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Artificial intelligence (AI) is the field of embeddings human thinking into 

computers: in other words, creating an artificial brain that mimics the 

functions of the biological brain. Whatever the human can do intelligently 

is now required to be moved into machines. First-generation AI focuses 

on problems that can be formally described by humans. Using AI, steps 

for doing something intelligent are described in a form of instructions 

that machines follow. Machines follow humans without changes. These 

features are characteristic of the first era of AI.

Humans can fully describe only simple problems such as chess, 

and fail to describe more complicated problems. In chess, the problem 

can be simply explained by representing the board as a matrix of size 

8×8, describing each piece and how it moves and describing the goals. 

Machines will be restricted to those tasks formally described by humans. 

By programming such instructions, machines can play chess intelligently. 

Machine intelligence is now artificial. The machine itself is not intelligent, 

but humans have transferred their intelligence to the machine in the 

form of several static lines of code. “Static” means that the behavior is the 

same in all cases. The machine, in this case, is tied to the human and can’t 

work on its own. This is like a master–slave relationship. The human is the 

master and the machines are the slaves, which just follow the human’s 

orders and no more.

To make the machine able to recognize objects, we can give it previous 

knowledge from experts in a way the machine can understand. Such 

knowledge-based systems form the second era of AI. One of the challenges 

in such systems is how to handle uncertainty and unknowns. Humans 

Introduction



xx

can recognize objects even in different and complex environments, and 

are able to handle uncertainty and unknowns intelligently, but machines 

can’t.

�The Goal
Deep learning is a branch of machine learning where you model the world 

in terms of a hierarchy of concepts. This pattern of learning is similar to 

the way a human brain learns, and it allows computers to model complex 

concepts that often go unnoticed in other traditional methods of modeling. 

Hence, in the modern computing paradigm, deep learning plays a vital 

role in modeling complex real-world problems, especially by leveraging 

the massive amount of unstructured data available today.

Because of the complexities involved in a deep learning model, 

many times it is treated as a black box by people using it. However, to 

derive the maximum benefit from this branch of machine learning, 

one needs to uncover the hidden mystery by looking at the science and 

mathematics associated with it. In this book, great care has been taken 

to explain the concepts and techniques associated with deep learning 

from a mathematical as well as a scientific viewpoint. Also, the first 

chapter is totally dedicated to building the mathematical base required 

to comprehend deep learning concepts with ease. TensorFlow has been 

chosen as the deep learning package because of its flexibility for research 

purposes and its ease of use. Another reason for choosing TensorFlow is its 

capability to load models with ease in a live production environment using 

its serving capabilities.

In summary, Deep Learning Pipeline should provide practical expertise 

so you can learn deep learning pipeline from scratch in such a way that 

you can deploy meaningful deep learning solutions. This book will 

allow you to get up to speed quickly using TensorFlow and to optimize 

different deep learning architectures. All the practical aspects of deep 
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learning that are relevant in any industry are emphasized in this book. 

You will be able to use the prototypes demonstrated to build new deep 

learning applications. The code presented in the book is available in the 

form of iPython notebooks and scripts that allow you to try out examples 

and extend them in interesting ways. You will be equipped with the 

mathematical foundation and scientific knowledge to pursue research in 

this field and give back to the community.

All code in the book is implemented using Python. Because native 

Python is complex for handling images, multiple libraries are used to 

help to produce an efficient implementation for applications across the 

chapters.

�Who This Book Is For
This book is for data scientists and machine learning professionals looking 

at deep learning solutions to solve complex business problems, software 

developers working on deep learning solutions through TensorFlow, and 

graduate students and open source enthusiasts with a constant desire to 

learn.

�Prerequisites 
Python and all the deep learning tools mentioned in the book, from 

IPython to TensorFlow to model that you will use, are free of charge 

and can be freely downloaded from the Internet. To run the code that 

accompanies the book, you need a computer that uses a Windows, Linux, 

or Mac OS operating system. The book will introduce you step-by-step to 

the process of installing the Python interpreter and all the tools and data 

that you need to run the examples.
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�How this Book Is Organized
�Parts

•	 Part I: Introduction—In this part, we prepare the 

readers by giving them all the prerequisites needed 

to start the journey with machine learning to deep 

learning.

•	 Part II: Data—As the first step of the pipeline, readers 

need to know everything about data, from data 

collection and understanding information from data to 

data processing and preparation.

•	 Part III: TensorFlow—In this part, we start the 

interesting stuff. First, we illustrate the fundamental 

and important concepts of deep learning; then we deep 

dive into the core of neural networks and the types of 

neural networks, describing each type; and show the 

important concepts of the equation of deep learning. 

Also, we can’t forget to show a real-life example of each 

type.

•	 Part IV: Applying What You’ve Learned—This part 

is designed to ensure readers practice by using 

TensorFlow and build the pipeline.

�Chapters
•	 Chapter 1: A gentle introduction—This chapter provides 

the big picture that shows readers what is the field that 

the book describes; introduction to this field; and the 

mathematical equations and notations that describe 

how machine learning works.
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•	 Chapter 2: Setting Up Your Environment—This chapter 

introduces the programming tools and packages 

you need in this book and some theories to help in 

understanding; it also includes a bit of introduction to 

the Python programming language.

•	 Chapter 3: A Nice Tour Through the Deep Learning 

Pipeline—In chapter 3 we introduce the pipeline that 

the whole book is for; the deep learning approaches 

and subfields; the steps of the deep learning pipeline; 

and the extras added to TensorFlow that make it unique 

compared with other deep learning frameworks.

•	 Chapter 4: Build Your First Toy TensorFlow App—To 

make sure that we will not drop readers in the middle 

of the book, we show them a small example using 

TensorFlow that will go fast at each step of the deep 

learning pipeline; and make sure that the audience 

knows each step of the pipeline, how it is important, 

and how to use it.

•	 Chapter 5: Defining Data—This chapter, as its name 

implies, is about defining data. Readers should know 

what type of data they are dealing with, and that’s very 

important so they can choose the right approach for 

preparing the data.

•	 Chapter 6: Data Wrangling and Preprocessing—After 

understanding the data, the readers now should choose 

the approaches and methodologies for preparing it, so 

this chapter helps ensure that the readers will choose 

the right approaches in this step.
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•	 Chapter 7: Data Resampling—After cleaning and 

preparing the dataset, now the reader should know 

how to sample this dataset in the right way. Choosing 

the wrong samples from your data may influence the 

result of your models, so in this chapter we illustrate 

all techniques and approaches needed to sample your 

dataset in the right way.

•	 Chapter 8: Feature Selection and Feature Engineering—

In this chapter we describe a very important topic 

in data step of the pipeline: feature selection and 

engineering. Readers should know how to select and 

choose the important input feature that contributes 

most to the output feature in which they are interested. 

Feature engineering is the process of using domain 

knowledge of the data to create features that make 

machine learning algorithms work. Feature selection 

and engineering are fundamental to the application of 

machine and deep learning, and readers should know 

when and how to use them.

•	 Chapter 9: Deep Learning Fundamentals—In this 

chapter we describe a very important topic in deep 

learning fundamentals, the basic functions that deep 

learning is built on. Then we try to build layers from 

these functions and combine these layers together 

to get a more complex model that will help us solve 

more complex problems. All that will be described by 

TensorFlow examples.

•	 Chapter 10: Improving Deep Neural Networks—In this 

chapter we describe an important topic: after building 

the deep learning models, the improvement starts. This 

chapter concerns optimization, tuning and choosing 
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hyperparameter techniques, and weight normalization 

and how that will make the learning process easier 

and faster. After that, the reader should know how to 

evaluate, optimize, and tune the model parameters to 

reach the optimal solution and a satisfying accuracy.

•	 Chapter 11: Convolutional Neural Network—One of the 

important classes of deep learning is the convolutional 

neural network. In this chapter we illustrate everything 

about CNN from the one-dimensional mask to the 

advanced stuff like weight sharing and the difference 

between equivariance and invariance. We illustrate a 

case study using the famous dataset CIFAR-10.

•	 Chapter 12: Sequential Models—Another class of 

deep learning is sequential models. In this chapter we 

describe the problem of sequential data and the rise 

of recurrent neural networks, the problem and also 

the evolution of the GRU and LSTM, and of course we 

include a case study.

•	 Chapter 13: Selected Topics in Computer Vision—After 

finishing CNN in Part III, it’s good to add some extra 

knowledge that makes it easier for readers when they work, 

like using prebuilt architectures and transfer learning.

•	 Chapter 14: Selected Topics in Natural Language 

Processing—This chapter fills the gaps that readers need 

in working with text, giving readers all the advanced 

approaches and techniques of natural language processing.

•	 Chapter 15: Applications—Here we show some case 

studies to make sure that readers get the full knowledge 

and understanding of how to build a pipeline, with 

real-life examples.
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CHAPTER 1

A Gentle Introduction
If you have ever tried to read a deep learning or even machine learning 

book, you will find that these books define machine learning (ML) as the 

science that teaches machines how to carry out tasks by themselves. That’s 

a simple idea if you think of it this way, but the complexity is in the details 

of this mysterious science; it’s within the black art of how these machines 

can act like humans.

Because you are reading this book now, you are probably one of the 

following:

	 1.	 A beginner to deep learning who wants to learn the 

art of deep learning in easy and straight steps

	 2.	 A developer who wants to choose a part of 

deep learning to work on and wants to gain the 

knowledge to compare between approaches to deep 

learning and choose the best option for him or her

	 3.	 An advanced engineer who wants to enhance their 

skills by learning the best practices of deep learning 

and how to build effective pipelines in a deep 

learning approach
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Upon starting the book, we have to make sure that you know where 

machine learning and deep learning come from and that's by describing 

the three theories: information, probability, and decision theory. After 

that, we will illustrate what is machine learning and what is deep learning, 

and also the evolution from machine learning to deep learning.

�Information Theory, Probability Theory, 
and Decision Theory
The first question that should spark in your mind is where does deep 

learning come from?

If we wanted to write a good answer for this question, we could write 

another book titled The Rise of Deep Learning. Instead, we will show you 

the combination that made deep learning the state-of-art approach that 

many want to learn and understand how it works.

Deep learning—or we can generalize to machine learning—is built 

from three theories:

	 1.	 Information theory

	 2.	 Probability theory

	 3.	 Decision theory

Each of these theories contributed to the rise of the deep learning 

approach and made it the rich science it is today.

�Information Theory
In this section, we start by answering a very good question: what are the 

components of the deep learning approach?

The first thing you do in any project is to get and prepare your dataset. 

And here, we start these theories by introducing some additional concepts 

from the field of information theory, which will also prove useful in our 
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development of machine and deep learning approaches. We shall focus only 

on the key concepts, which barely scratch the surface of these theories, and 

we’ll refer the reader elsewhere for more detailed discussions.

We begin by considering input observations and asking a question: 

how much information does the model receive when it’s trying to learn the 

pattern of the data?

The answer depends on many things. For example you should know 

that information the model gains from a dataset is related to many 

variables, so don’t be surprised if the model learned a lot more than you 

thought, or less. That’s why this amount of information can be viewed as 

the “degree of surprise” on learning the value of your dataset.

Because you want to make sure that a desired model should make 

accurate decisions based on what it learned from a dataset, you have to 

ensure that the data that entered your model has the proper information 

that the model needs. Also, the information the model gains is a variant 

from another dataset, and the type of dataset may also make it hard for some 

models to learn the inside patterns, for example, images and text datasets. If 

you did not have a proper model for these data, you will never extract these 

information and you will never find the pattern or even learn it.

It’s good to make it easier for your model to learn from any dataset by 

munging and cleaning the data. This will make it clear for your model to 

see information and also distinguish it from any noise that exists in the 

data; and that’s what Part II of this book is about.

Part II of this book is about dealing with data, starting by defining the 

data and the hidden information and type of data, then how to visualize 

and extract the information. After seeing the truth by visualization, then 

you now know the road to take and you only need to make this road, 

and that can done by cleaning the data. At the end of this part we show 

you some advanced techniques to make it easier for the model to learn 

by extracting and engineering the features of the data to ensure that the 

model can see and learn the pattern.
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�Probability Theory
As deep learning is concerned with learning from data, it has to learn the 

pattern behind these data. And as you learn about this field of science, 

you will find yourself facing the key concept of uncertainty. While you are 

building a deep learning algorithm that should learn from and about a 

given dataset, you will find the most famous fact in the deep learning and 

machine learning world, which is the following:

There’s a relationship between the certainty of any 

learned model on a given dataset and both noise on 

measurements and the finite size of the dataset.

Let us re-illustrate it to make it clearer. Given a dataset that you are 

working on in some project, you tried to build a deep learning algorithm 

that should predict something based on the training dataset that you 

have. After the model had trained for a certain time, you tried to test its 

understanding of the dataset that it trained on, and you are surprised that 

it learned nothing at all.

So you asked yourself why after all the training time did the model fail 

to learn? The answer may be one of the following:

•	 The model is too small for the data, and that means that 

it cannot capture all the knowledge or the patterns from 

the dataset.

•	 The model could not capture the pattern of the dataset 

due to the fact that the pattern of the data is hidden 

through a huge variation of noise, so the model failed 

to understand all that.

•	 The model could not capture the pattern due to the 

small sample of your dataset, and that means the 

model cannot learn and generalize using a small 

number of observations.
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So, after understanding the problems you have to face that make your 

model unable to perform accurately, you have another question: how can I 

overcome these obstacles and make my model achieve the desired accuracy?

The answer is behind the art of statistics, as before the invention of 

neural networks, statisticians used to make prediction based on a dataset.

Statisticians used what are called distributions to simulate the trend of 

the dataset and extract properties like the skew of the data and parameters 

such as the measurement of center (mean, median, and mode) and 

measurement of spread (variance and standard deviation). All these are 

on one-dimensional data, and if the data is in multidimensional space 

they use the covariance to see how each pair of variables goes together. 

They detect the correlation between each pair to detect the relationship 

and the association between the variable pairs. Also, they use what's called 

hypothesis testing to infer the result of a hypothesis performed on sample 

data from a dataset.

As we use deep learning to predict the future outcome based on a 

given observation, we use a huge combination of linear algebra and 

statistics as a black box to build and optimize the model.

We can’t say that deep learning consists 100% of statistics. A main 

point to address is that deep learning is not just statistics—the same-old 

stuff, just with bigger computers and a fancier name. This notion comes 

from statistical concepts and terms that are prevalent in machine/deep 

learning, such as regression, weights, biases, models, etc. Additionally, 

many models approximate what can generally be considered statistical 

functions: the softmax output of a classification model consists of logits, 

making the process of training an image classifier a logistic regression. Also, 

the least square algorithm is a statistical approach to optimize the fitted 

line on linear regression.

Though the preceding paragraph is technically correct, reducing deep 

learning as a whole to nothing more than a subsidiary of statistics is quite 

wrong, and to think that deep learning just consists of statistics is a huge 
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mistake. In fact, the comparison doesn’t make much sense. Statistics is the 

field of mathematics that deals with the understanding and interpretation 

of data.

Deep learning is nothing more than a class of computational 

algorithms (hence its emergence from computer science). In many cases, 

these algorithms are completely useless in aiding with the understanding 

of data and assist only in certain types of uninterpretable predictive 

modeling. Let's take a few examples:

•	 In reinforcement learning (we will describe what it is 

later), the algorithm may not use a preexisting dataset 

at all.

•	 In image processing, referring to images as instances of 

a dataset with pixels as features is a bit of a clue to start 

with.

In Part III, we deal with everything in the model building step—how 

to choose, build, and train your model—providing a step-by-step guide of 

model choosing and creation and the best practice techniques used in the 

industries for building and training.

�Decision Theory
We have discussed a variety of concepts from information theory 

and probability theory that will form the foundations for much of the 

subsequent discussion in this book.

In the previous section we talked about the importance of probability 

theory and how it is used to infer and train the model, but also we said 

that deep learning science does not consist only of statistics. Here we will 

show you another component that deep learning uses, and we will turn to 

a discussion about decision theory.
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When we combine decision theory with probability theory, it allows 

us to make optimal decisions in situations involving uncertainty, such as 

those encountered in machine and deep learning.

Let's take an example to prove how decision theory is an important 

element and also describe its position in the process of building a deep 

learning model.

Suppose that we have a dataset that is labeled, and you want to get 

the function that predicts the label, given an input. This problem is called 

inference, and it’s what probability theory is about. Let us consider that 

the label consists of one of two values (discrete), either true or false; the 

statistical term in the model you have built will infer the value of the 

label given its input, but you have to ensure that this choice is optimal in 

some appropriate sense. This is the decision step, and it is the main key 

concept that decision theory will tell us. It’s how to make optimal decisions 

given the appropriate probabilities. We shall see that the decision stage is 

generally very simple, even trivial.

So to make sure that you have the idea, the model will use the statistics 

and will try to guess an output to a new given observation. The model 

will output a probability for each class of the label—one probability if the 

output is true and another if the output is false. And if we aim to minimize 

the chance of assigning the input observation to the wrong output label, 

then intuitively we would choose the class having the higher probability 

(confidence) value. We now show that this information is correct, and we 

also discuss more general criteria for making decisions.

In Part III, we also continue to talk about error measurement, how to 

assess the accuracy of your model, and how to evaluate your model with 

easy clean step. Also, as there are different types of data, we will show you a 

variant type of measurement for each type.

Figure 1-1 describes the difference and the correlation between the 

three theories. We can say that each of these theories is a necessary step for 

any deep learning pipeline; in other words, each theory participates in the 

building of any machine or deep learning model.
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�Introduction to Machine Learning
The term “machine learning” was coined by Arthur Samuel in 1959, 

an American pioneer in the field of computer gaming and artificial 

intelligence, and stated that “it gives computers the ability to learn without 

being explicitly programmed.”

So let’s start to answer a few good questions: what is machine learning? 

and what is the difference between traditional programming and machine 

learning? It’s easy to get the difference between them as follows:

•	 Traditional programming: In traditional programming, 

we have a box that has two inputs (Input, Rule) and the 

traditional model generates the output based on the 

rule we add. Figure 1-2 shows an example diagram of 

traditional programming.

Figure 1-1.  How the three theories are correlated to each other and 
how they are a necessary component for deep learning pipelines. 
These theories describe the building process of the machine/deep 
learning process
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•	 Machine learning: In machine learning, we have a box 

that has two inputs (Input, Output) and the machine 

learning model trains to get the rule that generates 

the output from input. Figure 1-3 shows the machine 

learning programming example, and this shows how it 

differs from traditional programming.

Figure 1-2.  The machine learning diagram

Figure 1-3.  Traditional programming diagram

�Predictive Analytics and Its Connection 
with Machine learning
To simplify this, we will answer the question: what is predictive analytics?

Predictive analytics is a commercial name for machine learning, which 

is used to devise complex models and algorithms that lend themselves to 

prediction. So machine learning is a tool for analytics! Maybe, but we can 

say that it’s a model used by researchers, data scientists, engineers, and 

analysts to produce reliable decisions and results and uncover hidden 

insights through learning from historical relationships and trends in the 

dataset.
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Let's consider an example. Suppose that you decide to check out that 

offer for a vacation; you browse through the travel agency web site and 

search for a hotel. When you look at a specific hotel, just below the hotel 

description there is a section titled “You might also like these hotels.” This 

is a common use case of Machine Learning called a “recommendation 

engine.” In the previous example, they think that you will like these 

specific hotels, based on a lot of information they already know about you 

(historical dataset). And here we will leave a question for you: is machine 

learning a technique or an approach?

�Machine Learning Approaches
Machine learning has three main approaches:

	 1.	 Supervised learning

	 2.	 Unsupervised learning

	 3.	 Semisupervised learning

So, let us go and discuss each approach in detail.

�Supervised Learning

When an algorithm learns from example data and associated target 

responses that can consist of numeric values or string labels, such as 

classes or tags, in order to later predict the correct response when posed 

with new examples, it comes under the category of supervised learning. 

This approach is indeed similar to human learning under the supervision 

of someone.

For example, the teacher provides good examples for the student to 

memorize, and the student then derives general rules from these specific 

examples.
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Let’s see it in a visualization graph (Figure 1-4) which will give you a 

clear illustration of supervised learning. The data is labeled (as each real-

world observation/input has a certain output value), as we see in Figure 1-4. 

The model in supervised learning should see the data, as shown, to allow 

it to classify the data. The model should use the labeled data to get from 

Figure 1 on the left to Figure 2 on the right, or in other words, we will classify 

each data observation/input to a certain response/output.

In the previous example, when we explore data we see a type of 

supervised learning approach called Classification; there are two types 

actually, and they solve two problems that describe supervised learning:

•	 Classification

•	 Regression

So a good question that might come to mind is what exactly are 

classification and regression?

Figure 1-4.  A dataset with a model that classifies different 
observations (x and o) into two regions

We define a classification problem as when the output variable is a 

category or a group, such as “black” and “white” or “spam” and “ham  

(no-spam)” or even X’s and O’s.
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On the other hand, a regression problem is when the output variable is 

a real value, such as “dollars” or “height.”

So if you have to choose between two or more labels, you now face a 

classification problem; and if you try to estimate the f loating points of the 

output, you now face a regression problem (Figure 1-5).

Figure 1-5.  How a regression model tries to fit the dataset

�Unsupervised Learning

Unsupervised Learning is a class of machine learning techniques to 

find the patterns in data. The data given to unsupervised algorithm are 

not labeled, which means only the input variables are given with no 

corresponding output variables. In unsupervised learning, the algorithms 

are left to themselves to discover interesting structures in the data.

In supervised learning, the system tries to learn from the previous 

examples that are given. On the other hand, in unsupervised learning, the 

system attempts to find the patterns directly from the example given. So if 

the dataset is labeled, it comes under a supervised problem; if the dataset 

is unlabeled, it is an unsupervised problem.

In unsupervised learning, the algorithms are left to themselves to 

discover interesting structures in the data, where you only have input data 

and no corresponding output variables. The easy definition for us ML 

engineers is that in unsupervised learning we wish to learn the inherent 

structure of our data without using explicitly provided labels.
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But why do we call it unsupervised learning? We call it unsupervised 

learning because unlike supervised learning, there are no given correct 

answers and the machine itself finds the answers.

For example, suppose we have undergraduate students in a physics 

course and we need to predict who will pass and who will not, based on 

their demographic/educational factors. The model should explore the data 

and try to catch the patterns to get the right answer based on features it 

has; this is an unsupervised case.

So let’s see it in Figure 1-6, which illustrates unsupervised learning. 

The data is labeled as we see in the graph. The model in unsupervised 

learning should see the data as shown in the figure, to allow it to cluster 

the data.

Figure 1-6.  How an unsupervised learning algorithm clusters data 
into groups or zones

In Figure 1-6, we grouped data into zones. This phenomenon is 

called Clustering. Actually, we have many problems and problem-

solving techniques, but the two most common problems that describe 

unsupervised learning are:

•	 Clustering

•	 Association
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So, what are those types?

An association rule learning problem is where you want to discover 

rules that describe large portions of your data, such as “people who buy X 

also tend to buy Y.”

A clustering problem is where you want to discover the inherent 

groupings in the data, such as grouping customers by purchasing behavior.

�Semisupervised Learning

When you have a problem where you have a large amount of input data 

and only some of the data is labeled, this is called a semisupervised 

learning problem. These problems sit in between supervised and 

unsupervised learning.

Consider an example, a photo archive where only some of the images 

are labeled, (e.g., dog, cat, person) and the majority are unlabeled.

How does it work? You can use unsupervised learning techniques to 

discover and learn the structure in the input variables, then use supervised 

learning techniques to make best-guess predictions for the unlabeled data, 

feed that data back into the supervised learning algorithm as training data, 

and use the model to make predictions on new unseen data.

�Checkpoint

To not get confused, we will make a checkpoint to summarize the 

difference between the machine learning approaches. Table 1-1 

summarize the difference between the three approaches, supervised, 

unsupervised, and semisupervised learning (see also Figure 1-7).
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�Reinforcement Learning

Reinforcement learning is an area of machine learning. It’s all about taking 

suitable action to maximize the reward in this situation. Reward is one of 

the main aspects of reinforcement learning.

For example, when you have a dog in your home and try to teach it 

how to sit, jump, or turn around, you start by showing the dog how to do it 

and then let it try itself. When you say “sit” and the dog sits, you reward it.  

Table 1-1.  The Three Approaches of Machine Learning—

Summarized to Make a Checkpoint

Supervised Unsupervised Semisupervised

 All data is labeled and 

the algorithms learn 

to predict the output 

from the input data.

All data is unlabeled and 

the algorithms learn to 

the inherent structure 

from the input data.

Some data is labeled but most 

of it is unlabeled, and a mixture 

of supervised and unsupervised 

techniques can be used.

Figure 1-7.  The tree of classical machine learning
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But if it can’t understand, you don’t reward it. Let’s explain reinforcement. 

The dog is an agent; when you say “sit” it’s an environment state and 

the agent response is called action. When the dog does what you say, 

you will give it a reward, and the dog tries to maximize this reward by 

understanding what you say every time. This is reinforcement learning, 

but the reinforcement learning is out of the scope because it requires more 

knowledge of mathematics.

Let’s gain more understanding with Figure 1-8, which shows the 

environment system in reinforcement learning.

Figure 1-8.  A typical system in reinforcement learning

As we see, the agent receives a state from the environment, and the 

agent performs an action. Based on this action, the environment will 

reward the agent or punish (not reward) it.

The agent tries to maximize these rewards as much as possible 

(reinforcement learning).

But there is some commonality between supervised and reinforcement 

learning, as summarized in Table 1-2.
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�From Machine Learning to Deep Learning
We now know and understand that machine learning is a subset of 

artificial intelligence (AI), and deep learning is a subset of machine 

learning. So every machine learning program is under the category of 

AI programs but not vice versa. The question then is are the approaches 

of machine learning and AI the same? The answer is yes, because every 

machine learning problem is an AI problem and deep learning is a subset 

of machine learning. Understanding this connection is fundamenatl to our 

book. You should keep in mind that deep learning is nothing more than 

methods that enhance machine learning algorithms to be more accurate 

and make some stages easy, like feature extractions, etc.

