcement learning (we will describe what it is

later), the algorithm may not use a preexisting dataset

at all.

•	 In image processing, referring to images as instances of

a dataset with pixels as features is a bit of a clue to start

with.

In Part III, we deal with everything in the model building step—how

to choose, build, and train your model—providing a step-by-step guide of

model choosing and creation and the best practice techniques used in the

industries for building and training.

�Decision Theory
We have discussed a variety of concepts from information theory

and probability theory that will form the foundations for much of the

subsequent discussion in this book.

In the previous section we talked about the importance of probability

theory and how it is used to infer and train the model, but also we said

that deep learning science does not consist only of statistics. Here we will

show you another component that deep learning uses, and we will turn to

a discussion about decision theory.

Chapter 1 A Gentle Introduction

9

When we combine decision theory with probability theory, it allows

us to make optimal decisions in situations involving uncertainty, such as

those encountered in machine and deep learning.

Let's take an example to prove how decision theory is an important

element and also describe its position in the process of building a deep

learning model.

Suppose that we have a dataset that is labeled, and you want to get

the function that predicts the label, given an input. This problem is called

inference, and it’s what probability theory is about. Let us consider that

the label consists of one of two values (discrete), either true or false; the

statistical term in the model you have built will infer the value of the

label given its input, but you have to ensure that this choice is optimal in

some appropriate sense. This is the decision step, and it is the main key

concept that decision theory will tell us. It’s how to make optimal decisions

given the appropriate probabilities. We shall see that the decision stage is

generally very simple, even trivial.

So to make sure that you have the idea, the model will use the statistics

and will try to guess an output to a new given observation. The model

will output a probability for each class of the label—one probability if the

output is true and another if the output is false. And if we aim to minimize

the chance of assigning the input observation to the wrong output label,

then intuitively we would choose the class having the higher probability

(confidence) value. We now show that this information is correct, and we

also discuss more general criteria for making decisions.

In Part III, we also continue to talk about error measurement, how to

assess the accuracy of your model, and how to evaluate your model with

easy clean step. Also, as there are different types of data, we will show you a

variant type of measurement for each type.

Figure 1-1 describes the difference and the correlation between the

three theories. We can say that each of these theories is a necessary step for

any deep learning pipeline; in other words, each theory participates in the

building of any machine or deep learning model.

Chapter 1 A Gentle Introduction

10

�Introduction to Machine Learning
The term “machine learning” was coined by Arthur Samuel in 1959,

an American pioneer in the field of computer gaming and artificial

intelligence, and stated that “it gives computers the ability to learn without

being explicitly programmed.”

So let’s start to answer a few good questions: what is machine learning?

and what is the difference between traditional programming and machine

learning? It’s easy to get the difference between them as follows:

•	 Traditional programming: In traditional programming,

we have a box that has two inputs (Input, Rule) and the

traditional model generates the output based on the

rule we add. Figure 1-2 shows an example diagram of

traditional programming.

Figure 1-1.  How the three theories are correlated to each other and
how they are a necessary component for deep learning pipelines.
These theories describe the building process of the machine/deep
learning process

Chapter 1 A Gentle Introduction

11

•	 Machine learning: In machine learning, we have a box

that has two inputs (Input, Output) and the machine

learning model trains to get the rule that generates

the output from input. Figure 1-3 shows the machine

learning programming example, and this shows how it

differs from traditional programming.

Figure 1-2.  The machine learning diagram

Figure 1-3.  Traditional programming diagram

�Predictive Analytics and Its Connection
with Machine learning
To simplify this, we will answer the question: what is predictive analytics?

Predictive analytics is a commercial name for machine learning, which

is used to devise complex models and algorithms that lend themselves to

prediction. So machine learning is a tool for analytics! Maybe, but we can

say that it’s a model used by researchers, data scientists, engineers, and

analysts to produce reliable decisions and results and uncover hidden

insights through learning from historical relationships and trends in the

dataset.

Chapter 1 A Gentle Introduction

12

Let's consider an example. Suppose that you decide to check out that

offer for a vacation; you browse through the travel agency web site and

search for a hotel. When you look at a specific hotel, just below the hotel

description there is a section titled “You might also like these hotels.” This

is a common use case of Machine Learning called a “recommendation

engine.” In the previous example, they think that you will like these

specific hotels, based on a lot of information they already know about you

(historical dataset). And here we will leave a question for you: is machine

learning a technique or an approach?

�Machine Learning Approaches
Machine learning has three main approaches:

	 1.	 Supervised learning

	 2.	 Unsupervised learning

	 3.	 Semisupervised learning

So, let us go and discuss each approach in detail.

�Supervised Learning

When an algorithm learns from example data and associated target

responses that can consist of numeric values or string labels, such as

classes or tags, in order to later predict the correct response when posed

with new examples, it comes under the category of supervised learning.

This approach is indeed similar to human learning under the supervision

of someone.

For example, the teacher provides good examples for the student to

memorize, and the student then derives general rules from these specific

examples.

Chapter 1 A Gentle Introduction

13

Let’s see it in a visualization graph (Figure 1-4) which will give you a

clear illustration of supervised learning. The data is labeled (as each real-

world observation/input has a certain output value), as we see in Figure 1-4.

The model in supervised learning should see the data, as shown, to allow

it to classify the data. The model should use the labeled data to get from

Figure 1 on the left to Figure 2 on the right, or in other words, we will classify

each data observation/input to a certain response/output.

In the previous example, when we explore data we see a type of

supervised learning approach called Classification; there are two types

actually, and they solve two problems that describe supervised learning:

•	 Classification

•	 Regression

So a good question that might come to mind is what exactly are

classification and regression?

Figure 1-4.  A dataset with a model that classifies different
observations (x and o) into two regions

We define a classification problem as when the output variable is a

category or a group, such as “black” and “white” or “spam” and “ham

(no-spam)” or even X’s and O’s.

Chapter 1 A Gentle Introduction

14

On the other hand, a regression problem is when the output variable is

a real value, such as “dollars” or “height.”

So if you have to choose between two or more labels, you now face a

classification problem; and if you try to estimate the f loating points of the

output, you now face a regression problem (Figure 1-5).

Figure 1-5.  How a regression model tries to fit the dataset

�Unsupervised Learning

Unsupervised Learning is a class of machine learning techniques to

find the patterns in data. The data given to unsupervised algorithm are

not labeled, which means only the input variables are given with no

corresponding output variables. In unsupervised learning, the algorithms

are left to themselves to discover interesting structures in the data.

In supervised learning, the system tries to learn from the previous

examples that are given. On the other hand, in unsupervised learning, the

system attempts to find the patterns directly from the example given. So if

the dataset is labeled, it comes under a supervised problem; if the dataset

is unlabeled, it is an unsupervised problem.

In unsupervised learning, the algorithms are left to themselves to

discover interesting structures in the data, where you only have input data

and no corresponding output variables. The easy definition for us ML

engineers is that in unsupervised learning we wish to learn the inherent

structure of our data without using explicitly provided labels.

Chapter 1 A Gentle Introduction

15

But why do we call it unsupervised learning? We call it unsupervised

learning because unlike supervised learning, there are no given correct

answers and the machine itself finds the answers.

For example, suppose we have undergraduate students in a physics

course and we need to predict who will pass and who will not, based on

their demographic/educational factors. The model should explore the data

and try to catch the patterns to get the right answer based on features it

has; this is an unsupervised case.

So let’s see it in Figure 1-6, which illustrates unsupervised learning.

The data is labeled as we see in the graph. The model in unsupervised

learning should see the data as shown in the figure, to allow it to cluster

the data.

Figure 1-6.  How an unsupervised learning algorithm clusters data
into groups or zones

In Figure 1-6, we grouped data into zones. This phenomenon is

called Clustering. Actually, we have many problems and problem-

solving techniques, but the two most common problems that describe

unsupervised learning are:

•	 Clustering

•	 Association

Chapter 1 A Gentle Introduction

16

So, what are those types?

An association rule learning problem is where you want to discover

rules that describe large portions of your data, such as “people who buy X

also tend to buy Y.”

A clustering problem is where you want to discover the inherent

groupings in the data, such as grouping customers by purchasing behavior.

�Semisupervised Learning

When you have a problem where you have a large amount of input data

and only some of the data is labeled, this is called a semisupervised

learning problem. These problems sit in between supervised and

unsupervised learning.

Consider an example, a photo archive where only some of the images

are labeled, (e.g., dog, cat, person) and the majority are unlabeled.

How does it work? You can use unsupervised learning techniques to

discover and learn the structure in the input variables, then use supervised

learning techniques to make best-guess predictions for the unlabeled data,

feed that data back into the supervised learning algorithm as training data,

and use the model to make predictions on new unseen data.

�Checkpoint

To not get confused, we will make a checkpoint to summarize the

difference between the machine learning approaches. Table 1-1

summarize the difference between the three approaches, supervised,

unsupervised, and semisupervised learning (see also Figure 1-7).

Chapter 1 A Gentle Introduction

17

�Reinforcement Learning

Reinforcement learning is an area of machine learning. It’s all about taking

suitable action to maximize the reward in this situation. Reward is one of

the main aspects of reinforcement learning.

For example, when you have a dog in your home and try to teach it

how to sit, jump, or turn around, you start by showing the dog how to do it

and then let it try itself. When you say “sit” and the dog sits, you reward it.

Table 1-1.  The Three Approaches of Machine Learning—

Summarized to Make a Checkpoint

Supervised Unsupervised Semisupervised

 All data is labeled and

the algorithms learn

to predict the output

from the input data.

All data is unlabeled and

the algorithms learn to

the inherent structure

from the input data.

Some data is labeled but most

of it is unlabeled, and a mixture

of supervised and unsupervised

techniques can be used.

Figure 1-7.  The tree of classical machine learning

Chapter 1 A Gentle Introduction

18

But if it can’t understand, you don’t reward it. Let’s explain reinforcement.

The dog is an agent; when you say “sit” it’s an environment state and

the agent response is called action. When the dog does what you say,

you will give it a reward, and the dog tries to maximize this reward by

understanding what you say every time. This is reinforcement learning,

but the reinforcement learning is out of the scope because it requires more

knowledge of mathematics.

Let’s gain more understanding with Figure 1-8, which shows the

environment system in reinforcement learning.

Figure 1-8.  A typical system in reinforcement learning

As we see, the agent receives a state from the environment, and the

agent performs an action. Based on this action, the environment will

reward the agent or punish (not reward) it.

The agent tries to maximize these rewards as much as possible

(reinforcement learning).

But there is some commonality between supervised and reinforcement

learning, as summarized in Table 1-2.

Chapter 1 A Gentle Introduction

19

�From Machine Learning to Deep Learning
We now know and understand that machine learning is a subset of

artificial intelligence (AI), and deep learning is a subset of machine

learning. So every machine learning program is under the category of

AI programs but not vice versa. The question then is are the approaches

of machine learning and AI the same? The answer is yes, because every

machine learning problem is an AI problem and deep learning is a subset

of machine learning. Understanding this connection is fundamenatl to our

book. You should keep in mind that deep learning is nothing more than

methods that enhance machine learning algorithms to be more accurate

and make some stages easy, like feature extractions, etc.

The easiest takeaway for understanding the difference between

machine learning and deep learning is to remember that deep learning is a

subset of machine learning.

�Lets’ See What Some Heroes of Machine
Learning Say About the Field
Andrew Ng, the chief scientist of China’s major search engine Baidu and

one of the leaders of the Google Brain Project, shared a great analogy for

deep learning with Wired Magazine: “I think AI is akin to building a rocket

Table 1-2.  The Commonality Between Reinforcement Learning and

Supervised Learning

Reinforcement Learning Supervised Learning

 In reinforcement learning the decision

is dependent, so we give labels to

sequences of dependent decisions.

In supervised learning the decisions are

independent of each other, so labels are

given to each decision.

Chapter 1 A Gentle Introduction

20

ship. You need a huge engine and a lot of fuel,” he told Wired journalist

Caleb Garling. “If you have a large engine and a tiny amount of fuel, you

won’t make it to orbit. If you have a tiny engine and a ton of fuel, you can’t

even lift off. To build a rocket you need a huge engine and a lot of fuel.”

The analogy to deep learning is that the rocket engine is the deep

learning models and the fuel is the huge amounts of data we can feed to

these algorithms.

Nvidia: Machine learning at its most basic is the practice of using

algorithms to parse data, learn from it, and then make a determination or

prediction about something in the world.

Stanford: Machine learning is the science of getting computers to act

without being explicitly programmed.

McKinsey & Co: Machine learning is based on algorithms that can learn

from data without relying on rules-based programming.

The University of Washington: Machine learning algorithms can figure

out how to perform important tasks by generalizing from examples.

Carnegie Mellon University: “The field of Machine Learning seeks

to answer the question ‘How can we build computer systems that

automatically improve with experience, and what are the fundamental laws

that govern all learning processes?’ .”

�Connections Between Machine Learning
and Deep Learning
Machine learning and deep learning use some statistical learning methods

from inside, but each method has its own approach to data extraction. Take

machine learning for example: when extracting data, each instance in a

dataset is described by a set of features or attributes. On the other hand, deep

Learning extracts features and attributes from raw data by using a neural

network with many hidden layers. We will see later what a neural network is

and what its components are, and we’ll answer these questions in detail.

Chapter 1 A Gentle Introduction

21

�Difference Between ML and DL
For the sake of simplicity and as a best practice, we are going to make the

comparison between machine learning (ML) and deep learning (DL) using

an example. We will start with a cats and dogs example as follows.

First, we will explain and talk about this dataset. The cat and dog

dataset is set of images that in which each image (an observation) is either

labeled dog if the image contains a dog, or cat if the image contains a cat.

Second, we will show the difference between the machine learning

approach and the deep learning approach by applying each approach on

the dataset and concluding the result of each one.

�In Machine Learning

The images according to the dataset are either one of two categories: dogs

or cats. The question here is does the algorithm know which is a dog and

which is a cat?

The answer is simply that the model will try to label the pictures as one

of the two categories. It will correctly classify these labels sometimes, and

will incorrectly classify the other label of some images, so it will end with a

disaster and very low accuracy.

This means that your model failed to learn the differences between a

cat and a dog. That’s because your model simply labels the pictures of dogs

and cats in a way that defines specific features of both the animals from a

general view.

Let’s take an example wherin the pictures of dogs are always taken

outside, so maybe if we have a picture of a cat outside, the model may

recognize it as a dog because it doesn't take specific dog features into

account. It sees that those pictures of dogs have a sky in them, so any

picture that contains animal and sky will be considered a dog picture. This

is just a simplified example.

Chapter 1 A Gentle Introduction

22

�In Deep Learning

Now, you have used the deep learning approach and you can see a huge

difference in results. So, you wonder what's the difference that made such

a good effect? Of course with some data preprocessing, you can now make

the model learn the difference between the two animals by pointing the

model to the animal in the image. That process is called data annotation.

Thanks to that, the model can detect and correctly classify the animal in

the newly entered image.

Now the model classifies the two animals, the deep learning approach

uses what’s called an artificial neural network (ANN) that sends the input

(data of images) through different layers of the network, and each layer is

hierarchically learning and defining specific features of each animal.

After the data is processed through layers within the neural network,

the system finds the appropriate identifiers for classifying both animals

from their images.

�What Have We Learned Here?

One of the differences between deep learning vs. machine learning may

appear in the way data is presented to the system. Machine learning

algorithms almost always require structured data, whereas deep learning

networks rely on layers of the ANNs.

Machine learning algorithms are built to “learn” to do things by

understanding labeled data, and then use it to produce further outputs

with more sets of data. However, they need to be retrained through human

intervention when the actual output isn’t the desired one.

Deep learning networks do not require human intervention, as the

nested layers in the neural networks put data through hierarchies of

different concepts, which eventually learn through their own errors.

However, even these are subject to flawed outputs if the quality of data

isn’t good enough.

Chapter 1 A Gentle Introduction

23

Data is the governor here. It is the quality of data that ultimately

determines the quality of the result.

�Why Should We Learn About Deep Learning
(Advantages of Deep learning)?
Deep learning is hyped nowadays because of four main reasons:

	 1.	 The data: One of the things that increased the

popularity of deep kearning is the massive amount

of data that is available by 2018, which has been

gathered over the past years and decades. This

enables neural networks to really show their

potential, since they get better the more data

you put into them. We have questioned whether

the huge amount of data is useful for machine

learning too, but unfortunately not. Traditional

machine learning algorithms will certainly reach

a level where more data doesn’t improve their

performance.

	 2.	 The power: The computational power available

nowadays enables us to process more data.

	 3.	 The algorithms: These recent breakthroughs in

the development of algorithms are mostly due

to making them run much faster than before;

optimization and parallelism also made the dream

come true.

Chapter 1 A Gentle Introduction

24

	 4.	 The marketing: Neural networks were around for

decades (proposed in 1944 for the first time) and

already had some hype but also faced times where no

one wanted to believe and invest in them. The phrase

“deep learning” gave it a new fancy name, which

made a new hype possible. This means that deep

learning isn't a newly created field; you should know

that it has been redeveloped again in a new decade.

Deep learning comes more popular, since machine learning

algorithms require labeled data, they aren’t suitable to solve complex

queries which involve a huge amount of data.

�Disadvantages of Deep Learning (Cost of
Greatness)

	 1.	 What should be known is that deep learning

requires much more data than a traditional machine

learning algorithm.

	 2.	 A neural network is Black Box, meaning that you

don’t know how and why your neural network came

up with a certain output.

	 3.	 Duration of development: it takes a lot of time

to develop a neural network. Although there are

libraries like Keras out there, which make the

development of neural networks fairly simple, you

sometimes need more control over the details of

the algorithm. For example, when you try to solve a

difficult problem with machine learning that no one

has ever done before, you probably use TensorFlow

(which we will talk about in detail in this book).

Chapter 1 A Gentle Introduction

25

	 4.	 Neural networks are also more computationally

expensive than traditional algorithms. State-of-

the art deep learning algorithms, which realize

successful training of bottomless neural networks,

can take several weeks to train completely from

scratch (don't worry; this is solved using transfer

learning techniques).

�Introduction to Deep Learning
So, what is deep learning? It’s fair enough to answer that question by

saying that deep learning just means machine learning using deep neural

networks. Deep learning is a subset of machine learning but using a

human brains representation; scientists try to simulate what human brains

do by creating some algorithms. Many people say that neural networks (NNs)

and deep neural networks (DNNs) are a new approach.

Let’s go back to the History of the neural network. The history of

Ddeep learning can be traced back to 1943, when Walter Pitts and Warren

McCulloch created a computer model based on the neural networks of the

human brain. They used a combination of algorithms and mathematics

they called “threshold logic” to mimic the thought process.

Then in 1965, Alexey Grigoryevich Ivakhnenko (developer of the group

method of data handling) and Valentin Grigor′evich Lapa (author of

Cybernetics and Forecasting Techniques) used models with polynomial

activation functions that were then analyzed statistically. From each layer,

the best statistically chosen features were then forwarded on to the next

layer.

1985-1990s is the second winter of AI and deep learning. Deep learning

has its own researchers; they gave more attention to deep learning.

In 1995, Dana Cortes and Vladimir Vapnik developed the support

vector machine (a system for mapping and recognizing similar data).

Chapter 1 A Gentle Introduction

26

LSTM (long short-term memory) for recurrent neural networks (RNNs)

was developed in 1997 by Sepp Hochreiter and Juergen Schmidhuber.

We don’t need to spend all our time in the history of deep learning and

how it is raising our world these days, but we wanted to show that deep

learning wasn’t invented in our days. We gave you some references to the

history. Now is the time for deep learning.

Deep learning is based on the way the human brain processes

information and learns. It consists of a machine learning model

composed of several levels of representation, in which every level uses the

information from the previous level to learn deeply. Deep learning consists

of neural networks, neural networks consists of layers, and layers consist of

hidden units called perceptrons.

Now let’s see the previous structure when we put them together.

First, we should see the types of neural networks, which will allow us to

understand the previous structure. We have two main types of neural

network (shallow and deep). Table 1-3 shows the difference between them.

Table 1-3.  Shallow vs. Deep Neural Networks

Shallow Deep

 The word “shallow” means NOT DEEP; it has

only one hidden layer.

The word “deep” means it has

many hidden units.

Now we know the difference between shallow and deep. But what is a

unit? What is a layer? Which is the main factor of comparison? And what

are the types of layers? This is the start for deep learning; we should begin

with basic function and go up to the complex module. Let’s start with

the unit, the simplest function of deep learning; it contains the approach

of machine learning (supervised, unsupervised, semisupervised, and

reinforcement). It may have an activation function (we will explore it later),

like logistic regression, or regression function, or clustering function and

so on. This shows that deep learning is a subset of machine learning; for

Chapter 1 A Gentle Introduction

27

now, it’s a good explanation for the unit of a deep learning layer. Then,

when we have more than one unit together, we create something called a

layer: every unit is connected with the units in the previous layer (which

is called a fully connected neural network). We have three types of layers

(input, hidden (encoders), and output), so after we make units of the input

layer and connect it with input data, and create new units for the next layer

and connect it with the input and output layers this network is called a

shallow neural network. But if we connect this hidden layer with another

hidden layer, we will have a deep neural network. It seems simple enough

to understand the difference between deep and shallow neural networks.

But let’s see an image to better understand the difference (Figure 1-9).

Figure 1-9.  The difference between shallow and deep neural
networks

Now let’s see the types of deep neural networks:

•	 Feedforward neural network

•	 Radial basis function neural network

•	 Multilayer perceptron

•	 Convolutional neural network

•	 Recurrent neural network—Long short-term memory

•	 Modular neural network

•	 Sequence to sequence models

Chapter 1 A Gentle Introduction

28

These are the most common neural networks in deep learning. We will

talk about some of them in the next chapters in this book, but for now, we

can learn their names and get motivated to understand them in detail.

The most common applications in deep learning:

•	 Computer vision and image processing research (e.g.,

self-driving cars).

•	 Natural language processing (speech recognition,

machine translation, and natural language

understanding)

•	 Recommendation engines

•	 Automatic colorization

•	 Advertising, such as social media ads and user-targeted

ads

�Machine Learning Mathematical Notations
After introducing the field of deep learning to you, we need to collect some

math notations that will be used to prove or conclude some theories. We

do not use this book for mathematical proofs or rigorous explanations,

but we go more into practical aspects. We will use these math notations

to write down some equations that explain why we make something in a

certain way, not in another one. So let’s start now; in Table 1-4 we’ve tried

to collect all the notations that we need in this book.

Xi, j is a notation for a constant, the smallest element in a matrix; or we

can say it’s the basic notation in a vector, which we use to build the vector.

So what is a vector? But first, let’s talk about the subscript values (i,j); they

are indexing values. ith is an index for rows and jth is an index for columns,

to allow us to get the specific value from the vector. Let’s see about vectors.

Chapter 1 A Gentle Introduction

29

While Xi is a notation for a group of constants grouped together to

make a variable called a vector, in the vector we mentioned before about

indexing we have ith and jth indexes. But Xi has only subscript ith; this means

that we have only one row in the vector or we have only one column. For

instance, if we have one row and multiple columns, we will see it like

this: X1, j. This j means you iterate over columns. On the other hand, if we

have one column and many rows, we will see it like this: Xi, 1. This i means

you iterate over rows. Let’s make it easier: in an array you have rows and

columns. If you have only one column and many rows, then X[i][0]; if you

have one row and many columns, then X [0][ j].

Let’s go through this a bit more. If we get some constants together we

have a Vector, so if we group some vectors together, what will we see? It’s

The Matrix. X is a notation for a matrix, which is used to represent data in

dimensions. When we say dimensions in matrices, we may mean columns

and rows (in the case of a 2-D matrix), or maybe spaces like 2-D space. On

the other hand, we can’t say this matrix is 2-D when we have two columns

and say 3-D when we have three columnss: it is not true at all. Next, let’s

see some you some special types of Matrices:

I denotes an identity matrix. An identity matrix is a matrix has its

values with zeros; only the main diagonal values are ones.

X T is a transpose matrix. A transpose matrix is a good method for

matrix multiplication or inverting the matrix. We don’t need to go into

this complex algebra process, but you should know that it is a transpose

matrix.

Chapter 1 A Gentle Introduction

30

Ta
bl

e
1-

4.
 S

u
m

m
ar

y
of

 A
ll

N
ee

de
d

N
ot

at
io

n

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e

in
 M

ac
hi

ne
 L

ea
rn

in
g

Al
ge

br
a

(N
um

be
rs

 &
 A

rr
ay

s)

 x
Sc

al
ar

 (i
nt

eg
er

 o
r r

ea
l)

a
=

 3

 x
Ve

ct
or

a
=

 [1
, 2

, 3
]

 X
M

at
rix

A
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

ij

n n n

m
m

=
é ë

ù û
=

11
12

13
1

21
22

23
2

31
32

33
3

1

� � �
�

�
�

�

22
3

a
a

m
m
n

m
n

�

é ëê ê ê ê ê ê

ù ûú ú ú ú ú ú
´

 I
Id

en
tit

y

I
I

I
1

2
3

1
1

0

0
1

1
0

0

0
1

0

0
0

1

=
[]

=
é ëê

ù ûú
=
é ëê ê ê

ù ûú ú ú
,

,
,..
...
...
...
...
....
...

..
..

..
..

..
..

..
..

..
..

..
..

I n
=

1
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

éé ëê ê ê ê ê ê ê ê

ù ûú ú ú ú ú ú ú ú

 X
T

Tr
an

sp
os

e
m

at
rix

Chapter 1 A Gentle Introduction

31

 S
et

s
&

 G
ra

ph
s

 A
A

is
 a

 s
et

A
=

 {1
,2

,3
,4

} t
hi

s
se

t m
ea

ns
 th

at
 it

 c
on

ta
in

s
on

ly
 1

,2
,3

,4
 a

nd
 it

s
un

iq
ue

 v
al

ue
s

w
hi

ch
 m

ea
n

ca
n’

t f
in

d
re

pe
at

ed
 it

em
s

in
 s

et
, u

nl
ik

e
ve

ct
or

s
it

ca
n

co
nt

ai
n

m
an

y

re
pe

at
ed

 c
ha

ra
ct

er
s.

 𝕽
Th

e
se

t o
f r

ea
l

nu
m

be
rs

Th
is

 m
ea

ns
 it

 c
on

ta
in

s
al

l r
ea

l n
um

be
rs

.

 [a
, b

]
Th

e
re

al
 in

te
rv

al

in
cl

ud
in

g
a

an
d

b

 (a
, b

]
Th

e
re

al
 in

te
rv

al

ex
cl

ud
in

g
a

bu
t

in
cl

ud
in

g
b

(c
on

ti
n

u
ed

)

Chapter 1 A Gentle Introduction

32

Ta
bl

e
1-

4.
 (

co
n

ti
n

u
ed

)

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e

in
 M

ac
hi

ne
 L

ea
rn

in
g

 In
de

xi
ng

 X
i

El
em

en
t i

 o
f v

ec
to

r x
,

w
ith

 in
de

xi
ng

 s
ta

rti
ng

at
 1

 X
i,

j
El

em
en

t (
i,

j)
of

 m
at

rix
 X

 X
i:

Ro
w

 i
of

 m
at

rix
 X

 X
:j

Co
lu

m
n

i o
f m

at
rix

 X

 X
i,

j,
k

El
em

en
t (

i,
j,

k)
 o

f a
 3

-D

na
m

ed
 te
ns
or

 X

 X
:,

: ,
 i

2-
D

sl
ic

e
of

 a
 3

-D
 te

ns
or

 x
i

El
em

en
t i

 o
f t

he
 v

ec
to

r x

Chapter 1 A Gentle Introduction

33

 F
un

ct
io

ns

 f
: A

 -
>

 B
A

fu
nc

tio
n

f w
ith

 d
om

ai
n

A
an

d
ra

ng
e

B

 f(
x;

θ)
 o

r f
(x

)
A

fu
nc

tio
n

of
 x

pa
ra

m
et

er
iz

ed
 b

y
θ

(o
m

itt
ed

 s
om

et
im

es
)

 σ
(x

)
Lo

gi
st

ic
 s

ig
m

oi
d,

 i.
e.

,

(1
 +

 e
xp

(x
))1

 g
[f;

 x
]

A
fu

nc
tio

n
th

at
 m

ap
s

f t
o

f(x
)

 ||
X |

|p
Lp

no
rm

 o
f x

W
e

w
ill

 u
se

 it
 in

 th
e

re
gu

la
riz

at
io

ns
.

 ||
X|

|
L2

 n
or

m
 o

f x
W

e
w

ill
 u

se
 it

 in
 th

e
re

gu
la

riz
at

io
ns

.

(c
on

ti
n

u
ed

)

Chapter 1 A Gentle Introduction

34

Ta
bl

e
1-

4.
 (

co
n

ti
n

u
ed

)

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e

in
 M

ac
hi

ne
 L

ea
rn

in
g

 S
ta

tis
tic

s

 𝜇
Po

pu
la

tio
n

m
ea

n

x
Sa

m
pl

e
m

ea
n

σ 2
Po

pu
la

tio
n

va
ria

nc
e

s 2
Sa

m
pl

e
va

ria
nc

e

x
or

 σ
St

an
da

rd
 d

ev
ia

tio
n

 s
Sa

m
pl

e
st

d
de

v

x
M

ed
ia

n

Chapter 1 A Gentle Introduction

35

 M
ac

hi
ne

 L
ea

rn
in

g

 X
Th

e
se

t o
f d

at
a

us
ed

 a
s

tra
in

in
g

ex
am

pl
es

 Y
 o

r i
n

so
m

e

bo
ok

s
y

Th
e

se
t o

f o
ut

pu
t

ex
am

pl
es

 ŷ
La

be
l p

re
di

ct
ed

 b
y

a
fu

nc
tio

n
f,

i.e
.,

ŷ
f

x
=

(
)

0
 (s

up
er

vi
se

d

le
ar

ni
ng

)

(x
 i , y

 i  )
Th

e
ith

 e
xa

m
pl

e
pa

ir
in

X
(s

up
er

vi
se

d
le

ar
ni

ng
)

(x
` , y

`)
A

te
st

in
g

pa
ir

 D
Di

m
en

si
on

 o
f a

 d
at

a

po
in

t x
i

 K
Di

m
en

si
on

 o
f a

 la
be

l y
i

 J
(w

,b
)

Co
st

 fu
nc

tio
n

To
 c

al
cu

la
te

 h
ow

 y
ou

r m
od

el
 fi

ts
 d

at
a

(c
on

ti
n

u
ed

)

Chapter 1 A Gentle Introduction

36

�Summary
In this chapter we started with a brief introduction to machine learning,

then we introduced the backbone of the field—the three theories:

information, probability, and decision. After that, we illustrated the

evolution from machine learning to deep learning, and we gave you an

introduction to the mathematical notation used in this book.

Chapter 1 A Gentle Introduction

37© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_2

CHAPTER 2

Setting Up Your
Environment
Now that the history and math lessons are out of the way, we must be fair

and give you a dessert, so let’s now prepare for the upcoming dirty work by

setting our environment.

Most deep learning engineers have a development and research

environment installed, ready to build and maintain deep learning

models. But if you are new to this field, you may wonder about the best

tool and programming language available to easily learn and effectively

use to advance your career as a data scientist. We believe it’s Python and

TensorFlow, so in this chapter we’ll be installing both.

�Background
Python is an interpreted high-level programming language for general-

purpose programming. Created by Guido van Rossum and first released

in 1991, Python has a design philosophy that emphasizes code readability,

notably using significant whitespace. It provides constructs that enable

clear programming on both small and large scales. Python has conquered

the scientific community and taken the lead due to the huge data

processing and analysis packages in it. Also, it allows the data scientist

38

to make fast experiments, and easy development and deployment of

scientific applications. Besides all these features, Python allows us to

integrate scientific experiments to desktop or web applications.

In addition to Python, there are other tools such as R and MATLAB, but

what makes Python my favorite programming language is that it is open

source with a huge community. Python completes your data scientist skills:

it’s easier for development and deployment of applications to production.

�Python 2 vs. Python 3
wiki.python.org goes into depth on the differences between Python 2.7

and 3.3, saying that there are benefits to each. It really depends on what

you are trying to achieve. But, in summation:

“Python 2.x is legacy, Python 3.x is the present and

future of the language.”

There are subtle differences between the two. But the biggest difference

is the print statement, taking the next phrase from Stack Overflow.

“The most visible (difference) is probably the way the “print” statement

works. It's different enough that the same script won't be able to run on both

versions at the same time, but pick one and you'll be fine.”

�Installing Python
Python is an open source, object-oriented and cross-platform

programming language. When Python is compared with C++ or even Java

as a competitor, Python wins the race due to several reasons:

•	 Python allows you to build a working software

prototype in a very short time.

•	 Python is flexible, due to hundreds of packages that

solve almost all of problems and fill most necessities.

Chapter 2 Setting Up Your Environment

39

For those reasons, Python became the most used language in the data

scientist’s toolbox (at least until we have written this book).

So let us proceed to introduce all the settings you need in order to

create the data science environment to run the examples and experiments

provided with this book.

Novice data scientists who have never used Python (who likely don’t

have the language readily installed on their machines) need to download

the installer from the main website of the project first (https://python.

org/downloads/) and then install it on their local machine.

Remember that some of the latest versions of most Linux distributions

(such as CentOS, Fedora, Red Hat Enterprise, Ubuntu, and some other

minor ones) have Python 2 packaged in the repository. In such a case, and

in case you already have a Python version on your computer (since our

examples run on Python 3), you first have to check exactly what version

you are running. To do such a check, just follow these instructions:

•	 Open a Python shell, type python in the terminal, or

click on any Python icon you find on your system.

•	 Then, after having Python started, test the installation

by running the following code in the Python interactive

shell or REPL:

>>> import sys

>>> print (sys.version_info)

•	 If you can read that your Python version has the

major=2 attribute, it means that you are running

a Python 2 instance. Otherwise, if the attribute is

major=3, or if the print statement reports back to you

something like v3.x.x (for instance v3.5.1), you are

running the right version of Python and you are ready

to move forward.

Chapter 2 Setting Up Your Environment

https://python.org/downloads/
https://python.org/downloads/

40

Note  REPL stands for read-eval-print loop—a simple environment
that takes a user’s commands as an input line in a shell and outputs
the result of the line by printing it.

�Python Packages
Python won’t come bundled with all you need, unless you take a specific

premade distribution. Therefore, to install the packages you need, you

can use either pip (you can install pip by following instructions here) or

easy_install. Both of these tools run in the command line and make the

process of installation, upgrade, and removal of Python packages a breeze.

To check which tools have been installed on your local machine, run the

following command:

 $> pip

 # or

 $> easy_install

In most cases in this book, you will see packages installed using pip.

Note  You might find that pip is in your system as pip3 and
easy_install as easy_install-3, to stress the fact that both
operate on packages for Python 3. For insurance, check the version
$> pip --version for pip or $> easy_install --version for
easy_install.

After this, you can install any Python package easily, and all its

dependencies will be downloaded and installed. If you are not sure if the

package is in your system or not, try to use it by importing it. If the Python

interpreter raises an ImportError message, then you can be certain that the

package has not been installed.

Chapter 2 Setting Up Your Environment

41

This is what happens when the NumPy library has been installed:

 >>>import numpy

This happens if it’s not installed:

 >>> import numpy

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 ImportError: No module named numpy

In this case you should install NumPy by running the following

command in your terminal:

 $> pip install

 # or

 $> easy_install numpy

�IPython
IPython (Interactive Python) is a command shell—like REPL but has

a nicer interface—for interactive computing in multiple programming

languages. Originally developed for the Python programming language, it

offers introspection, rich media, shell syntax, tab completion, and history.

IPython provides the following features:

•	 Interactive shells (terminal and Qt-based)

•	 A browser-based notebook interface with support for

code, text, mathematical expressions, inline plots, and

other media

•	 Support for interactive data visualization and use of

GUI toolkits

Chapter 2 Setting Up Your Environment

42

•	 Flexible, embeddable interpreters to load into one’s

own projects

•	 Tools for parallel computing

�Installing IPython

You can install IPython (Figure 2-1) using the following command line:

$> pip install ipython

After finishing the installation, you can run IPython using this command:

$> ipython

Note  You might find that you have to run ipython3 instead of
running just ipython, because ipython3 is made for Python 3.

When you run your code lines in an IPython shell, you will find that the

code is written in a line that starts with In[1]. This means that the shell is

writing your input in line 1, and the output is written with the same syntax

except it starts with Out[1], for example:

Figure 2-1.  What IPython looks like

Chapter 2 Setting Up Your Environment

43

�Jupyter
As a data scientist or machine learning engineer, experimentation is the

work approach, so fast experimentation is required. That’s why IPython

was created, but it was limited to Python programming language only

until Jupyter was created in 2015 by Fernando Perez, in order to address

the need for an interactive command shell for several languages. This new

project extends the potential usability of the original IPython interface to a

wide range of programming languages, such as

•	 Julia

•	 Scala

•	 R

For a more complete list of available kernels for Jupyter, please visit the

page here https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

Note  You cannot mix or run the same notebook commands for
different kernels; each notebook only refers to a single kernel, that
is, the one it was initially created with. Consequently, on the same
notebook you cannot mix languages or even versions of the same
language like Python2 and Python3.

Jupyter Notebook is built off of IPython, an interactive way of running

Python code in the terminal using the REPL model (Read-Eval-Print-

Loop). The IPython kernel runs the computations and communicates with

the Jupyter Notebook front-end interface.

Thanks to the great idea of kernels, which run the user’s code

communicated by the web-based front-end interface and provide an

output of the input code to the interface itself, you can use the same

interface and interactive programming style no matter what language you

are using for development.

Chapter 2 Setting Up Your Environment

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

44

Note  Without the IPython kernel, Jupyter will not even function,
even if you have installed another kernel and linked it.

Jupyter is our favored choice throughout this book, and it is used to

clearly and effectively illustrate operations with scripts and data and the

consequent results.

Regular IDEs are built around the cycle of

	 1.	 Writing a script

	 2.	 Running it afterward

	 3.	 Evaluating its results

Contrary to regular IDEs, Jupyter lets you write your code in chunks,

named cells; run each of them sequentially; and evaluate the results of

each one separately, examining both textual and graphic outputs—an

advantage of this method.

•	 You can run a selected cell, and got an output from it.

•	 If a certain cell got an error or exception, other cells

saves their outputs instead of running the whole script

from start.

Such an approach is also particularly very good for tasks involving

developing code based on data—like point 2 in the preceding list—since

it automatically accomplishes the often neglected duty of documenting

and illustrating how data analysis has been done, its premises and

assumptions, and its intermediate and final results.

If a part of your job is to also present your work to an internal or

external stakeholder in the project, Jupyter can really do the job of

storytelling without any effort.

Chapter 2 Setting Up Your Environment

45

Users can easily combine code, comments, formulas, charts,

interactive plots, and media such as images and videos, making each

Jupyter Notebook a scientific sketchpad to find all your experimentations

and their results.

Jupyter runs on all browser (such as Explorer, Firefox, or Chrome,

for instance) and, when started, presents a cell waiting for code to be

written in. Each block of code enclosed in a cell can be run, and its results

are reported in the space just after the cell. Plots can be represented in

the Notebook (inline plot) or in a separate window. In our example, we

decided to plot our chart inline.

�Installing Jupyter

You can find complete instructions about Jupyter installation—covering all

operating systems—here (https://jupyter.readthedocs.io/en/latest/

install.html).

If you do not have Jupyter installed on your system, you can promptly

set it up using this command:

$> pip install jupyter

After installation, you can run a Jupyter kernel by calling it from the

command line

$> jupyter notebook

Once the Jupyter instance has opened in the browser, you can see this

page (Figure 2-2).

Chapter 2 Setting Up Your Environment

https://jupyter.readthedocs.io/en/latest/install.html
https://jupyter.readthedocs.io/en/latest/install.html

46

This is the tree page of Jupyter that you can build and control Jupyter

Notebooks from. You can see the following in Figure 2-2:

•	 There are two notebooks in this folder.

•	 The notebook with the Green colored icon is running in

the kernel right now.

•	 The notebook with the black colored icon is shut down.

•	 There is Upload button that lets you upload all type

of files here (if you are running Jupyter on a remote

server).

•	 With the New button you can create new notebooks or

empty files or even can open a terminal.

Note T he tree page of Jupyter can only see the directory where the
command was executed.

Now click on the New button; in the Notebooks section, choose

Python 3 (other kernels may be present in the section, depending on

what you installed).

You can also create a Text File, Folder, or open a Terminal (Figure 2-3).

Figure 2-2.  The Jupyter Notebook tree file

Chapter 2 Setting Up Your Environment

47

At this point your new empty notebook will look like the next

screenshot (Figure 2-4), and you can start entering the commands in the

cells. For instance, you may start by typing in the cell.

Figure 2-3.  How to create a new file, folder, or even a terminal

Figure 2-4.  The Jupyter Notebook file

After creating a Jupyter Notebook (and that is an achievement by the

way), we need to make sure that you understand some concepts about the

file you have created.

What Is an ipynb File?

It will be useful to understand what this file really is.

Each .ipynb file is a text file that describes the contents of your

Notebook in a format called JSON. Each cell and its contents, including

image attachments that have been converted into strings of text, is listed

therein along with some metadata. You can edit this yourself—if you know

Chapter 2 Setting Up Your Environment

48

what you are doing—by selecting Edit ➤ Edit Notebook Metadata from

the menu bar in the Notebook.

There are two terms that you should notice, which may be new to you:

cells and kernels are key both to understanding Jupyter and to what makes

it more than just a word processor.

•	 A kernel is a “computational engine” that executes the

code contained in a Notebook file.

•	 A cell is a container for text to be displayed in the

notebook or code chunk to be executed by the

Notebook’s kernel.

Cells form the body of a Notebook. In the screenshot in Figure 2-5, that

box with the green outline is an empty cell. There are two main cell types:

Figure 2-5.  A selected, green cell

•	 A code cell contains code chunks to be executed in the

kernel and displays its output below.

Note T he first cell in a new notebook by default is always a code cell.

•	 A Markdown cell contains text formatted using

Markdown and displays its output in place when it is

run (Figure 2-6).

Chapter 2 Setting Up Your Environment

49

So, click the Notebook Run button in the toolbar or press Ctrl + Enter.

The result should look like Figure 2-7.

Figure 2-6.  Writing a simple Python command

Figure 2-7.  The output of the first Python command

Figure 2-8.  A simple markdown command

Moreover, written notes can be written easily using Markdownm an

effortless and fast-to-grasp markup language (https://daringfireball.

net/projects/markdown/). Math formulas can be handled using MathJax

(www.mathjax.org/) to render any LaTeX script inside HTML/Markdown.

Its syntax has a one-to-one correspondence with HTML tags, so some prior

knowledge here would be helpful but is definitely not a prerequisite.

There are many ways to write a LaTex code in a cell. The easiest way is

to use the Markdown syntax simply, wrapping the equations with single $

(dollar sign) for an inline LaTeX formula, or with a double dollar sign $$ for

a one-line central equation. Remember that to have a correct output, the

cell should be set as Markdown. Here’s an example (Figure 2-8).

Chapter 2 Setting Up Your Environment

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://www.mathjax.org/

50

�Packages Used in the Book
All the packages that we are going to introduce now are strongly analytical,

and used a lot in data science and machine learning projects. All these

packages are made up of extensively tested and highly optimized functions

for both memory usage and performance, ready to achieve any scripting

operation with successful execution. A walkthrough on how to install them

is provided in the following section.

�NumPy
NumPy stands for (Numerical Python), which is Travis Oliphant's creation,

and is the analytical backbone of the Python programming language. It

provides multidimensional arrays, along with a large set of functions to

operate a multiplicity of mathematical operations on these arrays. Arrays

are blocks of data arranged along multiple dimensions, which implement

mathematical vectors and matrices. Characterized by optimal memory

allocation, arrays are useful not just for storing data, but also for fast matrix

operations (vectorization).

•	 Website: www.numpy.org/

•	 Installation command: pip install numpy

•	 Preferred alias of importing: import numpy as np

�SciPy
SciPy (pronounced “Sigh Pie”) is open source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, an

original project by Travis Oliphant, Pearu Peterson, and Eric Jones.

SciPy completes NumPy’s functionalities, offering a larger variety of

scientific algorithms for linear algebra, sparse matrices, signal and image

processing, optimization, Fourier transformation, and much more.

Chapter 2 Setting Up Your Environment

http://﻿www.numpy.org/﻿

51

•	 Website: www.scipy.org/

•	 Installation command: pip install scipy

•	 Preferred alias of importing: import scipy as sp

�Pandas
Pandas deals with everything that NumPy and SciPy cannot do. Thanks to

its specific data structures, namely DataFrames and Series, pandas allows

you to handle complex tables of data of different types (which is something

that NumPy arrays cannot do) and time series. Thanks to Wes McKinney’s

creation, you will be able to easily and smoothly load data from a variety of

sources. You can then slice, dice, handle missing elements, add, rename,

aggregate, reshape, and finally visualize your data at will.

•	 Website: https://pandas.pydata.org/

•	 Installation command: pip install pandas

•	 Prefered alias of importing: import pandas as pd

�Matplotlib
Matplotlib is a Python 2-D plotting library that produces publication

quality figures in a variety of hard copy formats and interactive

environments across platforms. Originally developed by John Hunter,

matplotlib contains all components that are required to create quality plots

from data and to visualize them interactively.

For simple plotting the pyplot module provides a MATLAB-like

interface, particularly when combined with IPython. For the power user,

you have full control of line styles, font properties, axes properties, etc, via

an object-oriented interface or via a set of functions familiar to MATLAB

users.

Chapter 2 Setting Up Your Environment

http://﻿﻿﻿www.scipy.org/﻿
﻿﻿﻿https://pandas.pydata.org/﻿

52

•	 Website: https://matplotlib.org/

•	 Installation command: pip install matplotlib

•	 Preferred alias of importing: import matplotlib.

pyplot as plt

Note T his importing is for visualization purposes, because
matplotlib contains components used for many purposes other than
data visualization.

�NLTK
NLTK is a leading platform for building Python programs to work with

human language data. It provides easy-to-use interfaces to more than 50

corpora and lexical resources. NLTK stands for Natural Language Toolkit,

and it provides a complete suite of functions for statistical natural language

processing (NLP), starting from tokenizers to part-of-speech taggers and

from tree models to named-entity recognition. Initially, Steven Bird and

Edward Loper created the package as an NLP teaching infrastructure for

their course at the University of Pennsylvania.

•	 Website: www.nltk.org/

•	 Installation command: pip install nltk

•	 Preferred alias of importing: import nltk

�Scikit-learn
The Scikit-learn project started as scikits.learn, a Google Summer of Code

project by David Cournapeau. Its name stems from the notion that it is a

“SciKit” (SciPy Toolkit), a separately developed and distributed third-party

extension to SciPy.

Chapter 2 Setting Up Your Environment

https://matplotlib.org/
http://www.nltk.org/

53

Scikit-learn is the core of machine learning and data science

operations on Python. It offers all that you need, such as data

preprocessing, supervised and unsupervised learning, model selection,

validation, and error metrics.

•	 Website: http://scikit-learn.org/

•	 Installation command: pip install scikit-learn

•	 Preferred alias of importing: import sklearn

�Gensim
Gensim was created by Radim Řehůřek, and it is a robust open source

vector space modeling and topic modeling toolkit implemented in Python.

It uses NumPy, SciPy, and optionally Cython for performance. Gensim is

specifically designed to handle large text collections, using data streaming

and efficient incremental algorithms, which differentiates it from most

other scientific software packages that only target batch and in-memory

processing. It implements latent semantic analysis (LSA), topic modeling

by latent Dirichlet allocation (LDA), and Google’s word2vec, a powerful

algorithm that transforms text into vector features.

•	 Website: https://radimrehurek.com/gensim/

•	 Installation command: pip install gensim

•	 Preferred alias of importing: import gensim

�TensorFlow
TensorFlow is an open source software library for dataflow programming

across a range of tasks. It is a symbolic math library, and is also used for

machine learning applications such as neural networks. It is used for

both research and production at Google. TensorFlow was developed by

Chapter 2 Setting Up Your Environment

http://scikit-learn.org/
https://radimrehurek.com/gensim/

54

the Google Brain team for internal Google use. It was released under the

Apache 2.0 open source license on November 9, 2015.

•	 Website: www.tensorflow.org/

•	 Installation Command: pip install tensorflow

•	 Preferred alias of importing: import tensorflow

as tf

�Installing on Mac or Linux distributions

The following are the steps to install TensorFlow on Mac and Linux

systems:

	 1.	 First, install pip and virtualenv (optional) if they are

not already installed:

	 a.	 For Ubuntu/Linux 64-bit:

$ sudo apt-get install python3-pip python3-dev

$ sudo pip3 install -U virtualenv #system-wide

install

	 b.	 For Mac OS X:

$ sudo easy_install pip

$ sudo pip install --upgrade virtualenv

	 2.	 Then you can create a virtual environment

virtualenv. The following commands create a

virtual environment virtualenv in the ~/tensorflow

directory:

$ virtualenv --system-site-packages ~/

tensorflow

Chapter 2 Setting Up Your Environment

http://www.tensorflow.org/

55

	 a.	 The next step is to activate virtualenv as follows:

$ source ~/tensorflow/bin/activate

(tensorflow)$

	 3.	 Henceforth, the name of the environment we’re

working in precedes the command line. Once

activated, pip is used to install TensorFlow within it.

	 a.	 For Ubuntu/Linux 64-bit, CPU:

(tensorflow)$ pip install --upgrade

https://storage.googleapis.com/tensorflow/linux/

cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

	 b.	 For Mac OS X, CPU:

(tensorflow)$ pip install --upgrade https://storage.

googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-

none-any.whl

If you want to use your GPU card with TensorFlow, then install another
package. I recommend you visit the official documentation to see if
your GPU meets the specifications required to support TensorFlow.

	 4.	 Finally, when you’ve finished, you must disable the

virtual environment:

(tensorflow)$ deactivate

Chapter 2 Setting Up Your Environment

56

�Installing on Windows

If you can’t get a Linux-based system, you can install Ubuntu on a virtual

machine; just use a free application called VirtualBox, which lets you

create a virtual PC on Windows and install Ubuntu in the latter. So, you

can try the operating system without creating partitions or dealing with

cumbersome procedures.

�Keras
Keras is an open source neural network library written in Python. It is

capable of running on top of TensorFlow, Microsoft Cognitive Toolkit,

or Theano. Designed to enable fast experimentation with deep neural

networks, it focuses on being user friendly, modular, and extensible.

It was developed as part of the research effort of project ONEIROS

(Open-ended Neuro-Electronic Intelligent Robot Operating System), and

its primary author and maintainer is François Chollet, a Google engineer.

•	 Website: https://keras.io/

•	 Installation command: pip install keras

•	 Preferred alias of importing: import keras

�Summary
In this chapter we discussed the whole environment, installation, and

preparation of Python; we also discussed how to install every package that

will be used in the book from NumPy to TensorFlow. We illustrated the IDE

you will use to develop and maintain the code for the exercises, and how to

use it for both coding and documenting.

In Chapter 3 we will give a nice tour through the deep learning pipeline,

introducing the pipeline step-by-step and also the deep learning approaches.

We will get into some practicality with an introduction to TensorFlow.

Chapter 2 Setting Up Your Environment

https://keras.io/

57© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_3

CHAPTER 3

A Tour Through
the Deep Learning
Pipeline
In Chapter 1, we saw an introduction to the deep learning field, to the

theories that are the basis of the field. We also discussed the evolution of

deep learning and the needed mathematical notation to succeed while

reading the book, and we showed you how to install the environment

needed for the projects in this book.

In this chapter, we will start with the “flavors” of deep learning, the

approaches of it, and different types of neural networks. Next, we will

introduce the big picture of the deep learning pipeline; we also will go

through the steps of the pipeline in detail. And as always, we will break

things up with some technicality, by introducing TensorFlow; we will cover

basic recipes in order to understand how TensorFlow works and how to

access data for this book and additional resources.

58

�Deep Learning Approaches
This deep learning introduction considers how the pioneers in this field

got their intuition to make neural networks, fundamental to deep learning.

When we talk about something, we want to know where it comes from or

how it will work.

This will guide us to learn some biologics. From this point, we will

get into neural networks and how they get the data; extract the data; and

push the data to the model, which should understand the data through

the three learning approaches we talked about in Chapter 1 (supervised,

unsupervised, and semisupervised).

�What Is Deep Learning
As we mentioned before in Chapter 1 when we discussed what deep

learning is, we talked about types of deep learning, using either shallow or

deep neural networks. We said that deep learning is basically neural; that

we got the idea from the biological neural networks in our brain. So let us

see how our brains work.

�Biological Deep Learning
To understand how neural networks work and where they come from,

we need to mention neurons. There are some questions you might ask

yourself, such as in human brains how does data go from our eyes and

we then recognize it and then say some words that seem to make sense?

A neuron is the basic unit in our brain that has all of this information

(Figure 3-1). The neuron is also the basic unit of computation in a neural

network, often called a node or unit.

Mathematically speaking, a neuron receives input from some other

nodes or from an external source and computes an output. Each input has

an associated weight (w) and bias (b), which is assigned on the basis of

its relative importance to other inputs. The node applies a function to the

Chapter 3 A Tour Through the Deep Learning Pipeline

59

weighted sum of its inputs. The idea is that the synaptic strengths (the weights

w) are learnable and control the strength of influence and its direction:

excitatory (positive weight) or inhibitory (negative weight) of one neuron on

another. In the basic model, the dendrites carry the signal to the cell body,

where they all get summed. If the final sum is above a certain threshold, the

neuron can fire, sending a spike along its axon. In the computational model,

we assume that the precise timings of the spikes do not matter and that only

the frequency of the firing communicates information. We model the firing

rate of the neuron with an activation function (for instance, sigmoid function),

which represents the frequency of the spikes along the axon. As we see that

the representation of neutrals in our brains is most common to our neural

which we will talk about it but let us see Figure 3-1.

Figure 3-1.  A human neuron

Figure 3-2.  A machine neuron

Chapter 3 A Tour Through the Deep Learning Pipeline

60

However, the question is: is an artificial neural network (ANN) similar

to our brain’s neural net? I think the answer is “not”; ANNs don’t work like

our brain. An ANN is a simple crude comparison; the connections between

biological networks are much more complex than those implemented by

an ANN. But let us again try to define a neural network. As we define it

again, we can say that:

The neural network is made of neurons (Figure 3-2). Biologically

the neurons are connected through synapses and our neural network is

connected together by something like synapses or the representation of them

(edges), where information flows (weights for out computational model).

When we train a neural network, we want the neurons to fire whenever they

learn specific patterns from the data, and we model the firing rate using an

activation function.

Let’s get through this definition. We say that the neuron is the

basic unit of computation in a neural network. A machine neuron is a

representation of a human neuron; it receives input from some other

nodes, or from an external source, and computes an output. Each input

has an associated weight(w), which is assigned on the basis of its relative

importance to other inputs. The node applies a function f (defined in the

following) to the weighted sum of its inputs, as shown in Figure 3-3.

Figure 3-3.  How a neuron acts

Chapter 3 A Tour Through the Deep Learning Pipeline

61

So, we now know how a neuron in an ANN works, and its architecture.

If you have any problem with math notation, you can review mathematical

notation sheet in chapter one. We have a new question: is a neuron a

perceptron? Let’s see what perceptron is and get the connection between

these two concepts. The perceptron is a linear classifier (binary, and by

binary we mean that a single perceptron will output either a 0 or 1 label).

Also, it is used in supervised learning. It helps to classify the given input

data. So, let’s see some characteristics of the perceptron:

•	 Input values or one input layer

•	 Weights and bias

•	 Net sum

•	 Activation function

This is actually what a neuron has: it has X as Input examples or

observations or input layer, W as Weights, b as Bias, and sum, and a as

Activation function.

So we can conclude that perceptron is neuron, so let’s move forward

into the neural network. The neural network isn’t the only perceptron, but

it contains many concepts like layers. What are layers? A layer is a group

of perceptrons or neurons. But how does it work, and what are the types

of layers? A layer is changed by the concept or the algorithm. This will be

discussed further and you will see these concepts, but the basic definitions

of layers are

•	 Input nodes (input layer): No computation is done here

within this layer; they just pass the information to the

next layer (hidden layer most of the time). A block of

nodes is also called a layer.

•	 Hidden nodes (hidden layer): In hidden layers is where

intermediate processing or computation is done;

they perform computations and then transfer weights

Chapter 3 A Tour Through the Deep Learning Pipeline

62

(signals or information) from the input layer to the

following layer (another hidden layer or to the output

layer). It is possible to have a neural network without a

hidden layer, and we’ll explain this later.

•	 Output nodes (output layer): Here, we finally use an

activation function that maps to the desired output

format (e.g., Softmax for classification).

�What Are Neural Networks Architectures?
We see the main three functions of layers in the neural network (input

layer, hidden layer, output layer), but that can be changed through the

concepts or the architectures of the neural network. It seems some

layers may have only one perceptron, or many perceptrons connected

together, or layers that we can’t see how they work. We need to have a lot

of complex mathematical equations and combinations and it’s difficult to

accurately get how these hidden layers work. Let’s see some examples of

the architectures:

Single-layer perceptron. This is the simplest feedforward neural

network and does not contain any hidden layer, which means it only

consists of a single layer of output nodes. This is said to be single because

when we count the layers we do not include the input layer. The reason

for that is because at the input layer no computations are done; the inputs

are fed directly to the outputs via a series of weights. Let us discuss the

multilayer perceptron first and then talk about the feedforward neural

network.

Chapter 3 A Tour Through the Deep Learning Pipeline

63

Multilayer perceptron (MLP). This class of networks consists of

multiple layers (input layer, hidden layer or layers) of computational units,

usually interconnected in a feedforward way. Each neuron in one layer has

direct connections to the neurons of the subsequent layer. While a single

layer perceptron can only learn linear functions, a multilayer perceptron

can also learn nonlinear functions.

	 1.	 Input layer: The input layer has three nodes. The

bias node has a value of 1. The other two nodes take

X1 and X2 as external inputs (which are numerical

values depending upon the input dataset). As

discussed, no computation is performed in the

input layer, so the outputs from nodes in the input

layer are 1, X1, and X2, respectively, which are fed

into the hidden Layer.

	 2.	 Hidden layer: The hidden layer also has three nodes,

with the bias node having an output value of 1.

The output of the other two nodes in the hidden

layer depends on the outputs from the input layer

(1, X1, and X2) as well as the weights associated

with the connections (edges). Figure 3-4 shows

Figure 3-4.  Neuron inputs, weights, and outputs

Chapter 3 A Tour Through the Deep Learning Pipeline

64

the output calculation for one of the hidden nodes

(highlighted). Similarly, the output from another

hidden node can be calculated. Remember that f

refers to the activation function. These outputs are

then fed to the nodes in the output layer. So, what is

a feedforward neural network?

Figure 3-5.  A feedforward neural network

Feedforward neural network (Figure 3-5). Let’s start with the specific

regions first, which is the basic builder of our algorithm. The feedforward

neural network was the first and simplest type of ANN devised. It contains

multiple neurons (nodes) arranged in layers. Nodes from adjacent layers

have connections or edges between them. All these connections have

weights associated with them. In a feedforward network, the information

moves in only one direction—forward—from the input nodes, through

Chapter 3 A Tour Through the Deep Learning Pipeline

65

the hidden nodes (if any), and to the output nodes. There are no cycles

or loops in the network, and it has two types (single-layer perceptron,

multilayer perceptron). Let’s have a look at Figure 3-6 to see how it works

and explain it in a good way.

Figure 3-6.  The difference between input, hidden, and output layers

A feedforward neural network can consist of three types of nodes:

Input nodes: The input nodes provide information

from the outside world to the network, and

are together referred to as the “input layer.” No

computation is performed in any of the input

nodes—they just pass on the information to the

hidden nodes.

Chapter 3 A Tour Through the Deep Learning Pipeline

66

Hidden nodes: The hidden nodes have no direct

connection with the outside world (hence the name

“hidden”). They perform computations and transfer

information from the input nodes to the output

nodes. A collection of hidden nodes forms a “hidden

layer.” While a feedforward network will only have

a single input layer and a single output layer, it can

have zero or multiple hidden layers.

Output nodes: The output nodes are collectively

referred to as the “output layer” and are responsible

for computations and transferring information from

the network to the outside world.

Feedforward neural networks are primarily used

for supervised learning in cases where the data to be

learned is neither sequential nor time dependent.

So we now know a lot about the one-direction neural network which

is called a feedforward neural network, but we have many types of neural

network architectures to talk about. We will discuss them in detail later

in Part IV. We have convolutional neural network, recurrent neural
network, and self-organizing map (SOM). These are the types of neural

network that can be used in any approach in deep learning—or machine

learning (supervised, unsupervised, semisupervised, and reinforcement

learning), as we say that deep learning is a subset of machine learning.

Let’s look at these layers architectures.

First, we will talk about convolutional neural networks (CNNs). CNNs

(Figure 3-7) are very similar to ordinary neural networks; they are made

up of neurons that have learnable weights and biases. In a convolutional

neural network (CNN, or ConvNet, or shift invariant or space invariant)

the unit connectivity pattern is inspired by the organization of the visual

cortex. Units respond to stimuli in a restricted region of space known as

the receptive field. Receptive fields partially overlap, over-covering the

Chapter 3 A Tour Through the Deep Learning Pipeline

67

entire visual field. The unit response can be approximated mathematically

by a convolution operation. They are variations of multilayer perceptrons

that use minimal preprocessing. Their wide applications are in image

and video recognition, recommender systems, and natural language

processing. CNNs require large data to train on.

Second, we will talk about recurrent neural networks (RNNs). In an

RNN, connections between units form a directed cycle (they propagate

data forward, but also backward, from later processing stages to earlier

stages). This allows it to exhibit dynamic temporal behavior. Unlike

feedforward neural networks, RNNs can use their internal memory to

process arbitrary sequences of inputs. This makes them applicable to

tasks such as unsegmented, connected handwriting recognition, speech

recognition, and other general sequence processors.

Figure 3-7.  An example of a convolution neural network

Third is the self-organizing map (SOM). It is a type of ANN that

is trained using unsupervised learning to produce a low-dimensional

(typically two-dimensional), discretized representation of the input

space of the training samples, called a map. It is therefore a method to do

dimensionality reduction. SOMs differ from other ANNs, as they apply

competitive learning as opposed to error-correction learning (such as

backpropagation with gradient descent), and in the sense that they use a

neighborhood function to preserve the topological properties of the input

space. And it is almost always used for unsupervised learning cases.

Chapter 3 A Tour Through the Deep Learning Pipeline

68

What we need you to learn in this chapter is the deep learning

architectures and their forms. This is the first step of our stairs to

TensorFlow and deep learning layers and how you can make these layers

writeable to your project. So far we’ve talked about them in theoretical and

academic ways. We will explore these concepts and know their purpose,

and how to know of the architecture is good for your data or not. All this is

discussed in our deep learning pipeline.

�Deep Learning Pipeline
In the previous chapter we gave an introduction to book, to deep learning,

and installed our environment. Yet we did not introduce what the book

title means, so what is the deep learning pipeline?

Answers to this question will go along with you through the end of the

book, but to be fair, you deserve an overview of the meaning of the title.

Before diving into Part II: Data, let’s take a moment to look at the

overall deep learning pipeline, to make sure that you understand each part

correctly. Also, this will help you get situated in the larger picture of the

book. To that end, we’ll begin with a little musing on the basic concepts,

like data and models.

Any predictive modeling, which is any deep learning project, can be

broken down into five common tasks:

	 1.	 Define and prepare problem

	 2.	 Summarize and understand data

	 3.	 Process and prepare data

	 4.	 Evaluate algorithms

	 5.	 Improve results

These tasks can either be combined and used together or broken

down and used apart further, but this is the general structure. To work

through modeling deep learning problems in a pipeline, you need to map

Chapter 3 A Tour Through the Deep Learning Pipeline

69

these tasks onto this process. Sometimes you will see these tasks renamed

or presented in a different structure, but in general they have the same

purpose. So, we will be stuck to this pipeline with these tasks in the exact

order throughout the book.

The tasks may need to be adapted or renamed slightly to suit the

Python way of doing things (e.g., Pandas for data loading, matplotlib for

visualization, and TensorFlow for modeling).

In the next sections we will provide these mappings of the pipeline. We

will also elaborate and illustrate each task and the types of subtasks, with

examples and libraries that you can use for these types.

�Define and Prepare Problem
Why do you collect data? There are questions that data you are collecting

can help you answer: questions like which stocks should I invest in? or how

can I understand my customers?

The answer to these questions cannot be that simple. The path from

data to answers is full of false starts and dead ends, like a maze. What starts

out as a promising approach may not pan out or give the wanted answer,

the right answer. What was originally just a hunch may end up leading to

the best solution. Deep learning pipelines are made for specific types of

reasons; workflows with data are frequently multistage, iterative processes.

For instance, stock prices are observed at the exchange, aggregated by

an intermediary like Thomson Reuters, stored in a database, bought by a

company, converted into a data warehouse or on a Hadoop cluster, pulled

out of the store by a script, subsampled, cleaned by another script, dumped

to a file, and converted to a format that you can try out in your favorite

modeling library in Python or any other programming language. The

predictions are then dumped back out to an EXCEL or a CSV file and parsed

by an evaluator or file reader engine. And the model is iterated multiple

times, rewritten in C++ or Java by your production team, and run on all of

the data before the final predictions are pumped out to another database.

Chapter 3 A Tour Through the Deep Learning Pipeline

70

So, we can say that this step is about understanding the problem and

its domain, and to understand, collect, and load everything you need to

start working on your problem. This includes

•	 Python modules, classes, and functions that you intend

to use

•	 Loading your dataset from its source

This is also the home of any global configuration you might need to do.

It is also the place where you might need to make a reduced sample of your

dataset if it is too large to work with.

Ideally, your dataset should be small enough to build a model or

create a visualization within a short period. You can always scale up well-

performing models later.

�Summarize and Understand Data
Data can be defined as observations of real-world phenomena, and

as information that has been translated into a form that is efficient for

movement or processing.

As examples, stock market data involves observations of daily stock

prices, announcements of earnings by individual companies, and even

opinion articles from pundits; or personal biometric data can include

measurements of our minute-by-minute heart rate, blood sugar level,

blood pressure, etc.

As you need to work in the domain of these observations, you have

to understand this domain and these observations, which sometimes

you may know as distribution. You need to summarize and visualize

these observations to understand them and be able to see trends. Each

piece of data provides a small window into a limited aspect of reality. The

collection of all of these observations gives us a picture of the whole.

Chapter 3 A Tour Through the Deep Learning Pipeline

71

This step is about better understanding the data that you have

available. This includes understanding your data through

•	 Descriptive statistics such as summaries

•	 Use of data visualizations such as plots with Matplotlib,

ideally using convenience functions from Pandas

•	 Taking your time and using the results to prompt a lot

of questions, assumptions, and hypotheses, which you

can investigate later with specialized models

�Process and Prepare Data
After understanding the domain and the data, you need to prepare it

for the next step. So, data processing is, generally, the collection and

manipulation of items of data to produce meaningful information. You can

think that you have a small piece of the puzzle, and the goal is to solve it.

But the picture is messy because it is composed of a thousand little pieces,

and in real-life data there’s always measurement noise and missing pieces.

So, by processing the data, you make it easier for the model to see the clear

picture and understand it very well. This is a crucial step in the pipeline,

and the accuracy of the model depends on it.

This step is about preparing the data in such a way that it best exposes

the structure of the problem and the relationships between your input

attributes and the output variable. This includes tasks such as the following:

•	 Cleaning data by removing duplicates, marking missing

values, and even imputing missing values

•	 Feature selection where redundant features may be

removed and new features developed

•	 Data transforms where attributes are scaled or

redistributed in order to best expose the structure of

the problem later to learning algorithms

Chapter 3 A Tour Through the Deep Learning Pipeline

72

Start simple. Revisit this step often and cycle with the next step until

you converge on a subset of algorithms and a presentation of the data that

results in accurate or accurate-enough models to proceed.

�Evaluate Algorithms
Trying to understand the world through data is like trying to piece together

reality using a noisy, incomplete jigsaw puzzle with a bunch of extra

pieces. This is where mathematical modeling—in particular statistical

modeling too—comes in. The language of statistics contains concepts

for many frequent characteristics of data, such as wrong, redundant, or

missing. Wrong data is the result of a mistake in measurement. Redundant

data contains multiple aspects that convey exactly the same information.

For instance, the day of the week may be present as a categorical

variable with values of “Saturday,” “Sunday,” …, “Friday,” and again

included as an integer value between 0 and 6. If this day-of-the-week

information is not present for some data points, then you’ve got missing

data on your hands.

A mathematical model of data describes the relationships between

different aspects of the data. For instance, a model that predicts stock

prices might be a formula that maps a company’s earning history, past

stock prices, and an industry to the predicted stock price. A model that

recommends music might measure the similarity between users (based

on their listening habits), and recommend the same artists to users who

have listened to a lot of the same songs. Mathematical formulas relate

numeric quantities to each other. But raw data is often not numeric.

(The action “Alice bought The Lord of the Rings trilogy on Wednesday” is

not numeric, and neither is the review that she subsequently writes about

the book.) There must be a piece that connects the two together. This is

where features come in.

Chapter 3 A Tour Through the Deep Learning Pipeline

73

This step is about finding a subset of machine learning algorithms

that are good at exploiting the structure of your data (e.g., have better than

average skill). This involves steps such as

•	 Separating out a validation dataset to use for later

confirmation of the skill of your developed model. Or

defining test options using scikit-learn, such as cross

validation and the evaluation metric to use.

•	 Spot-checking a suite of linear and nonlinear machine

learning algorithms

•	 Comparing the estimated accuracy of algorithms

On a given problem you will likely spend most of your time on this

and the previous step until you converge on a set of three to five well-

performing machine learning algorithms.

�Improve Results
Features and models sit between raw data and the desired insights. In

a machine learning workflow, we pick not only the model, but also the

features. This is a double-jointed lever, and the choice of one affects the

other. Good features make the subsequent modeling step easy and the

resulting model more capable of completing the desired task. Bad features

may require a much more complicated model to achieve the same level

of performance. In the rest of this book, we will cover different kinds of

features and discuss their pros and cons for different types of data and

models. Without further ado, let’s go.

Once you have a shortlist of machine learning algorithms, you need to

get the most out of them.

Chapter 3 A Tour Through the Deep Learning Pipeline

74

There are two different ways to improve the accuracy of your models:

•	 Search for a combination of parameters for each

algorithm using scikit-learn that yields the best results.

•	 Combine the prediction of multiple models into an

ensemble prediction using ensemble techniques.

The line between this and the previous step can blur when a project

becomes concrete. There may be a little algorithm tuning in the previous

step. And in the case of ensembles, you may bring more than a shortlist of

algorithms forward to combine their predictions.

Once you have found a model that you believe can make accurate

predictions on unseen data, you are ready to finalize it. Finalizing a model

may involve subtasks such as

•	 Using an optimal model tuned by scikit-learn to make

predictions on unseen data

•	 Creating a standalone model using the parameters

tuned by scikit-learn

•	 Saving an optimal model to file for later use

Once you make it this far, you are ready to present results to

stakeholders and/or deploy your model to start making predictions on

unseen data.

�Fast Preview of the TensorFlow Pipeline
As we mentioned earlier, TensorFlow (TF) is an open source software

library for numerical computation using data flow graphs. Nodes in the

graph represent mathematical operations, while the graph edges represent

the multidimensional data arrays (tensors) passed between them.

Chapter 3 A Tour Through the Deep Learning Pipeline

75

TensorFlow is available with Python and C++ support, and as we

agreed in Chapter 1, we shall use Python 3 in this book for learning, as

indeed Python API is better supported and much easier to learn. In the

next section, we explain very briefly the main features of the TensorFlow

package, with some programming examples.

TensorFlow includes various types of rich functions and features that

any deep learning engineer needs in their work; the main features include

the following:

•	 Defining, optimizing, and efficiently calculating

mathematical expressions involving multidimensional

arrays (tensors)

•	 Programming support of deep neural networks and

machine learning techniques

•	 Transparent use of GPU computing, automating

management and optimization of the same memory

and the data used. You can write the same code and

run it either on CPUs or GPUs. More specifically,

TensorFlow will figure out which parts of the

computation should be moved to the GPU.

•	 High scalability of computation across machines and

huge data sets

�Tensors—the Main Data Structure
TensorFlow bases its data management on tensors. Tensors are concepts

from the field of mathematics and are developed as a generalization of the

linear algebra terms of vectors and matrices.

Talking specifically about TensorFlow, a tensor is just a typed,

multidimensional array, with additional operations, modeled on the

tensor object.

Chapter 3 A Tour Through the Deep Learning Pipeline

76

Before going to see what the properties of tensors are, we need to teach

you how to run these tensors. TensorFlow uses what’s called sessions to

run tensors, so let’s go and see what these sessions mean.

�First Session
As in Chapter 1, we installed our environment to make it easier to work

on a step-by-step example throughout the book. It is time to move from

theory to practice. To get an initial idea of how to use TensorFlow, open

your favorite Python editor—it’s recommended to use Jupyter—and write

the following lines of code:

x = 1

y = x + 9

print(y)

import tensorflow as tf

x = tf.constant(1,name='x')

y = tf.Variable(x+9,name='y')

print(y)

As you can easily understand in the first three lines, the constant x,

set equal to 1, is then added to 9 to set the new value of the variable y, and

then the end result of the variable y is printed on the screen.

In the last four lines, we have translated according to the TensorFlow

library the first three variables.

If we run the program, we have the following output:

10

<tensorflow.python.ops.variables.Variable object at

0x7f30ccbf9190>

The TensorFlow translation of the first three lines of the program

example produces a different result. Let’s analyze them.

Chapter 3 A Tour Through the Deep Learning Pipeline

77

First. The following statement should never be missed if you want to

use the TensorFlow library. It tells us that we are importing the library and

call it tf:

import tensorflow as tf

Second. We create a constant value called x, with a value equal to one:

x = tf.constant(1,name='x')

Third. Then we create a variable called y. This variable is defined with

the simple equation y=x+9:

y = tf.Variable(x+9,name='y')

Fourth. Finally, print out the result:

print(y)

So how do we explain the different result? The difference lies in the

variable definition. In fact, the variable y doesn’t represent the current

value of x + 9, instead, it means that when the variable y is computed, take

the value of the constant x and add 9 to it. This is the reason why the value

of y has never been carried out. In the next section, I’ll try to fix it. So, we

open the Python IDE (Figure 3-8) and enter the following lines:

Figure 3-8.  TensorFlow code snippet

Chapter 3 A Tour Through the Deep Learning Pipeline

78

Running the preceding code, the output result is finally as follows:

10

We have removed the print instruction, but we have initialized the

model variables:

model = tf.global_variables_initializer()

And, mostly, we have created a session for computing values. In the

next step, we run the model, created previously, and finally, run just the

variable y and print out its current value.

with tf.Session() as session:

 session.run(model)

 print(session.run(y))

This is the magic trick that permits the correct result. In this

fundamental step, the execution graph called the Data Flow Graph

(another important feature in TensorFlow) is created in the session, with

all the dependencies between the variables. The y variable depends on the

variable x, and that value is transformed by adding 9 to it. The value is not

computed until the session is executed.

�Data Flow Graphs
If you think about it, you will find that any deep learning application

is just a result of the repeated computation of complex mathematical

expressions. In TensorFlow, every computation can be described using the

Data Flow Graph, where each node in the graph represents the instance of

a mathematical operation (multiply, divide, add, subtract, and so on), and

each edge is a multidimensional data set (tensors) on which the operations

are performed.

Chapter 3 A Tour Through the Deep Learning Pipeline

79

TensorFlow supports these constructs and these operators. So, let’s see

in detail how nodes and edges are managed by TensorFlow.

Node: In TensorFlow, each node can represent an

instantiation of a single operation. Each operation

has at least one input and may have an output or

not. For instance, the TensorFlow tf.add() function

represents one operation, which is the addition

operation: it takes two inputs and produces only one

output.

Edges: In TensorFlow, edges represent the data

consumed or produced by a computation. There are

two types of edge:

•	 Normal edges: They are carriers of data structures

(tensors), where an output of one operation

(from one node) becomes the input for another

operation. For example, the node tf.matmul()

would correspond to a single node with two

incoming edges (the matrices to be multiplied) and

one outgoing edge (the result of the multiplication).

•	 Special edges: These edges are not data carriers

between the output of a node (operator) and the

input of another node. A special edge indicates

a control dependency between two nodes. Let’s

suppose we have two nodes A and B and special

edges connecting A to B; it means that B will start

its operation only when the operation in A ends.

Special edges are used in Data Flow Graphs to

set the happens-before relationship between

operations on the tensors.

Chapter 3 A Tour Through the Deep Learning Pipeline

80

After learning the structure of the Data Flow Graph, let’s now explore

some features in deeper detail.

Operation: This represents an abstract computation,

such as adding or multiplying matrices. An

operation manages tensors. It can just be

polymorphic: the same operation can manipulate

different tensor element types. For example, the

addition of two int32 tensors, the addition of two

float64 tensors, and so on.

Kernel: This represents the concrete

implementation of that operation. A kernel defines

the implementation of the operation on a particular

device. For example, an add matrix operation can

have a CPU implementation and a GPU one. In

the following section, we introduce the concept

of sessions to create a model execution graph in

TensorFlow. Let’s explain this topic.

Session: When the client program has to establish

communication with the TensorFlow runtime

system, a session must be created. As soon as

the session is created for a client, an initial graph

is created and is empty. It has two fundamental

methods:

•	 session.extend: In computation, the user can

extend the execution graph, requesting to add more

operations (nodes) and edges (data).

•	 session.run: Using TensorFlow, sessions are

created with some graphs, and these full graphs

are executed to get some outputs, or sometimes,

Chapter 3 A Tour Through the Deep Learning Pipeline

81

subgraphs are executed thousands/millions of

times in run invocations. Basically, the method

runs the execution graph to provide outputs.

Dataflow has several advantages that TensorFlow leverages when

executing your programs:

•	 Parallelism: By using explicit edges to represent

dependencies between operations, it is easy for the

system to identify operations that can execute in

parallel.

•	 Distributed execution: By using explicit edges to

represent the values that flow between operations, it is

possible for TensorFlow to partition your program across

multiple devices (CPUs, GPUs, and TPUs) attached to

different machines. TensorFlow inserts the necessary

communication and coordination between devices.

•	 Compilation: TensorFlow’s XLA compiler can use

the information in your Data Flow Graph to generate

faster code, for example, by fusing together adjacent

operations.

•	 Portability: The Data Flow Graph is a language-

independent representation of the code in your model.

You can build a Data Flow Graph in Python, store it in

a SavedModel, and restore it in a C++ program for low-

latency inference.

�Tensor Properties
As previously discussed, TensorFlow uses a tensor data structure to

represent all data. Any tensor has a static type and dynamic dimensions, so

you can change a tensor’s internal organization in real time.

Chapter 3 A Tour Through the Deep Learning Pipeline

82

Another property of tensors is that only objects of the tensor type can

be passed between nodes in the computation graph.

Note  From now on, every time we use the word tensor, we’ll be
referring to TensorFlow’s tensor objects.

�Tensor Rank

A tensor rank represents the dimensional aspect of a tensor, but is not the

same as a matrix rank. It represents the number of dimensions in which

the tensor lives, and is not a precise measure of the extension of the tensor

in rows/columns or spatial equivalents.

A rank one tensor is the equivalent of a vector, and a rank one tensor is

a matrix. For a rank two tensor, you can access any element with the syntax

t[i, j] similar to the syntax of accessing a matrix, as this rank will produce a

matrix. For a rank three tensor, you would need to address an element with

t[i, j, k], and so on.

In the following example, we will create a tensor, and access one of its

components:

import tensorflow as tf

sess = tf.Session()

tens1 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

print(sess.run(tens1)[1,1,0])

5

This is a tensor of rank three, because in each element of the

containing matrix, there is a vector element, and that’s why we need to

specify three coordinates.

Table 3-1 summarizes all the variables ranks and their math entity as

well as the code definition by example.

Chapter 3 A Tour Through the Deep Learning Pipeline

83

�Tensor Shape

The TensorFlow documentation uses three notational conventions to

describe tensor dimensionality: rank, shape, and dimension number.

Table 3-2 shows how these relate to one another.

Table 3-1.  The Tensor Rank with Example

Rank/Dimension Math Entity Code Definition Example

 0 Scalar scalar = 1000

 1 Vector vector = [2, 8, 3]

 2 Matrix matrix = [[4, 2, 1], [5, 3, 2], [5, 5, 6]]

 3 3d-tensor tensor = [[[4], [3], [2]], [[6], [100], [4]], [[5], [1], [4]]]

Table 3-2.  The Tensor Shape with Example

Rank Shape Dimension Number Example

 0 [ ] 0 Scaler = 10

 1 [d0] 1 Vector = [4]

 2 [d0, d1] 2 Matrix = [2, 2]

 3 [d0, d1, d2] 3 Tensor = [2, 2, 4]

 n [d0, ... , dn-1] D

�Summary
Now let’s do a brief recap about what we’ve seen and learned in this

chapter. First we learned what deep learning is and about its approach,

which is a subset of machine learning. We learned the basic function

Chapter 3 A Tour Through the Deep Learning Pipeline

84

tools to build layers, which combine together to make a deep learning

architecture. Finally, we went through the pipeline to give you a view about

where the book will go, and what you will learn when you get into chapters

that define it in detail. After finishing this chapter, we hope you found it

valuable.

Chapter 3 A Tour Through the Deep Learning Pipeline

85© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_4

CHAPTER 4

Build Your First Toy
TensorFlow app
In the previous chapter, we answered important questions you have to

know before continuing reading the book, such as: what is TensorFlow?,

what makes it very valuable like this?, and is TensorFlow easy to learn? All

these questions come to your mind and many developers too, when you

see a TensorFlow word, but yes, TensorFlow is a very valuable package

in deep learning. However, there are many packages like it that are

compatible with deep learning.

In this chapter, we continue introducing the important concepts you

need in TensorFlow. We introduce the usage of TensorFlow in the field of

deep learning, and how this library helps us a lot by giving us the necessary

components and functions that represent the building blocks for any deep

learning model. Also, we give you two small examples of how to build a

tiny neural network with TensorFlow. So, let us get started.

�Basic Development of TensorFlow
Let us consider another approach, teaching you all the needed TensorFlow

functionalities by walking through examples. We will start by warming up,

and then we will go to the hard parts bit by bit.

86

�Hello World with TensorFlow
To be fair enough, it’s good to understand TensorFlow by seeing a working

example of it, so we will go through the advanced part of TensorFlow by

giving it to you in small examples.

So, the first example is to warm up the information we gave you

in Chapter 2, we will build a small app that outputs the words “Hello,

TensorFlow!”

As you see, we first import the print_function from the __future__

module to make the print of Python 2 callable as the print function in

Python 3. After this, we of course have to import TensorFlow as tf, the

popular alias we talked in a previous chapter. Then we initiate the hello

variable that equals the tf.constant, and we set it to the word we need to

print. Last, we create the session that we will use to run the whole program

and we run it to print in the last line.

from __future__ import print_function

import tensorflow as tf

The value returned by the constructor represents

the output of the Constant op.

hello = tf.constant('Hello, TensorFlow!')

Start tf session

sess = tf.Session()

Run the op

print(sess.run(hello))

So, when I first see this piece of code, I may have a question: what is the

tf.constant? It is a good question, and tf.constant is one of many tensor

type variables. But this one has an advantage, as indicated by its name: it

cannot change its value through the runtime of the program. A constant

has the following arguments, which can be tweaked as required to get the

desired function.

Chapter 4 Build Your First Toy TensorFlow app

87

•	 value: A constant value (or list) of output type dtype

•	 dtype: The type of the elements of the resulting tensor

•	 shape: Optional dimensions of the resulting tensor

•	 name: Optional name for the tensor

�Simple Iterations
Now we have warmed up with the previous example; what we saw in this

example, we discussed in Chapter 2 (constant, session).

So we need something new, and a bit harder; we need to see what

more TensorFlow can do. We now have a session, constant, and variables.

In the next example, we learn to make loops in TensorFlow and make

updates to certain variables. These variables simulate the model weights,

and loops simulate the epochs that update the model weights.

our first variable in the "global_variable" set

var = tf.Variable(0)

add_operation = tf.add(var, 1)

update_operation = tf.assign(var, add_operation)

with tf.Session() as sess:

once define variables, you have to initialize

them by doing this

 sess.run(tf.global_variables_initializer())

 for _ in range(3):

 sess.run(update_operation)

 print(sess.run(var))

Note I n this code example we did not import the TensorFlow, as we
assume that you imported it in the previous example and both are in
the same Python session.

Chapter 4 Build Your First Toy TensorFlow app

88

First things first: we created the var variable and initiated it with tf.

Variable with 0 value, then we created the add_operation variable that

is a TensorFlow addition block or operation. After that we initiated the

update_operation with tf.assign(var, add_operation), which simply

updates the var variable by reference using the add_operation function,

and all that happens when you call the update_operation variable.

Now it’s time for creating the session, but if you noticed, we created

the session within the with block. Why did we do that? The reason is that

after initiating and running each session, we have to close it to free all the

resources reserved by the program or by the TensorFlow graph. After that

we ran the session sess.run(tf.global_variables_initializer()) and

you can see the weird tf.global_variables_initializer() function;

the main job of this function is to initialize all variables in the TensorFlow

graph. So, if you run tf.Variable or tf.Placeholder—and we will see

what it is later—you will see an error and that’s due to the uninitiated

variables. And last, we do a simple loop that iterates and updates the var

variable by running update_operation.

So, how does this simulate a real-world deep learning model? When

you train a model, you use variables to hold and update parameters.

Variables are in-memory buffers containing tensors. We know about

tensors from Chapter 2, so the question is: is the tensor in the previous

example a variable or constant? It can’t be a constant type tensor, so we

have to use tf.Variable because we need a form of tensors that can be

updated in the runtime of our TensorFlow graph.

�Prepare the Input Data
Going a bit further, we need to simulate the input data for any model in

TensorFlow. One may question how the user can enter any data to the

model. We will make it harder; we will enter an image to TensorFlow.

Using the imread command in matplotlib, we import a digital image in

standard format colors (JPG, PNG, BMP, TIF):

Chapter 4 Build Your First Toy TensorFlow app

89

import matplotlib.image as mp_image

filename = "lena.jpeg"

input_image = mp_image.imread(filename)

However, we can see the rank and the shape of the tensor:

print('input dim = {}'.format(input_image.ndim))

print('input shape = {}'.format(input_image.shape))

input dim = 3

input shape = (220, 220, 3)

You’ll see the output, which is (220, 220, 3). This means the image

is 220 pixels high, 220 pixels wide, and 3 colors (red, green, blue) deep.

Finally, using matplotlib, it is possible to visualize the imported image

(Figure 4-1):

import matplotlib.pyplot as plt

plt.imshow(input_image)

plt.show()

Figure 4-1.  The code output of the lena image

Chapter 4 Build Your First Toy TensorFlow app

90

In this example, slice is a bidimensional segment of the starting

image, where each pixel has the RGB components, so we need a

placeholder to store all the values of the slice:

import tensorflow as tf

my_image = tf.placeholder("uint8",[None,None,3])

For the last dimension, we’ll need only three values. Then we use the

TensorFlow operator slice to create a subimage:

slice = tf.slice(my_image,[10,0,0],[16,-1,-1])

The last step is to build a TensorFlow working session, an extra thing

than the last example you saw. When we run the session, we need to feed

it the placeholder we have (the data we have); we can do this by sending

all the data to feed_dict, which will feed the input to the session (or your

model perhaps):

with tf.Session() as session:

result = session.run(slice,feed_dict={my_image: input_image})

print(result.shape)

plt.imshow(result)

plt.show()

Figure 4-2.  The resulting shape is then as the image shows

Chapter 4 Build Your First Toy TensorFlow app

91

To recap, we put a summary of the tf.Placeholder and tf.Variable in

Table 4-1.

Table 4-1.  A Comparison Between tf.Placeholder and tf.Variable

Placeholder Variable

A placeholder is a node (same as a

variable) whose value can be initialized

in the future. These nodes basically

output the value assigned to them during

runtime. A placeholder node can be

assigned using the tf.placeholder() class,

to which you can provide arguments

such as type of the variable and/or its

shape. Placeholders are extensively used

for representing the training dataset in a

machine learning model, as the training

dataset keeps changing.

A TensorFlow variable is the best way

to represent a shared, persistent state

manipulated by your program. Variables

are manipulated via the tf.Variable

class. Internally, a tf.Variable stores a

persistent tensor. Specific operations

allow you to read and modify the values

of this tensor. These modifications are

visible across multiple tf.Sessions, so

multiple workers can see the same

values for a tf.Variable. Variables must

be initialized before using.

Examples

A = tf.placeholder(tf.float32,

shape=(None, 3))

B = A + 5

x = tf.Variable(3, name=“x”)

y = tf.Variable(4, name=“y”) f = x*x*y

+ y + 2

�Doing the Gradients
TensorFlow has functions to solve other more complex tasks. For example,

we will use a mathematical operator that calculates the derivative of y

with respect to its expression x parameter. For this purpose, we use the

tf.gradients() function.

Chapter 4 Build Your First Toy TensorFlow app

92

Let us consider the math function y = 2x3. We want to compute the

gradient
dx

dy
 with respect to x = 1. The following is the code to compute

this gradient:

import tensorflow as tf

x = tf.placeholder(tf.float32)

y = 2*x*x*x

grad = tf.gradients(y, x)

with tf.Session() as session:

 grad_val = session.run(grad,feed_dict={x:1})

 print(grad_val)

[6.0]

So, what happens in the preceding code? Let us illustrate it step by step.

	 1.	 First, import the TensorFlow library: import

TensorFlow as tf

	 2.	 The x variable is the independent variable of the

function: x = tf.placeholder(tf.float32)

	 3.	 Let’s build the function: y = 2*x*x

	 4.	 Finally, we call the tf.gradients() function with y

and x as arguments: grad = tf.gradients(y, x)

	 5.	 To evaluate the gradient, we must build a session:

with tf.Session() as session:

	 6.	 The gradient will be evaluated on the variable

x=1: grad_val = session.run(var_grad,feed_

dict={x:1})

	 7.	 The grad_val value is the feed result, to be printed:

print(grad_val)

That gives the following result: 6.0

Chapter 4 Build Your First Toy TensorFlow app

93

�Linear Regression
In this section, we begin our exploration of machine learning techniques

with the linear regression algorithm. Our goal is to build a model that is

able to predict the values of a dependent variable from the values of one or

more independent variables.

�Why Linear Regression?
It’s a basic machine learning algorithm. It’s very justifiable to start from

there. First of all, it is a very plain algorithm, so the reader can grasp

an understanding of fundamental machine learning concepts such as

supervised learning, cost function, and gradient descent.

Additionally, after learning linear regression, it is quite easy to

understand the logistic regression algorithm, and believe it or not,  it is

possible to categorize that one as a small neural network. It’s possible,

yes; we can see it in the next chapters. In Part III we will see how neural

networks work.

�What Is Linear Regression?
Linear regression is a very common statistical method that allows us to

learn a function or relationship from a given set of continuous data.

For example, we are given some data points of x and corresponding

y, and we need to learn the relationship between them. That is called a

hypothesis. The hypothesis is a statistical method that tries to predict

the best model to fit the input data x. In the case of linear regression, the

hypothesis is a straight line, as in the following:

h x wx b() = +

Chapter 4 Build Your First Toy TensorFlow app

94

We will now work on a project in which we will apply all the concepts

we will discuss in the next chapters. In this example, we will create one

approximately linear distribution; afterward, we will create a regression

model that tries to fit a linear function that minimizes the error function

(defined by least squares). This model will allow us to predict an outcome

for an input value, given one new sample.

But before we start, let’s have a hint about datasets.

�Dataset Description
For this example, we will be generating a synthetic dataset consisting of a

linear function with added noise.

Let’s start with importing some packages:

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

First, we see matplotlib.pyplot as plt. These packages are used

for visualization methods, which we will talk about later. The third,

tensorflow, is an open source software library for dataflow programming

across a range of tasks, as discussed in previous chapters.

The second, numpy, is a package for mathematical combinations and

multiplication, but we don’t need to talk about it in more detail now.

To begin, we start by generating our dataset, namely x and y. You can

think of each value in x and y as points on the graph. We want NumPy

to generate 101 points with a value between (-1 and 1), spread evenly.

The result is a NumPy array stored in trX. Similarly, we also want to

randomly generate y such that it has a gradient of 2 (W) and some form of

randomness using np.random.randn(). To make things interesting, we set

y-intercept b to 0.2.

Chapter 4 Build Your First Toy TensorFlow app

95

np.random.seed(seed=47)

Linear space of 101 and [-1,1]

trX = np.linspace(-1, 1, 101)

#Create The y function based on the x axis

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

Let’s start to see how data will be plotted and how data is distributed

(Figure 4-3).

Create a new figure

plt.figure()

#Plot a scatter draw of the random data points

plt.scatter(trX,trY)

Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

Figure 4-3.  The points of the dataset

We construct the TensorFlow graph that helps us compute W and b.

This is done in the function linear_regression(). In our formula

y = WX + b; the x and y are nodes represented as TensorFlow placeholders.

Chapter 4 Build Your First Toy TensorFlow app

96

create symbolic variables

X = tf.placeholder("float", name="X")

y = tf.placeholder("float", name = "y")

In the first argument of tf.placeholder, we define the data type as

float32 — a common data type in the placeholder. The second argument

is the shape of the placeholder set to None, as we want it to be determined

during training time. The third argument lets us set the name for the

placeholder.

We now define our model by declaring name_scope as Model. This

scope groups all the variables it contains in order to form a unique entity

with homogeneous entities. In this scope, we first define a function that

receives the variables of the x-axis coordinates, the weight, and the bias.

Then we create a new variable, objects, to hold the changing parameters

and instantiate the model with the y_model variable.

with tf.name_scope("Model"):

 def model(X, W, b):

 # We just define the line as X*w + b0

 return tf.add(tf.multiply(X,W), b)

 # create a shared variable

 w = tf.Variable(-1.0, name="b0")

 # create a shared variable

 b = tf.Variable(-2.0, name="b1")

 y_model = model(X, W, b)

In the Cost Function, we create a new scope to include all the

operations of this group and use the previously created y_model to account

for the calculated y-axis values that we use to calculate the loss.

with tf.name_scope("CostFunction"):

 # use sqr error for cost

 cost = (tf.pow(Y-y_model, 2))

Chapter 4 Build Your First Toy TensorFlow app

97

To define the chosen optimizer, we initialize GradientDescentOptimizer,

and the step will be of 0.05, which seems like a reasonable start for

convergence.

train_op = tf.train.GradientDescentOptimizer(0.05)

 .minimize(cost)

Let’s create the session and initialize the variables we want to save for

reviewing in TensorBoard. We will be saving one scalar variable with the

error result of the last sample for each iteration. We will also save the graph

structure in a file for reviewing.

sess = tf.Session()

init = tf.global_variables_initializer()

you can use you own path

tf.train.write_graph(sess.graph, '/home/ubuntu/linear',

'graph.pbtxt')

cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/linear',

sess.graph)

For model training, we set an objective of 100 iterations (epochs),

where we send each of the samples to the train operation of the gradient

descent. After each iteration, we plot the modeling line and add the value

of the last error to the summary.

for i in range(100):

 for (x, y) in zip(trX, trY):

 sess.run(train_op, feed_dict={X: x, Y: y})

 summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})

 writer.add_summary(summary_str, i)

Chapter 4 Build Your First Toy TensorFlow app

98

 b0temp=b.eval(session=sess)

 b1temp=w.eval(session=sess)

 plt.plot (trX, b0temp + b1temp * trX)

plt.show()

Let’s see how our model is trained in a visualization chart (Figure 4-4).

Note that the X data was set on the x-axis, while each line is a model trying

to predict the corresponding response y for it.

Figure 4-4.  Different lines from different models

Now let’s check the parameter results, printing the run output of the w

and b variables.

print ("w = {}".format(sess.run(w))) # Should be around 2

print ("b = {}".format(sess.run(b))) #Should be around 0.2

Output:

w = 1.8842864

b = 0.12578306

It’s time to graphically review the data again and the suggested final

line—the final predictor line (Figure 4-5).

Chapter 4 Build Your First Toy TensorFlow app

99

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

plt.show()

Figure 4-5.  How the model line fits the data points. Notice that the
x-axis is the input data, while the y-axis is the corresponding response;
also notice that the blue points are the data observations, while the
line is the model trying to fit it

�Full Source Code
import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

Linear space of 101 and [-1,1]

trX = np.linspace(-1, 1, 101)

#Create The y function based on the x axis

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

trX = np.linspace(-1, 1, 101)

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

create a y value which is approximately linear

but with some random noise

Chapter 4 Build Your First Toy TensorFlow app

100

plt.figure() # Create a new figure

plt.scatter(trX,trY) #Plot a scatter draw of

the random datapoints

Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

create symbolic variables

X = tf.placeholder("float", name="X")

Y = tf.placeholder("float", name = "Y")

with tf.name_scope("Model"):

 def model(X, w, b):

 # We just define the line as X*w + b0

 return tf.add(tf.multiply(X,w), b)

 # create a shared variable

 w = tf.Variable(-1.0, name="b0")

 # create a shared variable

 b = tf.Variable(-2.0, name="b1")

 y_model = model(X, w, b)

use sqr error for cost

with tf.name_scope("CostFunction"):

 cost = (tf.pow(Y-y_model, 2))

train_op = tf.train.GradientDescentOptimizer(0.05).

minimize(cost)

sess = tf.Session()

init = tf.global_variables_initializer()

tf.train.write_graph(sess.graph, '/home/ubuntu/linear',

'graph.pbtxt')

cost_op = tf.summary.scalar("loss", cost)

Chapter 4 Build Your First Toy TensorFlow app

101

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/linear',

sess.graph)

for i in range(100):

 for (x, y) in zip(trX, trY):

 sess.run(train_op, feed_dict={X: x, Y: y})

 summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})

 writer.add_summary(summary_str, i)

 b0temp=b.eval(session=sess)

 b1temp=w.eval(session=sess)

 plt.plot (trX, b0temp + b1temp * trX)

plt.show()

print (sess.run(w)) # Should be around 2

print (sess.run(b)) #Should be around 0.2

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�XOR Implementation Using TensorFlow
Exclusive or exclusive disjunction is a logical operation that outputs

true only when inputs differ (one is true, the other is false). We will learn

something about it, but if you need to learn it in detail, you can read

more about Boolean functions. In calculus, XOR is a solution for a gates

problem: A ⊕ B = (A U B) ^ (~A U~B). Let’s see how it works (Table 4-2).

Chapter 4 Build Your First Toy TensorFlow app

102

This a short explanation about the XOR gate, but it’s not our aim

to discuss the XOR gate; our aim is to use TensorFlow to make a model

XOR. Let’s start some code.

We don’t need to reexplain these lines of code again, as we just

explained it in the linear regression example. And as always, we will start

by importing the needed packages.

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

Let’s construct the dataset as a table. We will make both A and B as

columns in X_train and the result of the A XOR B function as y_train.

setting required X and Y values to

perform XOR operation

X_train = [[0,0],[0,1],[1,0],[1,1]]

y_train = [[0],[1],[1],[0]]

Then we will create the placeholders that we will enter the data with

in the model. We will create one called X for the X_train with shape 4∗2—

because it has 4 rows and 2 columns, and y for y_train with shape 4∗1—

because it has 4 rows and it is one column. Both will have the same name

of variables.

Table 4-2.  The input and

output of the XOR gate

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Chapter 4 Build Your First Toy TensorFlow app

103

create symbolic variables

X = tf.placeholder(tf.float64, shape=[4, 2],name="X")

y = tf.placeholder(tf.float64, shape=[4, 1],name="Y")

Let’s construct some variables, like the number of training examples

(number of rows) and features we have in our dataset (number of

columns) and some hyperparameters, like learning rate and number of

units in our model hidden layer.

#number of training examples (Rows)

m = np.shape(X)[0]

#number of features (Columns)

n = np.shape(X)[1]

#number of nodes in the hidden layer

hidden_s = 2

#learning rate initialization

l_r = 1

To build the model that should solve the XOR problem, we need to add

new things like theta and hidden layers, and of course, we described the

activation functions before. So, don’t worry about this complex code; we’ll

explain this code in.

The neural network mainly is composed of layers, so each layer is

connected by another layer. Hence, we can define every layer as the output

of the earlier or previous layer multiplied by some weights, and we add

some bias to it too. For instance, layer one Z1 is equal to the output of the

previous layer, which is A0 or the input X multiplied by its weights W1 and

then bias b1 is added. After this, the output of this layer goes through the

activation function before sending it to the next layer A1 = Sigmoid(Z1). And

the process is repeated for the next layer.

So, let do one last and fast recap: in the first layer Z1 = W1 ∗ X + b1, and

then A1 = Sigmoid(Z1). In the next layer, or we can call it the hidden layer,

Z2 = W2 ∗ A1 + b2, and then A2 = Sigmoid(Z2). So please remember this

Chapter 4 Build Your First Toy TensorFlow app

104

function, and we will discuss the activation function and the weights and

hyperparameters in a later chapter. But for now, we want you to see an

end-to-end example.

Now, let us write the model code that does the same as we described in

the preceding equations. We start by building the model in a scope called

Model; using tf.name_scope we can achieve this and build small scopes in

our system.

with tf.name_scope("Model"):

def model():

 # cast tensor to new type

 # and make new variable theta1, theta2

 �theta1 = tf.cast(tf.Variable(tf.random_normal([3,

hidden_s]),name="theta1"),tf.float64)

 �theta2=tf.cast(tf.Variable(tf.random_normal([hidden_

s+1,1]),name = "theta2"),tf.float64)

 #conducting forward propagation

 a1 = tf.concat([np.c_[np.ones(m)], X], 1)

 # the weights of the first layer are multiplied

 # by the input of the first layer

 z1 = tf.matmul(a1,theta1)

 # the input of the second layer is the output of

 # the first layer passed through

 # activation function and column of biases is added

 a2 = tf.concat([np.c_[np.ones(m)],tf.sigmoid(z1)],1)

 # the input of the second layer is

 # multiplied by the weights

 z3 = tf.matmul(a2,theta2)

 # the output is passed through the activation

 # function to obtain the final probability

 h3 = tf.sigmoid(z3)

 return h3

Chapter 4 Build Your First Toy TensorFlow app

105

Now we call the function that will build the model for us, as in the

following:

y_model = model()

This cost function (Figure 4-6) is captured by the log function, such

that:

Figure 4-6.  The cost function equation

with tf.name_scope("CostFunction"):

 cost=

-tf.reduce_sum(Y*tf.log(y_model)+(1-Y)*tf.log(1-y_

model),axis=1)

To define the chosen optimizer, we initialize GradientDescent

Optimizer, and the step will be of 0.05, a reasonable start for convergence.

But the optimizer now works with the hyperparameter learning rate.

train_op = tf.train.GradientDescentOptimizer(learning_rate=l_r)

 .minimize(cost)

Let’s create the session and initialize the variables we want to save for

reviewing in TensorBoard. We will be saving one scalar variable with the

error result of the last sample for each iteration. We will also save the graph

structure in a file for reviewing as follows:

sess = tf.Session()

init = tf.global_variables_initializer()

tf.train.write_graph(sess.graph, '/home/ubuntu/xor',

'graph.pbtxt')

Chapter 4 Build Your First Toy TensorFlow app

106

cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/xor', sess.graph)

For model training, we set an objective of 100 iterations (epochs),

where we send each of the samples to the train operation of the gradient

descent. After each iteration, we plot the modeling line and add the value

of the last error to the summary.

for i in range(100):

 sess.run(train_op, feed_dict={X: X_train, Y: Y_train})

 if i%100==0:

 print("Epoch:",i)

 �print("Hyp:",sess.run(y_model,feed_dict ={X:X_train,Y:Y_

train}))

Epoch: 0

Hyp: [[0.4708459]

 [0.50110425]

 [0.50382591]

 [0.51823803]]

Now let’s check the parameter results, printing the run output of the w

and b variables.

Should be around 2

print ("w = {}".format(sess.run(w)))

#Should be around 0.2

print ("b = {}".format(sess.run(b)))

Output:

w = 1.7057617

b = 0.20965417

Chapter 4 Build Your First Toy TensorFlow app

107

It’s time to graphically review the data again and the suggested final

line—the final predictor line.

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�Full Source Code
import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

#setting required X and Y values to perform XOR operation

X_train = [[0,0],[0,1],[1,0],[1,1]]

Y_train = [[0],[1],[1],[0]]

ADD PLOT HERE

plt.figure() # Create a new figure

plt.scatter(X_train) #Plot a scatter draw of the random

datapoints

Draw one line with the line function

plt.show()

X = tf.placeholder(tf.float64, shape=[4, 2], name="X")

create symbolic variables

Y = tf.placeholder(tf.float64, shape=[4, 1], name = "Y")

m = np.shape(X)[0] #number of training examples

n = np.shape(X)[1] #number of features

hidden_s = 2 #number of nodes in the hidden layer

l_r = 1 #learning rate initialization

with tf.name_scope("Model"):

 def model():

Chapter 4 Build Your First Toy TensorFlow app

108

 �theta1 = tf.cast(tf.Variable(tf.random_

normal([3,hidden_s]),name = "theta1"),tf.float64)

 �theta2 = tf.cast(tf.Variable(tf.random_normal([hidden_

s+1,1]), name = "theta2"),tf.float64)

 # conducting forward propagation

 a1 = tf.concat([np.c_[np.ones(m)], X], 1)

 �# the weights of the first layer are multiplied by the

input of the first layer

 z1 = tf.matmul(a1,theta1)

 �# the input of the second layer is the output of the first

layer, passed through the activation function and column of

biases is added

 a2 = tf.concat([np.c_[np.ones(m)],tf.sigmoid(z1)],1)

 �# the input of the second layer is multiplied by the

weights

 z3 = tf.matmul(a2,theta2)

 �# the output is passed through the activation function to

obtain the final probability

 h3 = tf.sigmoid(z3)

 return h3

 y_model = model()

with tf.name_scope("CostFunction"):

 �cost = -tf.reduce_sum(Y*tf.log(y_model)+(1-Y)*tf.

log(1-y_model),axis = 1)

train_op = tf.train.GradientDescentOptimizer(learning_rate =

l_r).minimize(cost)

sess = tf.Session()

init = tf.global_variables_initializer()

Chapter 4 Build Your First Toy TensorFlow app

109

tf.train.write_graph(sess.graph, '/home/ubuntu/xor','graph.

pbtxt')

cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/xor', sess.graph)

for i in range(100):

 sess.run(train_op, feed_dict={X: X_train, Y: Y_train})

 if i%100==0:

 print("Epoch:",i)

 �print("Hyp:",sess.run(y_model,feed_dict = {X:X_train,Y:Y_

train}))

print (sess.run(w)) # Should be around 2

print (sess.run(b)) #Should be around 0.2

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�Summary
In this chapter, we broke down the theories and used illustrations with

practical work and hard code with TensorFlow. We showed you the

TensorFlow basics to understand its components and make it easier for

you to follow this book and develop products. Then we gave you step-by-

step examples, which walk you through the most needed functionalities

and API of TensorFlow.

This chapter was the last one in the first part of the book. In the second

part the fun begins with a data journey, taking you from data novice to data

engineer with a full guide from data definition to data engineering.

Chapter 4 Build Your First Toy TensorFlow app

PART II

Data

113© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_5

CHAPTER 5

Defining Data
Now that you have a basic introduction to the world of artificial

intelligence, machine learning in general, and the world of deep learning

in particular, you should understand how this field is very important.

After the Introduction Part, we must define some concepts that are

necessary to understand to be a data scientist—or, to be specific, a deep

learning engineer. In Part II we take you from data novice to a data analyst

or data engineer. All the chapters in this part will be about data. For

instance, this chapter defines the data and its basic concepts; it will teach

you what real data looks like and the data shapes and forms it takes, with

real-life examples, and so on.

In this chapter we define data, and that is equivalent to answering

what is the data? After that, we make a small comparison among the forms

of data such as structured, semistructured, and unstructured, defining them

and using small examples for elaboration. After that, we talk about the

ideal form of the data and why you should make your data tidy data.

Also, we talk about all types of data that you might face in any real-life

project such as tabular data and its subtypes, which are qualitative and

quantitative, and the levels of tabular data like nominal, ordinal, interval,

and ratio. After that, we look at both text and images data, using examples

to ensure that you understand this very well. Now, let’s go to the core of the

chapter.

114

�Defining Data
Data is unorganized and unprocessed facts: it might be a raw number,

figures, images, words, or sounds, derived from observations or

measurements. Usually, data is static in nature, a set of discrete, objective

facts about events, and there is no inherent meaning in it.

In the field of data science in general, it is important to understand

the different types of data for several reasons. Not only because the type of

data will help to dictate the method of cleaning and processing—although

choosing the best method is important—but also because knowing

whether the data is unstructured or perhaps quantitative can tell you a lot

about the real-world phenomenon being measured.

So, what we talk about in this chapter is called the characteristic of the

dataset and not the entire dataset. And we will be very clear about which

one we refer to at any given time.

�Why Should You Read This Chapter?
It might seem worthless to stop and think about what type of data we have

before getting into the fun stuff, like model building and maintenance in

deep learning, but this is arguably one of the most important steps you

need to take to perform data science.

Consider an example where we are looking at a certain dataset of people

with a type of disease. In a dataset of people, if we considered the age of every

patient on the dataset, we can’t say that there’s a patient who is zero years

old; the age cannot be zero or even a negative number. Another example is

a gender column that is denoted via an identifying number to save space.

For example, perhaps male is denoted by 1, while female is 2. Without

understanding that these numbers are not actually ordered numbers as we

normally think about them (where 2 is greater than 1 and therefore female is

greater than male), we will make terrible mistakes in our analysis.

Chapter 5 Defining Data

115

You should apply the same principles when you use any data field

pipelines. When given a dataset, it is tempting to jump right into exploring,

applying statistical models, and researching the applications of deep

learning in order to get results faster. However, if you don’t understand

the type of data that you are working with, then you might waste your time

applying models that will be ineffective with that dataset.

When given a new dataset, it is always recommended to take about an

hour (it might be less) to make the distinctions mentioned in the following

sections.

�Structured, Semistructured, and
Unstructured Data
The first question you might ask about the upcoming dataset is if the data

is structured or not. Let’s show you the difference between structured,

semistructured, and unstructured data.

•	 Structured data: is easily organized and generally

stored in databases or flat files like CSV and EXCEL.

Structured data generally consists of numerical

information and is objective.

Some types of structured data can be machine

generated, such as data that comes from medical

devices (heart rate, blood pressure), manufacturing

sensors (rotation per minute, temperature), or web

server logs (number of times a page is visited).

Structured data can also be human-generated: data

such as age, zip code, and gender.

Chapter 5 Defining Data

116

•	 Unstructured data: continues to grow in influence in

the enterprise as organizations try to leverage new

and emerging data sources. These new data sources

are largely made up of streaming data coming from

social media platforms, mobile applications, location

services, and Internet of Things technologies.

Most data that exists in text form, including server

logs and Facebook posts and its comments, is

unstructured. Also, a genetic sequence of chemical

nucleotides (for example, ACGTATTGCA) is

unstructured even if the order of the nucleotides

matters, as we cannot form descriptors of the

sequence using a row/column format.

•	 Semistructured data: is a form of structured data that

does not conform with the formal structure of data

models associated with relational databases or other

forms of data tables, but nonetheless contains tags

or other markers to separate semantic elements and

enforce hierarchies of records and fields within the data.

Therefore, it is also known as self-describing structure.

Semistructured data might be found in file types of

JSON and XML formats.

As a data engineer or deep learning engineer, you will always prefer to

work with structured data, although sometimes semistructured too. Most

of us, as data scientist/machine learning engineers, build statistical and

machine learning models on structured datasets that consist of columns

and rows that make the model easy to follow its pattern, but they cannot

work on unstructured data because unstructured data has no specific

pattern or interpretation. Hence, we cannot expect our model to work with

these types of data without a proper cleaning.

Chapter 5 Defining Data

117

But what makes unstructured data so important is that it is so common

on the Internet; almost 80%-90% of the world’s data is unstructured data,

suggesting that 80%-90% of the world’s knowledge is hidden in it. This data

exists in many forms like tweets, e-mails, literature, and server logs. These

are generally unstructured forms of data.

We will see later how to extract knowledge from unstructured free-

form datasets, and how to use preanalysis techniques, called preprocessing,

that turn unstructured data into a clean and organized table—in other

words, turn it into structured data.

�Tidy Data
Tidy data is a standard way of mapping the meaning of a dataset to its

structure. A dataset is messy or tidy, depending on how rows, columns,

and tables are matched up with observations, variables, and types.

In tidy data:

	 1.	 Each variable forms a column.

	 2.	 Each observation forms a row.

	 3.	 Each type of observational unit forms a table.

This is Codd’s 3rd normal form, but with the constraints framed in

statistical language, and the focus put on a single dataset rather than the

many connected datasets common in relational databases. Messy data is

any other arrangement of the data.

Tidy data makes it easy for an analyst or a computer to extract needed

variables, because it provides a standard way of structuring a dataset.

Compare, for example, the different versions of pregnancy data: in the

messy version you need to use different strategies to extract different

variables. This slows analysis and invites errors. If you consider how

many data analysis operations involve all of the values in a variable (every

Chapter 5 Defining Data

118

aggregation function), you can see how important it is to extract these

values in a simple, standard way. Tidy data is particularly well suited

for vectorized programming languages like Python, because the layout

ensures that values of different variables from the same observation are

always paired.

While the order of variables and observations does not affect the

analysis, a good ordering makes it easier to scan the raw values. One way

of organizing variables is by their role in the analysis: are values fixed by

the design of the data collection, or are they measured during the course

of the experiment? Fixed variables describe the experimental design

and are known in advance. Computer scientists often call fixed variables

dimensions, and statisticians usually denote them with subscripts on

random variables. Measured variables are what we actually measure in a

study. Fixed variables should come first, followed by measured variables,

each ordered so that related variables are contiguous. Rows can then be

ordered by the first variable, breaking ties with the second and subsequent

(fixed) variables. This is the convention adopted by all tabular displays in

this book.

�Divide and Conquer
As we go further in this chapter, we can divide data into three pieces, as

follows:

•	 Tabular data

•	 Text data

•	 Image data

You can face each type in a real-problem, so you have to be ready to

understand and prepare such data types.

Chapter 5 Defining Data

119

�Tabular Data
�Quantitative​ vs. ​Qualitative​ Data
We talked earlier about a dataset’s ​specific characteristics​ and defined

it, and we know that structured data comes in the form of tables or

matrices, each consisting of rows and columns. Rows represent a real-

world observation or case study, for example, certain patient biometrics.

Columns represent data fields, for example, the patient gender field.

Each data column has its own characteristics that define the column,

for example, patient gender might be either male or female ​if not missing

values​. So, these values of patient gender follow some representation that

needs to be defined.

Note  Columns can be named features, columns, characteristics, or
even variables.

All fields follow one of two data types, which are defined as follows:

•	 Quantitative data: This data can be described using

numbers, and basic mathematical procedures,

including addition, are possible on the set.

•	 Qualitative data: This data cannot be described

using numbers and basic mathematics. This data is

generally thought of as being described using “natural”

categories and language.

�Example—the Titanic
The sinking of the RMS Titanic is one of the most infamous shipwrecks

in history. Let’s say that we are processing observations of what

sorts of people were likely to survive, using the following descriptors

Chapter 5 Defining Data

120

(characteristics). And each of these characteristics can be classified as

either quantitative or qualitative; that simple distinction can change

everything. Let’s take a look at each one:

•	 PassengerId - quantitative: Observation ID; usually

takes numerical values

•	 Survived - qualitative: Survival (0 = No; 1 = Yes)

•	 Pclass - qualitative: Passenger class (1 = 1st; 2 = 2nd;

3 = 3rd)

•	 Name - qualitative: Passenger name

•	 Sex - qualitative: Passenger gender

•	 Age - quantitative: Passenger age

•	 SibSp - quantitative: Number of siblings/spouses

aboard

•	 Parch - quantitative: Number of parents/children

aboard

•	 Ticket - qualitative: Ticket number

•	 Fare - quantitative: Passenger fare

•	 Cabin - qualitative: Cabin ID

•	 Embarked - qualitative: Port of embarkation (C =

Cherbourg; Q = Queenstown; S = Southampton)

So, after we categorize each column to be either quantitative or

qualitative, you might wonder why these columns are under this category.

Let me give another quick example for more elaboration.

Let us consider the column Name, which represents the passenger

name. This column is not expressed as a number and we cannot perform

math on the name of the passenger, so it is qualitative. Now consider Age,

which represents passenger age in numbers. We can do basic operations

Chapter 5 Defining Data

121

such as adding up the ages for all passengers and dividing it by the total

number of passengers to get the passengers’ average age, thus putting the

Age column under the Quantitative umbrella.

Note E ven though a ticket number is being described using
numbers, it is not quantitative. This is because you can’t talk about
the sum of all ticket numbers or an average ticket number. These are
nonsensical descriptions.

Pretty much whenever a word is used to describe a characteristic, it
is a qualitative factor.

�Divide and Conquer
Quantitative data can be broken down one step further, into discrete and

continuous quantities, that can be defined as follows:

•	 Discrete variable: is a variable whose value is obtained

by counting—for example, the number of students

present, because you can count the students in a

certain class.

•	 Continuous variable: is a variable whose value is

obtained by measuring. One example is the height of

students in a class, because a student’s height might be

150 cm or 150.5 cm or even 150.09 cm. The height of a

person or building is a continuous number because an

infinite scale of decimals is possible. Other examples of

continuous data would be time and temperature.

Chapter 5 Defining Data

122

�Making a Checkpoint
So far, we have looked at the differences between structured,

semistructured, and unstructured data, as well as between qualitative and

quantitative characteristics.

These are simple concepts in the data science field, but these distinctions

may cause a huge effect on the data scientist’s analysis of a given dataset.

A small summarization T o make it simple, data as a whole can
either be structured or unstructured, meaning that the data can either
take on an organized row/column—table like view— structure with
distinct features that describe each row of the dataset, or exist in a
free-form state that usually must be preprocessed into a form that is
easily digestible.

If data takes a structured format or we can say that the data is tabled,

we can look at each column (feature) of the dataset as being either

quantitative or qualitative. Basically, can the column be described using

mathematics and numbers or not? The next part of this chapter breaks

down data into four very specific and detailed levels. At each order, we will

apply more complicated rules of mathematics, and in turn, we can gain a

more intuitive and quantifiable understanding of the data.

�The Four Levels of Data
Looking at structured data, we understand that each column (feature) can

be one of the following four levels:

•	 Nominal

•	 Ordinal

•	 Interval

•	 Ratio

Chapter 5 Defining Data

123

As we explain each element of this list, you will see the structure of

data and the variation of columns; each element of this list comes with a

practice guide of its processing and techniques used for it. But before we

start explaining these techniques, we shall introduce a small statistical

definition: the measure of center.

�Measure of Center

A measure of central tendency (measure of center) is a value that attempts

to describe a set of data by identifying the central position of the data set

(as representative of a “typical” value in the set). This one value number

describes what the data tends to, and for each data level the measure of

center technique changes. So, let us start explaining these levels.

Note  Sometimes the measure of center of a feature is referred to
as the balance point of this feature.

�The Nominal Level
Let’s start with the easiest one to understand, the nominal level, which

consists of data that is described purely by name or category, Nominal
scales could simply be called “labels.” Basic examples include gender,

nationality, or species. They are not described by numbers and are

therefore qualitative. The following are some examples:

•	 Your gender is at the nominal level of data. You are

either a male or a female.

•	 The answer to “What is your hair color?” is also

nominal, where the answer might be “brown, black,

blond, gray, or other.”

Chapter 5 Defining Data

124

�Mathematical Operations Allowed for Nominal

We cannot perform mathematics at the nominal level of data except the

basic equality and set membership functions, as shown in the following two

examples:

•	 Being a data scientist is the same as being in the tech

industry, but not vice versa.

•	 A figure described as a square falls under the

description of being a rectangle, but not vice versa.

Note A subtype of nominal scale with only two categories (e.g.,
male/female) is called dichotomous.

�Measures of Center for Nominal

In order to find the balance point of nominal data, we generally turn to the

mode.

The mode is defined as the most frequently occurring number in a

data set. The mode is most useful in situations that involve categorical

(qualitative) data that are measured at the nominal level.

As an example of this, consider that we collected all students in a

certain school and listed their gender whether male or female as follows:

Male, female, male, male, female, male, female,

female, male, female, male

The mode here is male, where if you count the values you will find that

there are six males and five females.

Chapter 5 Defining Data

125

Note  Measures of center such as the mean and median do not
make sense at this level, as we cannot order the observations or
even add them together.

�What Does It Mean to be a Nominal Level Type?

Data at the nominal level is mostly categorical in nature, like we saw in the

last example male/female, because we generally can only use words to

describe the data.

While data at the nominal level can certainly be useful, we must be

careful about what insights we may draw from them. With only the mode

as a basic measure of center, we are unable to draw conclusions about an

average observation. This concept does not exist at this level. It is only

at the next level that we may begin to perform true mathematics on our

observations.

�The Ordinal Level
The nominal level is not that flexible—we cannot use most mathematical

operations on its observations—due to the fact that we cannot order its

observations in any natural way.

So, we can say that the data that can be ordered or have a rank are in

the ordinal level category; however, although the ordinal level provides us

with a rank order, or the ability to place one observation before the other,

it does not provide us with relative differences between observations.

This means that while we can order the observations from first to last, we

cannot execute a mathematical operation such as adding or subtracting

the observations to get any real meaning.

Chapter 5 Defining Data

126

�Examples of Being Ordinal

Each scale is an incremental level of measurement, meaning each scale

fulfills the function of the previous scale and all survey question scales

such as Likert, semantic differential, dichotomous, etc.

For example, a semantic differential scale question might be “How

satisfied are you with our services?” and the answer is one of the following:

•	 Very unsatisfied – 1

•	 Unsatisfied – 2

•	 Neutral – 3

•	 Satisfied – 4

•	 Very satisfied – 5

As you can see, the order of variables is important and so is the

labeling. Very unsatisfied will always be worse than unsatisfied, and

satisfied will be worse than very satisfied.

Note A t the ordinal level, the distance between variables can’t be
calculated. Description qualities indicate tagging properties similar to
the nominal scale, in addition to which, the ordinal scale also has a
relative position of variables. Origin of this scale is absent; therefore,
there is no fixed start or “true zero.”

�What Data Is Like at the Ordinal Level

As we said about nominal level data, we can see the same here. The

ordinal level is mostly categorical in nature, like we saw in the last example

satisfied/natural/unsatisfied, because we generally can use words to

describe the data order in the process.

Chapter 5 Defining Data

127

While data at the ordinal level can certainly be useful, we must be

careful about what insights we may draw from them, as you know now that

the order matters. So, selecting the wrong measure of center technique

may influence your results and make things go wrong. This concept

does not exist at this level. It is only at the next level that we may begin to

perform true mathematics on our observations.

�Mathematical Operations Allowed for Ordinal

At the ordinal level, we can do more mathematical operations on data that

we could not do at the nominal level data. We inherit all mathematics from

the nominal level (equality and set membership) and we can also add the

following to the list of operations that are allowed at the ordinal level:

•	 Ordering

•	 Comparison

Ordering refers to the natural order provided to us by the data;

however, this can be tricky to figure out sometimes. For example, if you are

building a recommendation engine, you can consider ordering items using

each item rank to make a higher rank come first to the user, or you might

think to sort these items per cost or materials and so on. This could change

the order of the data, but as long as we are consistent in what defines the

order, it does not matter what defines it.

Comparisons are another new operation allowed at the ordinal level.

At the ordinal level, it would not make sense to say that male is better

than female or vice versa. But at the ordinal level, we can make certain

comparisons. For example, going back to the earlier example of a semantic

differential scale, we can say that putting an “unsatisfied” on a survey is

worse than putting a “neutral.”

Chapter 5 Defining Data

128

�Measures of Center for Ordinal

At this level, the median is an appropriate way of defining the center of

the data. The mean, however, would be impossible because division and

addition are not allowed at this level. But we can use the mode like we did

at the nominal level.

Here’s a small example to elaborate the use of median. Imagine that

we have conducted a survey using the satisfaction question in the earlier

example; you will see results as follows:

 5, 2, 5, 2, 4, 1, 2, 3, 1, 5, 4, 3, 4, 5,

 3, 2, 5, 3, 2, 1, 4, 5, 3, 4, 4, 4, 5, 4,

 3, 2, 4, 5, 4, 2, 1, 4, 5, 4, 3, 2, 1

Most people may argue that the mean of these scores would work just

fine. But the mean would not be as mathematically viable, because if we

added two scores, say a score of four plus a score of one, the sum of two

does not really mean anything, and if you divided by their count, say two,

the result will be out of these scale representations. If addition/subtraction

among the scores doesn’t make sense, the mean won’t make sense either.

So, let us use Python to calculate both mean and median to see the

effect of the observation on both of these functions (Figure 5-1). We also

recommend using the NumPy package.

Chapter 5 Defining Data

129

As you can see in the example in figure, using median will produces

the output of 4 and this exists in the observation, so we can use it as a

center of these observations. However, the mean outputs 3.33 and that’s

out of the data observation scale—it does not exist in the observations—

and that’s why we cannot use mean on ordinal level data.

�Quick Recap and Check
So far, we have introduced to you two levels of data out of four:

•	 The nominal level

•	 The ordinal level

At the nominal level, we deal with data usually described using

vocabulary, or you can say it’s just named (although sometimes with

numbers), with no order, and little use of mathematics (equality and set

membership). At the ordinal level, we have data that can be described with

numbers and also have a “natural” order, allowing us to put one in front of

the other, and you can use comparisons and sorting on them.

Figure 5-1.  A code example of how to calculate mean and median

Chapter 5 Defining Data

130

�The Interval Level
The interval Level is defined as a numerical scale where the order of

the variables is known, as well as the difference between these variables.

Variables that have familiar, constant, and computable differences are

classified using the interval scale. It is easy to remember the primary role

of this scale too. “Interval” indicates distance between two entities, which

is what the interval scale helps in achieving.

The interval scale contains all the properties of the ordinal scale,

in addition to which, it offers a calculation of the difference between

variables. The main characteristic of this scale is the equidistant difference

between objects.

�Examples of Interval Level Data
Temperature is a great example of data at the interval level. If it is 100

degrees Fahrenheit in one country and 80 degrees Fahrenheit in another

one, then the first country is 20 degrees warmer than the second. This

simple example allows for so much more manipulation at this level than

previous examples.

•	 80 degrees is always higher than 50 degrees, and the

difference between these two temperatures is the same

as the difference between 70 degrees and 40 degrees.

•	 Also, the value of 0 is arbitrary, because negative values

of temperature do exist, which makes the Celsius/

Fahrenheit temperature scale a classic example of

interval scale.

Chapter 5 Defining Data

131

�What Data Is Like at the Interval Level
As you can see, this data level is represented by numbers, and that seems a

bit easier for the sake of analysis, but in fact you have to pay some attention

to your variables. That is because in selecting the measure of center

technique such as mean, you have a lot of outliers that may influence the

conclusions you get from it.

�Mathematical Operations Allowed for Interval
We can use all the operations allowed at the lower levels (equality,

ordering, comparisons, and so on), along with two other notable

operations:

•	 Addition

•	 Subtraction

These two new operations allow us to express the observation in a

useful way.

�Measures of Center for Interval

At this level, we can use the median and mode to describe this data;

however, usually the most accurate description of the center of data would

be the arithmetic mean, more commonly referred to as, simply, “the

mean.” Recall that the definition of the mean requires us to add together

all the measurements. At the previous levels, addition was meaningless;

therefore, the mean would have lost useful value. It is only at the interval

level and above that the arithmetic mean makes sense.

Suppose we look at the temperature of a fridge containing a

pharmaceutical company’s new vaccine. We measure the temperature

every hour with the following data points (in Fahrenheit; Figure 5-2).

Chapter 5 Defining Data

132

Note how the mean and median are quite close to each other and both

are around 31 degrees. The question is, on average, how cold is the fridge?

It’s about 31; however, the temperature dropped below 29 degrees but

you ended up assuming that it isn’t enough for it to be detrimental. This

is where the measure of variation can help us understand how bad the

fridge situation can be, also how it is good to choose mean or median as a

representation of the center of our data.

�Measures of Variation for Interval

This is a new measurement that we have not yet discussed. In data science

in general, you should take into consideration not only the center of your

data, but also it’s variation; it is very important to mention how “spread

out’ the data is. The measures that describe this phenomenon are called

measures of variation, or the variance.

You have likely heard of standard deviation before. This idea is extremely

important and we should address it briefly. A measure of variation—like the

standard deviation—is a number that attempts to describe how spread out

the data is. Along with a measure of center, a measure of variation can almost

entirely describe a dataset with only two numbers.

Figure 5-2.  A comparison of mean and median on other data

Chapter 5 Defining Data

133

Standard Deviation

Standard deviation is the most common measure of variation of data at the

interval level and beyond. The standard deviation can be thought of as the

average distance a data point is at from the mean. While this description is

technically and mathematically incorrect, it is a good way to think about it.

The formula for standard deviation can be broken down into the following

steps:

	 1.	 Find the mean of the data.

	 2.	 For each number in the dataset, subtract it from the

mean and then square it.

	 3.	 Find the average of each square difference

(variance).

	 4.	 Take the square root of the number obtained in step

three. This is the standard deviation.

Note T he reason we want the “square difference” between each
point and the mean and not the “actual difference” is because
squaring the value actually puts emphasis on outliers—data points
that are abnormally far away.

For example, look back at the temperature dataset. Let’s find the

standard deviation of the dataset (Figure 5-3).

Figure 5-3.  Calculating standard deviation

Chapter 5 Defining Data

134

All of this code led to us finding out that the standard deviation of

the dataset is closer to 2.6, meaning that, on average, a data point is 2.5

degrees off from the average temperature of around 31 degrees. So, the

temperature could likely dip below 29 degrees again in the near future.

Measures of variation give us a very clear picture of how spread out or

dispersed our data is. This is especially important when we are concerned

with ranges of data and how data can fluctuate (think of percent return

on stocks). The big difference between data at this level and at the next

level lies in something that is not obvious. Data at the interval level does

not have a natural starting point or a natural zero. However, being at zero

degrees Celsius does not mean that you have no temperature.

�The Ratio Level
Finally, we will take a look at the ratio level. After moving through three

different levels with differing levels of allowed mathematical operations,

the ratio level proves to be the strongest of the four.

Not only can we define order and difference, the ratio level allows us to

multiply and divide as well. This might not seem like much to make a fuss

over but it changes almost everything about the way we view data at this

level.

�Examples

While Fahrenheit and Celsius are stuck in the interval level, the Kelvin

scale of temperature boasts a natural zero. A measurement of zero Kelvin

literally means the absence of heat. It is a nonarbitrary starting zero. We

can actually scientifically say that 200 Kelvin is twice as much heat as 100

Kelvin. Money in the bank is at the ratio level. You can have “no money in

the bank”; and it makes sense that $200,000 is twice as much as $100,000.

Chapter 5 Defining Data

135

�Measures of Center for Ratio

The arithmetic mean still holds meaning at this level, as does a new type

of mean called the geometric mean. This measure is generally not used as

much, even at the ratio level, but it’s worth mentioning. It is the square root

of the product of all the values.

For example, in our fridge temperature data, we can calculate the

geometric mean as shown in Figure 5-4.

Figure 5-4.  The geometric mean

Note again how it is close to the arithmetic mean and median as

calculated before.

�Problems with the Ratio Level

Even with all of this added functionality at this level, we must also

generally make a very large assumption that actually makes the ratio level

a bit restrictive. Data at the ratio level is usually nonnegative. For this

reason alone, many data scientists prefer the interval level to the ratio

level. The reason for this restrictive property is because if we allowed

negative values, the ratio might not always make sense.

Chapter 5 Defining Data

136

�Summarizing All Levels Table 5-1

Figure 5-5.  Summary of all data levels

Table 5-1.  Summarizing All the Tabular Data Levels

Support: Nominal Ordinal Interval Ratio

The sequence of variables is established - Yes Yes Yes

Mode Yes Yes Yes Yes

Median - Yes Yes Yes

Mean - - Yes Yes

Difference between variables can be evaluated - - Yes Yes

Addition and subtraction of variables - - Yes Yes

Multiplication and division of variables - - - Yes

Absolute zero - - - Yes

The diagram in Figure 5-5 may make it easy for you to understand each

level’s properties and how each level inherits properties from the level

under it.

Chapter 5 Defining Data

137

�Text Data
Text is a form of data that has existed for millenniums throughout human

history. Including all the sacred texts influencing all the religions, all the

compositions of poets and authors, all the scientific explanations by the

brightest minds of their times, all the political documents that define our

history and our future, and all kinds of explicit human communication, these

“all” define the importance of data available in the form of what we call text.

�What Is Text Processing and What Is the Level
of Importance of Text Processing?
Text processing is one of the most common tasks in many ML applications.

As proof, we will see some examples of text processing tasks:

•	 Language translation: Translation of a sentence from

one language to another

•	 Sentiment analysis: To determine, from a text corpus,

whether the sentiment toward any topic or product,

etc. is positive, negative, or neutral

•	 Spam filtering: Detects unsolicited and unwanted

email/messages

As we see, text has many tasks that are very important to ML

applications besides speech recognition and generation. For now, we can

say that we answered this question, but we should say something about

text data: it has a name in machine learning, called NLP (natural language

processing). But we are here to talk about text, so let’s complete our scope

about text types. We’ll discuss structured and unstructured data, how

to use this data in example by processing it and cleaning it, and see the

most common techniques that used to process data. So let’s continue our

journey into data.

Chapter 5 Defining Data

138

First, to simplify text data, we can modify it. Text data is basically

just words. A lot of the time the first thing that you do with text is to turn

it into numbers using some interesting functions like the bag-of-words

formulation.

Second, what are the tools used in text processing? NLP is the main tool

that machine learning engineers use to handle text data. So let’s provide a

good definition of NLP.

Natural language processing is a field in machine learning concerning

the ability of a computer to understand, analyze, manipulate, and

potentially generate human language.

We have many tools that are used in NLP, like NLTK (Natural Language

Toolkit), which we talked about in Part I. We will get into more detail

about text data in Part III when we talk about the recurrent neural network

(RNN), but let’s take a simple overview about text.

�IMDB—Example
In this example, we work with the most common dataset in text, which

is benchmarked in many kinds of research. It is The Large Movie Review

Dataset (often referred to as the IMDB dataset) containing 25,000 highly

polar movie reviews (good or bad), used for training and again for testing.

The problem is to determine whether a given movie review has a positive

or negative sentiment (Figure 5-6).

Chapter 5 Defining Data

139

As we see in Figure 5-6, this data of the IMDB is just a data feature of

the reviews by users about the film, with a sentiment feature or labeled

feature that allow us to know if the review is a positive or negative one.

That allows the model to train the combination of words that indicate a

negative review or positive review.

It’s an easy example that gives us a look at text data. We will talk more

in the next chapters about text and how to process text data, and train it

with many algorithms and use the architecture that fits the data well. For

now we learned a little bit in this portion about what text data is.

�Images Data
Computer vision is one of the hottest topics in artificial intelligence. It is

making tremendous advances in many fields such as self-driving cars,

robotics, and even various photo correction apps. Steady progress in

object detection is being made every day. Vision is showing us the future

of technology in general and deep learning in particular, so we can’t even

imagine all of its possibilities.

Figure 5-6.  The movie data

Chapter 5 Defining Data

140

Computer vision basically is the science of manipulating and

processing images to extract certain knowledge from it. So, this approach

deals with all types of images from grayscale to multicolor scale, and from

2-dimensional to 4-dimensional scales.

Image processing performs some operations on images to get an

intended manipulation. Think about what we do when we start a new data

analysis. We do some data preprocessing and feature engineering. It’s the

same with image processing. We do image processing to manipulate the

pictures for extracting some useful information from them. We can reduce

noises, and control the brightness and color contrast.

�Type of Images (2-D, 3-D, 4-D)

The pipeline of images may still the same for 2-D, 3-D, and 4-D data, but

you have to know the different types of data you may deal with. Also you

should know and understand each step you may have to deal with for any

image data you might face in the future.

2-D Data

We say that images are in 2-dimensional space when each observation is

composed of a 2-D matrix, and what makes the whole data is in 3-D space.

Images that are 2-D most likely are gray images; that is intuitive because

each pixel in 2-dimensional space is represented by only one value, and

this value can be between 0 and 255. Now let us upgrade and increase the

dimensional space by one, and see what happens.

3-D Data

If you increase the dimensional space by one, then the images are in

3-dimensional space, and that makes each image observation composed

of a 3-D tensor, while the whole data is in 4-dimensional space and is

composed of a 4-D tensor. Images that are composed of 3-D, are composed

Chapter 5 Defining Data

141

of three channels, most likely the red, green, and blue channels, making

each image in this data colored. Each pixel in the image is composed of

three values, one value between 0 and 225 per each channel, and we will

see how to deal with this type of data in a later Chapter 11.

4-D Data

Again, if you increase the dimensional space by one, then the images are in

4-dimensional space, and that makes each image observation composed

of a 4-D tensor, while the whole data is in 5-dimensional space and is

composed of a 4-D tensor. Images that are composed of 4-D, are composed

of three channels, most likely the red, green, and blue channels, making

each image in this data colored, and taking the time variation of the image

as another dimension.

For instance, biomedical images are typically volumetric images (3-D)

and sometimes have an additional time dimension (4-D) and/or multiple

channels (4-D–5-D) (e.g., multisequence MR images). The variation in

biomedical images (Figure 5-7) is quite different from that of a natural

image (e.g., a photograph), as clinical protocols aim to stratify how an

image is acquired (e.g., a patient is lying on his/her back, the head is not

tilted, etc.). In their analysis, we aim to detect subtle differences (i.e., some

small region indicating an abnormal finding).

Chapter 5 Defining Data

142

�Example—MNIST

The MNIST database (Modified National Institute of Standards and

Technology database) is a large database of handwritten digits that is

commonly used for training various image processing systems. The

database is also widely used for training and testing in the field of machine

and deep learning.

The MNIST database contains 60,000 training images and 10,000

testing images. Half of the training set and half of the test set were taken

from NIST’s training dataset, while the other half of the training set and the

other half of the test set were taken from NIST’s testing dataset.

The MNIST dataset (Figure 5-8) was created by “re-mixing” the

samples from NIST’s original datasets. The creators felt that since NIST’s

training dataset was taken from American Census Bureau employees,

while the testing dataset was taken from American high school students, it

was not well suited for statistical learning experiments.