The easiest takeaway for understanding the difference between 

machine learning and deep learning is to remember that deep learning is a 

subset of machine learning.

�Lets’ See What Some Heroes of Machine 
Learning Say About the Field
Andrew Ng, the chief scientist of China’s major search engine Baidu and 

one of the leaders of the Google Brain Project, shared a great analogy for 

deep learning with Wired Magazine: “I think AI is akin to building a rocket 

Table 1-2.  The Commonality Between Reinforcement Learning and 

Supervised Learning

Reinforcement Learning Supervised Learning

 In reinforcement learning the decision 

is dependent, so we give labels to 

sequences of dependent decisions.

In supervised learning the decisions are 

independent of each other, so labels are 

given to each decision.
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ship. You need a huge engine and a lot of fuel,” he told Wired journalist 

Caleb Garling. “If you have a large engine and a tiny amount of fuel, you 

won’t make it to orbit. If you have a tiny engine and a ton of fuel, you can’t 

even lift off. To build a rocket you need a huge engine and a lot of fuel.”

The analogy to deep learning is that the rocket engine is the deep 

learning models and the fuel is the huge amounts of data we can feed to 

these algorithms.

Nvidia: Machine learning at its most basic is the practice of using 

algorithms to parse data, learn from it, and then make a determination or 

prediction about something in the world.

Stanford: Machine learning is the science of getting computers to act 

without being explicitly programmed.

McKinsey & Co: Machine learning is based on algorithms that can learn 

from data without relying on rules-based programming.

The University of Washington: Machine learning algorithms can figure 

out how to perform important tasks by generalizing from examples.

Carnegie Mellon University: “The field of Machine Learning seeks 

to answer the question ‘How can we build computer systems that 

automatically improve with experience, and what are the fundamental laws 

that govern all learning processes?’ .”

�Connections Between Machine Learning 
and Deep Learning
Machine learning and deep learning use some statistical learning methods 

from inside, but each method has its own approach to data extraction. Take 

machine learning for example: when extracting data, each instance in a 

dataset is described by a set of features or attributes. On the other hand, deep 

Learning extracts features and attributes from raw data by using a neural 

network with many hidden layers. We will see later what a neural network is 

and what its components are, and we’ll answer these questions in detail.
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�Difference Between ML and DL
For the sake of simplicity and as a best practice, we are going to make the 

comparison between machine learning (ML) and deep learning (DL) using 

an example. We will start with a cats and dogs example as follows.

First, we will explain and talk about this dataset. The cat and dog 

dataset is set of images that in which each image (an observation) is either 

labeled dog if the image contains a dog, or cat if the image contains a cat.

Second, we will show the difference between the machine learning 

approach and the deep learning approach by applying each approach on 

the dataset and concluding the result of each one.

�In Machine Learning

The images according to the dataset are either one of two categories: dogs 

or cats. The question here is does the algorithm know which is a dog and 

which is a cat?

The answer is simply that the model will try to label the pictures as one 

of the two categories. It will correctly classify these labels sometimes, and 

will incorrectly classify the other label of some images, so it will end with a 

disaster and very low accuracy.

This means that your model failed to learn the differences between a 

cat and a dog. That’s because your model simply labels the pictures of dogs 

and cats in a way that defines specific features of both the animals from a 

general view.

Let’s take an example wherin the pictures of dogs are always taken 

outside, so maybe if we have a picture of a cat outside, the model may 

recognize it as a dog because it doesn't take specific dog features into 

account. It sees that those pictures of dogs have a sky in them, so any 

picture that contains animal and sky will be considered a dog picture. This 

is just a simplified example.
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�In Deep Learning

Now, you have used the deep learning approach and you can see a huge 

difference in results. So, you wonder what's the difference that made such 

a good effect? Of course with some data preprocessing, you can now make 

the model learn the difference between the two animals by pointing the 

model to the animal in the image. That process is called data annotation. 

Thanks to that, the model can detect and correctly classify the animal in 

the newly entered image.

Now the model classifies the two animals, the deep learning approach 

uses what’s called an artificial neural network (ANN) that sends the input 

(data of images) through different layers of the network, and each layer is 

hierarchically learning and defining specific features of each animal.

After the data is processed through layers within the neural network, 

the system finds the appropriate identifiers for classifying both animals 

from their images.

�What Have We Learned Here?

One of the differences between deep learning vs. machine learning may 

appear in the way data is presented to the system. Machine learning 

algorithms almost always require structured data, whereas deep learning 

networks rely on layers of the ANNs.

Machine learning algorithms are built to “learn” to do things by 

understanding labeled data, and then use it to produce further outputs 

with more sets of data. However, they need to be retrained through human 

intervention when the actual output isn’t the desired one.

Deep learning networks do not require human intervention, as the 

nested layers in the neural networks put data through hierarchies of 

different concepts, which eventually learn through their own errors. 

However, even these are subject to flawed outputs if the quality of data 

isn’t good enough.
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Data is the governor here. It is the quality of data that ultimately 

determines the quality of the result.

�Why Should We Learn About Deep Learning 
(Advantages of Deep learning)?
Deep learning is hyped nowadays because of four main reasons:

	 1.	 The data: One of the things that increased the 

popularity of deep kearning is the massive amount 

of data that is available by 2018, which has been 

gathered over the past years and decades. This 

enables neural networks to really show their 

potential, since they get better the more data 

you put into them. We have questioned whether 

the huge amount of data is useful for machine 

learning too, but unfortunately not. Traditional 

machine learning algorithms will certainly reach 

a level where more data doesn’t improve their 

performance.

	 2.	 The power: The computational power available 

nowadays enables us to process more data.

	 3.	 The algorithms: These recent breakthroughs in 

the development of algorithms are mostly due 

to making them run much faster than before; 

optimization and parallelism also made the dream 

come true.

Chapter 1  A Gentle Introduction



24

	 4.	 The marketing: Neural networks were around for 

decades (proposed in 1944 for the first time) and 

already had some hype but also faced times where no 

one wanted to believe and invest in them. The phrase 

“deep learning” gave it a new fancy name, which 

made a new hype possible. This means that deep 

learning isn't a newly created field; you should know 

that it has been redeveloped again in a new decade.

Deep learning comes more popular, since machine learning 

algorithms require labeled data, they aren’t suitable to solve complex 

queries which involve a huge amount of data.

�Disadvantages of Deep Learning (Cost of 
Greatness)

	 1.	 What should be known is that deep learning 

requires much more data than a traditional machine 

learning algorithm.

	 2.	 A neural network is Black Box, meaning that you 

don’t know how and why your neural network came 

up with a certain output.

	 3.	 Duration of development: it takes a lot of time 

to develop a neural network. Although there are 

libraries like Keras out there, which make the 

development of neural networks fairly simple, you 

sometimes need more control over the details of 

the algorithm. For example, when you try to solve a 

difficult problem with machine learning that no one 

has ever done before, you probably use TensorFlow 

(which we will talk about in detail in this book).

Chapter 1  A Gentle Introduction



25

	 4.	 Neural networks are also more computationally 

expensive than traditional algorithms. State-of-

the art deep learning algorithms, which realize 

successful training of bottomless neural networks, 

can take several weeks to train completely from 

scratch (don't worry; this is solved using transfer 

learning techniques).

�Introduction to Deep Learning
So, what is deep learning? It’s fair enough to answer that question by 

saying that deep learning just means machine learning using deep neural 

networks. Deep learning is a subset of machine learning but using a 

human brains representation; scientists try to simulate what human brains 

do by creating some algorithms. Many people say that neural networks (NNs)  

and deep neural networks (DNNs) are a new approach.

Let’s go back to the History of the neural network. The history of 

Ddeep learning can be traced back to 1943, when Walter Pitts and Warren 

McCulloch created a computer model based on the neural networks of the 

human brain. They used a combination of algorithms and mathematics 

they called “threshold logic” to mimic the thought process.

Then in 1965, Alexey Grigoryevich Ivakhnenko (developer of the group 

method of data handling) and Valentin Grigor′evich Lapa (author of 

Cybernetics and Forecasting Techniques) used models with polynomial 

activation functions that were then analyzed statistically. From each layer, 

the best statistically chosen features were then forwarded on to the next 

layer.

1985-1990s is the second winter of AI and deep learning. Deep learning 

has its own researchers; they gave more attention to deep learning.

In 1995, Dana Cortes and Vladimir Vapnik developed the support 

vector machine (a system for mapping and recognizing similar data).
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LSTM (long short-term memory) for recurrent neural networks (RNNs) 

was developed in 1997 by Sepp Hochreiter and Juergen Schmidhuber.

We don’t need to spend all our time in the history of deep learning and 

how it is raising our world these days, but we wanted to show that deep 

learning wasn’t invented in our days. We gave you some references to the 

history. Now is the time for deep learning.

Deep learning is based on the way the human brain processes 

information and learns. It consists of a machine learning model 

composed of several levels of representation, in which every level uses the 

information from the previous level to learn deeply. Deep learning consists 

of neural networks, neural networks consists of layers, and layers consist of 

hidden units called perceptrons.

Now let’s see the previous structure when we put them together. 

First, we should see the types of neural networks, which will allow us to 

understand the previous structure. We have two main types of neural 

network (shallow and deep). Table 1-3 shows the difference between them.

Table 1-3.  Shallow vs. Deep Neural Networks

Shallow Deep

 The word “shallow” means NOT DEEP; it has 

only one hidden layer.

The word “deep” means it has 

many hidden units.

Now we know the difference between shallow and deep. But what is a 

unit? What is a layer? Which is the main factor of comparison? And what 

are the types of layers? This is the start for deep learning; we should begin 

with basic function and go up to the complex module. Let’s start with 

the unit, the simplest function of deep learning; it contains the approach 

of machine learning (supervised, unsupervised, semisupervised, and 

reinforcement). It may have an activation function (we will explore it later), 

like logistic regression, or regression function, or clustering function and 

so on. This shows that deep learning is a subset of machine learning; for 

Chapter 1  A Gentle Introduction



27

now, it’s a good explanation for the unit of a deep learning layer. Then, 

when we have more than one unit together, we create something called a 

layer: every unit is connected with the units in the previous layer (which 

is called a fully connected neural network). We have three types of layers 

(input, hidden (encoders), and output), so after we make units of the input 

layer and connect it with input data, and create new units for the next layer 

and connect it with the input and output layers this network is called a 

shallow neural network. But if we connect this hidden layer with another 

hidden layer, we will have a deep neural network. It seems simple enough 

to understand the difference between deep and shallow neural networks. 

But let’s see an image to better understand the difference (Figure 1-9).

Figure 1-9.  The difference between shallow and deep neural 
networks

Now let’s see the types of deep neural networks:

•	 Feedforward neural network

•	 Radial basis function neural network

•	 Multilayer perceptron

•	 Convolutional neural network

•	 Recurrent neural network—Long short-term memory

•	 Modular neural network

•	 Sequence to sequence models
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These are the most common neural networks in deep learning. We will 

talk about some of them in the next chapters in this book, but for now, we 

can learn their names and get motivated to understand them in detail.

The most common applications in deep learning:

•	 Computer vision and image processing research (e.g., 

self-driving cars).

•	 Natural language processing (speech recognition, 

machine translation, and natural language 

understanding)

•	 Recommendation engines

•	 Automatic colorization

•	 Advertising, such as social media ads and user-targeted 

ads

�Machine Learning Mathematical Notations
After introducing the field of deep learning to you, we need to collect some 

math notations that will be used to prove or conclude some theories. We 

do not use this book for mathematical proofs or rigorous explanations, 

but we go more into practical aspects. We will use these math notations 

to write down some equations that explain why we make something in a 

certain way, not in another one. So let’s start now; in Table 1-4 we’ve tried 

to collect all the notations that we need in this book.

Xi, j is a notation for a constant, the smallest element in a matrix; or we 

can say it’s the basic notation in a vector, which we use to build the vector. 

So what is a vector? But first, let’s talk about the subscript values (i,j); they 

are indexing values. ith is an index for rows and jth is an index for columns, 

to allow us to get the specific value from the vector. Let’s see about vectors.
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While Xi is a notation for a group of constants grouped together to 

make a variable called a vector, in the vector we mentioned before about 

indexing we have ith and jth indexes. But Xi has only subscript ith; this means 

that we have only one row in the vector or we have only one column. For 

instance, if we have one row and multiple columns, we will see it like 

this: X1, j. This j means you iterate over columns. On the other hand, if we 

have one column and many rows, we will see it like this: Xi, 1. This i means 

you iterate over rows. Let’s make it easier: in an array you have rows and 

columns. If you have only one column and many rows, then X[i][0]; if you 

have one row and many columns, then X [0][ j].

Let’s go through this a bit more. If we get some constants together we 

have a Vector, so if we group some vectors together, what will we see? It’s 

The Matrix. X is a notation for a matrix, which is used to represent data in 

dimensions. When we say dimensions in matrices, we may mean columns 

and rows (in the case of a 2-D matrix), or maybe spaces like 2-D space. On 

the other hand, we can’t say this matrix is 2-D when we have two columns 

and say 3-D when we have three columnss: it is not true at all. Next, let’s 

see some you some special types of Matrices:

I denotes an identity matrix. An identity matrix is a matrix has its 

values with zeros; only the main diagonal values are ones.

X T is a transpose matrix. A transpose matrix is a good method for 

matrix multiplication or inverting the matrix. We don’t need to go into 

this complex algebra process, but you should know that it is a transpose 

matrix.

Chapter 1  A Gentle Introduction



30

Ta
bl

e 
1-

4.
 S

u
m

m
ar

y 
of

 A
ll 

N
ee

de
d 

N
ot

at
io

n

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e 

in
 M

ac
hi

ne
 L

ea
rn

in
g

Al
ge

br
a 

(N
um

be
rs

 &
 A

rr
ay

s)

 x
Sc

al
ar

 (i
nt

eg
er

 o
r r

ea
l)

a 
=

 3

 x
Ve

ct
or

a 
=

 [1
, 2

, 3
]

 X
M

at
rix

A
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

ij

n n n

m
m

=
é ë

ù û
=

11
12

13
1

21
22

23
2

31
32

33
3

1

� � �
�

�
�

�

22
3

a
a

m
m
n

m
n

�

é ëê ê ê ê ê ê

ù ûú ú ú ú ú ú
´

 I
Id

en
tit

y

I
I

I
1

2
3

1
1

0

0
1

1
0

0

0
1

0

0
0

1

=
[]

=
é ëê

ù ûú
=
é ëê ê ê

ù ûú ú ú
,

,
,..
...
...
...
...
....
...

..
..

..
..

..
..

..
..

..
..

..
..

I n
=

1
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

éé ëê ê ê ê ê ê ê ê

ù ûú ú ú ú ú ú ú ú

 X
T

Tr
an

sp
os

e 
m

at
rix

Chapter 1  A Gentle Introduction



31

 S
et

s 
&

 G
ra

ph
s

 A
A 

is
 a

 s
et

A 
=

 {1
,2

,3
,4

} t
hi

s 
se

t m
ea

ns
 th

at
 it

 c
on

ta
in

s 
on

ly
 1

,2
,3

,4
 a

nd
 it

s 
un

iq
ue

 v
al

ue
s 

w
hi

ch
 m

ea
n 

ca
n’

t f
in

d 
re

pe
at

ed
 it

em
s 

in
 s

et
, u

nl
ik

e 
ve

ct
or

s 
it 

ca
n 

co
nt

ai
n 

m
an

y 

re
pe

at
ed

 c
ha

ra
ct

er
s.

 𝕽
Th

e 
se

t o
f r

ea
l  

nu
m

be
rs

Th
is

 m
ea

ns
 it

 c
on

ta
in

s 
al

l r
ea

l n
um

be
rs

.

 [a
, b

]
Th

e 
re

al
 in

te
rv

al
 

in
cl

ud
in

g 
a 

an
d 

b

 (a
, b

]
Th

e 
re

al
 in

te
rv

al
 

ex
cl

ud
in

g 
a 

bu
t  

in
cl

ud
in

g 
b

(c
on

ti
n

u
ed

)

Chapter 1  A Gentle Introduction



32

Ta
bl

e 
1-

4.
 (

co
n

ti
n

u
ed

)

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e 

in
 M

ac
hi

ne
 L

ea
rn

in
g

 In
de

xi
ng

 X
i

El
em

en
t i

 o
f v

ec
to

r x
, 

w
ith

 in
de

xi
ng

 s
ta

rti
ng

 

at
 1

 X
i, 

j
El

em
en

t (
i, 

j) 
of

 m
at

rix
 X

 X
i:

Ro
w

 i 
of

 m
at

rix
 X

 X
:j

Co
lu

m
n 

i o
f m

at
rix

 X

 X
i, 

j, 
k

El
em

en
t (

i, 
j, 

k)
 o

f a
 3

-D
 

na
m

ed
 te
ns
or

 X

 X
:, 

: ,
 i

2-
D 

sl
ic

e 
of

 a
 3

-D
 te

ns
or

 x
i

El
em

en
t i

 o
f t

he
 v

ec
to

r x

Chapter 1  A Gentle Introduction



33

 F
un

ct
io

ns

 f 
: A

 -
>

 B
A 

fu
nc

tio
n 

f w
ith

 d
om

ai
n 

A 
an

d 
ra

ng
e 

B

 f(
x;

θ)
 o

r f
(x

)
A 

fu
nc

tio
n 

of
 x

 

pa
ra

m
et

er
iz

ed
 b

y 
θ 

(o
m

itt
ed

 s
om

et
im

es
)

 σ
(x

)
Lo

gi
st

ic
 s

ig
m

oi
d,

 i.
e.

,  

(1
 +

 e
xp

(x
))1

 g
[f;

 x
]

A 
fu

nc
tio

n 
th

at
 m

ap
s 

 

f t
o 

f(x
)

 ||
X |

|p
Lp

no
rm

 o
f x

W
e 

w
ill

 u
se

 it
 in

 th
e 

re
gu

la
riz

at
io

ns
.

 ||
X|

|
L2

 n
or

m
 o

f x
W

e 
w

ill
 u

se
 it

 in
 th

e 
re

gu
la

riz
at

io
ns

.

(c
on

ti
n

u
ed

)

Chapter 1  A Gentle Introduction



34

Ta
bl

e 
1-

4.
 (

co
n

ti
n

u
ed

)

No
ta

tio
n

De
sc

rip
tio

n
Us

ag
e 

in
 M

ac
hi

ne
 L

ea
rn

in
g

 S
ta

tis
tic

s

 𝜇
Po

pu
la

tio
n 

m
ea

n

x
Sa

m
pl

e 
m

ea
n

σ 2
Po

pu
la

tio
n 

va
ria

nc
e

s 2
Sa

m
pl

e 
va

ria
nc

e

x 
or

 σ
St

an
da

rd
 d

ev
ia

tio
n

 s
Sa

m
pl

e 
st

d 
de

v

x
M

ed
ia

n

Chapter 1  A Gentle Introduction



35

 M
ac

hi
ne

 L
ea

rn
in

g

 X
Th

e 
se

t o
f d

at
a 

us
ed

 a
s 

tra
in

in
g 

ex
am

pl
es

 Y
 o

r i
n 

so
m

e 

bo
ok

s 
y

Th
e 

se
t o

f o
ut

pu
t 

ex
am

pl
es

 ŷ
La

be
l p

re
di

ct
ed

 b
y 

a 
fu

nc
tio

n 
f, 

i.e
., 

ŷ
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�Summary
In this chapter we started with a brief introduction to machine learning, 

then we introduced the backbone of the field—the three theories: 

information, probability, and decision. After that, we illustrated the 

evolution from machine learning to deep learning, and we gave you an 

introduction to the mathematical notation used in this book.
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CHAPTER 2

Setting Up Your 
Environment
Now that the history and math lessons are out of the way, we must be fair 

and give you a dessert, so let’s now prepare for the upcoming dirty work by 

setting our environment.

Most deep learning engineers have a development and research 

environment installed, ready to build and maintain deep learning 

models. But if you are new to this field, you may wonder about the best 

tool and programming language available to easily learn and effectively 

use to advance your career as a data scientist. We believe it’s Python and 

TensorFlow, so in this chapter we’ll be installing both.

�Background
Python is an interpreted high-level programming language for general-

purpose programming. Created by Guido van Rossum and first released 

in 1991, Python has a design philosophy that emphasizes code readability, 

notably using significant whitespace. It provides constructs that enable 

clear programming on both small and large scales. Python has conquered 

the scientific community and taken the lead due to the huge data 

processing and analysis packages in it. Also, it allows the data scientist 
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to make fast experiments, and easy development and deployment of 

scientific applications. Besides all these features, Python allows us to 

integrate scientific experiments to desktop or web applications.

In addition to Python, there are other tools such as R and MATLAB, but 

what makes Python my favorite programming language is that it is open 

source with a huge community. Python completes your data scientist skills: 

it’s easier for development and deployment of applications to production.

�Python 2 vs. Python 3
wiki.python.org goes into depth on the differences between Python 2.7 

and 3.3, saying that there are benefits to each. It really depends on what 

you are trying to achieve. But, in summation:

“Python 2.x is legacy, Python 3.x is the present and 

future of the language.”

There are subtle differences between the two. But the biggest difference 

is the print statement, taking the next phrase from Stack Overflow.

“The most visible (difference) is probably the way the “print” statement 

works. It's different enough that the same script won't be able to run on both 

versions at the same time, but pick one and you'll be fine.”

�Installing Python
Python is an open source, object-oriented and cross-platform 

programming language. When Python is compared with C++ or even Java 

as a competitor, Python wins the race due to several reasons:

•	 Python allows you to build a working software 

prototype in a very short time.

•	 Python is flexible, due to hundreds of packages that 

solve almost all of problems and fill most necessities.
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For those reasons, Python became the most used language in the data 

scientist’s toolbox (at least until we have written this book).

So let us proceed to introduce all the settings you need in order to 

create the data science environment to run the examples and experiments 

provided with this book.

Novice data scientists who have never used Python (who likely don’t 

have the language readily installed on their machines) need to download 

the installer from the main website of the project first (https://python.

org/downloads/) and then install it on their local machine.

Remember that some of the latest versions of most Linux distributions 

(such as CentOS, Fedora, Red Hat Enterprise, Ubuntu, and some other 

minor ones) have Python 2 packaged in the repository. In such a case, and 

in case you already have a Python version on your computer (since our 

examples run on Python 3), you first have to check exactly what version 

you are running. To do such a check, just follow these instructions:

•	 Open a Python shell, type python in the terminal, or 

click on any Python icon you find on your system.

•	 Then, after having Python started, test the installation 

by running the following code in the Python interactive 

shell or REPL:

>>> import sys

>>> print (sys.version_info)

•	 If you can read that your Python version has the 

major=2 attribute, it means that you are running 

a Python 2 instance. Otherwise, if the attribute is 

major=3, or if the print statement reports back to you 

something like v3.x.x (for instance v3.5.1), you are 

running the right version of Python and you are ready 

to move forward.
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Note  REPL stands for read-eval-print loop—a simple environment 
that takes a user’s commands as an input line in a shell and outputs 
the result of the line by printing it.

�Python Packages
Python won’t come bundled with all you need, unless you take a specific 

premade distribution. Therefore, to install the packages you need, you 

can use either pip (you can install pip by following instructions here) or 

easy_install. Both of these tools run in the command line and make the 

process of installation, upgrade, and removal of Python packages a breeze. 

To check which tools have been installed on your local machine, run the 

following command:

 $> pip

 # or

 $> easy_install

In most cases in this book, you will see packages installed using pip.

Note  You might find that pip is in your system as pip3 and 
easy_install as easy_install-3, to stress the fact that both 
operate on packages for Python 3. For insurance, check the version 
$> pip --version for pip or $> easy_install --version for 
easy_install.

After this, you can install any Python package easily, and all its 

dependencies will be downloaded and installed. If you are not sure if the 

package is in your system or not, try to use it by importing it. If the Python 

interpreter raises an ImportError message, then you can be certain that the 

package has not been installed.
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This is what happens when the NumPy library has been installed:

 >>>import numpy

This happens if it’s not installed:

 >>> import numpy

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 ImportError: No module named numpy

In this case you should install NumPy by running the following 

command in your terminal:

 $> pip install

 # or

 $> easy_install numpy

�IPython
IPython (Interactive Python) is a command shell—like REPL but has 

a nicer interface—for interactive computing in multiple programming 

languages. Originally developed for the Python programming language, it 

offers introspection, rich media, shell syntax, tab completion, and history.

IPython provides the following features:

•	 Interactive shells (terminal and Qt-based)

•	 A browser-based notebook interface with support for 

code, text, mathematical expressions, inline plots, and 

other media

•	 Support for interactive data visualization and use of 

GUI toolkits
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•	 Flexible, embeddable interpreters to load into one’s 

own projects

•	 Tools for parallel computing

�Installing IPython

You can install IPython (Figure 2-1) using the following command line:

$> pip install ipython

After finishing the installation, you can run IPython using this command:

$> ipython

Note  You might find that you have to run ipython3 instead of 
running just ipython, because ipython3 is made for Python 3.

When you run your code lines in an IPython shell, you will find that the 

code is written in a line that starts with In[1]. This means that the shell is 

writing your input in line 1, and the output is written with the same syntax 

except it starts with Out[1], for example:

Figure 2-1.  What IPython looks like
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�Jupyter
As a data scientist or machine learning engineer, experimentation is the 

work approach, so fast experimentation is required. That’s why IPython 

was created, but it was limited to Python programming language only 

until Jupyter was created in 2015 by Fernando Perez, in order to address 

the need for an interactive command shell for several languages. This new 

project extends the potential usability of the original IPython interface to a 

wide range of programming languages, such as

•	 Julia

•	 Scala

•	 R

For a more complete list of available kernels for Jupyter, please visit the 

page here https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

Note  You cannot mix or run the same notebook commands for 
different kernels; each notebook only refers to a single kernel, that 
is, the one it was initially created with. Consequently, on the same 
notebook you cannot mix languages or even versions of the same 
language like Python2 and Python3.

Jupyter Notebook is built off of IPython, an interactive way of running 

Python code in the terminal using the REPL model (Read-Eval-Print-

Loop). The IPython kernel runs the computations and communicates with 

the Jupyter Notebook front-end interface.