Figure 5-7.  Examples of what 4-D images look like

Chapter 5 Defining Data

143

�Example—CIFAR-10

In this example, we will be working on one of the most extensively used

datasets in image comprehension, one that is used as a simple but general

benchmark. In this example, we will build a simple CNN model to have an

idea of the general structure of computations needed to tackle this type of

classification problem.

This dataset consists of 40,000 images of 32×32 pixels, representing the

following categories: airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, and truck. In this example, we will just take the first of the 10,000

image bundles to work on (Figure 5-9).

Figure 5-8.  Sample of the MNIST dataset

Chapter 5 Defining Data

144

�Summary
The type of data that you are working with is a very large piece of data

science and machine learning. It must precede most of your analysis,

because the type of data you have impacts the type of analysis that is even

possible! Whenever you are faced with a new dataset, the first questions

you should ask about it are the following:

•	 Is the data organized or unorganized?

For example, does our data exist in a nice, clean

row/column structure?

Figure 5-9.  Sample of the CIFAR-10 dataset

Chapter 5 Defining Data

145

•	 Is each column quantitative or qualitative?

For example, are the values numbers, strings, or do

they represent quantities?

•	 At what level of data is each column?

For example, are the values at the nominal, ordinal,

interval, or ratio level?

•	 If it is image data, what is the data augmentation

method we need to use?

•	 If it is text data, what is the method we will use to

transform text to numbers?

The answers to these questions will not only impact your knowledge

of the data, but will also dictate the next steps of your analysis. They will

dictate the types of charts you are able to use and how you interpret them

in your upcoming data models. Sometimes we will have to convert from

one level to another in order to gain more perspective.

In the coming chapters, we will take a much deeper look at how to deal

with and explore data at different levels. By the end of this book, we will be

able to not only recognize data at different levels, but we’ll also know how

to deal with it at these levels.

Chapter 5 Defining Data

147© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_6

CHAPTER 6

Data Wrangling
and Preprocessing
In the previous chapter, we defined what data means; we also discussed

types and levels of data. So, we are now just getting into action with data!

In this chapter, you’ll learn how to understand and clean your dataset.

In some books or references you will find the topic of this chapter has a

different name; they might call it data munging.

Munging means to manipulate or change, in a series of well-specified

and reversible steps, a piece of original data to a completely different—

and hopefully more useful—one. You might see some data scientist or

deep learning engineers use another term to describe this process in

the pipeline. These terms are almost synonymous: terms such as data

wrangling or data preparation. By any name, munging is a very important

part of any data engineering pipeline.

While reading this book, you will find us mentioning more jargon and

technicalities taken from the fields of probability and statistics (such as

probability distributions, descriptive statistics, and hypothesis testing).

We will try to add a dictionary-like appendix for these terms to make sure

that we are on the same page; however, our main purpose is to provide

you with the essential concepts for handling deep learning projects, and

it is nice if you already are familiar with some of them. But we will put

an appendix in case you may need a refresh or even a straightforward

148

introduction to any of the concepts dealt with in this or another chapter.

Given such premises, in this chapter the following topics will be covered:

•	 The data fields pipelines (so that you’ll know what is

going on and what’s next)

•	 Loading data from a file

•	 Selecting data you need

•	 Handling any missing or wrong data

•	 Augmenting and deleting data

•	 Grouping and transforming data to obtain new and

meaningful information

�The Data Fields Pipelines Revisited
�Giving You a Reason
We recently read that The New York Times called data cleaning “janitor

work” and said that 80 percent of a data scientist’s time will be spent

doing this kind of cleaning. As we can see in Figure 6-1, despite its

importance, data cleaning has not really captured the public imagination

in the same way as big data, data mining, or machine learning.

Figure 6-1.  The current trend of machine learning

Chapter 6 Data Wrangling and Preprocessing

149

Well, unfortunately we would all be a lot better off if we just got the job

done rather than ignoring it, complaining about it, and giving it various

demeaning names.

�Where Is Data Cleaning in the Process?
The data science process is described in six steps, as shown in the

following list. Data cleaning is right in the middle, at the third step; but

rather than thinking of these steps as a linear (like a waterfall), start-to-

finish framework, we will revisit the steps as needed several times over

in the course of a project in more of an iterative manner. It is also worth

pointing out that not every project will have all the steps; for example,

sometimes, we do not have a collection step or a visualization step. It really

depends on the particular needs of the project.

•	 The first step is to come up with the problem statement.

Identify the problem you are trying to solve.

•	 The next step is data collection and storage. Where

did the data come from that is helping you answer this

question? Where did you store it and in what format?

•	 Then comes data cleaning. Did you change the data at

all? Did you delete anything? How did you prepare it for

the analysis and mining step next?

•	 The next step is data analysis and machine learning.

What kind of processing did you do to the data? What

transformations? What algorithms did you use? What

formulas did you apply? What deep learning algorithms

did you use? In what order?

Chapter 6 Data Wrangling and Preprocessing

150

•	 Representation and visualization is the fifth step. How

do you show the results of your work? This can be

one or more tables, drawings, graphs, charts, network

diagrams, word clouds, maps, and so on. Is this the best

visualization to represent the data? What alternatives

did you consider?

•	 The last step is problem resolution. What is the answer

to the question or problem you posed in step 1? What

limitations do you have on your results? Were there

parts of the question that you could not answer with

this method? What could you have done differently?

What are the next steps?

�Data Loading and Preprocessing
After you find the dataset you want for your project, you also know how to

import the needed Python packages for the pipeline. In this section, having

kept your toolbox ready, you are about to learn how to structurally load,

manipulate, and process datasets using pandas and NumPy; and as you

have seen in previous chapters, how to set up these packages. You are now

ready to proceed to the next section.

�Fast and Easy Data Loading
Let’s start with pandas. The pandas library offers the most accessible and

complete function to load tabular data from a file (CSV, comma-separated

values; TSV, tab-separated values; JSON) or a URL.

By default, it will store data in a specialized pandas data structure,

index each row, separate variables by custom delimiters, infer the right

data type for each column, convert data (if necessary), as well as parse

Chapter 6 Data Wrangling and Preprocessing

151

dates, missing values, and erroneous values, and do a lot of processing.

The amazing part is that you can do all that with just one line of Python

code; that’s why it’s fast and easy.

import pandas as pd

iris_df = pd.read_csv('Iris.csv', sep=',', decimal='.',

index_col=False)

iris_df.head()

Figure 6-2.  The table output of the DataFrame

iris_df = pd.read_csv(iris_data, sep=',',

 decimal='.', header=None, index_col=False,

 names=[�'sepal_length', 'sepal_width', 'petal_length',

'petal_width', 'target'])

import urllib

import pandas as pd

data_url = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

request = urllib.request.Request(data_url)

iris_data = urllib.request.urlopen(request)

iris_df = pd.read_csv(iris_data, sep=',',

 decimal='.', header=None,

Chapter 6 Data Wrangling and Preprocessing

152

 index_col=False,

 names=[�'sepal_length', 'sepal_width',

'petal_length', 'petal_width',

'target'])

iris_df.head()

Figure 6-3.  The table output of the online DataFrame

As you see in the two preceding code cells (Figures 6-2 and 6-3), both

of them do the same job, which is loading the data, either from a file (CSV,

sometimes called a flat file), or from a URL (e.g., the cloud).

In the case of a file, you can specify: the name of the file; the character

used as a separator (sep), which might be comma, tab, hash, etc…; the

character used for the decimal placeholder (decimal), which might look

like 10.01 in the dataset or like 10,01; whether there is a header (header)

or not; and the variable names (using names and a list). pandas has some

default settings of some of its parameters like the sep=',' for example, and

also decimal='.'.

Note  Be careful that you do not set the sep (separator) and the
decimal point for numbers with the same values, to prevent loading
errors and for data-loading safety.

Chapter 6 Data Wrangling and Preprocessing

153

The resulting object, named iris, is a pandas DataFrame. It’s more

than a simple Python list or dictionary, and in the sections that follow, we

will explore some of its features and functionalities. To get an idea of its

content (to view the inner data values), you can print the first (or the last)

row(s), using the following commands (Figures 6-4 and 6-5):

iris_df.head()

Figure 6-4.  A table that outputs from the head() function

Iris_df.tail(7)

Figure 6-5.  The output table from the tail() function

Chapter 6 Data Wrangling and Preprocessing

154

Note T he head/tail functions, if called without arguments, will print
only five rows. If you want to get back a different number of rows,
just call the function using the number of rows you want to see as an
argument, as in the second of the preceding two code cells.

Next, you might want to see just the names of columns (hint: you can

see them when you use iris.head()); to get the names of the columns,

you can simply use the following method:

iris_df.columns

Output:

Index(['sepal_length', 'sepal_width', 'petal_length',

'petal_width', 'target'], dtype='object')

iris_df.columns = �['s_length', 's_width', 'p_length', 'p_width',

'target']

The resulting object in code cell one is a very interesting one. It looks

like a Python list, but it actually is a pandas index. As suggested by the

object’s name, it indexes the columns’ names. And in code cell two you

see that you can change the column names as you want, but be careful and

choose the names wisely that you are using to represent the columns.

To extract the target column (Figure 6-6), for example, you can simply

do the following:

y = iris_df['target']

y.head()

Chapter 6 Data Wrangling and Preprocessing

155

The type of the object y is a pandas Series. Right now, think of it as a

one-dimensional array or vector as mathematically represented with axis

labels, as we will investigate in depth later on.

Note  For convention we use small letters for vector/array, and
capital letters for matrices.

y = iris_df.target

Note A s you can see, we can get the column as a pandas
DataFrame(matrix), but it is not preferred.

Now, we just understood that a pandas index class acts like a

dictionary index of the table’s columns.

Note that you can also get a list of columns referring to them by their

indexes, as follows (Figure 6-7):

X = iris_df[['s_length', 's_width', 'p_length', 'p_width']]

X.head()

Figure 6-6.  The output series that represents the target variable

Chapter 6 Data Wrangling and Preprocessing

156

As you can see here the pandas DataFrame present its flexibility by

letting you select the columns the way you prefer. And as you can see, the

result is a pandas DataFrame.

Why such a difference in results when using the same function?

•	 In the first case, we asked for a column. Therefore, the

output was a 1-D vector (that is, a pandas Series).

•	 In the second case, we asked for multiple columns and

we obtained a matrix-like result (and we know that

matrices are mapped as pandas DataFrames).

Note  You can simply spot the difference by looking at the heading
of the output; if the columns are labeled, then you are dealing with a
pandas DataFrame. On the other hand, if the result is a vector and it
presents no heading, then that is a pandas Series.

So far, we have learned some common steps from the data loading

process; after you load the dataset, you usually separate the features

(predictors) and target (which is response) labels.

Figure 6-7.  Just the selected variables output

Chapter 6 Data Wrangling and Preprocessing

157

And, as you know:

•	 In a classification problem, target labels are the

discrete/nominal numbers or textual strings that

indicate the class associated with every set of features.

•	 In a regression problem, target labels are continuous/

interval (or ratio) numbers that indicate the value

associated with every set of features.

Then, the following steps require you to get an idea of how large

the problem is, and therefore you need to know the size of the dataset.

Typically, for each observation, we count a line, and for each feature, a

column. To obtain the dimensions of the dataset, just use the attribute

shape on a pandas DataFrame or Series, as shown in the following

example:

iris_df.shape

Outputs

(150, 5)

The resulting object is a tuple that contains the size of the matrix/array

in each dimension.

Note  pandas Series follow the same format (that is, a tuple with
only one element)—for example, data_series.shape will output
(10, 1).

However, if you want to ignore the data loading process, you can

always use the preloaded datasets in the sklearn.datasets module. This

module contains all types of dataset (classification and regression) you

can use—for practicing and experimentation purposes only. Also, you

Chapter 6 Data Wrangling and Preprocessing

158

can use some functionalities in this module to generate you own dataset

too, and that will help you enhance your pipeline operation selection and

experimentation process too.

from sklearn.datasets import load_iris

iris = load_iris()

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

iris_df.head()

�Missing Data
As we all know, when someone transforms a dataset from one source to

another, somehow data loss happens. We cannot avoid that loss or prevent

it from happening, but we can fix it or make our model learn that loss or

ignore it, as we will see in the coming chapters. So now we will talk about

the mysterious combination of zeros, empties, and nulls.

You probably want to know the difference between each of those. We

will show you the difference using three simple scenarios to illustrate and

define the meaning of zeros, empties, and nulls.

Scenario one: Imagine that you have a purse that is filled with coins,

and as I ask you some questions about it, you should answer them.

If I ask you how many coins are in the purse, you observe that there

are no coins in the purse. The question how many coins are in the purse?

is unanswerable. There is no purse! The answer is not a positive value, it is

not a zero value, and it is not even empty. The value is null.

Scenario two: A few hours later, you looked in the purse again and

saw ten coins are in it. Wonderful; you now have an answer to the question.

In this case, you can answer the question with this piece of data, and its

value is 10.

Chapter 6 Data Wrangling and Preprocessing

159

After a while, you look in the purse again and discover that there are no

more coins. Every single coin is gone. You look, you search, and you find

the answer to how many coins are in the purse? is a zero value. So, you still

have a piece of data and its value is now 0.

Scenario three: Just before the evening, you grab your purse from your

pocket. As you walk across the street, you find your friend and he asks,

“What’s in the purse?” Currently, the purse is empty. There is nothing in

the purse—no coins and nothing else. Note that the answer is not zero,

because the question he asked was not a numeric one. The answer is also

not null, because we do have a purse and we did look inside it, but there

was just no answer.

�Empties
Empties are a bit trickier to work with than zero, but they make a lot of

sense in some cases, for instance, when working with strings. For example,

suppose we have an attribute called middle name. Well, I have no middle

name so I would always leave this field empty. Filling in a space or a

hyphen (or making up something) for a value that is truly empty does not

make a lot of sense. Space is not the same thing as empty. The correct

value in the case of an empty string may, in fact, be “empty.”

�Is It Ever Useful to Fill Missing Data Using a Zero
Instead of an Empty or Null?
Let’s state the fact that it is always better to fill the missing value than to

leave it empty or null. You can know the missing value in a tricky way: if

this variable has a uniform distribution between 0 and 1 and it has a small

peak at -1, then -1 is actually a missing value.

Chapter 6 Data Wrangling and Preprocessing

160

Depending on data sources, missing data is identified differently.

pandas always identifies missing values as NaN. However, unless the

data has been preprocessed to a degree that an analyst will encounter

missing values as NaN, missing values can appear as a question mark (?)

or a zero (0) or minus one (-1) or a blank. As a result, it is important that a

data scientist always performs exploratory data analysis (EDA) first before

writing any machine learning algorithm. EDA is simply a litmus test for

understanding and knowing the behavior of our data.

�Managing Missing Features
Sometimes a dataset can contain missing features, so there are a few

options that can be taken into account:

•	 Removing the whole row

•	 Creating a submodel to predict those features

•	 Using an automatic strategy to input them according to

the other known values

•	 The first option is the most drastic one and should be

considered only when the dataset is quite large, the

number of missing features is high, and any prediction

could be risky.

•	 The second option is much more difficult, because it’s

necessary to determine a supervised strategy to train a

model for each feature and, finally, to predict their value.

•	 Considering all the pros and cons, the third option is

likely to be the best choice.

Scikit-learn offers the class Imputer, which is responsible for

filling the holes using a strategy based on the mean (default choice),

median, or frequency-mode—(the most frequent entry will be used for

Chapter 6 Data Wrangling and Preprocessing

161

all the missing ones). The following snippet shows an example using

the three approaches (the default value for a missing feature entry is

NaN. However, it’s possible to use a different placeholder through the

parameter missing_values):

import pandas as pd

from sklearn.preprocessing import Imputer

titanic_df = pd.read_csv('train.csv')

titanic_df.head(2)

Figure 6-8.  The head of the Titanic dataset

titanic_df.Age.isna().sum()

Outputs

177

titanic_imputer = Imputer(strategy='mean')

new_age = pd.DataFrame(titanic_imputer.fit_transform([titanic_

df.Age])[0])

new_age.isna().sum()

Outputs

0

�Dealing with Big Datasets
If the dataset you want to load is too big to fit in the memory, then you have

to divide it into pieces (or named chunks). This approach is sometimes

called sampling, and we will see in future chapters something about that.

After that, you make a batch deep learning algorithm, which works with

only a part/piece of the data at once. Using a batch approach also makes

sense if you just need a sample of the data. Thanks to Python, you actually

Chapter 6 Data Wrangling and Preprocessing

162

can load the data in chunks. This operation is also called data streaming,

since the dataset flows into a DataFrame or some other data structure as a

continuous flow. As opposed to all the previous cases, the dataset has been

fully loaded into the memory in a standalone step.

With pandas, there are two ways to chunk and load a file:

•	 The first way is by loading the dataset in chunks of the

same size; each chunk is a piece of the dataset that

contains all the columns and a limited number of lines,

not more than as set in the function call (the chunksize

parameter).

•	 You can also use the CSV package, which offers two

functions to iterate small chunks of data from files: the

reader and the DictReader functions.

Note T he output of the read_csv function in this case is not
a pandas DataFrame but an iterator-like object. In fact, to get the
results in memory, you need to iterate that object:

iris_df = pd.read_csv('Iris.csv', sep=',', decimal='.',

 header=None, index_col=False,

 iterator=True,

 names=['sepal_length', 'sepal_width',

 �'petal_length', 'petal_width',

'target'])

iris_df.get_chunk(10).shape

Outputs

10

Chapter 6 Data Wrangling and Preprocessing

163

There will be 14 other pieces like these, each of them of shape (10, 5).

The other method to load a big dataset is by specifically asking for an iterator

of it. In this case, you can dynamically decide the length (that is, how many

lines to get) you want for each piece of the pandas DataFrame:

for chunk in iris_df:

 print('SHAPE: ', chunk.shape)

 print(chunk, '\n')

�Accessing Other Data Formats
So far, we have worked on CSV files only. The pandas package offers

similar functionality (and functions) in order to load MS Excel, HDFS,

SQL, JSON, HTML, and Stata datasets. Since they’re not used in all data

science projects, the understanding of how one can load and handle each

of them is left to you, and you can refer to the documentation available on

the website. A basic example of how to load an SQL table is available in the

code that accompanies the book.

Note  CSV (comma-separated) and TSV (tab-separated) are similar,
as they both are considered flat files.

titanic_df = pd.read_excel('Titanic.xlsx')

titanic_df.head(2)

Figure 6-9.  The output of the Excel file

Chapter 6 Data Wrangling and Preprocessing

164

�Data Preprocessing
We are now able to import the dataset, even a big, problematic one. Now,

we need to learn the basic preprocessing routines in order to make it

feasible for the next data science step.

First, if you need to apply a function to a limited section of rows, you

can create a mask (Figure 6-10). A mask is a series of Boolean values (that

is, True or False) that tells whether the line is selected or not.

For example, let’s say we want to select all the lines of the iris dataset

that have a sepal length greater than 6. We can simply do the following:

threshold_mask = iris_df['sepal_length'] > 6.0

threshold_mask.head()

Figure 6-10.  The output of masking data

In the preceding simple example, we can immediately see which

observations are True and which are not (False), and which ones fit the

selection query.

Now, let’s check how you can use a selection mask on another

example. We want to substitute the Iris-virginica target label with the

Virginica label. We can do this by using the following two lines of code:

mask_target = iris_df['target'] == "Iris-virginica"

iris_df.loc[mask_target, 'target'] = "Virginica"

iris_df.target[100:105]

Chapter 6 Data Wrangling and Preprocessing

165

You’ll see that all occurrences of Iris-virginica are now replaced by

Virginica (Figure 6-11). The loc() method is a way to access the data of

the matrix with the help of row-column indexes.

To see the new list of the labels in the target column, we can use

the unique() method. This method is very handy if initially you want to

evaluate the dataset:

iris_df.target.unique()

Outputs

array(['Iris-setosa', 'Iris-versicolor',

'Virginica'], dtype=object)

iris_df.target.nunique()

Outputs

3

This method allows us to see the unique values inside either pandas

DataFrame or Series, and the method is very helpful in the analysis

process. Another way is to count the number of unique values, and that

could happen by using nunique(), which will return the number of unique

values in the input DataFrame/Series.

If you want to see some statistics (mean, median, and so on) about

each feature (statistics about data give you some intuition about what

happens in it), you can do the following steps:

•	 You can group each column accordingly.

•	 You can also apply a mask.

Figure 6-11.  The renamed data

Chapter 6 Data Wrangling and Preprocessing

166

The pandas method groupby will produce a similar result to the

GROUP BY clause in ab SQL statement. The next method to apply should

be an aggregate method on one or multiple columns.

For example, the mean() pandas aggregate method is the counterpart

of the AVG() SQL function to compute the mean of the values in the group.

The pandas aggregate method var() calculates the variance; sum(), the

summation; count(), the number of rows in the group; and so on.

Note T he result is still a pandas DataFrame; therefore, multiple
operations can be chained together.

As a next step, we can try a couple of examples of groupby() in

action. Grouping observations by target (that is, label), we can check the

difference between the average value and the variance of the features for

each group (Figures 6-12 and 6-13).

iris_df.groupby(['target']).mean()

Figure 6-12.  The iris groupby mean output

Chapter 6 Data Wrangling and Preprocessing

167

iris_df.groupby(['target']).var()

Figure 6-13.  The iris groupby variance output

Finally, if your dataset contains a time series (for example, in the case

of a numerical target) and you need to apply a rolling operation to it (in

the case of noisy data points), you can simply do the following:

pd.rolling_mean(time_series, 5)

This can be performed for a rolling average of the values. Alternatively,

you can use the following line of code:

pd.rolling_median(time_series, 5)

Instead, this can be performed in order to obtain a rolling median of

the values. In both of these cases, the window had a sample size of 5.

More generically, the apply() pandas method is able to perform any

row-wise or column-wise operation programmatically. apply() should be

called directly on the DataFrame.

•	 The first argument is the function to be applied row-

wise or column-wise.

•	 The second is the axis to apply it on.

Note T he function can be a built-in, library-provided, lambda, or
any other user-defined function.

Chapter 6 Data Wrangling and Preprocessing

168

As an example of this powerful method, let’s now try to count how

many nonzero elements there are in each line (Figure 6-14). With the apply

method, this is simple:

import numpy as np

iris_df.apply(np.count_nonzero, axis=1).head()

Figure 6-14.  The iris nonzero values count output

Similarly, to compute the nonzero elements feature-wise (that is, per

column; Figure 6-15), you just need to change the second argument and

set it to axis=0:

iris_df.apply(np.count_nonzero, axis=0)

Figure 6-15.  The iris nonzero values count(per column) output

Finally, to operate element-wise, the applymap() method should

be used on the DataFrame. In this case, just one argument should be

provided: the function to apply.

Chapter 6 Data Wrangling and Preprocessing

169

For example, let’s assume you’re interested in the length of the string

representation of each cell. To obtain that value, you should first cast each

cell to a string value, and then compute the length. With applymap, this

operation is very easy (Figure 6-16):

iris_df.applymap(lambda el: len(str(el))).head()

Figure 6-16.  The iris nonzero values count output

�Data Augmentation
As we all know, the performance of any deep learning algorithm or any

neural networks often improves with the amount of data available. So,

the larger your dataset, the more accurate results you can find—of course

with respect to other factors such as selecting the right algorithm for your

problem.

Data augmentation is a technique to artificially create new training

data from existing training data. This is done by applying domain-specific

techniques to examples from the training data that create new and

different training examples.

Image data augmentation is perhaps the most well-known type of data

augmentation and involves creating transformed versions of images in the

training dataset that belong to the same class as the original image.

Chapter 6 Data Wrangling and Preprocessing

170

Transforms include a range of operations from the field of image

manipulation, such as shifts, flips, zooms, and much more.

The intent is to expand the training dataset with new, plausible

examples. This means, variations of the training set images that are likely

to be seen by the model. For example, a horizontal flip of a picture of a cat

may make sense, because the photo could have been taken from the left or

right. A vertical flip of the photo of a cat does not make sense and would

probably not be appropriate given that the model is very unlikely to see a

photo of an upside-down cat.

As such, it is clear that the choice of the specific data augmentation

techniques used for a training dataset must be chosen carefully, and within

the context of the training dataset and knowledge of the problem domain.

In addition, it can be useful to experiment with data augmentation

methods in isolation and in concert, to see if they result in a measurable

improvement to model performance, perhaps with a small prototype

dataset, model, and training run.

Modern deep learning algorithms, such as the convolutional neural

network, or CNN, can learn features that are invariant to their location in

the image. Nevertheless, augmentation can further aid in this transform

invariant approach to learning and can aid the model in learning features

that are also invariant to transforms, such as left-to-right to top-to-bottom

ordering, light levels in photographs, and more.

Image data augmentation is typically only applied to the training

dataset, and not to the validation or test dataset. This is different from

data preparation such as image resizing and pixel scaling; they must be

performed consistently across all datasets that interact with the model.

So, let us get started and see what we can do to get more images from

the existing one. First, we need to import our packages as follows:

import tensorflow as tf

import matplotlib.image as mpimg

import matplotlib.pyplot as plt

Chapter 6 Data Wrangling and Preprocessing

171

Then, we need to load the image that we will do the experimentation

on, so we can change its properties and make it seem like a new image for

our model. The tf.image provides image augmentation functions so that

all the computation is done on the GPU. In this tutorial, we use TensorFlow

eager_execution so that we can see the augmented image directly.

tf.enable_eager_execution()

image_path = 'lena_forsen.png'

image_string=tf.read_file(image_path)

image=tf.image.decode_png(image_string,channels=3)

image=tf.image.convert_image_dtype(image,dtype=tf.float32)

Also, we need to implement the function that shows the result of all our

experimentation, such that we do not have to write the same code again

and again.

def show_image(original_image,augmented_image,title):

 fig=plt.figure()

 fig.suptitle(title)

 original_plt=fig.add_subplot(1,2,1)

 original_plt.set_title('original image')

 original_plt.imshow(original_image)

 augmented_plt=fig.add_subplot(1,2,2)

 augmented_plt.set_title('augmented image')

 augmented_plt.imshow(augmented_image)

 plt.show(block=True)

Now we can start our image augmentation, as our environment is

ready for the process; so let us get started.

Chapter 6 Data Wrangling and Preprocessing

172

�Image Crop
tf.image provides various functions for image cropping. tf.image.

central_crop removes the outer parts of an image but retains the central

region of the image along each dimension (Figure 6-17). If we specify

central_fraction = 0.5, this function returns the central 50% of the

image. Also, this function works on either a single image (image is a 3-D

Tensor), or a batch of images (image is a 4-D Tensor).

central_image = tf.image.central_crop(image, central_fraction=0.7)

show_image(image, central_image, "Central Image Crop")

Figure 6-17.  The result of central image crop transformation

�Crop and Resize
This function extracts crops from the input image at positions defined at

the bounding box locations in boxes and resizes to a common output size

specified by crop_and_size.

Chapter 6 Data Wrangling and Preprocessing

173

im = tf.expand_dims(image, 0)

crop_and_resize = tf.image.crop_and_resize(im, boxes=[[0.0,

0.0, 0.5, 0.5]], crop_size=[256, 256], box_ind=[0])

show_image(image, tf.squeeze(crop_and_resize, 0), "Crop and

Resize")

The crop_and_resize operation extracts crops from the input image

tensor and resizes them using either bilinear sampling or nearest neighbor

sampling (possibly with aspect ratio change) to a common output size

specified by crop_size. This is more general than the crop_to_bounding_

box operation, which extracts a fixed size slice from the input image and does

not allow resizing or aspect ratio change. Another parameter is box_ind,

which is the index of each box; it is needed to specify or to be used as a

pointer to each output crop image, hence the output is multiple images if

there are multiple boxes.

It returns a tensor with crops from the input image at positions defined

at the bounding box locations in boxes. The cropped boxes are all resized

(with bilinear or nearest neighbor interpolation) to a fixed size = [crop_

height, crop_width].

Finally, we need to do tf.squeeze, because the result that comes from

crop_and_resize is a 4-D tensor [num_boxes, crop_height, crop_

width, depth]. So, we need to transform it to a 3-D tensor.

You can find more answers about crop_and_resize (Figure 6-18) by

visiting https://stackoverflow.com/questions/51843509/about-use-

tf-image-crop-and-resize.

Chapter 6 Data Wrangling and Preprocessing

https://stackoverflow.com/questions/51843509/about-use-tf-image-crop-and-resize
https://stackoverflow.com/questions/51843509/about-use-tf-image-crop-and-resize

174

�Crop to Bounding Box
This is a basic edition of the crop_and_resize operation, which extracts

a fixed size slice from the input image given the boundaries and does not

allow resizing or aspect ratio change (Figure 6-19).

top_left = tf.image.crop_to_bounding_box(image, 10, 10, 90, 90)

show_image(image, top_left, "Crop to Bounding Box")

Figure 6-18.  The result of crop and resize image transformation

Chapter 6 Data Wrangling and Preprocessing

175

�Flipping
Flipping, which is important for CNN to remove certain features of the

object, is available in only a particular side. For example, you don’t want

a CNN model to learn that an apple leaf happens only on the right side as

observed in the base image. Flipping produces a different set of images

from the rotation at multiples of 90 degrees (Figures 6-20 and 6-21).

flip_image = tf.image.flip_left_right(image)

show_image(image, flip_image, "Flip")

Figure 6-19.  The result of selected box crop image transformation

Chapter 6 Data Wrangling and Preprocessing

176

flip_image = tf.image.flip_up_down(image)

show_image(image, flip_image, "Flip")

Figure 6-20.  The result of vertical flip image transformation

Figure 6-21.  The result of horizontal flip image transformation

Chapter 6 Data Wrangling and Preprocessing

177

	 1.	 random_flip_left_right() to randomly flip an

image horizontally (left to right)

	 2.	 random_flip_up_down() to randomly flip an image

vertically (upside down)

	 3.	 flip_up_down() to flip an image vertically (upside

down)

�Rotate Image
Simply, this operation rotates an image counterclockwise by the passed

angle in radians (Figure 6-22). And we can pass the radians by math.

radians, which will calculate the radians based on the angle parameter.

import math

rotate_image = tf.contrib.image.rotate(image, math.

radians(270))

show_image(image, rotate_image, "Rotate Image")

Figure 6-22.  The result of rotation image transformation

Chapter 6 Data Wrangling and Preprocessing

178

�Translation
We would like our model to recognize the object present in any part of the

image. Also, the object can be present partially in the corner or edges of

the image. For this reason, we shift the object to various parts of the image

(Figure 6-23).

The parameter translation is a vector representing [dx, dy] or (if

image has rank 4) a matrix of length num_images, with a [dx, dy] vector

for each image in the batch.

move_image = tf.contrib.image.translate(image,

translations=[10, 10])

show_image(image, move_image, "Image Translation")

Figure 6-23.  The result of image translation

Chapter 6 Data Wrangling and Preprocessing

179

�Transform
This operation can apply the given transform matrix to the image. The

transform matrix is given as a vector of length 8 that represent the wanted

transformation (Figure 6-24).

theta = -0.2

transforms = [1, tf.sin(theta), 0, 0, tf.cos(theta), 0, 0, 0]

transform_image = tf.contrib.image.transform(image,

transforms=transforms)

show_image(image, transform_image, "Transform Image")

Figure 6-24.  The result of image transformation

Chapter 6 Data Wrangling and Preprocessing

180

�Adding Salt and Pepper Noise
Overfitting happens when your neural network tries to learn high-

frequency features that may not be useful. Gaussian noise effectively

distorts the high-frequency features (Figure 6-25).

import numpy as np

from skimage.util import random_noise

image_array = np.asarray(image)

noise_image = random_noise(image_array, mode="gaussian", var=0.01)

show_image(image, noise_image, "Noise Image")

Figure 6-25.  The result of an image with salty noise

A toned-down version of this is the salt and pepper noise, which

presents itself as random black and white pixels spread through the image.

Chapter 6 Data Wrangling and Preprocessing

181

�Convert RGB to Grayscale
The following function converts one or more images from RGB to grayscale

(Figure 6-26).

gray_image = tf.image.rgb_to_grayscale(image)

show_image(image, tf.squeeze(gray_image), "Gray Image")

Figure 6-26.  The result of image scale conversion

�Change Brightness
The following function adjusts the brightness of RGB or grayscale images

(Figure 6-27).

bright_image = tf.image.adjust_brightness(image, 0.2)

show_image(image, bright_image, "Bright Image")

Chapter 6 Data Wrangling and Preprocessing

182

�Adjust Contrast
The following function adjusts the contrast of RGB or grayscale images

(Figure 6-28).

contrast_image = tf.image.adjust_contrast(image, contrast_

factor=0.6)

show_image(image, contrast_image, "Contrast Image")

Figure 6-27.  The result of image brightness transformation

Chapter 6 Data Wrangling and Preprocessing

183

�Adjust Hue
The following function adjusts the hue of an RGB image (Figure 6-29).

hue_image = tf.image.adjust_hue(image, delta=0.4)

show_image(image, hue_image, "Hue Image")

Figure 6-28.  The result of contrasting transformation

Figure 6-29.  The result of hue image transformation

Chapter 6 Data Wrangling and Preprocessing

184

The image hue is adjusted by converting the image to HSV and

rotating the hue channel (H) by delta. The image is then converted back to

RGB. The delta must be in the interval [-1, 1].

�Adjust Saturation
The image saturation is adjusted by converting the image to HSV and

multiplying the saturation (S) channel by the saturation_factor and

clipping. The image is then converted back to RGB (Figure 6-30).

saturation_image = tf.image.adjust_saturation(image, 5)

show_image(image, saturation_image, "Saturation Image")

Figure 6-30.  The result of image saturation adjustment

Chapter 6 Data Wrangling and Preprocessing

185

�Categorical and Text data
As we discussed in a previous chapter; typically, you’ll find yourself

dealing with two main kinds of data:

•	 Numerical

•	 Categorical

Numerical data, such as temperature, amount of money, days of usage,

or house number, can be composed of either floating-point numbers (such

as 1.0, -2.3, 99.99, and so on) or integers (such as -3, 9, 0, 1, and so on).

Each value that the data can assume has a direct relation with others, since

they’re comparable. In other words, you can say that a feature with a value

of 2.0 is greater (actually, it is double) than a feature that assumes a value

of 1.0. This type of data is very well defined and comprehensible, with

binary operators such as equal to, greater than, and less than.

Categorical data is also known as nominal and ordinal data.

Categorical data expresses an attribute that cannot be measured and

assumes values in a finite or infinite set of values, often named levels.

For example, the weather is a categorical feature, since it takes values

in a discrete set (sunny, cloudy, snowy, rainy, and foggy). Other examples

are features that contain URLs, IPs, items you put in your e-commerce cart,

device IDs, and so on. On this data, you cannot define the equal to, greater

than, and less than binary operators and therefore, you can’t rank them.

A plus point for both categorical and numerical values is Booleans. In

fact, they can be seen as categorical (presence/absence of a feature) or,

on the other hand, as the probability of a feature having an exhibit (has

displayed, has not displayed). Since many deep learning algorithms do

not allow the input to be categorical, Boolean features are often used to

encode categorical features as numerical values.

Hint  You can review Chapter 5, which defines data types.

Chapter 6 Data Wrangling and Preprocessing

186

�Data Encoding
Many deep learning libraries require that categorical features/columns

are encoded as integer values. Although most estimators for classification/

regression in Scikit-learn convert columns to integers internally, it is

considered good practice to provide all data features/columns as integer

arrays to avoid technical glitches.

To encode the categorical variables, we can use an approach similar

to the mapping of ordinal features discussed previously. We need to

remember that columns are not ordinal, and it doesn’t matter which

integer number we assign to a particular string-label. Thus, we can simply

enumerate the class labels starting at 0:

class_mapping = {label:idx for idx,label in

 enumerate(np.unique(titanic_df.Sex))}

class_mapping

Output

{'female': 0, 'male': 1}

Next, we can use the mapping dictionary to transform the categorical

feature or column (Figure 6-31) into integers:

titanic_df['Sex'] = titanic_df['Sex'].map(class_mapping)

titanic_df['Sex'].head()

Figure 6-31.  The result of categorical transformation

Chapter 6 Data Wrangling and Preprocessing

187

We can reverse the key-value pairs in the mapping dictionary as

follows, to map the converted class labels back to the original string

representation (Figure 6-32):

inv_class_mapping = {v: k for k, v in class_mapping.items()}

titanic_df['Sex'] = titanic_df['Sex'].map(inv_class_mapping)

titanic_df['Sex'].head()

Figure 6-32.  The result of categorical inverse transformation

Alternatively, there is a convenient LabelEncoder class directly

implemented in Scikit-learn to achieve the same:

from sklearn.preprocessing import LabelEncoder

gender_le = LabelEncoder()

titanic_gender = gender_le.fit_transform(titanic_df.Sex)

titanic_gender[0:10]

Outputs

array([1, 0, 0, 0, 1, 1, 1, 1, 0, 0])

Note T he fit_transform method is just a shortcut for calling fit
and transform separately.

Chapter 6 Data Wrangling and Preprocessing

188

And the classes_ attribute shows you the class that the real categorical

column was before encoding:

gender_le.classes_

Outputs

array(['female', 'male'], dtype=object)

�Performing One-Hot Encoding on Nominal
Features
In the previous section, we used a simple dictionary-mapping approach to

convert the ordinal size feature into integers. Since Scikit-learn estimators

treat class labels without any order, we used the convenient LabelEncoder

class to encode the string labels into integers. It may appear that we could

use a similar approach to transform the nominal gender column of our

dataset, as follows:

from sklearn.preprocessing import LabelEncoder

gender_le = LabelEncoder()

titanic_gender = gender_le.fit_transform(titanic_df.Sex)

titanic_gender[0:10]

Outputs

array([1, 0, 0, 0, 1, 1, 1, 1, 0, 0])

After executing the preceding code, the first column of the NumPy

array X now holds the new gender values, which are encoded as shown in

code cell output.

If we stop at this point and feed the array to our model, we will make

one of the most common mistakes in dealing with categorical data.

Chapter 6 Data Wrangling and Preprocessing

189

�Can You Spot the Problem?
Although the gender values don’t come in any particular order, a learning

algorithm will now assume that male is larger than female. Although this

assumption is incorrect, the algorithm could still produce useful results.

However, those results would not be optimal.

A common workaround for this problem is to use a technique

called one-hot encoding (Figure 6-33). The idea behind this approach

is to create a new dummy feature for each unique value in the nominal

feature column. Here, we would convert the gender feature into two new

features: male and female. Binary values can then be used to indicate the

particular gender of a sample; for example, a male sample can be encoded

as male=1, female=0. To perform this transformation, we can use the

OneHotEncoder that is implemented in the sklearn.preprocessing

module:

from sklearn.preprocessing import OneHotEncoder

gender_ohe = OneHotEncoder()

titanic_gender_ohe = gender_ohe.fit_transform(pd.

DataFrame(titanic_gender))

titanic_gender_ohe[0:10]

Outputs

<10x2 sparse matrix of type '<class 'numpy.float64'>' with 10

stored elements in Compressed Sparse Row format>

When we initialized the OneHotEncoder, we defined the column

position of the variable that we want to transform via the categorical_

features parameter. By default, the OneHotEncoder returns a sparse matrix

when we use the transform method, and we converted the sparse matrix

representation into a regular (dense) NumPy array for the purposes of

visualization via the toarray method.

Chapter 6 Data Wrangling and Preprocessing

190

Note  Color is the first column in the feature matrix X Sparse
matrices are simply a more efficient way of storing large datasets,
and one that is supported by many Scikit-learn functions, which is
especially useful if it contains a lot of zeros. To omit the toarray
step, we could initialize the encoder as OneHotEncoder(...,
sparse=False) to return a dense NumPy array.

An even more convenient way to create those dummy features via one-

hot encoding is to use the get_dummies method implemented in pandas.

Applied on a DataFrame, the get_dummies method will only convert string

columns and leave all other columns unchanged:

pd.get_dummies(titanic_df.Sex).head()

Figure 6-33.  The result of one-hot encoding transformation

�A Special Type of Data: Text
Let’s introduce another type of data. Text is frequently used on the Web; you

can see almost every website has forms, and social media is filled with text

data like posts and comments. Text is also used as input for deep learning

algorithms, since it contains a natural representation of data in our language.

It’s so rich, that it also contains the answer to what we’re looking for.

Chapter 6 Data Wrangling and Preprocessing

191

The most common algorithm used when dealing with text is to use a

bag of words. According to this algorithm, every word becomes a feature

and the text becomes a vector that contains nonzero elements for all the

features (that is, the words) in its body. Given a text dataset, what’s the

number of features? It is simple. Just extract all the unique words in it

and enumerate them. For a very rich text that uses all the English words,

that number is around 600,000. If you’re not going to further process it

(removal of third person, abbreviations, contractions, and acronyms), you

might find yourself dealing with more than that, but that’s a very rare case.

In a plain and simple approach, which is the target of this book, we just let

Python do its best.

The dataset used in this section is textual; it’s the famous 20newsgroup

(for more information about this, visit 20Newsgroups (http://qwone.

com/~jason/20Newsgroups/). It is a collection of about 20,000 documents

that belong to 20 topics of newsgroups. It’s one of the most frequently

used (if not the top most used) datasets presented while dealing with text

classification and clustering. To import it (Figure 6-34), we’re going to use

only its restricted subset, which contains all the science topics (medicine

and space):

from sklearn.datasets import fetch_20newsgroups

categories = ['sci.med', 'sci.space']

twenty_sci_news = fetch_20newsgroups(categories=categories)

Note T he first time you run this command, it automatically
downloads the dataset and places it in the $HOME/scikit_learn_
data/20news_home/ default directory.

print(twenty_sci_news.data[0])

Chapter 6 Data Wrangling and Preprocessing

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

192

The easiest way to deal with the text is by transforming the body of

the dataset into a series of words. This means that for each document, the

number of times a specific word appears in the body will be counted.

For example, let’s make a small, easy-to-process dataset:

•	 doc_1: We love machine learning.

•	 doc_2: Machine learning is great.

In the entire dataset, which contains doc_1 and doc_2, there are only

six different words: we, love, machine, learning, is, and great. Given this

array, we can associate each document with a feature vector:

feature_doc_1 = [1 1 1 1 0 0]

feature_doc_2 = [0 0 1 1 1 1]

Note that we’re discarding the positions of the words and retaining

only the number of times the word appears in the document. That’s all.

Figure 6-34.  The result of loading the 20newsgroups dataset

Chapter 6 Data Wrangling and Preprocessing

193

In the 20newsletter dataset, with Python, this can be done in a

simple way:

print (twenty_sci_news.target[0])

Outputs

1

print (twenty_sci_news.target_names[twenty_sci_news.target[0]])

Outputs

sci.space

First, we instantiate a CountVectorizer object. Then, we call the method

to count the terms in each document and produce a feature vector for each

of them, which is fit_transform. Then we can query the matrix size.

Note T he output matrix is sparse, because it’s very common to
have only a limited selection of words for each document (since the
number of nonzero elements in each line is very low and it makes no
sense to store all the redundant zeros).

Anyway, the output shape is (1187, 25638). The first value is the

number of observations in the dataset (the number of documents), while the

latter is the number of features (the number of unique words in the dataset).

After the CountVectorizer transforms, each document is associated with its

feature vector (Figure 6-35). Let’s take a look at the first document.

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

word_count = count_vect.fit_transform(twenty_sci_news.data)

word_count.shape

Outputs

(1187, 25638)

print (word_count[0])

Chapter 6 Data Wrangling and Preprocessing

194

You may notice that the output is a sparse vector where only nonzero

elements are stored. To check the direct correspondence to words

(Figure 6-36), just try the following code:

word_list = count_vect.get_feature_names()

for n in word_count[0].indices:

 �print ('Word "%s" appears %i times' % (word_list[n],

word_count[0, n]))

Figure 6-35.  The result of count vectorizing the dataset

Figure 6-36.  The data transformed using count vectorizer

Chapter 6 Data Wrangling and Preprocessing

195

�So Far, Everything Has Been Pretty Good,
Hasn’t It?
Let’s move forward to another task of increasing complexity and

effectiveness. Counting words is good, but we can get more info from

the data with more complexity. Let’s compute their frequency. It’s a

measure that you can compare across differently sized datasets. It gives

an idea whether a word is a stop word (that is, a very common word

such as a, an, the, or is) or a rare, unique one. Typically, these words are

the most important because they’re able to characterize an instance

and the features based on these words, which are very discriminative

in the learning process. To retrieve the frequency of each word in each

document, we use TfidfVectorizer to compute the frequency matrix

(Figure 6-37); try the following code:

from sklearn.feature_extraction.text import TfidfVectorizer

tf_vect = TfidfVectorizer(use_idf=False, norm='l1')

word_freq = tf_vect.fit_transform(twenty_sci_news.data)

word_list = tf_vect.get_feature_names()

for n in word_freq[0].indices:

 �print ('Word "%s" has frequency %0.3f' % (word_list[n],

word_freq[0, n]))

Chapter 6 Data Wrangling and Preprocessing

196

The sum of the frequencies is 1 (or close to 1 due to the approximation).

This happens because we chose the L1 norm. In this specific case, the word

frequency is a probability distribution function. Sometimes, it’s nice to

increase the difference between rare and common words. In such cases, you

can use the L2 norm to normalize the feature vector.

An even more effective way to vectorize text data is by using Tfidf.

In brief, you can multiply the term frequency of the words that compose

a document by the inverse document frequency of the word itself (that

is, in the number of documents it appears, or in its logarithmically scaled

transformation). This is very handy to highlight words that effectively

describe each document and which are a powerful discriminative element

among the dataset.

Tfidf gained a lot of popularity since computers have started

to process and mine text data. The majority of search engines and

information retrieval software have used it mainly for its effective way to

measure sentence similarity and distance, making it an optimal solution to

retrieve documents from a user-inserted text search query.

Figure 6-37.  The data transformed using Tfidf Vectorizer

Chapter 6 Data Wrangling and Preprocessing

197

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vect = TfidfVectorizer()

word_tfidf = tfidf_vect.fit_transform(twenty_sci_news.data)

word_list = tfidf_vect.get_feature_names()

for n in word_tfidf[0].indices:

 �print ('Word "%s" has tf-idf %0.3f' % (word_list[n],

word_tfidf[0, n]))

Figure 6-38.  The data after tfidf transformation

In this example, the four most information-rich words of the first

documents are caste, baube, flb, and tm (they have the highest tf-idf

score). This means that their term frequency within the document is

high, whereas they’re pretty rare in the remaining documents. In terms of

information theory, their entropy is high within the document, while it’s

lower considering all the documents.

So far, for each word, we have generated a feature. What about taking
a couple of words together?

Chapter 6 Data Wrangling and Preprocessing

198

That’s exactly what happens when you consider bigrams instead of

unigrams. With bigrams (or generically, n-grams), the presence or absence

of a word—as well as its neighbors—matters (that is, the words near it

and their disposition). Of course, you can mix unigrams and n-grams and

create a rich feature vector for each document. In a simple example, let’s

test how n-grams work:

text_1 = 'we love data science'

text_2 = 'data science is hard'

documents = [text_1, text_2]

count_vect_1_grams = CountVectorizer(ngram_range=(1, 1), stop_

words=[], min_df=1)

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" +

str(word_count[0, n]) + ")" for n in word_count[0].indices])

Outputs

Word list = ['data', 'hard', 'is', 'love', 'science', 'we']

text_1 is described with ['we(1)', 'love(1)',

'data(1)', 'science(1)']

count_vect_1_grams = CountVectorizer(ngram_range=(2, 2))

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" +

str(word_count[0, n]) + ")" for n in word_count[0].indices])

Chapter 6 Data Wrangling and Preprocessing

199

Outputs

Word list = ['data science', 'is hard',

'love data', 'science is', 'we love']

text_1 is described with ['we love(1)',

'love data(1)', 'data science(1)']

count_vect_1_grams = CountVectorizer(ngram_range=(1, 2))

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" +

str(word_count[0, n]) + ")" for n in word_count[0].indices])

Outputs

Word list = ['data', 'data science', 'hard',

'is', 'is hard', 'love', 'love data',

'science', 'science is', 'we',

'we love']

text_1 is described with ['we(1)', 'love(1)',

'data(1)', 'science(1)', 'we love(1)',

'love data(1)', 'data science(1)']

The preceding example is very intuitive and combines the first

and second algorithms we previously discussed. In this code cell, we

used a CountVectorizer, but this algorithm is very common with a

TfidfVectorizer.

Note T he number of features explodes exponentially when you use
n-grams.

Chapter 6 Data Wrangling and Preprocessing

200

If you have too many features (rich text data) in your dataset (the

dictionary may be too rich, there may be too many ngrams, or the

computer may just be limited), you can use a trick that lowers the

complexity of the problem (but you should first evaluate the trade-off

performance/trade-off complexity).

It’s common to use the hashing trick, where many words (or n-grams)

are hashed and their hashes collide (which makes a bucket of words).

Buckets are sets of semantically unrelated words but with colliding hashes.

With HashingVectorizer(), as shown in the following example, you can

decide the number of buckets of words you want. The resulting matrix, of

course, reflects your setting:

from sklearn.feature_extraction.text import HashingVectorizer

hash_vect = HashingVectorizer(n_features=1000)

word_hashed = hash_vect.fit_transform(twenty_sci_news.data)

word_hashed.shape

Outputs

(1187, 1000)

Note  You can’t invert the hashing process (since it’s an irreversible
summarization process).

After this transformation, you will have to work on the hashed features

as they are. Hashing presents quite a few advantages:

•	 Allowing quick transformation of a bag of words into

vectors of features

•	 Hash buckets are our features in this case.

•	 Easily accommodating never previously seen words

among the features

•	 Avoiding overfitting by having unrelated words collide

together in the same feature

Chapter 6 Data Wrangling and Preprocessing

201

�Tokenization, Stemming, and Stop Words
�What Are Tokenizing and Tokenization?

Tokenizing means splitting your text into minimal meaningful units. It is a

mandatory step before any kind of processing. It is the act of breaking up a

sequence of strings into pieces such as words, keywords, phrases, symbols

and other elements called tokens.

Tokens can be individual words, phrases, or even whole sentences.

That’s all about tokenization, actually,

We need to talk about it, but we should zoom out to see what happens

from a flying camera. This camera will allow us to see what is lexical

analysis, lexing, or tokenization; which is the process of converting a

sequence of characters (such as in a computer program or web page) into

a sequence of tokens.

A program that performs lexical analysis may be termed a lexer, tokenizer,

or scanner, though the scanner is also a term for the first stage of a lexer.

We said the word lexer many times. So, the question is, what is a lexer?

or to be rigorous, what is a lexeme? A lexeme is a sequence of characters in

the source program that matches the pattern for a token and is identified

by the lexical analyzer as an instance of that token. But we didn’t really

answer the question “what is a token?” in rigorous form. A token is a string

with an assigned and thus identified meaning; it is structured as a pair

consisting of a token name and an optional token value. The token name is

a category of lexical unit, and common token names are:

•	 identifier: names the programmer chooses

•	 keyword: names already in the programming language

•	 separator (also known as punctuators): punctuation

characters and paired-delimiters.

•	 operator: symbols that operate on arguments and

produce results

Chapter 6 Data Wrangling and Preprocessing

202

•	 literal: numeric, logical, textual, reference literals

•	 comment: line, block

These names are not important in the scope of this book, but we tried

to give you some information about the basics of tokenization. However,

we do not do all of this manually; we will see some packages in Python that

help us to make tokenization and stemming very easy. For now, let us see

an example to get a better idea about it.

Input: Friends, Romans, Countrymen, lend me your ears.

Output: (Friends), (Romans), (Countrymen), (lend), (me), (your), (ears).

XML-Output:

<sentence>

 <word>Friends</word>

 <word>Romans</word>

 <word>Countrymen</word>

 <word>lend</word>

 <word>me</word>

 <word>your</word>

 <word>ears</word>

</sentence>

After we’ve seen this example, I think we have a good understanding

about Tokenization. But before we get into examples, we’ll see a new term

called stemming. So, the question rings, what is stemming?

Stemming refers to reducing a word to its root form. While performing

natural language processing tasks, you will encounter various scenarios

where you find different words with the same root.

For example, “compute, computer, computing, computed.” You may

want to reduce the words to their root form for the sake of uniformity. This

is where stemming comes into play. Now we can see what stemming is, but

what is the difference between stemming and lemmatization (Table 6-1)?

Chapter 6 Data Wrangling and Preprocessing

203

Table 6-1.  The Difference Between Stemming and Lemmatization

Stemming Lemmatization

Stemming is the process of reducing

inflexion in words to their root forms, such

as mapping a group of words to the same

stem, even if the stem itself is not a valid

word in the language.

Lemmatization, unlike stemming,

reduces the inflected words properly,

ensuring that the root word belongs

to the language. In lemmatization,

the root word is lemma. A lemma

(plural lemmas or lemmata) is the

canonical form, dictionary form, or

citation form of a set of words.

Example

Word Porter Stemmer

friend friend

friendship friendship

friends friend

friendships friendship

Example

Word Lemma

He He

was wa

running running

and and

eating eating

at at

Examples of stemmers in the NLTK are Porter stemmer and Snowball

stemmer. Both of them have been implemented using different algorithms.

Let’s take a quick and easy look at these two stemmers.

The Porter stemming algorithm is a process of removing the suffix

form words in English; for example, we will take a word and try to get its

stemmer values,

E.g: Connected - > connect

 Connecting - > connect

 Connector - > connect

 Connection - > connect

Chapter 6 Data Wrangling and Preprocessing

204

The rules for making a Porter stemmer:

This is the basis of the NLTK, which you can see more about at www.

nltk.org/. Now we get the basic word in the phrase (token) and we get its

root. Let’s talk a moment about stop words. Stop Words are words that do

not contain important significance to be used in search queries. Usually,

these words are filtered out from search queries because they return a vast

amount of unnecessary information. Each programming language will give

its own list of stop words to use. Mostly they are words that are commonly

used in the English language such as “as, the, be, are,” etc.

We will start in the next stage on the bag-of- words algorithm and IR

algorithms that help in natural language processing, like tf-idf.

�The Bag-of-Words (BoW) Model

What is the BoW?

We may want to perform classification of documents, so each document

is an “input” and a class label is the “output” for our predictive algorithm.

Algorithms take vectors of numbers as input; therefore, we need to convert

documents to fixed-length vectors of numbers. So how we can make this

in machine learning algorithm isn’t possible so we need a model which

think about text documents in machine learning, throws away all of the

order information in the words and focuses on the occurrence of words in

a document. This BoW is what we need to perform this task very efficiently.

We know the definition of BoW and how we can use it. Let’s see how it

works in a technical way.

Chapter 6 Data Wrangling and Preprocessing

http://www.nltk.org/
http://www.nltk.org/

205

The BoW model can be implemented by assigning each word a unique

number. Then any document we see can be encoded as a fixed-length vector

with the length of the vocabulary of known words. The value in each position

in the vector could be filled with a count or frequency of each word in the

encoded document. We are only concerned with encoding schemes that

represent which words are present or the degree to which they are present in

encoded documents, without any information about the order.

Let’s take an example to get a better understanding about the bag of words:

	 1.	 John likes to watch movies. Mary likes movies too.

	 2.	 John also likes to watch football games.

Based on these two text documents, a list is constructed as follows for

each document:

#1 "John", "likes", "to", "watch", "movies", "Mary", "likes",

"movies", "too"

#2 "John", "also", "likes", "to", "watch", "football", "games"

Representing each bag-of-words as a JSON object:

BoW1 = {"John":1,"likes":2,"to":1,"watch":1,"movies":2,

"Mary":1,"too":1};

BoW2 = {"John":1,"also":1,"likes":1,"to":1,"watch":1,

"football":1,"games":1};

Now see what happens when we have a new document like this:

	 1.	 John likes to watch movies. Mary likes movies too.

John also likes to watch football games.

So now we should take the union of BoW3=BoW1 BoW2 so we will see

the output:

BoW3 = {"John":2,"likes":3,"to":2,"watch":2,"movies":2,"Mary":1,

 "too":1,"also":1,"football":1,"games":1}

Chapter 6 Data Wrangling and Preprocessing

206

After we finish this section we will try to prepare you for the next

Chapter 8, which features extraction. There you will learn how to prepare

your data and get information about what data you have. This will become

more obvious in the next chapters.

�Summary
We started this chapter by defining what is the data pipeline and

elaborated where is data cleaning in the pipeline’ after that we gave you a

good reason why you need to clean your dataset.

After that we looked at useful techniques to make sure that we handle

missing data correctly. Before we feed data to a deep learning algorithm,

we also have to make sure that we encode categorical variables correctly,

and we have seen how we can map ordinal and nominal features values to

integer representations.

Finally, we made a case study and discussed how to use what we

learned from this chapter on the Titanic dataset to prepare, clear it, and

make it ready for the next step of the pipeline.

Chapter 6 Data Wrangling and Preprocessing

207© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_7

CHAPTER 7

Data Resampling
In statistics, resampling is the method that consists of drawing repeated

samples from the original data. So, we can say that resampling methods

are a tool taken from modern statistics. These methods involve repeatedly

taking a sample from the training set and training the model on each

sample in order to get additional information about the model.

For example, we can estimate variability of the learning of the model of

interest. We can draw different samples from the training data, then each

time we train the model on a given sample, we examine the difference

in results. An approach like that may allow us to obtain information that

would not be available to us if we trained our model only one time using all

of the training dataset.

Using resampling methods might be costly and expensive by way

of computational power, especially if you think about these approaches

training the same model many times using a different subset of the training

dataset. But nowadays computer power has grown, and the requirements

of these methods are not impossible.

In this chapter we will introduce two of the most commonly used

methods in data resampling: cross-validation and bootstrap. Both of these

methods are very important and used a lot in many practical applications,

and are an essential part of any machine learning pipeline. For example,

cross-validation can be used to estimate the error coming from a trained

model to check and evaluate its performance, or to select something called

208

the level of flexibility. Bootstrap is commonly used to give us the accuracy

of model parameter used in training

•	 Note: The process of evaluating the model’s

performance is known as model assessment.

•	 Note: The process of selecting the best level of

flexibility is known as model selection.

�Creating Training and Test Sets
When a dataset is large enough, it’s a good practice to split it into training

and test sets; the former to be used for training the model and the latter to

test its performances.

You might wonder why you should do that from the beginning.

Separating data into training and testing sets is an important part of

evaluating data mining models. Typically, when you separate a data set

into a training set and a testing set, most of the data is used for training and

a smaller portion of the data is used for testing.

The methods that we will discuss in this chapter have a main

responsibility, which is to randomly sample the data to help ensure that

the testing and training sets are similar. By using similar data for training

and testing, you can minimize the effects of data discrepancies and better

understand the characteristics of the model.

After a model has been processed by using the training set, you test the

model by making predictions against the test set. Because the data in the

testing set already contains known values for the attribute that you want to

predict, it is easy to determine whether the model’s guesses are correct.

To summarize, there are two main rules in performing such an

operation:

Chapter 7 Data Resampling

209

•	 Both datasets must reflect the original distribution.

•	 The original dataset must be randomly shuffled before

the split phase in order to avoid a correlation between

consequent elements.

�Cross-Validation
In a previous chapter we illustrated the difference between the testing error

rate and the training error rate. The error that comes as a result of using

a certain model to predict the output of a new observation is called the

testing error rate.

You can see that:

•	 The lower the testing error rate, the good the model is.

•	 The higher the rate is, the worse the model is.

Note  Do not forget that the testing set was not used to train the
model.

The training error rate can be easily calculated by applying the model

to the dataset used in its training. But, you will notice that this error rate

is often different from the test error rate and lower too, and it’s not a good

measure for the model because it can underestimate the true accuracy.

As we want a good estimation of the testing error rate, we need a

large testing set. But what if you cannot get a large dataset for testing?

Here come some methods to estimate the testing error rate using the

training dataset. In the next section we will consider a type of method that

estimates the testing error rate by holding out a small subset of the training

data, and not to train the model on this subset; it then uses the model to

predict these subset outputs.

Chapter 7 Data Resampling

210

�Validation Set Technique
The validation set technique is a very simple technique for estimating

testing error rate associated with training a model on a dataset. It involves

randomly dividing the available training set into two pieces: a training set

and a validation set (sometimes called hold-out set). The model trains on a

training data piece; after training finishes, the model is used to predict the

responses/outputs for the observations in the validation set and as a result,

it provides an estimate of the testing error rate (Figure 7-1).

Figure 7-1.  A strategic view of how a validation set works

The first thing we can start with is to load the dataset that we will work

with in this chapter, the Iris dataset, which we introduced in a previous

chapter. Then we create two variables: one for input features and another

one for the target/output feature.

Note T he Iris dataset comes as preloaded dataset in a datasets
module at sklearn package.

from sklearn import datasets

iris = datasets.load_iris()

print('X shape: {}, y shape: {}'.format(iris.data.shape, iris.

target.shape))

Chapter 7 Data Resampling

211

Output

X shape: (150, 4), y shape: (150,)

After loading the dataset into X and y variables, we also print the shape

of both variables. It’s now time for sampling the data to choose points

that will be in the training set and ones that will be in the validation and

testing sets.

So, we import from the sklearn.model_selection module the train_

test_split function that will divide the data into train and test portions.

from sklearn.model_selection import train_test_plit

Then, we use it to divide both X and y into training X, y (to be called

X_train, y_train) and testing X, y sets (to be called X_test, y_test).

Note T he training set will be equal to 60% of the whole dataset,
and the testing set will be equal to 40% of the whole dataset.

X_train, X_test, y_train, y_test = train_test_split(iris.data,

iris.target, test_size=0.4, random_state=47)

After the divide operation is done, and all sets are created from the

sampling operation, let us print the shape of all sets to see the percentage

of the divide operation. As we configured it, the training data has 90

observations of 150 total observations, and this means 60% of the data; and

the testing set has 60 observations, which means that it is equal to 40% of

the whole dataset.

print('# Train => X shape: {}, y shape: {}'.format(X_train.shape,

y_train.shape))

print('# Test => X shape: {}, y shape: {}'.format(X_test.shape,

y_test.shape))

Chapter 7 Data Resampling

212

Output

Train => X shape: (90, 4), y shape: (90,)

Test => X shape: (60, 4), y shape: (60,)

Now, we need to create the validation set, as we don’t have any

function that can create all of the training, validating, and testing sets in

one step. We need to do the same step of dividing the data on the test set,

but this time we want the divide the 40% into 20% for testing and 20% for

validating, so we will divide the testing set in half. In the following code, we

divided the testing set into 50% testing set and 50% validation set.

X_test, X_valid, y_test, y_valid = train_test_split(X_test,

y_test, test_size=0.5, random_state=47)

After we divide, again, we print all sets to make sure that we are in the

right place. As you can see, we did not touch the training set at all, the 90

observations in the training set remain untouched, while the testing set

now is 30 observations instead of 60, and there’s a validation set that has 30

observations too.

print('# Train => X shape: {}, y shape: {}'.format(X_train.shape,

y_train.shape))

print('# Test => X shape: {}, y shape: {}'.format(X_test.shape,

y_test.shape))

print('# Valid => X shape: {}, y shape: {}'.format(X_valid.shape,

y_ valid.shape))

Output

Train => X shape: (90, 4), y shape: (90,)

Test => X shape: (30, 4), y shape: (30,)

Valid => X shape: (30, 4), y shape: (30,)

The model should train on the training set, and after the learning

process (training) is finished the model is used to predict the outcome

(responses) for the observations (input row) in the validation set.

Chapter 7 Data Resampling

213

The resulting validation set error rate should be an estimate of the test

error rate. The validation set approach is conceptually simple and easy to

implement, but it has two potential drawbacks:

•	 The estimate of the test error rate that the validation

set provides can be highly variable, depending on

the process that selected which observation will be on

the training set and which observation will be on the

testing set.

•	 The estimate of the test error rate that the validation set

provide might overestimate the test error rate. That’s

because we take a subset of the training and/or testing

set as a validation set, and that makes the sets smaller

in size, which means the model may perform worse

due to fewer training observations.

So, in the next approach, we will introduce an upgrade of the validation

set called cross-validation; this approach is especially to address the two

issues just mentioned.

�Leave-One-Out Cross-Validation (LOOCV)
LOOCV is very similar to a validation set and does the same job, but it was

created to solve the drawbacks of a validation set.

Similar to a validation set, LOOCV splits the set of data into two parts.

However, the validation set contains only a single observation (just one

point of the dataset). Let us consider that this one point/observation

is (x1, y1) and this point is used for the validation set, and all other

observations {(x2, y2), …, (xn, yn)} are used for training the model (as training

set). The model now learns from n-1 observations in the training set, and

validates its learning process on only one observation. We are predicting

y1 for the x1, since (x1, y1) is not used on the learning process (training

Chapter 7 Data Resampling

214

model), and the metric used contains errors for the first point (x1, y1)

that we describe as E y y1 1 1

2
= -()ˆ for regression and E y1 1

2
= ¹()ŷ1 for

classification.

Now we provide almost an unbiased estimate for the test error. But

even though this error term is unbiased, it is still a poor estimate because

it is highly variable; and you can sense it because we are using only one

observation (x1, y1) for validating our model knowledge.

If we want to fix this problem, we can simply repeat the same process

by selecting (x2, y2) as the validation set and all other observation as the

training set. We train our model on n − 1 other observations and compute

E2 for the validation point x2. We repeat again for (x3, y3), train the model,

validate, and produce E3. We do it again for (x4, y4) and produce E4 and

do it for all data points/observations for N times to produces N errors,

E1, …, En. The LOOCV estimate for the test error now is the average of these

N validation set error rates.

CV
n

EN
i

N

i() = å1

As we can see, LOOCV has a couple of advantages that could not exist

in the validation set approach:

•	 LOOCV has less bias than a validation set, because we

repeatedly train the model on n − 1 data observations

(and that’s almost the entire dataset). That doesn’t

happen in the validation set approach; in the validation

set approach, we take a subset of the whole dataset

as the validation set and train the model on the

other data subsets. So the LOOCV approach tends

not to overestimate the test error rate as much as the

validation set approach does.

Chapter 7 Data Resampling

215

•	 LOOCV produces the same results each time you

run it; unlike the validation set approach, there is no

randomness in the train-test splits. LOOCV repeatedly

takes each data point as validation set one time and

at the end calculates the mean error rate. There’s no

randomness generated, because you do not select

the validation set observations; you simply take each

observation as validation for one time and iterate.

from sklearn.model_selection import LeaveOneOut

We know that sklearn contains almost any function we need as we

perform our machine learning pipeline, and it works for most of the

dataset we will deal with. As a first step, we need to load the LeaveOneOut

method from the model_selection module in Scikit-learn.

After loading the method, we need to load our data; for simplicity, we

will use the iris preloaded dataset in the sklearn datasets module.

X = iris.data

y = iris.target

Until now, we have loaded the method and data. Now we will start the

work, and we’ll do that by initiating the LeaveOneOut class and getting the

number of possible splits. As you see, there are 150 possible splits.

loo = LeaveOneOut()

loo.get_n_splits(iris.data)

Now we can use the loo instance for us, and we can do that by getting

the starting and ending indices for both train and testing sets.

from train_index, test_index in loo.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

Chapter 7 Data Resampling

216

For each iteration, the class instance will give the test one data point,

and the rest will be in the training.

LOOCV may have a drawback, which concerns computational power.

LOOCV can be expensive to implement, since the model has to train N

times. So, if the dataset is large, this can be very time consuming, and you

should consider the time the model takes to learn.

�K-Fold Cross-Validation
You might think that this new approach is an upgrade to LOOCV. K-Fold

CV involves randomly dividing the dataset into k equal subsets/groups and

they’re called folds. Then we take the first subset (fold) as a validation set

and train the mode on the other k − 1 fold as a training-set. The validation

error produced (let’s call it E1) is calculated from the validation set (hold-

out fold). We repeat the process k times; each time, we take one different

fold as the validation set and all other k − 1 as the training set. This process

results in k estimate of the test error rate, which is E1, …, Ek, and then we

take the average:

CV
N

EN
i

N

i()
=

= å1

1

You can see that LOOCV is a special case of K-Fold CV in which k is

equal to N. In practice, the developer performs K-Fold CV using k=5 or

k=10, but most developers do not use k=N due to computational power as

we mentioned earlier.

from sklearn.model_selection import KFold

kf = KFold(n_split=5)

kf.get_n_split(X)

Output

5

Chapter 7 Data Resampling

217

for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 Y_train, y_test = y[train_index], y[test_index]

 �Print('# Train => X shape: {} ## Test => X Shape: {}'.

format(X_train.shape, X_test.shape))

Output

Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

�Bootstrap
Bootstrap is a statistical technique used for sampling data with

replacement.

For now, we have a little introduction for the bootstrap technique.

We will use a real example that allows you to get a better idea about data

resampling with bootstrap. There are other resampling techniques like

Monte Carlo, and randomization techniques, but here we will talk only

about the bootstrap technique.

The bootstrap method can be used to estimate the quantity of a

population. This is done by repeatedly taking small samples, calculating

the statistic, and taking the average of the calculated statistics.

Chapter 7 Data Resampling

218

�Bootstrap in Statistics
Bootstrap is denoted by x∗. Let’s start to generate a bootstrap sample. We

have N observations and need to sample them; we can get these samples

from the distribution of population.

So, N observations are x1 = 2, x2 = 1, x3 = 7, …, xN = 5 for instance.

The sample we get from N observations we can denote as vector x x()

and we can make any operation in this sample, like mean S x= ()q . This

action can be done without replacement, or we can do the same but with

replacement. What’s the difference between replacement and without

replacement? With replacement means that we can repeat the same

value more than one in the same observation, but without replacement

we can’t repeat the value in an observation more than once. Note the

observation should be IID (independent identical distribution). Identically

distributed means that there are no overall trends—the distribution

doesn’t fluctuate, and all items in the sample are taken from the same

probability distribution. Independent means that the sample items are all

independent events. So let’s complete the bootstrap.

So N observations are x1 = 2, x2 = 1, x3 = 7, …, xN = 5. The sample we get

from N-observation can be denoted as Bootstrap x (x∗)

Chapter 7 Data Resampling

219

And we can make any operation in this sample like mean S = (x∗) but

here with replacement. Let’s see a figure that may make things easier.

Basically, the bootstrap method is a statistical technique for estimating

quantities about a population by averaging estimates from multiple small

data samples.

You can see the difference between these two examples in the

following image.

Chapter 7 Data Resampling

220

�Tips to Use Bootstrap (Resampling
with Replacement)
To give you the best experience using the bootstrap technique, we

summarized it into steps, and you can use these steps to create your data

selection pipeline.

	 1.	 Maintains data structure but reshuffles values,

extrapolating to the population

	 2.	 The procedure can sample each value multiple

times, or not at all.

Figure 7-2.  Sample distribution

Chapter 7 Data Resampling

221

	 3.	 Useful for estimating statistic parameters where data

are nonnormal

	 4.	 Has unknown statistical properties (e.g., PCA—

we will discuss it in a later chapter).

So, let us give some thought to how this method works, get into more

details about it, and see how we can make these samples. The process for

building one sample can be summarized as follows:

	 1.	 Choose the size of the sample.

	 2.	 If the size of the sample is less than the chosen size:

	 a.	 Randomly select an observation from the dataset.

	 b.	 Add it to the sample.

The bootstrap method can calculate the quantity of population in the

following steps:

	 1.	 Choose a number of bootstrap samples to perform.

	 2.	 Choose a sample size.

	 3.	 For each bootstrap sample:

	 a.	 Draw a sample with replacement with the chosen size.

	 b.	 Calculate the statistic on the sample.

	 4.	 Calculate the mean of the calculated sample

statistics.

After setting up the theoretical toolbox, let’s take an example to

demonstrate how these statistical methods work.

Imagine we have a dataset with 6 observations:

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

Chapter 7 Data Resampling

222

The first step is to choose the size of the sample. Here, we will use 4.

Next, we must randomly choose the first observation from the dataset.

Let’s choose 0.2.

sample = [0.2]

This observation is returned to the dataset, and we repeat this step

three more times.

sample = [0.2, 0.1, 0.2, 0.6]

We now have our data sample. The example purposefully

demonstrates that the same value can appear zero, or one or more times in

the sample. Here the observation 0.2 appears twice. An estimate can then

be calculated on the drawn sample.

statistic = calculation([0.2, 0.1, 0.2, 0.6])

Those observations not chosen for the sample may be used as out-of-

bag observations.

oob = [0.3, 0.4, 0.5]

In the case of evaluating a machine learning model, the model is fit on

the drawn sample and evaluated on the out-of-bag sample.

train = [0.2, 0.1, 0.2, 0.6]

test = [0.3, 0.4, 0.5]

model = fit(train)

statistic = evaluate(model, test)

That concludes one repeat of the procedure. It can be repeated 30 or

more times to give a sample of calculated statistics.

statistics = [...]

Chapter 7 Data Resampling

223

This sample of statistics can then be summarized by calculating a

mean, standard deviation, or other summary value to give a final usable

estimate of the statistic.

estimate = mean([...])

At the end of this section, we should know what sampling is, how we

use it with replacement and without replacement, and the difference

between them when we use it with statistical functions.

�Generators
When you are working on developing a machine/deep learning model, you

might experience lack of memory while feeding datasets into the model.

The moment you run into memory errors when trying to take the training

data into memory, you know that you have to switch your data feeding

strategy.

Even state-of-the-art configurations might go out of memory

sometimes to process the whole data. That is the reason why we need

to find other ways to do that task efficiently. The only way to do it is by

loading the data in real time; hence, we are going to show you how to

generate your dataset on multiple cores in real time and feed it right away

to your deep learning models.

�What Are Keras Generators?
A generator is just a module in Keras, which is used to get batches of input

and corresponding output on the fly during the training process.

An example is reading in a set that contains an input of 100 images,

getting a corresponding 100 label vector, and then feeding this set to the

GPU for the training step. We have to keep in mind that, in some cases,

even the most state-of-the-art configuration won’t have enough memory

Chapter 7 Data Resampling

224

space to process the data the way we used to do it. That is the reason why

we need to find other ways to do that task efficiently. We are going to show

you how to generate your dataset on multiple cores in real time and feed it

right away to your deep learning models.

Let’s see an example, to get a better idea about data_generator, and

we will talk about train-on-the-fly module too. Let’s start with the Keras

package; we need it to use generators, and now you can import it from

TensorFlow too as a module.

// could not understood the example here

The example we go through is a teaching example to learn how to use

this package to enhance feeding your data into your model.

Before getting started, let’s go through a few organizational tips that are

particularly useful when dealing with large datasets. Let ID be the string

that identifies a given sample of the dataset. A good way to keep track of

samples and their labels is to adopt the following framework:

	 1.	 Create a dictionary called partition where you

gather

•	 in partition['train'] a list of training IDs

•	 in partition['validation'] a list of validation IDs

Create a dictionary called labels where for each ID of the dataset, the

associated label is given by labels[ID].

For example, let’s say that our training set contains id-1, id-2, and

id-3 with respective labels 0, 1, and 2, with a validation set containing id-4

with label 1. In that case, the Python variables partition and labels look like:

Partition

{'train': ['id-1', 'id-2', 'id-3'], 'validation': ['id-4']}

Labels

{'id-1': 0, 'id-2': 1, 'id-3': 2, 'id-4': 1}

Chapter 7 Data Resampling

225

Now we get a basic idea about how data is partitioned and labeled,

and what the folder looks like to separate data, classes, and labeled data.

A data/ folder is used to save your dataset in it.

folder/

├── my_classes.py
├── keras_script.py
└── data/

�Data Generator
Now, let’s go through the details of how to set up the Python class

DataGenerator, which will be used for real-time data feeding to your

Keras model.

So, let’s now write the initialization function of the class as follows:

def __init__(self, list_IDs, labels, batch_size=32,

dim=(32,32,32),n_channels=1,n_classes=10, shuffle=True):

 #'Initialization'

 self.dim = dim

 self.batch_size = batch_size

 self.labels = labels

 self.list_IDs = list_IDs

 self.n_channels = n_channels

 self.n_classes = n_classes

 self.shuffle = shuffle

 self.on_epoch_end()

Now we initialize the variables we need. But let’s consider every

variable, dimension sizes (e.g., a volume of length 32 will have

dim=(32,32,32)), number of channels, number of classes, and batch size

or decide whether we want to shuffle our data at generation. And we store

important information such as labels and the list of IDs that we wish to

generate at each pass.

Chapter 7 Data Resampling

226

Now I need to talk about callback functions, and on_epoch_end is one

of them.

But before talking about the functions we use, as we are accustomed in

this book, we’ll try to cover the basics about what is a callback.

A callback is a set of functions to be applied at given stages of the

training procedure. You can use callbacks to get a view on internal

states and statistics of the model during training. You can pass a list of

callbacks (as the keyword argument callbacks) to the fit() method of the

Sequential or Model classes. The relevant methods of the callbacks will

then be called at each stage of the training.

�Callback
One of the important modules we can use a lot is the keras.callbacks.

Callback() module. This API allows you to specify which metric to

monitor, such as loss or accuracy on the training or validation dataset.

You can specify whether to look for an improvement in maximizing or

minimizing the score. Finally, the filename that you use to store the

weights can include variables like the epoch number or metric. The Keras

documentation defines.

•	 params: Dictionary. Training parameters (e.g.,

verbosity, batch size, number of epochs...)

•	 model: an instance of keras.models.Model. Reference

of the model being trained

The logs dictionary that callback methods take as an argument will

contain keys for quantities relevant to the current batch or epoch.

Chapter 7 Data Resampling

227

Currently, the fit(...) method of the Sequential model class will

include the following quantities in the logs that it passes to its callbacks:

•	 on_epoch_end: Logs include acc and loss, and

optionally include val_loss (if validation is enabled in

fit), and val_acc (if validation and accuracy monitoring

are enabled).

•	 on_batch_begin: Logs include size, the number of

samples in the current batch.

•	 on_batch_end: Logs include loss, and optionally acc (if

accuracy monitoring is enabled).

For more about callbacks, you can see the documentation at http://

faroit.com/keras-docs/1.1.0/callbacks/.

Now let’s talk about the function on_epoch_end(); as we see, you can

use it by using its parameters. Let’s see an example. This function is very

important in training and not just in the generator example; for example,

if we train a model and this model gets an accuracy that satisfies us and

it still has many epochs that will waste our time, we use on_epoch_end().

Let’s get the definition of on_epoch_end().

class myCallback(tf.keras.callbacks.Callback):

 def on_epoch_end(self, epoch, logs={}):

 if(logs.get('acc')>0.6):

 print("\nReached 60% accuracy so cancelling training!")

 self.model.stop_training = True

In this example, the model will stop training after we get an accuracy of

60%, which we are satisfied with at this time so we don’t need to initialize

the number of epochs.

Chapter 7 Data Resampling

http://faroit.com/keras-docs/1.1.0/callbacks/
http://faroit.com/keras-docs/1.1.0/callbacks/

228

Since we are talking about generators, after we finish the initialization

process it’s time to continue this process into a new task. Shuffling the

order in which examples are fed to the classifier is helpful, so that batches

between epochs do not look alike. Doing so will eventually make our

model more robust.

Another method that is core to the generation process is one that

achieves the most crucial job: producing batches of data. The private

method in charge of this task is called __data_generation and takes as

argument the list of IDs of the target batch.

def __data_generation(self, list_IDs_temp):

 �'Generates data containing batch_size samples' # X :

(n_samples, *dim, n_channels)

 # Initialization

 X = np.empty((self.batch_size, *self.dim, self.n_channels))

 y = np.empty((self.batch_size), dtype=int)

 # Generate data

 for i, ID in enumerate(list_IDs_temp):

 # Store sample

 X[i,] = np.load('data/' + ID + '.npy')

 # Store class

 y[i] = self.labels[ID]

 �return X, keras.utils.to_categorical(y, num_classes=self.n_

classes)

During data generation, this code reads the NumPy array of each

example from its corresponding file ID.npy. Since our code is multicore

friendly, note that you can do more complex operations instead (e.g.,

computations from source files) without worrying that data generation

becomes a bottleneck in the training process.

Chapter 7 Data Resampling

229

Also, please note that we used the keras.utils.to_categorical

method to convert our numerical labels stored in y to a binary form—to be

specific, one-hot vector form—(e.g., in a 6-class problem, the third label

corresponds to [0 0 1 0 0 0]) suited for classification.

Now comes the part where we build up all these components together.

Each call requests a batch index between 0 and the total number of

batches, where the latter is specified in the __len__ method.

def __len__(self):

 'Denotes the number of batches per epoch'

 �return int(np.floor(len(self.list_IDs) / self.batch_size))

A common practice is to set this value to
#Samples

Batch Size
 so that the model

sees the training samples at most once per epoch. Now that we have a

basic understanding about data generators, we will see an example about

it with a real dataset. Let’s choose a simple dataset: the cats and dogs

dataset, www.kaggle.com/c/dogs-vs-cats. Then the data should be in this

structure:

data/

 training/

 class_Dog/

 class_a01.jpg

 class_a02.jpg

 ...

 class_Cat/

 class_b01.jpg

 class_b02.jpg

 ...

 validation/

 class_Dog/

Chapter 7 Data Resampling

http://www.kaggle.com/c/dogs-vs-cats

230

 class_a01.jpg

 class_a02.jpg

 ...

 class_Cat/

 class_b01.jpg

 class_b02.jpg

 ...

Let’s see a code for this data set. You don’t need to understand it in

detail—it will be explained in in detail Part III—but we want you to see the

data generator used in a real problem.

from keras.preprocessing.image import ImageDataGenerator

import numpy as np

step 1: load data

img_width = 150

img_height = 150

train_data_dir = 'data/train'

valid_data_dir = 'data/validation'

datagen = ImageDataGenerator(rescale = 1./255)

train_generator = datagen.flow_from_directory(directory=train_

data_dir,

target_size=(img_width,img_height),

classes=['dogs','cats'],

class_mode='binary',

batch_size=16)

validation_generator = datagen.flow_from_

directory(directory=valid_data_dir,

target_size=(img_width,img_height),

Chapter 7 Data Resampling

231

classes=['dogs','cats'],

class_mode='binary',

batch_size=32)

step-2: build model

...

Step 3: Train the Model with the Generator

training = model.fit_generator(generator=train_generator,

steps_per_epoch=2048//16, epochs=20,

validation_data=validation_generator,

validation_steps=832//16)

Now that we’ve finished this, you can have fun with generators and

callbacks. Now you can either evaluate or deploy your model; it’s up to you.

�Summary
In this chapter we have introduced sampling techniques. Sampling is

a very important step before building a model, and it ensures that the

model learns the most from the selected data, not to get biased using the

training data. You learned how to create a good training and testing set. We

discussed several techniques, one of them being the bootstrap, which is a

very strong statistical method for sampling the data. And finally, we gave

a technical example of how the data generator method in Keras works on

getting data and feeding it to the model.

Chapter 7 Data Resampling

233© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_8

CHAPTER 8

Feature Selection
and Feature
Engineering
Feature selection and engineering are important steps in a machine

learning pipeline and involves all the techniques adopted to reduce

their dimensionality. Most of the time, these steps come after cleaning

the dataset.

Most algorithms have strong assumptions about the input data, and

their performance can be negatively affected when raw datasets are

used. Moreover, the data is seldom isotropic; there are often features

that determine the general behavior of a sample, while others that are

correlated don’t provide any additional pieces of information. So, it’s

important to have a clear view of a dataset and know the most common

algorithms used to reduce the number of features or select only the

best ones.

In this chapter, you will learn about three fundamental techniques that

will help to summarize and compress the information content of a dataset

by transforming it onto a new feature subspace of lower dimensionality

234

than the original one. Data compression is an important topic in machine

learning, and it helps us to compress, store, and analyze a huge amount of

data. So, we will cover the following topics:

•	 Principal component analysis (PCA) for

unsupervised data compression

•	 Linear discriminant analysis (LDA) is a supervised

dimensionality reduction technique for maximizing

class separability

•	 Nonlinear dimensionality reduction via kernel
principal component analysis

�Dataset Used in This Chapter
Scikit-learn provides some built-in datasets that can be used for testing

purposes. They’re all available in the module sklearn.datasets and have

a common structure:

•	 The desc instance variable contains a description

about the data set you are using.

•	 The data instance variable contains the whole input set X.

•	 While target contains the labels for classification or

response values for regression.

For example, considering the Boston house pricing dataset (used for

regression), we have:

from sklearn.datasets import load_boston

boston = load_boston()

X = boston.data

y = boston.target

print('X shape: {}, and y shape: {}'.format(X.shape, y.shape))

Chapter 8 Feature Selection and Feature Engineering

235

Output

X shape: (506, 13), and y shape: (506,)

In the Boston dataset, we have

•	 506 samples or observations

•	 13 features or predictors

•	 single target or response value

In this chapter, we’re going to use both the Boston House Prices dataset

for regression examples and the MNIST handwritten digit dataset for

classification tasks. For each concept we will describe in this chapter we

will go through an example using these datasets to show you how to deal

with the large number of variables and the hidden knowledge in your data.

from sklearn.datasets import load_digits

digits = load_digits()

X = digits.data

y = digits.target

print('X shape: {}, and y shape: {}'.format(X.shape, y.shape))

Output

X shape: (1797, 64), and y shape: (1797,)

Similarly, you can import the MNIST handwritten digit dataset from

the sklearn.datasets module; it’s very simple and saves time for learning

and experimentation.

The MNIST dataset provided by Scikit-learn is limited for many

reasons; the first reason is to make it easier for educational purposes.

If you want to experiment with the original dataset, refer to the web site

http://yann.lecun.com/exdb/mnist/. Here you can download a full

version that contains up to 70,000 handwritten digits already, split into

training and test sets.

Chapter 8 Feature Selection and Feature Engineering

http://yann.lecun.com/exdb/mnist/

236

Scikit-learn also provides functions for creating dummy datasets from

scratch:

•	 make_classification()

•	 make_regression()

•	 make_blobs() (particularly useful for testing cluster

algorithms)

They’re very easy to use, and in many cases it’s the best choice to test

a model if you do not have a dataset and without loading more complex

datasets, or for educational purposes.

You can visit the sklearn datasets web site https://scikit-learn.

org/stable/da for further information about all datasets provided by

Scikit-learn.

�Dimensionality Reduction—Questions
to Answer
If you are working in a new project, and you have been provided with a

dataset that contains dozens of variables, would you ever wonder what

to do with all those variables? So, the real question is the following: what

happens when your dataset has too many variables?

You may have faced some of these situations, or at least you might have

thought of them:

•	 You find that most of the variables are correlated.

•	 You lose patience and decide to run a model on whole

data. This returns poor accuracy and you feel terrible.

•	 You become indecisive about what to do.

•	 You start thinking of some strategic method to find a

few important variables.

Chapter 8 Feature Selection and Feature Engineering

https://scikit-learn.org/stable/da
https://scikit-learn.org/stable/da

237

So, we need an approach that can choose important variables, or in

other words, select the important variables that can affect the model and

produce a good estimation for the output.

Another reason is that the feature selection and extraction topic is

important to understand in the fields of statistics and data science. But

when putting a lesson together for students or anyone wants to learn it, we

found that the resources online were too technical, didn’t fully address our

needs, and/or provided conflicting information.

As a result, we wanted to put together the “What”, “When,” “How,” and

“Why” of this topic and answer them in specific detail. Specifically, we

wanted to present the rationale for this topic, the math under the hood,

some best practices, and potential drawbacks to each method under this

topic.

�What Is Dimensionality Reduction?
If you’ve worked with a lot of variables before, you know this can cause

some problems to you and the model you are building. So you may decide

to select some variables that are important to help you to get the most of

your dataset and will make the model reach the highest accuracy. On the

other hand, you’ll want to remove all the variables those will not do those

things for you. To do all that—the selecting/removing process—you need

to answer the following:

•	 Do you understand the relationships between each

variable?

•	 Do you have so many variables that you are in danger

of overfitting your model to your data, or you might be

violating assumptions of whichever modeling tactics

you’re using?

Chapter 8 Feature Selection and Feature Engineering

238

You might ask the question How do I take all of the variables I’ve

collected and focus on only a few of them? In technical terms, you want to

“reduce the dimension of your feature space” by reducing the dimension

of your feature space. You’ll have fewer relationships between variables to

consider and you are less likely to overfit your model.

Note T his doesn’t immediately mean that overfitting, etc. are no
longer concerns — but we’re moving in the right direction!

Somewhat unsurprisingly, reducing the dimensions of the feature

space is called dimensionality reduction. There are many ways to achieve

dimensionality reduction, but most of these techniques fall into one of two

classes:

•	 Feature elimination

•	 Feature extraction

Feature elimination is what it sounds like: we reduce the feature space

by eliminating features. Instead of considering every single variable, we

might drop all variables except the three we think will best predict what the

United States’ gross domestic product will look like. Advantages of feature

elimination methods include simplicity and maintaining interpretability of

your variables.

As a disadvantage, though, you gain no information from those

variables you’ve dropped. If we only use last year’s GDP, the proportion

of the population in manufacturing jobs per the most recent American

Community Survey numbers, and the unemployment rate to predict this

year’s GDP, we’re missing out on whatever the dropped variables could

contribute to our model. By eliminating features, we’ve also entirely

eliminated any benefits those dropped variables would bring.

Feature extraction, however, doesn’t run into this problem. Say

we have ten independent variables. In feature extraction, we create ten

Chapter 8 Feature Selection and Feature Engineering

239

“new” independent variables, where each new independent variable is a

combination of each of the ten “old” independent variables. However, we

create these new independent variables in a specific way and order these

new variables by how well they predict our dependent variable.

You might ask where does the dimensionality reduction come into

play? Well, we keep as many of the new independent variables as we

want, but we drop the least important ones. Because we ordered the new

variables by how well they predict our dependent variable, we know which

variable is the most important and least important. But — and here’s the

kicker — because these new independent variables are combinations of our

old ones, we’re still keeping the most valuable parts of our old variables,

even when we drop one or more of these “new” variables!

�When Should I Use Dimensionality Reduction?

	 1.	 Do you want to reduce the number of variables,

but aren’t able to identify what are the important

variables and what are the variables you consider to

remove?

	 2.	 Do you want to ensure your variables are

independent of one another, or there’s no

correlation between any of the predictor/input

variables?

	 3.	 Do you care about the interpretability of the

dataset variables?

If you answered “yes” to all three questions, then dimensionality

reduction is a good approach to use. If you answered “no” to question 3,

you should not use dimensionality reduction.

Finally, how and why are subject to the properties of each method, so

they will be answered while describing and illustrating each method in the

approach of dimensionality reduction.

Chapter 8 Feature Selection and Feature Engineering

240

�Unsupervised Dimensionality Reduction via
Principal Component Analysis (PCA)
As we explained, we can use feature extraction to reduce the number of

features in a dataset. We can do that by using a feature extraction algorithm

to transform or project the data onto a new feature space.

In the context of dimensionality reduction, feature extraction can

be understood as an approach to data compression with the goal of

maintaining most of the relevant information. Feature extraction is

typically used to improve computational efficiency but can also help to

reduce the curse of dimensionality.

Note U sing dimensionality reduction is very good if we are working
with nonregularized models, and that’s because it reduces the data
complexity; hence, they are two different problems that work on
similar areas.

The curse of dimensionality refers to phenomena that arise when
analyzing and organizing data in high-dimensional spaces. The
common theme of these problems is that when the dimensionality
increases, the volume of the space increases so fast that the
available data becomes sparse.

PCA is an unsupervised linear transformation technique that is

widely used across different fields, most prominently for dimensionality

reduction. Other popular applications of PCA include the following:

•	 Exploratory data analyses and denoising of signals in

stock market trading

•	 The analysis of genome data and gene expression levels

in the field of bioinformatics

Chapter 8 Feature Selection and Feature Engineering

241

PCA helps us to identify patterns in data based on the correlation

between features. In a nutshell, PCA aims to find the direction of

maximum variance in high-dimensional data and projects it onto a new

subspace with equal or fewer dimensions than the original one. The

orthogonal axes (principal components) of the new subspace can be

interpreted as the direction of maximum variance given the constraint

that the new feature axes are orthogonal to each other, as illustrated in

Figure 8-1. Here, x1 and x2 are the original feature axes, and PC1 and PC2

are the principal components.

Figure 8-1.  The two-principle dimensions of the dataset

Chapter 8 Feature Selection and Feature Engineering

242

If we use PCA for dimensionality reduction, we construct a dk-

dimensional transformation matrix W. That allows us to map a sample

vector x onto a new k-dimensional feature subspace that has fewer

dimensions than the original d-dimensional feature space:

x x x x x x Rd d
d= ¼[] Î-1 2 1, , , , ,

¯ Î ´xW W Rd k,

z z z z zk k= ¼[]-1 2 1, , , ,

As a result of transforming the original d-dimensional data onto

this new d-dimensional subspace (typically k ≪ d), the first principal

component has the largest possible variance, and all subsequent principal

components will have the largest possible variance given that they are

uncorrelated (orthogonal) to the other principal components. Note that

the PCA directions are highly sensitive to data scaling, and we need to

standardize the features prior to PCA if the features were measured on

different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in

more detail, let’s summarize the approach in a few simple steps:

	 1.	 Standardize the d-dimensional dataset.

	 2.	 Construct the covariance matrix.

	 3.	 Decompose the covariance matrix into its

eigenvectors and eigenvalues.

	 4.	 Select k eigenvectors that correspond to the k largest

eigenvalues, where k is the dimensionality of the

new feature subspace (k ≤ d).

Chapter 8 Feature Selection and Feature Engineering

243

	 5.	 Construct a projection matrix W from the “top” k

eigenvectors.

	 6.	 Transform the d-dimensional input dataset X using

the projection matrix W to obtain the new

k-dimensional feature subspace.

�Total and Explained Variance
In this subsection, we will tackle the first four steps of a PCA:

•	 Standardizing the data

•	 Constructing the covariance matrix

•	 Obtaining the eigenvalues and eigenvectors of the

covariance matrix

•	 Sorting the eigenvalues by decreasing order to rank the

eigenvectors

�Feature Selection and Filtering
As we explained earlier, the unnormalized dataset with many features

contains information proportional to the independence of all features and

their variance. Let’s consider a small dataset with three features, generated

randomly from many Gaussian distributions (Figure 8-2).

Chapter 8 Feature Selection and Feature Engineering

244

Even without further analysis, it’s obvious that the central line (with

the lowest variance std=0.5) is almost constant and doesn’t provide any

useful information. On the other hand, the other two variables carry more

information, as they have a higher variance than the central line and their

std=5.0.

A variance threshold is therefore a useful approach to remove all those

elements whose contribution is under a predefined level. Scikit-learn

provides the class VarianceThreshold that can easily solve this problem.

By applying it on the previous dataset, we get the following result:

Note T he variance threshold removes the elements based on their
variability and so, information.

Figure 8-2.  The standard deviation of different datasets

Chapter 8 Feature Selection and Feature Engineering

245

X[0:3, :]

Output:

array([[�6.32000000e-03, 1.80000000e+01, 2.31000000e+00,

0.00000000e+00, 5.38000000e-01, 6.57500000e+00,

6.52000000e+01, 4.09000000e+00, 1.00000000e+00,

2.96000000e+02, 1.53000000e+01, 3.96900000e+02,

4.98000000e+00] ,

 �[�2.73100000e-02, 0.00000000e+00, 7.07000000e+00,

0.00000000e+00, 4.69000000e-01, 6.42100000e+00,

7.89000000e+01, 4.96710000e+00, 2.00000000e+00,

2.42000000e+02, 1.78000000e+01, 3.96900000e+02,

9.14000000e+00],

 �[�2.72900000e-02, 0.00000000e+00, 7.07000000e+00,

0.00000000e+00, 4.69000000e-01, 7.18500000e+00,

6.11000000e+01, 4.96710000e+00, 2.00000000e+00,

2.42000000e+02, 1.78000000e+01, 3.92830000e+02,

4.03000000e+00]])

from sklearn.feature_selection import VarianceThreshold

vt = VarianceThreshold(threshold=1.5)

X_t = vt.fit_transform(X)

X_t[0:3, :]

Output

array([[�6.32000000e-03, 1.80000000e+01, 2.31000000e+00,

6.52000000e+01, 4.09000000e+00, 1.00000000e+00,

2.96000000e+02, 1.53000000e+01, 3.96900000e+02,

4.98000000e+00],

 �[�2.73100000e-02, 0.00000000e+00, 7.07000000e+00,

7.89000000e+01, 4.96710000e+00, 2.00000000e+00,

2.42000000e+02, 1.78000000e+01, 3.96900000e+02,

9.14000000e+00],

Chapter 8 Feature Selection and Feature Engineering

246

 [�2.72900000e-02, 0.00000000e+00, 7.07000000e+00,

6.11000000e+01, 4.96710000e+00, 2.00000000e+00,

2.42000000e+02, 1.78000000e+01, 3.92830000e+02,

4.03000000e+00]])

The third feature has been completely removed because its variance

is under the selected threshold=1.5. There are also many univariate

methods that can be used in order to select the best features according

to specific criteria based on F-tests and p-values, such as chi-square or

ANOVA. However, their discussion is beyond the scope of this book, and

the reader can find further information in Statistics by David Freedman,

Robert Pisani, and Roger Purves (Norton & Company, 2011). Two

examples of feature selection that use the classes SelectKBest (which

selects the best K-score features) and SelectPercentile (which selects

only a subset of features belonging to a certain percentile) are shown next.

It’s possible to apply them both to regression and classification datasets,

being careful to select appropriate score functions:

from sklearn.datasets import load_boston, load_iris

from sklearn.feature_selection import SelectKBest,

SelectPercentile, chi2, f_regression

regr_data = load_boston()

regr_data.data.shape

Output

(506, 13)

Init the algorithm

This algorithm as the name,

selects the best k features

kb_regr = SelectKBest(f_regression)

X_b = kb_regr.fit_transform(regr_data.data, regr_data.target)

X_b.shape

Chapter 8 Feature Selection and Feature Engineering

247

Output

(506, 10)

kb_regr.scores_

Output

array([88.15124178, 75.2576423, 153.95488314, 15.97151242,

112.59148028, 471.84673988, 83.47745922, 33.57957033,

85.91427767, 141.76135658, 175.10554288, 63.05422911,

601.61787111])

For further details about all Scikit-learn score functions and their

usage, visit the Scikit-learn feature selection (https://scikit-learn.

org/stable/modules/feature_selection.html#univariate-feature-

selection).

�Principal Component Analysis
In many cases, the dimensionality of the input dataset X is high and so is

the complexity of every related machine learning algorithm. Moreover, the

information is spread uniformly across all the features. In general, if we

consider a Euclidean space, we have

X x x x x where x R x x e x en n i
m

i i im m= ¼{ } Î Ù = +¼+-´ ´ ´ ´ ´ ´ ´ ´1 2 1 1 1, , , ,

So, each point is expressed using an orthonormal basis made

of m linearly independent vectors. Now, considering a dataset X, a

natural question arises: is it possible to reduce m without a drastic

loss of information? Let’s consider Figure 8-3 (without any particular

interpretation).

Chapter 8 Feature Selection and Feature Engineering

https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection

248

It doesn’t matter which distributions generated X = (x, y); however, the

variance of the horizontal component is clearly higher than the vertical

one. As discussed, it means that the amount of information provided by

the first component is higher and, for example, if the x-axis is stretched

horizontally keeping the vertical one fixed, the distribution becomes

similar to a segment where the depth has lower and lower importance.

In order to assess how much information is brought by each

component, and the correlation among them, a useful tool is the

covariance matrix (Figure 8-4; if the dataset has zero mean, we can use the

correlation matrix).

Figure 8-3.  Revisiting principle component image

Chapter 8 Feature Selection and Feature Engineering

249

C is symmetric and positive semidefinite, so all the eigenvalues are

nonnegative, but what's the meaning of each value? The covariance matrix C

for the previous example is symmetric; As expected, the horizontal variance

is quite a bit higher than the vertical one. Moreover, the other values are close

to zero. If you remember the definition and, for simplicity, remove the mean

term, they represent the cross-correlation between couples of components.

It’s obvious that in our example, X and Y are uncorrelated (they’re orthogonal),

but in real-life examples, there could be features that present a residual

cross-correlation. In terms of information theory, it means that knowing Y

gives us some information about X (which we already know), so they share

information that is indeed doubled. So, our goal is also to decorrelate X while

trying to reduce its dimensionality. This can be achieved by considering the

sorted eigenvalues of C and selecting the best principle component values:

So, it’s possible to project the original feature vectors into this new (sub-)

space, where each component carries a portion of total variance and where

the new covariance matrix is decorrelated to reduce useless information

sharing (in terms of correlation) among different features. In Scikit-learn,

there’s the PCA class, which can do all this in a very smooth way:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.decomposition import PCA

mnist = load_digits()

Figure 8-4.  The covariance equation

Chapter 8 Feature Selection and Feature Engineering

250

A figure with a few random MNIST handwritten digits is shown in

Figure 8-5.

Figure 8-5.  The MNIST dataset

Each image is a vector of 64 unsigned int (8 bit) numbers (0, 255),

so the initial number of components is indeed 64. However, the total

amount of black pixels is often predominant and the basic signs needed

Chapter 8 Feature Selection and Feature Engineering

251

to write 10 digits are similar, so it’s reasonable to assume both high cross-

correlation and a low variance on several components. Trying with 36

principal components, we get:

pca = PCA(n_components=36)

proj = pca.fit_transform(digits.data)

plt.scatter(proj[:, 0], proj[:, 1], c=digits.target,

cmap="Paired")

plt.colorbar()

Figure 8-6.  The scatter plot of PCA output

In order to improve performance, all integer values are normalized

into the range [0, 1] and, through the parameter whiten=True, the

variance of each component is scaled to one. As also the official Scikit-

learn documentation says, this process is particularly useful when an

isotropic distribution (any distribution has a simple shape to your eye

Chapter 8 Feature Selection and Feature Engineering

252

but very complex shape to the algorithm) is needed for many algorithms

to perform efficiently. It’s possible to access the explained variance ratio

through the instance variable explained_variance_ratio_, which shows

which part of the total variance is carried by each single component:

pca.explained_variance_ratio_

Output:

array([�0.14890594, 0.13618771, 0.11794594, 0.08409979,

0.05782415, 0.0491691, 0.04315987, 0.03661373,

0.03353248, 0.03078806, 0.02372341, 0.02272697,

0.01821863, 0.01773855, 0.01467101, 0.01409716,

0.01318589, 0.01248138, 0.01017718, 0.00905617,

0.00889538, 0.00797123, 0.00767493, 0.00722904,

0.00695889, 0.00596081, 0.00575615, 0.00515157,

0.00489539, 0.00428888, 0.00373606, 0.00353271,

0.00336678, 0.0032803, 0.0030832, 0.00293777])

A plot for the example of MNIST digits is shown next (Figure 8-7).

The bottom graph represents the variance ratio, while the top one is the

cumulative variance. It can be immediately seen how the first components

are normally the most important ones in terms of information, while the

following ones provide details that a classifier could also discard.

Chapter 8 Feature Selection and Feature Engineering

253

As expected, the contribution to the total variance decreases

dramatically starting from the fifth component, so it’s possible to reduce

the original dimensionality without an unacceptable loss of information,

which could drive an algorithm to learn wrong classes. In the preceding

graph, there are the same handwritten digits rebuilt using the first 36

components with whitening and normalization between 0 and 1. To obtain

the original images, we need to inverse-transform all new vectors and

project them into the original space:

X_rebuilt = pca.inverse_transform(X_pca)

Figure 8-7.  The histogram and CDF plot of the variance per each
component

Chapter 8 Feature Selection and Feature Engineering

254

The result is shown in Figures 8-8 and 8-9.

Figure 8-8.  The output of PCA inversion

Chapter 8 Feature Selection and Feature Engineering

255

This process can also partially denoise the original images by removing

residual variance, which is often associated with noise or unwanted

contributions (almost every calligraphy distorts some of the structural

elements that are used for recognition).

I suggest the reader try different numbers of components (using

the explained variance data) and also n_components='mle', which

implements an automatic selection of the best dimensionality (“Automatic

Choice of Dimensionality for PCA” by Thomas P. Minka (NIPS, 2000:

598-604)). Scikit-learn solves the PCA problem with SVD (singular value

decomposition), which can be studied in detail in Linear Algebra by David

Poole (Brooks Cole, 2015). It’s possible to control the algorithm through

the parameter svd_solver, whose values are 'auto', 'full', 'arpack',

and 'randomized'.

Figure 8-9.  The output of PCA inversion vs. the real image

Chapter 8 Feature Selection and Feature Engineering

256

�Nonnegative Matrix Factorization
When the dataset is made up of nonnegative numbers, it’s possible to use a

good algorithm called nonnegative matrix factorization (NNMF) instead of

using standard PCA. The algorithm optimizes a loss function (alternatively

on W and H) based on the Frobenius norm:

L X WH where A a
Frob Frob

i j
ij= - = åå1

2
2 2 2

,

If dim(X) = n × m, then dim(W) = n × p and dim(H) = p × m with p equal

to the number of requested components (the n_components parameter),

which is normally smaller than the original dimensions n and m.

The final reconstruction is purely additive, and it has been shown that

it’s particularly efficient for images or text where there are normally no

nonnegative elements. In the following snippet, there’s an example using

the Iris dataset (which is nonnegative). The init parameter can assume

different values (see the documentation), which determine how the data

matrix is initially processed. A random choice is for nonnegative matrices,

which are only scaled (no SVD is performed):

from sklearn.datasets import load_iris

from sklearn.decomposition import NMF

iris = load_iris()

iris.data.shape

Output

(150L, 4L)

nmf = NMF(n_components=3, init='random', l1_ratio=0.1)

Xt = nmf.fit_transform(iris.data)

nmf.reconstruction_err_

Output

1.8819327624141866

Chapter 8 Feature Selection and Feature Engineering

257

iris.data[0]

Output

array([5.1, 3.5, 1.4, 0.2])

Xt[0]

Output

array([0.20668461, 1.09973772, 0.0098996])

nmf.inverse_transform(Xt[0])

Output

array([5.10401653, 3.49666967, 1.3965409, 0.20610779])

NNMF, together with other factorization methods, will be very useful

for more advanced techniques, such as recommendation systems and

topic modeling. NNMF is very sensitive to its parameters (in particular,

initialization and regularization), so I suggest reading the original

documentation for further information: http://scikit-learn.org/

stable/modules/generated/sklearn.decomposition.NMF.html.

�Sparse PCA
Scikit-learn provides different PCA variants that can solve particular

problems. I do suggest reading the original documentation. However, I’d

like to mention SparsePCA, which allows exploiting the natural sparsity

of data while extracting principal components. If you think about the

handwritten digits or other images that must be classified, their initial

dimensionality can be quite high (a 10x10 image has 100 features).

However, applying a standard PCA selects only the average most important

features, assuming that every sample can be rebuilt using the same

components. Simplifying, this is equivalent to:

y c y c y c y c yR R R g R g g Rg= + +¼+ +-() -()1 1 2 2 1 1

Chapter 8 Feature Selection and Feature Engineering

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html

258

On the other hand, we can always use a limited number of

components, but without the limitation given by a dense projection matrix.

This can be achieved by using sparse matrices (or vectors), where the

number of nonzero elements is quite low. In this way, each element can

be rebuilt using its specific components (in most cases, they will always be

the most important), which can include elements normally discarded by a

dense PCA. The previous expression now becomes:

y c y c y c y c y ZEROTERMR R R g R g g Rg= + +¼+ +é
ë

ù
û +-() -()1 1 2 2 1 1

ZEROTERM y y y yR g R g R g n R gn= × + × +¼+ × + ×()+() +() + -() ()0 0 0 01 2 1

Here the non-null components have been put into the first block (they

don’t have the same order as the previous expression), while all the other

zero terms have been separated. In terms of linear algebra, the vectorial

space now has the original dimensions. However, using the power of

sparse matrices (provided by scipy.sparse), Scikit-learn can solve this

problem much more efficiently than a classical PCA.

The following snippet shows a sparse PCA with 60 components. In this

context, they’re usually called atoms and the amount of sparsity can be

controlled via L1-norm regularization (higher alpha parameter values lead

to more sparse results). This approach is very common in classification

algorithms and will be discussed in the next chapters:

from sklearn.decomposition import SparsePCA

spca = SparsePCA(n_components=60, alpha=0.1)

X_spca = spca.fit_transform(digits.data / 255)

spca.components_.shape

Output

(60L, 64L)

For further information about SciPy sparse matrices, visit https://

docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html.

Chapter 8 Feature Selection and Feature Engineering

https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html

259

�Kernel PCA
It’s useful to mention the class KernelPCA, which performs a PCA with

non-linearly separable data sets. Just to understand the logic of this

approach (the mathematical formulation isn’t very simple), it’s useful

to consider a projection of each sample into a particular space where

the dataset becomes linearly separable. The components of this space

correspond to the first, second, ... principal components, and a kernel PCA

algorithm therefore computes the projection of our samples onto each of

them. Let’s consider a dataset made up of a circle with a blob inside:

from sklearn.datasets import make_circles

Xb, Yb = make_circles(n_samples=500, factor=0.1, noise=0.05)

The graphical representation is shown in Figure 8-10. In this case, a

classic PCA approach isn’t able to capture the nonlinear dependency of

existing components (the reader can verify that the projection is equivalent

to the original dataset). However, looking at the samples and using polar

coordinates (therefore, a space where it’s possible to project all the points),

it’s easy to separate the two sets, only considering the radius.

Figure 8-10.  The circular dataset we are using

Chapter 8 Feature Selection and Feature Engineering

260

Considering the structure of the dataset, it’s possible to investigate the

behavior of a PCA with a radial basis function kernel. As the default value

for gamma is 1.0/number of features (for now, consider this parameter as

inversely proportional to the variance of a Gaussian), we need to increase

it to capture the external circle. A value of 1.0 is enough:

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(n_components=2, kernel='rbf', fit_inverse_

transform=True, gamma=1.0)

X_kpca = kpca.fit_transform(Xb)

The instance variable X_transformed_fit will contain the projection

of our dataset into the new space. Plotting it, we get Figure 8-11.

Figure 8-11.  The output transformation of the kernel PCA

The plot shows a separation just like expected, and it’s also possible to

see that the points belonging to the central blob have a curve distribution

because they are more sensitive to the distance from the center.

Chapter 8 Feature Selection and Feature Engineering

261

Kernel PCA is a powerful instrument when we think of our dataset as

made up of elements that can be a function of components (in particular,

radial-basis or polynomials) but we aren’t able to determine a linear

relationship among them.

For more information about the different kernels supported by

Scikit-learn, visit http://scikit-learn.org/stable/modules/metrics.

html#linear-kernel.

�Atom Extraction and Dictionary Learning
Dictionary learning is a technique that allows rebuilding a sample starting

from a sparse dictionary of atoms (similar to principal components).

In “Online Dictionary Learning for Sparse Coding” by Julien Mairal,

Francis Bach, Jean Ponce, and Guillermo Sapiro in Proceedings of the 29th

International Conference on Machine Learning (2009) there’s a description

of the same online strategy adopted by Scikit-learn, which can be

summarized as a double optimization problem, where:

X x x x x where x Rn n i
m= ¼{ } Î-´ ´ ´ ´ , ´1 2 1, , , ,

is an input dataset and the target being to find both a dictionary D and a

set of weights for each sample.

D R A where Rm k
j j j

kÎ Ù = ¼{ } Î´
-a a a a a´ ´ ´ ,1 2 1, , , ,

After the training process, an input vector can be computed as:

x Di i´ ´= a

Chapter 8 Feature Selection and Feature Engineering

http://scikit-learn.org/stable/modules/metrics.html#linear-kernel
http://scikit-learn.org/stable/modules/metrics.html#linear-kernel

262

The optimization problem (which involves both D and alpha vectors)

can be expressed as the minimization of the following loss function:

L D A x D c
i

i i i,() = - +å12 2

2

1
a a´ ´

Here the parameter c controls the level of sparsity (which is

proportional to the strength of L1 normalization). This problem can

be solved by alternating the least square variable until a stable point is

reached.

In Scikit-learn, we can implement such an algorithm with the

class DictionaryLearning (using the usual digits datasets), where

n_components, as usual, determines the number of atoms:

from sklearn.decomposition import DictionaryLearning

dl = DictionaryLearning(n_components=36, fit_algorithm='lars',

transform_algorithm='lasso_lars')

X_dict = dl.fit_transform(digits.data)

This piece of code might take a few minutes to run, longer than any code

we have written in this chapter. But don’t panic; this is just one type of many

other types of feature selection techniques. So if it does not work in your

local machine, try Colaboratory (https://colab.research.google.com/

notebooks/welcome.ipynb#recent=true). This will do the job for you, or

you can limit the number of samples to 20 to 50; it’s up to you.

�Latent Dirichlet Allocation (LDA)
LDA is a shortcut of two descriptions: the first description is related to

NLP, and the second one is related to data analysis. So, LDA with NLP is

called latent Dirichlet allocation, and for data analysis it is called linear
discriminate analysis. But this may seem a little weird. Are we talking

Chapter 8 Feature Selection and Feature Engineering

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

263

about LDA with NLP or about LDA with data analysis? As we will see, we

need to talk about LDA with NLP. But why not talk about a hot topic like

linear discriminate analysis and the difference between it and PCA? PCA

is a shortcut for principle component analysis. In this section, let’s start

with latent Dirichlet allocation.

�Latent Dirichlet Allocation (LDA in NLP)
Before we go into the definition of LDA, we first need to know the root

of this technique—topic modeling. The aim is to identify topics that best

describe a set of documents. These topics will only appear during the

topic modeling process, which is called a latent or unsupervised learning

technique. Since LDA is the popular technique for topic modeling, let’s

make a definition for it. LDA imagines a fixed set of topics. Each topic

represents a set of words. The goal of LDA is to map all the documents

to the topics in such a way that the words in each document are mostly

captured by those imaginary topics.

Let’s take this definition and try to reexplain it more for simplicity.

You have a set of topics; these topics have a set of words that distribute the

topic; and every document has a set of topics. LDA needs to map these

topics in the set X to documents in the set Y by using words. The main idea

behind LDA is that each document can be described by a distribution of

topics and each topic can be described by a distribution of words. So let’s

take an example or create an image to help with the definition of LDA.

As we said, latent Dirichlet allocation is a technique that automatically

discovers topics that these documents contain. Suppose you have the

following set of sentences:

•	 I eat fish and vegetables.

•	 Fish are pets.

•	 My kitten eats fish.

Chapter 8 Feature Selection and Feature Engineering

264

Given the preceding sentences, LDA might classify the red words

under topic F, which we might label as “food.” Similarly, blue words might

be classified under a separate topic P, which we might label as “pets.” LDA

defines each topic as a bag of words, and you have to label the topics as

you deem fit.

As we see, LDA has two benefits when classifying the data at the word

level:

	 1.	 We can infer the content spread of each sentence by

a word count, like if we see the only F in a sentence

it will be 100% topic F. Let’s see the statistics of our

example.

•	 Sentence 1: 100% topic F

•	 Sentence 2: 100% topic P

•	 Sentence 3: 33% topic P and 67% topic F

	 2.	 We can derive the proportions that each word

constitutes in a given topic. For example, topic F

might comprise words in the following proportions:

•	 40% eat, 40% fish, 20% vegetables, …

Now that we’ve gained some understanding, let’s get our hands dirty

with some steps about how LDA works; it works in three steps.

To illustrate these steps, imagine that you are now discovering topics

in documents instead of sentences. Imagine you have two documents with

the following words (Figure 8-12).

Chapter 8 Feature Selection and Feature Engineering

265

	 3.	 Step 1: You tell the algorithm how many topics you

think there are. You can either use an informed

estimate (e.g., results from a previous analysis) or

simply trial-and-error. In trying different estimates,

you may pick the one that generates topics to your

desired level of interpretability, or the one yielding

the highest statistical certainty (i.e., log likelihood).

In our previous example, the number of topics

might be inferred just by eyeballing the documents.

	 4.	 Step 2: The algorithm will assign every word to a

temporary topic. Topic assignments are temporary,

as they will be updated in Step 3. Temporary topics

are assigned to each word in a semirandom manner

(according to a Dirichlet distribution, to be exact).

This also means that if a word appears twice, each

word may be assigned to different topics. Note that

in analyzing actual documents, function words (e.g.,

“the,” “and,” “my”) are removed and not assigned to

any topics.

Figure 8-12.  A table of two documents: X and Y

Chapter 8 Feature Selection and Feature Engineering

266

	 5.	 Step 3: The algorithm will check and update topic

assignments, looping through each word in every

document. For each word, its topic assignment is

updated based on two criteria:

•	 How prevalent is that word across topics?

•	 How prevalent are topics in the document?

So, how do these two criteria in step three work?

First, how prevalent is that word across topics? Since the word “fish”

across both documents comprises nearly half of the remaining topic F

words but 0% of remaining topic P words, “fish” picked at random would

more likely be about topic F (Figure 8-13).

Figure 8-13.  Prevalent words in both X and Y documents

Second, how prevalent is that word across topics? Since the words

in Document Y are assigned to topic F and topic P in a 50–50 ratio, the

remaining “fish” word seems equally likely to be about either topic.

After this example we now know how it works. To adapt with this

algorithm we will still need some mathematical information for LDA,

but our aim for this book is only to gain a good understanding about an

algorithm. If we need to provide some mathematics, it will be in the last

part. So, we have a code example for LDA and we will continue with PCA

vs. LDA.

Chapter 8 Feature Selection and Feature Engineering

267

Last, you should see that LDA is just a feature extraction technique

used in NLP; it is just an automated algorithm that can read through the

text documents and automatically output the topics discussed.

�Code Example Using gensim
We will take a real example of the 20 Newsgroups’ dataset and use LDA to

extract the naturally discussed topics.

First things first: we need to import gensim. Note that if you did not

download it, please revisit Chapter 2.

import gensim

For reading the data and training the LDA model, we will use a dataset

that consists of product reviews. We first create a TextCorpus, which is the

component that reads documents from the file.

corpus = gensim.corpora.textcorpus.TextCorpus('amazon_reviews.txt')

Now we can train the LDA model. For details, see gensim’s

documentation of the class LdaModel (https://radimrehurek.com/

gensim/models/ldamodel.html).

This training step will take a few minutes, depending on the efficiency

of your machine and the value you set for passes.

model = gensim.models.LdaModel(corpus, id2word=corpus.

dictionary, alpha='auto', num_topics=10, passes=5)

Let’s discuss the parameters of this LdaModel:

•	 num_topics: The number of topics we’d like to use. We

set this to 10 here, but if you want, you can experiment

with a larger number of topics.

•	 passes: The number of iterations to use in the training

algorithm. Using a higher number will lead to a longer

training time, but sometimes higher quality topics.

Chapter 8 Feature Selection and Feature Engineering

https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html

268

•	 alpha: A parameter that controls the behavior of the

Dirichlet prior used in the model. If set to a value close

to zero, the model will tend to use a fewer number of

topics per document; conversely, if it’s a higher value,

there will be more topics per document. If set to auto,

this parameter will be tuned automatically.

Inspecting topics: The function show_topic(t, n) will display the

word distribution in topic t, sorted by the word probabilities. Then the

most probable words will be shown.

model.show_topic(5)

Output

[('film', 0.029852536),

 ('movie', 0.010055234),

 ('films', 0.004800593),

 ('horror', 0.00475024),

 ('story', 0.0038416996),

 ('scene', 0.0034877707),

 ('action', 0.0033171456),

 ('like', 0.0032384025),

 ('dvd', 0.003099864),

 ('scenes', 0.0028694542)]

Predicting the topics for a document: If you have a new document,

you can use the trained model to estimate the topic proportions for it. This

is done in two steps:

The first step is to convert the document into a matrix, and the second

step is to inference.

doc = 'this book describes windows software'.split()

doc_vector = model.id2word.doc2bow(doc)

doc_topics = model[doc_vector]

doc_topics

Chapter 8 Feature Selection and Feature Engineering

269

Output

[(0, 0.011552104),

 (1, 0.025947856),

 (2, 0.01148627),

 (3, 0.01466086),

 (4, 0.42382663),

 (5, 0.013418236),

 (6, 0.019740112),

 (7, 0.41398397),

 (8, 0.042892892),

 (9, 0.022491027)]

The result shows a predicted topic distribution. In most cases, there

will be one or more dominant topics and small probabilities for the rest of

the topics.

For instance, for the document this book describes, Windows
software, we will typically get a result that this document is a mix of book-

related topics and software-related topics. (Compare to the topic list you got

above.) Again, the exact result here will vary between executions because

of issues related to random number generation.

�LDA vs. PCA
As we talked in the previous section about LDA (latent Dirichlet
allocation) in NLP, now it’s time to talk about LDA (linear discriminant
analysis) but with PCA (principal component analysis). This comparison

pf LDA vs. PCA is one of the most common ones in machine learning. We

will define it as we discuss it in a simple way for anyone who doesn’t have

a strong mathematical background. We just need you to know the basic

ideas behind this.

Chapter 8 Feature Selection and Feature Engineering

270

Again, what is principal component analysis or PCA? PCA is a

dimensionality reduction method that is often used to reduce the

dimensionality of large data sets, by transforming a large set of variables into

a smaller one that still contains most of the information in the large set.

And what is linear discriminant analysis? LDA is a dimensionality

reduction technique used as a preprocessing step in machine learning and

pattern classification applications.

Now we need to know the meaning of dimensionality reduction

techniques. The main goal of dimensionality reduction techniques is

to reduce the dimensions by removing the redundant and dependent

features by transforming the features from higher dimensional space to a

space with lower dimensions.

The key to this comparison is the supervision feature: PCA uses

correlation, which is aimed at unsupervised learning; LDA uses classification.

What does PCA do?

•	 It aims to find components that account for maximum

variance in the data (including error and within-

variable variance). Unlike LDA, it does not take into

account class membership (i.e., unsupervised),

and is used when such information is not available.

Importantly, both LDA and PCA do not require any

prior notion of how the variables are related among

themselves, and the resulting components cannot be

interpreted in terms of an underlying construct.

What does LDA do?

•	 This method identifies components (i.e., a linear

combination of the observed variables) that maximize

class separation (i.e., between-class variance) when

such prior information is available (i.e., supervised).

For example, you have a training set containing a

variable specifying the class of each observation.

Chapter 8 Feature Selection and Feature Engineering

271

But as we compare PCA with LDA, we need to see them in figures—

how they act in data. With data visualization, we can see the data, how our

models react with it or our tools change in our data, and how we should

tune our model parameter to get the best for our model with this data.

We’ll discuss data visualization in another chapter. Let’s visualize the data

to get more intuitions about PCA and LDA (Figures 8-14 and 8-15).

Figure 8-14.  The PCA algorithm on a dataset

Chapter 8 Feature Selection and Feature Engineering

272

Both LDA and PCA are linear transformation techniques. As we see

in the figures, LDA is just a classification, but PCA tries to get the most

correlated points together. Notice that LDA is supervised, whereas PCA is

unsupervised

�ZCA Whitening
ZCA whitening is part of PCA. ZCA stands for zero-phase component
analysis, which is a whitening transformation used to decorrelate (whiten)

the data (image).

So, what is whitening transformation?

A whitening transformation or sphering transformation is a linear

transformation that transforms a vector of random variables with a

known covariance matrix into a set of new variables whose covariance

Figure 8-15.  The LDA algorithm on a dataset

Chapter 8 Feature Selection and Feature Engineering

273

is the identity matrix, meaning that they are uncorrelated and each have

variance. The transformation is called “whitening” because it changes the

input vector into a white noise vector.

It is used for data augmentation, so let’s see how we can use it. As we

know that ZCA is an image augmentation technique, let’s talk about data

augmentation first. What is data augmentation?

It is the performance of deep learning neural networks that often

improves with the amount of data available.

Data augmentation is a technique to artificially create new training

data from existing training data. This is done by applying domain-specific

techniques to examples from the training data that create new and

different training examples. Image data augmentation is perhaps the most

well-known type of data augmentation and involves creating transformed

versions of images in the training dataset that belong to the same class as

the original image. Transforms include a range of operations from the

field of image manipulation, such as shifts, flips, zooms, and much more.

The intent is to expand the training dataset with new, plausible examples.

This means variations of the training set images that are likely to be seen

by the model.

For example, a horizontal flip of a picture of a cat may make sense,

because the photo could have been taken from the left or right. A vertical

flip of the photo of a cat does not make sense, and would probably not

be appropriate given that the model is very unlikely to see a photo of an

upside-down cat.

As such, it is clear that the choice of the specific data augmentation

techniques used for a training dataset must be chosen carefully and within

the context of the training dataset and knowledge of the problem domain.

In addition, it can be useful to experiment with data augmentation

methods in isolation and in concert to see if they result in a measurable

improvement to model performance, perhaps with a small prototype

dataset, model, and training run. Modern deep learning algorithms, such

as the convolutional neural network, or CNN, can learn features that are

Chapter 8 Feature Selection and Feature Engineering

274

invariant to their location in the image. Nevertheless, augmentation can

further aid in this transform invariant approach to learning and can aid

the model in learning features that are also invariant to transforms, such

as left-to-right to top-to-bottom ordering, light levels in photographs, and

more.

But understand that image data augmentation is typically only applied

to the training dataset, and not to the validation or test dataset. This is

different from data preparation such as image resizing and pixel scaling;

they must be performed consistently across all datasets that interact with

the model. Some of the data augmentation techniques are

•	 Horizontal and vertical shift augmentation

•	 Horizontal and vertical flip augmentation

•	 Random rotation augmentation

•	 Random brightness augmentation

•	 Random zoom augmentation

•	 ZCA whitening

Most of these algorithms are considered and discussed in the “Data

Augmentation” section of Chapter 6.

So, we see various techniques for data augmentation but we will

concentrate on ZCA whitening. A whitening transform of an image is a

linear algebra operation that reduces the redundancy in the matrix of pixel

images. Less redundancy in the image is intended to better highlight the

structures and features in the image to the learning algorithm.

Typically, image whitening is performed using the PCA technique.

More recently, an alternative called ZCA shows better results, leading to

transformed images that keeps all of the original dimensions and, unlike

PCA, result in transformed images that still look like their originals.

You can perform a ZCA whitening transform by setting the zca_

whitening argument to True.

Chapter 8 Feature Selection and Feature Engineering

275

ZCA whitening

from keras.datasets import mnist

from keras.preprocessing.image import ImageDataGenerator

from matplotlib import pyplot

from keras import backend as K

K.set_image_dim_ordering('th')

load data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

reshape to be [samples][pixels][width][height]

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)

X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)

convert from int to float

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

define data preparation

datagen = ImageDataGenerator(zca_whitening=True)

fit parameters from data

datagen.fit(X_train)

configure batch size and retrieve one batch of images

for X_batch, y_batch in datagen.flow(X_train, y_train,

batch_size=9):

 # create a grid of 3x3 images

 for i in range(0, 9):

 pyplot.subplot(330 + 1 + i)

 �pyplot.imshow(X_batch[i].reshape(28, 28),

cmap=pyplot.get_cmap('gray'))

 # show the plot

 pyplot.show()

 break

Chapter 8 Feature Selection and Feature Engineering

276

�Summary
In this chapter, you learned about three different, fundamental

dimensionality reduction techniques for feature extraction: standard

PCA, LDA, and kernel PCA. Using PCA, we projected data onto a lower

dimensional subspace to maximize the variance along the orthogonal

feature axes while ignoring the class labels. LDA, in contrast to PCA, is a

technique for supervised dimensionality reduction, which means that it

considers class information in the training dataset to attempt to maximize

the class separability in a linear feature space. Last, you learned about a

kernelized version of PCA, which allows you to map nonlinear datasets

onto a lower dimensional feature space, where the classes become linearly

separable.

Equipped with these essential preprocessing techniques, you

are now well prepared to learn about the best practices for building

and maintaining different deep learning techniques, algorithms, and

approaches each of which differs in the type of data it deals with and how

it handles it. You will evaluate the performance of different models in the

next chapters.

Chapter 8 Feature Selection and Feature Engineering

PART III

TensorFlow

279© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_9

CHAPTER 9

Deep Learning
Fundamentals
In this chapter, we will describe a very important topic in deep learning

fundamentals, the basic functions that deep learning is built on. Then

we will try to build layers from these functions and combine these layers

together to get a more complex model that will help us solve more complex

problems, and all that will be described by TensorFlow examples.

First we will describe the smallest component of almost any deep

neural network, which is the neuron and sometimes called perceptron. We

will discuss it in some detail, and we will deep dive because there’s much

to cover in this chapter. Then we will illustrate the types of possible layers

in a neural network, such as input, hidden, and output layers. As we are

showing you the layers, we’ll describe the difference between shallow and

deep neural networks. After describing the neuron, we will show you some

of the activation functions you can use to build a better neural network.

Then we’ll get into the learning procedure called gradient descent, an

algorithm that helps learning happen. We will describe different types,

such as full-batch, stochastic, and mini-batch gradient descent. And as

learning happens, we need to check how good it is. We can do this with loss

functions, so we will show you the different loss functions you can use to

validate the learning of your model. Then we need to propagate the errors

that your model makes to get better weights and good performance; and

280

to do that, we need to show you the backpropagation algorithm and how

it works. After describing this learning framework of neural networks, we

think it is fair to show you some traps to avoid falling into in this area, called

vanishing and exploding gradients. And last, we will go from theoretical to

practical by refreshing your mind with some TensorFlow basics.

�Perceptron
The most fundamental unit of a deep neural network is called an artificial

neuron, which takes an input, processes it, passes it through an activation

function like the sigmoid, and returns the activated output. In this section,

we are only going to talk about the perceptron model proposed before the

“activation” part came into the picture.

A Perceptron is the smallest layer in the neural network. It is a linear

classifier (binary), and it is used in supervised learning. It helps to classify

the given input data; the output value is f(x) calculated as f(x) = ⟨w, x⟩ + b

where w is a vector of weights and ⟨·, ·⟩ denotes the dot product. We

use the dot product as we are computing a weighted sum. The sign of f(x)

is used to classify x as either a positive or a negative instance.

Since the inputs are fed directly to the output via the weights, the

perceptron can be considered the simplest kind of feedforward network.

Before diving into the mathematics that powers this algorithm, let’s

see a little history on how they got the concept of the perceptron, which is

neuron as we talked about in Chapter 1.

The very first step toward the perceptron we use today was taken in

1943 by Warren MuCulloch (a neuroscientist) and Walter Pitts (a logician),

by mimicking the functionality of a biological neuron. Figure 9-1 describes

the neuron notation.

Chapter 9 Deep Learning Fundamentals

281

As we see in Figure 9-1, there are two sides in this node, g and f; one of

them takes the input. As we can see in the figure, g take a fixed size vector

of data x1, …, xn, and performs an aggregation operation. On the other

hand, the f function makes a decision; this decision is made based on the

aggregated value in f. Let’s elaborate more on this idea.

Let’s suppose that we want to predict a decision: whether to watch a

random soccer game or not on TV. The inputs are all Boolean (i.e., {0, 1})

and my output variable is also Boolean {0 : Will watch it, 1 : Won’t watch it}.

So, now we need to construct our data variables. Let’s assume that x1

could be isPremierLeagueOn (I like Premier League more), x2 could be

isItAFriendlyGame (I tend to care less about the friendliness), x3 could

be isNotHome (I can’t watch it when I’m running errands, can I?), and x4

could be isManUnitedPlaying (I am a big Man United fan. GGMU!)

We only have four observations about the data we have, like x3. If x3 is

1 (not home), then my output will always be 0 (I can’t watch it when I’m

running errands.), so the neuron will never fire, but we need to have a good

output note at this point. As we see in the example, these inputs can either be

excitatory or inhibitory. So what is the difference between them (Table 9-1)?

Figure 9-1.  The notation of a biological neuron

Chapter 9 Deep Learning Fundamentals

282

We need to make an equation to deduce how we can fire this

perceptron and when we can’t fire it. The formula is just a summation

equation of all the inputs and the gave the output a domain about how we

can act with the output we have (Figure 9-2).

We can see that g(x) is just doing a sum of the inputs—a simple

aggregation—and theta here is called the thresholding parameter. For

example, if I always watch the game when the sum turns out to be 2 or

more, the theta is 2 here. This is called the thresholding logic.

Let’s see an example of how it works with the AND Boolean gate

(Figure 9-3).

Table 9-1.  The Difference Between Excitatory and Inhibitory

Excitatory Inhibitory

Inhibitory inputs are those that have

maximum effect on the decision making,

irrespective of other inputs.

Inputs are NOT the ones that will make

the neuron fire on its own, but they might

fire it when combined together.

Figure 9-2.  The equations that power the perceptron

Chapter 9 Deep Learning Fundamentals

283

An AND function neuron would only fire when ALL the inputs are

ON, like when g(x) ≥ 3. Researchers should know that the original M-P

(MuCulloch, Pitts) neuron is not so good at everything we work with. It

has some limitations, so let’s see those limitations. We’ll explain the M-P

neuron but we may see some questions that the M-P neuron can’t handle:

•	 What about non-Boolean (say, real) inputs? We haven’t

any Boolean inputs; we have ranges and variety of

numbers, like {1, 2, 4, 5}.

•	 Do we always need to hand code the threshold? We

should have some dynamic work with the threshold

values.

•	 Are all inputs equal? What if we want to assign more

importance to some inputs?

•	 What about functions that are not linearly separable,

say, the XOR function?

We see the limitations in this model. I hope it is now clear why we

are not using the M-P neuron today. Overcoming the limitations of the

M-P neuron, Frank Rosenblatt, an American psychologist, proposed the

classical perception model, the mighty artificial neuron, in 1958. It is a

more generalized computational model than the McCulloch-Pitts neuron,

Figure 9-3.  The AND Boolean gate operation— neuron style

Chapter 9 Deep Learning Fundamentals

284

where weights and thresholds can be learned over time. But what’s the

difference between McCulloch-Pitts and Minsky-Papert.

The perceptron model, proposed by Minsky-Papert (Figure 9-4), is a

more general computational model than the McCulloch-Pitts neuron. It

overcomes some of the limitations of the M-P neuron by introducing the

concept of numerical weights (a measure of importance) for inputs, and

a mechanism for learning those weights. Inputs are no longer limited to

Boolean values, as is the case of an M-P neuron; it supports real inputs as

well, which makes it more useful and generalized. This is the perceptron,

the most fundamental unit of a deep neural network, called an artificial

neuron.

Let’s talk about the perceptron model and how it works in a dynamic

way. As we look at the new version of the perceptron, we see one

difference: we have a new variable called weights. We take a weighted sum

of the inputs and set the output as one only when the sum is more than an

arbitrary threshold (theta). However, according to the convention, instead

of hand coding the thresholding parameter theta, we add it as one of the

inputs, with the weight -theta as shown in the following, which makes it

Figure 9-4.  The Minsky perceptron model

Chapter 9 Deep Learning Fundamentals

285

learnable. This is called the PLA (Perceptron Learning Algorithm); the

equation will change in this way:

y if w x
i

n

i i= ³
=
å1 0

0

y if w x
i

n

i i= <
=
å0 0

0

where x andw, 0 01= = -q

Let’s go back to our friend predicting whether I would watch a random

game of soccer on TV or not using the behavioral data available. And let’s

assume my decision is solely dependent on three binary inputs (binary

used for simplicity).

Figure 9-5.  The soccer example implementation using a perceptron

One point about the preceding photo is that w0 is the bias value. Now,

let’s continue the example. A soccer freak may have a very low threshold

and may watch any soccer game irrespective of the league, club, or

importance of the game [theta = 0]. On the other hand, a selective viewer

may only watch a soccer game that is a Premier League game, featuring

a Man United game, that is not friendly [theta = 2]. The key points are

the weights and the bias, and they will depend on the data (my viewing

history, in this case).

Chapter 9 Deep Learning Fundamentals

286

Bias occurs when an algorithm has limited flexibility to learn the true

signal from the dataset.

Let’s take an example of Boolean functions using a perceptron. We

will use the OR function, which is the easiest one of all Boolean functions

(Figure 9-6). We will make you try to solve this equation by using the AND

Boolean function, but for now, let’s use OR.

But by the way, is XOR (exclusive OR) reliable to use with the

perceptron model? The answer is no, because we can’t separate nonlinear

functions to positive and negative tuples. The table of XOR is shown in

Figure 9-7.

Figure 9-6.  The equation of an OR Gate

Chapter 9 Deep Learning Fundamentals

287

As we see, it isn’t separable output values, where in the OR function it

is separable; let’s see this in graphs (Figure 9-8).

Figure 9-7.  The XOR Gate implementation using a perceptron

Chapter 9 Deep Learning Fundamentals

288

But what about a multilayer perceptron? We will talk about it later,

but we should first conclude about these two approaches of perceptron

(Figure 9-9)

Figure 9-8.  The OR gate (left); the XOR gate (right)

Figure 9-9.  The McCulloch neuron vs. perceptron

We don’t need to make a further comparison; just the preceding

equations and the explanations will lead you to understand the concept.

From this section, we aim to allow you get to know the perceptron learning

algorithm, which is based on two types of perceptron: single perceptron

Chapter 9 Deep Learning Fundamentals

289

and multiple perceptrons. Before we talk about the types of perceptron, we

need to list the major components of a perceptron:

•	 Input: All the features become the input for a

perceptron. We denote the input of a perceptron by

[x1, …,   xn], where x represents the feature value and n

represents the total number of features. We also have

a special kind of input called the bias. In the image

(Figure 9-10), we have described the value of the

bias as w0.

•	 Weights: The values that are computed over the time

of training the model. Initially, we start the value of

weights with some initial value and these values get

updated for each training error. We represent the

weights for a perceptron by [w1, …,   wn].

•	 Bias: A bias neuron allows a classifier to shift the

decision boundary left or right. In algebraic terms, the

bias neuron allows a classifier to translate its decision

boundary. It aims to “move every point a constant

distance in a specified direction.”

•	 Bias helps to train the model faster and with better

quality.

•	 Weighted summation: Weighted summation is the sum

of the values that we get after the multiplication of each

weight wn associated with each feature value xn. We

represent the weighted summation by
i

n

i iw x
=
å

0

.

•	 Step/activation function: The role of activation

functions is to make neural networks nonlinear. For

linear classification, for example, it becomes necessary

Chapter 9 Deep Learning Fundamentals

290

to make the perceptron as linear as possible. We will

talk about this in the next sections, but it’s good to

know about it.

•	 Output: The weighted summation is passed to the step/

activation function, and whatever value we get after

computation is our predicted output.

�Single Perceptron
A single perceptron is a basic fundamental function in the neural network,

and it only works with a binary classifier. We’ve already talked a lot about

it. But if we have more than two classes, we will want to get into the

multilayer perceptron.