Thanks to the great idea of kernels, which run the user’s code 

communicated by the web-based front-end interface and provide an 

output of the input code to the interface itself, you can use the same 

interface and interactive programming style no matter what language you 

are using for development.

Chapter 2  Setting Up Your Environment

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels


44

Note  Without the IPython kernel, Jupyter will not even function, 
even if you have installed another kernel and linked it.

Jupyter is our favored choice throughout this book, and it is used to 

clearly and effectively illustrate operations with scripts and data and the 

consequent results.

Regular IDEs are built around the cycle of

	 1.	 Writing a script

	 2.	 Running it afterward

	 3.	 Evaluating its results

Contrary to regular IDEs, Jupyter lets you write your code in chunks, 

named cells; run each of them sequentially; and evaluate the results of 

each one separately, examining both textual and graphic outputs—an 

advantage of this method.

•	 You can run a selected cell, and got an output from it.

•	 If a certain cell got an error or exception, other cells 

saves their outputs instead of running the whole script 

from start.

Such an approach is also particularly very good for tasks involving 

developing code based on data—like point 2 in the preceding list—since 

it automatically accomplishes the often neglected duty of documenting 

and illustrating how data analysis has been done, its premises and 

assumptions, and its intermediate and final results.

If a part of your job is to also present your work to an internal or 

external stakeholder in the project, Jupyter can really do the job of 

storytelling without any effort.
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Users can easily combine code, comments, formulas, charts, 

interactive plots, and media such as images and videos, making each 

Jupyter Notebook a scientific sketchpad to find all your experimentations 

and their results.

Jupyter runs on all browser (such as Explorer, Firefox, or Chrome, 

for instance) and, when started, presents a cell waiting for code to be 

written in. Each block of code enclosed in a cell can be run, and its results 

are reported in the space just after the cell. Plots can be represented in 

the Notebook (inline plot) or in a separate window. In our example, we 

decided to plot our chart inline.

�Installing Jupyter

You can find complete instructions about Jupyter installation—covering all 

operating systems—here (https://jupyter.readthedocs.io/en/latest/

install.html).

If you do not have Jupyter installed on your system, you can promptly 

set it up using this command:

$> pip install jupyter

After installation, you can run a Jupyter kernel by calling it from the 

command line

$> jupyter notebook

Once the Jupyter instance has opened in the browser, you can see this 

page (Figure 2-2).
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This is the tree page of Jupyter that you can build and control Jupyter 

Notebooks from. You can see the following in Figure 2-2:

•	 There are two notebooks in this folder.

•	 The notebook with the Green colored icon is running in 

the kernel right now.

•	 The notebook with the black colored icon is shut down.

•	 There is Upload button that lets you upload all type 

of files here (if you are running Jupyter on a remote 

server).

•	 With the New button you can create new notebooks or 

empty files or even can open a terminal.

Note T he tree page of Jupyter can only see the directory where the 
command was executed.

Now click on the New button; in the Notebooks section, choose 

Python 3 (other kernels may be present in the section, depending on 

what you installed).

You can also create a Text File, Folder, or open a Terminal (Figure 2-3).

Figure 2-2.  The Jupyter Notebook tree file
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At this point your new empty notebook will look like the next 

screenshot (Figure 2-4), and you can start entering the commands in the 

cells. For instance, you may start by typing in the cell.

Figure 2-3.  How to create a new file, folder, or even a terminal

Figure 2-4.  The Jupyter Notebook file

After creating a Jupyter Notebook (and that is an achievement by the 

way), we need to make sure that you understand some concepts about the 

file you have created.

What Is an ipynb File?

It will be useful to understand what this file really is.

Each .ipynb file is a text file that describes the contents of your 

Notebook in a format called JSON. Each cell and its contents, including 

image attachments that have been converted into strings of text, is listed 

therein along with some metadata. You can edit this yourself—if you know 
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what you are doing—by selecting Edit ➤ Edit Notebook Metadata from 

the menu bar in the Notebook.

There are two terms that you should notice, which may be new to you: 

cells and kernels are key both to understanding Jupyter and to what makes 

it more than just a word processor.

•	 A kernel is a “computational engine” that executes the 

code contained in a Notebook file.

•	 A cell is a container for text to be displayed in the 

notebook or code chunk to be executed by the 

Notebook’s kernel.

Cells form the body of a Notebook. In the screenshot in Figure 2-5, that 

box with the green outline is an empty cell. There are two main cell types:

Figure 2-5.  A selected, green cell

•	 A code cell contains code chunks to be executed in the 

kernel and displays its output below.

Note T he first cell in a new notebook by default is always a code cell.

•	 A Markdown cell contains text formatted using 

Markdown and displays its output in place when it is 

run (Figure 2-6).
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So, click the Notebook Run button in the toolbar or press Ctrl + Enter.

The result should look like Figure 2-7.

Figure 2-6.  Writing a simple Python command

Figure 2-7.  The output of the first Python command

Figure 2-8.  A simple markdown command

Moreover, written notes can be written easily using Markdownm an 

effortless and fast-to-grasp markup language (https://daringfireball.

net/projects/markdown/). Math formulas can be handled using MathJax 

(www.mathjax.org/) to render any LaTeX script inside HTML/Markdown. 

Its syntax has a one-to-one correspondence with HTML tags, so some prior 

knowledge here would be helpful but is definitely not a prerequisite.

There are many ways to write a LaTex code in a cell. The easiest way is 

to use the Markdown syntax simply, wrapping the equations with single $ 

(dollar sign) for an inline LaTeX formula, or with a double dollar sign $$ for 

a one-line central equation. Remember that to have a correct output, the 

cell should be set as Markdown. Here’s an example (Figure 2-8).
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�Packages Used in the Book
All the packages that we are going to introduce now are strongly analytical, 

and used a lot in data science and machine learning projects. All these 

packages are made up of extensively tested and highly optimized functions 

for both memory usage and performance, ready to achieve any scripting 

operation with successful execution. A walkthrough on how to install them 

is provided in the following section.

�NumPy
NumPy stands for (Numerical Python), which is Travis Oliphant's creation, 

and is the analytical backbone of the Python programming language. It 

provides multidimensional arrays, along with a large set of functions to 

operate a multiplicity of mathematical operations on these arrays. Arrays 

are blocks of data arranged along multiple dimensions, which implement 

mathematical vectors and matrices. Characterized by optimal memory 

allocation, arrays are useful not just for storing data, but also for fast matrix 

operations (vectorization).

•	 Website: www.numpy.org/

•	 Installation command: pip install numpy

•	 Preferred alias of importing: import numpy as np

�SciPy
SciPy (pronounced “Sigh Pie”) is open source software for mathematics, 

science, and engineering. The SciPy library depends on NumPy, an 

original project by Travis Oliphant, Pearu Peterson, and Eric Jones. 

SciPy completes NumPy’s functionalities, offering a larger variety of 

scientific algorithms for linear algebra, sparse matrices, signal and image 

processing, optimization, Fourier transformation, and much more.
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•	 Website: www.scipy.org/

•	 Installation command: pip install scipy

•	 Preferred alias of importing: import scipy as sp

�Pandas
Pandas deals with everything that NumPy and SciPy cannot do. Thanks to 

its specific data structures, namely DataFrames and Series, pandas allows 

you to handle complex tables of data of different types (which is something 

that NumPy arrays cannot do) and time series. Thanks to Wes McKinney’s 

creation, you will be able to easily and smoothly load data from a variety of 

sources. You can then slice, dice, handle missing elements, add, rename, 

aggregate, reshape, and finally visualize your data at will.

•	 Website: https://pandas.pydata.org/

•	 Installation command: pip install pandas

•	 Prefered alias of importing: import pandas as pd

�Matplotlib
Matplotlib is a Python 2-D plotting library that produces publication 

quality figures in a variety of hard copy formats and interactive 

environments across platforms. Originally developed by John Hunter, 

matplotlib contains all components that are required to create quality plots 

from data and to visualize them interactively.

For simple plotting the pyplot module provides a MATLAB-like 

interface, particularly when combined with IPython. For the power user, 

you have full control of line styles, font properties, axes properties, etc, via 

an object-oriented interface or via a set of functions familiar to MATLAB 

users.
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•	 Website: https://matplotlib.org/

•	 Installation command: pip install matplotlib

•	 Preferred alias of importing: import matplotlib.

pyplot as plt

Note T his importing is for visualization purposes, because 
matplotlib contains components used for many purposes other than 
data visualization.

�NLTK
NLTK is a leading platform for building Python programs to work with 

human language data. It provides easy-to-use interfaces to more than 50 

corpora and lexical resources. NLTK stands for Natural Language Toolkit, 

and it provides a complete suite of functions for statistical natural language 

processing (NLP), starting from tokenizers to part-of-speech taggers and 

from tree models to named-entity recognition. Initially, Steven Bird and 

Edward Loper created the package as an NLP teaching infrastructure for 

their course at the University of Pennsylvania.

•	 Website: www.nltk.org/

•	 Installation command: pip install nltk

•	 Preferred alias of importing: import nltk

�Scikit-learn
The Scikit-learn project started as scikits.learn, a Google Summer of Code 

project by David Cournapeau. Its name stems from the notion that it is a 

“SciKit” (SciPy Toolkit), a separately developed and distributed third-party 

extension to SciPy.
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Scikit-learn is the core of machine learning and data science 

operations on Python. It offers all that you need, such as data 

preprocessing, supervised and unsupervised learning, model selection, 

validation, and error metrics.

•	 Website: http://scikit-learn.org/

•	 Installation command: pip install scikit-learn

•	 Preferred alias of importing: import sklearn

�Gensim
Gensim was created by Radim Řehůřek, and it is a robust open source 

vector space modeling and topic modeling toolkit implemented in Python. 

It uses NumPy, SciPy, and optionally Cython for performance. Gensim is 

specifically designed to handle large text collections, using data streaming 

and efficient incremental algorithms, which differentiates it from most 

other scientific software packages that only target batch and in-memory 

processing. It implements latent semantic analysis (LSA), topic modeling 

by latent Dirichlet allocation (LDA), and Google’s word2vec, a powerful 

algorithm that transforms text into vector features.

•	 Website: https://radimrehurek.com/gensim/

•	 Installation command: pip install gensim

•	 Preferred alias of importing: import gensim

�TensorFlow
TensorFlow is an open source software library for dataflow programming 

across a range of tasks. It is a symbolic math library, and is also used for 

machine learning applications such as neural networks. It is used for 

both research and production at Google. TensorFlow was developed by 
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the Google Brain team for internal Google use. It was released under the 

Apache 2.0 open source license on November 9, 2015.

•	 Website: www.tensorflow.org/

•	 Installation Command: pip install tensorflow

•	 Preferred alias of importing: import tensorflow  

as tf

�Installing on Mac or Linux distributions

The following are the steps to install TensorFlow on Mac and Linux 

systems:

	 1.	 First, install pip and virtualenv (optional) if they are 

not already installed:

	 a.	 For Ubuntu/Linux 64-bit:

$ sudo apt-get install python3-pip python3-dev

$ sudo pip3 install -U virtualenv #system-wide 

install

	 b.	 For Mac OS X:

$ sudo easy_install pip

$ sudo pip install --upgrade virtualenv

	 2.	 Then you can create a virtual environment 

virtualenv. The following commands create a 

virtual environment virtualenv in the ~/tensorflow 

directory:

$ virtualenv --system-site-packages ~/

tensorflow
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	 a.	 The next step is to activate virtualenv as follows:

$ source ~/tensorflow/bin/activate

(tensorflow)$

	 3.	 Henceforth, the name of the environment we’re 

working in precedes the command line. Once 

activated, pip is used to install TensorFlow within it.

	 a.	 For Ubuntu/Linux 64-bit, CPU:

(tensorflow)$ pip install --upgrade  

https://storage.googleapis.com/tensorflow/linux/ 

cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

	 b.	 For Mac OS X, CPU:

(tensorflow)$ pip install --upgrade https://storage.

googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-

none-any.whl

If you want to use your GPU card with TensorFlow, then install another 
package. I recommend you visit the official documentation to see if 
your GPU meets the specifications required to support TensorFlow.

	 4.	 Finally, when you’ve finished, you must disable the 

virtual environment:

(tensorflow)$ deactivate
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�Installing on Windows

If you can’t get a Linux-based system, you can install Ubuntu on a virtual 

machine; just use a free application called VirtualBox, which lets you 

create a virtual PC on Windows and install Ubuntu in the latter. So, you 

can try the operating system without creating partitions or dealing with 

cumbersome procedures.

�Keras
Keras is an open source neural network library written in Python. It is 

capable of running on top of TensorFlow, Microsoft Cognitive Toolkit, 

or Theano. Designed to enable fast experimentation with deep neural 

networks, it focuses on being user friendly, modular, and extensible.

It was developed as part of the research effort of project ONEIROS 

(Open-ended Neuro-Electronic Intelligent Robot Operating System), and 

its primary author and maintainer is François Chollet, a Google engineer.

•	 Website: https://keras.io/

•	 Installation command: pip install keras

•	 Preferred alias of importing: import keras

�Summary
In this chapter we discussed the whole environment, installation, and 

preparation of Python; we also discussed how to install every package that 

will be used in the book from NumPy to TensorFlow. We illustrated the IDE 

you will use to develop and maintain the code for the exercises, and how to 

use it for both coding and documenting.

In Chapter 3 we will give a nice tour through the deep learning pipeline, 

introducing the pipeline step-by-step and also the deep learning approaches. 

We will get into some practicality with an introduction to TensorFlow.
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CHAPTER 3

A Tour Through 
the Deep Learning 
Pipeline
In Chapter 1, we saw an introduction to the deep learning field, to the 

theories that are the basis of the field. We also discussed the evolution of 

deep learning and the needed mathematical notation to succeed while 

reading the book, and we showed you how to install the environment 

needed for the projects in this book.

In this chapter, we will start with the “flavors” of deep learning, the 

approaches of it, and different types of neural networks. Next, we will 

introduce the big picture of the deep learning pipeline; we also will go 

through the steps of the pipeline in detail. And as always, we will break 

things up with some technicality, by introducing TensorFlow; we will cover 

basic recipes in order to understand how TensorFlow works and how to 

access data for this book and additional resources.
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�Deep Learning Approaches
This deep learning introduction considers how the pioneers in this field 

got their intuition to make neural networks, fundamental to deep learning. 

When we talk about something, we want to know where it comes from or 

how it will work.

This will guide us to learn some biologics. From this point, we will 

get into neural networks and how they get the data; extract the data; and 

push the data to the model, which should understand the data through 

the three learning approaches we talked about in Chapter 1 (supervised, 

unsupervised, and semisupervised).

�What Is Deep Learning
As we mentioned before in Chapter 1 when we discussed what deep 

learning is, we talked about types of deep learning, using either shallow or 

deep neural networks. We said that deep learning is basically neural; that 

we got the idea from the biological neural networks in our brain. So let us 

see how our brains work.

�Biological Deep Learning
To understand how neural networks work and where they come from, 

we need to mention neurons. There are some questions you might ask 

yourself, such as in human brains how does data go from our eyes and 

we then recognize it and then say some words that seem to make sense? 

A neuron is the basic unit in our brain that has all of this information 

(Figure 3-1). The neuron is also the basic unit of computation in a neural 

network, often called a node or unit.

Mathematically speaking, a neuron receives input from some other 

nodes or from an external source and computes an output. Each input has 

an associated weight (w) and bias (b), which is assigned on the basis of 

its relative importance to other inputs. The node applies a function to the 
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weighted sum of its inputs. The idea is that the synaptic strengths (the weights 

w) are learnable and control the strength of influence and its direction: 

excitatory (positive weight) or inhibitory (negative weight) of one neuron on 

another. In the basic model, the dendrites carry the signal to the cell body, 

where they all get summed. If the final sum is above a certain threshold, the 

neuron can fire, sending a spike along its axon. In the computational model, 

we assume that the precise timings of the spikes do not matter and that only 

the frequency of the firing communicates information. We model the firing 

rate of the neuron with an activation function (for instance, sigmoid function), 

which represents the frequency of the spikes along the axon. As we see that 

the representation of neutrals in our brains is most common to our neural 

which we will talk about it but let us see Figure 3-1.

Figure 3-1.  A human neuron

Figure 3-2.  A machine neuron
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However, the question is: is an artificial neural network (ANN) similar 

to our brain’s neural net? I think the answer is “not”; ANNs don’t work like 

our brain. An ANN is a simple crude comparison; the connections between 

biological networks are much more complex than those implemented by 

an ANN. But let us again try to define a neural network. As we define it 

again, we can say that:

The neural network is made of neurons (Figure 3-2). Biologically 

the neurons are connected through synapses and our neural network is 

connected together by something like synapses or the representation of them 

(edges), where information flows (weights for out computational model). 

When we train a neural network, we want the neurons to fire whenever they 

learn specific patterns from the data, and we model the firing rate using an 

activation function.

Let’s get through this definition. We say that the neuron is the 

basic unit of computation in a neural network. A machine neuron is a 

representation of a human neuron; it receives input from some other 

nodes, or from an external source, and computes an output. Each input 

has an associated weight(w), which is assigned on the basis of its relative 

importance to other inputs. The node applies a function f (defined in the 

following) to the weighted sum of its inputs, as shown in Figure 3-3.

Figure 3-3.  How a neuron acts
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So, we now know how a neuron in an ANN works, and its architecture. 

If you have any problem with math notation, you can review mathematical 

notation sheet in chapter one. We have a new question: is a neuron a 

perceptron? Let’s see what perceptron is and get the connection between 

these two concepts. The perceptron is a linear classifier (binary, and by 

binary we mean that a single perceptron will output either a 0 or 1 label). 

Also, it is used in supervised learning. It helps to classify the given input 

data. So, let’s see some characteristics of the perceptron:

•	 Input values or one input layer

•	 Weights and bias

•	 Net sum

•	 Activation function

This is actually what a neuron has: it has X as Input examples or 

observations or input layer, W as Weights, b as Bias, and sum, and a as 

Activation function.

So we can conclude that perceptron is neuron, so let’s move forward 

into the neural network. The neural network isn’t the only perceptron, but 

it contains many concepts like layers. What are layers? A layer is a group 

of perceptrons or neurons. But how does it work, and what are the types 

of layers? A layer is changed by the concept or the algorithm. This will be 

discussed further and you will see these concepts, but the basic definitions 

of layers are

•	 Input nodes (input layer): No computation is done here 

within this layer; they just pass the information to the 

next layer (hidden layer most of the time). A block of 

nodes is also called a layer.

•	 Hidden nodes (hidden layer): In hidden layers is where 

intermediate processing or computation is done; 

they perform computations and then transfer weights 
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(signals or information) from the input layer to the 

following layer (another hidden layer or to the output 

layer). It is possible to have a neural network without a 

hidden layer, and we’ll explain this later.

•	 Output nodes (output layer): Here, we finally use an 

activation function that maps to the desired output 

format (e.g., Softmax for classification).

�What Are Neural Networks Architectures?
We see the main three functions of layers in the neural network (input 

layer, hidden layer, output layer), but that can be changed through the 

concepts or the architectures of the neural network. It seems some 

layers may have only one perceptron, or many perceptrons connected 

together, or layers that we can’t see how they work. We need to have a lot 

of complex mathematical equations and combinations and it’s difficult to 

accurately get how these hidden layers work. Let’s see some examples of 

the architectures:

Single-layer perceptron. This is the simplest feedforward neural 

network and does not contain any hidden layer, which means it only 

consists of a single layer of output nodes. This is said to be single because 

when we count the layers we do not include the input layer. The reason 

for that is because at the input layer no computations are done; the inputs 

are fed directly to the outputs via a series of weights. Let us discuss the 

multilayer perceptron first and then talk about the feedforward neural 

network.
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Multilayer perceptron (MLP). This class of networks consists of 

multiple layers (input layer, hidden layer or layers) of computational units, 

usually interconnected in a feedforward way. Each neuron in one layer has 

direct connections to the neurons of the subsequent layer. While a single 

layer perceptron can only learn linear functions, a multilayer perceptron 

can also learn nonlinear functions.

	 1.	 Input layer: The input layer has three nodes. The 

bias node has a value of 1. The other two nodes take 

X1 and X2 as external inputs (which are numerical 

values depending upon the input dataset). As 

discussed, no computation is performed in the 

input layer, so the outputs from nodes in the input 

layer are 1, X1, and X2, respectively, which are fed 

into the hidden Layer.

	 2.	 Hidden layer: The hidden layer also has three nodes, 

with the bias node having an output value of 1. 

The output of the other two nodes in the hidden 

layer depends on the outputs from the input layer 

(1, X1, and X2) as well as the weights associated 

with the connections (edges). Figure 3-4 shows 

Figure 3-4.  Neuron inputs, weights, and outputs
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the output calculation for one of the hidden nodes 

(highlighted). Similarly, the output from another 

hidden node can be calculated. Remember that f 

refers to the activation function. These outputs are 

then fed to the nodes in the output layer. So, what is 

a feedforward neural network?

Figure 3-5.  A feedforward neural network

Feedforward neural network (Figure 3-5). Let’s start with the specific 

regions first, which is the basic builder of our algorithm. The feedforward 

neural network was the first and simplest type of ANN devised. It contains 

multiple neurons (nodes) arranged in layers. Nodes from adjacent layers 

have connections or edges between them. All these connections have 

weights associated with them. In a feedforward network, the information 

moves in only one direction—forward—from the input nodes, through 
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the hidden nodes (if any), and to the output nodes. There are no cycles 

or loops in the network, and it has two types (single-layer perceptron, 

multilayer perceptron). Let’s have a look at Figure 3-6 to see how it works 

and explain it in a good way.

Figure 3-6.  The difference between input, hidden, and output layers

A feedforward neural network can consist of three types of nodes:

Input nodes: The input nodes provide information 

from the outside world to the network, and 

are together referred to as the “input layer.” No 

computation is performed in any of the input 

nodes—they just pass on the information to the 

hidden nodes.
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Hidden nodes: The hidden nodes have no direct 

connection with the outside world (hence the name 

“hidden”). They perform computations and transfer 

information from the input nodes to the output 

nodes. A collection of hidden nodes forms a “hidden 

layer.” While a feedforward network will only have 

a single input layer and a single output layer, it can 

have zero or multiple hidden layers.

Output nodes: The output nodes are collectively 

referred to as the “output layer” and are responsible 

for computations and transferring information from 

the network to the outside world.

Feedforward neural networks are primarily used 

for supervised learning in cases where the data to be 

learned is neither sequential nor time dependent.

So we now know a lot about the one-direction neural network which 

is called a feedforward neural network, but we have many types of neural 

network architectures to talk about. We will discuss them in detail later 

in Part IV. We have convolutional neural network, recurrent neural 
network, and self-organizing map (SOM). These are the types of neural 

network that can be used in any approach in deep learning—or machine 

learning (supervised, unsupervised, semisupervised, and reinforcement 

learning), as we say that deep learning is a subset of machine learning. 

Let’s look at these layers architectures.

First, we will talk about convolutional neural networks (CNNs). CNNs 

(Figure 3-7) are very similar to ordinary neural networks; they are made 

up of neurons that have learnable weights and biases. In a convolutional 

neural network (CNN, or ConvNet, or shift invariant or space invariant) 

the unit connectivity pattern is inspired by the organization of the visual 

cortex. Units respond to stimuli in a restricted region of space known as 

the receptive field. Receptive fields partially overlap, over-covering the 
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entire visual field. The unit response can be approximated mathematically 

by a convolution operation. They are variations of multilayer perceptrons 

that use minimal preprocessing. Their wide applications are in image 

and video recognition, recommender systems, and natural language 

processing. CNNs require large data to train on.

Second, we will talk about recurrent neural networks (RNNs). In an 

RNN, connections between units form a directed cycle (they propagate 

data forward, but also backward, from later processing stages to earlier 

stages). This allows it to exhibit dynamic temporal behavior. Unlike 

feedforward neural networks, RNNs can use their internal memory to 

process arbitrary sequences of inputs. This makes them applicable to 

tasks such as unsegmented, connected handwriting recognition, speech 

recognition, and other general sequence processors.

Figure 3-7.  An example of a convolution neural network

Third is the self-organizing map (SOM). It is a type of ANN that 

is trained using unsupervised learning to produce a low-dimensional 

(typically two-dimensional), discretized representation of the input 

space of the training samples, called a map. It is therefore a method to do 

dimensionality reduction. SOMs differ from other ANNs, as they apply 

competitive learning as opposed to error-correction learning (such as 

backpropagation with gradient descent), and in the sense that they use a 

neighborhood function to preserve the topological properties of the input 

space. And it is almost always used for unsupervised learning cases.
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What we need you to learn in this chapter is the deep learning 

architectures and their forms. This is the first step of our stairs to 

TensorFlow and deep learning layers and how you can make these layers 

writeable to your project. So far we’ve talked about them in theoretical and 

academic ways. We will explore these concepts and know their purpose, 

and how to know of the architecture is good for your data or not. All this is 

discussed in our deep learning pipeline.

�Deep Learning Pipeline
In the previous chapter we gave an introduction to book, to deep learning, 

and installed our environment. Yet we did not introduce what the book 

title means, so what is the deep learning pipeline?

Answers to this question will go along with you through the end of the 

book, but to be fair, you deserve an overview of the meaning of the title.

Before diving into Part II: Data, let’s take a moment to look at the 

overall deep learning pipeline, to make sure that you understand each part 

correctly. Also, this will help you get situated in the larger picture of the 

book. To that end, we’ll begin with a little musing on the basic concepts, 

like data and models.

Any predictive modeling, which is any deep learning project, can be 

broken down into five common tasks:

	 1.	 Define and prepare problem

	 2.	 Summarize and understand data

	 3.	 Process and prepare data

	 4.	 Evaluate algorithms

	 5.	 Improve results

These tasks can either be combined and used together or broken 

down and used apart further, but this is the general structure. To work 

through modeling deep learning problems in a pipeline, you need to map 
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these tasks onto this process. Sometimes you will see these tasks renamed 

or presented in a different structure, but in general they have the same 

purpose. So, we will be stuck to this pipeline with these tasks in the exact 

order throughout the book.

The tasks may need to be adapted or renamed slightly to suit the 

Python way of doing things (e.g., Pandas for data loading, matplotlib for 

visualization, and TensorFlow for modeling).

In the next sections we will provide these mappings of the pipeline. We 

will also elaborate and illustrate each task and the types of subtasks, with 

examples and libraries that you can use for these types.

�Define and Prepare Problem
Why do you collect data? There are questions that data you are collecting 

can help you answer: questions like which stocks should I invest in? or how 

can I understand my customers?

The answer to these questions cannot be that simple. The path from 

data to answers is full of false starts and dead ends, like a maze. What starts 

out as a promising approach may not pan out or give the wanted answer, 

the right answer. What was originally just a hunch may end up leading to 

the best solution. Deep learning pipelines are made for specific types of 

reasons; workflows with data are frequently multistage, iterative processes.

For instance, stock prices are observed at the exchange, aggregated by 

an intermediary like Thomson Reuters, stored in a database, bought by a 

company, converted into a data warehouse or on a Hadoop cluster, pulled 

out of the store by a script, subsampled, cleaned by another script, dumped 

to a file, and converted to a format that you can try out in your favorite 

modeling library in Python or any other programming language. The 

predictions are then dumped back out to an EXCEL or a CSV file and parsed 

by an evaluator or file reader engine. And the model is iterated multiple 

times, rewritten in C++ or Java by your production team, and run on all of 

the data before the final predictions are pumped out to another database.
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So, we can say that this step is about understanding the problem and 

its domain, and to understand, collect, and load everything you need to 

start working on your problem. This includes

•	 Python modules, classes, and functions that you intend 

to use

•	 Loading your dataset from its source

This is also the home of any global configuration you might need to do. 

It is also the place where you might need to make a reduced sample of your 

dataset if it is too large to work with.

Ideally, your dataset should be small enough to build a model or 

create a visualization within a short period. You can always scale up well-

performing models later.

�Summarize and Understand Data
Data can be defined as observations of real-world phenomena, and 

as information that has been translated into a form that is efficient for 

movement or processing.

As examples, stock market data involves observations of daily stock 

prices, announcements of earnings by individual companies, and even 

opinion articles from pundits; or personal biometric data can include 

measurements of our minute-by-minute heart rate, blood sugar level, 

blood pressure, etc.

As you need to work in the domain of these observations, you have 

to understand this domain and these observations, which sometimes 

you may know as distribution. You need to summarize and visualize 

these observations to understand them and be able to see trends. Each 

piece of data provides a small window into a limited aspect of reality. The 

collection of all of these observations gives us a picture of the whole.
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This step is about better understanding the data that you have 

available. This includes understanding your data through

•	 Descriptive statistics such as summaries

•	 Use of data visualizations such as plots with Matplotlib, 

ideally using convenience functions from Pandas

•	 Taking your time and using the results to prompt a lot 

of questions, assumptions, and hypotheses, which you 

can investigate later with specialized models

�Process and Prepare Data
After understanding the domain and the data, you need to prepare it 

for the next step. So, data processing is, generally, the collection and 

manipulation of items of data to produce meaningful information. You can 

think that you have a small piece of the puzzle, and the goal is to solve it. 

But the picture is messy because it is composed of a thousand little pieces, 

and in real-life data there’s always measurement noise and missing pieces. 

So, by processing the data, you make it easier for the model to see the clear 

picture and understand it very well. This is a crucial step in the pipeline, 

and the accuracy of the model depends on it.

This step is about preparing the data in such a way that it best exposes 

the structure of the problem and the relationships between your input 

attributes and the output variable. This includes tasks such as the following:

•	 Cleaning data by removing duplicates, marking missing 

values, and even imputing missing values

•	 Feature selection where redundant features may be 

removed and new features developed

•	 Data transforms where attributes are scaled or 

redistributed in order to best expose the structure of 

the problem later to learning algorithms
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Start simple. Revisit this step often and cycle with the next step until 

you converge on a subset of algorithms and a presentation of the data that 

results in accurate or accurate-enough models to proceed.

�Evaluate Algorithms
Trying to understand the world through data is like trying to piece together 

reality using a noisy, incomplete jigsaw puzzle with a bunch of extra 

pieces. This is where mathematical modeling—in particular statistical 

modeling too—comes in. The language of statistics contains concepts 

for many frequent characteristics of data, such as wrong, redundant, or 

missing. Wrong data is the result of a mistake in measurement. Redundant 

data contains multiple aspects that convey exactly the same information.

For instance, the day of the week may be present as a categorical 

variable with values of “Saturday,” “Sunday,” …, “Friday,” and again 

included as an integer value between 0 and 6. If this day-of-the-week 

information is not present for some data points, then you’ve got missing 

data on your hands.

A mathematical model of data describes the relationships between 

different aspects of the data. For instance, a model that predicts stock 

prices might be a formula that maps a company’s earning history, past 

stock prices, and an industry to the predicted stock price. A model that 

recommends music might measure the similarity between users (based 

on their listening habits), and recommend the same artists to users who 

have listened to a lot of the same songs. Mathematical formulas relate 

numeric quantities to each other. But raw data is often not numeric.  

(The action “Alice bought The Lord of the Rings trilogy on Wednesday” is 

not numeric, and neither is the review that she subsequently writes about 

the book.) There must be a piece that connects the two together. This is 

where features come in.
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This step is about finding a subset of machine learning algorithms 

that are good at exploiting the structure of your data (e.g., have better than 

average skill). This involves steps such as

•	 Separating out a validation dataset to use for later 

confirmation of the skill of your developed model. Or 

defining test options using scikit-learn, such as cross 

validation and the evaluation metric to use.

•	 Spot-checking a suite of linear and nonlinear machine 

learning algorithms

•	 Comparing the estimated accuracy of algorithms

On a given problem you will likely spend most of your time on this 

and the previous step until you converge on a set of three to five well-

performing machine learning algorithms.

�Improve Results
Features and models sit between raw data and the desired insights. In 

a machine learning workflow, we pick not only the model, but also the 

features. This is a double-jointed lever, and the choice of one affects the 

other. Good features make the subsequent modeling step easy and the 

resulting model more capable of completing the desired task. Bad features 

may require a much more complicated model to achieve the same level 

of performance. In the rest of this book, we will cover different kinds of 

features and discuss their pros and cons for different types of data and 

models. Without further ado, let’s go.

Once you have a shortlist of machine learning algorithms, you need to 

get the most out of them.
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There are two different ways to improve the accuracy of your models:

•	 Search for a combination of parameters for each 

algorithm using scikit-learn that yields the best results.

•	 Combine the prediction of multiple models into an 

ensemble prediction using ensemble techniques.

The line between this and the previous step can blur when a project 

becomes concrete. There may be a little algorithm tuning in the previous 

step. And in the case of ensembles, you may bring more than a shortlist of 

algorithms forward to combine their predictions.

Once you have found a model that you believe can make accurate 

predictions on unseen data, you are ready to finalize it. Finalizing a model 

may involve subtasks such as

•	 Using an optimal model tuned by scikit-learn to make 

predictions on unseen data

•	 Creating a standalone model using the parameters 

tuned by scikit-learn

•	 Saving an optimal model to file for later use

Once you make it this far, you are ready to present results to 

stakeholders and/or deploy your model to start making predictions on 

unseen data.

�Fast Preview of the TensorFlow Pipeline
As we mentioned earlier, TensorFlow (TF) is an open source software 

library for numerical computation using data flow graphs. Nodes in the 

graph represent mathematical operations, while the graph edges represent 

the multidimensional data arrays (tensors) passed between them.
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TensorFlow is available with Python and C++ support, and as we 

agreed in Chapter 1, we shall use Python 3 in this book for learning, as 

indeed Python API is better supported and much easier to learn. In the 

next section, we explain very briefly the main features of the TensorFlow 

package, with some programming examples.

TensorFlow includes various types of rich functions and features that 

any deep learning engineer needs in their work; the main features include 

the following:

•	 Defining, optimizing, and efficiently calculating 

mathematical expressions involving multidimensional 

arrays (tensors)

•	 Programming support of deep neural networks and 

machine learning techniques

•	 Transparent use of GPU computing, automating 

management and optimization of the same memory 

and the data used. You can write the same code and 

run it either on CPUs or GPUs. More specifically, 

TensorFlow will figure out which parts of the 

computation should be moved to the GPU.

•	 High scalability of computation across machines and 

huge data sets

�Tensors—the Main Data Structure
TensorFlow bases its data management on tensors. Tensors are concepts 

from the field of mathematics and are developed as a generalization of the 

linear algebra terms of vectors and matrices.

Talking specifically about TensorFlow, a tensor is just a typed, 

multidimensional array, with additional operations, modeled on the 

tensor object.
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Before going to see what the properties of tensors are, we need to teach 

you how to run these tensors. TensorFlow uses what’s called sessions to 

run tensors, so let’s go and see what these sessions mean.

�First Session
As in Chapter 1, we installed our environment to make it easier to work 

on a step-by-step example throughout the book. It is time to move from 

theory to practice. To get an initial idea of how to use TensorFlow, open 

your favorite Python editor—it’s recommended to use Jupyter—and write 

the following lines of code:

x = 1

y = x + 9

print(y)

import tensorflow as tf

x = tf.constant(1,name='x')

y = tf.Variable(x+9,name='y')

print(y)

As you can easily understand in the first three lines, the constant x, 

set equal to 1, is then added to 9 to set the new value of the variable y, and 

then the end result of the variable y is printed on the screen.

In the last four lines, we have translated according to the TensorFlow 

library the first three variables.

If we run the program, we have the following output:

10

<tensorflow.python.ops.variables.Variable object at 

0x7f30ccbf9190>

The TensorFlow translation of the first three lines of the program 

example produces a different result. Let’s analyze them.
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First. The following statement should never be missed if you want to 

use the TensorFlow library. It tells us that we are importing the library and 

call it tf:

import tensorflow as tf

Second. We create a constant value called x, with a value equal to one:

x = tf.constant(1,name='x')

Third. Then we create a variable called y. This variable is defined with 

the simple equation y=x+9:

y = tf.Variable(x+9,name='y')

Fourth. Finally, print out the result:

print(y)

So how do we explain the different result? The difference lies in the 

variable definition. In fact, the variable y doesn’t represent the current 

value of x + 9, instead, it means that when the variable y is computed, take 

the value of the constant x and add 9 to it. This is the reason why the value 

of y has never been carried out. In the next section, I’ll try to fix it. So, we 

open the Python IDE (Figure 3-8) and enter the following lines:

Figure 3-8.  TensorFlow code snippet
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Running the preceding code, the output result is finally as follows:

10

We have removed the print instruction, but we have initialized the 

model variables:

model = tf.global_variables_initializer()

And, mostly, we have created a session for computing values. In the 

next step, we run the model, created previously, and finally, run just the 

variable y and print out its current value.

with tf.Session() as session:

        session.run(model)

     print(session.run(y))

This is the magic trick that permits the correct result. In this 

fundamental step, the execution graph called the Data Flow Graph 

(another important feature in TensorFlow) is created in the session, with 

all the dependencies between the variables. The y variable depends on the 

variable x, and that value is transformed by adding 9 to it. The value is not 

computed until the session is executed.

�Data Flow Graphs
If you think about it, you will find that any deep learning application 

is just a result of the repeated computation of complex mathematical 

expressions. In TensorFlow, every computation can be described using the 

Data Flow Graph, where each node in the graph represents the instance of 

a mathematical operation (multiply, divide, add, subtract, and so on), and 

each edge is a multidimensional data set (tensors) on which the operations 

are performed.
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TensorFlow supports these constructs and these operators. So, let’s see 

in detail how nodes and edges are managed by TensorFlow.

Node: In TensorFlow, each node can represent an 

instantiation of a single operation. Each operation 

has at least one input and may have an output or 

not. For instance, the TensorFlow tf.add() function 

represents one operation, which is the addition 

operation: it takes two inputs and produces only one 

output.

Edges: In TensorFlow, edges represent the data 

consumed or produced by a computation. There are 

two types of edge:

•	 Normal edges: They are carriers of data structures 

(tensors), where an output of one operation 

(from one node) becomes the input for another 

operation. For example, the node tf.matmul() 

would correspond to a single node with two 

incoming edges (the matrices to be multiplied) and 

one outgoing edge (the result of the multiplication).

•	 Special edges: These edges are not data carriers 

between the output of a node (operator) and the 

input of another node. A special edge indicates 

a control dependency between two nodes. Let’s 

suppose we have two nodes A and B and special 

edges connecting A to B; it means that B will start 

its operation only when the operation in A ends. 

Special edges are used in Data Flow Graphs to 

set the happens-before relationship between 

operations on the tensors.
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After learning the structure of the Data Flow Graph, let’s now explore 

some features in deeper detail.

Operation: This represents an abstract computation, 

such as adding or multiplying matrices. An 

operation manages tensors. It can just be 

polymorphic: the same operation can manipulate 

different tensor element types. For example, the 

addition of two int32 tensors, the addition of two 

float64 tensors, and so on.

Kernel: This represents the concrete 

implementation of that operation. A kernel defines 

the implementation of the operation on a particular 

device. For example, an add matrix operation can 

have a CPU implementation and a GPU one. In 

the following section, we introduce the concept 

of sessions to create a model execution graph in 

TensorFlow. Let’s explain this topic.

Session: When the client program has to establish 

communication with the TensorFlow runtime 

system, a session must be created. As soon as 

the session is created for a client, an initial graph 

is created and is empty. It has two fundamental 

methods:

•	 session.extend: In computation, the user can 

extend the execution graph, requesting to add more 

operations (nodes) and edges (data).

•	 session.run: Using TensorFlow, sessions are 

created with some graphs, and these full graphs 

are executed to get some outputs, or sometimes, 
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subgraphs are executed thousands/millions of 

times in run invocations. Basically, the method 

runs the execution graph to provide outputs.

Dataflow has several advantages that TensorFlow leverages when 

executing your programs:

•	 Parallelism: By using explicit edges to represent 

dependencies between operations, it is easy for the 

system to identify operations that can execute in 

parallel.

•	 Distributed execution: By using explicit edges to 

represent the values that flow between operations, it is 

possible for TensorFlow to partition your program across 

multiple devices (CPUs, GPUs, and TPUs) attached to 

different machines. TensorFlow inserts the necessary 

communication and coordination between devices.

•	 Compilation: TensorFlow’s XLA compiler can use 

the information in your Data Flow Graph to generate 

faster code, for example, by fusing together adjacent 

operations.

•	 Portability: The Data Flow Graph is a language-

independent representation of the code in your model. 

You can build a Data Flow Graph in Python, store it in 

a SavedModel, and restore it in a C++ program for low-

latency inference.

�Tensor Properties
As previously discussed, TensorFlow uses a tensor data structure to 

represent all data. Any tensor has a static type and dynamic dimensions, so 

you can change a tensor’s internal organization in real time.
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Another property of tensors is that only objects of the tensor type can 

be passed between nodes in the computation graph.

Note  From now on, every time we use the word tensor, we’ll be 
referring to TensorFlow’s tensor objects.

�Tensor Rank

A tensor rank represents the dimensional aspect of a tensor, but is not the 

same as a matrix rank. It represents the number of dimensions in which 

the tensor lives, and is not a precise measure of the extension of the tensor 

in rows/columns or spatial equivalents.

A rank one tensor is the equivalent of a vector, and a rank one tensor is 

a matrix. For a rank two tensor, you can access any element with the syntax 

t[i, j] similar to the syntax of accessing a matrix, as this rank will produce a 

matrix. For a rank three tensor, you would need to address an element with 

t[i, j, k], and so on.

In the following example, we will create a tensor, and access one of its 

components:

import tensorflow as tf

sess = tf.Session()

tens1 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

print(sess.run(tens1)[1,1,0])

# 5

This is a tensor of rank three, because in each element of the 

containing matrix, there is a vector element, and that’s why we need to 

specify three coordinates.

Table 3-1 summarizes all the variables ranks and their math entity as 

well as the code definition by example.
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�Tensor Shape

The TensorFlow documentation uses three notational conventions to 

describe tensor dimensionality: rank, shape, and dimension number. 

Table 3-2 shows how these relate to one another.

Table 3-1.  The Tensor Rank with Example

Rank/Dimension Math Entity Code Definition Example

 0 Scalar scalar = 1000

 1 Vector vector = [2, 8, 3]

 2 Matrix matrix = [[4, 2, 1], [5, 3, 2], [5, 5, 6]]

 3 3d-tensor tensor = [[[4], [3], [2]], [[6], [100], [4]], [[5], [1], [4]]]

Table 3-2.  The Tensor Shape with Example

Rank Shape Dimension Number Example

 0 [ ] 0 Scaler = 10

 1 [d0] 1 Vector = [4]

 2 [d0, d1] 2 Matrix = [2, 2]

 3 [d0, d1, d2] 3 Tensor = [2, 2, 4]

 n [d0, ... , dn-1] D

�Summary
Now let’s do a brief recap about what we’ve seen and learned in this 

chapter. First we learned what deep learning is and about its approach, 

which is a subset of machine learning. We learned the basic function 
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tools to build layers, which combine together to make a deep learning 

architecture. Finally, we went through the pipeline to give you a view about 

where the book will go, and what you will learn when you get into chapters 

that define it in detail. After finishing this chapter, we hope you found it 

valuable.
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CHAPTER 4

Build Your First Toy 
TensorFlow app
In the previous chapter, we answered important questions you have to 

know before continuing reading the book, such as: what is TensorFlow?, 

what makes it very valuable like this?, and is TensorFlow easy to learn? All 

these questions come to your mind and many developers too, when you 

see a TensorFlow word, but yes, TensorFlow is a very valuable package 

in deep learning. However, there are many packages like it that are 

compatible with deep learning.

In this chapter, we continue introducing the important concepts you 

need in TensorFlow. We introduce the usage of TensorFlow in the field of 

deep learning, and how this library helps us a lot by giving us the necessary 

components and functions that represent the building blocks for any deep 

learning model. Also, we give you two small examples of how to build a 

tiny neural network with TensorFlow. So, let us get started.

�Basic Development of TensorFlow
Let us consider another approach, teaching you all the needed TensorFlow 

functionalities by walking through examples. We will start by warming up, 

and then we will go to the hard parts bit by bit.
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�Hello World with TensorFlow
To be fair enough, it’s good to understand TensorFlow by seeing a working 

example of it, so we will go through the advanced part of TensorFlow by 

giving it to you in small examples.

So, the first example is to warm up the information we gave you 

in Chapter 2, we will build a small app that outputs the words “Hello, 

TensorFlow!”

As you see, we first import the print_function from the __future__ 

module to make the print of Python 2 callable as the print function in 

Python 3. After this, we of course have to import TensorFlow as tf, the 

popular alias we talked in a previous chapter. Then we initiate the hello 

variable that equals the tf.constant, and we set it to the word we need to 

print. Last, we create the session that we will use to run the whole program 

and we run it to print in the last line.

from __future__ import print_function

import tensorflow as tf

# The value returned by the constructor represents

# the output of the Constant op.

hello = tf.constant('Hello, TensorFlow!')

# Start tf session

sess = tf.Session()

# Run the op

print(sess.run(hello))

So, when I first see this piece of code, I may have a question: what is the 

tf.constant? It is a good question, and tf.constant is one of many tensor 

type variables. But this one has an advantage, as indicated by its name: it 

cannot change its value through the runtime of the program. A constant 

has the following arguments, which can be tweaked as required to get the 

desired function.
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•	 value: A constant value (or list) of output type dtype

•	 dtype: The type of the elements of the resulting tensor

•	 shape: Optional dimensions of the resulting tensor

•	 name: Optional name for the tensor

�Simple Iterations
Now we have warmed up with the previous example; what we saw in this 

example, we discussed in Chapter 2 (constant, session).

So we need something new, and a bit harder; we need to see what 

more TensorFlow can do. We now have a session, constant, and variables.

In the next example, we learn to make loops in TensorFlow and make 

updates to certain variables. These variables simulate the model weights, 

and loops simulate the epochs that update the model weights.

# our first variable in the "global_variable" set

var = tf.Variable(0)

add_operation = tf.add(var, 1)

update_operation = tf.assign(var, add_operation)

with tf.Session() as sess:

# once define variables, you have to initialize

# them by doing this

      sess.run(tf.global_variables_initializer())

      for _ in range(3):

          sess.run(update_operation)

          print(sess.run(var))

Note I n this code example we did not import the TensorFlow, as we 
assume that you imported it in the previous example and both are in 
the same Python session.
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First things first: we created the var variable and initiated it with tf.

Variable with 0 value, then we created the add_operation variable that 

is a TensorFlow addition block or operation. After that we initiated the 

update_operation with tf.assign(var, add_operation), which simply 

updates the var variable by reference using the add_operation function, 

and all that happens when you call the update_operation variable.

Now it’s time for creating the session, but if you noticed, we created 

the session within the with block. Why did we do that? The reason is that 

after initiating and running each session, we have to close it to free all the 

resources reserved by the program or by the TensorFlow graph. After that 

we ran the session sess.run(tf.global_variables_initializer()) and 

you can see the weird tf.global_variables_initializer() function; 

the main job of this function is to initialize all variables in the TensorFlow 

graph. So, if you run tf.Variable or tf.Placeholder—and we will see 

what it is later—you will see an error and that’s due to the uninitiated 

variables. And last, we do a simple loop that iterates and updates the var 

variable by running update_operation.

So, how does this simulate a real-world deep learning model? When 

you train a model, you use variables to hold and update parameters. 

Variables are in-memory buffers containing tensors. We know about 

tensors from Chapter 2, so the question is: is the tensor in the previous 

example a variable or constant? It can’t be a constant type tensor, so we 

have to use tf.Variable because we need a form of tensors that can be 

updated in the runtime of our TensorFlow graph.

�Prepare the Input Data
Going a bit further, we need to simulate the input data for any model in 

TensorFlow. One may question how the user can enter any data to the 

model. We will make it harder; we will enter an image to TensorFlow. 

Using the imread command in matplotlib, we import a digital image in 

standard format colors (JPG, PNG, BMP, TIF):
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import matplotlib.image as mp_image

filename = "lena.jpeg"

input_image = mp_image.imread(filename)

However, we can see the rank and the shape of the tensor:

print('input dim = {}'.format(input_image.ndim))

print('input shape = {}'.format(input_image.shape))

# input dim = 3

# input shape = (220, 220, 3)

You’ll see the output, which is (220, 220, 3). This means the image 

is 220 pixels high, 220 pixels wide, and 3 colors (red, green, blue) deep. 

Finally, using matplotlib, it is possible to visualize the imported image 

(Figure 4-1):

import matplotlib.pyplot as plt

plt.imshow(input_image)

plt.show()

Figure 4-1.  The code output of the lena image
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In this example, slice is a bidimensional segment of the starting 

image, where each pixel has the RGB components, so we need a 

placeholder to store all the values of the slice:

import tensorflow as tf

my_image = tf.placeholder("uint8",[None,None,3])

For the last dimension, we’ll need only three values. Then we use the 

TensorFlow operator slice to create a subimage:

slice = tf.slice(my_image,[10,0,0],[16,-1,-1])

The last step is to build a TensorFlow working session, an extra thing 

than the last example you saw. When we run the session, we need to feed 

it the placeholder we have (the data we have); we can do this by sending 

all the data to feed_dict, which will feed the input to the session (or your 

model perhaps):

with tf.Session() as session:

result = session.run(slice,feed_dict={my_image: input_image})

print(result.shape)

plt.imshow(result)

plt.show()

Figure 4-2.  The resulting shape is then as the image shows
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To recap, we put a summary of the tf.Placeholder and tf.Variable in 

Table 4-1.

Table 4-1.  A Comparison Between tf.Placeholder and tf.Variable

Placeholder Variable

A placeholder is a node (same as a 

variable) whose value can be initialized 

in the future. These nodes basically 

output the value assigned to them during 

runtime. A placeholder node can be 

assigned using the tf.placeholder() class, 

to which you can provide arguments 

such as type of the variable and/or its 

shape. Placeholders are extensively used 

for representing the training dataset in a 

machine learning model, as the training 

dataset keeps changing.

A TensorFlow variable is the best way 

to represent a shared, persistent state 

manipulated by your program. Variables 

are manipulated via the tf.Variable 

class. Internally, a tf.Variable stores a 

persistent tensor. Specific operations 

allow you to read and modify the values 

of this tensor. These modifications are 

visible across multiple tf.Sessions, so 

multiple workers can see the same 

values for a tf.Variable. Variables must 

be initialized before using.

Examples

A = tf.placeholder(tf.float32, 

shape=(None, 3))

B = A + 5

x = tf.Variable(3, name=“x”)

y = tf.Variable(4, name=“y”) f = x*x*y 

+ y + 2

�Doing the Gradients
TensorFlow has functions to solve other more complex tasks. For example, 

we will use a mathematical operator that calculates the derivative of y 

with respect to its expression x parameter. For this purpose, we use the 

tf.gradients() function.
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Let us consider the math function y = 2x3. We want to compute the 

gradient 
dx

dy
 with respect to x = 1. The following is the code to compute 

this gradient:

import tensorflow as tf

x = tf.placeholder(tf.float32)

y = 2*x*x*x

grad = tf.gradients(y, x)

with tf.Session() as session:

     grad_val = session.run(grad,feed_dict={x:1})

     print(grad_val)

# [6.0]

So, what happens in the preceding code? Let us illustrate it step by step.

	 1.	 First, import the TensorFlow library: import 

TensorFlow as tf

	 2.	 The x variable is the independent variable of the 

function: x = tf.placeholder(tf.float32)

	 3.	 Let’s build the function: y = 2*x*x

	 4.	 Finally, we call the tf.gradients() function with y 

and x as arguments: grad = tf.gradients(y, x)

	 5.	 To evaluate the gradient, we must build a session: 

with tf.Session() as session:

	 6.	 The gradient will be evaluated on the variable 

x=1: grad_val = session.run(var_grad,feed_

dict={x:1})

	 7.	 The grad_val value is the feed result, to be printed: 

print(grad_val)

That gives the following result: 6.0
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�Linear Regression
In this section, we begin our exploration of machine learning techniques 

with the linear regression algorithm. Our goal is to build a model that is 

able to predict the values of a dependent variable from the values of one or 

more independent variables.