Figure 9-10.  The perceptron in detail steps

Chapter 9 Deep Learning Fundamentals

291

�Multilayer Perceptron
A multilayer perceptron (MLP) contains one or more hidden layers (apart

from one input and one output layer). While a single layer perceptron

can only learn linear functions, a multilayer perceptron can also learn

nonlinear functions (Figure 9-11).

Figure 9-11.  Multilayered perceptron architecture

Chapter 9 Deep Learning Fundamentals

292

•	 Input layer: The input layer has three nodes. The bias

node has a value of 1. The other two nodes take X1

and X2 as external inputs (which are numerical values

depending upon the input dataset). As discussed, no

computation is performed in the input layer, so the

outputs from nodes in the input layer are 1, X1, and X2,

respectively, which are fed into the hidden layer.

•	 Hidden layer: The hidden layer also has three nodes,

with the bias node having an output of 1. The output

of the other two nodes in the hidden layer depends on

the outputs from the input layer (1, X1, X2) as well as the

weights associated with the connections (edges). Then

these edges are connected to the output layer.

Note  f refers to the activation function. These outputs are then fed
to the nodes in the output layer.

•	 Output layer: The output layer has two nodes that

take inputs from the hidden layer and perform similar

computations as shown for the highlighted hidden node.

The values calculated (Y1 and Y2) as a result of these

computations act as outputs of the multilayer perceptron.

�Recap
To recap, we learned in this section that the perceptron is the fundamental

function of the neural network. When you have only one perceptron, you

have a single perceptron that will solve binary classification problems; but

if you have a nonlinear classification problem, you will need to use more

than one perceptron to solve this problem, like OR and XOR.

Chapter 9 Deep Learning Fundamentals

293

�Different Neural Network Layers
Before we start working with layers in the neural network, we should

understand exactly what layers are. Layer is a general term that applies to

a collection of nodes (perceptron), which contain an activation function

(e.g., sigmoid). Patterns are presented to the network via the input layer,

which communicates to one or more hidden layers where the actual

processing is done via a system of weighted connections (edges). The

hidden layers then link to an output layer.

Figure 9-12 illustrates each layer.

A neural network is made up of an input layer, one or more hidden

layers, and an output layer. Every layer has one or more perceptrons, which

combine together to make a layer. Every layer has a name, which describes

its position.

Figure 9-12.  Multilayered neural network architecture

Chapter 9 Deep Learning Fundamentals

294

�Input Layer
The first layer in Figure 9-12 is called the input layer, which has nodes; the

nodes of the input layer are passive. Passive means that they do not modify

the data; they receive a single value on their input and duplicate the value

to their multiple outputs. All of the input variables are represented as input

nodes; each value from the input layer is duplicated and sent to all of the

hidden nodes, which are contained in the hidden layer. This takes us to a

new question: what is the hidden layer?

�Hidden Layer(s)
All of the input variables that came from the input layer are combined

across one or more nodes (summation node or activation node) in the

hidden layer. This essentially creates new features, derived from the input

data provided, and then through these features to a new hidden layer and so

on to get into the output layer. All input nodes are connected to all nodes

in the hidden layer. We should note that the key point of difference between

shallow and deep neural networks is the number of hidden layers. If you

have more than one connected hidden layer, it’s a deep neural network, but

if we have only one hidden layer, it’s a shallow neural network. As we see,

the input data is going to the hidden layer with bias and weights parameters.

But is there only one way that data is weighted? The answer is no.

Hidden neural network layers are set up in many different ways. In

some cases, weighted inputs are randomly assigned. In other cases, they

are fine-tuned and calibrated through a process called backpropagation.

But we have many types of neural networks (sequence, convolution,

feedforward, etc.), so there are different ways to set up these hidden layers

to generate various results. Convolutional neural networks focus on image

processing; recurrent neural networks contain an element of memory;

and simple feedforward neural networks work in a straightforward way on

training data sets.

Chapter 9 Deep Learning Fundamentals

295

So, a full description of the hidden layer is: artificial neurons take in

a set of weighted inputs and produce an output through an activation

function. It is a typical part of nearly any neural network, in which

engineers simulate the types of activities that go on in the human brain.

�Output Layer
The output layer in an artificial neural network is the last layer of neurons,

which produces given outputs for the program. Though they are made

much like other artificial neurons in the neural network, output layer

neurons may be built or observed in a different way, given that they are the

last “actor” nodes on the network.

�Shallow vs. Deep Neural Networks
Here we don’t want to get too far into comparison. We will just consider

what makes a shallow network “shallow,” and the same with deep neural

networks. Neural networks can be recurrent or feedforward; feedforward

ones do not have any loops in their graph and can be organized in layers. If

there are many layers, then we say that the network is deep.

But we have a question about what makes a neural network deep.

Practically speaking, how many layers does a network have to have in order

to qualify as deep?

Usually, if we have two or more hidden layers, we call it a deep

neural network. In contrast, a network with only a single hidden layer is

conventionally called shallow (Figure 9-13).

Chapter 9 Deep Learning Fundamentals

296

We think that a shallow network could perform as well as the deeper

ones. But there are still questions about this subject. We don’t have an

accurate answer, but we can produce some points for consideration about

deep and shallow, and which performs the best:

	 1.	 Maybe a shallow network is more difficult to train

with our current algorithms.

	 2.	 Maybe a shallow architecture does not fit the kind of

problems we are usually trying to solve.

	 3.	 It can be argued that the number of units in a

shallow network grows exponentially with task

complexity. It may be that if you have a more

complex task you want your model to fit, you need

to have more neurons. So in order to be useful, a

shallow network might need to have more neurons,

possibly much bigger than a deep network.

These answers may be good to ponder the differences, but with a

neural network you never know if using it deep or shallow may fit or not.

But we will see that in a trial and error sequence. The amount of progress

achieved in deep learning over the last ten years is truly amazing, but most

Figure 9-13.  The difference between a shallow vs. deep neural
network

Chapter 9 Deep Learning Fundamentals

297

of this progress was achieved by trial and error. We still lack very basic

understanding about what exactly makes deep nets work so well. Even the

list of things that people consider to be crucial for setting up an effective

deep network seems to change every couple of years.

The conclusion is that we have two designs of the neural network:

one if you have only one hidden layer we now talk about a shallow neural

network if the hidden layers exceeded we now talk about the deep neural

network, There is nothing that says you must use a deep neural network,

but we assume it may be good for many types of complex data.

�Activation Functions
Neural network activation functions are a mathematical “gate.” The main

concept of the activation function is the perceptron, and neural network

activation functions are a crucial component of deep learning.

Activation functions determine the output of a deep learning model; its

accuracy; and also the computational efficiency of training a model, which

can make or break a large-scale neural network. The activation function is

a very important part in neural network architecture, because activation

functions have a major effect on the neural network’s ability to converge

and the convergence speed. In some cases, activation functions might

prevent neural networks from converging in the first place. Their main

purpose is to convert an input signal of a node in an ANN to an

output signal.

Activation functions are mathematical equations that determine the

output of a neural network. After describing the activation function, we

may still want to know more about what it does. The function is attached

to each neuron in the network and determines whether it should be fired

or not; it does this based on whether each neuron’s input is relevant for the

model’s prediction. Activation functions also help normalize the output of

each neuron to a range between 1 and 0 or between -1 and 1.

Chapter 9 Deep Learning Fundamentals

298

The question is asked what is the role of the activation function in a

model? As we saw in the previous section talking about layers, data points

are transferred from the input layer to the output layer, passed by hidden

layers. Each neuron has a weight, and multiplying the input number with

the weight gives the output of the neuron, which is transferred to the next

layer.

The activation function is located in between the input feeding the

current neuron and its output going to the next layer (Figure 9-14). It can

be as simple as a step function that turns the neuron output on and off,

depending on a rule or threshold. Or it can be a transformation that maps

the input signals into output signals that are needed for the neural network

to function.

Let’s visualize the process, which starts from input: multiply input data

with weights, add bias to them, go through the activation function, and

then feed to the next layer (Figure 9-15).

Figure 9-14.  The placement of the activation function

Chapter 9 Deep Learning Fundamentals

299

So, after talking about the process, we need to know the types, how to

use them, how they work, and which one is the reliable one for our neural

network model.

�Types of Activation Functions
There are three types of activation functions: binary step function, linear

activation function, and nonlinear activation function.

First, the binary step function is a threshold-based activation function

(Figure 9-16). What does this mean? It means that it depends on whether

it is above or below a certain threshold value. If the neuron output is above

the threshold, the activation neuron will send exactly the same signal to

the next layer—and vice versa.

Figure 9-15.  The steps of how activation works in a neuron

Chapter 9 Deep Learning Fundamentals

300

But it is still binary, so we can’t use it in multiclassification problems.

It’s only a trigger function and can’t change any of the data that comes

from the previous layer, so we need a more complex activation function.

So let’s talk about the next type of activation function, which is the linear
activation function (Figure 9-17). It uses the function A = w ∗ x. It takes the

inputs, multiplied by the weights for each neuron, and creates an output

signal proportional to the input. In one sense, a linear function is better

than a step function because it allows multiple outputs, not just yes and no.

Figure 9-16.  A binary activation function

Chapter 9 Deep Learning Fundamentals

301

But does the linear activation function have no problems? Of course

it has. The problems lie in that it’s a constant function, so we can’t use

the backpropagation technique (which we will talk about in the next

sections) because it depends on derivatives. This is a constant function,

so it has no derivative. The second thing is that it depends on its linearity.

However many layers we have, it’s still a linear function; we could almost

say that a neural network with a linear activation function is simply a linear

regression model. It has limited power and ability to handle the complexity

of varying parameters of input data, which makes us need to look to a new

activation function: the nonlinear activation function. Nowadays many

neural network models use nonlinear activation functions. They allow

the model to create complex mappings between the network’s inputs

and outputs, which are essential for learning and modeling complex data

such as images, video, audio, and data sets that are nonlinear or have

high dimensionality. They solve problems that faced the linear activation

function. The types of nonlinear activation functions that are used today in

Figure 9-17.  How linear activation works

Chapter 9 Deep Learning Fundamentals

302

neural network models are sigmoid/logistic, tanh/hyperbolic tangent, ReLU

(rectified linear unit), leaky ReLU, softmax, and swish. Let’s take a tour of

those functions.

Sigmoid or logistic activation function: when we talk about sigmoid,

we mean probability between 0 and 1 function. The main reason we use

sigmoid function is that it exists between 0 and 1.

Therefore, it is especially useful for models where we have to predict

the probability of an output. Since the probability of anything exists only

between the range of 0 and 1, sigmoid is the right choice. From only 0 and 1,

let’s make the range wider; we can make the range from -1 to 1. This takes

us to a new function: tanh or hyperbolic tangent activation function.

This function is almost like sigmoid but the range is between -1 and 1

(Figure 9-18). The advantage is that the negative inputs will be mapped

strongly negative and the zero inputs will be mapped near zero in the tanh

graph. And it works very well when we work in classification between two

classes. But there is a function that may be the same as sigmoid; it’s called

Softmax. This function will calculate the probabilities of each target class

over all possible target classes.

Later, the calculated probabilities will be helpful for determining the

target class for the given inputs. It’s almost like the sigmoid function but it

is divided by all the possible target classes. If the Softmax function is used

for a multiclassification model, it returns the probabilities of each class

and the target class will have a high probability. Its equation is:

Sigmoid x
x

() =
+ -()

1

1 exp

softmax x
x

x
j

k

j

() = ()
()=å

exp

exp
0

tanh
exp

x
x

sigmoid x() =
+ -()

= * () -2

2 2
2 2 1

Chapter 9 Deep Learning Fundamentals

303

Note  Both tanh and logistic sigmoid activation functions are used in
feedforward nets.

Although we have good function in the range between -1 and 1,

we need to have x continuous, so now we need to work with the ReLU

function. It works from zero to infinity. Let’s see how it works, and why it’s

called rectified. It is called rectified because it’s rectified under zero; if the

value is below zero it will be zero, but if it equals 0 or above zero it will be

the value itself.

The conclusion is f(z) is zero when z is less than zero and f(z) is equal to

z when z is above or equal to zero.

After working with infinity, we now have to work with zero. We mainly

waste all data under zero, so we create a new activation that gets some of

the data under zero. It’s called leaky ReLU.
This function works in the same direction as the ReLU function but

it has some variations; it mainly tries to improve ReLU range. It works

Figure 9-18.  The difference between sigmoid and tanh

Chapter 9 Deep Learning Fundamentals

304

As we see in the preceding equations, the variation in function is

that the first parameter in ReLU is equal to x multiplied by 0, as every

parameter below 0 will equal zero. In leaky ReLU, x is multiplied by 0.01,

so for every parameter below zero you will have a negative target for this

input. Google created a new activation function called swish; it performs

better than ReLU with a similar level of computational efficiency

(Figure 9-20). Its equation is:

Swish x
x

x
() =

- -()1 exp

with range - infinity, infinity. That is the main variation (Figure 9-19); the

equation is:

Relu x x() = ()max 0,

LeakyRelu x x x() = *()max 0 01. ,

Figure 9-19.  ReLU function (left); leaky ReLU function (right)

Chapter 9 Deep Learning Fundamentals

305

�Recap
After all, an activation function is just a perceptron. It works to allow neural

networks to learn: it should be in the output layer, it may be in hidden

layers, but it has never been in the input layer.

�Gradient Descent
This is the main core of machine learning—the way we work to decrease

the loss function. Let’s get an in-depth description of gradient descent;

you can have more than one description with different meanings, but

let’s see the abstract definition of gradient descent. Gradient descent is

an optimization algorithm used to minimize some function by iteratively

moving in the direction of steepest descent, as defined by the negative of

Figure 9-20.  The swish activation function

Chapter 9 Deep Learning Fundamentals

306

the gradient. In machine learning, gradient descent is an optimization

algorithm used to find the values of parameters (coefficients) of a function

(f) that minimizes a cost function (loss). We talk about the cost function

in the next sections. Gradient descent is best to use when the parameters

cannot be calculated analytically (e.g., using linear algebra) and must be

searched for by an optimization algorithm.

We will not write the gradient descent algorithm manually, as it is

already implemented in packages like Keras. But we need to understand

the concept of how we optimize the cost function. Cost function is

simply equal to Loss = (actual output − predicted output). Let’s see how

gradient descent minimizes the cost function. Gradient descent is an

efficient optimization algorithm that attempts to find a local or global

minimum of a function. Gradient descent enables a model to learn the

gradient or direction that the model should take in order to reduce errors

(differences between actual y and predicted y). The direction in the simple

linear regression example refers to how the model parameters B (bias

or intercept) and W (slope or coefficient) should be tweaked or corrected

to further reduce the cost function. As the model iterates, it gradually

converges toward a minimum where further tweaks to the parameters

produce little or zero changes in the loss, also referred to as convergence,

where y = WX + B. Let’s see Figure 9-20 to illustrate this linear function.

Chapter 9 Deep Learning Fundamentals

307

Figure 9-21.  A gradient descent step to the minimum point

Let’s explain what happened in this graph. A random position on the

surface of the graph is the cost of the current values of the coefficients

(cost). The bottom of the graph is the cost of the best set of coefficients, the

minimum of the function. Now you will iterate in the cost to get to the goal,

which is to continue to try different values for the coefficients, evaluate

their cost, and select new coefficients that have a slightly better (lower)

cost. Repeating this process enough times will lead to the bottom of the

graph, and you will know the values of the coefficients that result in the

minimum cost.

�Recap
Gradient descent is a way to optimize the cost by trying to get the

minimum optimal values in the cost function. This concept has

many applications like mini-batch, full batch, and stochastic gradient

descent, and we will see them in the next sections. Gradient descent

is a very popular optimization technique in machine learning and

deep learning and it can be used with most, if not all, of the learning

algorithms. A gradient is basically the slope of a function: the degree of

Chapter 9 Deep Learning Fundamentals

308

change of a parameter with the amount of change in another parameter.

Mathematically, it can be described as the partial derivatives of a set of

parameters with respect to its inputs. The more the gradient, the steeper

the slope. Gradient descent is a convex function.

�Batch vs. Stochastic vs. Mini-Batch
Gradient Descent
Now, let’s look further into those three types. But before we start, we have

to remind you that the goal of all supervised machine learning algorithms

is to best estimate a target function (f) that maps input data (X) onto

output variables (Y). This describes all classification and regression

problems.

�Batch Gradient Descent
The concept behind batch gradient descent is to update the parameters of

neural networks once. This process happens after the training example is

finished, that is, after all the training examples have been passed through

the network.

For instance, if the training dataset contains 100 training examples,

then the parameters of the neural network are updated once the training of

all 100 examples is finished. Table 9-2 lists advantages and disadvantages

of batch gradient descent.

Chapter 9 Deep Learning Fundamentals

309

We can see that with batch gradient, it is all about the resources you have.

�Stochastic Gradient Descent
In this method, one training sample (example) is passed through the

neural network at a time and the parameters (weights) of each layer are

updated with the computed gradient. The parameters of all the layers

of the network are updated after every training sample. Let’s take an

example: you have 1,000 training samples, so you now have 1,000 updated

parameters and every parameter is updated after every individual sample.

Table 9-3 lists advantages and disadvantages of stochastic gradient

descent. Following is the equation for stochastic gradient descent; it is

iterated over “n” times for “n” training samples in the training set.

q q a
q

qj j
j

J: .= -
¶
¶

()

Table 9-2.  Pros/Cons of Batch Gradient Descent

Advantages Disadvantages

It produces a more stable gradient descent

convergence and stable error gradient than

stochastic gradient descent.

The entire training set can

be too large to process in the

memory, therefore, additional

memory might be needed.

It is computationally efficient, as all computer

resources are not being used to process a single

sample but rather are being used for all training

samples.

Depending on computer

resources, it can take too

long for processing all the

training samples as a batch.

It enhances the steps toward the minimum of

loss function, due to updating the parameters by

computing the average of all the training samples

rather than the value of a single sample.

Chapter 9 Deep Learning Fundamentals

310

As we see, every optimization has its advantages and disadvantages,

which must be considered when choosing which type of gradient descent

to use. Now let’s talk about the final type we’ve mentioned in this section,

the mini-batch gradient descent.

�Mini-batch Gradient Descent
Mini-batch gradient is a hybrid system between stochastic and batch

gradient descent. It is a variation of the gradient descent algorithm that

splits the training dataset into small batches that are used to calculate

model error and update model coefficients. What mini-batch seeks to do

is to find the balance between what stochastic does and the efficiency of

batch gradient. Table 9-4 lists advantages and disadvantages of this type.

Table 9-3.  Pros/cons of Stochastic Gradient Descent

Advantages Disadvantages

It is computationally fast, as only one sample is

processed at a time.

It can take the gradient descent

into other directions, because

its frequent updating to local

minimum is very noisy.

In this type, we have many updates. That means

the frequent updates of the steps taken toward

the minima of the loss function have oscillations,

which can help to get out of local minimums of

the loss function.

It loses the advantage of

vectorized operations, as it deals

with only a single example at a

time.

It is easier to fit into memory, due to a single

training sample being processed by the network.

Frequent updates are

computationally expensive,

due to using all resources for

processing one training sample

at a time.

Chapter 9 Deep Learning Fundamentals

311

Note T he most used gradient is the mini-batch gradient descent,
especially in deep learning.

�Recap
In this section, we learned the types of gradient descent. As we see, every

type has its advantages and disadvantages, so we need to choose between

them and see what will enhance our model more. We said before that

mini-batch is the state of the art in deep learning nowadays; that may

change in the future, but for now we will use it in deep learning. We hope

you had fun with this section on gradient optimizers.

Ultimately, we only need to know that all this will work to optimize

model learning and change the equation of cost function to allow the

model to get the best accuracy while reducing the error rate.

Table 9-4.  The Pros/Cons of Mini-batch Gradient Descent

Advantages Disadvantages

The model update frequency is higher than

batch gradient descent, which allows for

a more robust convergence, avoiding local

minima.

The batched updates provide a

computationally more efficient process than

stochastic gradient descent.

You need to configure the “mini-batch

size” hyperparameter for the learning

algorithm.

Error information must be

accumulated across mini-batches

of training examples, as with batch

gradient descent.

Chapter 9 Deep Learning Fundamentals

312

�Loss function and Backpropagation
To simplify the neural network algorithm, we can say that any neural

network can be presented as a black box with two methods, learning and

predicting, as described in Figure 9-22.

Our main concern in this part of the book is the learning process,

which takes the inputs and the desired outputs and updates its internal

state accordingly, so the calculated output gets as close as possible to the

desired output.

In order to achieve this, we will decompose the learning process into its

several building blocks or steps, which can be stated in the following order:

	 1.	 Model initialization

	 2.	 Forward propagation

	 3.	 Compute loss

Figure 9-22.  The difference between training and predicting
methods

Chapter 9 Deep Learning Fundamentals

313

	 4.	 Compute differentiation

	 5.	 Back propagation

	 6.	 Update the weights.

	 7.	 Iterate from step 2 to 6 until convergence.

The first step is model initialization before any learning procedure

happens. This step is the initial hypothesis, or we can say the random

guess. In this step, the model you will build will guess a random output

for a given input. Thus, a random initialization of the model is a common

practice. In order to understand this analogy, take for instance a person

who has never played soccer in his life. The very first time he tries to shoot

the ball, he just shoots it randomly.

The natural step to do after initializing the model with random

weights is to check its performance. And to check the model performance

we need first to make it work on the inputs we pass them through the

network layer and we compare the model output with the actual output

straightforwardly. This step is called forward-propagation, because the

calculation flow is going in the natural forward direction from the input

through the neural network to the output.

At this stage, on the one hand we have the model output of the

randomly initialized neural network. On the other hand, we have the

actual output we would like the network to learn, the real output of input

data we feed to the neural network. Returning to the example of our

soccer player shooting for the first time, the model output will be the final

position of the ball (most of the time it will be out/missed), and the actual

output would be that the ball goes inside the goal. In the beginning, our

player is just shooting randomly. Let’s say the ball went out—or to the right

side of the goal—most of the time. What he can learn from this is that he

needs to shoot a bit more to the left and focus his aim to the goal area next

time he trains. In order to be able to generalize to any problem, we define

what we call loss function.

Chapter 9 Deep Learning Fundamentals

314

Basically, it is a performance metric on how well the neural network

manages to reach its goal of generating outputs as close as possible to the

desired values. The most intuitive loss function is simply loss = (actual

output − model output).

Obviously, we can use any optimization technique that modifies the

internal weights of neural networks in order to minimize the total loss

function that we previously defined. These techniques can include greedy

search or even a simple brute-force search, but the most used technique is

to go to the optimal weights that minimize the loss to its minimum value

step by step using differentiation.

Using searching techniques or even brute-force might work if the

model has only very few parameters and we don’t care much about

precision. However, if we are training a neural network over an array

of 600x600 inputs (like in image processing), we can very easily reach

models with millions of weights to optimize and brute-force can’t even be

imaginable, since it’s a pure waste of computational resources!

Basically, differentiation deals with the derivative of the loss function.

In mathematics, the derivative of a function at a certain point gives the rate

or the speed at which this function is changing its values at this point. In

order to see the effect of the derivative, we can ask ourselves how much

the total error will change if we change the internal weight of the neural

network with a certain small value δW.

You model might be composed of only one layer inside the neural

network between the inputs and the outputs. But in many cases, more

layers are needed, in order to reach more variations in the functionality

of the neural network. For sure, we can always create one complicated

function that represents the composition of all the layers of the network.

Although in most cases composing the functions is very hard; plus, for

every composition one has to calculate the dedicated derivative of the

composition (which is not at all scalable and very error prone). In order

to solve the problem, luckily for us, the derivative is decomposable, thus it

can be backpropagated. We have the starting point of errors, which is the

Chapter 9 Deep Learning Fundamentals

315

loss function, and we know how to derive it. So if we know how to derive

each function from the composition, we can propagate back the error from

the end to the start.

As we presented earlier, the derivative is just the rate at which the error

changes, relative to the weight changes.

Note I n real-life problems we shouldn’t update the weights with
such big steps. Since there are a lot of nonlinearities, any big change
in weights will lead to chaotic behavior. We should not forget that
the derivative is only local at the point where we are calculating the
derivative.

Thus, a general rule of weight updates is the delta rule:

NewWeight = OldWeight − CalculatedDerivative ∗ LearningRate The

learning rate is introduced as a constant (usually very small), in order to

force the weight to get updated very smoothly and slowly (to avoid big

steps and chaotic behavior).

Since we update the weights with a small delta step at a time, it will

take several iterations in order to learn. This is very similar to genetic

algorithms, where after each generation we apply a small mutation rate

and the fittest survives. In a neural network, after each iteration the

gradient descent force updates the weights toward less and less global loss

function. The similarity is that the delta rule acts as a mutation operator,

and the loss function acts as a fitness function to minimize. The difference

is that in genetic algorithms, the mutation is blind. Some mutations are

bad, some are good, but the good ones have a higher chance to survive.

However, the weight updates in neural networks are smarter, since they are

guided by the decreasing gradient force over the error.

Chapter 9 Deep Learning Fundamentals

316

�Loss Function
The loss function is the metric that helps a network understand whether

it is learning in the right direction. To frame the loss function in simple

words, consider it as the test score you achieve in an examination. Say you

appeared for tests with several questions on a certain subject: what metrics

would you use to understand your performance on this test? Obviously,

the test score. Assume you answered all the questions, comparing your

answers for each question with the right answer will give you a score

metric that assesses your performance on the subject itself. Assuming you

scored 56, 60, 78, 90, and 96 out of 100 in five consecutive language tests,

you would clearly see that improving test scores are an indication of how

well you are performing. Had the test scores been decreasing, then the

verdict would be that your performance is decreasing and you would need

to change your studying methods or materials to improve.

Similarly, how does a network understand whether it is improving

its learning process in each iteration? It uses the loss function, which is

analogous to the test score. The loss function essentially measures the

loss from the target. Say you are developing a model to predict whether a

student will pass or fail, and the chance of passing or failing is defined by

the probability. So, 1 would indicate that he will pass with 100% certainty

and 0 would indicate that he will definitely fail.

The model learns from the data and predicts a score of 0.87 for the

student to pass. So, the actual loss here would be 1.00 – 0.87 = 0.13. If it

repeats the exercise with some parameter updates in order to improve and

now achieves a loss of 0.40, it would understand that the changes it has

made are not helping the network to appropriately learn. Alternatively,

a new loss of 0.05 would indicate that the updates or changes from the

learning are in the right direction.

Based on the type of data outcome, we have several standard loss

functions defined in both machine and deep learning. For regression use

cases (e.g., where the end prediction would be a continuous number like

Chapter 9 Deep Learning Fundamentals

317

the marks scored by a student, the number of product units sold by a shop,

the number of calls received from customers in a contact center), here are

some popular loss functions available:

Mean Squared Error - Average squared difference between the actual

and predicted value.

The squared difference makes it easy to penalize the model more for

a higher difference. So, a difference of 3 would result in a loss of 9, but

difference of 9 would return a loss of 81.

The mathematical equivalent would be

i

n Actual Predicted

k=
å

-()
0

2

TensorFlow equivalent

tf.losses.mean_squared_error(labels, predictions)

Mean Absolute Error is the average absolute error between actual and

predicted.

The mathematical equivalent would be

i

n

Actual Predicted
=
å -

0

TensorFlow equivalent is

tf.metrics.mean_absolute_error(labels, predictions)

OR

tf.losses.absolute_difference(labels, predictions)

Similarly, a few other variants are

•	 MAPE – Mean absolute percentage error

tf.keras.losses.mean_absolute_percentage_error(labels, predictions)

Chapter 9 Deep Learning Fundamentals

318

•	 MSLE – Mean square logarithmic error

tf.keras.losses.mean_squared_logarithmic_error(labels,

predictions)

For categorical outcomes, your prediction would be for a class, like

whether a student will pass (1) or fail (0), whether the customer will make

a purchase or not, whether the customer will default on payment or not,

and so on. Some use cases may have multiple classes as an outcome, like

classifying types of disease (Type A, B, or C); classifying images as cats,

dogs, cars, horses, landscapes; and so on.

In such cases, the losses defined in the preceding cannot be used due

to obvious reasons. We would need to quantify the outcome of the class

as probability and define losses based on the probability estimates as

predictions.

A few popular choices for losses for categorical outcomes in Keras are

as follows:

Binary cross-entropy defines the loss when the categorical outcome

is a binary variable, that is, with two possible outcomes: (Pass/Fail) or

(Yes/No).

The mathematical form would be

Loss y y y= - * ()+ -()* -()éë ùûlog y logˆ ˆ1 1

TensorFlow equivalent is

tf.backend. binary_crossentropy(y_actual, y_predicted)

Categorical cross-entropy defines the loss when the categorical

outcomes is nonbinary, that is, more than two possible outcomes: (Yes/

No/Maybe) or (Type 1/ Type 2/… Type n).

The mathematical form would be Loss yij
i

n

j

m

= * ()
==
åå

00

log y ji
ˆ

Chapter 9 Deep Learning Fundamentals

319

TensorFlow equivalent is

tf.keras.losses.categorical_crossentropy(y_actual, y_predicted)

OR

tf.losses.softmax_cross_entropy(y_actual, y_predicted)

�Backpropagation
Understanding the backpropagation algorithm can take some time. If you

are looking for a fast implementation of a neural network, you can skip

this section, as modern libraries have the capability to autodifferentiate

and perform the entire training procedure. However, understanding this

algorithm would definitely give you insights into problems related to deep

learning (learning problems, slow learning, exploding gradients, and

diminishing gradients).

Gradient descent is a powerful algorithm, yet it is a slow method when

the number of weights increases. In the case of neural networks having

parameters in the range of thousands, training each weight with respect

to the loss function—or, rather, formulating the loss as a function of all the

weights—becomes painstakingly slow and extremely complex to use for

practical purposes.

Thanks to the path-breaking paper by Geoffrey Hinton and his

colleagues in 1986, we have an extremely fast and beautiful algorithm

that helps us to find the partial derivative of the loss with respect to each

weight. This algorithm is the workhorse of the training procedure for every

deep learning algorithm. More detailed information can be found here:

www.cs.toronto.edu/~hinton/backprop.html.

It is the most efficient possible procedure to compute the exact

gradient, and its computational cost is always of the same O() complexity

as computing the loss itself. The proof of backpropagation is beyond the

scope of this book; however, the intuitive explanation of the algorithm can

give you an excellent insight into its complex working.

Chapter 9 Deep Learning Fundamentals

http://www.cs.toronto.edu/~hinton/backprop.html

320

For backpropagation to work, two basic assumptions are made

regarding the error function:

	 1.	 Total error can be written as a summation of

individual errors of training samples/minibatch,

E = ∑kEk.

	 2.	 Error can be written as a function of outputs of the

network.

Backpropagation consists of two parts:

	 3.	 Forward pass, wherein we initialize the weights and

make a feedforward network to store all the values

	 4.	 Backward pass, which is performed to have the

stored values update the weights.

Partial derivatives, chain rules, and linear algebra are the main tools

required to deal with backpropagation (Figure 9-23).

Chapter 9 Deep Learning Fundamentals

321

Initially, all the edge weights are randomly assigned. For every input in

the training dataset, the ANN is activated and its output is observed. This

output is compared with the desired output that we already know, and the

error is “propagated” back to the previous layer. This error is noted, and

the weights are “adjusted” accordingly. This process is repeated until the

output error is below a predetermined threshold.

Once the preceding algorithm terminates, we have a “learned” ANN,

which we consider to be ready to work with “new” inputs. This neural

network is said to have learned from several examples (labeled data) and

from its mistakes (error propagation).

Curious readers should investigate the original paper on

backpropagation. We have provided a list of resources and blogs to

understand the algorithm in greater depth. However, when it comes to

Figure 9-23.  How backpropagation works

Chapter 9 Deep Learning Fundamentals

322

implementation, you will hardly write your own code on backpropagation,

as most of the libraries support automatic differentiation, and you won’t

really want to tweak the backpropagation algorithm.

In layman’s language, in backpropagation, we try to sequentially

update the weights, first by making a forward pass on the network, after

which we first update the weights of the last layer, using the label and last

layer outputs, then subsequently use this information recursively on the

layer just before and proceed.

�The Four Fundamental Equations Behind
Backpropagation

Backpropagation is about understanding how changing the weights and

biases in a network changes the cost function. Ultimately, this means

computing the partial derivatives
¶
¶
C

wjk
l

 and
¶
¶
C

bj
l

. But to compute those,

we first introduce an intermediate quantity, d j
l , which we call the error in

the jth neuron in the lth layer. Backpropagation will give us a procedure to

compute the error d j
l , and then will relate d j

l to
¶
¶
C

wjk
l

 and
¶
¶
C

bj
l

.

To understand how the error is defined, imagine there is a red square

in our neural network (red square in Figure 9-24).

Chapter 9 Deep Learning Fundamentals

323

The red square sits at the jth neuron in layer l. As the input to the

neuron comes in, the red square messes with the neuron’s operation. It

adds a little change Dz j
l to the neuron’s weighted input, so that instead

of outputting s z j
l() , the neuron outputs s z zj

l
j
l+()D . This change

propagates through later layers in the network, finally causing the overall

cost to change by an amount
¶
¶
C

z
z

j
l j

lD .

Now, this square is a good red square, and is trying to help you improve

the cost, that is, trying to find a Dz j
l that makes the cost smaller. Suppose

¶
¶
C

z j
l has a large value (either positive or negative). Then the red square can

lower the cost quite a bit by choosing Dz j
l to have the opposite sign to ¶

¶
C

z j
l

.

By contrast, if
¶
¶
C

z j
l is close to zero, then the red square can’t improve the

Figure 9-24.  The neuron J in Layer L through the backpropagation
process

Chapter 9 Deep Learning Fundamentals

324

cost much at all by perturbing the weighted input z j
l . So, as far as the red

square can tell, the neuron is already pretty near optimal.

This is only the case for small changes Dz j
l , of course. We’ll assume that

the red square is constrained to make such small changes. And so, there’s a

heuristic sense in which
¶
¶
C

z j
l

 is a measure of the error in the neuron.

Motivated by this story, we define the error d j
l of neuron j in layer l

by d j
l

j
l

C

z
=
¶
¶

.

To continue, we use δl to denote the vector of errors associated with layer l.

Backpropagation will give us a way of computing δl for every layer, and then

relating those errors to the quantities of real interest,
¶
¶
C

wjk
l

 and
¶
¶
C

bj
l

.

You might wonder why the red square is changing the weighted input z j
l .

Surely, it’d be more natural to imagine the red square changing the

output activation a j
l , with the result that we’d be using

¶
¶
C

aj
l

 as our

measure of error. In fact, if you do, these things work out quite similarly

to the discussion following. But it turns out to make the presentation of

backpropagation a little more algebraically complicated. So, we’ll stick

with d j
l

j
l

C

z
=
¶
¶

 as our measure of error.

In classification problems like MNIST, the term “error” is sometimes

used to mean the classification failure rate. For example, if the neural net

correctly classifies 96.0 percent of the digits, then the error is 4.0 percent.

Obviously, this has quite a different meaning from our δ vectors. In

practice, you shouldn’t have trouble telling which meaning is intended in

any given usage.

Our target: Backpropagation is based around four fundamental

equations. Together, those equations give us a way of computing both the

error δl and the gradient of the cost function. I state the four equations later.

Be warned, though: you shouldn’t expect to instantaneously assimilate

Chapter 9 Deep Learning Fundamentals

325

the equations. Such an expectation will lead to disappointment. In fact,

the backpropagation equations are so rich, that understanding them well

requires considerable time and patience as you gradually delve deeper into

the equations. The good news is that such patience is repaid many times

over. And so, the discussion in this section is merely a beginning, helping

you on the way to a thorough understanding of the equations.

Here’s a preview of the ways we’ll delve more deeply into the equations

later in the chapter: I’ll give a short proof of the equations, which helps

explain why they are true; we’ll restate the equations in algorithm-like

form as pseudocode, and see how the pseudocode can be implemented

as real, running Python code; and, in the final section of the chapter, we’ll

develop an intuitive picture of what the backpropagation equations mean,

and how someone might discover them from scratch. Along the way we’ll

return repeatedly to the four fundamental equations, and as you deepen

your understanding, those equations will come to seem comfortable and,

perhaps, even beautiful and natural.

Here’s an equation for the error in the output layer, δL. The components

of δL are given by

d sj
L

j
L j

LC

a
z=

¶
¶

¢() (Equation 1)

This is a very natural expression. The first term on the right,
¶
¶
C

aj
L

,

just measures how fast the cost is changing as a function of the jth output

activation. If, for example, C doesn’t depend much on a particular output

neuron, j, then d j
L will be small, which is what we’d expect. The second

term on the right, ¢()s z j
L , measures how fast the activation function σ is

changing at z j
L .

Notice that everything in Equation 1 is easily computed. In particular,

we compute z j
L while computing the behavior of the network, and it’s only

Chapter 9 Deep Learning Fundamentals

326

a small additional overhead to compute ¢()s z j
L . The exact form of

¶
¶
C

aj
L

 will, of course, depend on the form of the cost function. However,

provided the cost function is known, there should be little trouble

computing
¶
¶
C

aj
L

. For example, if we’re using the quadratic cost function,

then C a y
j

j
L

j= -()å12
2

, and so
¶
¶

= -()C

a
a y

j
L j

L
j , which obviously is easily

computable.

Equation 1 is a component-wise expression for δL. It’s a perfectly good

expression, but not the matrix-based form we want for backpropagation.

However, it’s easy to rewrite the equation in a matrix-based form, as

δL = ∇aC ⊙ σ′(zL) (Equation 1 a).

Here, ∇aC is defined to be a vector whose components are the partial

derivatives
¶
¶
C

aj
L

. You can think of ∇aC as expressing the rate of change

of C with respect to the output activations. It’s easy to see that Equation

1 a and Equation 1 are equivalent, and for that reason from now on we’ll

use Equation 1 interchangeably to refer to both equations. As an example,

in the case of the quadratic cost we have ∇aC = aL − y, and so the fully

matrix-based form of Equation 1 becomes δL = (aL − y) ⊙ σ′(zL). As you

can see, everything in this expression has a nice vector form, and is easily

computed using a library such as NumPy.

Here is an equation for the error δl in terms of the error in the next

layer, δl + 1. In particular,

d d sl l T l lw z= ()() ¢()+ +1 1) (Equation 2)

where (wl + 1)T is the transpose of the weight matrix wl + 1 for the (l + 1)th

layer. This equation appears complicated, but each element has a nice

interpretation. Suppose we know the error δl + 1 at the (l + 1)th layer. When

we apply the transpose weight matrix, (wl + 1)T, we can think intuitively of

this as moving the error backward through the network, giving us some

Chapter 9 Deep Learning Fundamentals

327

sort of measure of the error at the output of the lth layer. We then take the

Hadamard product ⊙σ`(zl). This moves the error backward through the

activation function in layer l, giving us the error δl in the weighted input to

layer l.

By combining Equation 2 with Equation 1, we can compute the error

δl for any layer in the network. We start by using Equation 1 to compute δL,

then apply Equation 2 to compute δL − 1, then Equation 2 again to compute

δL − 2, and so on, all the way back through the network.

Here’s an equation for the rate of change of the cost with respect to any

bias in the network. In particular,

¶
¶

=
C

bj
l j

ld

(Equation 3)

That is, the error d j
l is exactly equal to the rate of change

¶
¶
C

bj
l

. This is

great news, since Equation 1 and Equation 2 have already told us how to

compute d j
l . We can rewrite Equation 3 in shorthand as

¶
¶

=
C

b
d , where it

is understood that δ is being evaluated at the same neuron as the bias b.

Here is an equation for the rate of change of the cost with respect to

any weight in the network: In in particular,

¶
¶

= -C

w
a

jk
l k

l
j
l1d

(Equation 4)

This tells us how to compute the partial derivatives
¶
¶
C

wjk
l

 in terms of

the quantities δl and al − 1, which we already know how to compute. The

equation can be rewritten in a less index-heavy notation as
¶
¶

=
C

w
ain outd ,

where it’s understood that ain is the activation of the neuron input to the

weight w, and δout is the error of the neuron output from the weight w.

Zooming in to look at just the weight, w, and the two neurons connected

by that weight, we can depict this as shown in Figure 9-25.

Chapter 9 Deep Learning Fundamentals

328

A nice consequence of the equation
¶
¶

=
C

w
ain outd is that when the

activation ain is small, ain ≈ 0, the gradient term
¶
¶
C

w
 will also tend to be

small. In this case, we’ll say the weight learns slowly, meaning that it’s not

changing much during gradient descent. In other words, one consequence

of Equation 4 is that weights output from low-activation neurons learn

slowly.

There are other insights along these lines, which can be obtained

from Equation 1 to Equation 4. Let’s start by looking at the output layer.

Consider the term ¢()s z j
L in Equation 1. Recall from the graph of the

sigmoid function in the last chapter that the σ function becomes very

flat when s z j
L() is approximately 0 or 1. When this occurs, we will have

¢() »s z j
L 0 . And so, the lesson is that a weight in the final layer will learn

slowly if the output neuron is either low activation (≈0) or high activation

(≈1). In this case, it’s common to say the output neuron has saturated and,

as a result, the weight has stopped learning (or is learning slowly). Similar

remarks also hold for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note the

σ'(zl) term in Equation 2. This means that d j
l is likely to get small if the

neuron is near saturation. And this, in turn, means that any weights input

to a saturated neuron will learn slowly.

Figure 9-25.  The backpropagation connection between two
neurons

Chapter 9 Deep Learning Fundamentals

329

This reasoning won’t hold if (w l + 1)Tδl + 1) has large enough entries
to compensate for the smallness of ¢()s z j

L . But I’m speaking of the
general tendency.

Summing up, we’ve learned that a weight will learn slowly if either the

input neuron is low-activation or if the output neuron has saturated (i.e., is

either high- or low-activation).

None of these observations is too greatly surprising. Still, they help

improve our mental model of what’s going on as a neural network

learns. Furthermore, we can turn this type of reasoning around. The

four fundamental equations turn out to hold for any activation function,

not just the standard sigmoid function (that’s because, as we’ll see in a

moment, the proofs don’t use any special properties of σ). So, we can

use these equations to design activation functions that have particular

desired learning properties. As an example, suppose we were to choose

a (nonsigmoid) activation function σ so that σ′ is always positive and

never gets close to zero. That would prevent the slowdown of learning that

occurs when ordinary sigmoid neurons saturate. Later in the book we’ll

see examples where this kind of modification is made to the activation

function. Keeping the four equations (Equations 1 to 4) in mind can help

explain why such modifications are tried, and what impact they can have

(Figure 9-26).

Chapter 9 Deep Learning Fundamentals

330

�Exploding Gradients
What are exploding gradients?

An error gradient is the direction and magnitude calculated during the

training of a neural network that is used to update the network weights in

the right direction and by the right amount.

In deep networks or recurrent neural networks, error gradients can

accumulate during an update and result in very large gradients. These

in turn result in large updates to the network weights, and in turn, an

unstable network. At an extreme, the values of weights can become so

large as to overflow and result in NaN values.

The explosion occurs through exponential growth by repeatedly

multiplying gradients through the network layers that have values larger

than 1.0.

What is the problem with exploding gradients?

In deep multilayer perceptron networks, exploding gradients can result

in an unstable network that at best cannot learn from the training data

and at worst results in NaN weight values that can no longer be updated.

Figure 9-26.  Summing up all of the four equations

Chapter 9 Deep Learning Fundamentals

331

Exploding gradients can make learning unstable. In recurrent neural

networks, exploding gradients can result in an unstable network that is

unable to learn from training data and at best a network that cannot learn

over long input sequences of data.

The exploding gradients problem refers to the large increase in the

norm of the gradient during training. Such events are due to the explosion

of the long-term components

How do you know if you have exploding gradients? There are some

subtle signs that you may be suffering from exploding gradients during the

training of your network, such as:

•	 The model is unable to get traction on your training

data (e.g., poor loss).

•	 The model is unstable, resulting in large changes in loss

from update to update.

•	 The model loss goes to NaN during training.

If you have these types of problems, you can dig deeper to see if you

have a problem with exploding gradients. There are some less subtle signs

that you can use to confirm that you have exploding gradients.

•	 The model weights quickly become very large during

training.

•	 The model weights go to NaN values during training.

•	 The error gradient values are consistently above 1.0 for

each node and layer during training.

How can we fix exploding gradients? There are many approaches

to addressing exploding gradients; this section lists some best practice

approaches that you can use.

Chapter 9 Deep Learning Fundamentals

332

�Re-Design the Network Model
In deep neural networks, exploding gradients may be addressed by

redesigning the network to have fewer layers.

There may also be some benefit in using a smaller batch size while

training the network.

In recurrent neural networks, updating across fewer prior time steps

during training, called truncated backpropagation through time, may

reduce the exploding gradient problem.

�Use Long Short-Term Memory Networks
In recurrent neural networks, gradient exploding can occur given the

inherent instability in the training of this type of network, for example, via

backpropagation through time that essentially transforms the recurrent

network into a deep multilayer perceptron neural network.

Exploding gradients can be reduced by using the LSTM memory units

and, perhaps, related gated-type neuron structures.

Adopting LSTM memory units is a new best practice for recurrent

neural networks for sequence prediction.

�Use Gradient Clipping
Exploding gradients can still occur in very deep multilayer perceptron

networks with a large batch size and LSTMs with very long input sequence

lengths.

If exploding gradients are still occurring, you can check for and limit

the size of gradients during the training of your network.

This is called gradient clipping. Dealing with the exploding gradients

has a simple but very effective solution: clipping gradients if their norm

exceeds a given threshold.

Chapter 9 Deep Learning Fundamentals

333

Specifically, the values of the error gradient are checked against a

threshold value and clipped or set to that threshold value if the error

gradient exceeds the threshold.

To some extent, the exploding gradient problem can be mitigated

by gradient clipping (thresholding the values of the gradients before

performing a gradient descent step).

�Use Weight Regularization
Another approach, if exploding gradients are still occurring, is to check the

size of network weights and apply a penalty to the network’s loss function

for large weight values.

This is called weight regularization and often an L1 (absolute weights)

or an L2 (squared weights) penalty can be used.

Using an L1 or L2 penalty on the recurrent weights can help with

exploding gradients.

�Vanishing Gradients
The vanishing gradients problem is one example of unstable behavior that

you may encounter when training a deep neural network.

It describes the situation where a deep multilayer feedforward network

or a recurrent neural network is unable to propagate useful gradient

information from the output end of the model back to the layers near the

input end of the model.

The result is the general inability of models with many layers to learn

on a given dataset, or they might prematurely converge to a poor solution.

Many fixes and workarounds have been proposed and investigated,

such as alternate weight initialization schemes, unsupervised pretraining,

layer-wise training, and variations on gradient descent. Perhaps the most

common change is the use of the rectified linear activation function that

Chapter 9 Deep Learning Fundamentals

334

has become the new default, instead of the hyperbolic tangent activation

function that was the default through the late 1990s and 2000s.

In this section, you will discover how to diagnose a vanishing gradient

problem when training a neural network model, and how to fix it using an

alternate activation function and weight initialization scheme.

�Vanishing Gradients Problem
For instance, a neural network is trained using stochastic gradient descent.

This involves first calculating the prediction error made by the model

and using the error to estimate a gradient used to update each weight

in the network so that less error is made next time. This error gradient is

propagated backward through the network from the output layer to the

input layer.

It is desirable to train neural networks with many layers, as the

addition of more layers increases the capacity of the network, making it

capable of learning a large training dataset and efficiently representing

more complex mapping functions from inputs to outputs.

A problem with training networks with many layers (e.g., deep neural

networks) is that the gradient diminishes dramatically as it is propagated

backward through the network. The error may be so small by the time it

reaches layers close to the input of the model, that it may have very little

effect. As such, this problem is referred to as the “vanishing gradients”

problem.

Vanishing gradients make it difficult to know in which direction the

parameters should move to improve the cost function.

In fact, the error gradient can be unstable in deep neural networks

and not only vanish, but also explode, where the gradient exponentially

increases as it is propagated backward through the network. This is

referred to as the “exploding gradient” problem.

Chapter 9 Deep Learning Fundamentals

335

The term vanishing gradient refers to the fact that in a feedforward

network (FFN) the backpropagated error signal typically decreases (or

increases) exponentially as a function of the distance from the final layer.

Vanishing gradients is a particular problem with recurrent neural

networks because the update of the network involves unrolling the

network for each input time step, in effect creating a very deep network

that requires weight updates. A modest recurrent neural network may have

200-to-400 input time steps, resulting conceptually in a very deep network.

The vanishing gradients problem may be manifest in a multilayer

perceptron by a slow rate of improvement of a model during training and

perhaps premature convergence (e.g., continued training does not result

in any further improvement). Inspecting the changes to the weights during

training, we would see more change (i.e., more learning) occurring in the

layers closer to the output layer and less change occurring in the layers

close to the input layer.

There are many techniques that can be used to reduce the impact

of the vanishing gradients problem for feedforward neural networks,

most notably alternate weight initialization schemes and use of alternate

activation functions.

Different approaches to training deep networks (both feedforward and

recurrent) have been studied and applied (in an effort to address vanishing

gradients), such as pretraining, better random initial scaling, better

optimization methods, specific architectures, orthogonal initialization, etc.

In this section, we will take a closer look at the use of an alternate

weight initialization scheme and activation function to permit the training

of deeper neural network models.

Weight initialization: Update the deep MLP with tanh activation to use

Xavier uniform weight initialization and report the results.

Learning algorithm: Update the deep MLP with tanh activation to use

an adaptive learning algorithm such as Adam and report the results.

Chapter 9 Deep Learning Fundamentals

336

Weight changes: Update the tanh and ReLU examples to record and

plot the L1 vector norm of model weights each epoch as a proxy for how

much each layer is changed during training and compare results.

Study model depth: Create an experiment using the MLP with tanh

activation and report the performance of models as the number of hidden

layers is increased from 1 to 10.

Increase breadth: Increase the number of nodes in the hidden layers of

the MLP with tanh activation from 5 to 25, and report performance as the

number of layers are increased from 1 to 10.

�TensorFlow Basics
In Part I, we discussed TensorFlow from installation to its basics; we also

showed how to build a fully functional model using a toy dataset. We did

all this in the introduction part to make you feel that it’s easier than you

think to learn deep learning and start using TensorFlow. But now we need

to show you the needed fundamentals of TensorFlow, going through the

same headers but with some depth; for instance, we will reillustrate the

use of different types of tensor (i.e., placeholder, variable, and constant,

giving you the concrete tools that you will use to build any TensorFlow

deep learning models.

So, in this section, we are going to discuss the difference between

placeholder, variable, and constant tensor types, and also show you the

properties of tensors. After that we are going to show you the optimization

framework and approaches that TensorFlow uses in almost any deep

learning models, going throw the learning rate and understanding

the mini-batch approach. Last, we will show you the most important

optimizers in TensorFlow.

Chapter 9 Deep Learning Fundamentals

337

�Placeholder vs. Variable vs. Constant
As we described in Part I, placeholders, variables, and constants are

key tools for using computational graphs in TensorFlow. So, we have to

understand the differences and when to best use them to our advantage.

One of the most important distinctions to make with the data is

whether it is a placeholder or a variable. Variables are the parameters

of the algorithm and TensorFlow keeps track of how to change these to

optimize the algorithm. Placeholders are objects that allow you to feed

in data of a specific type and shape and depend on the results of the

computational graph, such as the expected outcome of a computation. On

the other hand, constants have a simple use: while you build a huge model,

you are going to use some functions that do something for you: matrices

multiplication or any computational operation. Here you can use the

constant for these operations to help you do it inside the computational

graph.

Another important distinction is that in TensorFlow the differences

between constants and variables are that when you declare some constant,

its value can’t be changed in the future (also the initialization should be

with a value, not with an operation). Nevertheless, when you declare a

variable, you can change its value in the future with tf.assign() method

(and the initialization can be achieved with a value or operation).

The main way to create a variable is by using the Variable() function,

which takes a tensor as an input and outputs a variable. This is the

declaration, and we still need to initialize the variable. Initializing is what

puts the variable with the corresponding methods on the computational

graph. Here is an example of creating and initializing a variable:

my_var = tf.Variable(tf.zeros([2,3]))

sess = tf.Session()

initialize_op = tf.global_variables_initializer ()

sess.run(initialize_op)

Chapter 9 Deep Learning Fundamentals

338

Placeholders are just holding the position for data to be fed into the

graph. Placeholders get data from a feed_dict argument in the session. To

put a placeholder in the graph, we must perform at least one operation on the

placeholder. We initialize the graph, declare x to be a placeholder, and define y

as the identity operation on x, which just returns x. We then create data to feed

into the x placeholder and run the identity operation. It is worth noting that

TensorFlow will not return a self-referenced placeholder in the feed dictionary.

The code is shown here and the resulting graph is shown in the next section:

sess = tf.Session()

x = tf.placeholder(tf.float32, shape=[2,2])

y = tf.identity(x)

x_vals = np.random.rand(2,2)

sess.run(y, feed_dict={x: x_vals})

Note that sess.run(x, feed_dict={x: x_vals})

will result in a self referencing error.

We can see what the code looks like in detail with just one variable,

initialized to all zeros. The gray shaded region is a very detailed view of

the operations and constants involved. The main computational graph

with less detail is the smaller graph outside of the gray region in the upper

right corner. For more details on creating and visualizing graphs. Note

that TensorFlow will not return a self-refernced placeholder in the feed

dictionary. In technical speech, running sess.run(x, feed_dict={x:

x_vals}) in the following graph will return an error .

�Gradient-Descent Optimization Methods
from a Deep-Learning Perspective
We think that before diving into the TensorFlow optimizers, which is a

very important topic, it’s also important to understand a few key points

regarding full-batch gradient descent and stochastic gradient descent,

including their drawbacks. That is so that one can know and understand

the need to compare and choose from variants of these optimizers.

Chapter 9 Deep Learning Fundamentals

339

The cost function for a linear neuron with a least square error is quadratic

(Figure 9-27). When the cost function is quadratic, the direction of the

gradient resulting from the full-batch gradient-descent method gives the

best direction for cost reduction in a linear sense, but it doesn’t point to the

minimum unless the different elliptical contours of the cost function are

circles. In cases of long elliptical contours, the gradient components might

be large in directions where less change is required and small in directions

where more change is required to move to the minimum point.

The problem with this condition is that if we take small steps by

making the learning rate small, the gradient descent would take a while

to converge, whereas if we were to use a big learning rate, the gradients

would change direction rapidly in directions where the cost function had

curvature, leading to oscillations. The cost function for a multilayer neural

network is not quadratic but rather is mostly a smooth function. Locally,

such nonquadratic cost functions can be approximated by quadratic

functions, and so the problems of gradient descent inherent to elliptical

contours still prevail for nonquadratic cost functions.

Figure 9-27.  The difference between many cost functions

Chapter 9 Deep Learning Fundamentals

340

The best way to get around this problem is to take larger steps in those

directions in which the gradients are small but consistent, and take smaller

steps in those directions that have big but inconsistent gradients. This can

be achieved if, instead of having a fixed learning rate for all dimensions, we

have a separate learning rate for each dimension.

Another big problem with neural networks is that the cost functions

are mostly nonconvex, so the gradient-descent method might get stuck at

local minimum points, leading to a suboptimal solution.

Note T he nonconvex nature of the neural network is the result of
the hidden layer units that have nonlinear activation functions, such
as sigmoid.

Full-batch gradient descent uses the full dataset for the gradient

computation. While this is good for convex cost surfaces, it has its own

problems in cases of nonconvex cost functions. For nonconvex cost

surfaces with full-batch gradients, the model is going to end up with

the minima in its basin of attraction. If the initialized parameters are in

the basin of attraction of a local minimum that doesn’t provide good

generalization, a full-batch gradient would give a suboptimal solution.

With stochastic gradient descent, the noisy gradients computed may

force the model out of the basin of attraction of the bad local minima—one

that doesn’t provide good generalization—and place it in a more optimal

region. Stochastic gradient descent with single data points produces very

random and noisy gradients. Gradients with mini-batches tend to produce

much more stable estimates of gradients when compared with gradients of

single data points, but they are still noisier than those produced by the full

batches.

Chapter 9 Deep Learning Fundamentals

341

Ideally, the mini-batch size should be carefully chosen such that the

gradients are noisy enough to avoid or escape bad local minima points

but stable enough to converge at global minima or a local minimum that

provides good generalization.

In Figure 9-28, the dotted arrows correspond to the path taken

by stochastic gradient descent (SGD), while the continuous arrows

correspond to the path taken by full-batch gradient descent. Full-batch

gradient descent computes the actual gradient at a point, and if it is in

the basin of attraction of a poor local minimum, gradient descent almost

certainly ensures that the local minima L is reached. However, in the case

of stochastic gradient descent, because the gradient is based on only a

portion of the data and not on the full batch, the gradient direction is

only a rough estimate. Since the noisy rough estimate doesn’t always

point to the actual gradient at point C, stochastic gradient descent may

escape the basin of attraction of the local minima and fortunately land

in the basin of a global minima. Stochastic gradient descent may escape

the global minima basin of attraction too, but generally if the basin of

attraction is large and the mini-batch size is carefully chosen so that the

gradients it produces are moderately noisy, stochastic gradient descent

is most likely to reach the global minima G (as in this case) or some

other optimal minima that has a large basin of attraction. For nonconvex

optimization, there are other heuristics as well, such as momentum,

which when adopted along with stochastic gradient descent increases the

chances of the SGD’s avoiding shallow local minima. Momentum generally

keeps track of the previous gradients through the velocity component.

So, if the gradients are steadily pointing toward a good local minimum

that has a large basin of attraction, the velocity component would be

high in the direction of the good local minimum. If the new gradient is

noisy and points toward a bad local minimum, the velocity component

would provide momentum to continue in the same direction and not get

influenced by the new gradient too much.

Chapter 9 Deep Learning Fundamentals

342

Another impediment to optimizing nonconvex cost functions is

the presence of saddle points. The number of saddle points increases

exponentially with the dimensionality increase of the parameter space of

a cost function. Saddle points are stationary points (i.e., points where the

gradient is zero) but are neither a local minimum nor a local maximum

point. Since the saddle points are associated with a long plateau of points

with the same cost as that of the saddle point, the gradient in the plateau

region is either zero or very close to zero. Because of this near-zero

gradient in all directions, gradient-based optimizers have a hard time

coming out of these saddle points. Mathematically, to determine whether

a point is a saddle point, the Eigenvalues of the Hessian matrix of the cost

function must be computed at the given point. If there are both positive

and negative Eigenvalues, then it is a saddle point.

Figure 9-28.  The steps of SGD algorithms

Chapter 9 Deep Learning Fundamentals

343

�Learning Rate in the Mini-batch Approach
to Stochastic Gradient Descent
When there is high redundancy in the dataset, the gradient computed on a

mini-batch of data points is almost the same as the gradient computed on

the whole dataset, provided the mini-batch is a good representation of the

entire dataset. In such cases, computing the gradient on the whole dataset

can be avoided, and instead the gradient on the mini-batch of data points

can be used as the approximate gradient for the whole dataset. This is the

mini-batch approach to gradient descent, which is also called mini-batch

stochastic gradient descent. When, instead of using a mini-batch, the

gradients are approximated by one data point, it is called online learning

or stochastic gradient descent. However, it is always better to use the mini-

batch version of stochastic gradient descent over online learning, since

the gradients for the mini-batch method are less noisy compared with the

online mode of learning. Learning rate plays a vital role in the convergence

of mini-batch stochastic gradient descent. The following approach tends to

provide good convergence:

•	 Start with an initial learning rate.

•	 Increase the learning rate if the error reduces.

•	 Decrease the learning rate if the error increases.

•	 Stop the learning process if the error ceases to reduce.

�Summary
As we will see in the next section, the different optimizers adopt an

adaptive learning-rate approach in their implementations.

Chapter 9 Deep Learning Fundamentals

345© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_10

CHAPTER 10

Improving Deep
Neural Networks
�Optimizers in TensorFlow
We’re still on the subject of gradient descent. But let’s now talk about

gradient optimization, because of its importance to gradient descent. It is

an optimization method for finding the minimum of a function, and it’s

important in deep learning. It works to update the weights of the neural

network through backpropagation.

So what are the optimizations of the types of gradient descent we

talked about previously (batch, mini-batch, and stochastic)? Let’s start by

talking about the benefits of these optimization methods:

	 1.	 Modifying the learning rate component, α

	 2.	 Modifying the gradient component, ∂L/∂w

	 3.	 Modifying both (α, and ∂L/∂w)

We mention ∂L/∂w as a function of the gradient (wnew=w- α ∂L/∂w).

This is the equation that optimizers try to optimize. To start, I think every

optimizer is an optimizer of the optimizer. That’s a very weird phrase but

it's true, for example, Adadelta and RMSprop are optimizers of Adagrad.

Let’s see an image that may help show the connections between all

optimizers (Figure 10-1).

346

The most used type of optimizer in deep learning is mini-batch.

We talked before about why it’s the most used, so let’s now get into the

adaptive learning rate algorithms, Nesterov accelerated gradient (NAG)

and momentum, and adaptive learning methods.

Usage:

train_op = tf.train.GradientDescentOptimizer (learning_rate).

minimize(cost)

�The Notation to Use
t -> is for time step

w -> weight/parameter which we want to update

α -> learning rate

∂L/∂w -> gradient of L, the loss function to minimize

Figure 10-1.  The optimizers tree

Chapter 10 Improving Deep Neural Networks

347

�Momentum
This gradient optimizer has a variable that makes the gradient converge

very fast, as it does not depend only on the current gradient to update the

weight. Gradient descent with momentum replaces the current gradient

with V (which stands for velocity), the exponential moving average

of current and past gradients. Momentum-based methods introduce

a component called velocity V that dampens the parameter update

when the gradient computed changes sign, whereas it accelerates the

parameter update when the gradient is in the same direction of velocity.

This introduces faster convergence as well as fewer oscillations around

the global minima, or around a local minimum that provides good

generalization. The update rule for momentum-based optimizers is as

follows:

w w V

V V
L

w

t t t

t t
t

+

-

= -

= + -() ¶
¶

1

1 1

a

b b

Default value β = 0.9, where α is the momentum parameter and

η is the learning rate. The terms vi
t and vi

t+1 represent the velocity at

iterations t and (t + 1), respectively, for the ith parameter. Similarly, vi
t

and vi
t+1 represent the weight of the ith parameter at iterations t and

(t + 1), respectively, when the cost function reaches the local minimum.

When we use gradient descent, the parameters are stopped updating

and in this local minimum, but when we use the momentum we will see

that the parameters don’t stop updating. For example, the velocity is still

updating because it can’t be a zero value. The prior velocity would drive

the algorithm out of the local minima, considering the local minima has

a small basin of attraction. The velocity or the momentum of gradient

descent would be in that direction, as vi
t+1 would be nonzero because

of the nonzero velocity from prior gradients. Also, if the prior gradients

Chapter 10 Improving Deep Neural Networks

348

consistently pointed toward a global minimum or a local minimum with

good generalization and a reasonably large basin of attraction, the velocity

or the momentum of gradient descent would be in that direction. So, even

if there were a bad local minimum with a small basin of attraction, the

momentum component would not only drive the algorithm out of the bad

local minima but also would continue the gradient descent toward the

global minima or the good local minima.

Usage:

train_op = tf.train.MomentumOptimizer.(learning_

rate=0.001,momentum=0.9,use_nesterov=False)

�Nesterov Accelerated Gradient
After momentum had gained in popularity, a similar update was

implemented using Nesterov accelerated gradient (NAG; Sutskever et al.,

2013). This update utilizes V, the exponential moving average of what I

would call projected gradients.

w w V

V V
L

w

t t t

t t

+

- *

= -

= + -() ¶
¶

1

1 1

a

b b

The last term in the second equation is a projected gradient. This value

can be obtained by going one step ahead using the previous velocity.

This means that for this time step t, we have to carry out another forward

propagation before we can finally execute the backpropagation. Here’s

how it goes:

	 1.	 Update the current weight w to a projected weight

w∗ using the previous velocity.

w∗ = wt − αVt − 1

Chapter 10 Improving Deep Neural Networks

349

	 2.	 Carry out forward propagation, but using this

projected weight.

	 3.	 Obtain the projected gradient ∂L/∂w∗.

	 4.	 Compute V and w accordingly.

Note T he original Nesterov accelerated gradient paper (Nesterov,
1983) was not about stochastic gradient descent and did not
explicitly use the gradient descent equation. Hence, a more
appropriate reference is the aforementioned publication by Sutskever
et al. in 2013, which described NAG’s application in stochastic
gradient descent.

�Adagrad
Adaptive gradient (Adagrad) is mostly like gradient descent but with

some modifications. Instead of having a global learning rate, the learning

rate is normalized for each dimension on which the cost function is

dependent. The learning rate in each iteration is the global learning rate

divided by the l2 norm of the prior gradients up to the current iteration

for each dimension. It works on the learning rate component by dividing

the learning rate by the square root of S, which is the cumulative sum of

current and past squared gradients.

Sometimes sparse features that don’t show up much in the data can

be very useful to an optimization problem. However, with basic gradient

descent or stochastic gradient descent, the learning rate gives equal

importance to all the features in each iteration. Since the learning rate

is the same, the overall contribution of nonsparse features would be

much more than that of sparse features. Hence, we end up losing critical

information from the sparse features. With Adagrad, each parameter is

updated with a different learning rate.

Chapter 10 Improving Deep Neural Networks

350

The sparser the feature is, the higher its parameter update would be in

an iteration. This is because for sparse features the quantity would be less

and the overall learning rate would be high. It may be a very good use in

NLP or image processing because of data sparsity. Let’s see the equation

that makes what we’re saying sensible: S is initialized by 0.

S S
L

wtt t= +
¶
¶
é
ëê

ù
ûú

-1

2

w w
S

L

wt t

t t
+ = -

+Î
×
¶
¶1

a

So, we note in this section that we try to adapt the learning rate to get

the minima of cost function, one of the main reasons for creating these

optimizations. Instead of a common learning rate for all parameters, we

want to have separate learning rate for each. So Adagrad keeps the sum

of squares of parameter-wise gradients and modifies individual learning

rates using this. As a result, parameters occurring more often have smaller

gradients.

�Adadelta
Adadelta is an extension of Adagrad and it also tries to lessen Adagrad’s

aggressive, monotonically reducing of the learning rate, it also focuses on

the learning rate component. Adadelta is probably short for “adaptive
delta,” where delta here refers to the difference between the current

weight and the newly updated weight. In Adadelta we do not need to set

the default learning rate, as we take the ratio of the running average of the

previous time steps to the current gradient.

Chapter 10 Improving Deep Neural Networks

351

D D w

S S
L

wt

t t t

t t

= + -()[]

= + -() ¶
¶
é
ëê

ù
ûú

-

-

b b

b b

1

2

1

2

1

1

D

w w
D

S

L

wt t
t

t t
+

-= -
+Î

+Î
×
¶
¶1

1

Usage:

train_op = tf.train.AdadeltaOptimizer(learning_rate=0.001,

rho=0.95, epsilon=1e-08)

where decay represents α, epsilon represents ε, and η represents the

learning rate.

�RMSprop
Root mean square prop or RMSprop (Hinton et al., 2012) is another

adaptive learning rate that is an improvement of Adagrad. Instead of taking

the cumulative sum of squared gradients like in Adagrad, we take the

exponential moving average of these gradients.

S S
L

wtt t= + -() ¶
¶
é
ëê

ù
ûú

-b b1

2

1

w w
S

L

wt t

t t
+ = -

+Î
×
¶
¶1

a

Taking an overall view, we will see that RMSprop is mostly like

Adadelta but it has one difference. The difference between Adadelta and

RMSprop is that Adadelta removes the use of the learning rate parameter

completely by replacing it with D, the exponential moving average of

squared deltas.

Chapter 10 Improving Deep Neural Networks

352

Usage:

train_op = tf.train.RMSPropOptimizer(learning_rate=0.001,

decay =0.9, momentum=0.0, epsilon=1e-10)

�Adam
Adaptive moment estimation, or Adam (Kingma & Ba, 2014), is a

combination of momentum and RMSprop. It acts upon the gradient

component by using V, the exponential moving average of gradients (like

in momentum) and the learning rate component by dividing the learning

rate α by the square root of S, the exponential moving average of squared

gradients (like in RMSprop).

ˆ

ˆ

V
V

S
S

t
t

t

t
t

t

=
-

=
-

1

1

1

2

b

b

w w
S

Vt t

t

t+ = -
+Î

×1

a
ˆ

ˆ

Note T he ^ terms are actually bias-corrected averages to ensure
that the values are not biased toward 0.

Proposed default values by the authors:

𝛼 = 0.001

𝛽₁ = 0.9

𝛽₂ = 0.999

𝜀 = 10-8

Chapter 10 Improving Deep Neural Networks

353

Adam is computationally efficient and has very little memory

requirements. The Adam optimizer is one of the most popular gradient

descent optimization algorithms.

Usage:

train_op=tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9,

beta2=0.999,epsilon=1e-08)

�Nadam (Adam + NAG)
Nadam is employed for noisy gradients or gradients with high curvatures.