�Why Linear Regression?
It’s a basic machine learning algorithm. It’s very justifiable to start from 

there. First of all, it is a very plain algorithm, so the reader can grasp 

an understanding of fundamental machine learning concepts such as 

supervised learning, cost function, and gradient descent.

Additionally, after learning linear regression, it is quite easy to 

understand the logistic regression algorithm, and believe it or not,  it is 

possible to categorize that one as a small neural network. It’s possible, 

yes; we can see it in the next chapters. In Part III we will see how neural 

networks work.

�What Is Linear Regression?
Linear regression is a very common statistical method that allows us to 

learn a function or relationship from a given set of continuous data.

For example, we are given some data points of x and corresponding 

y, and we need to learn the relationship between them. That is called a 

hypothesis. The hypothesis is a statistical method that tries to predict 

the best model to fit the input data x. In the case of linear regression, the 

hypothesis is a straight line, as in the following:

h x wx b( ) = +
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We will now work on a project in which we will apply all the concepts 

we will discuss in the next chapters. In this example, we will create one 

approximately linear distribution; afterward, we will create a regression 

model that tries to fit a linear function that minimizes the error function 

(defined by least squares). This model will allow us to predict an outcome 

for an input value, given one new sample.

But before we start, let’s have a hint about datasets.

�Dataset Description
For this example, we will be generating a synthetic dataset consisting of a 

linear function with added noise.

Let’s start with importing some packages:

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

First, we see matplotlib.pyplot as plt. These packages are used 

for visualization methods, which we will talk about later. The third, 

tensorflow, is an open source software library for dataflow programming 

across a range of tasks, as discussed in previous chapters.

The second, numpy, is a package for mathematical combinations and 

multiplication, but we don’t need to talk about it in more detail now.

To begin, we start by generating our dataset, namely x and y. You can 

think of each value in x and y as points on the graph. We want NumPy 

to generate 101 points with a value between (-1 and 1), spread evenly. 

The result is a NumPy array stored in trX. Similarly, we also want to 

randomly generate y such that it has a gradient of 2 (W) and some form of 

randomness using np.random.randn(). To make things interesting, we set 

y-intercept b to 0.2.
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np.random.seed(seed=47)

# Linear space of 101 and [-1,1]

trX = np.linspace(-1, 1, 101)

#Create The y function based on the x axis

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

Let’s start to see how data will be plotted and how data is distributed 

(Figure 4-3).

# Create a new figure

plt.figure()

#Plot a scatter draw of the random data points

plt.scatter(trX,trY)

# Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

Figure 4-3.  The points of the dataset

We construct the TensorFlow graph that helps us compute W and b.  

This is done in the function linear_regression(). In our formula  

y = WX + b; the x and y are nodes represented as TensorFlow placeholders.
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# create symbolic variables

X = tf.placeholder("float", name="X")

y = tf.placeholder("float", name = "y")

In the first argument of tf.placeholder, we define the data type as 

float32 — a common data type in the placeholder. The second argument 

is the shape of the placeholder set to None, as we want it to be determined 

during training time. The third argument lets us set the name for the 

placeholder.

We now define our model by declaring name_scope as Model. This 

scope groups all the variables it contains in order to form a unique entity 

with homogeneous entities. In this scope, we first define a function that 

receives the variables of the x-axis coordinates, the weight, and the bias. 

Then we create a new variable, objects, to hold the changing parameters 

and instantiate the model with the y_model variable.

with tf.name_scope("Model"):

  def model(X, W, b):

    # We just define the line as X*w + b0

    return tf.add(tf.multiply(X,W), b)

  # create a shared variable

  w = tf.Variable(-1.0, name="b0")

  # create a shared variable

  b = tf.Variable(-2.0, name="b1")

  y_model = model(X, W, b)

In the Cost Function, we create a new scope to include all the 

operations of this group and use the previously created y_model to account 

for the calculated y-axis values that we use to calculate the loss.

with tf.name_scope("CostFunction"):

  # use sqr error for cost

  cost = (tf.pow(Y-y_model, 2))
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To define the chosen optimizer, we initialize GradientDescentOptimizer, 

and the step will be of 0.05, which seems like a reasonable start for 

convergence.

train_op = tf.train.GradientDescentOptimizer(0.05)

                .minimize(cost)

Let’s create the session and initialize the variables we want to save for 

reviewing in TensorBoard. We will be saving one scalar variable with the 

error result of the last sample for each iteration. We will also save the graph 

structure in a file for reviewing.

sess = tf.Session()

init = tf.global_variables_initializer()

# you can use you own path

tf.train.write_graph(sess.graph, '/home/ubuntu/linear', 

'graph.pbtxt')

cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/linear',  

sess.graph)

For model training, we set an objective of 100 iterations (epochs), 

where we send each of the samples to the train operation of the gradient 

descent. After each iteration, we plot the modeling line and add the value 

of the last error to the summary.

for i in range(100):

  for (x, y) in zip(trX, trY):

    sess.run(train_op, feed_dict={X: x, Y: y})

    summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})

    writer.add_summary(summary_str, i)

Chapter 4  Build Your First Toy TensorFlow app



98

  b0temp=b.eval(session=sess)

  b1temp=w.eval(session=sess)

  plt.plot (trX, b0temp + b1temp * trX )

plt.show()

Let’s see how our model is trained in a visualization chart (Figure 4-4). 

Note that the X data was set on the x-axis, while each line is a model trying 

to predict the corresponding response y for it.

Figure 4-4.  Different lines from different models

Now let’s check the parameter results, printing the run output of the w 

and b variables.

print ("w = {}".format(sess.run(w))) # Should be around 2

print ("b = {}".format(sess.run(b))) #Should be around 0.2

Output:

w = 1.8842864

b = 0.12578306

It’s time to graphically review the data again and the suggested final 

line—the final predictor line (Figure 4-5).
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plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

plt.show()

Figure 4-5.  How the model line fits the data points. Notice that the 
x-axis is the input data, while the y-axis is the corresponding response; 
also notice that the blue points are the data observations, while the 
line is the model trying to fit it

�Full Source Code
import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

# Linear space of 101 and [-1,1]

trX = np.linspace(-1, 1, 101)

#Create The y function based on the x axis

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

trX = np.linspace(-1, 1, 101)

trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2

# create a y value which is approximately linear

#  but with some random noise
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plt.figure() # Create a new figure

plt.scatter(trX,trY) #Plot a scatter draw of

# the random datapoints

# Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

# create symbolic variables

X = tf.placeholder("float", name="X")

Y = tf.placeholder("float", name = "Y")

with tf.name_scope("Model"):

  def model(X, w, b):

    # We just define the line as X*w + b0

    return tf.add(tf.multiply(X,w), b)

  # create a shared variable

  w = tf.Variable(-1.0, name="b0")

  # create a shared variable

  b = tf.Variable(-2.0, name="b1")

  y_model = model(X, w, b)

# use sqr error for cost

with tf.name_scope("CostFunction"):

  cost = (tf.pow(Y-y_model, 2))

train_op = tf.train.GradientDescentOptimizer(0.05).

minimize(cost)

sess = tf.Session()

init = tf.global_variables_initializer()

tf.train.write_graph(sess.graph, '/home/ubuntu/linear', 

'graph.pbtxt')

cost_op = tf.summary.scalar("loss", cost)
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merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/linear',  

sess.graph)

for i in range(100):

  for (x, y) in zip(trX, trY):

    sess.run(train_op, feed_dict={X: x, Y: y})

    summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})

    writer.add_summary(summary_str, i)

  b0temp=b.eval(session=sess)

  b1temp=w.eval(session=sess)

  plt.plot (trX, b0temp + b1temp * trX )

plt.show()

print (sess.run(w)) # Should be around 2

print (sess.run(b)) #Should be around 0.2

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�XOR Implementation Using TensorFlow
Exclusive or exclusive disjunction is a logical operation that outputs 

true only when inputs differ (one is true, the other is false). We will learn 

something about it, but if you need to learn it in detail, you can read 

more about Boolean functions. In calculus, XOR is a solution for a gates 

problem: A ⊕ B = (A U B) ^ (~A U~B). Let’s see how it works (Table 4-2).
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This a short explanation about the XOR gate, but it’s not our aim 

to discuss the XOR gate; our aim is to use TensorFlow to make a model 

XOR. Let’s start some code.

We don’t need to reexplain these lines of code again, as we just 

explained it in the linear regression example. And as always, we will start 

by importing the needed packages.

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

Let’s construct the dataset as a table. We will make both A and B as 

columns in X_train and the result of the A XOR B function as y_train.

# setting required X and Y values to

# perform XOR operation

X_train = [[0,0],[0,1],[1,0],[1,1]]

y_train = [[0],[1],[1],[0]]

Then we will create the placeholders that we will enter the data with 

in the model. We will create one called X for the X_train with shape 4∗2—

because it has 4 rows and 2 columns, and y for y_train with shape 4∗1—

because it has 4 rows and it is one column. Both will have the same name 

of variables.

Table 4-2.  The input and 

output of the XOR gate

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0
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# create symbolic variables

X = tf.placeholder(tf.float64, shape=[4, 2],name="X")

y = tf.placeholder(tf.float64, shape=[4, 1],name="Y")

Let’s construct some variables, like the number of training examples 

(number of rows) and features we have in our dataset (number of 

columns) and some hyperparameters, like learning rate and number of 

units in our model hidden layer.

#number of training examples (Rows)

m = np.shape(X)[0]

#number of features (Columns)

n = np.shape(X)[1]

#number of nodes in the hidden layer

hidden_s = 2

#learning rate initialization

l_r = 1

To build the model that should solve the XOR problem, we need to add 

new things like theta and hidden layers, and of course, we described the 

activation functions before. So, don’t worry about this complex code; we’ll 

explain this code in.

The neural network mainly is composed of layers, so each layer is 

connected by another layer. Hence, we can define every layer as the output 

of the earlier or previous layer multiplied by some weights, and we add 

some bias to it too. For instance, layer one Z1 is equal to the output of the 

previous layer, which is A0 or the input X multiplied by its weights W1 and 

then bias b1 is added. After this, the output of this layer goes through the 

activation function before sending it to the next layer A1 = Sigmoid(Z1). And 

the process is repeated for the next layer.

So, let do one last and fast recap: in the first layer Z1 = W1 ∗ X + b1, and 

then A1 = Sigmoid(Z1). In the next layer, or we can call it the hidden layer, 

Z2 = W2 ∗ A1 + b2, and then A2 = Sigmoid(Z2). So please remember this 
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function, and we will discuss the activation function and the weights and 

hyperparameters in a later chapter. But for now, we want you to see an 

end-to-end example.

Now, let us write the model code that does the same as we described in 

the preceding equations. We start by building the model in a scope called 

Model; using tf.name_scope we can achieve this and build small scopes in 

our system.

with tf.name_scope("Model"):

def model():

      # cast tensor to new type

      # and make new variable theta1, theta2

      �theta1 = tf.cast(tf.Variable(tf.random_normal([3, 

hidden_s]),name="theta1"),tf.float64)

      �theta2=tf.cast(tf.Variable(tf.random_normal([hidden_

s+1,1]),name = "theta2"),tf.float64)

      #conducting forward propagation

      a1 = tf.concat([np.c_[np.ones(m)], X], 1)

      # the weights of the first layer are multiplied

      # by the input of the first layer

      z1 = tf.matmul(a1,theta1)

      # the input of the second layer is the output of

      # the first layer passed through

      # activation function and column of biases is added

      a2 = tf.concat([np.c_[np.ones(m)],tf.sigmoid(z1)],1)

      # the input of the second layer is

      # multiplied by the weights

      z3 = tf.matmul(a2,theta2)

      # the output is passed through the activation

      # function to obtain the final probability

      h3 = tf.sigmoid(z3)

      return h3
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Now we call the function that will build the model for us, as in the 

following:

y_model = model()

This cost function (Figure 4-6) is captured by the log function, such 

that:

Figure 4-6.  The cost function equation

with tf.name_scope("CostFunction"):

            cost=

-tf.reduce_sum(Y*tf.log(y_model)+(1-Y)*tf.log(1-y_

model),axis=1)

To define the chosen optimizer, we initialize GradientDescent 

Optimizer, and the step will be of 0.05, a reasonable start for convergence. 

But the optimizer now works with the hyperparameter learning rate.

train_op = tf.train.GradientDescentOptimizer(learning_rate=l_r)

           .minimize(cost)

Let’s create the session and initialize the variables we want to save for 

reviewing in TensorBoard. We will be saving one scalar variable with the 

error result of the last sample for each iteration. We will also save the graph 

structure in a file for reviewing as follows:

sess = tf.Session()

init = tf.global_variables_initializer()

tf.train.write_graph(sess.graph, '/home/ubuntu/xor', 

'graph.pbtxt')
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cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/xor', sess.graph)

For model training, we set an objective of 100 iterations (epochs), 

where we send each of the samples to the train operation of the gradient 

descent. After each iteration, we plot the modeling line and add the value 

of the last error to the summary.

for i in range(100):

  sess.run(train_op, feed_dict={X: X_train, Y: Y_train})

  if i%100==0:

      print("Epoch:",i)

      �print("Hyp:",sess.run(y_model,feed_dict ={X:X_train,Y:Y_

train}))

Epoch: 0

Hyp: [[0.4708459 ]

 [0.50110425]

 [0.50382591]

 [0.51823803]]

Now let’s check the parameter results, printing the run output of the w 

and b variables.

# Should be around 2

print ("w = {}".format(sess.run(w)))

#Should be around 0.2

print ("b = {}".format(sess.run(b)))

Output:

w = 1.7057617

b = 0.20965417
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It’s time to graphically review the data again and the suggested final 

line—the final predictor line.

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�Full Source Code
import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

#setting required X and Y values to perform XOR operation

X_train = [[0,0],[0,1],[1,0],[1,1]]

Y_train = [[0],[1],[1],[0]]

## ADD PLOT HERE

plt.figure() # Create a new figure

plt.scatter(X_train) #Plot a scatter draw of the random 

datapoints

# Draw one line with the line function

plt.show()

X = tf.placeholder(tf.float64, shape=[4, 2], name="X")  

# create symbolic variables

Y = tf.placeholder(tf.float64, shape=[4, 1], name = "Y")

m = np.shape(X)[0] #number of training examples

n = np.shape(X)[1] #number of features

hidden_s = 2       #number of nodes in the hidden layer

l_r = 1            #learning rate initialization

with tf.name_scope("Model"):

  def model():
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    �theta1 = tf.cast(tf.Variable(tf.random_

normal([3,hidden_s]),name = "theta1"),tf.float64)

    �theta2 = tf.cast(tf.Variable(tf.random_normal([hidden_

s+1,1]), name = "theta2"),tf.float64)

    # conducting forward propagation

    a1 = tf.concat([np.c_[np.ones(m)], X], 1)

    �# the weights of the first layer are multiplied by the 

input of the first layer

    z1 = tf.matmul(a1,theta1)

    �# the input of the second layer is the output of the first 

layer, passed through the activation function and column of 

biases is added

    a2 = tf.concat([np.c_[np.ones(m)],tf.sigmoid(z1)],1)

    �# the input of the second layer is multiplied by the 

weights

    z3 = tf.matmul(a2,theta2)

    �# the output is passed through the activation function to 

obtain the final probability

    h3 = tf.sigmoid(z3)

    return h3

  y_model = model()

with tf.name_scope("CostFunction"):

       �cost = -tf.reduce_sum(Y*tf.log(y_model)+(1-Y)*tf.

log(1-y_model),axis = 1)

train_op = tf.train.GradientDescentOptimizer(learning_rate = 

l_r).minimize(cost)

sess = tf.Session()

init = tf.global_variables_initializer()

Chapter 4  Build Your First Toy TensorFlow app



109

tf.train.write_graph(sess.graph, '/home/ubuntu/xor','graph.

pbtxt')

cost_op = tf.summary.scalar("loss", cost)

merged = tf.summary.merge_all()

sess.run(init)

writer = tf.summary.FileWriter('/home/ubuntu/xor', sess.graph)

for i in range(100):

  sess.run(train_op, feed_dict={X: X_train, Y: Y_train})

  if i%100==0:

      print("Epoch:",i)

      �print("Hyp:",sess.run(y_model,feed_dict = {X:X_train,Y:Y_

train}))

print (sess.run(w)) # Should be around 2

print (sess.run(b)) #Should be around 0.2

plt.scatter(trX,trY)

plt.plot (trX, sess.run(b) + trX * sess.run(w))

�Summary
In this chapter, we broke down the theories and used illustrations with 

practical work and hard code with TensorFlow. We showed you the 

TensorFlow basics to understand its components and make it easier for 

you to follow this book and develop products. Then we gave you step-by-

step examples, which walk you through the most needed functionalities 

and API of TensorFlow.

This chapter was the last one in the first part of the book. In the second 

part the fun begins with a data journey, taking you from data novice to data 

engineer with a full guide from data definition to data engineering.
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CHAPTER 5

Defining Data
Now that you have a basic introduction to the world of artificial 

intelligence, machine learning in general, and the world of deep learning 

in particular, you should understand how this field is very important.

After the Introduction Part, we must define some concepts that are 

necessary to understand to be a data scientist—or, to be specific, a deep 

learning engineer. In Part II we take you from data novice to a data analyst 

or data engineer. All the chapters in this part will be about data. For 

instance, this chapter defines the data and its basic concepts; it will teach 

you what real data looks like and the data shapes and forms it takes, with 

real-life examples, and so on.

In this chapter we define data, and that is equivalent to answering 

what is the data? After that, we make a small comparison among the forms 

of data such as structured, semistructured, and unstructured, defining them 

and using small examples for elaboration. After that, we talk about the 

ideal form of the data and why you should make your data tidy data.

Also, we talk about all types of data that you might face in any real-life 

project such as tabular data and its subtypes, which are qualitative and 

quantitative, and the levels of tabular data like nominal, ordinal, interval, 

and ratio. After that, we look at both text and images data, using examples 

to ensure that you understand this very well. Now, let’s go to the core of the 

chapter.
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�Defining Data
Data is unorganized and unprocessed facts: it might be a raw number, 

figures, images, words, or sounds, derived from observations or 

measurements. Usually, data is static in nature, a set of discrete, objective 

facts about events, and there is no inherent meaning in it.

In the field of data science in general, it is important to understand 

the different types of data for several reasons. Not only because the type of 

data will help to dictate the method of cleaning and processing—although 

choosing the best method is important—but also because knowing 

whether the data is unstructured or perhaps quantitative can tell you a lot 

about the real-world phenomenon being measured.

So, what we talk about in this chapter is called the characteristic of the 

dataset and not the entire dataset. And we will be very clear about which 

one we refer to at any given time.

�Why Should You Read This Chapter?
It might seem worthless to stop and think about what type of data we have 

before getting into the fun stuff, like model building and maintenance in 

deep learning, but this is arguably one of the most important steps you 

need to take to perform data science.

Consider an example where we are looking at a certain dataset of people 

with a type of disease. In a dataset of people, if we considered the age of every 

patient on the dataset, we can’t say that there’s a patient who is zero years 

old; the age cannot be zero or even a negative number. Another example is 

a gender column that is denoted via an identifying number to save space. 

For example, perhaps male is denoted by 1, while female is 2. Without 

understanding that these numbers are not actually ordered numbers as we 

normally think about them (where 2 is greater than 1 and therefore female is 

greater than male), we will make terrible mistakes in our analysis.
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You should apply the same principles when you use any data field 

pipelines. When given a dataset, it is tempting to jump right into exploring, 

applying statistical models, and researching the applications of deep 

learning in order to get results faster. However, if you don’t understand 

the type of data that you are working with, then you might waste your time 

applying models that will be ineffective with that dataset.

When given a new dataset, it is always recommended to take about an 

hour (it might be less) to make the distinctions mentioned in the following 

sections.

�Structured, Semistructured, and 
Unstructured Data
The first question you might ask about the upcoming dataset is if the data 

is structured or not. Let’s show you the difference between structured, 

semistructured, and unstructured data.

•	 Structured data: is easily organized and generally 

stored in databases or flat files like CSV and EXCEL. 

Structured data generally consists of numerical 

information and is objective.

Some types of structured data can be machine 

generated, such as data that comes from medical 

devices (heart rate, blood pressure), manufacturing 

sensors (rotation per minute, temperature), or web 

server logs (number of times a page is visited). 

Structured data can also be human-generated: data 

such as age, zip code, and gender.
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•	 Unstructured data: continues to grow in influence in 

the enterprise as organizations try to leverage new 

and emerging data sources. These new data sources 

are largely made up of streaming data coming from 

social media platforms, mobile applications, location 

services, and Internet of Things technologies.

Most data that exists in text form, including server 

logs and Facebook posts and its comments, is 

unstructured. Also, a genetic sequence of chemical 

nucleotides (for example, ACGTATTGCA) is 

unstructured even if the order of the nucleotides 

matters, as we cannot form descriptors of the 

sequence using a row/column format.

•	 Semistructured data: is a form of structured data that 

does not conform with the formal structure of data 

models associated with relational databases or other 

forms of data tables, but nonetheless contains tags 

or other markers to separate semantic elements and 

enforce hierarchies of records and fields within the data. 

Therefore, it is also known as self-describing structure.

Semistructured data might be found in file types of 

JSON and XML formats.

As a data engineer or deep learning engineer, you will always prefer to 

work with structured data, although sometimes semistructured too. Most 

of us, as data scientist/machine learning engineers, build statistical and 

machine learning models on structured datasets that consist of columns 

and rows that make the model easy to follow its pattern, but they cannot 

work on unstructured data because unstructured data has no specific 

pattern or interpretation. Hence, we cannot expect our model to work with 

these types of data without a proper cleaning.
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But what makes unstructured data so important is that it is so common 

on the Internet; almost 80%-90% of the world’s data is unstructured data, 

suggesting that 80%-90% of the world’s knowledge is hidden in it. This data 

exists in many forms like tweets, e-mails, literature, and server logs. These 

are generally unstructured forms of data.

We will see later how to extract knowledge from unstructured free-

form datasets, and how to use preanalysis techniques, called preprocessing, 

that turn unstructured data into a clean and organized table—in other 

words, turn it into structured data.

�Tidy Data
Tidy data is a standard way of mapping the meaning of a dataset to its 

structure. A dataset is messy or tidy, depending on how rows, columns, 

and tables are matched up with observations, variables, and types.  

In tidy data:

	 1.	 Each variable forms a column.

	 2.	 Each observation forms a row.

	 3.	 Each type of observational unit forms a table.

This is Codd’s 3rd normal form, but with the constraints framed in 

statistical language, and the focus put on a single dataset rather than the 

many connected datasets common in relational databases. Messy data is 

any other arrangement of the data.

Tidy data makes it easy for an analyst or a computer to extract needed 

variables, because it provides a standard way of structuring a dataset. 

Compare, for example, the different versions of pregnancy data: in the 

messy version you need to use different strategies to extract different 

variables. This slows analysis and invites errors. If you consider how 

many data analysis operations involve all of the values in a variable (every 
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aggregation function), you can see how important it is to extract these 

values in a simple, standard way. Tidy data is particularly well suited 

for vectorized programming languages like Python, because the layout 

ensures that values of different variables from the same observation are 

always paired.

While the order of variables and observations does not affect the 

analysis, a good ordering makes it easier to scan the raw values. One way 

of organizing variables is by their role in the analysis: are values fixed by 

the design of the data collection, or are they measured during the course 

of the experiment? Fixed variables describe the experimental design 

and are known in advance. Computer scientists often call fixed variables 

dimensions, and statisticians usually denote them with subscripts on 

random variables. Measured variables are what we actually measure in a 

study. Fixed variables should come first, followed by measured variables, 

each ordered so that related variables are contiguous. Rows can then be 

ordered by the first variable, breaking ties with the second and subsequent 

(fixed) variables. This is the convention adopted by all tabular displays in 

this book.

�Divide and Conquer
As we go further in this chapter, we can divide data into three pieces, as 

follows:

•	 Tabular data

•	 Text data

•	 Image data

You can face each type in a real-problem, so you have to be ready to 

understand and prepare such data types.
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�Tabular Data
�Quantitative​ vs. ​Qualitative​ Data
We talked earlier about a dataset’s ​specific characteristics​ and defined 

it, and we know that structured data comes in the form of tables or 

matrices, each consisting of rows and columns. Rows represent a real-

world observation or case study, for example, certain patient biometrics. 

Columns represent data fields, for example, the patient gender field.

Each data column has its own characteristics that define the column, 

for example, patient gender might be either male or female ​if not missing 

values​. So, these values of patient gender follow some representation that 

needs to be defined.

Note  Columns can be named features, columns, characteristics, or 
even variables.

All fields follow one of two data types, which are defined as follows:

•	 Quantitative data: This data can be described using 

numbers, and basic mathematical procedures, 

including addition, are possible on the set.

•	 Qualitative data: This data cannot be described 

using numbers and basic mathematics. This data is 

generally thought of as being described using “natural” 

categories and language.

�Example—the Titanic
The sinking of the RMS Titanic is one of the most infamous shipwrecks 

in history. Let’s say that we are processing observations of what 

sorts of people were likely to survive, using the following descriptors 
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(characteristics). And each of these characteristics can be classified as 

either quantitative or qualitative; that simple distinction can change 

everything. Let’s take a look at each one:

•	 PassengerId - quantitative: Observation ID; usually 

takes numerical values

•	 Survived - qualitative: Survival (0 = No; 1 = Yes)

•	 Pclass - qualitative: Passenger class (1 = 1st; 2 = 2nd; 

3 = 3rd)

•	 Name - qualitative: Passenger name

•	 Sex - qualitative: Passenger gender

•	 Age - quantitative: Passenger age

•	 SibSp - quantitative: Number of siblings/spouses 

aboard

•	 Parch - quantitative: Number of parents/children 

aboard

•	 Ticket - qualitative: Ticket number

•	 Fare - quantitative: Passenger fare

•	 Cabin - qualitative: Cabin ID

•	 Embarked - qualitative: Port of embarkation (C = 

Cherbourg; Q = Queenstown; S = Southampton)

So, after we categorize each column to be either quantitative or 

qualitative, you might wonder why these columns are under this category. 

Let me give another quick example for more elaboration.

Let us consider the column Name, which represents the passenger 

name. This column is not expressed as a number and we cannot perform 

math on the name of the passenger, so it is qualitative. Now consider Age, 

which represents passenger age in numbers. We can do basic operations 
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such as adding up the ages for all passengers and dividing it by the total 

number of passengers to get the passengers’ average age, thus putting the 

Age column under the Quantitative umbrella.

Note E ven though a ticket number is being described using 
numbers, it is not quantitative. This is because you can’t talk about 
the sum of all ticket numbers or an average ticket number. These are 
nonsensical descriptions.

Pretty much whenever a word is used to describe a characteristic, it 
is a qualitative factor.

�Divide and Conquer
Quantitative data can be broken down one step further, into discrete and 

continuous quantities, that can be defined as follows:

•	 Discrete variable: is a variable whose value is obtained 

by counting—for example, the number of students 

present, because you can count the students in a 

certain class.

•	 Continuous variable: is a variable whose value is 

obtained by measuring. One example is the height of 

students in a class, because a student’s height might be 

150 cm or 150.5 cm or even 150.09 cm. The height of a 

person or building is a continuous number because an 

infinite scale of decimals is possible. Other examples of 

continuous data would be time and temperature.
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�Making a Checkpoint
So far, we have looked at the differences between structured, 

semistructured, and unstructured data, as well as between qualitative and 

quantitative characteristics.

These are simple concepts in the data science field, but these distinctions 

may cause a huge effect on the data scientist’s analysis of a given dataset.

A small summarization T o make it simple, data as a whole can 
either be structured or unstructured, meaning that the data can either 
take on an organized row/column—table like view— structure with 
distinct features that describe each row of the dataset, or exist in a 
free-form state that usually must be preprocessed into a form that is 
easily digestible.

If data takes a structured format or we can say that the data is tabled, 

we can look at each column (feature) of the dataset as being either 

quantitative or qualitative. Basically, can the column be described using 

mathematics and numbers or not? The next part of this chapter breaks 

down data into four very specific and detailed levels. At each order, we will 

apply more complicated rules of mathematics, and in turn, we can gain a 

more intuitive and quantifiable understanding of the data.

�The Four Levels of Data
Looking at structured data, we understand that each column (feature) can 

be one of the following four levels:

•	 Nominal

•	 Ordinal

•	 Interval

•	 Ratio
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As we explain each element of this list, you will see the structure of 

data and the variation of columns; each element of this list comes with a 

practice guide of its processing and techniques used for it. But before we 

start explaining these techniques, we shall introduce a small statistical 

definition: the measure of center.

�Measure of Center

A measure of central tendency (measure of center) is a value that attempts 

to describe a set of data by identifying the central position of the data set 

(as representative of a “typical” value in the set). This one value number 

describes what the data tends to, and for each data level the measure of 

center technique changes. So, let us start explaining these levels.

Note  Sometimes the measure of center of a feature is referred to 
as the balance point of this feature.

�The Nominal Level
Let’s start with the easiest one to understand, the nominal level, which 

consists of data that is described purely by name or category, Nominal 
scales could simply be called “labels.” Basic examples include gender, 

nationality, or species. They are not described by numbers and are 

therefore qualitative. The following are some examples:

•	 Your gender is at the nominal level of data. You are 

either a male or a female.

•	 The answer to “What is your hair color?” is also 

nominal, where the answer might be “brown, black, 

blond, gray, or other.”
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�Mathematical Operations Allowed for Nominal

We cannot perform mathematics at the nominal level of data except the 

basic equality and set membership functions, as shown in the following two 

examples:

•	 Being a data scientist is the same as being in the tech 

industry, but not vice versa.

•	 A figure described as a square falls under the 

description of being a rectangle, but not vice versa.

Note A  subtype of nominal scale with only two categories (e.g., 
male/female) is called dichotomous.

�Measures of Center for Nominal

In order to find the balance point of nominal data, we generally turn to the 

mode.

The mode is defined as the most frequently occurring number in a 

data set. The mode is most useful in situations that involve categorical 

(qualitative) data that are measured at the nominal level.

As an example of this, consider that we collected all students in a 

certain school and listed their gender whether male or female as follows:

Male, female, male, male, female, male, female, 

female, male, female, male

The mode here is male, where if you count the values you will find that 

there are six males and five females.
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Note  Measures of center such as the mean and median do not 
make sense at this level, as we cannot order the observations or 
even add them together.

�What Does It Mean to be a Nominal Level Type?

Data at the nominal level is mostly categorical in nature, like we saw in the 

last example male/female, because we generally can only use words to 

describe the data.

While data at the nominal level can certainly be useful, we must be 

careful about what insights we may draw from them. With only the mode 

as a basic measure of center, we are unable to draw conclusions about an 

average observation. This concept does not exist at this level. It is only 

at the next level that we may begin to perform true mathematics on our 

observations.

�The Ordinal Level
The nominal level is not that flexible—we cannot use most mathematical 

operations on its observations—due to the fact that we cannot order its 

observations in any natural way.

So, we can say that the data that can be ordered or have a rank are in 

the ordinal level category; however, although the ordinal level provides us 

with a rank order, or the ability to place one observation before the other, 

it does not provide us with relative differences between observations. 

This means that while we can order the observations from first to last, we 

cannot execute a mathematical operation such as adding or subtracting 

the observations to get any real meaning.
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�Examples of Being Ordinal

Each scale is an incremental level of measurement, meaning each scale 

fulfills the function of the previous scale and all survey question scales 

such as Likert, semantic differential, dichotomous, etc.

For example, a semantic differential scale question might be “How 

satisfied are you with our services?” and the answer is one of the following:

•	 Very unsatisfied – 1

•	 Unsatisfied – 2

•	 Neutral – 3

•	 Satisfied – 4

•	 Very satisfied – 5

As you can see, the order of variables is important and so is the 

labeling. Very unsatisfied will always be worse than unsatisfied, and 

satisfied will be worse than very satisfied.

Note A t the ordinal level, the distance between variables can’t be 
calculated. Description qualities indicate tagging properties similar to 
the nominal scale, in addition to which, the ordinal scale also has a 
relative position of variables. Origin of this scale is absent; therefore, 
there is no fixed start or “true zero.”

�What Data Is Like at the Ordinal Level

As we said about nominal level data, we can see the same here. The 

ordinal level is mostly categorical in nature, like we saw in the last example 

satisfied/natural/unsatisfied, because we generally can use words to 

describe the data order in the process.
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While data at the ordinal level can certainly be useful, we must be 

careful about what insights we may draw from them, as you know now that 

the order matters. So, selecting the wrong measure of center technique 

may influence your results and make things go wrong. This concept 

does not exist at this level. It is only at the next level that we may begin to 

perform true mathematics on our observations.

�Mathematical Operations Allowed for Ordinal

At the ordinal level, we can do more mathematical operations on data that 

we could not do at the nominal level data. We inherit all mathematics from 

the nominal level (equality and set membership) and we can also add the 

following to the list of operations that are allowed at the ordinal level:

•	 Ordering

•	 Comparison

Ordering refers to the natural order provided to us by the data; 

however, this can be tricky to figure out sometimes. For example, if you are 

building a recommendation engine, you can consider ordering items using 

each item rank to make a higher rank come first to the user, or you might 

think to sort these items per cost or materials and so on. This could change 

the order of the data, but as long as we are consistent in what defines the 

order, it does not matter what defines it.

Comparisons are another new operation allowed at the ordinal level. 

At the ordinal level, it would not make sense to say that male is better 

than female or vice versa. But at the ordinal level, we can make certain 

comparisons. For example, going back to the earlier example of a semantic 

differential scale, we can say that putting an “unsatisfied” on a survey is 

worse than putting a “neutral.”
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�Measures of Center for Ordinal

At this level, the median is an appropriate way of defining the center of 

the data. The mean, however, would be impossible because division and 

addition are not allowed at this level. But we can use the mode like we did 

at the nominal level.

Here’s a small example to elaborate the use of median. Imagine that 

we have conducted a survey using the satisfaction question in the earlier 

example; you will see results as follows:

    5, 2, 5, 2, 4, 1, 2, 3, 1, 5, 4, 3, 4, 5,

    3, 2, 5, 3, 2, 1, 4, 5, 3, 4, 4, 4, 5, 4,

    3, 2, 4, 5, 4, 2, 1, 4, 5, 4, 3, 2, 1

Most people may argue that the mean of these scores would work just 

fine. But the mean would not be as mathematically viable, because if we 

added two scores, say a score of four plus a score of one, the sum of two 

does not really mean anything, and if you divided by their count, say two, 

the result will be out of these scale representations. If addition/subtraction 

among the scores doesn’t make sense, the mean won’t make sense either.

So, let us use Python to calculate both mean and median to see the 

effect of the observation on both of these functions (Figure 5-1). We also 

recommend using the NumPy package.
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As you can see in the example in figure, using median will produces 

the output of 4 and this exists in the observation, so we can use it as a 

center of these observations. However, the mean outputs 3.33 and that’s 

out of the data observation scale—it does not exist in the observations—

and that’s why we cannot use mean on ordinal level data.

�Quick Recap and Check
So far, we have introduced to you two levels of data out of four:

•	 The nominal level

•	 The ordinal level

At the nominal level, we deal with data usually described using 

vocabulary, or you can say it’s just named (although sometimes with 

numbers), with no order, and little use of mathematics (equality and set 

membership). At the ordinal level, we have data that can be described with 

numbers and also have a “natural” order, allowing us to put one in front of 

the other, and you can use comparisons and sorting on them.

Figure 5-1.  A code example of how to calculate mean and median
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�The Interval Level
The interval Level is defined as a numerical scale where the order of 

the variables is known, as well as the difference between these variables. 

Variables that have familiar, constant, and computable differences are 

classified using the interval scale. It is easy to remember the primary role 

of this scale too. “Interval” indicates distance between two entities, which 

is what the interval scale helps in achieving.

The interval scale contains all the properties of the ordinal scale, 

in addition to which, it offers a calculation of the difference between 

variables. The main characteristic of this scale is the equidistant difference 

between objects.

�Examples of Interval Level Data
Temperature is a great example of data at the interval level. If it is 100 

degrees Fahrenheit in one country and 80 degrees Fahrenheit in another 

one, then the first country is 20 degrees warmer than the second. This 

simple example allows for so much more manipulation at this level than 

previous examples.

•	 80 degrees is always higher than 50 degrees, and the 

difference between these two temperatures is the same 

as the difference between 70 degrees and 40 degrees.

•	 Also, the value of 0 is arbitrary, because negative values 

of temperature do exist, which makes the Celsius/

Fahrenheit temperature scale a classic example of 

interval scale.
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�What Data Is Like at the Interval Level
As you can see, this data level is represented by numbers, and that seems a 

bit easier for the sake of analysis, but in fact you have to pay some attention 

to your variables. That is because in selecting the measure of center 

technique such as mean, you have a lot of outliers that may influence the 

conclusions you get from it.

�Mathematical Operations Allowed for Interval
We can use all the operations allowed at the lower levels (equality, 

ordering, comparisons, and so on), along with two other notable 

operations:

•	 Addition

•	 Subtraction

These two new operations allow us to express the observation in a 

useful way.

�Measures of Center for Interval

At this level, we can use the median and mode to describe this data; 

however, usually the most accurate description of the center of data would 

be the arithmetic mean, more commonly referred to as, simply, “the 

mean.” Recall that the definition of the mean requires us to add together 

all the measurements. At the previous levels, addition was meaningless; 

therefore, the mean would have lost useful value. It is only at the interval 

level and above that the arithmetic mean makes sense.

Suppose we look at the temperature of a fridge containing a 

pharmaceutical company’s new vaccine. We measure the temperature 

every hour with the following data points (in Fahrenheit; Figure 5-2).
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Note how the mean and median are quite close to each other and both 

are around 31 degrees. The question is, on average, how cold is the fridge? 

It’s about 31; however, the temperature dropped below 29 degrees but 

you ended up assuming that it isn’t enough for it to be detrimental. This 

is where the measure of variation can help us understand how bad the 

fridge situation can be, also how it is good to choose mean or median as a 

representation of the center of our data.

�Measures of Variation for Interval

This is a new measurement that we have not yet discussed. In data science 

in general, you should take into consideration not only the center of your 

data, but also it’s variation; it is very important to mention how “spread 

out’ the data is. The measures that describe this phenomenon are called 

measures of variation, or the variance.

You have likely heard of standard deviation before. This idea is extremely 

important and we should address it briefly. A measure of variation—like the 

standard deviation—is a number that attempts to describe how spread out 

the data is. Along with a measure of center, a measure of variation can almost 

entirely describe a dataset with only two numbers.

Figure 5-2.  A comparison of mean and median on other data
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Standard Deviation

Standard deviation is the most common measure of variation of data at the 

interval level and beyond. The standard deviation can be thought of as the 

average distance a data point is at from the mean. While this description is 

technically and mathematically incorrect, it is a good way to think about it. 

The formula for standard deviation can be broken down into the following 

steps:

	 1.	 Find the mean of the data.

	 2.	 For each number in the dataset, subtract it from the 

mean and then square it.

	 3.	 Find the average of each square difference 

(variance).

	 4.	 Take the square root of the number obtained in step 

three. This is the standard deviation.

Note T he reason we want the “square difference” between each 
point and the mean and not the “actual difference” is because 
squaring the value actually puts emphasis on outliers—data points 
that are abnormally far away.

For example, look back at the temperature dataset. Let’s find the 

standard deviation of the dataset (Figure 5-3).

Figure 5-3.  Calculating standard deviation
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All of this code led to us finding out that the standard deviation of 

the dataset is closer to 2.6, meaning that, on average, a data point is 2.5 

degrees off from the average temperature of around 31 degrees. So, the 

temperature could likely dip below 29 degrees again in the near future.

Measures of variation give us a very clear picture of how spread out or 

dispersed our data is. This is especially important when we are concerned 

with ranges of data and how data can fluctuate (think of percent return 

on stocks). The big difference between data at this level and at the next 

level lies in something that is not obvious. Data at the interval level does 

not have a natural starting point or a natural zero. However, being at zero 

degrees Celsius does not mean that you have no temperature.

�The Ratio Level
Finally, we will take a look at the ratio level. After moving through three 

different levels with differing levels of allowed mathematical operations, 

the ratio level proves to be the strongest of the four.

Not only can we define order and difference, the ratio level allows us to 

multiply and divide as well. This might not seem like much to make a fuss 

over but it changes almost everything about the way we view data at this 

level.

�Examples

While Fahrenheit and Celsius are stuck in the interval level, the Kelvin 

scale of temperature boasts a natural zero. A measurement of zero Kelvin 

literally means the absence of heat. It is a nonarbitrary starting zero. We 

can actually scientifically say that 200 Kelvin is twice as much heat as 100 

Kelvin. Money in the bank is at the ratio level. You can have “no money in 

the bank”; and it makes sense that $200,000 is twice as much as $100,000.
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�Measures of Center for Ratio

The arithmetic mean still holds meaning at this level, as does a new type 

of mean called the geometric mean. This measure is generally not used as 

much, even at the ratio level, but it’s worth mentioning. It is the square root 

of the product of all the values.

For example, in our fridge temperature data, we can calculate the 

geometric mean as shown in Figure 5-4.

Figure 5-4.  The geometric mean

Note again how it is close to the arithmetic mean and median as 

calculated before.

�Problems with the Ratio Level

Even with all of this added functionality at this level, we must also 

generally make a very large assumption that actually makes the ratio level 

a bit restrictive. Data at the ratio level is usually nonnegative. For this 

reason alone, many data scientists prefer the interval level to the ratio 

level. The reason for this restrictive property is because if we allowed 

negative values, the ratio might not always make sense.
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�Summarizing All Levels Table 5-1

Figure 5-5.  Summary of all data levels

Table 5-1.  Summarizing All the Tabular Data Levels

Support: Nominal Ordinal Interval Ratio

The sequence of variables is established - Yes Yes Yes

Mode Yes Yes Yes Yes

Median - Yes Yes Yes

Mean - - Yes Yes

Difference between variables can be evaluated - - Yes Yes

Addition and subtraction of variables - - Yes Yes

Multiplication and division of variables - - - Yes

Absolute zero - - - Yes

The diagram in Figure 5-5 may make it easy for you to understand each 

level’s properties and how each level inherits properties from the level 

under it.
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�Text Data
Text is a form of data that has existed for millenniums throughout human 

history. Including all the sacred texts influencing all the religions, all the 

compositions of poets and authors, all the scientific explanations by the 

brightest minds of their times, all the political documents that define our 

history and our future, and all kinds of explicit human communication, these 

“all” define the importance of data available in the form of what we call text.

�What Is Text Processing and What Is the Level 
of Importance of Text Processing?
Text processing is one of the most common tasks in many ML applications. 

As proof, we will see some examples of text processing tasks:

•	 Language translation: Translation of a sentence from 

one language to another

•	 Sentiment analysis: To determine, from a text corpus, 

whether the sentiment toward any topic or product, 

etc. is positive, negative, or neutral

•	 Spam filtering: Detects unsolicited and unwanted 

email/messages

As we see, text has many tasks that are very important to ML 

applications besides speech recognition and generation. For now, we can 

say that we answered this question, but we should say something about 

text data: it has a name in machine learning, called NLP (natural language 

processing). But we are here to talk about text, so let’s complete our scope 

about text types. We’ll discuss structured and unstructured data, how 

to use this data in example by processing it and cleaning it, and see the 

most common techniques that used to process data. So let’s continue our 

journey into data.
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First, to simplify text data, we can modify it. Text data is basically 

just words. A lot of the time the first thing that you do with text is to turn 

it into numbers using some interesting functions like the bag-of-words 

formulation.

Second, what are the tools used in text processing? NLP is the main tool 

that machine learning engineers use to handle text data. So let’s provide a 

good definition of NLP.

Natural language processing is a field in machine learning concerning 

the ability of a computer to understand, analyze, manipulate, and 

potentially generate human language.

We have many tools that are used in NLP, like NLTK (Natural Language 

Toolkit), which we talked about in Part I. We will get into more detail 

about text data in Part III when we talk about the recurrent neural network 

(RNN), but let’s take a simple overview about text.

�IMDB—Example
In this example, we work with the most common dataset in text, which 

is benchmarked in many kinds of research. It is The Large Movie Review 

Dataset (often referred to as the IMDB dataset) containing 25,000 highly 

polar movie reviews (good or bad), used for training and again for testing. 

The problem is to determine whether a given movie review has a positive 

or negative sentiment (Figure 5-6).
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As we see in Figure 5-6, this data of the IMDB is just a data feature of 

the reviews by users about the film, with a sentiment feature or labeled 

feature that allow us to know if the review is a positive or negative one. 

That allows the model to train the combination of words that indicate a 

negative review or positive review.

It’s an easy example that gives us a look at text data. We will talk more 

in the next chapters about text and how to process text data, and train it 

with many algorithms and use the architecture that fits the data well. For 

now we learned a little bit in this portion about what text data is.

�Images Data
Computer vision is one of the hottest topics in artificial intelligence. It is 

making tremendous advances in many fields such as self-driving cars, 

robotics, and even various photo correction apps. Steady progress in 

object detection is being made every day. Vision is showing us the future 

of technology in general and deep learning in particular, so we can’t even 

imagine all of its possibilities.

Figure 5-6.  The movie data
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Computer vision basically is the science of manipulating and 

processing images to extract certain knowledge from it. So, this approach 

deals with all types of images from grayscale to multicolor scale, and from 

2-dimensional to 4-dimensional scales.

Image processing performs some operations on images to get an 

intended manipulation. Think about what we do when we start a new data 

analysis. We do some data preprocessing and feature engineering. It’s the 

same with image processing. We do image processing to manipulate the 

pictures for extracting some useful information from them. We can reduce 

noises, and control the brightness and color contrast. 

�Type of Images (2-D, 3-D, 4-D)

The pipeline of images may still the same for 2-D, 3-D, and 4-D data, but 

you have to know the different types of data you may deal with. Also you 

should know and understand each step you may have to deal with for any 

image data you might face in the future.

2-D Data

We say that images are in 2-dimensional space when each observation is 

composed of a 2-D matrix, and what makes the whole data is in 3-D space. 

Images that are 2-D most likely are gray images; that is intuitive because 

each pixel in 2-dimensional space is represented by only one value, and 

this value can be between 0 and 255. Now let us upgrade and increase the 

dimensional space by one, and see what happens.

3-D Data

If you increase the dimensional space by one, then the images are in 

3-dimensional space, and that makes each image observation composed 

of a 3-D tensor, while the whole data is in 4-dimensional space and is 

composed of a 4-D tensor. Images that are composed of 3-D, are composed 
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of three channels, most likely the red, green, and blue channels, making 

each image in this data colored. Each pixel in the image is composed of 

three values, one value between 0 and 225 per each channel, and we will 

see how to deal with this type of data in a later Chapter 11.

4-D Data

Again, if you increase the dimensional space by one, then the images are in 

4-dimensional space, and that makes each image observation composed 

of a 4-D tensor, while the whole data is in 5-dimensional space and is 

composed of a 4-D tensor. Images that are composed of 4-D, are composed 

of three channels, most likely the red, green, and blue channels, making 

each image in this data colored, and taking the time variation of the image 

as another dimension.

For instance, biomedical images are typically volumetric images (3-D) 

and sometimes have an additional time dimension (4-D) and/or multiple 

channels (4-D–5-D) (e.g., multisequence MR images). The variation in 

biomedical images (Figure 5-7) is quite different from that of a natural 

image (e.g., a photograph), as clinical protocols aim to stratify how an 

image is acquired (e.g., a patient is lying on his/her back, the head is not 

tilted, etc.). In their analysis, we aim to detect subtle differences (i.e., some 

small region indicating an abnormal finding).
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�Example—MNIST

The MNIST database (Modified National Institute of Standards and 

Technology database) is a large database of handwritten digits that is 

commonly used for training various image processing systems. The 

database is also widely used for training and testing in the field of machine 

and deep learning.

The MNIST database contains 60,000 training images and 10,000 

testing images. Half of the training set and half of the test set were taken 

from NIST’s training dataset, while the other half of the training set and the 

other half of the test set were taken from NIST’s testing dataset.

The MNIST dataset (Figure 5-8) was created by “re-mixing” the 

samples from NIST’s original datasets. The creators felt that since NIST’s 

training dataset was taken from American Census Bureau employees, 

while the testing dataset was taken from American high school students, it 

was not well suited for statistical learning experiments.

Figure 5-7.  Examples of what 4-D images look like
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�Example—CIFAR-10

In this example, we will be working on one of the most extensively used 

datasets in image comprehension, one that is used as a simple but general 

benchmark. In this example, we will build a simple CNN model to have an 

idea of the general structure of computations needed to tackle this type of 

classification problem.

This dataset consists of 40,000 images of 32×32 pixels, representing the 

following categories: airplane, automobile, bird, cat, deer, dog, frog, horse, 

ship, and truck. In this example, we will just take the first of the 10,000 

image bundles to work on (Figure 5-9).

Figure 5-8.  Sample of the MNIST dataset
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�Summary
The type of data that you are working with is a very large piece of data 

science and machine learning. It must precede most of your analysis, 

because the type of data you have impacts the type of analysis that is even 

possible! Whenever you are faced with a new dataset, the first questions 

you should ask about it are the following:

•	 Is the data organized or unorganized?

For example, does our data exist in a nice, clean 

row/column structure?

Figure 5-9.  Sample of the CIFAR-10 dataset
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•	 Is each column quantitative or qualitative?

For example, are the values numbers, strings, or do 

they represent quantities?

•	 At what level of data is each column?

For example, are the values at the nominal, ordinal, 

interval, or ratio level?

•	 If it is image data, what is the data augmentation 

method we need to use?

•	 If it is text data, what is the method we will use to 

transform text to numbers?

The answers to these questions will not only impact your knowledge 

of the data, but will also dictate the next steps of your analysis. They will 

dictate the types of charts you are able to use and how you interpret them 

in your upcoming data models. Sometimes we will have to convert from 

one level to another in order to gain more perspective.

In the coming chapters, we will take a much deeper look at how to deal 

with and explore data at different levels. By the end of this book, we will be 

able to not only recognize data at different levels, but we’ll also know how 

to deal with it at these levels.
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CHAPTER 6

Data Wrangling 
and Preprocessing
In the previous chapter, we defined what data means; we also discussed 

types and levels of data. So, we are now just getting into action with data!  

In this chapter, you’ll learn how to understand and clean your dataset.

In some books or references you will find the topic of this chapter has a 

different name; they might call it data munging.

Munging means to manipulate or change, in a series of well-specified 

and reversible steps, a piece of original data to a completely different—

and hopefully more useful—one. You might see some data scientist or 

deep learning engineers use another term to describe this process in 

the pipeline. These terms are almost synonymous: terms such as data 

wrangling or data preparation. By any name, munging is a very important 

part of any data engineering pipeline.

While reading this book, you will find us mentioning more jargon and 

technicalities taken from the fields of probability and statistics (such as 

probability distributions, descriptive statistics, and hypothesis testing). 

We will try to add a dictionary-like appendix for these terms to make sure 

that we are on the same page; however, our main purpose is to provide 

you with the essential concepts for handling deep learning projects, and 

it is nice if you already are familiar with some of them. But we will put 

an appendix in case you may need a refresh or even a straightforward 
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introduction to any of the concepts dealt with in this or another chapter. 

Given such premises, in this chapter the following topics will be covered:

•	 The data fields pipelines (so that you’ll know what is 

going on and what’s next)

•	 Loading data from a file

•	 Selecting data you need

•	 Handling any missing or wrong data

•	 Augmenting and deleting data

•	 Grouping and transforming data to obtain new and 

meaningful information

�The Data Fields Pipelines Revisited
�Giving You a Reason
We recently read that The New York Times called data cleaning “janitor 

work” and said that 80 percent of a data scientist’s time will be spent 

doing this kind of cleaning. As we can see in Figure 6-1, despite its 

importance, data cleaning has not really captured the public imagination 

in the same way as big data, data mining, or machine learning.