The learning process is accelerated by summing up the exponential decay

of the moving averages for the previous and current gradient, Nadam

makes use of Nesterov to update the gradient one step ahead by replacing

the previous V̂ in the earlier equation with the current V̂ :

w w
S

V
L

wt t

t

t t
t

+ = -
+Î

+
-
-

×
¶
¶

æ

è
ç

ö

ø
÷1 1

1

1

1

1

a
b

b
bˆ

ˆ

Where

ˆ

ˆ

V
V

S
S

t
t

t

t
t

t

=
-

=
-

1

1

1

2

b

b

Where

V V
L

w

S V
L

w

t t
t

t t
t

= + -() ¶
¶

= + -() ¶
¶
é

ë
ê

ù

û
ú

-

-

b b

b b

1 1 1

2 1 2

2

1

1

Chapter 10 Improving Deep Neural Networks

354

Default values (taken from Keras):

α = 0.002

β₁ = 0.9

β₂ = 0.999

ε = 10-7

Usage:

train_op = tf.train.MomentumOptimizer (learning_

rate=0.001,momentum=0.9,use_nesterov=False)

�Choosing the Learning Rate
Choosing the hyperparameters learning rate is one of the hyperparameters.

Deep learning neural networks are trained using the stochastic gradient

descent and mini-batch algorithms. So, stochastic gradient descent

is an optimization algorithm that estimates the error gradient for the

current state of the model, using examples from the training dataset.

It then updates the weights of the model using the backpropagation of

errors algorithm, referred to simply as backpropagation. The amount

that the weights are updated during training is referred to as the step

size or the “learning rate.” Specifically, the learning rate is a configurable

hyperparameter used in the training of neural networks that has a small

positive value, often in the range between 0.0 and 1.0.
Now that we know what the learning rate is, we need to see how we can

change it during the training phase. In this phase, the backpropagation

of error estimates the amount of error for which the weights of a node in

the network are responsible. Instead of updating the weight with the full

amount, it is scaled by the learning rate. This means that a learning rate of

0.1, a traditionally common default value, would mean that weights in the

network are updated 0.1 ∗ (estimated weight error). So the question is can

we configure the learning rate to get the best possible learning rate for our

model? Unfortunately, no. But the learning rate is the best hyperparameter

Chapter 10 Improving Deep Neural Networks

355

you should tune in your model if you have time. In my opinion it the

best hyperparameter and deserves attention. Unfortunately, we cannot

analytically calculate the optimal learning rate for a given model on a given

dataset. Instead, a good (or good enough) learning rate must be discovered

via trial and error. You may think you can configure the best learning rate,

but I say you should listen to more people and books:

•	 The initial learning rate. This is often the single most

important hyperparameter, and one should always

make sure that it has been tuned. If there is only time to

optimize one hyperparameter and one uses stochastic

gradient descent, then this is the hyperparameter that

is worth tuning. See “Practical Recommendations for

Gradient-Based Training of Deep Architectures” in

Neural Networks: Tricks of the Trade. Lecture Notes in

Computer Science, vol 7700 (Springer, 2012).

•	 In general, it is not possible to calculate the best

learning rate a priori. See page 72 of Neural Smithing:

Supervised Learning in Feedforward Artificial Neural

Networks by Russell D. Reed and Robert J. Marks II

(MIT Press, 1998).

You can see more books, but there are some things we can use that

allow us to tune the learning rate parameter. Diagnostic plots can be

used to investigate how the learning rate impacts the rate of learning and

learning dynamics of the model. One example is to create a line plot of

loss over training epochs during training. The line plot can show many

properties, such as the rate of learning over training epochs (e.g., fast or

slow). Has the model learned too quickly (sharp rise and plateau) or is it

learning too slowly (little or no change)? Is the learning rate too large via

oscillations in the loss?

Chapter 10 Improving Deep Neural Networks

356

Configuring the learning rate is challenging and time-consuming.

Or you can try grid search. This can help to both highlight an order of

magnitude where good learning rates may reside, as well as describe the

relationship between learning rate and performance. It is common to grid

search learning rates on a log scale from 0.1 to 10-5 or 10-6. When plotted,

the results of such a sensitivity analysis often show a “U” shape, where loss

decreases (performance improves) as the learning rate is decreased with

a fixed number of training epochs to a point where loss sharply increases

again because the model fails to converge. Or you can use the learning rate

schedule: the way in which the learning rate changes over time (training

epochs) is referred to as the learning rate schedule or learning rate decay.

Perhaps the simplest learning rate schedule is to decrease the learning rate

linearly from a large initial value to a small value. This allows large weight

changes at the beginning of the learning process and small changes or

fine-tuning toward the end of the learning process. Another option is to

use the adaptive learning rate, in which the performance of the model on

the training dataset can be monitored by the learning algorithm and the

learning rate can be adjusted in response. The simplest implementation

may be to make the learning rate smaller once the performance of the

model plateaus, such as by decreasing the learning rate by a factor of two

or an order of magnitude. Although no single method works best on all

problems, there are three adaptive learning rate methods that have proved

to be robust over many types of neural network architectures and problem

types. They are Adagrad, RMSprop, and Adam, and all maintain and adapt

learning rates for each of the weights in the model. At last, we should know

that we can’t choose the best learning rate but we can try to scale it to get

the best result. In my opinion, the deep learning community may invite an

analytical tool that makes us choose the best learning rate, but it’s a very

complicated choice to make.

Chapter 10 Improving Deep Neural Networks

357

�Dropout Layers and Regularization
We want to regularize the overfitting of a neural network. When we talk

about regularization, we refer to the model as having a large variance and

a small bias. That is, the model is sensitive to the specific examples, the

statistical noise, in the training dataset. A model with large weights is more

complex than a model with smaller weights. It is a sign of a network that

may be overly specialized in training data. In practice, we prefer to choose

simpler models to solve the problem. We prefer models with smaller

weights. But we need to remember that, in deep learning, when fitting a

neural network model we must learn the weights of the network (i.e., the

model parameters) using stochastic gradient descent and the training

dataset. The longer we train the network, the more specialized the weights

will become, overfitting the training data. The weights will grow in size

in order to handle the specifics of the examples seen in the training data.

Large weights make the network unstable. Although the weight will be

specialized to the training dataset, minor variation or statistical noise on

the expected inputs will result in large differences in the output.

We will now talk about the neural network dropout layer. This layer

can be used with most types of layers, such as dense fully connected layers,

convolutional layers, and recurrent layers such as the long short-term

memory network layer. It works with all of the hidden layers and with the

input layer, but not with the output layer. The term “dropout” refers to

dropping out units (hidden and visible) in a neural network (Figure 10-2).

It drops some nodes or neurons to dump the variance in weights of a cost

function that we’re trying to regularize. A new hyperparameter is introduced

that specifies the probability at which outputs of the layer are dropped out,

or inversely, the probability at which outputs of the layer are retained. The

interpretation is an implementation detail that can differ from paper to

code library. A common value is a probability of 0.5 for retaining the output

of each node in a hidden layer and a value close to 1.0, such as 0.8 (this is

called rate or make_prop), for retaining inputs from the visible layer. Some

Chapter 10 Improving Deep Neural Networks

358

notes to help work with this layer: the dropout rate lets us know how many

nodes we will drop in this layer, so the default interpretation of the dropout

hyperparameter is the probability of training a given node in a layer, where

1.0 means no dropout and 0.0 means no outputs from the layer.

A good value for dropout in a hidden layer is between 0.5 and 0.8.

Input layers use a larger dropout rate, such as of 0.8.

Like other regularization methods, dropout is more effective on those

problems where there is a limited amount of training data and the model

is likely to overfit the training data. Problems where there is a large amount

of training data may see less benefit from using dropout.

When using dropout regularization, it is possible to use larger networks

with less risk of overfitting. In fact, a large network (more nodes per layer)

may be required, as dropout will probabilistically reduce the capacity of

the network. We can see that the dropout makes something happen in our

neural network, as it divides the number of nodes by the probability of

dropout we initialized, so the number of nodes is equal (#nodes in neural

network/probability). A good rule of thumb is to divide the number of

nodes in the layer before dropout by the proposed dropout rate and use

that as the number of nodes in the new network that uses dropout. For

example, a network with 100 nodes and a proposed dropout rate of 0.5 will

require 200 nodes (100 / 0.5) when using dropout.

Usage:

tf.layers.dropout(inputs, rate=0.5, noise_shape=None,

seed=None, training=False, name=None)

Dropout consists of randomly setting a fraction rate of input units to 0
at each update during training time, which helps prevent overfitting.
The units that are kept are scaled by 1 / (1 - rate), so that their sum
is unchanged at training time and inference time.

— TensorFlow official docs

Chapter 10 Improving Deep Neural Networks

359

�Normalization Techniques
Normalization has always been an active area of research in deep learning.

Normalization techniques can decrease your model’s training time by

a huge factor. Let’s state some of the benefits of using normalization. It

is called “normalization” because it tries to dump all the data into the

same scale: it normalizes each feature so that they maintain the same

contribution as every feature, because some features have a higher

numerical value than others. This way, our network can be unbiased (to

higher value features). By scaling the data in the same scale, it makes

the optimization faster, because normalization doesn’t allow weights to

explode all over the place and restricts them to a certain range.

Normalization helps networks with regularization (only slightly, not

significantly). This is in getting our model to train effectively, but this

isn’t as easy as it sounds. So we will ask ourselves some questions about

what makes normalization not so easy; what normalization technique we

should use; and, most common, which norm technique would be the best

trade-off for computation and accuracy for our network. The answers may

be found within a host of normalization techniques. So let’s look at them.

Figure 10-2.  How dropout works

Chapter 10 Improving Deep Neural Networks

360

�Batch Normalization
Let’s explore what we mean by “batch” and why we should use it. For

a start, we should know that we normalize the input layer by adjusting

and scaling the activations. For example, when we have features from 0

to 1, and some from 1 to 1000, we should normalize them to speed up

learning. If the input layer is benefiting from it, why not do the same

thing for the values in the hidden layers, which are changing all the time,

and get ten times or more improvement in the training speed. Batch

normalization allows each layer of a network to learn by itself a little bit

more independently of other layers. Batch has many good benefits. One is

that we can use higher learning rates, because batch normalization makes

sure that there’s no activation that’s gone really high or really low. And

that means things that previously couldn’t get to train will start to train.

It reduces overfitting because it has a slight regularization effect. Similar

to dropout, it adds some noise to each hidden layer’s activations. Batch

normalization is a method that normalizes activations in a network across

the mini-batch of a definite size. For each feature, batch normalization

computes the mean and variance of that feature in the mini-batch. It then

subtracts the mean and divides the feature by its mini-batch standard

deviation (Figure 10-3).

Figure 10-3.  The difference between inferences

Chapter 10 Improving Deep Neural Networks

361

Notice that γ and β are learned during training along with the original
parameters of the network.

But is there a problem with this technique? Yes, there are many

problems—not in general, but with some specific things. The first is with

RNN, which we will talk about in Chapter 12. In an RNN, the recurrent

activations of each time-step will have a different story to tell (i.e.,

statistics). This means that we have to fit a separate batch norm layer

for each time-step. This makes the model more complicated and space-

consuming, because it forces us to store the statistics for each time-step

during training. So now, how can we use it with TensorFlow?

import tensorflow as tf

is_train = tf.placeholder(tf.bool, name="is_train");

x_norm = tf.layers.batch_normalization(x, training=is_train)

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(update_ops):

 train_op = optimizer.minimize(loss)

So, that is the batch normalization technique we can use in our deep

neural network. There are many more normalization techniques in deep

learning. Let’s talk about weight normalization.

�Weight Normalization
In batch normalization we normalize the activation function, but now we

will normalize the weight. Weight normalization is a method developed by

OpenAI, in which weight normalization reparametrizes the weights of any

layer in the neural network in the following way:

w
g

v
v=

Chapter 10 Improving Deep Neural Networks

362

It separates the weight vector from its direction. This has a similar

effect as in batch normalization with variance. As for the mean, the

developers of this weight normalization combine mean-only batch

normalization and weight normalization to get the desired output even

in small mini-batches. It means that they subtract out the mean of the

minibatch, but do not divide by the variance.

Finally, what we need to know is that they use weight normalization

instead of dividing by variance.

�Layer Normalization
Layer normalization is a method developed by Geoffrey Hinton. Compared

with weight normalization, layer normalization is slightly harder to grasp

intuitively. It normalizes input across the features instead of normalizing

input features across the batch dimension in batch normalization. So,

when we talk about batch normalization, Batch normalization normalizes

the input features across the batch dimension. So, we might say at this

point that batch and layer normalization may be similar in some way. Let’s

see the following equations to explore that (Figure 10-4):

Figure 10-4.  The layer and batch normalization

Chapter 10 Improving Deep Neural Networks

363

The equations seem almost identical, so what is the difference? The

difference is that in batch normalization, the statistics are computed across

the batch and are the same for each example in the batch. In contrast, in

layer normalization, the statistics are computed across each feature and

are independent of other examples.

Let’s see an image (Figure 10-5).

Figure 10-5.  An example of batch and layer normalization

It solves the problem in batch normalization, as layer normalization

performs better than the batch norm in the case of RNNs. But the

similarity doesn't end at this point; there is one more similarity to layer

normalization called instance normalization.

�Instance Normalization
Layer normalization and instance normalization are very similar to

each other. However, the difference between them is that instance

normalization normalizes across each channel in each training example

Chapter 10 Improving Deep Neural Networks

364

instead of normalizing across input features in a training example. Unlike

batch normalization, the instance normalization layer is applied at test

time as well (due to the nondependency of mini-batch). This technique

was originally devised for style transfer. The problem that instance

normalization tries to address is that the network should be agnostic to

the contrast of the original image. Experimental results show that instance

normalization performs well on style transfer when replacing batch

normalization. Recently, instance normalization has also been used as

a replacement for batch normalization in GANs (generative adversarial

networks).

�Group Normalization
Group normalization, as its name suggests, normalizes over a group of

channels for each training example. We can say that group norm is in

between instance and layer normalization. How does this hypertechnique

work? When we put all the channels into a single group, group

normalization becomes layer normalization and when we put each

channel into a different group, it becomes instance normalization. Though

layer normalization and instance normalization were both effective on

RNNs and style transfer, respectively, they were still inferior to batch

normalization for image recognition tasks. Group normalization was

able to achieve much closer performance to batch normalization with

a batch size of 32 on ImageNet, and outperformed it on smaller batch

sizes. For tasks like object detection and segmentation that use much

higher resolution images (and therefore cannot increase their batch size

due to memory constraints), group normalization was shown to be a

very effective normalization method. So the question is, if we can only

use layer normalization or instance normalization, what makes us use

the hypertechnique between them? The answer is very easy: we need

what layer normalization adds. One of the implicit assumptions that layer

normalization makes is that all channels are equally important when

Chapter 10 Improving Deep Neural Networks

365

computing the mean. This assumption is not always true in convolutional

layers. So, we need to use an instance that make neurons near the edge

of an image and neurons near the center of an image have very different

activation statistics. This means that computing different statistics for

different channels can give models much needed flexibility. Channels

in an image are not completely independent though, so being able to

leverage the statistics of nearby channels is an advantage that group

normalization has over instance normalization (Figure 10-6).

Figure 10-6.  Different normalization techniques

Now that we’ve finish talking about some of the normalization

techniques in deep learning, we need to say that there are more techniques

to normalize the deep learning layers, and the deep learning community

is still working on methods that enhances performance and prevent

overfitting. In the next chapters we will discuss the applications of deep

learning convolution and sequence models, with case studies about them.

We are getting to the end of the pipeline, which you can make yourself.

�Summary
In this chapter, we worked with optimization techniques that optimize

the learning rate and make gradients reach the optimum local minimum.

We talked about dropout—the regularization technique in a neural

network—and how it is very useful, and the connection between it and

Chapter 10 Improving Deep Neural Networks

366

normalization. We learned that normalization is a very good tool in deep

learning, that it comes from statistics and makes the neural network

more adaptable to data by scaling it. We saw how we can choose the most

important hyperparameter learning rate and its connection with adaptive

learning. In the next few chapters we will talk about models, the last stage

in the deep learning pipeline; we will have some applications about deep

learning, and we will talk about some case studies. So we hope you had a

good workout with this chapter.

Chapter 10 Improving Deep Neural Networks

367© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_11

CHAPTER 11

Convolutional Neural
Network
In the previous chapters, we studied fully connected multilayer neural

networks and their training, using backpropagation. In a typical multilayer

neural network layer, with n input nodes and m neurons, we need to learn

n × m parameters or weights. While a multilayer neural network may

perform well in some cases—in particular, for those where the features

of different dimensions are independent—there are some additional

properties in the connection architecture that we might desire. For

example, if it is known that the dimensions of the input data are strongly

correlated or that the size of multilayer neural networks (both the number

of layers and the number of neurons in each layer) must be limited for

computational considerations, should there be any architectural changes

introduced to a standard multilayer neural network to accommodate this

additional constraint about the data or the network complexity?

Deep learning has flourished in recent years in the processing of

unstructured data, especially images, text, audio, and speech. Taking

convolutional neural networks (CNNs) into consideration, it works like

magic when the data is images. Whenever there is a topology associated

with the data, convolutional neural networks do a good job of extracting

the important features out of the images.

368

From an architectural perspective, CNNs are inspired by multilayer

perceptrons; by imposing local connectivity constraints between neurons

of adjacent layers, CNNs exploit local spatial correlation. The core element

of convolutional neural networks is the processing of data through the

convolution operation. Convolution of any signal with another signal

produces a third signal that may reveal more information about the signal

than the original signal itself.

�What is a Convolutional Neural Network
A convolutional neural network (CNN) is a deep learning algorithm that

can take in an input image, assign importance (learnable weights and

biases) to various aspects/objects in the image, and be able to differentiate

one from the other. The preprocessing required in a CNN is much lower

as compared with other classification algorithms. Although in primitive

methods filters are hand engineered, with enough training, CNNs have the

ability to learn these filters/characteristics.

Figure 11-1.  An example of a CNN

Chapter 11 Convolutional Neural Network

369

The architecture of a convolutional neural network (Figure 11-1) is

analogous to that of the connectivity pattern of neurons in the human

brain and was inspired by the organization of the visual cortex. Individual

neurons respond to stimuli only in a restricted region of the visual field

known as the receptive field. A collection of such fields overlaps to cover

the entire visual area.

�Convolution Operation
The convolution of a temporal or spatial signal with another signal

produces a modified version of the initial signal. The modified signal may

have better feature representation than the original signal, suitable for a

specific task. For example, by convolving a grayscale image as a 2-D signal

with another signal, generally called a filter or kernel, an output signal

can be obtained that contains the edges of the original image. Edges in

an image can correspond to object boundaries, changes in illumination,

changes in material property, discontinuities in depth, and so on, which

may be useful for several applications. Knowledge about the linear time-

invariant or shift-invariant properties of systems helps one appreciate the

convolution of signals better. We will discuss this first before moving on to

convolution itself.

�One-Dimensional Convolution
Intuitively, convolution measures the degree of overlap between one

function and the reversed and translated version of another function. In

the discrete case, y t x t h t x i h t i
i

() = ()* () = () -()
=-¥

+¥

å
Similarly, in the continuous domain the convolution of two functions

can be expressed as y t x t h t x i h t i di
i

() = ()* () = () -()
=-¥

+¥

ò

Chapter 11 Convolutional Neural Network

370

Figure 11-2 shows how the equation of 1-dimensional convolution

works in simple terms. Intuitively, it works like a mask that moves over

the data input, which is the left vector. In each moving step it takes three

neighbors, applies the masking values over the three, and assigns the

output of the whole equation to a single scaler in the output vector.

You can see that in its first steps the mask takes the first three

neighbors/pair in the input vector, which are [1, 0, 1], then multiplies them

by the mask values [1, 1, 0][1, 1, 0]. The multiplication is a vector-wise

operation that multiplies the first input with its equivalent, the mask, and

then multiplies the second input with the second one on the mask, and so

on. After three multiplications happen, we add all three outputs of these

operations, and the final result will be a single scalar that is assigned to

the second element of the output vector. Wait a second: you wonder now

Figure 11-2.  An example of 1-D convolution masking

Chapter 11 Convolutional Neural Network

371

why we assign the output to the second element in the right output vector,

because it is not the first step. The first step was taking the input pair and

adding to them a zero padding, generating the input pair [0, 1, 0].

Seeing the convolution in such way makes it easier to understand

than the preceding equations. Also, you now may understand why the

convolution is important, as you change the mask values to extract certain

knowledge from data input. But if you do not understand or see how

convolution may extract knowledge/features until now, you will see how in

a few minutes.

�Two-Dimensional Convolution
As we described, convolution involves both one-dimensional and two-

dimensional operations; one-dimensional is referred to as 1-D convolution

or just convolution. Otherwise, if the convolution is performed between

two-dimensions spanning along two mutually perpendicular dimensions

(i.e., if the single observation is two-dimensional in nature or, practically

speaking, it is an image or matrix), then it will be referred to as 2-D

convolution. This concept can be extended to involve multidimensional

matrices, due to which we can have multidimensional convolution.

In the image/computer vision domain, convolution is performed by

multiplying and accumulating the instantaneous values of the overlapping

samples corresponding to two input images, one of which is flipped. This

definition of 1-D convolution is applicable even for 2-D convolution except

that, in the latter case, one of the inputs is flipped twice.

Chapter 11 Convolutional Neural Network

372

Figure 11-3 shows the kind of operation that is extensively used in the

field of digital image processing, wherein the 2-D matrix representing the

image will be convolved with a comparatively smaller matrix called 2-D

kernel.

�Padding and Stride
Before going deeper into convolution, you need to know one extra thing;

actually there are two important concepts you need to know and fully

grasp. Both padding and stride can change the way your model sees the

input observation; also, changing their parameters impacts the shape of

the output feature map.

Although the convolutional layer is very simple, it is capable of

achieving sophisticated and impressive results. Nevertheless, it can be

challenging to develop an understanding for how the shape of the filters

impacts the shape of the output feature map and how related configuration

hyperparameters such as padding and stride should be configured.

In a convolution operation we have a kernel, and to make the final

output of the operation more informative we use padding in an image

matrix or any kind of input array. Adding padding to the input makes the

Figure 11-3.  2-D convolution masking

Chapter 11 Convolutional Neural Network

373

kernel start giving more information to the edges of the input observation,

thus making all the information and features hidden in edges of the input

appear in our output.

There are three types of padding, stated as follows:

•	 Padding full: This type shows the importance of

extracting the information from the edges of the input.

When you use full padding on the input, it makes the

kernel in the convolution operation treat each pixel with

the same priority, which means the kernel steps over the

edges with the same amount as the center pixels.

•	 Padding same: In this type of padding, we need to

make the output observation shape from convolution

operation get the same shape as the input observation.

For instance, if we have a 32×32 image as input, the

output will have the same shape, 32×32.

•	 Padding valid: Simply, valid convolution means

no padding at all, and this may work for you as a

dimensionality reduction for an input observation

(image). For instance, an image with 32×32 input with

kernel filter of 3×3 will generate a 30×30 output image.

Figure 11-4.  The difference between valid, full, and same padding

Chapter 11 Convolutional Neural Network

374

In Figure 11-4 you can see that on the left the full-padding to the input

matrix makes the filter walk on each real-value (blue) of the matrix equally.

So, in the figure the filter will walk/moves/slides on each blue pixel nine

times wherever the pixel position is, and that creates a bigger output matrix

size that will have all the representation and more features extracted. On

the other hand, using no padding or valid padding will create the smallest

output, as the filter only walks on the input matrix as it is; that means that

there are pixels the filter will visit only one time and ones that the filter

will visit many times. However, if you want the output to be equal to your

input matrix, you can consider using same padding, and that will create an

output matrix that is similar in shape to the input matrix.

On the other side, stride controls how the filter convolves around the

input volume. In the examples we had earlier, the filter convolves around

the input volume by shifting one unit at a time. The amount by which the

filter shifts is the stride. In that case, the stride was implicitly set at 1. Stride

is normally set in a way so that the output volume is an integer and not a

fraction. Let’s look at an example. Let’s imagine a 7×7 input volume, a 3×3

filter (disregard the 3rd dimension for simplicity), and a stride of 1. This

is the case that we’re accustomed to. As you can see in Figure 11-5, the

filter walks through the input with two pixels stepping to the right, and to

the bottom too, and this will make the output matrix much smaller, as the

overlaps between steps are reduced.

Figure 11-5.  The difference between the Valid, Full, Same Padding

Chapter 11 Convolutional Neural Network

375

�Common Image-Processing Filters
Let’s discuss image-processing filters commonly used on 2-D images.

Make sure to be clear with notations, since the natural way of indexing an

image doesn’t align well with how one would prefer to define the x and

y axes. Whenever we represent an image-processing filter or an image

in the coordinate space, n1 and n2 are the discrete coordinates for the x

and y directions. The column index of the image in NumPy matrix form

coincides nicely with the x axis, whereas the row index moves in the

opposite direction of the y axis. Also, it doesn’t matter which pixel location

one chooses as the origin for the image signal while doing convolution.

Based on whether zero padding is used or not, one can handle the edges

accordingly. Since the filter kernel is of a smaller size, we generally flip the

filter kernel and then slide it over the image, not the other way around.

�Mean and Median Filters
The mean filter or average filter is a low-pass filter that computes the local

average of the pixel intensity at any specific point. Figure 11-6 shows you

how the mean filter is calculated in different types, based on what the

application is going to use.

Figure 11-6.  How the mean filter is calculated

Chapter 11 Convolutional Neural Network

376

Here, the matrix entry h22 corresponds to the entry at the origin.

So, at any given point, the convolution will represent the average of the

pixel intensities at that point. The following code illustrates how one can

convolve an image with an image-processing filter such as the mean filter.

Please note that in many Python implementations, we would be using

OpenCV to perform basic operations on the image, such as reading the

image, converting the image from RGB format to grayscale format, and so

on. OpenCV is an open source image-processing package that has a rich

set of methodologies for image processing. Readers are advised to explore

OpenCV or any other image-processing toolbox in order to get accustomed

to the basic image-processing functions.

First things first: we need to import all the needed packages and

functions to make sure that there’s no import error on the way. We

will import cv2 for OpenCV operations, matplotlib for viewing the

image, NumPy for creating the filter and any matrix operation, and finally

convolve2d from scipy.signal for convolution operation.

IMPORTING PACKAGES

import cv2

import matplotlib.pyplot as plt

import numpy as np

from scipy.signal import convolve2d

After loading the packages, we now need to load the image that we

want to make the operations on. The Lena Forsen image is one of the most

famous images in the image processing field. In the following code we will

load it, and then transform it into a gray image for the sack of simplicity.

LOADING AND TRANSFORMING IMAGE

img = cv2.imread('/content/lena_forsen.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.imshow(gray,cmap='gray')

Figure 11-7 shows the loaded image in grayscale.

Chapter 11 Convolutional Neural Network

377

After loading the image, we need to add some noise to it, to see how

the filter will somehow fix the noise. In the following code we will add a

type of noise called Gaussian noise. Then we will try to fix it.

PROCESSING IMAGE

mean = 0

var = 100

sigma = var**0.5

row,col = 220, 220

gauss = np.random.normal(mean,sigma,(row,col))

gauss = gauss.reshape(row,col)

gray_noisy = gray + gauss

plt.imshow(gray_noisy,cmap='gray')

Figure 11-7.  The gray loaded image

Chapter 11 Convolutional Neural Network

378

Now, after we add the noise, we need to know how the noise will affect

the image quality. In Figure 11-8, you will see the image with the noise all

over it.

Figure 11-8.  The Guassian noise on the image

CREATE AND APPLY MEAN FILTER

Hm = np.array([[1,1,1],[1,1,1],[1,1,1]])/float(9)

Gm = convolve2d(gray_noisy,Hm,mode='same')

plt.imshow(Gm,cmap='gray')

At the end, we will create and apply the mean filter to the image; we

will use convolve2d for that purpose, to apply the filter to the image. In

Figure 11-9 you can see the resulting image of the operation from the

preceding code.

Chapter 11 Convolutional Neural Network

379

The mean filter is mostly used to reduce the noise in an image. If there

is some white Gaussian noise present in the image, the mean filter will

reduce the noise, since it averages over its neighborhood, hence the white

noise of the zero mean will be suppressed. As we can see from Figure 11-9,

the Gaussian white noise is reduced once the image has been convolved

with the mean filter. The new image has fewer high-frequency components

and thus is relatively less sharp than the image before convolution, but the

filter has done a good job of reducing the white noise.

One the other hand, a 2-D median filter replaces each pixel in a

neighborhood with the median pixel intensity in that neighborhood,

based on the filter size. The median filter is good for removing salt and

pepper noise. This type of noise presents itself in images in the form of

black and white pixels, and is generally caused by sudden disturbances

Figure 11-9.  The image after the mean filter

Chapter 11 Convolutional Neural Network

380

while capturing the images. The following code illustrates how salt and

pepper noise can be added to an image, and then how the noise can be

suppressed using a median filter.

First, we select some random indices to do the operations (adding the

noise) on it.

np.random.seed(0)

gray_sp = gray*1

sp_indices = np.random.randint(0,21,[row,col])

Then we will iterate over the indicis and set the values on the image to

either 0 or 255, creating a salt-like noise. The following code describes the

iteration, and Figure 11-10 shows the result of the noise on the image.

for i in range(row):

 for j in range(col):

 if sp_indices[i,j] == 0:

 gray_sp[i,j] = 0

 if sp_indices[i,j] == 20:

 gray_sp[i,j] = 255

plt.imshow(gray_sp,cmap='gray')

Chapter 11 Convolutional Neural Network

381

Now we need to remove the salty noise from the image. Lucky for us,

cv2 has an implementation of the image. The following code describes

how to use it.

gray_sp_removed = cv2.medianBlur(gray_sp,3)

plt.imshow(gray_sp_removed,cmap='gray')

Figure 11-10.  The salt and pepper noise on the image

Chapter 11 Convolutional Neural Network

382

As we can see, the salt and pepper noise has been removed by the

median filter (Figure 11-11).

�Gaussian Filter
The Gaussian filter is a modified version of the mean filter, where the

weights of the impulse function are distributed normally around the origin.

Weight is highest at the center of the filter and falls normally away from

the center. A Gaussian filter can be created with the following code. As we

can see, the intensity falls in a Gaussian fashion away from the origin. The

Gaussian filter, when displayed as an image, has the highest intensity at the

origin and then diminishes for pixels away from the center. Gaussian filters

Figure 11-11.  The median filter effect on the noise in the image

Chapter 11 Convolutional Neural Network

383

are used to reduce noise by suppressing the high-frequency components.

However, in its pursuit of suppressing the high-frequency components, it

ends up producing a blurred image, called Gaussian blur.

In Figure 11-12, the original image is convolved with the Gaussian filter

to produce an image that has Gaussian blur. We then subtract the blurred

image from the original image to get the high-frequency component of the

image. A small portion of the high-frequency image is added to the original

image to improve the sharpness of the image.

f = np.zeros((20,20))

for i in range(20):

 for j in range(20):

 f[i,j] = np.exp(-((i-10)**2 + (j-10)**2)/10)

plt.imshow(f,cmap='gray')

Figure 11-12.  What the filter looks like

Chapter 11 Convolutional Neural Network

384

As you can see in Figure 11-12, it seems that the filter focuses on

the middle pixel. After applying this filter on the image, you can see in

Figure 11-13 that the image blurred. The following code describes how to

apply the filter on the image.

gray_blur = convolve2d(gray,f,mode='same')

plt.imshow(gray_blur,cmap='gray')

Figure 11-13.  The image after applying the filter

The following code describes how to get back one step, enhancing the

image to its real state. And Figure 11-14 shows the image returned to its

real state without the blurring.

gray_enhanced = gray + 0.025*gray_blur

plt.imshow(gray_enhanced,cmap='gray')

Chapter 11 Convolutional Neural Network

385

�Sobel Edge-Detection Filter
The Sobel operator, sometimes called the Sobel–Feldman operator or

Sobel filter, is used in image processing and computer vision, particularly

within edge detection algorithms where it creates an image emphasizing

edges.

The output response of a Sobel edge convolution detector along

both the horizontal and vertical axes can be expressed by the following

Gx and Gy matrices, respectively. The Sobel detectors are extensions of

the horizontal and vertical gradient filters just illustrated. Instead of only

taking the gradient at the point, it also takes the sum of the gradients at

the points on either side of it. Also, it gives double weight to the point of

interest. See Figure 11-15.

Figure 11-14.  The image after enhancement

Chapter 11 Convolutional Neural Network

386

The convolution of the image with the Sobel filters is illustrated in the

following code:

Hx = np.array([[1,0, -1],[2,0,-2],[1,0,-1]],dtype=np.float32)

Gx = convolve2d(gray,Hx,mode='same')

plt.imshow(Gx,cmap='gray')

Figure 11-16 shows the result of the preceding code. In the figure you

can see that some of the edges appear strongly, and that’s because the filter

used can be considered a half filter. If you continue, you can see that the

final result contains all the edges in the image.

Figure 11-15.  The Sobel filter along with the two axes

Chapter 11 Convolutional Neural Network

387

And here is the other half filter, the Y-axis filter. Here you will find that

the result may be similar to the result of the preceding code, but with some

focus you can see some differences between the results (Figure 11-17).

Hy = np.array([[-1,-2, -1],[0,0,0],[1,2,1]],dtype=np.float32)

Gy = convolve2d(gray,Hy,mode='same')

plt.imshow(Gy,cmap='gray')

Figure 11-16.  The image after applying the X-axis filter

Chapter 11 Convolutional Neural Network

388

Now, by combining the both filters (but squared), you will see the

wanted result. In Figure 11-18 you can see the output of the following code;

the result shows how the edges of the images look.

G = (Gx*Gx + Gy*Gy)**0.5

plt.imshow(G,cmap='gray')

Figure 11-17.  The Y-axis filter

Chapter 11 Convolutional Neural Network

389

The preceding code has the logic required to convolve the image

with the Sobel filters. The horizontal Sobel filter detects edges in the

horizontal direction, whereas the vertical Sobel filter detects edges in

the vertical direction. Both are high-pass filters, since they attenuate the

low frequencies from the signals and capture only the high-frequency

components within the image. Edges are important features for an image,

and help one detect local changes within an image. Edges are generally

present on the boundary between the two regions in an image, and are

often the first step in retrieving information from images. We saw this in

the outputs of the preceding codes.

Figure 11-18.  The edges of the image

Chapter 11 Convolutional Neural Network

390

The equation that runs the combination between both halves of the

filter is:

C x y I x y I x yx y, , ,() = ()() + ()()2 2

where C(x, y) denotes the pixel intensity function for the combined Sobel

filter, and Iy(x, y) denotes the pixel intensity of the image obtained through

the vertical Sobel filter.

�Identity Transform
The filter for identity transform through convolution is as follows.

Figure 11-19.  The identity filter

Figure 11-19 illustrates a unity transform through convolution. The

implementation is like the mean filter, but with a simple modification:

instead of a mean filter with 1/9 at each value of the filter pixel, we put just

1 in the middle pixel, and all others are 0s.

�Convolutional Neural Networks
Convolutional neural networks (CNNs) are based on the convolution of

images, and detect features based on filters that are learned by the CNN

through training. For example, we don’t apply any known filter, such as

Chapter 11 Convolutional Neural Network

391

the ones for the detection of edges or for removing Gaussian noise, but

through the training of the convolutional neural network the algorithm

learns image-processing filters on its own that might be very different from

normal image-processing filters. For supervised training, the filters are

learned in such a way that the overall cost function is reduced as much

as possible. Generally, the first convolutional layer learns to detect edges,

while the second may learn to detect more complex shapes that can be

formed by combining different edges, such as circles and rectangles, and

so on. The third layer and beyond learn much more complicated features

based on the features generated in the previous layer.

The good thing about convolutional neural networks is the sparse

connectivity that results from weight sharing, which greatly reduces the

number of parameters to learn. The same filter can learn to detect the same

edge in any given portion of the image through its equivariance property,

which is a great property of convolution useful for feature detection.

�Layers of Convolutional Neural Networks
The following are the typical layers of a convolutional neural network:

•	 Input layer: will hold the pixel intensity of the image.

For example, an input image with width 64, height 64,

and depth 3 for the red, green, and blue color channels

(RGB) would have input dimensions of 64x64x3.

•	 Convolutional layer: will take images from the

preceding layers and convolve with them the specified

number of filters to create images called output feature

maps. The number of output feature maps is equal

to the specified number of filters. Until now, CNNs in

TensorFlow have used mostly 2-D filters; however, 3-D

convolution filters have been introduced recently.

Chapter 11 Convolutional Neural Network

392

•	 Activation functions: For CNNs they are generally

ReLUs, which we discussed in a previous chapter. The

output dimension is the same as the input after passing

through the ReLU activation layers. The ReLU layer

adds nonlinearity in the network and at the same time

provides nonsaturating gradients for positive net inputs.

•	 Pooling layer: will downsample the 2-D activation maps

along the height and width dimensions. The depth or

the number of activation maps is not compromised and

remains the same.

•	 Fully connected layers: contain traditional neurons that

receive different sets of weights from the preceding

layers; there is no weight sharing between them as is

typical for convolution operations. Each neuron in this

layer will be connected either to all the neurons in the

previous layer or to all the coordinate-wise outputs

in the output maps through separate weights. For

classification, the class output neurons receive inputs

from the final fully connected layers.

Figure 11-20.  A simple CNN

Chapter 11 Convolutional Neural Network

393

Figure 11-20 illustrates a basic CNN that uses one convolutional layer,

and one pooling layer followed by a fully connected layer and, finally,

the output classification layer. The network tries to detect the number

inside the image, which is 2. The output unit can be taken to have a

sigmoid activation function, since it’s a binary classification problem for

images. Generally, for most of the CNN architectures, a few to several

convolutional layer-ReLU layer-pooling layer combinations are stacked

one after another before the fully connected layers. We will discuss the

different architectures at a later point in time. For now, let’s look at the

different layers in much more detail.

�Input Layer
The input to this layer is images. Generally, the images are fed in batches

as four-dimensional tensors, where the first dimension is specific to the

image index, second and third dimensions are specific to the height and

width of the image, and the fourth dimension corresponds to the different

channels. For a colored image, generally we have the red (R), green (G),

and blue (B) channels, while for grayscale images we have only one

channel. The number of images in a batch would be determined by the

mini-batch size chosen for the mini-batch stochastic gradient descent.

The batch size is one for stochastic gradient descent. The inputs can be fed

to the input layer in mini-batches through TensorFlow placeholder tf.

placeholder at runtime

�Convolutional Layer
Convolution is the heart of any CNN network. TensorFlow supports both

2-D and 3-D convolutions. However, 2-D convolutions are more common,

since 3-D convolutions are computationally memory intensive. The

input images or intermediate images in the form of output feature maps

are 2-D convolved with 2-D filters of the size specified. 2-D convolution

Chapter 11 Convolutional Neural Network

394

happens along the spatial dimensions, whereas there is no convolution

along the depth channel of the image volume. For each depth channel,

the same number of feature maps is generated, and then they are summed

together along the depth dimension before they pass through the ReLU

activations. These filters help to detect features in the images. The deeper

the convolutional layer is in the network, the more complicated features

it learns. For instance, the initial convolutional layer might learn to detect

edges in an image, while the second convolutional layer might learn to

connect the edges to form geometric shapes such as circles and rectangles.

The even deeper convolutional layers might learn to detect more

complicated features; for example, in cat vs. dog classification it might

learn to detect eyes, nose, or other body parts of the animals.

In a CNN, only the size of the filters is specified; the weights are

initialized to arbitrary values before the start of training. The weights of the

filters are learned through the CNN training process, hence they might not

represent the traditional image-processing filters such as mean, median,

Gaussian, Sobel or other kinds of filters. Instead the learned filters would

be such that the overall loss function defined is minimized or a good

generalization is achieved based on the validation. Although it might not

learn the traditional edge detection filter, it would learn several filters

that detect edges in some form, since edges are good feature detectors for

images.

Some of the terms with which one should be familiar while defining

the convolutional layer are as follows:

Filter size: Filter size defines the height and

width of the filter kernel. A filter kernel of size

3 × 3 would have nine weights. Generally, these

filters are initialized and slid over the input image

for convolution without flipping these filters.

Technically, when convolution is performed without

flipping the filter kernel, it’s called cross-correlation

Chapter 11 Convolutional Neural Network

395

and not convolution. However, it doesn’t matter,

as we can consider the filters learned as a flipped

version of image processing filters.

Stride: The stride determines the number of pixels

to move in each spatial direction while performing

convolution. In normal convolution of signals, we

generally don’t skip any pixels and instead compute

the convolution sum at each pixel location, hence

we have a stride of 1 along both spatial directions

for 2-D signals. However, one may choose to skip

every alternate pixel location while convolving, and

thus choose a stride of 2. If a stride of 2 is chosen

along both the height and the width of the image,

then after convolving the output image would be

approximately 1/4 of the input image sizes. Why it is

approximately 1/4 and not exactly 1/4 of the original

image or feature-map sizes will be covered in our

next topic of discussion.

Padding: When we convolve an image of a specific

size by a filter, the resulting image is generally

smaller than the original image. For example, if we

convolve a 5×5 2-D image by a filter of size 3 × 3, the

resulting image is 3 × 3.

Padding is an approach that appends zeros to the boundary of an

image to control the size of the output of convolution. The convolved

output image length L′ along a specific spatial dimension is given by

¢ =
- +

+L
L K P

S

2
1

Chapter 11 Convolutional Neural Network

396

where L denotes the Length of the input image in a specific dimension

and K is length of the kernel/filter in a specific dimension, while P denotes

zeros padded along a dimension in either end and S stands for stride of the

convolution.

In general, for a stride of 1 the image size along each dimension is

reduced by (K − 1)/2 on either end, where K is the length of the filter

kernel along that dimension. So, to keep the output image the same as that

of the input image, a pad length of (K − 1)/2 would be required.

In TensorFlow, padding can be chosen as either “VALID” or “SAME.”
SAME ensures that the output spatial dimensions of the image are the

same as those of the input spatial dimensions in cases where a stride of

1 is chosen. It uses zero padding to achieve this. It tries to keep the zero

pad length even on both sides of a dimension, but if the total pad length

for that dimension is odd, the extra length is added to the right for the

horizontal dimension and to the bottom for the vertical dimension.

For recap, VALID doesn’t use zero padding; hence, the output image

dimension would be smaller than the input image dimensions, even for a

stride of 1.

def conv2d(x,W,b,strides=1):

 �x = tf.nn.conv2d(x,W,strides=[1,strides,strides,1],padding=

'SAME')

 x = tf.nn.bias_add(x,b)

 return tf.nn.relu(x)

�Pooling Layer
A pooling operation on an image generally summarizes a locality of an

image, the locality being given by the size of the filter kernel—also called

the receptive field. The summarization generally happens in the form

of max pooling or average pooling. In max pooling, the maximum pixel

intensity of a locality is taken as the representative of that locality. In

Chapter 11 Convolutional Neural Network

397

average pooling, the average of the pixel intensities around a locality is

taken as the representative of that locality. Pooling reduces the spatial

dimensions of an image. The kernel size that determines the locality is

generally chosen as 2 × 2, whereas the stride is chosen as 2. This reduces

the image size to about 1/4 the size of the original image.

def maxpool2d(x,stride=2):

 return tf.nn.max_pool(x, ksize=[1,stride,stride,1],

strides=[1,stride,stride,1], padding='SAME')

�Backpropagation Through the Convolutional
and Pooling Layers
In an earlier chapter we introduced the backpropagation algorithm and

we described the backward path for perceptrons. Now we will try to

understand how the backward pass for a single convolutional layer works,

by taking a simple case wherein the number of channels is one across all

computations.

Backpropagation through a convolutional layer is much like

backpropagation for a multilayer perceptron network. The only difference is

that the weight connections are sparse, since the same weights are shared by

different input neighborhoods to create an output feature map. Each output

feature map is the result of the convolution of an image or a feature map

from the previous layer, with a filter kernel whose values are the weights that

we need to learn through backpropagation. The weights in the filter kernel

are shared for a specific input–output feature-map combination.

The following convolution operation takes an input X of size 3x3

using a single filter W of size 2 × 2 without any padding, and stride = 1,

generating an output H of size 2 × 2. Also note that, while performing the

forward pass, we will cache the variables X and filter W. This will help us

while performing the backward pass (Figure 11-21).

Chapter 11 Convolutional Neural Network

398

h11 = W11X11 + W12X12 + W21X21 + W22X22

h12 = W11X12 + W12X13 + W21X22 + W22X23

h21 = W11X21 + W12X22 + W21X31 + W22X32

h22 = W11X22 + W12X23 + W21X32 + W22X33

Note H ere, we are performing the convolution operation without
flipping the filter. This is also referred to as the cross-correlation
operation in literature. The preceding figure is provided just for the
sake of clarity.

Before moving further, make note of the following notations.

¶
¶
¶

¶
¶
¶

h represents
L

h

w represents
L

w

ij
ij

ij
ij

Now, for implementing the backpropagation step for the current layer,

we can assume that we get 𝜕h as input (from the backward pass of the next

layer), and our aim is to calculate ∂w and ∂x. It is important to understand

that ∂x (or ∂h for the previous layer) would be the input for the backward

pass of the previous layer. This is the core principle behind the success of

backpropagation.

Figure 11-21.  The input, weights, and output of the convolutional layer

Chapter 11 Convolutional Neural Network

399

∂W11 = X11∂h11 + X12∂h12 + X21∂h21 + X22∂h22

∂W12 = X12∂h11 + X13∂h12 + X22∂h21 + X23∂h22

∂W21 = X21X11 + X22∂h12 + X31∂h21 + X32∂h22

∂W22 = X22X11 + X23∂h12 + X32∂h21 + X33∂h22

Each weight in the filter contributes to each pixel in the output map.

Thus, any change in weight in the filter will affect all the output pixels.

Thus, all these changes add up to contribute to the final loss. Therefore, we

can easily calculate the derivatives as follows.

�Weight Sharing Through Convolution and Its
Advantages
Weight sharing through convolution greatly reduces the number of

parameters in the convolutional neural network. Imagine we created a

feature map of size k × k from an image of n × n size with full connections

instead of convolutions. There would be k2n2 weights for that one

feature map alone, which are a lot of weights to learn. Instead, since in

convolution the same weights are shared across locations defined by the

filter kernel size, the number of parameters to learn is reduced by a huge

factor. In cases of convolution, as in this scenario, we just need to learn the

weights for the specific filter kernel. Since the filter size is relatively small

with respect to the image, the number of weights is reduced significantly.

For any image, we generate several feature maps corresponding to

different filter kernels. Each filter kernel learns to detect a different kind

of feature. The feature maps created are again convolved with other filter

kernels to learn even more complex features in subsequent layers.

Chapter 11 Convolutional Neural Network

400

�Translation Equivariance and Invariance
The convolution operation provides translational equivariance. That is, if a

feature Z1 in an input produces a specific feature Z2 in the output, then even

if feature Z1 is translated around in the image, feature Z2 would continue to

be generated at different locations of the output (Figure 11-22).

Figure 11-22.  Invariance

Chapter 11 Convolutional Neural Network

401

Convolution still produces the same feature for the digit, irrespective

of the translation. This property of convolution is called translational

equivariance. In fact, if the digit is represented by a set of pixel intensities,

x, and f is the translation operation on x, while g is the convolution

operation with a filter kernel, then the following holds true for convolution:

g(f(x)) = f(g(x)).

In our case, f(x) produces the translated plan in the Figure 11-23 and

the translated plan is convolved through g to produce the activated feature

for the same plan, as seen in the other figure. This activated feature for the

plan (i.e., (f(x))) could also have been achieved by translating the activated

figure (i.e., g(x)) through the same translation f.

Figure 11-23.  Equivariance

Chapter 11 Convolutional Neural Network

402

Pooling provides some form of translational invariance based on the

receptor field kernel size of the pooling. Let’s take the case of max pooling.

The digits in Figure 11-24 at a specific position are detected through

convolution filters in both sides but are not equal, and that’s the problem

of the convolutional layers; but if you took a closer look you can see that

the pooling layers extract a similar value to each other. In this way, max

pooling provides some translational invariance to feature detection if the

translation distance is not very high with respect to the size of the receptor

field or kernel for max pooling.

Similarly, average pooling takes the average of the values in a locality of

a feature map based on the size of the receptor field kernel. So, if a specific

feature is detected by high values in its feature map in a locality—let’s say

at regions of edges—then the averages would continue to be high even if

the image were a little translated.

Figure 11-24.  The advantage of the pooling layer that solves the
invariance

Chapter 11 Convolutional Neural Network

403

�Case Study—Digit Recognition
on the CIFAR-10 Dataset
The first thing to do in any project or experiment is import all the needed

packages. We will import TensorFlow and NumPy for all the deep learning

model building and matrix operations; also, we need matplotlib for plotting

the analysis and results. And we will load the rebuilt CIFAR-10 dataset in the

keras.dataset module in TensorFlow for the sake of ease and simplicity.

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.datasets import cifar10

import time

import math

%matplotlib inline

After importing all the packages, we now need to load the dataset, and

if you are using this for the first time, it is probably going to download the

dataset in your machine.

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

x_train.shape

After doing all this, you are ready to build the model. We are going

to build a class that should define the model and run it too, as well as

extracting the analysis and reporting the progress. The class CifarNet

contains three functions as follows:

•	 Init: Function that is responsible for getting and setting

conv variables (weights)

•	 Forward: Function that is responsible for creating the

model architecture

Chapter 11 Convolutional Neural Network

404

•	 Run: Function that runs the model and returns the

report of running

define net

class CifarNet():

 def __init__(self):

 # conv layer

 # H2 = (H1 - F + 2P)/S +1

 # (32-5)/1 + 1 = 28

 # 28x28x32 = 25088

 �# To ReLu (?x16x16x32) -> MaxPool (?x16x16x32) ->

affine (8192)

 �self.Wconv1 = tf.get_variable("Wconv1", shape=[5, 5,

3, 32])

 self.bconv1 = tf.get_variable("bconv1", shape=[32])

 # (32-5)/1 + 1 = 28

 # 28x28x64 = 50176

 �self.Wconv2 = tf.get_variable("Wconv2", shape=[5, 5,

32, 64])

 self.bconv2 = tf.get_variable("bconv2", shape=[64])

 # affine layer with 1024

 self.W1 = tf.get_variable("W1", shape=[3136, 1024])

 self.b1 = tf.get_variable("b1", shape=[1024])

 # affine layer with 10

 self.W2 = tf.get_variable("W2", shape=[1024, 10])

 self.b2 = tf.get_variable("b2", shape=[10])

 def forward(self, X, y, is_training):

 # conv2d

 # ReLu

 # conv2d

 # ReLu

Chapter 11 Convolutional Neural Network

405

 # maxpool

 # Batch Norm

 # Affine

 # Batch Norm

 # ReLu

 # Affine

 # dropout

 # Batch Norm

 # conv layer

 # H2 = (H1 - F + 2P)/S +1

 # (32-5)/1 + 1 = 28

 # 28x28x32 = 25088

 �# To ReLu (?x16x16x32) -> MaxPool (?x16x16x32) ->

affine (8192)

 # define our graph (e.g. two_layer_convnet) with stride 1

 �conv1 = tf.nn.conv2d(X, self.Wconv1, strides=[1, 1, 1,

1], padding='SAME') + self.bconv1

 print(conv1.shape)

 # ReLU Activation Layer

 relu1 = tf.nn.relu(conv1)

 print(relu1)

 # Conv

 �conv2 = tf.nn.conv2d(relu1, self.Wconv2, strides=[1, 2,

2, 1], padding='VALID') + self.bconv2

 print(conv2.shape)

 # ReLU Activation Layer

 relu2 = tf.nn.relu(conv2)

 print(relu2)

 # 2x2 Max Pooling layer with a stride of 2

Chapter 11 Convolutional Neural Network

406

 �maxpool = tf.layers.max_pooling2d(relu2, pool_

size=(2,2), strides=2)

 print(maxpool.shape)

 maxpool_flat = tf.reshape(maxpool,[-1,3136])

 �# Spatial Batch Normalization Layer (trainable

parameters, with scale and centering)

 �bn1 = tf.layers.batch_normalization(inputs=maxpool_

flat, center=True, scale=True, training=is_training)

 # Affine layer with 1024 output units

 affine1 = tf.matmul(bn1, self.W1) + self.b1

 print(affine1.shape)

 # vanilla batch normalization

 affine1_flat = tf.reshape(affine1,[-1,1024])

 �bn2 = tf.layers.batch_normalization(inputs=affine1,

center=True, scale=True, training=is_training)

 print(bn2.shape)

 # ReLU Activation Layer

 relu2 = tf.nn.relu(bn2)

 print(relu2.shape)

 # dropout

 �drop1 = tf.layers.dropout(inputs=relu2, training=is_

training)

 # Affine layer from 1024 input units to 10 outputs

 affine2 = tf.matmul(drop1, self.W2) + self.b2

 # vanilla batch normalization

 affine2_flat = tf.reshape(affine2,[-1,3136])

 �self.predict = tf.layers.batch_normalization

(inputs=affine2, center=True, scale=True, training=is_

training)

 print(self.predict.shape)

 return self.predict

Chapter 11 Convolutional Neural Network

407

 def run(self, session, loss_val, Xd, yd,

 epochs=1, batch_size=64, print_every=100,

 �training=None, plot_losses=False,

isSoftMax=False):

 # have tensorflow compute accuracy

 if isSoftMax:

 correct_prediction = tf.nn.softmax(self.predict)

 else:

 �correct_prediction = tf.equal(tf.argmax(self.

predict,1), y)

 �accuracy = tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))

 # shuffle indicies

 train_indicies = np.arange(Xd.shape[0])

 np.random.shuffle(train_indicies)

 training_now = training is not None

 �# setting up variables we want to compute (and

optimizing)

 �# if we have a training function, add that to things we

compute

 variables = [mean_loss, correct_prediction, accuracy]

 if training_now:

 variables[-1] = training

 # counter

 iter_cnt = 0

 for e in range(epochs):

 # keep track of losses and accuracy

 correct = 0

 losses = []

Chapter 11 Convolutional Neural Network

408

 # make sure we iterate over the dataset once

 �for i in range(int(math.ceil(Xd.shape[0]/batch_

size))):

 # generate indicies for the batch

 start_idx = (i*batch_size)%Xd.shape[0]

 �idx = train_indicies[start_idx:start_idx+batch_

size]

 # create a feed dictionary for this batch

 feed_dict = {X: Xd[idx,:],

 y: yd[idx],

 is_training: training_now }

 # get batch size

 actual_batch_size = yd[idx].shape[0]

 �# have tensorflow compute loss and correct

predictions

 # and (if given) perform a training step

 �loss, corr, _ = session.run(variables,feed_

dict=feed_dict)

 # aggregate performance stats

 losses.append(loss*actual_batch_size)

 correct += np.sum(corr)

 # print every now and then

 �if training_now and (iter_cnt % print_every)

== 0:

 �print("Iteration {0}: with minibatch

training loss = {1:.3g} and accuracy of

{2:.2g}"\

 �.format(iter_cnt,loss,np.sum(corr)

/actual_batch_size))

 iter_cnt += 1

Chapter 11 Convolutional Neural Network

409

 total_correct = correct/Xd.shape[0]

 total_loss = np.sum(losses)/Xd.shape[0]

 �print("Epoch {2}, Overall loss = {0:.3g} and

accuracy of {1:.3g}"\

 .format(total_loss,total_correct,e+1))

 if plot_losses:

 plt.ylabel('minibatch loss')

 plt.show()

 return total_loss, total_correct

Now we need to run the class. First we will initialize the class and

create X and y variables for the dataset.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, 32, 32, 3])

y = tf.placeholder(tf.int64, [None, 1])

is_training = tf.placeholder(tf.bool)

net = CifarNet()

Then we will call the forward function to create the model architecture

as follows.

net.forward(X,y,is_training)

After that, we will create all the needed hyperparameters the model

uses, such as learning rate, optimizer type, etc.

Annealing the learning rate

global_step = tf.Variable(0, trainable=False)

starter_learning_rate = 1e-3

end_learning_rate = 5e-3

decay_steps = 10000

Chapter 11 Convolutional Neural Network

410

learning_rate = �tf.train.polynomial_decay(starter_learning_

rate, global_step, decay_steps, end_learning_

 �rate, power=0.5)

exp_learning_rate = tf.train.exponential_decay(starter_

learning_rate, global_step, 100000, 0.96, staircase=True)

Feel free to play with this cell

mean_loss = None

optimizer = None

define our loss

cross_entr_loss = tf.nn.softmax_cross_entropy_with_

logits(labels=tf.one_hot(y,10), logits=net.predict)

mean_loss = tf.reduce_mean(cross_entr_loss)

define our optimizer

optimizer = tf.train.AdamOptimizer(exp_learning_rate)

batch normalization in tensorflow requires this extra dependency

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(extra_update_ops):

 train_step = optimizer.minimize(mean_loss, global_

step=global_step)

Now we will train the model with 10 epochs as a start, to check if

the model is running correctly. If you have low computational power,

we recommend you run the model with just 1 or 2 epochs to test if it’s

functionally running correct.

train with 10 epochs

sess = tf.Session()

try:

Chapter 11 Convolutional Neural Network

411

 with tf.device("/gpu:0") as dev:

 sess.run(tf.global_variables_initializer())

 print('Training')

 �net.run(sess, mean_loss, x_train, y_train, 10, 64, 200,

train_step, True)

 print('Validation')

 net.run(sess, mean_loss, x_test, y_test, 1, 64)

except tf.errors.InvalidArgumentError:

 �print("no gpu found, please use Google Cloud if you want

GPU acceleration")

If the model is running correctly, you will see the following output per

each epoch the model passes (Figure 11-25).

Iteration 0: with minibatch training loss = 2.79 and accuracy

of 6.4

Iteration 200: with minibatch training loss = 1.46 and accuracy

of 6.1

Iteration 400: with minibatch training loss = 1.47 and accuracy

of 6.3

Iteration 600: with minibatch training loss = 1.49 and accuracy

of 6.3

Epoch 1, Overall loss = 1.4 and accuracy of 6.55

Chapter 11 Convolutional Neural Network

412

With the preceding basic convolutional neural network, which

comprises two convolutional–max pooling–ReLU pairs along with a fully

connected layer before the final output softmax unit, we can achieve

a test-set high accuracy in just 20 to 30 epochs. And if you have low

computational power, you can always use the cloud to train a larger bunch

of epochs.

One more thing to emphasize is the importance of tuning the model

with the correct set of hyperparameters and prior information. Parameters

such as learning rate selection can be very tricky, since the cost function

for neural networks is generally nonconvex. A large learning rate can lead

to faster convergence to a local minimum but might introduce oscillations,

whereas a low learning rate will lead to very slow convergence. Ideally, the

learning rate should be low enough that network parameters can converge

to a meaningful local minimum, and at the same time it should be high

Figure 11-25.  The loss/mini-batch per epoch

Chapter 11 Convolutional Neural Network

413

enough that the models can reach the minima faster. Generally, for the

preceding neural network a learning rate of 0.01 is a little on the higher

side, but since we are only training the data on 20 epochs, it works well.

A lower learning rate wouldn’t have achieved such a high accuracy with

just 10 epochs. Similarly, the batch size chosen for the mini-batch version

of stochastic gradient descent influences the convergence of the training

process. A larger batch size might be good, since the gradient estimates

are less noisy; however, it may come at the cost of increased computation.

One also needs to try out different filter sizes as well as experiment with

different numbers of feature maps in each convolutional layer. The kind of

model architecture we choose works as prior knowledge to the network.

�Summary
In this chapter, we introduced the fundamental of how neural networks

deal with images—data-matrices in general—and we introduced the

modification needed for it. We showed you the transformation from

regular image processing techniques and filters to convolutional neural

networks and discussed it in detail.

In the next chapter, we will go through how neural networks deal with

sequences and text data.

Chapter 11 Convolutional Neural Network

415© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_12

CHAPTER 12

Sequential Models
�Recurrent Neural Networks
So why do we need a recurrent neural network (RNN)? Let’s try to answer

that with an example, or analogy. When reading a new article, people

have two options. First, if they can’t understand it, they can read articles

that the new article is based on, for background information. Otherwise,

they do understand the new article, based on some prior knowledge of the

subject, without an immediate need to read similar articles. In both cases,

their ability to understand the new article is enabled by some preexisting

or preaquired knowledge. But they don’t need to go back to the phase of

learning alphabets or numbers; they only need to know what this article is

about. This is the way recurrent neural networks work.

RNNs add an interesting twist to basic neural networks. The neural

network takes in a fixed size vector as input, which limits its usage in

situations that involve a “series” type input with no predetermined size.

RNNs are designed to take a series of inputs with no predetermined limit

on size. But one may wonder if you can just repeat the traditional neural

network. Yes you can, but you will miss the concept of series. Series

means every input is a neighbor to another input. So, if you repeat this

neural network more than once, you will miss the series. Inputs mean

many inputs to the neural network, not series input, so the RNN is a

sequential model network. An RNN remembers the past, and its decisions

are influenced by what it has learned from the past. Let’s say that basic

416

feedforward networks “remember” things too; they remember things they

learned during training. For example, an image classifier learns what a “1”

looks like during training and then uses that knowledge to classify things in

production. Now let’s see about the RNN and its types.

RNNs can take one or more input vectors and produce one or more

output vectors, and the output(s) are influenced by weights applied on
inputs and “hidden” state vectors representing the context based on

prior input(s) and output(s). So, the same input could produce a different

output, depending on previous inputs in the series. This is the “series”

aspect of an RNN. Now, how can we create the layers of an RNN? First of

all, the RNN looks quite similar to a traditional neural network except that

a memory state is added to the neurons. Imagine a simple model with

only one neuron, fed by a batch of data. In a traditional neural network,

the model produces the output by multiplying the input with the weight

and the activation function. With an RNN, this output is sent back to itself

a number of times. Time step is the amount of time the output becomes

the input of the next matrices multiplication. Let’s visualize what happens.

Say the network is composed of one neuron. The network computes

the matrices multiplication between the input and the weight and adds

nonlinearity with the activation function. It becomes the output at t − 1.

This output is the input of the second matrices multiplication.

Figure 12-1.  The abstraction of an RNN

Chapter 12 Sequential Models

417

Figure 12-1 shows an abstract explanation of when you have an input

and an output; input means batch, but batch per time. Figure 12-2 shows

the RNN cell in more detail.

Now let’s explain it in detail, but we will look at it from end to start.

We cache the output from softmax and the output from tanh. You can say

we save ŷ t and at to the cache to use it in the next state. The next state

will take those two parameters as input and multiply the (a) parameter,

which will be the at − 1 with the weight of this state. At the same time, we

multiply the input vector with the weight of this state, combine those

two parameters with the bias, and apply the tanh activation function on

them. This will generate the next activation (a) and apply softmax on it to

generate the predicted (y), and cache them to the next state of RNN and

back again with this cycle from end to start.

So, now that we’ve seen only one cell and had a brief look at its functions,

let’s connect this cell with other cells and get a big recurrent neural network.

You will see that in real life the sequence of data goes from the input and

generates new output every time step. This is an RNN, which depends on

time and a series of data. Figure 12-3 will make the idea more visible.

Figure 12-2.  The details inside an RNN

Chapter 12 Sequential Models

418

This figure explains how the connection between the activation is

generated from a state, goes through the next state, and generates a new

predicted output (y). This makes a series, as we talked about previously.

Now that you know the structure of the RNN, you should know that there

is more than one type of RNN. You need to know the size of the input the

RNN needs and the size of the output that you predicted from the RNN.

We have three types of RNN. The first type is fully recurrent networks.

In this type the layered topology of a multilayer perceptron is preserved,

but every element has a weighted connection to every other element

in the architecture and has a single feedback connection to itself. Not

all connections are trained, and the extreme nonlinearity of the error

derivatives means conventional backpropagation will not work, so the

backpropagation through time approach or stochastic gradient descent is

employed.

The next type is recursive neural networks. First, you should know

that recurrent neural networks are linear architecturally; the recursion

promotes branching in hierarchical feature spaces and the resulting

network architecture mimics this as training proceeds. Training is

achieved with gradient descent by subgradient methods.

The last type is the neural history compressor. Jüergen Schmidhuber

reported a very deep learner, first in 1991, that was able to perform credit

assignment over hundreds of neural layers by unsupervised pretraining for

a hierarchy of RNNs. Each RNN is trained unsupervised to predict the next

Figure 12-3.  A sequence of RNN cells

Chapter 12 Sequential Models

419

input. Then, only inputs generating an error are feedforward, conveying

new information to the next RNN in the hierarchy, which then processes at

a slower, self-organizing time scale.

It was shown that no information is lost, just compressed. The

RNN stack is a “deep generative model” of the data. The data can be

reconstructed from the compressed form.

Before we finish this section, we need to talk about the five types of

RNN architecture (Figure 12-4). Each type is best for certain uses, like

many to many as an encoder or decoder and many to one for LSTM. So

let’s talk about each type and what it consists of. One to one is recursive,

but it takes only one input and produces only one output. The next type is

one to many: it takes one input and produces many outputs. Many to one

has many inputs and generates only one output. Many to many actually

has two types, or two architectures: one is called many to many. One of

them is fully connected, which is used in video recognition; the second

type is partially connected, which is used in machine translation.

Unfortunately, we know that RNN is supposed to carry the information

up to time. However, it is quite challenging to propagate all this information

when the time step is too long. When a network has too many deep layers,

it becomes untrainable. This problem is called the vanishing gradient

Figure 12-4.  The different types of sequences architectures

Chapter 12 Sequential Models

420

problem. If you remember, the neural network updates the weight using

the gradient descent algorithm. The gradients grow smaller when the

network progresses down to lower layers. This all is useful information

to know about RNNs and their architectures. But simply put, an RNN is

just a sequential model that we use in language models because we need

sequential, or series, in a language model. So let’s talk about language

modeling and how RNNs are important in it.

�Language Modeling
For simplification, language modeling is the task of predicting the next

word or character in a document. A language model is a conditional

distribution on the identifier of the ith word in a sequence, given the

identities of all previous words. In language modeling, the probability

of a sequence of words is computed through the product rule of

the intersection of events. The probability of a sequence of words

{w1, w2, w3, …, wn} of length n is given as follows:

P w w w w P w P w w P w w P w wn n
n

1 2 3 1 2 1 3 1
2

1
1, , , , | | |¼() = () () ()¼ ()-

So, language models assign probabilities to the sequences of words.

But let’s see the types of language models and how the sequence works

with each type. We have three types. The simplest model that assigns

these probabilities to sentences or sequence of words is an N-Gram. An

N-gram is a sequence of N words; a bi-gram (or bigram) is a two-word

sequence of words like “please turn,” “turn your,” or “your homework”;

and a tri-gram (or trigram) is a three-word sequence of words like “please

turn your,” or “turn your homework.” But what’s the key connection

between them and the RNN, or sequence model? Let’s start with the

easiest one: an N-gram’s task is to compute P(w| h), the probability of a

Chapter 12 Sequential Models

421

word w∗ given some history h∗. Suppose the history h∗ is “its water is so

transperant that” and we want to know the probability that the next word

is the, it can be represented as:

P the its water is so transperant that| ()

One way to estimate the preceding function is through the relative

frequency counts, where we would take a substantial corpus, count the

number of times we see “its water is so transperant that,” and then count

the number of times it is followed by “the”:

P its water is so transperant that
C its water is so transperant

() =

that the

C its water is so transperant that

()
()

But it isn’t feasible to do this task; we have many groups and we need

to perform this task every single group! So, you do it by using the chain rule

of probability:

P w w P w P w w P w w P w wn n
n

1 1 2 1 3 1
2

1
1, , | | |¼() = () () () ()-

This serves as the base procedure of the N-Gram model, where instead

of computing the probability of a word given its entire history, we will

approximate the history by just the last few words. The bigram model

approximates the probability of a word given all the previous words,

by using only the conditional probability of the preceding word. We

approximate it with the probability P(w1 | wn − 1); like the example of “the”

and “that,” you can do in a bi-gram P(the | that). You can do it by using the

conditional probability:

P w w P w wn
n

n n| |1
1

1
-

-() » ()

Chapter 12 Sequential Models

422

A trigram model models language as a second-order Markov process,

making the computationally convenient approximation that a word

depends only on the previous two words. And you can use it with this

equation:

P w P w w wn
n n n1

1
1

-
-() = ()| ,

So these are the language models in natural language processing (NLP).

But we didn’t talk about uni-gram, as we don’t need it for the sequence

models, so at the end, we will see how RNN works with the language

model and the importance of RNN in the language model, the aim of the

language model is to predict the next word, so in N-gram we condition the

word we need to predict based on the previous words. Therefore, the main

reason for using an RNN is it’s sequential. This is analogous to the fact that

the human brain does not start thinking from scratch for every word we

say. Our thoughts have persistence. We’ll give this property of persistence

to the neural network with the use of an RNN.

A good example is “I had a good time in France. I also learned to speak

some _____”. If we want to predict what word will go in the blank, we have

to go all the way to the word France and then conclude that the most likely

word will be French. In other words, we have to have some memory of our

previous outputs and calculate new outputs based on our past outputs.

Another advantage of using RNNs for language modeling is that, due to

memory constraints, they are limited to remembering only a few steps

back. This is ideal because the context of the word can be captured in the

8–10 words before it. We don’t have to remember 50 words of context,

although RNNs can be used for arbitrarily long sequences if you have

enough memory at your disposal. And don’t forget the design of the RNN

(Figure 12-5).

Chapter 12 Sequential Models

423

In RNNs, the output at each step is conditioned on all previous

words; hence, RNNs do a better job than the n-gram models at language

model tasks. To understand this, let’s look at the working principals of

a generative recurrent neural network while considering a sequence

(X = {x1, x2, …, xn}) of length n. The RNN updates its hidden state ht

recursively as ht=f(ht−1,xt). The hidden state ht − 1 has information

accumulated for the sequence of words {x1, x2, …, xt − 1}, and when the

new word in the sequence xt arrives the updated sequence information

{x1, x2, …, xt} is encoded in ht through the recursive update.