Figure 6-1.  The current trend of machine learning
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Well, unfortunately we would all be a lot better off if we just got the job 

done rather than ignoring it, complaining about it, and giving it various 

demeaning names.

�Where Is Data Cleaning in the Process?
The data science process is described in six steps, as shown in the 

following list. Data cleaning is right in the middle, at the third step; but 

rather than thinking of these steps as a linear (like a waterfall), start-to-

finish framework, we will revisit the steps as needed several times over 

in the course of a project in more of an iterative manner. It is also worth 

pointing out that not every project will have all the steps; for example, 

sometimes, we do not have a collection step or a visualization step. It really 

depends on the particular needs of the project.

•	 The first step is to come up with the problem statement. 

Identify the problem you are trying to solve.

•	 The next step is data collection and storage. Where 

did the data come from that is helping you answer this 

question? Where did you store it and in what format?

•	 Then comes data cleaning. Did you change the data at 

all? Did you delete anything? How did you prepare it for 

the analysis and mining step next?

•	 The next step is data analysis and machine learning. 

What kind of processing did you do to the data? What 

transformations? What algorithms did you use? What 

formulas did you apply? What deep learning algorithms 

did you use? In what order?
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•	 Representation and visualization is the fifth step. How 

do you show the results of your work? This can be 

one or more tables, drawings, graphs, charts, network 

diagrams, word clouds, maps, and so on. Is this the best 

visualization to represent the data? What alternatives 

did you consider?

•	 The last step is problem resolution. What is the answer 

to the question or problem you posed in step 1? What 

limitations do you have on your results? Were there 

parts of the question that you could not answer with 

this method? What could you have done differently? 

What are the next steps?

�Data Loading and Preprocessing
After you find the dataset you want for your project, you also know how to 

import the needed Python packages for the pipeline. In this section, having 

kept your toolbox ready, you are about to learn how to structurally load, 

manipulate, and process datasets using pandas and NumPy; and as you 

have seen in previous chapters, how to set up these packages. You are now 

ready to proceed to the next section.

�Fast and Easy Data Loading
Let’s start with pandas. The pandas library offers the most accessible and 

complete function to load tabular data from a file (CSV, comma-separated 

values; TSV, tab-separated values; JSON) or a URL.

By default, it will store data in a specialized pandas data structure, 

index each row, separate variables by custom delimiters, infer the right 

data type for each column, convert data (if necessary), as well as parse 
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dates, missing values, and erroneous values, and do a lot of processing. 

The amazing part is that you can do all that with just one line of Python 

code; that’s why it’s fast and easy.

import pandas as pd

iris_df = pd.read_csv('Iris.csv', sep=',', decimal='.',  

index_col=False)

iris_df.head()

Figure 6-2.  The table output of the DataFrame

iris_df   = pd.read_csv(iris_data, sep=',',

           decimal='.', header=None, index_col=False,

           names=[�'sepal_length', 'sepal_width', 'petal_length', 

'petal_width', 'target'])

import urllib

import pandas as pd

data_url  = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

request   = urllib.request.Request(data_url)

iris_data = urllib.request.urlopen(request)

iris_df   = pd.read_csv(iris_data, sep=',',

                      decimal='.', header=None,
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                      index_col=False,

                      names=[�'sepal_length', 'sepal_width', 

'petal_length', 'petal_width', 

'target'])

iris_df.head()

Figure 6-3.  The table output of the online DataFrame

As you see in the two preceding code cells (Figures 6-2 and 6-3), both 

of them do the same job, which is loading the data, either from a file (CSV, 

sometimes called a flat file), or from a URL (e.g., the cloud).

In the case of a file, you can specify: the name of the file; the character 

used as a separator (sep), which might be comma, tab, hash, etc…; the 

character used for the decimal placeholder (decimal), which might look 

like 10.01 in the dataset or like 10,01; whether there is a header (header) 

or not; and the variable names (using names and a list). pandas has some 

default settings of some of its parameters like the sep=',' for example, and 

also decimal='.'.

Note  Be careful that you do not set the sep (separator) and the 
decimal point for numbers with the same values, to prevent loading 
errors and for data-loading safety.
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The resulting object, named iris, is a pandas DataFrame. It’s more 

than a simple Python list or dictionary, and in the sections that follow, we 

will explore some of its features and functionalities. To get an idea of its 

content (to view the inner data values), you can print the first (or the last) 

row(s), using the following commands (Figures 6-4 and 6-5):

iris_df.head()

Figure 6-4.  A table that outputs from the head() function

Iris_df.tail(7)

Figure 6-5.  The output table from the tail() function
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Note T he head/tail functions, if called without arguments, will print 
only five rows. If you want to get back a different number of rows, 
just call the function using the number of rows you want to see as an 
argument, as in the second of the preceding two code cells.

Next, you might want to see just the names of columns (hint: you can 

see them when you use iris.head()); to get the names of the columns, 

you can simply use the following method:

iris_df.columns

# Output:

# Index(['sepal_length', 'sepal_width', 'petal_length',  

# 'petal_width', 'target'], dtype='object')

iris_df.columns = �['s_length', 's_width', 'p_length', 'p_width', 

'target']

The resulting object in code cell one is a very interesting one. It looks 

like a Python list, but it actually is a pandas index. As suggested by the 

object’s name, it indexes the columns’ names. And in code cell two you 

see that you can change the column names as you want, but be careful and 

choose the names wisely that you are using to represent the columns.

To extract the target column (Figure 6-6), for example, you can simply 

do the following:

y = iris_df['target']

y.head()
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The type of the object y is a pandas Series. Right now, think of it as a 

one-dimensional array or vector as mathematically represented with axis 

labels, as we will investigate in depth later on.

Note  For convention we use small letters for vector/array, and 
capital letters for matrices.

y = iris_df.target

Note A s you can see, we can get the column as a pandas 
DataFrame(matrix), but it is not preferred.

Now, we just understood that a pandas index class acts like a 

dictionary index of the table’s columns.

Note that you can also get a list of columns referring to them by their 

indexes, as follows (Figure 6-7):

X = iris_df[['s_length', 's_width', 'p_length', 'p_width']]

X.head()

Figure 6-6.  The output series that represents the target variable
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As you can see here the pandas DataFrame present its flexibility by 

letting you select the columns the way you prefer. And as you can see, the 

result is a pandas DataFrame.

Why such a difference in results when using the same function?

•	 In the first case, we asked for a column. Therefore, the 

output was a 1-D vector (that is, a pandas Series).

•	 In the second case, we asked for multiple columns and 

we obtained a matrix-like result (and we know that 

matrices are mapped as pandas DataFrames).

Note  You can simply spot the difference by looking at the heading 
of the output; if the columns are labeled, then you are dealing with a 
pandas DataFrame. On the other hand, if the result is a vector and it 
presents no heading, then that is a pandas Series.

So far, we have learned some common steps from the data loading 

process; after you load the dataset, you usually separate the features 

(predictors) and target (which is response) labels.

Figure 6-7.  Just the selected variables output
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And, as you know:

•	 In a classification problem, target labels are the 

discrete/nominal numbers or textual strings that 

indicate the class associated with every set of features.

•	 In a regression problem, target labels are continuous/

interval (or ratio) numbers that indicate the value 

associated with every set of features.

Then, the following steps require you to get an idea of how large 

the problem is, and therefore you need to know the size of the dataset. 

Typically, for each observation, we count a line, and for each feature, a 

column. To obtain the dimensions of the dataset, just use the attribute 

shape on a pandas DataFrame or Series, as shown in the following 

example:

iris_df.shape

# Outputs

# (150, 5)

The resulting object is a tuple that contains the size of the matrix/array 

in each dimension.

Note  pandas Series follow the same format (that is, a tuple with 
only one element)—for example, data_series.shape will output 
(10, 1).

However, if you want to ignore the data loading process, you can 

always use the preloaded datasets in the sklearn.datasets module. This 

module contains all types of dataset (classification and regression) you 

can use—for practicing and experimentation purposes only. Also, you 

Chapter 6  Data Wrangling and Preprocessing



158

can use some functionalities in this module to generate you own dataset 

too, and that will help you enhance your pipeline operation selection and 

experimentation process too.

from sklearn.datasets import load_iris

iris = load_iris()

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

iris_df.head()

�Missing Data
As we all know, when someone transforms a dataset from one source to 

another, somehow data loss happens. We cannot avoid that loss or prevent 

it from happening, but we can fix it or make our model learn that loss or 

ignore it, as we will see in the coming chapters. So now we will talk about 

the mysterious combination of zeros, empties, and nulls.

You probably want to know the difference between each of those. We 

will show you the difference using three simple scenarios to illustrate and 

define the meaning of zeros, empties, and nulls.

Scenario one: Imagine that you have a purse that is filled with coins, 

and as I ask you some questions about it, you should answer them.

If I ask you how many coins are in the purse, you observe that there 

are no coins in the purse. The question how many coins are in the purse? 

is unanswerable. There is no purse! The answer is not a positive value, it is 

not a zero value, and it is not even empty. The value is null.

Scenario two: A few hours later, you looked in the purse again and  

saw ten coins are in it. Wonderful; you now have an answer to the question. 

In this case, you can answer the question with this piece of data, and its 

value is 10.
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After a while, you look in the purse again and discover that there are no 

more coins. Every single coin is gone. You look, you search, and you find 

the answer to how many coins are in the purse? is a zero value. So, you still 

have a piece of data and its value is now 0.

Scenario three: Just before the evening, you grab your purse from your 

pocket. As you walk across the street, you find your friend and he asks, 

“What’s in the purse?” Currently, the purse is empty. There is nothing in 

the purse—no coins and nothing else. Note that the answer is not zero, 

because the question he asked was not a numeric one. The answer is also 

not null, because we do have a purse and we did look inside it, but there 

was just no answer.

�Empties
Empties are a bit trickier to work with than zero, but they make a lot of 

sense in some cases, for instance, when working with strings. For example, 

suppose we have an attribute called middle name. Well, I have no middle 

name so I would always leave this field empty. Filling in a space or a 

hyphen (or making up something) for a value that is truly empty does not 

make a lot of sense. Space is not the same thing as empty. The correct 

value in the case of an empty string may, in fact, be “empty.”

�Is It Ever Useful to Fill Missing Data Using a Zero 
Instead of an Empty or Null?
Let’s state the fact that it is always better to fill the missing value than to 

leave it empty or null. You can know the missing value in a tricky way: if 

this variable has a uniform distribution between 0 and 1 and it has a small 

peak at -1, then -1 is actually a missing value.
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Depending on data sources, missing data is identified differently. 

pandas always identifies missing values as NaN. However, unless the 

data has been preprocessed to a degree that an analyst will encounter 

missing values as NaN, missing values can appear as a question mark (?) 

or a zero (0) or minus one (-1) or a blank. As a result, it is important that a 

data scientist always performs exploratory data analysis (EDA) first before 

writing any machine learning algorithm. EDA is simply a litmus test for 

understanding and knowing the behavior of our data.

�Managing Missing Features
Sometimes a dataset can contain missing features, so there are a few 

options that can be taken into account:

•	 Removing the whole row

•	 Creating a submodel to predict those features

•	 Using an automatic strategy to input them according to 

the other known values

•	 The first option is the most drastic one and should be 

considered only when the dataset is quite large, the 

number of missing features is high, and any prediction 

could be risky.

•	 The second option is much more difficult, because it’s 

necessary to determine a supervised strategy to train a 

model for each feature and, finally, to predict their value.

•	 Considering all the pros and cons, the third option is 

likely to be the best choice.

Scikit-learn offers the class Imputer, which is responsible for 

filling the holes using a strategy based on the mean (default choice), 

median, or frequency-mode—(the most frequent entry will be used for 
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all the missing ones). The following snippet shows an example using 

the three approaches (the default value for a missing feature entry is 

NaN. However, it’s possible to use a different placeholder through the 

parameter missing_values):

import pandas as pd

from sklearn.preprocessing import Imputer

titanic_df = pd.read_csv('train.csv')

titanic_df.head(2)

Figure 6-8.  The head of the Titanic dataset

titanic_df.Age.isna().sum()

# Outputs

# 177

titanic_imputer = Imputer(strategy='mean')

new_age = pd.DataFrame(titanic_imputer.fit_transform([titanic_

df.Age])[0])

new_age.isna().sum()

# Outputs

# 0

�Dealing with Big Datasets
If the dataset you want to load is too big to fit in the memory, then you have 

to divide it into pieces (or named chunks). This approach is sometimes 

called sampling, and we will see in future chapters something about that. 

After that, you make a batch deep learning algorithm, which works with 

only a part/piece of the data at once. Using a batch approach also makes 

sense if you just need a sample of the data. Thanks to Python, you actually 

Chapter 6  Data Wrangling and Preprocessing



162

can load the data in chunks. This operation is also called data streaming, 

since the dataset flows into a DataFrame or some other data structure as a 

continuous flow. As opposed to all the previous cases, the dataset has been 

fully loaded into the memory in a standalone step.

With pandas, there are two ways to chunk and load a file:

•	 The first way is by loading the dataset in chunks of the 

same size; each chunk is a piece of the dataset that 

contains all the columns and a limited number of lines, 

not more than as set in the function call (the chunksize 

parameter).

•	 You can also use the CSV package, which offers two 

functions to iterate small chunks of data from files: the 

reader and the DictReader functions.

Note T he output of the read_csv function in this case is not 
a pandas DataFrame but an iterator-like object. In fact, to get the 
results in memory, you need to iterate that object:

iris_df = pd.read_csv('Iris.csv', sep=',', decimal='.',

                      header=None, index_col=False,

                      iterator=True,

                      names=['sepal_length', 'sepal_width',

                             �'petal_length', 'petal_width', 

'target'])

iris_df.get_chunk(10).shape

# Outputs

# 10
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There will be 14 other pieces like these, each of them of shape (10, 5). 

The other method to load a big dataset is by specifically asking for an iterator 

of it. In this case, you can dynamically decide the length (that is, how many 

lines to get) you want for each piece of the pandas DataFrame:

for chunk in iris_df:

  print('SHAPE: ', chunk.shape)

  print(chunk, '\n')

�Accessing Other Data Formats
So far, we have worked on CSV files only. The pandas package offers 

similar functionality (and functions) in order to load MS Excel, HDFS, 

SQL, JSON, HTML, and Stata datasets. Since they’re not used in all data 

science projects, the understanding of how one can load and handle each 

of them is left to you, and you can refer to the documentation available on 

the website. A basic example of how to load an SQL table is available in the 

code that accompanies the book.

Note  CSV (comma-separated) and TSV (tab-separated) are similar, 
as they both are considered flat files.

titanic_df = pd.read_excel('Titanic.xlsx')

titanic_df.head(2)

Figure 6-9.  The output of the Excel file
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�Data Preprocessing
We are now able to import the dataset, even a big, problematic one. Now, 

we need to learn the basic preprocessing routines in order to make it 

feasible for the next data science step.

First, if you need to apply a function to a limited section of rows, you 

can create a mask (Figure 6-10). A mask is a series of Boolean values (that 

is, True or False) that tells whether the line is selected or not.

For example, let’s say we want to select all the lines of the iris dataset 

that have a sepal length greater than 6. We can simply do the following:

threshold_mask = iris_df['sepal_length'] > 6.0

threshold_mask.head()

Figure 6-10.  The output of masking data

In the preceding simple example, we can immediately see which 

observations are True and which are not (False), and which ones fit the 

selection query.

Now, let’s check how you can use a selection mask on another 

example. We want to substitute the Iris-virginica target label with the 

Virginica label. We can do this by using the following two lines of code:

mask_target = iris_df['target'] == "Iris-virginica"

iris_df.loc[mask_target, 'target'] = "Virginica"

iris_df.target[100:105]
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You’ll see that all occurrences of Iris-virginica are now replaced by 

Virginica (Figure 6-11). The loc() method is a way to access the data of 

the matrix with the help of row-column indexes.

To see the new list of the labels in the target column, we can use 

the unique() method. This method is very handy if initially you want to 

evaluate the dataset:

iris_df.target.unique()

# Outputs

# array(['Iris-setosa', 'Iris-versicolor',

# 'Virginica'], dtype=object)

iris_df.target.nunique()

# Outputs

# 3

This method allows us to see the unique values inside either pandas 

DataFrame or Series, and the method is very helpful in the analysis 

process. Another way is to count the number of unique values, and that 

could happen by using nunique(), which will return the number of unique 

values in the input DataFrame/Series.

If you want to see some statistics (mean, median, and so on) about 

each feature (statistics about data give you some intuition about what 

happens in it), you can do the following steps:

•	 You can group each column accordingly.

•	 You can also apply a mask.

Figure 6-11.  The renamed data
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The pandas method groupby will produce a similar result to the 

GROUP BY clause in ab SQL statement. The next method to apply should 

be an aggregate method on one or multiple columns.

For example, the mean() pandas aggregate method is the counterpart 

of the AVG() SQL function to compute the mean of the values in the group. 

The pandas aggregate method var() calculates the variance; sum(), the 

summation; count(), the number of rows in the group; and so on.

Note T he result is still a pandas DataFrame; therefore, multiple 
operations can be chained together.

As a next step, we can try a couple of examples of groupby() in 

action. Grouping observations by target (that is, label), we can check the 

difference between the average value and the variance of the features for 

each group (Figures 6-12 and 6-13).

iris_df.groupby(['target']).mean()

Figure 6-12.  The iris groupby mean output
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iris_df.groupby(['target']).var()

Figure 6-13.  The iris groupby variance output

Finally, if your dataset contains a time series (for example, in the case 

of a numerical target) and you need to apply a rolling operation to it (in 

the case of noisy data points), you can simply do the following:

pd.rolling_mean(time_series, 5)

This can be performed for a rolling average of the values. Alternatively, 

you can use the following line of code:

pd.rolling_median(time_series, 5)

Instead, this can be performed in order to obtain a rolling median of 

the values. In both of these cases, the window had a sample size of 5.

More generically, the apply() pandas method is able to perform any 

row-wise or column-wise operation programmatically. apply() should be 

called directly on the DataFrame.

•	 The first argument is the function to be applied row-

wise or column-wise.

•	 The second is the axis to apply it on.

Note T he function can be a built-in, library-provided, lambda, or 
any other user-defined function.
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As an example of this powerful method, let’s now try to count how 

many nonzero elements there are in each line (Figure 6-14). With the apply 

method, this is simple:

import numpy as np

iris_df.apply(np.count_nonzero, axis=1).head()

Figure 6-14.  The iris nonzero values count output

Similarly, to compute the nonzero elements feature-wise (that is, per 

column; Figure 6-15), you just need to change the second argument and 

set it to axis=0:

iris_df.apply(np.count_nonzero, axis=0)

Figure 6-15.  The iris nonzero values count(per column) output

Finally, to operate element-wise, the applymap() method should 

be used on the DataFrame. In this case, just one argument should be 

provided: the function to apply.
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For example, let’s assume you’re interested in the length of the string 

representation of each cell. To obtain that value, you should first cast each 

cell to a string value, and then compute the length. With applymap, this 

operation is very easy (Figure 6-16):

iris_df.applymap(lambda el: len(str(el))).head()

Figure 6-16.  The iris nonzero values count output

�Data Augmentation
As we all know, the performance of any deep learning algorithm or any 

neural networks often improves with the amount of data available. So, 

the larger your dataset, the more accurate results you can find—of course 

with respect to other factors such as selecting the right algorithm for your 

problem.

Data augmentation is a technique to artificially create new training 

data from existing training data. This is done by applying domain-specific 

techniques to examples from the training data that create new and 

different training examples.

Image data augmentation is perhaps the most well-known type of data 

augmentation and involves creating transformed versions of images in the 

training dataset that belong to the same class as the original image.
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Transforms include a range of operations from the field of image 

manipulation, such as shifts, flips, zooms, and much more.

The intent is to expand the training dataset with new, plausible 

examples. This means, variations of the training set images that are likely 

to be seen by the model. For example, a horizontal flip of a picture of a cat 

may make sense, because the photo could have been taken from the left or 

right. A vertical flip of the photo of a cat does not make sense and would 

probably not be appropriate given that the model is very unlikely to see a 

photo of an upside-down cat.

As such, it is clear that the choice of the specific data augmentation 

techniques used for a training dataset must be chosen carefully, and within 

the context of the training dataset and knowledge of the problem domain. 

In addition, it can be useful to experiment with data augmentation 

methods in isolation and in concert, to see if they result in a measurable 

improvement to model performance, perhaps with a small prototype 

dataset, model, and training run.

Modern deep learning algorithms, such as the convolutional neural 

network, or CNN, can learn features that are invariant to their location in 

the image. Nevertheless, augmentation can further aid in this transform 

invariant approach to learning and can aid the model in learning features 

that are also invariant to transforms, such as left-to-right to top-to-bottom 

ordering, light levels in photographs, and more.

Image data augmentation is typically only applied to the training 

dataset, and not to the validation or test dataset. This is different from 

data preparation such as image resizing and pixel scaling; they must be 

performed consistently across all datasets that interact with the model.

So, let us get started and see what we can do to get more images from 

the existing one. First, we need to import our packages as follows:

import tensorflow as tf

import matplotlib.image as mpimg

import matplotlib.pyplot as plt
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Then, we need to load the image that we will do the experimentation 

on, so we can change its properties and make it seem like a new image for 

our model. The tf.image provides image augmentation functions so that 

all the computation is done on the GPU. In this tutorial, we use TensorFlow 

eager_execution so that we can see the augmented image directly.

tf.enable_eager_execution()

image_path = 'lena_forsen.png'

image_string=tf.read_file(image_path)

image=tf.image.decode_png(image_string,channels=3)

image=tf.image.convert_image_dtype(image,dtype=tf.float32)

Also, we need to implement the function that shows the result of all our 

experimentation, such that we do not have to write the same code again 

and again.

def show_image(original_image,augmented_image,title):

  fig=plt.figure()

  fig.suptitle(title)

  original_plt=fig.add_subplot(1,2,1)

  original_plt.set_title('original image')

  original_plt.imshow(original_image)

  augmented_plt=fig.add_subplot(1,2,2)

  augmented_plt.set_title('augmented image')

  augmented_plt.imshow(augmented_image)

  plt.show(block=True)

Now we can start our image augmentation, as our environment is 

ready for the process; so let us get started.
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�Image Crop
tf.image provides various functions for image cropping. tf.image.

central_crop removes the outer parts of an image but retains the central 

region of the image along each dimension (Figure 6-17). If we specify 

central_fraction = 0.5, this function returns the central 50% of the 

image. Also, this function works on either a single image (image is a 3-D 

Tensor), or a batch of images (image is a 4-D Tensor).

central_image = tf.image.central_crop(image, central_fraction=0.7)

show_image(image, central_image, "Central Image Crop")

Figure 6-17.  The result of central image crop transformation

�Crop and Resize
This function extracts crops from the input image at positions defined at 

the bounding box locations in boxes and resizes to a common output size 

specified by crop_and_size.
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im = tf.expand_dims(image, 0)

crop_and_resize = tf.image.crop_and_resize(im, boxes=[[0.0, 

0.0, 0.5, 0.5]], crop_size=[256, 256], box_ind=[0])

show_image(image, tf.squeeze(crop_and_resize, 0), "Crop and 

Resize")

The crop_and_resize operation extracts crops from the input image 

tensor and resizes them using either bilinear sampling or nearest neighbor 

sampling (possibly with aspect ratio change) to a common output size 

specified by crop_size. This is more general than the crop_to_bounding_

box operation, which extracts a fixed size slice from the input image and does 

not allow resizing or aspect ratio change. Another parameter is box_ind, 

which is the index of each box; it is needed to specify or to be used as a 

pointer to each output crop image, hence the output is multiple images if 

there are multiple boxes.

It returns a tensor with crops from the input image at positions defined 

at the bounding box locations in boxes. The cropped boxes are all resized 

(with bilinear or nearest neighbor interpolation) to a fixed size = [crop_

height, crop_width].

Finally, we need to do tf.squeeze, because the result that comes from 

crop_and_resize is a 4-D tensor [num_boxes, crop_height, crop_

width, depth]. So, we need to transform it to a 3-D tensor.

You can find more answers about crop_and_resize (Figure 6-18) by 

visiting https://stackoverflow.com/questions/51843509/about-use-

tf-image-crop-and-resize.
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�Crop to Bounding Box
This is a basic edition of the crop_and_resize operation, which extracts 

a fixed size slice from the input image given the boundaries and does not 

allow resizing or aspect ratio change (Figure 6-19).

top_left = tf.image.crop_to_bounding_box(image, 10, 10, 90, 90)

show_image(image, top_left, "Crop to Bounding Box")

Figure 6-18.  The result of crop and resize image transformation
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�Flipping
Flipping, which is important for CNN to remove certain features of the 

object, is available in only a particular side. For example, you don’t want 

a CNN model to learn that an apple leaf happens only on the right side as 

observed in the base image. Flipping produces a different set of images 

from the rotation at multiples of 90 degrees (Figures 6-20 and 6-21).

flip_image = tf.image.flip_left_right(image)

show_image(image, flip_image, "Flip")

Figure 6-19.  The result of selected box crop image transformation

Chapter 6  Data Wrangling and Preprocessing



176

flip_image = tf.image.flip_up_down(image)

show_image(image, flip_image, "Flip")

Figure 6-20.  The result of vertical flip image transformation

Figure 6-21.  The result of horizontal flip image transformation
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	 1.	 random_flip_left_right() to randomly flip an 

image horizontally (left to right)

	 2.	 random_flip_up_down() to randomly flip an image 

vertically (upside down)

	 3.	 flip_up_down() to flip an image vertically (upside 

down)

�Rotate Image
Simply, this operation rotates an image counterclockwise by the passed 

angle in radians (Figure 6-22). And we can pass the radians by math.

radians, which will calculate the radians based on the angle parameter.

import math

rotate_image = tf.contrib.image.rotate(image, math.

radians(270))

show_image(image, rotate_image, "Rotate Image")

Figure 6-22.  The result of rotation image transformation
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�Translation
We would like our model to recognize the object present in any part of the 

image. Also, the object can be present partially in the corner or edges of 

the image. For this reason, we shift the object to various parts of the image 

(Figure 6-23).