Now we must predict the next word based on the word sequence seen

so far.

So now that we know the RNN is important for the language model

task and have a good explanation for this type of RNN, we will talk about

LSTM, GRU this the updates of the RNN in this chapter But for now let’s

see how a new task works with an RNN—backpropagation through time

(BPTT).

Figure 12-5.  The unroll of the RNN sequence

Chapter 12 Sequential Models

424

�Backpropagation Through Time
Backpropagation through time, or BPTT, is the application of the

backpropagation training algorithm to a recurrent neural network applied

to sequence data like a time series. A recurrent neural network is shown

one input each time step and predicts one output. Backpropagation for

recurrent neural networks is the same as that for feedforward neural

networks; the only difference is that the gradient is the sum of the gradient

with respect to the log loss at each step. So, after having input and output

every time step, errors are then calculated and accumulated for each time

step. The network is rolled back up and the weights are updated.

Each time step of the unrolled recurrent neural network may be seen

as an additional layer given the order dependence of the problem, and

the internal state from the previous time step is taken as an input on the

subsequent time step. Based on the predicted output and the actual output

labels, the loss and the corresponding error at each time step is computed.

The error at each time step is backpropagated to update the weights. So,

any weight update is proportional to the sum of the gradients’ contribution

from errors at all the T time steps. So, let’s go through some calculations

about the loss function of RNNs. We mentioned before the tanh function

and softmax function, so now let’s go through the loss function. We also

defined our loss, or error, to be the cross-entropy loss, given by:

E y y y y

E y y E y y

y y

t t t t t

t
t t t

t
t t

,

, ,

ˆ ˆ

ˆ ˆ

ˆ

log

log

() = -
() = ()

= -

å
å

Here, yt is the correct word at time step t, and yt is our prediction. We

typically treat the full sequence (sentence) as one training example, so the

total error is just the sum of the errors at each time step (word). Let’s see an

illustration of an RNN (Figure 12-6) to learn how to calculate the BPTT—

the backpropagation.

Chapter 12 Sequential Models

425

This is not a new idea, since we actually learned about it in the previous

chapters. But let’s remember that we need to calculate the gradients of

the error with respect to our parameters U, V, and W and then learn good

parameters using stochastic gradient descent. Just as we sum up the errors,

we also sum up the gradients at each time step for one training example:

¶
¶

=
¶
¶åE

W

E

Wt

t

To calculate these gradients, we use the chain rule of differentiation.

That’s the backpropagation algorithm when applied backward, starting

from the error. We’ll use E3 as a figure, just to have concrete numbers to

work with.

¶
¶

=
¶
¶

¶
¶

=
¶
¶

¶
¶

¶
¶

= -()Ä

E

V

E

y

y

V

E

y

y

z

z

V

y y s

3 3

3

3

3

3

3

3

3

3 3 3

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 12-6.  Simple architecture of a model to describe back-
propagation in it

Chapter 12 Sequential Models

426

In the preceding, z3 = Vs3, and circled multiplication is the outer

product of two vectors. That’s intuitive, but the point is that E3V only

depends on the values at the current time step: ŷ3 , y3, s3. If you have these,

calculating the gradient for V is a simple matrix multiplication. But the key

point is to have this at first, as in the above calculation where
¶
¶
z

V
3 really

depends on those three variables, so now let’s get more in-depth with

calculations. s3 = tanh (Uxt + Ws2) depends on s2, which depends on W

and s1, and so on. So, if we take the derivative with respect to W, we can’t

simply treat s3 as a constant! We need to apply the chain rule again and

what we really have is this:

¶
¶

=
¶
¶

¶
¶

¶
¶

¶
¶=

åE

W

E

y

y

s

s

s

s

Wk k

k3

0

3
3

3

3

3

3

ˆ

ˆ

We sum up the contributions of each time step to the gradient. In other

words, because W is used in every step up to the output we care about, we

need to backpropagate gradients from t = 3 through the network all the way

to t = 0. Let’s see a visualization (Figure 12-7) to get a better understanding

about it. You already know about backpropagation; the only key difference

is the time between backpropagation and BPTT.

Figure 12-7.  Feed backward backpropagation

Chapter 12 Sequential Models

427

Note T his is exactly the same as the standard backpropagation
algorithm that we use in deep feedforward neural networks. The key
difference is that we sum up the gradients for W at each time step.

In a traditional neural network, we don’t share parameters across

layers, so we don’t need to sum anything. But in my opinion, BPTT is just

a fancy name for standard backpropagation on an unrolled RNN. But

we have a problem with this: BPTT can be computationally expensive

as the number of time steps increases. If input sequences are comprised

of thousands of time steps, then this will be the number of derivatives

required for a single update weight update. This can cause weights to

vanish or explode (go to zero or overflow) and make slow learning and

model skill noisy. This gets us to a new version of BPTT that tries to

eliminate or minimize the challenges that BPPT has. So, TBPTT (truncated

backpropagation through time) is developed. TBPTT is a modified version

of the BPTT training algorithm for recurrent neural networks, wherein the

sequence is processed one time step at a time, and periodically (k1 time

steps) the BPTT update is performed back for a fixed number of time steps

(k2 time steps). So, we see it depends on the two variables: k1 and k2.

•	 k1: The number of forward-pass time steps between

updates. Generally, this influences how slow or fast

training will be, given how often weight updates are

performed.

•	 k2: The number of time steps to which to apply

BPTT. Generally, it should be large enough to capture

the temporal structure in the problem for the network

to learn. Too large a value results in vanishing

gradients.

Chapter 12 Sequential Models

428

Let’s go through how TBPTT works, with parameters k1 and k2.

We have four standard approaches; the last approach is divided into two

approaches, as we see in the following:

•	 TBPTT(n,n): Updates are performed at the end of the

sequence across all time steps in the sequence (e.g.,

classical BPTT).

•	 TBPTT(1,n): Time steps are processed one at a time,

followed by an update that covers all time steps seen so

far (e.g., classical TBPTT by Williams and Peng).

•	 TBPTT(k1,1): The network likely does not have

enough temporal context to learn, relying heavily on

internal state and inputs.

•	 TBPTT(k1,k2), where k1<k2<n: Multiple updates

are performed per sequence, which can accelerate

training.

•	 TBPTT(k1,k2), where k1=k2: A common configuration

where a fixed number of time steps are used for both

forward and backward-pass time steps (e.g., 10s to 100s).

In libraries like TensorFlow and Keras, things look similar and h

defines the vectorized fixed length of the time steps of the prepared data.

In real life, with coding, you will not do this calculation yourself, but we

need you to understand what happens in the background of this equation.

Now we will have a case study that makes the sequence model more

obvious. Try it yourself.

Chapter 12 Sequential Models

429

�Vanishing and Exploding Gradient Problems
in RNN
We saw in the previous section that BPTT has many problems with time. If

you have a large time series, you can have many problems that fall under the

term vanishing and exploding. The key difference between RNNs and neural

networks is time. The error propagates backward from output to input layer,

propagating the input error gradient. With deeper neural networks, issues

can arise from backpropagation, such as vanishing and exploding gradients.

So, let’s review with a quick definition of vanishing gradients. As we go

back to the lower layers, the gradient often gets smaller, eventually causing

weights to never change at lower layers. Exploding gradients are the

opposite of vanishing gradients; gradient explode on the way back.

Let’s see if the RNN gradient will suffer more from vanishing or

exploding. In my opinion it will be vanishing, because of RNNs’ large and

complex structures. So, let’s lay out the problem and get a solution for it.

The aim of RNNs is to learn long dependencies so that the interrelations

between words that are far apart are captured. For example, the actual

meaning that a sentence is trying to convey may be captured well by

words that are not in close proximity to each other. Let’s assume the input

sequence to the network is a nine-word sentence: “I grew up in France;

I speak French fluently.” We can see from the example that for the RNN

to predict the word “French,” which comes at the end of the sequence, it

would need information from the word “France,” which occurs further

back near the beginning of the sentence. This kind of dependence

between sequence data is called long-term dependencies, because the

distance between the relevant information “France” and the point where

it is needed to make a prediction “French” is very wide. Unfortunately,

in practice, as this distance becomes wider, RNNs have a hard time

learning these dependencies because they encounter either a vanishing or

exploding gradient problem.

Chapter 12 Sequential Models

430

So, RNNs should be able to learn those dependencies, but they

suffer from this inherent problem: failing to capture long-distance

dependencies between words. This is because the gradients in instances

of long sequences have a high chance of either going to zero or going to

infinity very quickly. When the gradients drop to zero very quickly, the

model is unable to learn the associations or correlations between events

that are temporally far apart. The equations derived for the gradient of

the cost function with respect to the weights of the hidden memory layers

will help us understand why this vanishing gradient problem might take

place. These problems arise during the training of a deep network when

the gradients are being propagated back in time all the way to the initial

layer. The gradients coming from the deeper layers have to go through

continuous matrix multiplications because of the chain rule. As they

approach the earlier layers, if they have small values (<1), they shrink

exponentially until they vanish and make it impossible for the model to

learn; this is the vanishing gradient problem. On the other hand, if they

have large values (>1), they get larger and eventually blow up and crash

the model; this is the exploding gradient problem. So, the definitions of

vanishing and exploding gradient are as follows:

•	 Exploding gradients: When gradients explode, the

gradients could become NaN because of the numerical

overflow, or we might see irregular oscillations in

training cost when we plot the learning curve.

•	 Vanishing gradients: The basic RNN model has many

local influences because of recurrent neural networks

as the earlier information. As the RNN weights vanishes

thought time and information is lost.

Chapter 12 Sequential Models

431

In Figure 12-8, the output ŷ< >3 is mainly influenced by a value close to

ŷ< >3 . This local influence makes an output which is later in the sequence to

be affected by earlier input in the sequence.

Figure 12-8.  All previous inputs participate to generate the current
output

Figure 12-9.  All previous inputs participate to generate the current
output

In Figure 12-9, the output y<Ty> cannot be influenced by the early

inputs in the sequences (x<1>, x<2>, x<3>). It was hard for the error to

backpropagate to the beginning of the sequence. This is the weakness of

the basic RNN. So, now that we know about the problems of vanishing and

exploding gradients, we need to solve them.

Chapter 12 Sequential Models

432

�The Solution to Vanishing and Exploding
Gradients Problems in RNNs
Let’s start with exploding gradients. A solution to fix this is to apply gradient

clipping, which places a predefined threshold on the gradients to prevent

them from getting too large. By doing this, it doesn’t change the direction of

the gradients; it only changes its length. We can see this in Figure 12-10.

So, we should get to the point that we try to enhance the gradient

to reach the local minima as fast as it can without getting any errors,

meaning overfitting, underfitting, vanishing, or exploding. So the solution

looks easy for exploding, but not so easy for vanishing. We have two

solutions for vanishing. First, we will talk about identity RNN architecture,

where the network weights are initialized to the identity matrix and the

activation functions are all set to ReLU. This ends up encouraging the

network computations to stay close to the identity function. This works

well because, when the error derivatives are being propagated backward

through time, they remain constants of either 0 or 1; hence, they aren’t

likely to suffer from vanishing gradients. The second, widely used, solution

Figure 12-10.  Gradient steps with and without clipping

Chapter 12 Sequential Models

433

is LSTM. Long short-term memory architecture is a variant of the regular

recurrent network, which was designed to make it easy to capture long-

term dependencies in sequence data. The standard RNN operates in such

a way that the hidden state activation is influenced by the other local

activations closest to them, which corresponds to “short-term memory.”

But the network weights are influenced by the computations that take

place over entire long sequences, which corresponds to “long-term

memory.” Hence, the RNN was redesigned so that it has an activation state

that can also act as weights and preserve information over long distances,

hence the name “long short-term memory.”

We may need to learn more about LSTM, so in the next section we will

talk about it. But before we end this section, let’s recap. Vanishing means

that your model tries to learn, but it can’t because it goes so slowly; but

if you let it complete training, it may get to optimal minima, or may not.

Exploding is the way that the model goes away from the optimal minima: it

will go away more and more and it won’t get to its optimal minima, and we

can’t reduce the cost function—the core of what we’re trying to do. So, let’s

go to the next section and talk about LSTM.

�Long Short-Term Memory
LSTM networks are just an advanced version of plain RNNs. These networks

are capable of remembering long-term dependencies. They are designed to

remember information for long periods of time without having to deal with

the vanishing gradient problem. They were invented by Sepp Hochreiter and

Jürgen Schmidhuber in 1997 and were refined and popularized by many

people in their following work. They work tremendously well on a large

variety of problems and are now widely used. We know that an RNN is very

simple compared with LSTM, and LSTM is used to solve vanishing problems,

so let’s talk about the architecture (Figure 12-11). All RNNs have the form of

a chain of repeating modules of the neural network. In standard RNNs, this

repeating module will have a very simple structure, such as a single tanh layer.

Chapter 12 Sequential Models

434

LSTMs also have this chain-like structure, but the repeating module

has a different structure. Instead of having a single neural network layer,

there are four, interacting in a very special way.

Let’s talk about the core behind LSTM and what happens to input from

the first state to the last one. We won’t go to the equations at first; we’ll just

talk about the diagram (Figure 12-13). Let’s start with the line above. It runs

straight down the entire chain, with only some minor linear interactions.

It’s very easy for information to just flow along it, unchanged from the

previous state, to generate new Ct to the next state, as in Figure 12-13.

Figure 12-11.  The architecture of LSTM

Figure 12-12.  How an LSTM cell works

Chapter 12 Sequential Models

435

LSTM can add or forget or update by using gates. These gates can

change in this straight line. Let’s build the LSTM architecture together

step-by-step with data going through the input.

The first step in our LSTM is to decide what information we’re going

to throw away from the cell state. This decision is made by a sigmoid layer

called the “forget gate layer.” It looks at ht − 1 and xt, and outputs a number

between 0 and 1 for each number in the cell state Ct − 1.

A1 when it is 1 represents “completely keep this” while a 0 represents

“completely get rid of this.” We know that the sigmoid function, which is 0

or 1, is an activation function, so the input is multiplied by it. If it is zero,

this means that this input is neglected; but if it’s one, this means we should

care about this input. You can see an example in Figure 12-14.

Figure 12-13.  How memory step works in LSTM

Figure 12-14.  The forget cell and how it works

Chapter 12 Sequential Models

436

The next step is to decide what new information we’re going to store

in the cell state. This has two parts. First, a sigmoid layer called the “input

gate layer” decides which values we’ll update. Next, a tanh layer creates

a vector of new candidate values, Ct, that could be added to the state. In

the next step, we’ll combine these two to create an update to the state

(Figure 12-15).

It’s now time to update the old cell state, Ct − 1, into the new cell state, Ct.

We multiply the old state by ft, forgetting the things we decided to forget

earlier. Then we add it∗Ct. This represents the new candidate values, scaled

by how much we decided to update each state value (Figure 12-16).

Figure 12-15.  How LSTM updates its memory

Figure 12-16.  The combination of forget and updating LSTM
memory

Chapter 12 Sequential Models

437

Finally, we need to decide what we’re going to output. This output

will be based on our cell state, but will be a filtered version. First, we run

a sigmoid layer, which decides what parts of the cell state we’re going to

output. Then, we put the cell state through tanh (to push the values to

between −1 and 1) and multiply it by the output of the sigmoid gate, so

that we only output the parts we decided to (Figure 12-17).

Besides this general use LSTM layer, many papers have been written

updating this version:

	 1.	 One popular LSTM variant, introduced by F. A.

Gers and Jürgen Schmidhuber (2000), is adding

“peephole connections.” This means that we let the

gate layers look at the cell state (Figure 12-18).

Figure 12-17.  How LSTM calculates the output

Figure 12-18.  How LSTM tooks at memory and how it uses it

Chapter 12 Sequential Models

438

	 2.	 Use coupled forget and input gates. Instead of

separately deciding what to forget and what we

should add new information to, we make those

decisions together. We only forget when we’re going

to input something in its place. We only input new

values to the state when we forget something older

(Figure 12-19).

So, you can see that anyone can update this and adapt LSTM to handle

their cases. We’ve learned about LSTM and its four functions; the main

point is that LSTM can solve exploding and vanishing gradient problems.

�Case Study—Digit Identification
on the MNIST Dataset

�Gated Recurrent Unit
In the section on LSTM, we said that it solves vanishing gradient problems.

We now have a great new architecture called Gated Recurrent Unit (GRU),

introduced by Cho, et al. in 2014. GRU aims to solve the vanishing gradient

problem that comes with a standard RNN. GRU can also be considered as a

Figure 12-19.  The output of forget/update memory activation
function

Chapter 12 Sequential Models

439

variation on LSTM because both are designed similarly and, in some cases,

produce equally excellent results. GRU uses so-called update gate and

reset gate. Basically, these are two vectors that decide what information

should be passed to the output. The special thing about them is that they

can be trained to keep information from long ago, without washing it

through time or removing information that is irrelevant to the prediction.

So, let’s see the unit of GRU in a visualization model (Figure 12-20)

Let’s look at each gate individually,

	 1.	 Update gate: We start with calculating the update

gate zt for time step t (Figure 12-21).

zt = σ(W(z)xt + U(z)ht − 1)

Figure 12-20.  The GRU unit architect

Chapter 12 Sequential Models

440

When xt is plugged into the network unit, it is multiplied

by its own weight, W(z). The same goes for ht-1, which

holds the information for the previous t − 1 units and

is multiplied by its own weight, U(z). Both results are

added together and a sigmoid activation function is

applied to squash the result between 0 and 1. The

update gate helps the model to determine how much

of the past information (from previous time steps)

needs to be passed along to the future. That is really

powerful, because the model can decide to copy all

the information from the past and eliminate the risk

of vanishing gradient problem. We will see the usage

of the update gate later on. For now, remember the

formula for zt.

Figure 12-21.  The first step of the GRU unit, the update gate

Chapter 12 Sequential Models

441

	 2.	 Reset gate: Essentially, this gate is used by the model

to decide how much of the past information to forget.

rt = σ(W(r)xt + U(r)ht − 1)

You see that this formula is almost like the update gate,

but there is a difference in the values of variables and

the gate position in the architecture. Let’s see the gate

in Figure 12-22.

As before, we plug in ht − 1 and xt, multiply them with

their corresponding weights, sum the results, and apply

the sigmoid function.

Figure 12-22.  The reset gate in GRU unit

Chapter 12 Sequential Models

442

	 3.	 Current memory content: This is a new memory;

we introduce a new memory content that will use

the reset gate to store the relevant information from

the past.

¢ = +()-h Wx r Uht t t ttanh  1

This works in four steps (Figure 12-23).

We do an element-wise multiplication of ht − 1 and rt

and then sum the result with the input, xt. Finally, tanh

is used to produce ht. So, after describing what happens

in in the image, we need to go in details. The first step

is to multiply the input xt with a weight W and ht − 1

Figure 12-23.  How LSTM uses the memeory

Chapter 12 Sequential Models

443

with a weight U. Then the second step calculates the

Hadamard (element-wise) product between the reset

gate rt and Uht − 1. That will determine what to remove

from the previous time steps. Then we sum them up in

the third step and apply the tanh activation function in

the last step.

	 4.	 Final memory at current time step: This is the last

step in the GRU; the network needs to calculate the

ht vector, which holds information for the current

unit and passes it down to the network. In order to

do that, the update gate is needed. It determines

what to collect from the current memory content, ht,

and what from the previous steps, ht − 1.

h z h z ht t t t t= + -()- 1 1 ’

Now let’s see how this memory works. Apply element-

wise multiplication to the update gate zt and ht − 1, then

apply element-wise multiplication to (1 − zt) and ht

(Figure 12-24). So far, we can sum the results from the

previous two steps.

Chapter 12 Sequential Models

444

You can see how zt is used to calculate (1 − zt), which, combined with ht

produces a result in the dark red line. zt is also used with ht-1 in an element-

wise multiplication. Finally, h is a result of the summation of the outputs

corresponding to the bright and dark red lines. So after we’ve seen how the

procedure works in GRU and that it’s almost like LSTM, we now need to

get some comparison between them—not an actual comparison, but we’ll

try to get some key points that allow us to choose. It is very hard to choose

between them, but let’s note some points to consider.

	 5.	 GRU and LSTM have comparable performance, and

there is no simple way to recommend one or the

other for a specific task.

Figure 12-24.  What happens to memory state at the final step

Chapter 12 Sequential Models

445

	 6.	 GRUs are faster to train and need fewer data to generalize.

	 7.	 When there is enough data, LSTM’s greater

expressive power may lead to better results.

	 8.	 Like LSTMs, GRUs are drop-in replacements for the

simple RNN cell.

Those were just some key points; you can research more about them.

So we now know the upgrades of the basic RNN neural network: LSTM

and GRU. They are widely used those days, so make sure you use them. In

the next section we will see a new application of RNN, Bidirectional RNN

(Bi-RNN).

�Bidirectional RNN (Bi-RNN)
Bidirectional RNNs are a special type of RNN that makes use of both the

past and future states to predict the output label at the current state.

A bidirectional RNN combines two RNNs, one of which runs forward from

left to right and the other of which runs backward from right to left. A high-

level architecture diagram of a bidirectional RNN is depicted in Figure 12-25.

Figure 12-25.  Bi-directional RNN architecture

Chapter 12 Sequential Models

446

Bidirectional RNNs are really just two independent RNNs put together.

The input sequence is fed in normal time order for one network, and in

reverse time order for another. The outputs of the two networks are usually

concatenated at each time step, though there are other options (e.g.,

summation).

This structure allows the networks to have both backward and forward

information about the sequence at every time step. The concept seems

easy enough. But when it comes to actually implementing a neural

network that utilizes a bidirectional structure, confusion arises.

It has some issues: not actually issues, but some confusion. The first

confusion is about the way to forward the outputs of a bidirectional RNN

to a dense neural network. For normal RNNs we could just forward the

outputs at the last time step. The second confusion is about the returned

hidden states. In seq2seq models, we’ll want hidden states from the

encoder to initialize the hidden states of the decoder.

�Summary
In this chapter, we talked about sequence models, and how they became

so good with language models. We also talked about the problems that

face the RNN, like vanishing and exploding. Then we looked into LSTM

and GRU, which solve vanishing and exploding gradient problems with

sequence models because they can handle the long dependences in

language models. We then talked about the common application in a

sequence model called bidirectional RNN, and saw its advantages.

Chapter 12 Sequential Models

PART IV

Applying What You’ve
Learned

449© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_13

CHAPTER 13

Selected Topics in
Computer Vision
After finishing Part III of Deep Learning Pipeline, you are ready now to

build your pipeline. You now see the whole picture, but it's fair to tell you

that you are missing some parts in each approach, and we will fill the

gaps by giving you some advanced concepts in both natural language

processing and computer vision. Then we will give you some examples,

using different types of datasets to ensure that you can apply a deep

learning pipeline correctly and easily.

Now, after finishing Chapter 11 in Part III, it’s good to add some extra

knowledge that makes it easier for the reader when they work. We’ll be

discussing and using prebuilt model architectures that made a state-

of-the-art accurate prediction and produced a very high accuracy in

competitions. We’ll also discuss a new concept—transfer learning. This

concept will help you to save both time and computational power, and

we will show you the guidelines for using transfer learning with different

models.

450

�Different Architectures in Convolutional
Neural Networks
The challenging part of using convolutional neural networks (CNNs) in

practice is how to design model architectures that best use these simple

elements: the layer types, the loss function, the optimizer, and all the

hyperparameters. All these are the issues you may find challenging when

you are attempting to build a good model.

A useful approach to learning how to design effective CNN architectures

is to study successful applications. This is particularly straightforward to do

because of the intense study and application of CNNs through the past 10

to 20 years for the ImageNet Large Scale Visual Recognition Competition,

or ILSVRC. This challenge resulted in both rapid advancement in the state

of the art for very difficult computer vision tasks, and the development of

general innovations in the architecture of CNN models.

In this section, we will go through a few widely used CNN architectures

used today. These network architectures can be used in many tasks

such as classification, but also, with minor modifications, segmentation,

localization, and detection. Also, there are pretrained versions of each of

these networks that enable the community to do transfer learning or fine-

tune the models. Except LeNet, almost all the CNN models have won the

ImageNet competition for classification of a thousand classes.

We will begin with the LeNet-5, which is often described as the first

successful and important application of CNNs prior to the ILSVRC. Then

we’ll look at three other winning architectural innovations for CNNs

developed for the ILSVRC, namely: AlexNet, VGG, and ResNet.

By understanding these milestone models and their architecture

or architectural innovations from a high-level, you will develop both

an appreciation for the use of these architectural elements in modern

applications of CNN in computer vision, and be able to identify and choose

architecture elements that may be useful in the design of your own models.

Chapter 13 Selected Topics in Computer Vision

451

�LeNet
The first successful CNN was developed by Yann LeCunn in 1990 for

classifying handwritten digits successfully for OCR-based activities such

as reading ZIP codes, checks, and so on. LeNet5 is the latest offering from

Yann LeCunn and his colleagues. It takes in 32 × 32 size images as input

and passes them through a convolutional layer to produce six feature maps

of size 28 × 28. The six feature maps are then subsampled to produce six

output images of size 14 × 14. Subsampling can be thought of as a pooling

operation. The second convolutional layer has 16 feature maps of size

10 × 10, while the second subsampling layer reduces the feature map sizes

to 5 × 5. This is followed by two fully connected layers of 120 and 84 units,

respectively, followed by the output layer of ten classes corresponding to

ten digits.

This model was developed for use in a handwritten character

recognition problem and demonstrated on the MNIST standard dataset,

achieving approximately 99.2% classification accuracy (or 0.8% error rate).

The network was then described as the central technique in a broader

system referred to as Graph Transformer Networks.

Compared with modern applications, the number of filters is also

small, but the trend of increasing the number of filters with the depth

of the network also remains a common pattern in modern usage of the

technique.

The flattening of the feature maps and interpretation and classification

of the extracted features by fully connected layers also remains a common

pattern today. In modern terminology, the final section of the architecture

is often referred to as the classifier, whereas the convolutional and pooling

layers earlier in the model are referred to as the feature extractor.

Figure 13-1 represents the LeNet5 architecture diagram.

Chapter 13 Selected Topics in Computer Vision

452

One of the key features that make this architecture different from

the previous work is that the pooling though subsampling takes 2 × 2

neighborhood patches and sums up the four-pixel intensity values. The

sum is scaled by a trainable weight and a bias, and then fed through a

sigmoid activation function. This is a little different from what is done for

max pooling and average pooling.

Another key feature is that the filter kernel used for convolution is of

size 5 × 5, and the output units are radial basis function (RBF) units instead

of the softmax function. The 84 units of the fully connected layers had 84

connections to each of the classes and hence, 84 corresponding weights.

The 84 weights/class represent each class’s characteristics. If the inputs to

those 84 units are very close to the weights corresponding to a class, then

the inputs are more likely to belong to that class.

In a softmax we look at the dot product of the inputs to each of the

class’s weight vectors, while in RBF units we look at the Euclidean distance

between the input and the output class representative’s weight vectors.

The greater the Euclidean distance, the smaller the chance of the input

belonging to that class. The same can be converted to probability by

exponentiating the negative of the distance and then normalizing over the

different classes.

Figure 13-1.  The architecture of LeNet

Chapter 13 Selected Topics in Computer Vision

453

The Euclidean distances over all the classes for an input record

would act as the loss function for that input (Figure 13-2). Let

x = [x1, x2, …, x83, x84]T ∈ R84 × 1 be the output vector of the fully connected

layer. For each class, there would be 84 weight connections. If the

representative class’s weight vector for the ith class is wi ∈ R84 × 1, then the

output of the ith class unit can be given by the following:

d x w x wi
j

j ij,() = -()
=
å

1

84 2

�AlexNet
The work that perhaps could be credited with sparking renewed interest in

neural networks, and the beginning of the dominance of deep learning in

many computer vision applications, was the 2012 paper by Alex Krizhevsky,

Figure 13-2.  How Euclidean distance works

Chapter 13 Selected Topics in Computer Vision

454

et al. titled “ImageNet Classification with Deep Convolutional Neural

Networks.” It won the 2012 ImageNet ILSVRC. It was the first time that a

CNN architecture beat other methods by a huge margin. Their network

achieved an error rate of 15.4% on its top five predictions as compared with

a 26.2% error rate for the second-best entry.

Important in the design of AlexNet was a suite of methods that were

new or successful, but not widely adopted at the time. Now they have

become standards when using CNNs for image classification.

AlexNet made use of the rectified linear activation function, or ReLU,

as the non-linearity after each convolutional layer, instead of S-shaped

functions such as the logistic or tanh that were common up until that

point. Also, a softmax activation function was used in the output layer, now

a staple for multiclass classification with neural networks.

The architectural diagram of AlexNet is represented in Figure 13-3.

AlexNet consists of five convolutional layers, max pooling layers, and

dropout layers, and three fully connected layers in addition to the input

and output layer of a thousand class units.

The average pooling used in LeNet-5 was replaced with a max

pooling method, although in this case, overlapping pooling was found to

outperform the nonoverlapping pooling that is commonly used today (e.g.,

stride of pooling operation is the same size as the pooling operation, e.g.,

2 × 2 pixels). To address overfitting, the newly proposed dropout method

was used between the fully connected layers of the classifier part of the

model to improve generalization error.

The inputs to the network are images of size 224 × 224 × 3. The first

convolutional layer produces 96 feature maps corresponding to 96 filter

kernels of size 11 × 11 × 3, with strides of four-pixel units. The second

convolutional layer produces 256 feature maps corresponding to filter

kernels of size 5 × 5 × 48. The first two convolutional layers are followed

by max pooling layers, whereas the next three convolutional layers are

placed one after another without any intermediate max pooling layers.

Chapter 13 Selected Topics in Computer Vision

455

The fifth convolutional layer is followed by a max pooling layer, two fully

connected layers of 4096 units, and finally, a softmax output layer of one

thousand classes. The third convolutional layer has 384 filter kernels of size

3 × 3 × 256, whereas the fourth and fifth convolutional layers have 384 and

256 filter kernels each of size 3 × 3 × 192.

A dropout of 0.5 was used in the last two fully connected layers. You

will notice that the depth of the filter kernels for convolutions is half

the number of feature maps in the preceding layer for all but the third

convolutional layer. And this is because the model was split into two

pipelines to train on the GPU hardware of the time.

However, if you observe carefully, for the third convolutional

activity there is cross-connectivity for convolution, so the filter kernel

is of dimension 3 × 3 × 256 and not 3 × 3 × 128. The same kind of cross-

connectivity applies to the fully connected layers, and hence, they behave

as ordinary fully connected layers with 4096 units.

Figure 13-3.  The architecture of AlexNet

Chapter 13 Selected Topics in Computer Vision

456

We can summarize the key aspects of the architecture relevant in

modern models as follows:

•	 Use of the ReLU activation function after convolutional

layers and softmax for the output layer

•	 Use of max pooling instead of average pooling

•	 Use of dropout regularization between the fully

connected layers

•	 Pattern of convolutional layer fed directly to another

convolutional layer

•	 Use of data augmentation

�VGG
An important work that sought to standardize architecture design for

deep convolutional networks and developed much deeper and better

performing models in the process was the 2014 paper titled “Very Deep

Convolutional Networks for Large-Scale Image Recognition” by Karen

Simonyan and Andrew Zisserman.

Their architecture is generally referred to as VGG after the name

of their lab, the Visual Geometry Group at Oxford. Their model was

developed and demonstrated in the same ILSVRC competition—in this

case, the ILSVRC-2014 version of the challenge.

The first important difference that has become a de facto standard is

the use of a large number of small filters. Specifically, filters with the size

3 × 3 and 1 × 1 with the stride of one, different from the large sized filters in

LeNet-5 and the smaller but still relatively large filters and large stride of

four in AlexNet.

Max pooling layers are used after most, but not all, convolutional

layers, learning from the example in AlexNet. Yet all pooling is performed

with the size 2 × 2 and the same stride; that too has become a de facto

Chapter 13 Selected Topics in Computer Vision

457

standard. Specifically, the VGG networks use examples of two, three, and

even four convolutional layers stacked together before a max pooling

layer is used. The rationale was that stacked convolutional layers with

smaller filters approximate the effect of one convolutional layer with a

larger sized filter, (e.g., three stacked convolutional layers with 3 × 3 filters

approximates one convolutional layer with a 7 × 7 filter).

Another important difference is the very large number of filters used.

The number of filters increases with the depth of the model, although it

starts at a relatively large number of 64 and increases through 128, 256, and

512 filters at the end of the feature extraction part of the model.

A number of variants of the architecture were developed and

evaluated, although two are referred to most commonly, given their

performance and depth. They are named for the number of layers: they are

the VGG-16 and the VGG-19 for 16 and 19 learned layers, respectively.

Figure 13-4 represents the architecture of VGG16. The input to the

network is images of size 224 × 224 × 3. The first two convolutional layers

produce 64 feature maps, each followed by max pooling. The filters for

convolution are of spatial size 3 × 3, with a stride of 1 and pad of 1. Max

pooling is of size 2 × 2, with a stride of 2 for the whole network. The third

Figure 13-4.  The architecture of VGG

Chapter 13 Selected Topics in Computer Vision

458

and fourth convolutional layers produce 128 feature maps, each followed

by a max pooling layer. The rest of the network follows in a similar fashion,

as shown in Figure 13-4. At the end of the network there are three fully

connected layers of 4096 units, each followed by the output softmax layer

of a thousand classes. Dropout is set at 0.5 for the fully connected layers.

All the units in the network have ReLU activations.

We can summarize the key aspects of the architecture that are relevant

in modern models as follows:

•	 Use of very small convolutional filters (e.g., 3 × 3 and

1 × 1 with a stride of one)

•	 Use of max pooling with a size of 2 × 2 and a stride of

the same dimensions

•	 The importance of stacking convolutional layers

together before using a pooling layer to define a block

•	 Dramatic repetition of the convolutional-pooling block

pattern

•	 Development of very deep (16 and 19 layer) models

�ResNet
ResNet is a 152-layer-deep CNN from Microsoft that won the ILSVRC 2015

competition with an error rate of only 3.6%, which is perceived to be better

than the human error rate of 5–10%.

A final important innovation in CNNs that we will review was proposed

by Kaiming He, et al. in their 2016 paper titled “Deep Residual Learning for

Image Recognition.”

Their model had an impressive 152 layers. Key to the model design is

the idea of residual blocks that make use of shortcut connections. These are

simply connections in the network architecture where the input is kept as-is

(not weighted) and passed on to a deeper layer (e.g., skipping the next layer).

Chapter 13 Selected Topics in Computer Vision

459

ResNet implements residual blocks as follows: after each series of

convolution–ReLUs–convolution operations, the input to the operation

is fed back to the output of the operation. In traditional methods, while

doing Convolution and other transformations, we try to fit an underlying

mapping to the original data to solve the classification task.

Again, a residual block is a pattern of two convolutional layers with

ReLU activation, where the output of the block is combined with the input

to the block (e.g., the shortcut connection). A projected version of the

input is used via 1 × 1 if the shape of the input to the block is different from

the output of the block, the so-called 1 × 1 convolution. These are referred

to as projected shortcut connections, compared with the unweighted or

identity shortcut connections.

However, with ResNet’s residual block concept, we try to learn a

residual mapping and not a direct mapping from the input to output.

Formally, in each small block of activities we add the input to the block to

the output. This is illustrated in Figure 13-5. This concept is based on the

hypothesis that it is easier to fit a residual mapping than to fit the original

mapping from input to output.

Figure 13-5.  How ResNet works

Chapter 13 Selected Topics in Computer Vision

460

We can summarize the key aspects of the architecture relevant to

modern models as follows:

•	 Use of shortcut connections

•	 Development and repetition of the residual blocks

•	 Development of very deep (152-layer) models

�Transfer Learning
A neural network is trained on data. This network gains knowledge from

this data, which is compiled as “weights” of the network. These weights can

be extracted and then transferred to any other neural network. Instead of

training the other neural network from scratch, we “transfer” the learned

features.

Transfer learning in a broad sense refers to storing knowledge gained

while solving a problem, and using that knowledge for a different problem

in a similar domain. Transfer learning has been hugely successful in the

field of deep learning for a variety of reasons. Deep learning models in

general have a huge number of parameters because of the nature of the

hidden layers and the connectivity scheme within the different units.

To train such a huge model, lots of data is required or the model will

suffer from overfitting problems. In many problems, the huge amount

of data required to train the model is not available, but the nature of the

problem requires a deep learning solution in order to have a reasonable

impact. For instance, in image processing for object recognition, deep

learning models are known to provide state-of-the-art solutions. In such

cases, transfer learning can be used to generate generic features from

a pretrained deep learning model, and then use those features to build

a simple model to solve the problem. So, the only parameters for this

problem are the ones used to build the simple model.

Chapter 13 Selected Topics in Computer Vision

461

�What Is a Pretrained Model, and Why Use It?
Simply put, a pretrained model is a model created by someone else to

solve a similar problem. Instead of building a model from scratch to solve a

similar problem, you use the model trained on other problem as a starting

point.

So, pretrained models are generally trained on a huge corpus of data

and thus have reliable parameters. When we process images through

several layers of convolutions, the initial layers learn to detect very

generic features such as curls and edges. As the network grows deeper,

the convolutional layers in the deeper layers learn to detect more complex

features relevant to the specific kind of dataset.

For example, say you want to build a self-learning car. You can spend

years to build a decent image recognition algorithm from scratch or you

can take an inception model (a pretrained model) from Google that was

built on ImageNet data to identify images in those pictures. A pretrained

model may not be 100% accurate in your application, but it saves the huge

efforts required to reinvent the wheel.

As another example, in a classification, the deeper layers would learn

to detect features such as eyes, nose, face, and so forth. Let’s assume we

have a VGG19 architecture model trained on one thousand categories

of the ImageNet dataset. Now, if we get a smaller dataset that has fewer

categories of images similar to those of the VGG19 pretrained model

dataset, we can use the same VGG19 model up to the fully connected layer

and then replace the output layer with the new classes. Also, we keep the

weights of the network fixed until the fully connected layer, and only train

the model to learn the weights from the fully connected layer to the output

layer.

This is because the dataset’s nature is the same as the smaller dataset.

Thus, the features learned in the pretrained model through the different

parameters are good enough for the new classification problem, and we

only need to learn the weights from the fully connected layer to the output

Chapter 13 Selected Topics in Computer Vision

462

layer. This is a huge reduction in the number of parameters to learn, and it

will reduce the overfitting. Had we trained the small dataset using VGG19

architecture, it might have suffered from severe overfitting because of the

large number of parameters to learn on a small dataset. What do you do

when the dataset’s nature is very different from that of the dataset used for

the pretrained model?

Well, in that case, we can use the same pretrained model but fix

only the parameters for the first couple of sets of convolutions–ReLUs–

max pooling layers and then add a couple of convolutions–ReLU–max

pooling layers that would learn to detect features intrinsic to the new

dataset. Finally, we would have to have a fully connected layer followed

by the output layer. Since we are using the weights of the initial sets of

convolutions–ReLUs–max pooling layers from the pretrained VGG19

network, the parameters with respect to those layers need not be learned.

As mentioned earlier, the early layers of convolution learn very generic

features, such as edges and curves, which are applicable to all kinds of

images. The rest of the network would need to be trained to learn specific

features inherent to the specific problem dataset.

�How to Use a Pretrained Model?
What is our objective when we train a neural network? We wish to identify

the correct weights for the network by multiple forward and backward

iterations. By using pretrained models that have been previously trained

on large datasets, we can directly use the weights and architecture

obtained and apply the learning on our problem statement. This is how

transfer learning works. We “transfer the learning” of the pretrained model

to our specific problem statement.

We should be very careful while choosing what pretrained model to

use in an individual case. If the problem statement we have at hand is very

different from the one on which the pretrained model was trained, the

prediction we would get would be very inaccurate. For example, a model

Chapter 13 Selected Topics in Computer Vision

463

previously trained for speech recognition would work horribly if we tried

to use it to identify objects.

We are lucky that many pretrained architectures are directly available

for us as preloaded weights or in the Keras library. The Imagenet dataset,

for example, has been widely used to build various architectures, since it is

large enough (1.2M images) to create a generalized model.

These pretrained networks demonstrate a strong ability to generalize to

images outside the given dataset via transfer learning. We make modifications

in the preexisting model by fine-tuning the model. Since we assume that the

pretrained network has been trained quite well, we would not want to modify

the weights too soon and too much. While modifying, we generally use a

learning rate smaller than the one used for initially training the model.

�Ways to Fine-Tune the Model
	 1.	 Feature extraction: We can use a pretrained model

as a feature extraction mechanism. We can remove

the output layer (the one that gives the probabilities

for being in each of the 1,000 classes) and then use

the entire network as a fixed feature extractor for the

new data set.

	 2.	 Use the Architecture of the pretrained model:
We can use the architecture of the model while we

initialize all the weights randomly, and train the

model according to our dataset again.

	 3.	 Train some layers while freezing others: Another

way to use a pretrained model is to train it partially.

We can keep the weights of initial layers of the

model frozen while we retrain only the higher layers.

We can try to test how many layers are to be frozen

and how many to be trained.

Chapter 13 Selected Topics in Computer Vision

464

�Pretrained VGG19
In this section, we are going to demonstrate how to use the pretrained

VGG19 model. Using such a great model with this less amount of training

will help you to solve complex problems with less effort. So, let’s import the

packages that we will use in this example.

from urllib.request import urlretrieve

from os.path import isfile, isdir

from tqdm import tqdm

import tarfile

import pickle

import numpy as np

import matplotlib.pyplot as plt

import skimage

import skimage.io

import skimage.transform

import tensorflow as tf

import tensornets as nets

After importing all the packages, we need to download the CIFAR-10

dataset. This is the dataset we used before in Chapter 11. You can check

how we built the model, and how much time and computational power we

payed to train the model.

Now, after you import the packages we are going to use and loaded the

CIFAR-10 dataset, it’s now time to build the model.

We first have to create the input/output variables, and also the

hyperparameters we will use in the model building.

x = tf.placeholder(tf.float32, shape=(None, 224, 224, 3),

name='input_x')

y = tf.placeholder(tf.float32, shape=(None, 10), name='output_y')

Chapter 13 Selected Topics in Computer Vision

465

learning_rate = 0.00001

epochs = 7

batch_size = 32

We will use VGG19 with softmax_cross_entropoy loss, of course, and

the AdamOptimizer for optimizing the model.

logits = nets.VGG19(x, is_training=True, classes=10)

model = tf.identity(logits, name='logits')

loss = tf.losses.softmax_cross_entropy(y, logits)

train = tf.train.AdamOptimizer(learning_rate=learning_rate).

minimize(loss)

correct_pred = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32),

name='accuracy')

If you called print_outputs of the logits, you will see the model

architecture summary. It’s similar to the Keras model.summary function

that shows each layer name, type, its input and output, and the number of

parameters per each layer.

logits.print_outputs()

Output

Scope: vgg19

conv1/1/conv/BiasAdd:0 (?, 224, 224, 64)

conv1/1/Relu:0 (?, 224, 224, 64)

conv1/2/conv/BiasAdd:0 (?, 224, 224, 64)

conv1/2/Relu:0 (?, 224, 224, 64)

conv1/pool/MaxPool:0 (?, 112, 112, 64)

conv2/1/conv/BiasAdd:0 (?, 112, 112, 128)

conv2/1/Relu:0 (?, 112, 112, 128)

Chapter 13 Selected Topics in Computer Vision

466

conv2/2/conv/BiasAdd:0 (?, 112, 112, 128)

conv2/2/Relu:0 (?, 112, 112, 128)

conv2/pool/MaxPool:0 (?, 56, 56, 128)

conv3/1/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/1/Relu:0 (?, 56, 56, 256)

conv3/2/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/2/Relu:0 (?, 56, 56, 256)

conv3/3/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/3/Relu:0 (?, 56, 56, 256)

conv3/4/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/4/Relu:0 (?, 56, 56, 256)

conv3/pool/MaxPool:0 (?, 28, 28, 256)

conv4/1/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/1/Relu:0 (?, 28, 28, 512)

conv4/2/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/2/Relu:0 (?, 28, 28, 512)

conv4/3/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/3/Relu:0 (?, 28, 28, 512)

conv4/4/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/4/Relu:0 (?, 28, 28, 512)

Now let us print the model summary using print_summary; we will

see the total layers in the model, the total weights, and the number of

parameters.

logits.print_summary()

Scope: vgg19

Total layers: 19

Total weights: 114

Total parameters: 418,833,630

Chapter 13 Selected Topics in Computer Vision

467

Now, after we’ve built the model architecture, and checked the total

parameters and total layers in the model, we are ready to train it and see

what will happen.

save_model_path = './image_classification'

print('Training...')

with tf.Session() as sess:

 # Initializing the variables

 sess.run(tf.global_variables_initializer())

 print('global_variables_initializer ... done ...')

 sess.run(logits.pretrained())

 print('model.pretrained ... done ... ')

 # Training cycle

 print('starting training ... ')

 for epoch in range(epochs):

 # Loop over all batches

 n_batches = 5

 for batch_i in range(1, n_batches + 1):

 �for batch_features, batch_labels in load_

preprocess_training_batch(batch_i, batch_size):

 �sess.run(train, {x: batch_features, y: batch_

labels})

 �print('Epoch {:>2}, CIFAR-10 Batch {}: '.

format(epoch + 1, batch_i), end=")

 �# calculate the mean accuracy over all validation

dataset

 valid_acc = 0

 �for batch_valid_features, batch_valid_labels in

batch_features_labels(tmpValidFeatures, valid_

labels, batch_size):

Chapter 13 Selected Topics in Computer Vision

468

 �valid_acc += sess.run(accuracy, {x:batch_valid_

features, y:batch_valid_labels})

 tmp_num = tmpValidFeatures.shape[0]/batch_size

 �print('Validation Accuracy: {:.6f}'.format(valid_

acc/tmp_num))

 # Save Model

 saver = tf.train.Saver()

 save_path = saver.save(sess, save_model_path)

If this code step is running correctly for you, then we can say “well

done to you.” Now the model is training as in the output below, and after it

finishes, you will see the result in Figure 13-6.

Training...

global_variables_initializer ... done ...

model.pretrained ... done ...

starting training ...

Epoch 1, CIFAR-10 Batch 1: Validation Accuracy: 0.510000

Epoch 1, CIFAR-10 Batch 2: Validation Accuracy: 0.719000

Epoch 1, CIFAR-10 Batch 3: Validation Accuracy: 0.770200

Epoch 1, CIFAR-10 Batch 4: Validation Accuracy: 0.814000

Epoch 1, CIFAR-10 Batch 5: Validation Accuracy: 0.832000

Epoch 2, CIFAR-10 Batch 1: Validation Accuracy: 0.841600

Epoch 2, CIFAR-10 Batch 2: Validation Accuracy: 0.850000

Epoch 2, CIFAR-10 Batch 3: Validation Accuracy: 0.868000

Epoch 2, CIFAR-10 Batch 4: Validation Accuracy: 0.856600

Epoch 2, CIFAR-10 Batch 5: Validation Accuracy: 0.857400

Chapter 13 Selected Topics in Computer Vision

469

�Summary
In this chapter, we learned about advanced operations in CNNs, and how

state-of-art architecture models such as LeNet, AlexNet, VGG, and ResNet

work.

Further, we discussed what transfer learning is, and how to perform

transfer learning using the pretrained versions of these CNNs. In the

next chapter, we will discuss some selected topics in natural language

processing and how they are useful for you to know and understand.

Figure 13-6.  The prediction of the left image

Chapter 13 Selected Topics in Computer Vision

471© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_14

CHAPTER 14

Selected Topics
in Natural Language
Processing
In the previous chapter, we showed you some advanced concepts in

computer vision such as state-of-art architectures and the transfer learning

approach. It is important for you to understand these concepts when you

are about to build a model to do a certain task for you.

In this chapter, we will discuss some concepts in natural language

processing (NLP) that are necessary to fully understand the sequential

methods, which are considered to be the traditional methods of NLP. They

are relied on by the bag-of-words model and the vector space of words

model.

One of the key areas for NLP is the syntactic and semantic analysis

of language. Syntactic analysis refers to how words are grouped and

connected in a sentence. The main tasks in syntactic analysis are tagging

parts of speech, detecting syntactic classes (such as verbs, nouns, and

noun phrases), and assembling sentences by constructing syntax trees.

Semantic analysis refers to complex tasks such as finding synonyms, or

performing word-verb disambiguation.

472

�Vector Space Model
In NLP information-retrieval systems, a document is generally represented

as simply a vector of the count of the words it contains. For retrieving

documents similar to a specific document, either the cosine of the angle or

the dot product between the document and other documents is computed.

The cosine of the angle between two vectors gives a similarity measure

based on the similarity between their vector compositions. To illustrate this

fact, let us look at two vectors, x, y = R2 × 1, shown as x = [2 3]T and y = [4 5]T.

Although vectors x and y are different, their cosine similarity is the

maximum possible value of 1. This is because the two vectors are identical

in their component compositions. The ratio of the first component to the

second component for both vectors is 2/32/3; hence, content composition-

wise they are treated as being similar. Therefore, documents with high

cosine similarity are generally considered similar in nature.

Let’s say we have two sentences: Doc1 = [The dog chased the cat] and

Doc2 = [The cat was chased down by the dog]. The number of distinct

words in the two sentences would be the vector space dimension for this

problem. The distinct words are The, dog, chased, the, cat, down, by, and

was. So, we can represent each document as an eight-dimensional vector

of word counts (Table 14-1).

If we represent Doc1 by v1 and Doc2 by v2, then the cosine similarity

can be expressed as cos v v
v v

v v

T

1 2
1 2

1 2

,() = (Figure 14-1) and the Euclidean

distance is expressed as d v v v v1 2 1 2

2
,() = å -() (Figure 14-2),

Table 14-1.  Words per Document Example

Word/Doc The Dog Chased Cat Down By Was

Doc 1 1 1 1 1 0 0 0

Doc 2 1 1 1 1 1 1 1

Chapter 14 Selected Topics in Natural Language Processing

473

where ‖v1‖ is the magnitude or the l2 norm of the vector v1. As stated

earlier, cosine similarity gives a measure of the similarity based on

the component composition of each vector. If the components of the

document vectors are in somewhat similar proportion, the cosine

distance would be high. It doesn’t take the magnitude of the vector into

consideration.

In certain cases, when the documents are of highly varying lengths,

the dot product between the document vectors is taken instead of the cosine

similarity. This is done when, along with the content of the document,

the size of the document is also compared. For instance, we can have a

tweet in which the words global and economics might have word counts of

1 and 2, respectively, while a newspaper article might have word counts of

50 and 100, respectively, for the same words. Assuming the other words in

both documents have insignificant counts, the cosine similarity between the

tweet and the newspaper article would be close to 1. Since the tweet sizes

are significantly smaller, the word counts proportion of 1 : 2 for global and

economics doesn’t really compare to the proportion of 1 : 2 for these words in

the newspaper article.

Hence, it doesn’t really make sense to assign such a high similarity

measure to these documents for several applications. In that case, taking

the dot product as a similarity measure rather than the cosine similarity

helps, since it scales up the cosine similarity by the magnitude of the word

vectors for the two documents.

For comparable cosine similarities, documents with higher

magnitudes would have higher dot product similarity, since they have

enough text to justify their word composition. The word composition for

small texts might just be by chance and not be a true representation of its

intended representation. For most applications where the documents are

of comparable lengths, cosine similarity is a fair enough measure.

Chapter 14 Selected Topics in Natural Language Processing

474

Figure 14-2.  How Euclidean distance works

Figure 14-1.  How cosine distance works

Chapter 14 Selected Topics in Natural Language Processing

475

�Vector Representation of Words
Just as the documents are expressed as vectors of different word counts, a

word in a corpus can also be expressed as a vector, with the components

being counts the word has in each document.

Other ways of expressing words as vectors would be to have the

component specific to a document set to 1 if the word is present in the

document or 0 if the word doesn’t exist in the document.

Reusing the same example, a word can be expressed as a two-

dimensional vector [1 1]T in the corpus of two documents. In a huge corpus

of documents, the dimensionality of the word vector would be large as

well. Like document similarity, word similarity can be computed through

either cosine similarity or dot product.

Another way to represent words in a corpus is to one-hot encode

them. In that case, the dimensionality of each word would be the number

of unique words in the corpus. Each word would correspond to an index

that would be set to 1 for the word, and all other remaining entries would

be set to 0. So, each would be extremely sparse. Even similar words would

have entries set to 1 for different indexes, so any kind of similarity measure

would not work.

To represent word vectors better so that the similarity of the words can

be captured more meaningfully, and also to render less dimensionality to

word vectors, Word2Vec was introduced.

Chapter 14 Selected Topics in Natural Language Processing

476

�Word2Vec
Word2Vec is an intelligent way of expressing a word as a vector by training

the word against words in its neighborhood. Words that are contextually

like the given word would produce high cosine similarity or dot product

when their Word2Vec representations are considered.

Generally, the words in the corpus are trained with respect to the words

in their neighborhood to derive the set of the Word2Vec representations.

The two most popular methods of extracting Word2Vec representations are

the CBOW (continuous bag of words) method and the Skip-Gram method.

The core idea behind CBOW is expressed in Figure 14-3.

�Continuous Bag of Words
The Word2Vec family of models is unsupervised. This means that you can

just give it a corpus without additional labels or information and it can

construct dense word embeddings from the corpus. But you will still need

to leverage a supervised, classification methodology once you have this

corpus to get to these embeddings. But we will do that from within the

corpus itself, without any auxiliary information. We can model this CBOW

architecture now as a deep learning classification model such that we take

in the context words as our input, X and try to predict the target word, Y.

In fact, building this architecture is simpler than the Skip-gram model

where we try to predict a whole bunch of context words from a source

target word.

The CBOW method tries to predict the center word from the context

of the neighboring words in a specific window length. Let’s look at the

following sentence and consider a window of five as a neighborhood.

“The cat jumped over the fence and crossed the road.”

Chapter 14 Selected Topics in Natural Language Processing

477

In the first instance, we will try to predict the word jumped from its

neighborhood the cat over the. In the second instance, as we slide the

window by one position, we will try to predict the word over from the

neighboring words cat jumped the fence. This process would be repeated

for the entire corpus.

As shown in Figure 14-3, the CBOW model is trained on the context

words as input and the center word as the output. The words in the input

layer are expressed as one-hot encoded vectors, where the component

for the specific word is set to 1 and all other components are set to 0. The

number of unique words V in the corpus determines the dimensionality of

these one-hot encoded vectors, hence x(t) ∈ RV × 1. Each one-hot encoded

vector x(t) is multiplied by the input embeddings matrix WI ∈ RN × V to

extract the word embeddings vector u(k) ∈ RN × 1 specific to that word. The

index k in u(k) signifies that u(k) is the word embedded for the kth word

Figure 14-3.  The CBOW model

Chapter 14 Selected Topics in Natural Language Processing

478

in the vocabulary. The hidden-layer vector h is the average of the input

embeddings vectors for all the context words in the window, therefore

h ∈ RN × 1 has the same dimension as that of the word embeddings vectors.

h
l

WI x
j i j i

i
j=

-
()

= -() ¹

+()

å1

1 2

1

where l is the length of the window size.

Similarly, all the word embeddings vectors for the input words are

extracted, and their average is the output of the hidden layer. The output

of the hidden layer h is supposed to represent the embeddings of the

target word. All the words in the vocabulary have another set of word

embeddings housed in the output embeddings matrix WO ∈ RV × N. Let the

word embeddings in WO be represented by v(i) ∈ RN × 1, where the index i

denotes the jth word in the vocabulary in order, as maintained in both the

one-hot encoding scheme and the input embeddings matrix.

WO h v h v h v h v hT T
i
T

v
T[][] = ¼ ¼éë ùû1 2, , , , ,

The dot product of the hidden-layer embeddings h is computed with

each of the vior vi for simplicity by multiplying the matrix WO by h. The

dot product, as we know, would give a similarity measure for each of the

output words embeddings vi where j ∈ RN and the hidden-layer computed

embeddings h. The dot products are normalized to probability through a

softmax and, based on the target word wt, the categorical cross-entropy

loss is computed and backpropagated through gradient descent to update

the matrices’ weights for both the input and output embeddings matrices.

The softmax output probability for the jth word of the vocabulary, w(j),

given the context words, is given by the following:

p w w h p
e

e

i i
v h

k

V v h

i
T

k
T

=() = =
å

|

Chapter 14 Selected Topics in Natural Language Processing

479

If the actual output is represented by a one-hot encoded vector y, then

the loss function for the particular combination of target word and its

context words can be given by the following:

C y p
i

v

i
i= ()å log

The different pi are dependent on the input and output embeddings

matrices’ components, which are parameters to the cost function C.

The cost function can be minimized with respect to these embeddings

parameters through backpropagation gradient-descent techniques. To

make this more intuitive, let’s say our target variable is cat. If the hidden-

layer vector h gives the maximum dot product with the outer matrix word

embeddings vector for cat while the dot product with the other outer

word embeddings is low, then the embeddings vectors are more or less

correct. So, very little error or log loss will be backpropagated to correct the

embeddings matrices. However, let’s say the dot product of h with cat is

less, and that of the other outer embeddings vectors is more; the loss of the

softmax is going to be significantly higher, and thus more errors/log loss

are going to be backpropagated to reduce the error.

�Implementing Continuous Bag of Words

The CBOW TensorFlow implementation has been illustrated in this

section. The neighboring words within a distance of two from either side

are used to predict the middle word. The output layer is a big softmax over

the entire vocabulary. The word embeddings vectors are chosen to be of

size 128. The detailed implementation is outlined in the following code.

See also Figure 14-4.

The first thing in the code is that we need to import the needed

packages, and as always, these packages include TensorFlow.

Chapter 14 Selected Topics in Natural Language Processing

480

import numpy as np

import tensorflow as tf

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

%matplotlib inline

Then we need to put in the utility functions; these functions will help

us a lot in processing text data such as text to vector transformations

and more.

def one_hot(ind,vocab_size):

 rec = np.zeros(vocab_size)

 rec[ind] = 1

 return rec

def create_training_data(corpus_raw,WINDOW_SIZE = 2):

 words_list = []

 for sent in corpus_raw.split('.'):

 for w in sent.split():

 if w != '.':

 words_list.append(w.split('.')[0])

 words_list = set(words_list)

 word2ind = {}

 ind2word = {}

 vocab_size = len(words_list)

 for i,w in enumerate(words_list): # Build the dictionaries

 word2ind[w] = i

 ind2word[i] = w

 print(word2ind)

 sentences_list = corpus_raw.split('.')

 sentences = []

 for sent in sentences_list:

Chapter 14 Selected Topics in Natural Language Processing

481

 sent_array = sent.split()

 sent_array = [s.split('.')[0] for s in sent_array]

 sentences.append(sent_array)

 data_recs = []

 for sent in sentences:

 for ind,w in enumerate(sent):

 rec = []

 �for nb_w in sent[max(ind - WINDOW_SIZE, 0) : min(ind +

WINDOW_SIZE, len(sent)) + 1] :

 if nb_w != w:

 rec.append(nb_w)

 data_recs.append([rec,w])

 x_train,y_train = [],[]

 for rec in data_recs:

 input_ = np.zeros(vocab_size)

 for i in range(WINDOW_SIZE-1):

 input_ += one_hot(word2ind[rec[0][i]], vocab_size)

 input_ = input_/len(rec[0])

 x_train.append(input_)

 y_train.append(one_hot(word2ind[rec[1]], vocab_size))

 return x_train,y_train,word2ind,ind2word,vocab_size

Then we load the data. To simplify this process, we put in a dummy

paragraph for the sack of ease. You can put a real data if you want to.

corpus_raw = "Deep Learning has evolved from Artificial

Neural Networks, which has been there since the 1940s. Neural

Networks are interconnected networks of processing units called

artificial neurons that loosely mimic axons in a biological

brain. In a biological neuron, the dendrites receive input

Chapter 14 Selected Topics in Natural Language Processing

482

signals from various neighboring neurons, typically greater

than 1000. These modified signals are then passed on to the

cell body or soma of the neuron, where these signals are summed

together and then passed on to the axon of the neuron. If the

received input signal is more than a specified threshold,

the axon will release a signal which again will pass on to

neighboring dendrites of other neurons. Figure 3-1 depicts the

structure of a biological neuron for reference. The artificial

neuron units are inspired by the biological neurons with some

modifications as per convenience. Much like the dendrites,

the input connections to the neuron carry the attenuated or

amplified input signals from other neighboring neurons. The

signals are passed on to the neuron, where the input signals

are summed up and then a decision is taken what to output

based on the total input received. For instance, for a binary

threshold neuron an output value of 1 is provided when the

total input exceeds a pre-defined threshold; otherwise, the

output stays at 0. Several other types of neurons are used

in artificial neural networks, and their implementation only

differs with respect to the activation function on the total

input to produce the neuron output. In the different biological

equivalents are tagged in the artificial neuron for easy

analogy and interpretation."

Then we will use our functions to process the data, transforming it to

x_train and y_train, and also extract some info like vocab_size.

corpus_raw = (corpus_raw).lower()

x_train,y_train,word2ind,ind2word,vocab_size= create_training_

data(corpus_raw,2)

Chapter 14 Selected Topics in Natural Language Processing

483

Now, after loading and processing the data, we need to implement the

CBOW. But first we need to set the parameters and create variables.

emb_dims = 128

learning_rate = 0.001

x = tf.placeholder(tf.float32,[None,vocab_size])

y = tf.placeholder(tf.float32,[None,vocab_size])

W = tf.Variable(tf.random_normal([vocab_size,emb_dims],mean=0.0,

stddev=0.02,dtype=tf.float32))

b = tf.Variable(tf.random_normal([emb_dims],mean=0.0,stddev=0.02,

dtype=tf.float32))

W_outer = tf.Variable(tf.random_normal([emb_dims,vocab_size],

mean=0.0,stddev=0.02,dtype=tf.float32))

b_outer = tf.Variable(tf.random_normal([vocab_size],mean=0.0,

stddev=0.02,dtype=tf.float32))

Now, let’s create the model.

hidden = tf.add(tf.matmul(x,W),b)

logits = tf.add(tf.matmul(hidden,W_outer),b_outer)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits=logits, labels=y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate).minimize(cost)

And, after creating the architecture, let’s create the graph and run the

model.

epochs,batch_size = 100,10

batch = len(x_train)//batch_size

train for n_iter iterations

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

Chapter 14 Selected Topics in Natural Language Processing

484

 for epoch in range(epochs):

 batch_index = 0

 for batch_num in range(batch):

 x_batch = x_train[batch_index: batch_index +batch_size]

 y_batch = y_train[batch_index: batch_index +batch_size]

 sess.run(optimizer,feed_dict={x: x_batch,y: y_batch})

 �print('epoch:',epoch,'loss :', sess.run(cost,feed_

dict={x: x_batch,y: y_batch}))

 W_embed_trained = sess.run(W)

If the model is working, we will see this output.

epoch: 0 loss : 4.867816

epoch: 1 loss : 1.1019261

epoch: 2 loss : 0.7556237

epoch: 3 loss : 0.5196438

epoch: 4 loss : 0.47611102

After running the model and finishing the epochs, we can use the

following code to plot the model.

W_embedded = TSNE(n_components=2).fit_transform(W_embed_

trained)

plt.figure(figsize=(10,10))

for i in range(len(W_embedded)):

 plt.text(W_embedded[i,0],W_embedded[i,1],ind2word[i])

plt.xlim(-150,150)

plt.ylim(-150,150)

Chapter 14 Selected Topics in Natural Language Processing

485

The word embeddings learned have been projected to a 2-D

plane through the TSNE plot. The TSNE plot gives a rough idea of the

neighborhood of a given word. We can see that the word embeddings

vectors learned are reasonable. For instance, the words deep and learning

are very close to each other. Similarly, the words biological and references

are also very close to each other.

Figure 14-4.  The TSNE of the CBOW

Chapter 14 Selected Topics in Natural Language Processing

486

�Skip-Gram Model for Word Embeddings
Skip-gram models work the other way around. Instead of trying to

predict the current word from the context words, as in CBOW, in Skip-

gram models the context words are predicted based on the current

word. Generally, given a current word, context words are taken in its

neighborhood in each window. For a given window of five words, there

would be four context words that one needs to predict based on the

current word. Figure 14-5 shows the high-level design of a Skip-gram

model. Much like CBOW, in the Skip-gram model one needs to learn two

sets of word embeddings: one for the input words and one for the output

context words. A Skip-gram model can be seen as a reversed CBOW model.

In the CBOW model, the input to the model is a one-hot encoded

vector xi ∈ RV × 1 for the current word, where V is the size of the vocabulary

of the corpus. However, unlike CBOW, here the input is the current word

and not the context words. The input xi, when multiplied by the input word

embeddings matrix WI, produces the word embeddings vector uk ∈ RN × 1,

Figure 14-5.  How Skip-gram works

Chapter 14 Selected Topics in Natural Language Processing

487

given that xt represents the kth word in the vocabulary list. N, as before,

represents the word embeddings dimensionality. The hidden-layer output

h is nothing but uk.

The dot product of the hidden-layer output h is computed with every

word vector v(j) of the outer embeddings’ matrix WO ∈ RV × N by computing

[WO][h] just as in CBOW. However, instead of one softmax output layer,

there are multiple softmax layers based on the number of context words

that we are going to predict. For example, in Figure 14-5 there are four

softmax output layers corresponding to the four context words. The input

to each of these softmax layers is the same set of dot products in [WO][h],

representing how similar the input word is to each word in the vocabulary.

WO h v h v h v h v hT T
i
T

v
T[][] = ¼ ¼éë ùû1 2, , , , ,

Similarly, all the softmax layers would receive the same set of

probabilities corresponding to all the vocabulary words, with the

probability of the jth word wj given the current or the center word wk being

given by the following:

p w w p
e

e

j k i
v w

k

V v w

j
T k

k
T k

|() = =
å

If there are four target words, and their one-hot encoded vectors are

represented by yj − 2, yj − 1, yj + 1, yj + 2 ∈ Rv × 1, then the total loss function C for

the word combination would be the summation of all four softmax losses

as represented here:

C y p
m t m t

t

j

V

j
m j= - ()

= - ¹

+

å å
2

2

log

Gradient descent using backpropagation can be used to minimize

the cost function and derive the input and output embeddings matrices’

components.

Chapter 14 Selected Topics in Natural Language Processing

488

Here are a few salient features about the Skip-gram and CBOW models:

•	 For Skip-gram models, the window size is not generally

fixed. Given a maximum window size, the window

size at each current word is randomly chosen so that

smaller windows are chosen more frequently than

larger ones. With Skip-gram, one can generate a lot

of training samples from a limited amount of text,

and infrequent words and phrases are also very well

represented.

•	 CBOW is much faster to train than Skip-gram and has

slightly better accuracy for frequent words.

•	 Both Skip-gram and CBOW look at local windows for

word co-occurrences and then try to predict either

the context words from the center word (as with Skip-

gram) or the center word from the context words (as

with CBOW). So, basically, we observe in Skip-gram

that locally within each window the probability of

the co-occurrence of the context word wC and the

current word wt, given by P(wc| wt), is assumed to be

proportional to the exponential of the dot product of

their word embeddings vectors.

•	 where u and v are the input and output word

embeddings vectors for the current and context words,

respectively. Since the co-occurrence is measured

locally, these models miss utilizing the global co-

occurrence statistics for word pairs within certain

window lengths. Next, we are going to explore a basic

method to look at the global co-occurrence statistics

over a corpus, and then use SVD (singular value

decomposition) to generate word vectors.

Chapter 14 Selected Topics in Natural Language Processing

489

�Implementing Skip-Gram

In this section, we will illustrate the Skip-gram model for learning word

vector embeddings with a TensorFlow implementation. The model is

trained on a small dataset for easy representation. However, the model

can be used to train large corpuses as desired. As illustrated in the Skip-

gram section, the model is trained as a classification network. However,

we are more interested in the word embeddings matrix than in the actual

classification of words. The size of the word embeddings has been chosen

to be 128. The detailed code is represented as follows. Once the word

embeddings vectors are learned, they are projected via TSNE on a two-

dimensional surface for visual interpretation.

As always, we have to import the needed packages, including

TensorFlow.

import numpy as np

import tensorflow as tf

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

%matplotlib inline

And we import the utility functions—all of them.

def one_hot(ind,vocab_size):

 rec = np.zeros(vocab_size)

 rec[ind] = 1

 return rec

def create_training_data(corpus_raw,WINDOW_SIZE = 2):

 words_list = []

 for sent in corpus_raw.split('.'):

 for w in sent.split():

 if w != '.':

 words_list.append(w.split('.')[0])

Chapter 14 Selected Topics in Natural Language Processing

490

 words_list = set(words_list)

 word2ind = {}

 ind2word = {}

 vocab_size = len(words_list)

 for i,w in enumerate(words_list): # Build the dictionaries

 word2ind[w] = i

 ind2word[i] = w

 print(word2ind)

 sentences_list = corpus_raw.split('.')

 sentences = []

 for sent in sentences_list:

 sent_array = sent.split()

 sent_array = [s.split('.')[0] for s in sent_array]

 sentences.append(sent_array)

 data_recs = []

 for sent in sentences:

 for ind,w in enumerate(sent):

 rec = []

 �for nb_w in sent[max(ind - WINDOW_SIZE, 0) : min(ind +

WINDOW_SIZE, len(sent)) + 1] :

 if nb_w != w:

 rec.append(nb_w)

 data_recs.append([rec,w])

 x_train,y_train = [],[]

 for rec in data_recs:

 input_ = np.zeros(vocab_size)

 for i in range(WINDOW_SIZE-1):

 input_ += one_hot(word2ind[rec[0][i]], vocab_size)

 input_ = input_/len(rec[0])

Chapter 14 Selected Topics in Natural Language Processing

491

 x_train.append(input_)

 y_train.append(one_hot(word2ind[rec[1]], vocab_size))

 return x_train,y_train,word2ind,ind2word,vocab_size

After this, we need to load the data. For simplicity, we will use the same

paragraph used in the previous example, so you have to load it or load your

own data. And do not forget to process it.

Then, we need to set the parameters and create the needed variables

such as training input and output, weights, and biases for the model.

emb_dims = 128

learning_rate = 0.0001

epochs,batch_size = 100,10

batch = len(x_train)//batch_size

x = tf.placeholder(tf.float32,[None,vocab_size])

y = tf.placeholder(tf.float32,[None,vocab_size])

W = tf.Variable(tf.random_normal([vocab_size,emb_dims],

mean=0.0,stddev=0.02,dtype=tf.float32))

b = tf.Variable(tf.random_normal([emb_dims],mean=0.0,

stddev=0.02,dtype=tf.float32))

W_outer = tf.Variable(tf.random_normal([emb_dims,vocab_size],

mean=0.0,stddev=0.02,dtype=tf.float32))

b_outer = tf.Variable(tf.random_normal([vocab_size],mean=0.0,

stddev=0.02,dtype=tf.float32))

Now we are ready to create the Skip-gram model. Let’s build it.

hidden = tf.add(tf.matmul(x,W),b)

logits = tf.add(tf.matmul(hidden,W_outer),b_outer)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits=logits, labels=y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate).minimize(cost)

Chapter 14 Selected Topics in Natural Language Processing

492

Now you can run the model, the same as the previous model in the

CBOW example, and see the result using the TSNE plot. We will leave this

job for you as an exercise.

�GloVe
Now we’ll discuss one of the newer methods of creating vector space

models of word semantics, more commonly known as word embeddings.

GloVe, coined from Global Vectors, is a model for distributed word

representation. The model is an unsupervised learning algorithm for

obtaining vector representations for words. This is achieved by mapping

words into a meaningful space where the distance between words is

related to semantic similarity. Training is performed on aggregated global

word–word co-occurrence statistics from a corpus, and the resulting

representations showcase interesting linear substructures of the word

vector space. It was developed as an open source project at Stanford.

As a log-bilinear regression model for unsupervised learning of word

representations, it combines the features of two model families, namely

the global matrix factorization and local context window methods.

GloVe is a pretrained, readily available, word embeddings vectors

library from Stanford University. The training method for GloVe is

significantly different from those for CBOW and Skip-gram. Instead of

basing predictions on local-running windows for words, GloVe uses global

word-to-word co-occurrence statistics from a corpus to train the model

and derive the GloVe vectors. Pretrained GloVe word embeddings are

available at https://nlp.stanford.edu/projects/glove/.

In NLP, global matrix factorization is the process of using matrix

factorization methods from linear algebra to perform rank reduction on

a large term-frequency matrix. These matrices usually represent either

term–document frequencies, in which the rows are words and the columns

are documents (or sometimes paragraphs), or term–term frequencies,

which have words on both axes and measure co-occurrence. Global matrix

Chapter 14 Selected Topics in Natural Language Processing

https://nlp.stanford.edu/projects/glove/

493

factorization applied to term-document frequency matrices is more

commonly known as latent semantic analysis (LSA). In latent semantic

analysis, the high-dimensional matrix is reduced via singular value

decomposition (SVD).

Like SVD methods, GloVe looks at the global co-occurrence statistics,

but the relation of the word and context vectors with respect to the co-

occurrences count is a little different. If there are two words wi and wj and

a context word wk, then the ratio of the probabilities P(wk| wi) and P(wk| wj)

provide more information than the probabilities themselves.

	 1.	 Collect word co-occurrence statistics in the form of

word co-occurrence matrix X. Each element Xij of

such a matrix represents how often word i appears

in the context of word j. Usually we scan our corpus

in the following manner: for each term we look

for context terms within some area defined by a

window_size before the term and a window_size

after the term. Also, we give less weight for more

distant words, usually using this formula:

decay
offset

=
1

	 2.	 Define soft constraints for each word pair:

w w b b Xi
T

j i j ij+ + = ()log

	 3.	 Here, wi = vector for the main word, wj = vector for

the context word, and bi, bj are scalar biases for the

main and context words.

	 4.	 Define a cost function.

J f X w w b b X
i

V

j

V

ij i
T

j i j ij= () + + - ()()åå log
2

Chapter 14 Selected Topics in Natural Language Processing

494

Here, f is a weighting function, which helps us to prevent learning

only from extremely common word pairs. The GloVe authors chose the

following function:

f X
X

x
if X XMAX otherwiseij

ij
ij() = æ

è
ç

ö

ø
÷ <
µ

{
max

1

�Summary
In this chapter we discussed the traditional methods of natural language

processing.

In the next and final chapter, we will show you some examples of

how to build a deep learning pipeline on three different datasets: one

on a tabular dataset; another on images; and the final one on text data,

showing you a TensorFlow model from the ground up with progressive

documentation.

Chapter 14 Selected Topics in Natural Language Processing

495© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6_15

CHAPTER 15

Applications
�Case Study—Tabular Dataset
�Understanding the Dataset
In this section, we are going to understand the dataset. By understanding,

we mean that we are going to extract any information we can get from

this data and we are going to exercise on “Titanic: Machine Learning from

Disaster” from Kaggle (www.kaggle.com/c/titanic). I was also inspired to

do some visual analysis of the dataset from some other resources I came

across. So, let us start coding.

If you browse the dataset page on Kaggle, you will notice that the

page gives information about the details of the passengers aboard the

Titanic, and a column on survival of the passengers. Those who survived

are represented as “1” and those who did not survive are represented as

“0”. The goal of this exercise is to determine if, with the other features/

information about the passengers, it is possible to determine those who

are likely to survive.

To check any hypothesis you have in mind, you need a good

visualization, to see the information inside the data. Data visualization

allows decision makers to see relationships among multidimensional

datasets, and provides new ways to understand data through the use of

heat maps, fever charts, and other rich graphical representations.

http://www.kaggle.com/c/titanic

496

Let us first import all the needed packages. You are free to use another

package, but these are the ones recommended to get the job done.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

If you do not remember the preceding packages, here is a small

summary about three of them, but do not hesitate to return to the

introduction part and read about all the packages this book contains.

•	 pandas is a great library that deals with everything that

NumPy and SciPy cannot do. Thanks to its specific data

structures, namely DataFrames and Series, pandas

allows you to handle complex tables of data of different

types and time series. Also, you can then slice, dice,

handle missing elements, add, rename, aggregate,

reshape, and finally visualize your data as well.

•	 matplotlib​ is a Python 2-D plotting library that

produces publication quality figures in a variety of

hard copy formats and interactive environments across

platforms. Also, it contains all components that are

required to create quality plots from data and visualize

them interactively. For simple plotting, the pyplot

module provides a MATLAB-like interface.

•	 Seaborn is a Python data visualization library based

on matplotlib. It provides a high-level interface for

drawing attractive and informative statistical graphics.

Chapter 15 Applications

497

�Scratching the Surface

After loading all needed packages, we need to load the dataset; of course

we will use pandas to load it as follows:

titanic_df = pd.read_csv('./input/titanic/train.csv')

titanic_df.head()

The head() function will print the first five rows of the DataFrame that

contain the dataset (Figure 15-1).

Note I f you wonder why you don’t see a similar table, that’s
because we have Jupyter as the IDE. So, try to download it and
install it.

Now, before we start visualizing the dataset, we need a bit of

information about each column of this dataset, and we can achieve this by

calling the info() function from the DataFrame.

titanic_df.info()

This function outputs the summary of the dataset. The summary

contains column names, types and number of non-null entries, and it

outputs the size of the DataFrame in memory as follows (Figure 15-2).

Figure 15-1.  The pandas DataFrame that contains the Titanic
dataset

Chapter 15 Applications

498

Now we can start visualizing each column and see if we can extract any

knowledge from it or not.

Let us warm up with the Sex column, which seems simple because

it consists of only male/female entries. So let us count them up by using

the factorplot(). This function takes the case sensitive column name,

the DataFrame, and kind count, because we just need to count them up

(Figure 15-3).

sns.factorplot('Sex',data=titanic_df,kind='count')

Figure 15-2.  Titanic DataFrame column information

Chapter 15 Applications

499

We can see that the count of males is almost double the count of

females, but we know that the number of females who survived is greater

than the number of males who survived. We can prove it by visualizing the

count of survivors and see the number of survived/not survived males and

females (Figure 15-4).

We can do that by using the same factorplot(), adding to it one more

parameter which is hue, as follows:

sns.factorplot('Sex',kind='count',data=titanic_df,hue='Survived')

Figure 15-3.  A sex count visualization

Figure 15-4.  The sex/survived count

Chapter 15 Applications

500

We can now prove the percentage of survived/not survived of both

males and females, just by looking at two visualization charts.

The next step is to make things more complex, by adding the Pclass

column to the equation (Figure 15-5).

sns.factorplot('Pclass',data=titanic_df,kind='count')

This column represents the class reserved for each passenger,

either 1 = first, 2 = second, or 3 = third class. If you look at the chart, you

can see that almost half of the passengers are in third class. I think it make

sense that most passengers are in third class, in an expensive type of

transportation.

Now, let’s see the count of each Sex through each Pclass, and we will

do the same as we did before. We can see something strange happens here.

If you look carefully at the chart (Figure 15-6), you might see what I have

seen, which is the following: In first and second class the count number

of males almost equals the number of females, but in the third class the

number of males is almost double. You might intuit that from watching the

Figure 15-5.  The Pclass count

Chapter 15 Applications

501

“Titanic” movie: when you see Leonardo DiCaprio’s character traveling in

third class, you can see that most of the class consists of males.

sns.factorplot('Pclass',data=titanic_df,hue='Sex',kind='count')

�Digging Deeper

For now, we think you have some good understanding, but from now on

we will go deeper. Therefore, we will not only depend on the information

from columns, we also will extract and fabricate the column dimensions to

get more and more information.

We need to extract more features. By saying that, we mean we will

create new columns that contain knowledge that was hidden. For instance,

we need to calculate the number of children who were in the ship. We can

extract it from the Age column with some associations from the Sex column,

and save it as the person column (Figure 15-7), as in the following code:

Figure 15-6.  The Pclass/sex count

Chapter 15 Applications

502

def titanic_children(passenger):

 age , sex = passenger

 if age < 16:

 return 'child'

 else:

 return sex

titanic_df['person'] = titanic_df[['Age','Sex']].apply(titanic_

children,axis=1)

Now, let’s see if the new feature can help us to gain a hypothesis.

sns.factorplot('Pclass',data=titanic_

df,hue='person',kind='count')

Figure 15-7.  The modified Titanic DataFrame

Chapter 15 Applications

503

As always, we will make a factorplot to see if we gain some

knowledge or not. As you see in Figure 15-8, the count number of children

(child) in third class is huge compare with both first and second class. But

the count number of males still is almost the same, so let us find the total

count of people per age.

We can done this with the hist() function that calculates the

histogram of the age; simply, it counts the frequency of the variable within

an interval.

titanic_df['Age'].hist(bins=70)

Figure 15-8.  The Pclass/person count

Chapter 15 Applications

504

As you can see in Figure 15-9, the frequency of people on the ship who

are between 16 and 35 is much greater than the people above that age or

children below it.

Let’s go a step further and count the frequency of male/female per age.

We do it by stacking multiple figures and creating what’s called FacetGrid.

This FacetGrid is composed of two charts: each of them is a kdeplot type

that represents either male or female, and each kdeplot represents the Age

of the owing Sex type.

So, to simplify the process, you can find all the other visualizations in

the code accompanying this book. Go check it and see if you can extract

more information and more understanding from this dataset.

Figure 15-9.  The Age histogram

Chapter 15 Applications

505

�Preprocessing Dataset
If you take a look in this table’s features/columns from left to right, you will

see the following:

•	 PassengerId: This column contains the ID of each

observation, and it is an almost useless feature for

any machine learning model; we cannot extract any

correlation between this feature and the target/output.

•	 Survived: This column is the output feature,

sometimes called the target or response; it contains

values per observation—either 1 if the passenger

survived or 0 if not.

•	 Pclass: This column contains the class of each

passenger on the ship; it’s values are either 1, 2, or 3.

•	 Age: This column contains the age of each passenger

on the ship, and it is a good feature. But with some

tweaking, we can extract a new feature from it: whether

the passenger is a child or not, and that’s of course with

the help of the Sex column.

But, if you take a careful look at the Age column, you will see that it

contains some null/empty values. Theoretically of course, we can fill these

values. Using some statistics, we can assume that this column follows some

unknown distribution, and most of the data is repeated as a phenomenon

called the distribution mean.

So, without digging into the rock of statistics, we can ensure that filling

the missing values with the most repeated ones will do the job, and by

saying “most repeated,” we mean the mean value of the column.

Chapter 15 Applications

506

Calculating the mean is not that hard, and thankfully, the pandas

library provides us with wonderful functionalities that help us not waste

a lot of time. The function mean() calculates the mean of the Age column

easily.

titanic_df['Age'].mean()

29.69911764705882

Now what remains is to fill the empty value in that column with this

value, and again we can do that by the fillna() function: by passing a

certain value to it, we can fill all the empties/nulls in that column.

titanic_df['Age'] = titanic_df['Age'].fillna(titanic_df['Age'].

mean())

In the Titanic dataset, the Cabin column does not provide us with any

useful knowledge; besides, it is mostly null values. So we will not use it,

because it is useless and will influence any machine learning model. The

processing step for this column is to remove it from the DataFrame.

titanic_df.drop('Cabin',axis=1, inplace=True)

As an optional step, you may want to clean and use the Embarked

column, but we do not recommend that. It did not give us any useful

knowledge, and we recommend removing it, but we gave you this step if

you wanted to try this.

titanic_df['Embarked'] = titanic_df['Embarked'].fillna('S')

After filling the empties, now let’s go and check if there are any empties

existing in the whole dataset or not.

titanic_df.isnull().values.any()

False

Chapter 15 Applications

507

Now, after we’ve ensured that there are no empties in the whole

dataset, let’s go and craft some new features that might help the machine

learning model.

We will start with an easy one, combining both the Parch and SibSp

columns, and build a new column that is Boolean. It contains either With

Family or Without Family values, and those are equal to True/False values,

therefore we consider it a Boolean column.

titanic_df['Alone'] = titanic_df.Parch + titanic_df.SibSp

titanic_df['Alone'].loc[titanic_df['Alone']>0] = 'With Family'

titanic_df['Alone'].loc[titanic_df['Alone'] == 0] = 'Without

Family'

After that, we will create a new column called person, which is similar

to the Sex column, but the difference is it also tells us if the passenger is a

child (if the passenger age is under 16 years).

def titanic_children(passenger):

 age , sex = passenger

 if age <16:

 return 'child'

 else:

 return sex

titanic_df['person'] = titanic_df[['Age','Sex']].apply(titanic_

children,axis=1)

Now, let’s give it a look, and see what our data looks like so far

(Figure 15-10).

titanic_df.head()

Chapter 15 Applications

508

Now let’s transform the person, alone, and embarked to one-hot

encoded columns. If you do not know what one-hot encoded means, you

can search for it. It’s a type of transformation that basically transforms any

column to a binary format.

person_dummies = pd.get_dummies(titanic_df['person'])

alone_dummies = pd.get_dummies(titanic_df['Alone'])

embarked_dummies = pd.get_dummies(titanic_df['Embarked'])

embarked_dummies.drop('Q',axis=1,inplace=True)

Also, we will transform the Pclass to on-hot-encoding form and

rename its columns class_1, class_2, and class_3.

pclass_dummies = pd.get_dummies(titanic_df['Pclass'])

pclass_dummies.columns=['class_1','class_2','class_3']

The processing step that we will apply to Age is very simple; we will

remove the percent of it, as there’s is no age 20.2. We can achieve this by

calling ceil() and applying it to the age.

And we will do the same processing step to the Fare column too.

titanic_df['Age'] = titanic_df['Age'].apply(math.ceil)

titanic_df['Fare'] = titanic_df['Fare'].apply(math.ceil)

Figure 15-10.  The head() of the data after some preprocessing

Chapter 15 Applications

509

Now, we will add all the new columns to our dataset. Using the

concat() function, we can add columns to DataFrame with an axis=1

parameter, and rows with axis=0.

titanic_df = pd.concat([titanic_df,pclass_dummies,person_

dummies,alone_dummies,embarked_dummies],axis=1)

Now, let us drop all the useless columns from the DataFrame, and all

the repeated/correlated (e.g., the Pclass and its classes) columns too.

titanic_df.drop(['PassengerId','Name','Sex','SibSp','Parch',

'Ticket','Embarked'],axis=1,inplace=True)

titanic_df.drop(['Alone','person','Pclass','Without Family',

'male','class_3'],axis=1,inplace=True)

At last, after finishing cleaning and extracting knowledge from this

dataset, it is fair to take a last look at it (Figure 15-11) before going on to

the next step. Also, it is recommended to save the data after cleaning the

pipeline, to make it easier for you and for backup purposes too.

titanic_df.head()

Figure 15-11.  The Titanic DataFrame after the preprocessing step

Chapter 15 Applications

510

For the last step in preprocessing, we will create a checkpoint of the

data, to make a backup and make sure there’s no data loss.

titanic_df.to_csv('titanic.preprocessing.csv', index=False)

�Building the Model
And here we are at the core of our application, building the model with

TensorFlow. Now we will use all that we have learned in the previous part

to build a neural network that is able to classify the observations about

who survived the Titanic or not.

We will create a function that is called build_neural_network that will

build the whole network for us and return the graph that we will train. The

network should take an input that is equal in shape to the preprocessed

Titanic dataset, and return an output that is either 0 or 1.

Build Neural Network

from collections import namedtuple

def build_neural_network(hidden_units=10):

 tf.reset_default_graph()

 �inputs = tf.placeholder(tf.float32, shape=[None, x_train.

shape[1]])

 labels = tf.placeholder(tf.float32, shape=[None, 1])

 learning_rate = tf.placeholder(tf.float32)

 is_training=tf.Variable(True,dtype=tf.bool)

 initializer = tf.contrib.layers.xavier_initializer()

 �fc = tf.layers.dense(inputs, hidden_units,

activation=None,kernel_initializer=initializer)

 fc=tf.layers.batch_normalization(fc, training=is_training)

 fc=tf.nn.relu(fc)

Chapter 15 Applications

511

 logits = tf.layers.dense(fc, 1, activation=None)

 �cross_entropy = tf.nn.sigmoid_cross_entropy_with_

logits(labels=labels, logits=logits)

 cost = tf.reduce_mean(cross_entropy)

 �with tf.control_dependencies(tf.get_collection(tf.

GraphKeys.UPDATE_OPS)):

 �optimizer = tf.train.AdamOptimizer(learning_

rate=learning_rate).minimize(cost)

 predicted = tf.nn.sigmoid(logits)

 correct_pred = tf.equal(tf.round(predicted), labels)

 �accuracy = tf.reduce_mean(tf.cast(correct_pred,

tf.float32))

 # Export the nodes

 �export_nodes = �['inputs', 'labels', 'learning_rate',

'is_training', 'logits', 'cost',

'optimizer', 'predicted', 'accuracy']

 Graph = namedtuple('Graph', export_nodes)

 local_dict = locals()

 graph = Graph(*[local_dict[each] for each in export_nodes])

 return graph

model = build_neural_network()

Now, after we’ve created the whole neural network model, we need to

make sure the dataset is divided into training observations/batches for the

model. So, we will create a function that takes the data and yields batches

that have a size of 32, or whatever size that you set.

Chapter 15 Applications

512

def get_batch(data_x,data_y,batch_size=32):

 batch_n=len(data_x)//batch_size

 for i in range(batch_n):

 batch_x=data_x[i*batch_size:(i+1)*batch_size]

 batch_y=data_y[i*batch_size:(i+1)*batch_size]

 yield batch_x,batch_y

Now we need to define some parameters for the model, such as the

number of epochs, learning rate, and batch size.

epochs = 200

train_collect = 50

train_print=train_collect*2

learning_rate_value = 0.001

batch_size=16

x_collect = []

train_loss_collect = []

train_acc_collect = []

valid_loss_collect = []

valid_acc_collect = []

Now, we will create a session that we will run the whole network graph

onto. We will iterate the number of epochs, and inside of each epoch we’ll

generate some batches that we’ll feed to the model, and generate a loss

that will be backpropagated to enhance the model weights.

saver = tf.train.Saver()

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 iteration=0

 for e in range(epochs):

Chapter 15 Applications

513

 �for batch_x,batch_y in get_batch(x_train,y_train,batch_

size):

 iteration+=1

 feed = {model.inputs: x_train,

 model.labels: y_train,

 model.learning_rate: learning_rate_value,

 model.is_training:True

 }

 �train_loss, _, train_acc = sess.run([model.cost,

model.optimizer, model.accuracy], feed_dict=feed)

 if iteration % train_collect == 0:

 x_collect.append(e)

 train_loss_collect.append(train_loss)

 train_acc_collect.append(train_acc)

 if iteration % train_print==0:

 �print("Epoch: {}/{}".format(e + 1, epochs),

 "Train Loss: {:.4f}".format(train_loss),

 "Train Acc: {:.4f}".format(train_acc))

 feed = {model.inputs: x_test,

 model.labels: y_test,

 model.is_training:False

 }

 �val_loss, val_acc = sess.run([model.cost,

model.accuracy], feed_dict=feed)

 valid_loss_collect.append(val_loss)

 valid_acc_collect.append(val_acc)

Chapter 15 Applications

514

 if iteration % train_print==0:

 print("Epoch: {}/{}".format(e + 1, epochs),

 �"Validation Loss: {:.4f}".format(val_loss),

 "Validation Acc: {:.4f}".format(val_acc))

 saver.save(sess, "./titanic.ckpt")

If this code is running correctly for you without any errors, you will see

this progress log in your output shell:

Epoch: 3/200 Train Loss: 0.6199 Train Acc: 0.6770

Epoch: 3/200 Validation Loss: 0.6276 Validation Acc: 0.6425

Epoch: 5/200 Train Loss: 0.6013 Train Acc: 0.6784

Epoch: 5/200 Validation Loss: 0.6085 Validation Acc: 0.6480

...

Epoch: 198/200 Train Loss: 0.3361 Train Acc: 0.8652

Epoch: 198/200 Validation Loss: 0.4740 Validation Acc: 0.8156

Epoch: 200/200 Train Loss: 0.3361 Train Acc: 0.8652

Epoch: 200/200 Validation Loss: 0.4780 Validation Acc: 0.8212

And finally, after the model finishes the training, you can see an analysis

of it to decide if you need to enhance the model or not (Figure 15-12).

Chapter 15 Applications

515

�Case Study—IMDB Movie Review Data
with Word2Vec
In this section we will start with the IMDB data and use Word2Vec, the

most common processing algorithm with the gensim package. We already

talked about Word2Vec in previous chapters, but in this chapter we’ll try

to use it with the IMDB dataset; so let’s take a quick tour. In this section

we have some rows/samples/observations that each one of them is either

a positive or negative sample, and we will divide those samples into

training and testing sets. But the new thing that we will do is to transform

it as numbers as we talked about with word embeddings. Then, after the

transformation, we will pass it to a new layer to feed the learning layer to

complete the learning task, or save it in a pickle. In this case, we want you

to learn how to use this gensim embeddings and understand the concept

of Word2Vec, so you can then learn more about Word2Vec. This is a very

well-used case for learning to build good models.

Figure 15-12.  The model progress through the dataset

Chapter 15 Applications

516

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g.

pd.read_csv)

import html

import os

from nltk.corpus import stopwords

import nltk

nltk.download('stopwords')

import re

from tqdm import tqdm

We need to load files: positive ones, negative ones, and test files.

path = "/content/aclImdb/"

positiveFiles = [x for x in os.listdir(path+"train/pos/")

 if x.endswith(".txt")]

negativeFiles = [x for x in os.listdir(path+"train/neg/")

 if x.endswith(".txt")]

testFiles = [x for x in os.listdir(path+"test/")

 if x.endswith(".txt")]

positiveFiles contain positive reviews.

positiveReviews, negativeReviews, testReviews = [], [], []

for pfile in positiveFiles:

 with open(path+"train/pos/"+pfile, encoding="latin1") as f:

 positiveReviews.append(f.read())

for nfile in negativeFiles:

 with open(path+"train/neg/"+nfile, encoding="latin1") as f:

 negativeReviews.append(f.read())

for tfile in testFiles:

 with open(path+"test/"+tfile, encoding="latin1") as f:

 testReviews.append(f.read())

Chapter 15 Applications

517

We now need to know the size of positive reviews and negative reviews.

print(len(positiveReviews))

print(len(negativeReviews))

print(len(testReviews))

Output

12500

12500

2

Let’s put all types of reviews in the same DataFrame so we can see them.

reviews = pd.concat�([pd.DataFrame({"review":positiveReviews,

"label":1, "file":positiveFiles}),

 �pd.DataFrame({"review":negativeReviews,

"label":0, "file":negativeFiles}),

 �pd.DataFrame({"review":testReviews,

"label":-1, "file":testFiles})

 �], ignore_index=True).sample(frac=1,

random_state=1)

Get the data shape; it should be a number with three as the dimension

of data.

reviews.shape

Output

(25002, 3)

Let’s see the DataFrame of the data (Figure 15-13).

reviews[0:10]

Chapter 15 Applications

518

Stop words in English are to be ignored.

stopWords = stopwords.words('english')

Define the function that does the cleaning process.

def CleanData(sentence):

 processedList = ""

 #convert to lowercase and ignore special charcter

 �sentence = re.sub(r'[^A-Za-z0-9\s.]', r", str(sentence).

lower())

 sentence = re.sub(r'\n', r' ', sentence)

 �sentence = " ".join([word for word in sentence.split() if

word not in stopWords])

 return sentence

reviews.info()

Figure 15-13.  The first ten rows of reviews

Chapter 15 Applications

519

reviews['review'][0] reviews['review'][0]

Output

'Level One, Horror.

When I saw this film for the

first time at 10, I knew it would give me nightmares. It did.

Surprisingly, as I recall, it was the sound as much as the

sight of the monster that caused them.

Level Two,

Psychoanalytic Theory.

CleanData(reviews['review'][0])

Output

'level one horror.br br saw film first time 10 knew would give

nightmares. did. surprisingly recall sound much sight monster

caused them.br br level two psychoanalytic theory.

reviews['review'] = reviews['review'].map(lambda x:

CleanData(x))

reviews['review'].head()

Output

21939 oh god horrible film. film right people involv...

24113 rule states quite clearly movies like resident...

4633 found soso romancedrama nice ending generally ...

17240 forest damned starts five young friends brothe...

4894 first show.br br welcome trinity county. sleep...

Name: review, dtype: object

Chapter 15 Applications

520

tmp_corpus = reviews['review'].map(lambda x:x.split('.'))

#corpus [[w1, w2, w3,...],[...]]

corpus = []

for i in tqdm(range(len(reviews))):

 for line in tmp_corpus[i]:

 words = [x for x in line.split()]

 corpus.append(words)

Output

100%|██████████| 25002/25002 [00:02<00:00,

10673.63it/s]

len(corpus)

Output

402194

#removing blank list

corpus_new = []

for i in range(len(corpus)):

 if (len(corpus[i]) != 0):

 corpus_new.append(corpus[i])

num_of_sentences = len(corpus_new)

num_of_words = 0

for line in corpus_new:

 num_of_words += len(line)

print('Num of sentences - %s'%(num_of_sentences))

print('Num of words - %s'%(num_of_words))

Output

Num of sentences - 354417

Num of words – 3265546

Chapter 15 Applications

521

Now let’s see the gensim package and how to use it with Word2Vec.

from gensim.models import Word2Vec

Let’s bulid a Word2Vec model and initialize parameters.

sg - skip gram | window = size of the window | size = vector

dimension

size = 100

window_size = 2 # sentences weren't too long, so

epochs = 100

min_count = 2

workers = 4

model = Word2Vec(corpus_new)

model.build_vocab(sentences= corpus_new, update=True)

for i in range(5):

 �model.train(sentences=corpus_new, epochs=50, total_

examples=model.corpus_count)

After the model is trained, let’s save it.

#save model

model.save('w2v_model')

Load the model into Word2Vec, which is a module in gensim.

model = Word2Vec.load('w2v_model')

Let’s find the most similar movies.

model.wv.most_similar('movie')

Output

[('film', 0.8756906986236572),

 ('flick', 0.6631126403808594),

 ('movies', 0.6589803695678711),

Chapter 15 Applications

522

 ('it', 0.562816321849823),

 ('films', 0.5470719337463379),

 ('show', 0.5167748928070068),

 ('sequel', 0.5143758654594421),

 ('this', 0.5129573941230774),

 ('thing', 0.5066217184066772),

 ('really', 0.4848993122577667)]

The next step is to extract data using its label.

reviews = reviews[["review", "label", "file"]].sample(frac=1,

 random_state=1)

train = reviews[reviews.label!=-1].sample(frac=0.6, random_state=1)

valid = reviews[reviews.label!=-1].drop(train.index)

test = reviews[reviews.label==-1]

Let’s see the shapes of the train/test datasets:

print(train.shape)

print(valid.shape)

print(test.shape)

Output

(15000, 3)

(10000, 3)

(2, 3)

valid.head()

See Figure 12-14.

Chapter 15 Applications

523

Now we’ll do some data preprocessing, which the last iteration before

we train our model.

num_features = 100

index2word_set = set(model.wv.index2word)

model = model

def featureVecorMethod(words):

 featureVec = np.zeros(num_features, dtype='float32')

 nwords = 0

 for word in words:

 if word in index2word_set:

 nwords+= 1

 featureVec = np.add(featureVec, model[word])

 #average of feature vec

 featureVec = np.divide(featureVec, nwords)

 return featureVec

def getAvgFeatureVecs(reviews):

 counter = 0

 �reviewFeatureVecs = np.zeros((len(reviews), num_features),

dtype='float32')

Figure 15-14.  Five rows of valid DataFrame

Chapter 15 Applications

524

 for review in reviews:

 if counter%1000 == 0:

 print("Review %d of %d"%(counter, len(reviews)))

 reviewFeatureVecs[counter] = featureVecorMethod(review)

 counter = counter+1

 return reviewFeatureVecs

clean_train_reviews = []

for review in train['review']:

 clean_train_reviews.append(list(CleanData(review).split()))

print(len(clean_train_reviews))\

trainDataVecs = getAvgFeatureVecs(clean_train_reviews)

Output

Review 1000 of 15000

Review 2000 of 15000

Review 3000 of 15000

Review 4000 of 15000

Review 5000 of 15000

Review 6000 of 15000

Review 7000 of 15000

Review 8000 of 15000

Review 9000 of 15000

Review 10000 of 15000

Review 11000 of 15000

Review 12000 of 15000

Review 13000 of 15000

Review 14000 of 15000

len(valid['review'])

Output

10000

Chapter 15 Applications

525

clean_test_reviews = []

for review in valid['review']:

 clean_test_reviews.append(list(CleanData(review).split()))

testDataVecs = getAvgFeatureVecs(clean_test_reviews)

Output

Review 1000 of 10000

Review 2000 of 10000

Review 3000 of 10000

Review 4000 of 10000

Review 5000 of 10000

Review 6000 of 10000

Review 7000 of 10000

Review 8000 of 10000

Review 9000 of 10000

print(len(testDataVecs))

Output

10000

�Case Study—Image Segmentation
You might wonder what image segmentation is. In computer vision, image

segmentation is the process of partitioning a digital image into multiple

segments. The goal of segmentation is to simplify and/or change the

representation of an image into something that is more meaningful and

easier to analyze. Let’s understand image segmentation using a simple

example. Consider Figure 15-15.

Chapter 15 Applications

526

We can divide or partition the image into various parts called

segments. It’s not a great idea to process the entire image at the same time,

as there will be regions in the image that do not contain any information.

By dividing the image into segments, we can make use of the important

segments for processing the image. That, in a nutshell, is how image

segmentation works.

An image is a collection or set of different pixels. We group together

the pixels that have similar attributes, using image segmentation. Take

a moment to look at Figure 12-16 (it’ll give you a practical idea of image

segmentation):

Figure 15-15.  An example image that we are going to segment

Chapter 15 Applications

527

So, let’s now build an application that is able to segment any image and

extract instances from it. To start doing this, we need to import all the packages

we are going to use. It seems that there’s a new package, skimage; this package

contains a lot of operations that help you to deal with images data.

import os

import sys

import random

import math

import numpy as np

import skimage.io

import matplotlib

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

Figure 15-16.  The difference between object detection and instance
segmentation

Chapter 15 Applications

528

Now we need to illustrate a new architecture model called Mask

R-CNN. Data scientists and researchers at Facebook AI Research (FAIR)

pioneered a deep learning architecture, called Mask R-CNN, which can

create a pixel-wise mask for each object in an image. This is a really cool

concept, so follow along closely!

Mask R-CNN is an extension of the popular Faster R-CNN object

detection architecture. Mask R-CNN adds a branch to the already existing

Faster R-CNN outputs. The Faster R-CNN method generates two things for

each object in the image:

	 1.	 Its class

	 2.	 The bounding box coordinates

Mask R-CNN adds a third branch to this that outputs

the object mask as well. Take a look at Figure 15-17 to

get an inside look at how Mask R-CNN works.

	 3.	 We take an image as input and pass it to the

ConvNet, which returns the feature map for that

image

Figure 15-17.  How Mask R-CNN works

Chapter 15 Applications

529

	 4.	 The region proposal network (RPN) is applied

on these feature maps. This returns the object

proposals along with their object score.

	 5.	 An RoI pooling layer is applied on these proposals to

bring down all the proposals to the same size.

	 6.	 Finally, the proposals are passed to a fully

connected layer to classify and output the bounding

boxes for objects. It also returns the mask for each

proposal.

First, we will download the model that we are going to use from GitHub

by using the command:

git clone https://github.com/matterport/Mask_RCNN.git

Then we should set the path of the model, to make sure our code sees

the model downloaded.

Root directory of the project

ROOT_DIR = os.path.abspath("/content/Mask_RCNN")

Then we will import the model and its visualization and utilities.

Import Mask RCNN

sys.path.append(ROOT_DIR) # To find local version of the

library

from Mask_RCNN.mrcnn import utils

import Mask_RCNN.mrcnn.model as modellib

from mrcnn import visualize

Import COCO config

sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))

To find local version

import coco

%matplotlib inline

Chapter 15 Applications

530

After this, we are going to set the logs folder for future analysis and

debugging. Also, we are going to load the weight from the h5 data file.

Directory to save logs and trained model

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

Local path to trained weights file

COCO_MODEL_PATH = os.path.join(", "mask_rcnn_coco.h5")

Download COCO trained weights from Releases if needed

if not os.path.exists(COCO_MODEL_PATH):

 utils.download_trained_weights(COCO_MODEL_PATH)

Now we need to set the image directory that our model will read the

data from, and set the machine configuration. Also, we will instantiate the

model and load its weight.

Directory of images to run detection on

IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class InferenceConfig(coco.CocoConfig):

 # Set batch size to 1 since we'll be running inference on

 # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

Create model object in inference mode.

model = modellib.MaskRCNN(mode="inference", model_dir='mask_

rcnn_coco.hy', config=config)

Load weights trained on MS-COCO

model.load_weights('mask_rcnn_coco.h5', by_name=True)

Chapter 15 Applications

531

Now we will create the class names; these names come from the COCO

dataset that the model was trained on.

COCO Class names

class_names = �['BG', 'person', 'bicycle', 'car', 'motorcycle',

'airplane', 'bus', 'train', 'truck', 'boat',

'traffic light', 'fire hydrant', 'stop sign',

'parking meter', 'bench', 'bird', 'cat', 'dog',

'horse', 'sheep', 'cow', 'elephant', 'bear',

'zebra', 'giraffe', 'backpack', 'umbrella',

'handbag', 'tie', 'suitcase', 'frisbee',

'skis', 'snowboard', 'sports ball', 'kite',

'baseball bat', 'baseball glove', 'skateboard',

'surfboard', 'tennis racket', 'bottle', 'wine

glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',

'banana', 'apple', 'sandwich', 'orange',

'broccoli', 'carrot', 'hot dog', 'pizza',

'donut', 'cake', 'chair', 'couch', 'potted

plant', 'bed', 'dining table', 'toilet', 'tv',

'laptop', 'mouse', 'remote', 'keyboard',

'cell phone', 'microwave', 'oven', 'toaster',

'sink', 'refrigerator', 'book', 'clock',

'vase', 'scissors', 'teddy bear', 'hair drier',

'toothbrush']

Now we need to test if the model that we loaded is working correctly,

so we will load a test image and feed it to the model and see the output.

Chapter 15 Applications

532

Load a random image from the images folder

image = skimage.io.imread('/content/Mask_RCNN/

images/1045023827_4ec3e8ba5c_z.jpg')

original image

plt.figure(figsize=(12,10))

skimage.io.imshow(image)

As you can see in Figure 15-18, the image contains many objects, and

the network should extract the objects and classify their labels. When

Mask R-CNN extracts each object, it generates the bond box of the object

to tell where the object is, and its label too. There’s another output that

we consider amazing: it creates a mask-like boundary over the object.

Figure 15-18.  The image contains some pedestrians that the network
should extract

Chapter 15 Applications

533

To do that, the network classifies each pixel as to whether it belongs to the

given object or not.

Now let’s see the Mask R-CNN output; to do that, we write a simple line

of code that makes the network prediction work.

Run detection

results = model.detect([image], verbose=1)

Visualize results

r = results[0]

visualize.display_instances(image, r['rois'], r['masks'],

r['class_ids'], class_names, r['scores'])

Figure 15-19.  The extracted output of the network

Chapter 15 Applications

534

As you see in Figure 15-19, the network output extracted the

pedestrians exactly. It even extracted the person who is inside the car on

the right. Isn’t that awesome work? But it’s not only pedestrians/persons

that the network extracts; there are many classes that the network can

classify. You can see the class variables in the preceding code to see how

many classes and what classes/objects that Mask R-CNN can extract.

To extract a certain object inside the image, you can simply iterate

over the objects until you find the wanted one, and do whatever you want

(Figure 15-20).

mask = r['masks']

mask = mask.astype(int)

mask.shape

for i in range(mask.shape[2]):

 �temp = skimage.io.imread('/content/Mask_RCNN/

images/1045023827_4ec3e8ba5c_z.jpg')

 for j in range(temp.shape[2]):

 temp[:,:,j] = temp[:,:,j] * mask[:,:,i]

 plt.figure(figsize=(8,8))

 plt.imshow(temp)

Chapter 15 Applications

535

�Summary
In this chapter, we showed you some examples to learn how to apply the

knowledge you have gained from this book. All the applications in this

book are designed to make sure that you learn every single concept from

tabular dataset to text to images dataset, and apply these concepts in a

practical manner.

We hope that you have enjoyed this chapter, as there’s no theory and it

contains a lot of code, and enjoyed the whole book too.

By ending this chapter, you have finished the journey of learning what

the deep learning pipeline is and how to apply it in real life.

Figure 15-20.  The each object segmented from the network

Chapter 15 Applications

537© Hisham El-Amir and Mahmoud Hamdy 2020
H. El-Amir and M. Hamdy, Deep Learning Pipeline,
https://doi.org/10.1007/978-1-4842-5349-6

Index

A
Activation functions, 289, 293

binary step function, 299, 300
deep learning model, 297
linear activation

function, 300–302
mathematical equations, 297
neural network architecture, 297
perceptron and neural

network, 297
placement of, 298
recap, 305
ReLU function, 304
role of, 298
sigmoid/logistic activation

function, 302, 303
swish activation function, 305
works in neuron, 299

Adadelta, 350, 351
Adaptive gradient, 349, 350
Adaptive moment estimation, 352
Aggregation function, 118
AND Boolean function, 286
AND Boolean gate operation, 283
Annotation, 22
Artificial neural network

(ANN), 22, 60

Artificial neuron, 280, 284
Association rule learning, 16
Atom extraction, 261, 262

B
Backpropagation, 294
Backpropagation, convolution

layer, 397–399
Backpropagation through

time (BPTT)
architecture, 424, 425
circled multiplication, 426
cross-entropy loss, 424
definition, 424
feed backward, 426
gradients, 425
time step, 424
variables, 427

Bag-of-words (BoW) model, 204–206
Batch gradient descent

concept, 308
pros/cons, 309

Batch normalization, 360, 361
Behavioral data available, 285
Bias neuron, 289
Bidirectional RNN

(Bi-RNNs), 445, 446

https://doi.org/10.1007/978-1-4842-5349-6

538

Binary cross-entropy, 318
Binary step function, 299, 300
Build_neural_network

function, 510, 511

C
Callback methods

__data_generation, 228
model, 226
params, 226
quantities, 227

Categorical cross-entropy, 318
ceil() function, 508
CifarNet class, 403
Clustering problem, 15, 16
concat() function, 509
Continuous bag of

words (CBOW), 476
Continuous variable, 121
Convolutional layer, 393–396
Convolutional neural network

(CNNs), 66, 67, 170, 450
AlexNet, 456

architecture, 454, 455
cross-connectivity, 455
image size, 454
ReLU, 454
softmax activation

function, 454
architecture, 369
backpropagation through

convolution layer, 397, 398
challenge, 450

convolution operation (see
Convolution operation)

deep learning algorithm, 368
image-processing filters (see

Image-processing filters)
layers

activation functions, 392
convolution layer, 391,

393–396
fully connected

layers, 392
input layer, 391, 393
pooling layer, 392, 396

LeNet5
accuracy, 451
architecture, 451, 452
convolutional layer, 451
Euclidean distance, 452, 453
features, 452
filters, 451
flattening, 451
softmax function, 452
subsampling layer, 451

receptive field, 369
ResNet, 458, 459
sparse connectivity, 391
uses, 450
VGG, 458

architecture, 457
convolutional layers, 457
filters, 456, 457
image size, 457
max pooling layers, 456
variants, 457

INDEX

539

weight sharing through
convolution, 399

Convolution operation
filter/kernel, 369
one-dimensional

convolution, 369–371
padding and stride, 372–374
temporal/spatial signal, 369
translational equivariance, 400
Two-Dimensional

Convolution, 371, 372
Cross-validation method

K-Fold, 216, 217
LOOCV

advantages, 214, 215
drawback, 216
sklearn, 215

testing error rate, 209
training error rate, 209
validation set technique

creation, 212
divide operation, 211
Iris dataset, 210, 211
potential drawbacks, 213
strategic view, 210

D
Data

dataset character, 114
definition, 114
divide and conquer, 118
machine learning

models, 116

preprocessing, 117
semistructured, 116
statistical models, 115
structured, 115
tidy data, 117, 118
unstructured, 116

Data augmentation
bounding box, 174, 175
brightness transformation,

181, 182
CNN, 170
contrast function, 182, 183
crop/resize, 172–174
definition, 169, 170, 273
flipping, 175–177
hue function, 183, 184
image crop, 172
image saturation, 184
RGB to grayscale

conversion, 181
rotate image, 177
salty noise, 180
techniques, 274
transform matrix, 179
translation, 178
validation/test dataset, 170

Data cleaning, 149, 150
Data encoding, 186–188
Data formats, 163
Data generator, 225, 226
Data images

2-dimensional space, 140
3-dimensional space, 140
4-dimensional space, 141

Index

540

Data loading
classification/regression, 157
DataFrame, 151, 152, 156
data structure, 150
head() function, 153
one-dimensional array, 155
Python list, 154
steps, 156
tail() function, 153

Data preprocessing
applymap() method, 168, 169
Boolean values, 164
DataFrame, 167
groupby() method, 166
loc() method, 165
nonzero elements, 168
nunique() method, 165
renamed data, 165
var() method, 166

Data resampling
bootstrap

distribution, 219, 220
IID, 218
sample, 218
uses, 217

cross-validation (see Cross-
validation method)

training and test sets, 208
Datasets

Boston house
pricing, 234, 235

functions, 236
MNIST, 235

Data streaming, 162

Decision theory, 9
Deep learning, 367

advantages, 23, 24
algorithms, 72, 73
applications, 28
basic model, 59
computational

model, 59, 60
data

processing, 71, 72
understanding, 70, 71

define and prepare
problem, 69, 70

definition, 25
disadvantages, 24, 25
history, 25
human neuron, 59
images, 22
layer, 61
machine neuron, 59
neural networks, 58, 60
neuron acts, 60
node, 58
perceptron, 26, 61
results, 73, 74
theories, 4
uninterpretable predictive

modeling, 8
Deep neural networks

(DNNs), 25, 295
learning rate, 354–356
optimization algorithm, 354
stochastic gradient, 354
types, 27

INDEX

541

Dictionary learning, 261, 262
Dictionary-mapping approach, 188
DictReader functions, 162
Digit recognition, CIFAR-10

dataset, 403–413
Dimensionality reduction

definition, 238
feature elimination, 238
feature extraction, 238
uses, 239
variables, 236

Discrete variable, 121
Divide and conquer, 118
Dropout layers, 357, 358

E
epoch_end() function, 227
Equivariance, 401
Exploding gradients, 331, 430

clipping, 332
LSTM, 332
re-design, network model, 332
subtle signs, 331
weight regularization, 333

Exploratory data analysis (EDA), 160

F
Facebook AI Research (FAIR), 528
factorplot() function, 498
Feedforward neural network, 64, 66

hidden nodes, 66
input nodes, 65

output nodes, 66
uses, 66

fillna() function, 506
Filter kernel, 375, 399
Flipping, 175–177
forward-propagation, 313
Four levels of data, 122
Full-padding, 374

G
Gated Recurrent

Unit (GRU), 438
aim, 438
current memory

content, 442, 443
final memory, current time

step, 443, 444
reset gate, 441
update gate, 439, 440
visualization model, 439

Gaussian distributions,
243, 244

ANOVA, 246
chi-square, 246
SelectKBest class, 246
SelectPercentile class, 246, 247
VarianceThreshold

class, 244–246
Gaussian filter, 382–385
Gaussian noise, 377
Gensim, 53
Geometric mean, 135
Gradient descent, 305–308

Index

542

gradients() function, 91
Group normalization, 364, 365

H
head() function, 497
Hidden nodes, 61
Hold-out set, 210
Horizontal Sobel filter, 389

I
Identity filter, 390
Identity matrix, 29
Image data augmentation, 169
ImageNet Large Scale Visual

Recognition Competition
(ILSVRC), 450

Image-processing filters
column index, 375
filter kernel, 375
Gaussian filter, 382–385
identity transform, 390
Mean and median filters (see

Mean filters)
sobel edge-detection filter (see

Sobel filter)
2-D images, 375

Image segmentation, 526
class names, 531
definition, 525
extraction, 533, 534
GitHub, 529

image directory, 530
import, 529
logs folder, 530
Mask R-CNN, 528
network, 532, 533, 535
vs. object detection, 526, 527
skimage, 527
testing, 531

IMDB movie review data
cleaning process, 518
dataframe, 517, 518, 523
data shape, 517
Doc2Vec, 515
extraction, 522
load files, 516
load model, 521
preprocessing, 523–525
save model, 521
size, 517
Word2Vec, 521

Independent identical distribution
(IID), 218

info() function, 497
Information theory, 4, 5
Input nodes, 61
Instance normalization, 363, 364
Interval level, 130
Invariance, 400, 402
ipynb file

cell, 48
code cell, 48
definition, 47
kernel, 48

INDEX

543

Markdown cell, 48
Markdown

command, 49
Python command, 49

IPython
definition, 41
features, 41, 42
installation, 42

J
Jupyter, 43

advantage, 44
browser, 45
IDEs, 44
installation

command, 45
new file, 46, 47
tree file, 45, 46

IPython, 43

K
Keras, 56
keras.callbacks.Callback()

module, 226
Keras generators, 223–225
keras.models.Model, 226
keras.utils.to_categorical

method, 229
Kernel PCAs, 259

graphical representation, 259
output, 260
radial basis function, 260

L
Language modeling

advantage, 422
aim, 422
bi-gram, 420, 421
definition, 420
N-gram, 420
probability, 420
relative frequency

counts, 421
tri-gram, 420, 422

Latent dirichlet
allocation (LDA), 53

definition, 262
genism

inspecting topics, 268
LdaModel, 267, 268
predicting topics, 268
TextCorpus, 267

NLP
aim, 263
benefits, 264
prevalent words, 266
topics, 263

vs. PCA, 269–272
Latent semantic analysis (LSA), 53
Layer normalization, 362, 363
leaky ReLU, 303
Leave-One-Out Cross-Validation

(LOOCV)
definition, 213
error rates, 214
learning process, 213

Index

544

__len__ method, 229
Lena Forsen image, 376
Linear activation

function, 301–302
Linear discriminant analysis

(LDA), 234, 262
Linear regression

dataset
create session, 97
data points, 95
importing packages, 94
model line, 98
declaring name_scope, 96
using np.random.randn(), 94

definition, 93, 94
source code, 99–101

Linear time-invariant, 369
loc() method, 165
Logistic regression, 7
Long short-term memory networks

(LSTM), 26, 332
architecture, 433, 434
cell, 434
forget cell, 435
forget gate layer, 435
input gate layer, 436
memory state, 434, 435
output, 437
uses, 437, 438

Long-term dependencies, 429
Loss function, 313, 316

backpropagation, 319
equations, 322–329
error function, 320

error neuron, 323
parts, 320
works, 321

M
Model assessment, 208
Model selection, 208
Machine learning, 148

approaches, 12
checkpoint, 16, 17
vs. deep learning, 19–23
definition, 10, 20
diagram, 11
math notations

functions, 33
indexing, 32
matrices, 29
sets/graphs, 31
statistics, 34
summary, 30
vectors, 28

models, 116
predictive analytics, 11, 12
reinforcement learning, 17
semisupervised learning, 16
supervised learning

classification problem, 13
observations, 13
regression model, 14
regression problem, 14

vs. traditional
programming, 10

tree of classical, 17

INDEX

545

typical system, 18
unsupervised learning

algorithm clusters, 15
Mask R-CNN, 528
matplotlib library, 51, 496
max pooling method, 454
McCulloch-Pitts neuron, 283
Mean Absolute Error, 317
Mean filters

calculation, 375
convolution operation, 376
Gaussian noise, 377, 378
gray loaded image, 377
noise reduction, 379
packages and functions, 376
pixel intensity, 375
resulting image, preceding

code, 378
RGB format to grayscale

format, 376
salt and pepper

noise, 379, 381
mean() function, 506
Mean Squared Error, 317
Median filter, 379, 382
Median pixel intensity, 379
Mini-batch gradient descent, 310

pros/cons, 311
Minsky perceptron model, 284
Missing data

empties, 159
features, 160, 161
zeros, 159, 160

model initialization, 313

Modified National Institute of
Standards and Technology
database (MNIST), 142

Momentum-based methods
Adadelta, 350, 351
Adam, 352
adaptive gradient, 349, 350
gradient, 347
Nadam, 353, 354
NAG, 348, 349
RMSprop, 351
velocity, 347

M-P neuron, 283
Multilayered neural network

architecture, 293
Multilayer perceptron (MLP), 63,

291, 292

N
Nonnegative matrix factorization

(NNMF), 256
Natural language processing

(NLP), 52, 422
Natural language

toolkit (NLTK), 52
Nesterov accelerated gradient

(NAG), 346, 348
Neural Network Layers

hidden layers, 293–295
input layer, 293, 294
output layer, 293, 295

Neural networks (NNs), 25, 279
Neuron, 58

Index

546

Nominal level
balance point, 124
mathematical operations, 124
mode, 125

Normalization techniques
batch, 360, 361
deep learning, 359
group, 364, 365
instance, 363, 364
layer, 362, 363
weight, 361, 362

NumPy package, 50, 128

O
1-D convolution masking, 370
One-hot encoding, 189, 190
Optimization method, 345, 346
Ordinal level

incremental level of
measurement, 126

mathematical operations, 127
mean and median, 128, 129

Output nodes, 62

P
Padding, 373
pandas library, 51, 496
Perceptron

AND Boolean gate operation, 283
bias, 286
biological neuron,

notation of, 281

Boolean functions, 286
components

activation functions, 289
bias, 289
input, 289
output, 290
weights, 285, 289

excitatory and inhibitory, 282
feedforward network, 280
learning algorithm, 288
vs. McCulloch neuron, 288
McCulloch-Pitts

neuron, 284
Minsky perceptron

model, 284
MLP, 291, 292
M-P neuron, 283
neural network, 280
OR gate, 286, 288
recap, 292
single, 290
soccer example

implementation, 285
thresholding parameter, 282
XOR gate, 287, 288

Perceptron learning algorithm
(PLA), 285, 288

Placeholders vs. variables vs.
constants, 337

Pooling layer, 396
Preprocessing, 117
Pretrained VGG19 model

AdamOptimizer, 465
architecture, 467

INDEX

547

CIFAR-10 dataset, 464
input/output variables, 464
output, 465, 466
package importing, 464
print, 466
training, 468

Primitive methods filters, 368
Principal component analysis

(PCA), 234, 263
automatic selection, 255
covariance matrix, 248, 249
cross-correlation, 249
explained_variance_ratio_

variable, 252
histogram and CDF

plot, 252, 253
MNIST dataset, 250
NNMF, 256, 257
output, 254, 255
scatter plot, 251
unsupervised dimensionality

(see Unsupervised
dimensionality, PCA)

Probability theory, 6–8
Python

definition, 37
installation, 38, 39
packages, 40, 41

Python 2 vs. Python 3, 38

Q
Quantitative vs. qualitative data,

119, 120

R
Radial basis function (RBF), 452
Ratio level, 134, 135
Recap, 292
Receptive field, 369, 396
Recommendation engine, 12
Rectified linear activation function

(ReLU), 454
Recurrent neural networks

(RNNs), 67, 422, 423
abstraction, 416, 417
architecture, 419
cell, 417
parameters, 417
sequence, 417, 418
softmax, 417
tanh, 417
types, 418
vanishing/exploding

gradients, 429
aim, 429
definitions, 430
inherent problem, 430
output, 431
vanishing, 432, 433

vectors, 416
working principals, 423

Region proposal network
(RPN), 529

Regularization, 357, 358
Reinforcement learning, 17
Reinforcement learning vs.

supervised learning, 19

Index

548

ReLU activations, 394
Root mean square prop, 351

S
Scikit-learn, 52, 53
SciPy, 50
Seaborn library, 496
SelectKBest class, 246
SelectPercentile class, 246, 247
Self-organizing map (SOM), 67
Semistructured data, 116
Semisupervised learning, 16
Set membership functions, 124
Shallow neural network, 27
Shallow vs. deep neural networks,

26, 27, 295–297
Shift-invariant properties, 369
Sigmoid/logistic activation

function, 302, 303
Single-layer perceptron, 62
Single perceptron, 290
sklearn.datasets, 234
sklearn.model_selection

module, 211
Sobel filter

convolution of image, 386
edges of image, 389
horizontal and vertical axes, 385
horizontal Sobel filter, 389
image processing and computer

vision, 385
pixel intensity function, 390
preceding code, 386, 389

X-axis filter, 387
Y-axis filter, 388

Softmax, 302
Sparse PCA, 257, 258
Standard deviation, 133, 134
Stemming algorithm, 202–204
Stochastic gradient

descent (SGD), 309, 341
pros/cons, 310

Structured data, 115
Supervised learning, 13
swish activation function, 305

T
Tabular data

divide and conquer, 121
interval level, 130
levels, 122
mathematical operations

measures of center, 131, 132
nominal level, 123
ordinal level, 125
quantitative vs.

qualitative, 119, 120
ratio level, 134, 135
standard deviation, 133, 134
structured format, 122
typical value, 123

Tabular dataset
age histogram, 503, 504
build

batches, 511
model progress, 514, 515

INDEX

549

output, 514
parameter, 512
session, 512–514

data visualization, 495
FacetGrid, 504
importing, 496
pandas dataframe, 497
Pclass count, 500
Pclass/person count, 503
Pclass/sex count, 500, 501
processing

Boolean columns, 507
checkpoint, 510
distribution mean, 505
Embarked column, 506
features/columns, 505
Titanic dataframe, 509
transformation, 508

sex count, 498, 499
sex/survived count, 499
Titanic dataframe, 497, 498,

501, 502
TensorFlow (TF), 279, 336

code, 76, 77
cost functions, 339
Data Flow Graph, 78

advantages, 81
kernel, 80
node, 79
normal edges, 79
operation, 80
session, 80
special edges, 79

data structure, 75

definition, 53, 74
Eigenvalues, 342
features, 75
gradient descent, 338
gradients() function, 91, 92
hello world, 86
installation, Mac and

Linux, 54, 55
installation, Windows, 56
iterations, 87, 88
library, 77
nonconvex cost

functions, 340
placeholders vs. variables vs.

constants, 337, 338
prepare input, 89, 90
SGD, 341

mini-batch approach, 343
XOR implementation

cost function, 105
create placeholders, 102
create session, 105
input and output, 102
model code, 104
plot modeling line, 106
run output, 106
source code, 107–109

Tensor rank, 82
Tensor shape, 83
Text data, 190–194

CIFAR-10 dataset, 143
data images, 139, 140
IMDB, 138, 139
MNIST database, 142

Index

550

text processing, 137, 138
type of images, 140–142

tf.assign() method, 337
tf.global_variables_initializer()

function, 88
Tfidf vectorizer, 195–200
Thresholding parameter, 282
Tidy data, 117, 118
Time step, 416
titanic_df.head() function, 507, 508
Tokens, 201, 202
Traditional programming

diagram, 11
vs. machine learning, 10

Training and testing sets
rules, 208

Training vs. predicting methods, 312
train_test_split function, 211
Transfer learning

pretrained model
architectures, 463
convolutions–ReLUs–max

pooling layers, 462
dataset’s nature, 461
definition, 461
detect features, 461
fine-tuning, 463
ImageNet data, 461, 463
VGG19 architecture, 462

state-of-the-art solutions, 460
working, 462

Translational equivariance, 400, 401
Transpose matrix, 29

Truncated backpropagation
through time (TBPTT)

definition, 427
standard approaches, 428

2-D convolution masking, 372

U
unique() method, 165
Unstructured data, 116
Unsupervised dimensionality, PCA

d-dimensional feature space, 242
dk-dimensional transformation

matrix, 242
principal components, 241
steps, 242
variance, 243

Unsupervised learning
technique, 14, 263

V
Validation set technique, 210

drawbacks, 213
error rate, 213
observations, 211, 212
variables, 210

Valid padding, 374
Vanishing gradients, 333, 419, 430

problem, 334–336
Variable() function, 337
VarianceThreshold class, 244–246
Vector representation, words, 475
Vector space model

Text data (cont.)

INDEX

551

cosine distance, 473, 474
cosine similarities, 473
Euclidean distance, 472, 474
words per document, 472

Vertical Sobel filter, 389

W, X, Y
Weighted summation, 289
Weight normalization, 361, 362
Weight regularization, 333
Weight sharing through

convolution, 399
Whitening transformation, 272, 273
Word2Vec

CBOW, 477
backpropagation gradient-

descent techniques, 479
code, 484
cost function, 479
creation, 483
cross-entropy loss, 478
dot product, 478
embeddings

vectors, 477, 478
encoded vectors, 477
hidden-layer vectors, 478
implementation, 483

load data, 481
loss function, 479
output, 484
prediction, 476
run, 483, 484
softmax, 478
TensorFlow, 479, 480
TSNE plot, 485
utility functions, 480, 481
vocab_size, 482

definition, 476
Skip-gram model, 486

vs.CBOW, 488
creation, 491
gradient descent, 487
hidden-layer, 487
load data, 491
loss function, 487
probability, 487
softmax layer, 487
TensorFlow, 489
utility functions, 489, 490
variables, 491

Z
Zero-phase component analysis

(ZCA), 272

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Part I: Introduction

	Chapter 1: A Gentle Introduction
	Information Theory, Probability Theory, and Decision Theory
	Information Theory
	Probability Theory
	Decision Theory

	Introduction to Machine Learning
	Predictive Analytics and Its Connection with Machine learning
	Machine Learning Approaches
	Supervised Learning
	Unsupervised Learning
	Semisupervised Learning
	Checkpoint
	Reinforcement Learning

	From Machine Learning to Deep Learning
	Lets’ See What Some Heroes of Machine Learning Say About the Field
	Connections Between Machine Learning and Deep Learning
	Difference Between ML and DL
	In Machine Learning
	In Deep Learning
	What Have We Learned Here?

	Why Should We Learn About Deep Learning (Advantages of Deep learning)?
	Disadvantages of Deep Learning (Cost of Greatness)

	Introduction to Deep Learning
	Machine Learning Mathematical Notations
	Summary

	Chapter 2: Setting Up Your Environment
	Background
	Python 2 vs. Python 3

	Installing Python
	Python Packages
	IPython
	Installing IPython

	Jupyter
	Installing Jupyter
	What Is an ipynb File?

	Packages Used in the Book
	NumPy
	SciPy
	Pandas
	Matplotlib
	NLTK
	Scikit-learn
	Gensim
	TensorFlow
	Installing on Mac or Linux distributions
	Installing on Windows

	Keras

	Summary

	Chapter 3: A Tour Through the Deep Learning Pipeline
	Deep Learning Approaches
	What Is Deep Learning
	Biological Deep Learning
	What Are Neural Networks Architectures?

	Deep Learning Pipeline
	Define and Prepare Problem
	Summarize and Understand Data
	Process and Prepare Data
	Evaluate Algorithms
	Improve Results

	Fast Preview of the TensorFlow Pipeline
	Tensors—the Main Data Structure
	First Session
	Data Flow Graphs
	Tensor Properties
	Tensor Rank
	Tensor Shape

	Summary

	Chapter 4: Build Your First Toy TensorFlow app
	Basic Development of TensorFlow
	Hello World with TensorFlow
	Simple Iterations
	Prepare the Input Data
	Doing the Gradients

	Linear Regression
	Why Linear Regression?
	What Is Linear Regression?
	Dataset Description
	Full Source Code

	XOR Implementation Using TensorFlow
	Full Source Code

	Summary

	Part II: Data
	Chapter 5: Defining Data
	Defining Data
	Why Should You Read This Chapter?
	Structured, Semistructured, and Unstructured Data
	Tidy Data
	Divide and Conquer
	Tabular Data
	Quantitative​ vs. ​Qualitative​ Data
	Example—the Titanic
	Divide and Conquer
	Making a Checkpoint
	The Four Levels of Data
	Measure of Center

	The Nominal Level
	Mathematical Operations Allowed for Nominal
	Measures of Center for Nominal
	What Does It Mean to be a Nominal Level Type?

	The Ordinal Level
	Examples of Being Ordinal
	What Data Is Like at the Ordinal Level
	Mathematical Operations Allowed for Ordinal
	Measures of Center for Ordinal

	Quick Recap and Check
	The Interval Level
	Examples of Interval Level Data
	What Data Is Like at the Interval Level
	Mathematical Operations Allowed for Interval
	Measures of Center for Interval
	Measures of Variation for Interval
	Standard Deviation

	The Ratio Level
	Examples
	Measures of Center for Ratio
	Problems with the Ratio Level

	Summarizing All Levels Table 5-1

	Text Data
	What Is Text Processing and What Is the Level of Importance of Text Processing?
	IMDB—Example
	Images Data
	Type of Images (2-D, 3-D, 4-D)
	2-D Data
	3-D Data
	4-D Data

	Example—MNIST
	Example—CIFAR-10

	Summary

	Chapter 6: Data Wrangling and Preprocessing
	The Data Fields Pipelines Revisited
	Giving You a Reason
	Where Is Data Cleaning in the Process?

	Data Loading and Preprocessing
	Fast and Easy Data Loading

	Missing Data
	Empties
	Is It Ever Useful to Fill Missing Data Using a Zero Instead of an Empty or Null?
	Managing Missing Features

	Dealing with Big Datasets
	Accessing Other Data Formats
	Data Preprocessing
	Data Augmentation
	Image Crop
	Crop and Resize
	Crop to Bounding Box
	Flipping
	Rotate Image
	Translation
	Transform
	Adding Salt and Pepper Noise
	Convert RGB to Grayscale
	Change Brightness
	Adjust Contrast
	Adjust Hue
	Adjust Saturation

	Categorical and Text data
	Data Encoding
	Performing One-Hot Encoding on Nominal Features
	Can You Spot the Problem?
	A Special Type of Data: Text
	So Far, Everything Has Been Pretty Good, Hasn’t It?
	Tokenization, Stemming, and Stop Words
	What Are Tokenizing and Tokenization?
	The Bag-of-Words (BoW) Model
	What is the BoW?

	Summary

	Chapter 7: Data Resampling
	Creating Training and Test Sets
	Cross-Validation
	Validation Set Technique
	Leave-One-Out Cross-Validation (LOOCV)
	K-Fold Cross-Validation

	Bootstrap
	Bootstrap in Statistics
	Tips to Use Bootstrap (Resampling with Replacement)

	Generators
	What Are Keras Generators?
	Data Generator
	Callback

	Summary

	Chapter 8: Feature Selection and Feature Engineering
	Dataset Used in This Chapter
	Dimensionality Reduction—Questions to Answer
	What Is Dimensionality Reduction?
	When Should I Use Dimensionality Reduction?

	Unsupervised Dimensionality Reduction via Principal Component Analysis (PCA)
	Total and Explained Variance

	Feature Selection and Filtering
	Principal Component Analysis
	Nonnegative Matrix Factorization

	Sparse PCA
	Kernel PCA
	Atom Extraction and Dictionary Learning
	Latent Dirichlet Allocation (LDA)
	Latent Dirichlet Allocation (LDA in NLP)
	Code Example Using gensim

	LDA vs. PCA
	ZCA Whitening
	Summary

	Part III: TensorFlow
	Chapter 9: Deep Learning Fundamentals
	Perceptron
	Single Perceptron
	Multilayer Perceptron
	Recap

	Different Neural Network Layers
	Input Layer
	Hidden Layer(s)
	Output Layer

	Shallow vs. Deep Neural Networks
	Activation Functions
	Types of Activation Functions
	Recap

	Gradient Descent
	Recap

	Batch vs. Stochastic vs. Mini-Batch Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent
	Recap

	Loss function and Backpropagation
	Loss Function
	Backpropagation
	The Four Fundamental Equations Behind Backpropagation

	Exploding Gradients
	Re-Design the Network Model
	Use Long Short-Term Memory Networks
	Use Gradient Clipping
	Use Weight Regularization

	Vanishing Gradients
	Vanishing Gradients Problem

	TensorFlow Basics
	Placeholder vs. Variable vs. Constant
	Gradient-Descent Optimization Methods from a Deep-Learning Perspective
	Learning Rate in the Mini-batch Approach to Stochastic Gradient Descent

	Summary

	Chapter 10: Improving Deep Neural Networks
	Optimizers in TensorFlow
	The Notation to Use

	Momentum
	Nesterov Accelerated Gradient
	Adagrad
	Adadelta
	RMSprop
	Adam
	Nadam (Adam + NAG)

	Choosing the Learning Rate
	Dropout Layers and Regularization
	Normalization Techniques
	Batch Normalization
	Weight Normalization
	Layer Normalization
	Instance Normalization
	Group Normalization

	Summary

	Chapter 11: Convolutional Neural Network
	What is a Convolutional Neural Network
	Convolution Operation
	One-Dimensional Convolution
	Two-Dimensional Convolution
	Padding and Stride

	Common Image-Processing Filters
	Mean and Median Filters
	Gaussian Filter
	Sobel Edge-Detection Filter
	Identity Transform

	Convolutional Neural Networks
	Layers of Convolutional Neural Networks
	Input Layer
	Convolutional layer
	Pooling Layer

	Backpropagation Through the Convolutional and Pooling Layers
	Weight Sharing Through Convolution and Its Advantages
	Translation Equivariance and Invariance
	Case Study—Digit Recognition on the CIFAR-10 Dataset
	Summary

	Chapter 12: Sequential Models
	Recurrent Neural Networks
	Language Modeling
	Backpropagation Through Time
	Vanishing and Exploding Gradient Problems in RNN
	The Solution to Vanishing and Exploding Gradients Problems in RNNs
	Long Short-Term Memory
	Case Study—Digit Identification on the MNIST Dataset
	Gated Recurrent Unit
	Bidirectional RNN (Bi-RNN)
	Summary

	Part IV: Applying What You’ve Learned
	Chapter 13: Selected Topics in Computer Vision
	Different Architectures in Convolutional Neural Networks
	LeNet
	AlexNet
	VGG
	ResNet

	Transfer Learning
	What Is a Pretrained Model, and Why Use It?
	How to Use a Pretrained Model?
	Ways to Fine-Tune the Model
	Pretrained VGG19

	Summary

	Chapter 14: Selected Topics in Natural Language Processing
	Vector Space Model
	Vector Representation of Words
	Word2Vec
	Continuous Bag of Words
	Implementing Continuous Bag of Words

	Skip-Gram Model for Word Embeddings
	Implementing Skip-Gram

	GloVe

	Summary

	Chapter 15: Applications
	Case Study—Tabular Dataset
	Understanding the Dataset
	Scratching the Surface
	Digging Deeper

	Preprocessing Dataset
	Building the Model

	Case Study—IMDB Movie Review Data with Word2Vec
	Case Study—Image Segmentation
	Summary

	Index