The parameter translation is a vector representing [dx, dy] or (if 

image has rank 4) a matrix of length num_images, with a [dx, dy] vector 

for each image in the batch.

move_image = tf.contrib.image.translate(image, 

translations=[10, 10])

show_image(image, move_image, "Image Translation")

Figure 6-23.  The result of image translation
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�Transform
This operation can apply the given transform matrix to the image. The 

transform matrix is given as a vector of length 8 that represent the wanted 

transformation (Figure 6-24).

theta = -0.2

transforms = [1, tf.sin(theta), 0, 0, tf.cos(theta), 0, 0, 0]

transform_image = tf.contrib.image.transform(image, 

transforms=transforms)

show_image(image, transform_image, "Transform Image")

Figure 6-24.  The result of image transformation
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�Adding Salt and Pepper Noise
Overfitting happens when your neural network tries to learn high-

frequency features that may not be useful. Gaussian noise effectively 

distorts the high-frequency features (Figure 6-25).

import numpy as np

from skimage.util import random_noise

image_array = np.asarray(image)

noise_image = random_noise(image_array, mode="gaussian", var=0.01)

show_image(image, noise_image, "Noise Image")

Figure 6-25.  The result of an image with salty noise

A toned-down version of this is the salt and pepper noise, which 

presents itself as random black and white pixels spread through the image.
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�Convert RGB to Grayscale
The following function converts one or more images from RGB to grayscale 

(Figure 6-26).

gray_image = tf.image.rgb_to_grayscale(image)

show_image(image, tf.squeeze(gray_image), "Gray Image")

Figure 6-26.  The result of image scale conversion

�Change Brightness
The following function adjusts the brightness of RGB or grayscale images 

(Figure 6-27).

bright_image = tf.image.adjust_brightness(image, 0.2)

show_image(image, bright_image, "Bright Image")
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�Adjust Contrast
The following function adjusts the contrast of RGB or grayscale images 

(Figure 6-28).

contrast_image = tf.image.adjust_contrast(image, contrast_

factor=0.6)

show_image(image, contrast_image, "Contrast Image")

Figure 6-27.  The result of image brightness transformation
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�Adjust Hue
The following function adjusts the hue of an RGB image (Figure 6-29).

hue_image = tf.image.adjust_hue(image, delta=0.4)

show_image(image, hue_image, "Hue Image")

Figure 6-28.  The result of contrasting transformation

Figure 6-29.  The result of hue image transformation
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The image hue is adjusted by converting the image to HSV and 

rotating the hue channel (H) by delta. The image is then converted back to 

RGB. The delta must be in the interval [-1, 1].

�Adjust Saturation
The image saturation is adjusted by converting the image to HSV and 

multiplying the saturation (S) channel by the saturation_factor and 

clipping. The image is then converted back to RGB (Figure 6-30).

saturation_image = tf.image.adjust_saturation(image, 5)

show_image(image, saturation_image, "Saturation Image")

Figure 6-30.  The result of image saturation adjustment
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�Categorical and Text data
As we discussed in a previous chapter; typically, you’ll find yourself 

dealing with two main kinds of data:

•	 Numerical

•	 Categorical

Numerical data, such as temperature, amount of money, days of usage, 

or house number, can be composed of either floating-point numbers (such 

as 1.0, -2.3, 99.99, and so on) or integers (such as -3, 9, 0, 1, and so on). 

Each value that the data can assume has a direct relation with others, since 

they’re comparable. In other words, you can say that a feature with a value 

of 2.0 is greater (actually, it is double) than a feature that assumes a value 

of 1.0. This type of data is very well defined and comprehensible, with 

binary operators such as equal to, greater than, and less than.

Categorical data is also known as nominal and ordinal data. 

Categorical data expresses an attribute that cannot be measured and 

assumes values in a finite or infinite set of values, often named levels.

For example, the weather is a categorical feature, since it takes values 

in a discrete set (sunny, cloudy, snowy, rainy, and foggy). Other examples 

are features that contain URLs, IPs, items you put in your e-commerce cart, 

device IDs, and so on. On this data, you cannot define the equal to, greater 

than, and less than binary operators and therefore, you can’t rank them.

A plus point for both categorical and numerical values is Booleans. In 

fact, they can be seen as categorical (presence/absence of a feature) or, 

on the other hand, as the probability of a feature having an exhibit (has 

displayed, has not displayed). Since many deep learning algorithms do 

not allow the input to be categorical, Boolean features are often used to 

encode categorical features as numerical values.

Hint  You can review Chapter 5, which defines data types.
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�Data Encoding
Many deep learning libraries require that categorical features/columns 

are encoded as integer values. Although most estimators for classification/

regression in Scikit-learn convert columns to integers internally, it is 

considered good practice to provide all data features/columns as integer 

arrays to avoid technical glitches.

To encode the categorical variables, we can use an approach similar 

to the mapping of ordinal features discussed previously. We need to 

remember that columns are not ordinal, and it doesn’t matter which 

integer number we assign to a particular string-label. Thus, we can simply 

enumerate the class labels starting at 0:

class_mapping = {label:idx for idx,label in

                 enumerate(np.unique(titanic_df.Sex))}

class_mapping

# Output

# {'female': 0, 'male': 1}

Next, we can use the mapping dictionary to transform the categorical 

feature or column (Figure 6-31) into integers:

titanic_df['Sex'] = titanic_df['Sex'].map(class_mapping)

titanic_df['Sex'].head()

Figure 6-31.  The result of categorical transformation
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We can reverse the key-value pairs in the mapping dictionary as 

follows, to map the converted class labels back to the original string 

representation (Figure 6-32):

inv_class_mapping = {v: k for k, v in class_mapping.items()}

titanic_df['Sex'] = titanic_df['Sex'].map(inv_class_mapping)

titanic_df['Sex'].head()

Figure 6-32.  The result of categorical inverse transformation

Alternatively, there is a convenient LabelEncoder class directly 

implemented in Scikit-learn to achieve the same:

from sklearn.preprocessing import LabelEncoder

gender_le = LabelEncoder()

titanic_gender = gender_le.fit_transform(titanic_df.Sex)

titanic_gender[0:10]

# Outputs

# array([1, 0, 0, 0, 1, 1, 1, 1, 0, 0])

Note T he fit_transform method is just a shortcut for calling fit 
and transform separately.
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And the classes_ attribute shows you the class that the real categorical 

column was before encoding:

gender_le.classes_

# Outputs

# array(['female', 'male'], dtype=object)

�Performing One-Hot Encoding on Nominal 
Features
In the previous section, we used a simple dictionary-mapping approach to 

convert the ordinal size feature into integers. Since Scikit-learn estimators 

treat class labels without any order, we used the convenient LabelEncoder 

class to encode the string labels into integers. It may appear that we could 

use a similar approach to transform the nominal gender column of our 

dataset, as follows:

from sklearn.preprocessing import LabelEncoder

gender_le = LabelEncoder()

titanic_gender = gender_le.fit_transform(titanic_df.Sex)

titanic_gender[0:10]

# Outputs

# array([1, 0, 0, 0, 1, 1, 1, 1, 0, 0])

After executing the preceding code, the first column of the NumPy 

array X now holds the new gender values, which are encoded as shown in 

code cell output.

If we stop at this point and feed the array to our model, we will make 

one of the most common mistakes in dealing with categorical data.
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�Can You Spot the Problem?
Although the gender values don’t come in any particular order, a learning 

algorithm will now assume that male is larger than female. Although this 

assumption is incorrect, the algorithm could still produce useful results. 

However, those results would not be optimal.

A common workaround for this problem is to use a technique 

called one-hot encoding (Figure 6-33). The idea behind this approach 

is to create a new dummy feature for each unique value in the nominal 

feature column. Here, we would convert the gender feature into two new 

features: male and female. Binary values can then be used to indicate the 

particular gender of a sample; for example, a male sample can be encoded 

as male=1, female=0. To perform this transformation, we can use the 

OneHotEncoder that is implemented in the sklearn.preprocessing 

module:

from sklearn.preprocessing import OneHotEncoder

gender_ohe = OneHotEncoder()

titanic_gender_ohe = gender_ohe.fit_transform(pd.

DataFrame(titanic_gender))

titanic_gender_ohe[0:10]

# Outputs

# <10x2 sparse matrix of type '<class 'numpy.float64'>' with 10 

stored elements in Compressed Sparse Row format>

When we initialized the OneHotEncoder, we defined the column 

position of the variable that we want to transform via the categorical_

features parameter. By default, the OneHotEncoder returns a sparse matrix 

when we use the transform method, and we converted the sparse matrix 

representation into a regular (dense) NumPy array for the purposes of 

visualization via the toarray method.
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Note  Color is the first column in the feature matrix X Sparse 
matrices are simply a more efficient way of storing large datasets, 
and one that is supported by many Scikit-learn functions, which is 
especially useful if it contains a lot of zeros. To omit the toarray 
step, we could initialize the encoder as OneHotEncoder(..., 
sparse=False) to return a dense NumPy array.

An even more convenient way to create those dummy features via one-

hot encoding is to use the get_dummies method implemented in pandas. 

Applied on a DataFrame, the get_dummies method will only convert string 

columns and leave all other columns unchanged:

pd.get_dummies(titanic_df.Sex).head()

Figure 6-33.  The result of one-hot encoding transformation

�A Special Type of Data: Text
Let’s introduce another type of data. Text is frequently used on the Web; you 

can see almost every website has forms, and social media is filled with text 

data like posts and comments. Text is also used as input for deep learning 

algorithms, since it contains a natural representation of data in our language. 

It’s so rich, that it also contains the answer to what we’re looking for.
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The most common algorithm used when dealing with text is to use a 

bag of words. According to this algorithm, every word becomes a feature 

and the text becomes a vector that contains nonzero elements for all the 

features (that is, the words) in its body. Given a text dataset, what’s the 

number of features? It is simple. Just extract all the unique words in it 

and enumerate them. For a very rich text that uses all the English words, 

that number is around 600,000. If you’re not going to further process it 

(removal of third person, abbreviations, contractions, and acronyms), you 

might find yourself dealing with more than that, but that’s a very rare case. 

In a plain and simple approach, which is the target of this book, we just let 

Python do its best.

The dataset used in this section is textual; it’s the famous 20newsgroup 

(for more information about this, visit 20Newsgroups (http://qwone.

com/~jason/20Newsgroups/). It is a collection of about 20,000 documents 

that belong to 20 topics of newsgroups. It’s one of the most frequently 

used (if not the top most used) datasets presented while dealing with text 

classification and clustering. To import it (Figure 6-34), we’re going to use 

only its restricted subset, which contains all the science topics (medicine 

and space):

from sklearn.datasets import fetch_20newsgroups

categories = ['sci.med', 'sci.space']

twenty_sci_news = fetch_20newsgroups(categories=categories)

Note T he first time you run this command, it automatically 
downloads the dataset and places it in the $HOME/scikit_learn_
data/20news_home/ default directory.

print(twenty_sci_news.data[0])
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The easiest way to deal with the text is by transforming the body of 

the dataset into a series of words. This means that for each document, the 

number of times a specific word appears in the body will be counted.

For example, let’s make a small, easy-to-process dataset:

•	 doc_1: We love machine learning.

•	 doc_2: Machine learning is great.

In the entire dataset, which contains doc_1 and doc_2, there are only 

six different words: we, love, machine, learning, is, and great. Given this 

array, we can associate each document with a feature vector:

feature_doc_1 = [1 1 1 1 0 0]

feature_doc_2 = [0 0 1 1 1 1]

Note that we’re discarding the positions of the words and retaining 

only the number of times the word appears in the document. That’s all.

Figure 6-34.  The result of loading the 20newsgroups dataset

Chapter 6  Data Wrangling and Preprocessing



193

In the 20newsletter dataset, with Python, this can be done in a 

simple way:

print (twenty_sci_news.target[0])

# Outputs

# 1

print (twenty_sci_news.target_names[twenty_sci_news.target[0]])

# Outputs

# sci.space

First, we instantiate a CountVectorizer object. Then, we call the method 

to count the terms in each document and produce a feature vector for each 

of them, which is fit_transform. Then we can query the matrix size.

Note T he output matrix is sparse, because it’s very common to 
have only a limited selection of words for each document (since the 
number of nonzero elements in each line is very low and it makes no 
sense to store all the redundant zeros).

Anyway, the output shape is (1187, 25638). The first value is the 

number of observations in the dataset (the number of documents), while the 

latter is the number of features (the number of unique words in the dataset). 

After the CountVectorizer transforms, each document is associated with its 

feature vector (Figure 6-35). Let’s take a look at the first document.

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

word_count = count_vect.fit_transform(twenty_sci_news.data)

word_count.shape

# Outputs

# (1187, 25638)

print (word_count[0])
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You may notice that the output is a sparse vector where only nonzero 

elements are stored. To check the direct correspondence to words 

(Figure 6-36), just try the following code:

word_list = count_vect.get_feature_names()

for n in word_count[0].indices:

  �print ('Word "%s" appears %i times' % (word_list[n],  

word_count[0, n]))

Figure 6-35.  The result of count vectorizing the dataset

Figure 6-36.  The data transformed using count vectorizer
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�So Far, Everything Has Been Pretty Good,  
Hasn’t It?
Let’s move forward to another task of increasing complexity and 

effectiveness. Counting words is good, but we can get more info from 

the data with more complexity. Let’s compute their frequency. It’s a 

measure that you can compare across differently sized datasets. It gives 

an idea whether a word is a stop word (that is, a very common word 

such as a, an, the, or is) or a rare, unique one. Typically, these words are 

the most important because they’re able to characterize an instance 

and the features based on these words, which are very discriminative 

in the learning process. To retrieve the frequency of each word in each 

document, we use TfidfVectorizer to compute the frequency matrix 

(Figure 6-37); try the following code:

from sklearn.feature_extraction.text import TfidfVectorizer

tf_vect = TfidfVectorizer(use_idf=False, norm='l1')

word_freq = tf_vect.fit_transform(twenty_sci_news.data)

word_list = tf_vect.get_feature_names()

for n in word_freq[0].indices:

  �print ('Word "%s" has frequency %0.3f' % (word_list[n],  

word_freq[0, n]))
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The sum of the frequencies is 1 (or close to 1 due to the approximation). 

This happens because we chose the L1 norm. In this specific case, the word 

frequency is a probability distribution function. Sometimes, it’s nice to 

increase the difference between rare and common words. In such cases, you 

can use the L2 norm to normalize the feature vector.

An even more effective way to vectorize text data is by using Tfidf. 

In brief, you can multiply the term frequency of the words that compose 

a document by the inverse document frequency of the word itself (that 

is, in the number of documents it appears, or in its logarithmically scaled 

transformation). This is very handy to highlight words that effectively 

describe each document and which are a powerful discriminative element 

among the dataset.

Tfidf gained a lot of popularity since computers have started 

to process and mine text data. The majority of search engines and 

information retrieval software have used it mainly for its effective way to 

measure sentence similarity and distance, making it an optimal solution to 

retrieve documents from a user-inserted text search query.

Figure 6-37.  The data transformed using Tfidf Vectorizer
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from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vect = TfidfVectorizer()

word_tfidf = tfidf_vect.fit_transform(twenty_sci_news.data)

word_list = tfidf_vect.get_feature_names()

for n in word_tfidf[0].indices:

  �print ('Word "%s" has tf-idf %0.3f' % (word_list[n],  

word_tfidf[0, n]))

Figure 6-38.  The data after tfidf transformation

In this example, the four most information-rich words of the first 

documents are caste, baube, flb, and tm (they have the highest tf-idf 

score). This means that their term frequency within the document is 

high, whereas they’re pretty rare in the remaining documents. In terms of 

information theory, their entropy is high within the document, while it’s 

lower considering all the documents.

So far, for each word, we have generated a feature. What about taking 
a couple of words together?
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That’s exactly what happens when you consider bigrams instead of 

unigrams. With bigrams (or generically, n-grams), the presence or absence 

of a word—as well as its neighbors—matters (that is, the words near it 

and their disposition). Of course, you can mix unigrams and n-grams and 

create a rich feature vector for each document. In a simple example, let’s 

test how n-grams work:

text_1 = 'we love data science'

text_2 = 'data science is hard'

documents = [text_1, text_2]

count_vect_1_grams = CountVectorizer(ngram_range=(1, 1), stop_

words=[], min_df=1)

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" + 

str(word_count[0, n]) + ")" for n in word_count[0].indices])

# Outputs

# Word list =  ['data', 'hard', 'is', 'love', 'science', 'we']

# text_1 is described with ['we(1)', 'love(1)',

#            'data(1)', 'science(1)']

count_vect_1_grams = CountVectorizer(ngram_range=(2, 2))

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" + 

str(word_count[0, n]) + ")" for n in word_count[0].indices])
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# Outputs

# Word list =  ['data science', 'is hard',

#                  'love data', 'science is', 'we love']

# text_1 is described with ['we love(1)',

#                  'love data(1)', 'data science(1)']

count_vect_1_grams = CountVectorizer(ngram_range=(1, 2))

word_count = count_vect_1_grams.fit_transform(documents)

word_list = count_vect_1_grams.get_feature_names()

print ("Word list = ", word_list)

print ("text_1 is described with", [word_list[n] + "(" + 

str(word_count[0, n]) + ")" for n in word_count[0].indices])

# Outputs

# Word list =  ['data', 'data science', 'hard',

#                   'is', 'is hard', 'love', 'love data',

#                   'science', 'science is', 'we',

#                   'we love']

# text_1 is described with ['we(1)', 'love(1)',

#                   'data(1)', 'science(1)', 'we love(1)',

#                   'love data(1)', 'data science(1)']

The preceding example is very intuitive and combines the first 

and second algorithms we previously discussed. In this code cell, we 

used a CountVectorizer, but this algorithm is very common with a 

TfidfVectorizer.

Note T he number of features explodes exponentially when you use 
n-grams.
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If you have too many features (rich text data) in your dataset (the 

dictionary may be too rich, there may be too many ngrams, or the 

computer may just be limited), you can use a trick that lowers the 

complexity of the problem (but you should first evaluate the trade-off 

performance/trade-off complexity).

It’s common to use the hashing trick, where many words (or n-grams) 

are hashed and their hashes collide (which makes a bucket of words). 

Buckets are sets of semantically unrelated words but with colliding hashes. 

With HashingVectorizer(), as shown in the following example, you can 

decide the number of buckets of words you want. The resulting matrix, of 

course, reflects your setting:

from sklearn.feature_extraction.text import HashingVectorizer

hash_vect = HashingVectorizer(n_features=1000)

word_hashed = hash_vect.fit_transform(twenty_sci_news.data)

word_hashed.shape

# Outputs

# (1187, 1000)

Note  You can’t invert the hashing process (since it’s an irreversible 
summarization process).

After this transformation, you will have to work on the hashed features 

as they are. Hashing presents quite a few advantages:

•	 Allowing quick transformation of a bag of words into 

vectors of features

•	 Hash buckets are our features in this case.

•	 Easily accommodating never previously seen words 

among the features

•	 Avoiding overfitting by having unrelated words collide 

together in the same feature
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�Tokenization, Stemming, and Stop Words
�What Are Tokenizing and Tokenization?

Tokenizing means splitting your text into minimal meaningful units. It is a 

mandatory step before any kind of processing. It is the act of breaking up a 

sequence of strings into pieces such as words, keywords, phrases, symbols 

and other elements called tokens.

Tokens can be individual words, phrases, or even whole sentences. 

That’s all about tokenization, actually,

We need to talk about it, but we should zoom out to see what happens 

from a flying camera. This camera will allow us to see what is lexical 

analysis, lexing, or tokenization; which is the process of converting a 

sequence of characters (such as in a computer program or web page) into 

a sequence of tokens.

A program that performs lexical analysis may be termed a lexer, tokenizer, 

or scanner, though the scanner is also a term for the first stage of a lexer.

We said the word lexer many times. So, the question is, what is a lexer? 

or to be rigorous, what is a lexeme? A lexeme is a sequence of characters in 

the source program that matches the pattern for a token and is identified 

by the lexical analyzer as an instance of that token. But we didn’t really 

answer the question “what is a token?” in rigorous form. A token is a string 

with an assigned and thus identified meaning; it is structured as a pair 

consisting of a token name and an optional token value. The token name is 

a category of lexical unit, and common token names are:

•	 identifier: names the programmer chooses

•	 keyword: names already in the programming language

•	 separator (also known as punctuators): punctuation 

characters and paired-delimiters.

•	 operator: symbols that operate on arguments and 

produce results
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•	 literal: numeric, logical, textual, reference literals

•	 comment: line, block

These names are not important in the scope of this book, but we tried 

to give you some information about the basics of tokenization. However, 

we do not do all of this manually; we will see some packages in Python that 

help us to make tokenization and stemming very easy. For now, let us see 

an example to get a better idea about it.

Input: Friends, Romans, Countrymen, lend me your ears.

Output: (Friends), (Romans), (Countrymen), (lend), (me), (your), (ears).

XML-Output:

<sentence>

  <word>Friends</word>

  <word>Romans</word>

  <word>Countrymen</word>

  <word>lend</word>

  <word>me</word>

  <word>your</word>

  <word>ears</word>

</sentence>

After we’ve seen this example, I think we have a good understanding 

about Tokenization. But before we get into examples, we’ll see a new term 

called stemming. So, the question rings, what is stemming?

Stemming refers to reducing a word to its root form. While performing 

natural language processing tasks, you will encounter various scenarios 

where you find different words with the same root.

For example, “compute, computer, computing, computed.” You may 

want to reduce the words to their root form for the sake of uniformity. This 

is where stemming comes into play. Now we can see what stemming is, but 

what is the difference between stemming and lemmatization (Table 6-1)?
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Table 6-1.  The Difference Between Stemming and Lemmatization

Stemming Lemmatization

Stemming is the process of reducing 

inflexion in words to their root forms, such 

as mapping a group of words to the same 

stem, even if the stem itself is not a valid 

word in the language.

Lemmatization, unlike stemming, 

reduces the inflected words properly, 

ensuring that the root word belongs 

to the language. In lemmatization, 

the root word is lemma. A lemma 

(plural lemmas or lemmata) is the 

canonical form, dictionary form, or 

citation form of a set of words.

Example

Word               Porter Stemmer

friend             friend

friendship         friendship

friends            friend

friendships        friendship

Example

Word                Lemma

He                  He

was                 wa

running             running

and                 and

eating              eating

at                  at

Examples of stemmers in the NLTK are Porter stemmer and Snowball 

stemmer. Both of them have been implemented using different algorithms.

Let’s take a quick and easy look at these two stemmers.

The Porter stemming algorithm is a process of removing the suffix 

form words in English; for example, we will take a word and try to get its 

stemmer values,

E.g: Connected - > connect

     Connecting - > connect

     Connector - > connect

     Connection - > connect
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The rules for making a Porter stemmer:

 

This is the basis of the NLTK, which you can see more about at www.

nltk.org/. Now we get the basic word in the phrase (token) and we get its 

root. Let’s talk a moment about stop words. Stop Words are words that do 

not contain important significance to be used in search queries. Usually, 

these words are filtered out from search queries because they return a vast 

amount of unnecessary information. Each programming language will give 

its own list of stop words to use. Mostly they are words that are commonly 

used in the English language such as “as, the, be, are,” etc.

We will start in the next stage on the bag-of- words algorithm and IR 

algorithms that help in natural language processing, like tf-idf.

�The Bag-of-Words (BoW) Model

What is the BoW?

We may want to perform classification of documents, so each document 

is an “input” and a class label is the “output” for our predictive algorithm. 

Algorithms take vectors of numbers as input; therefore, we need to convert 

documents to fixed-length vectors of numbers. So how we can make this 

in machine learning algorithm isn’t possible so we need a model which 

think about text documents in machine learning, throws away all of the 

order information in the words and focuses on the occurrence of words in 

a document. This BoW is what we need to perform this task very efficiently. 

We know the definition of BoW and how we can use it. Let’s see how it 

works in a technical way.

Chapter 6  Data Wrangling and Preprocessing

http://www.nltk.org/
http://www.nltk.org/


205

The BoW model can be implemented by assigning each word a unique 

number. Then any document we see can be encoded as a fixed-length vector 

with the length of the vocabulary of known words. The value in each position 

in the vector could be filled with a count or frequency of each word in the 

encoded document. We are only concerned with encoding schemes that 

represent which words are present or the degree to which they are present in 

encoded documents, without any information about the order.

Let’s take an example to get a better understanding about the bag of words:

	 1.	 John likes to watch movies. Mary likes movies too.

	 2.	 John also likes to watch football games.

Based on these two text documents, a list is constructed as follows for 

each document:

#1 "John", "likes", "to", "watch", "movies", "Mary", "likes", 

"movies", "too"

#2 "John", "also", "likes", "to", "watch", "football", "games"

Representing each bag-of-words as a JSON object:

BoW1 = {"John":1,"likes":2,"to":1,"watch":1,"movies":2, 

"Mary":1,"too":1};

BoW2 = {"John":1,"also":1,"likes":1,"to":1,"watch":1, 

"football":1,"games":1};

Now see what happens when we have a new document like this:

	 1.	 John likes to watch movies. Mary likes movies too. 

John also likes to watch football games.

So now we should take the union of BoW3=BoW1 BoW2 so we will see 

the output:

BoW3 = {"John":2,"likes":3,"to":2,"watch":2,"movies":2,"Mary":1,

    "too":1,"also":1,"football":1,"games":1}
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After we finish this section we will try to prepare you for the next 

Chapter 8, which features extraction. There you will learn how to prepare 

your data and get information about what data you have. This will become 

more obvious in the next chapters.

�Summary
We started this chapter by defining what is the data pipeline and 

elaborated where is data cleaning in the pipeline’ after that we gave you a 

good reason why you need to clean your dataset.

After that we looked at useful techniques to make sure that we handle 

missing data correctly. Before we feed data to a deep learning algorithm, 

we also have to make sure that we encode categorical variables correctly, 

and we have seen how we can map ordinal and nominal features values to 

integer representations.

Finally, we made a case study and discussed how to use what we 

learned from this chapter on the Titanic dataset to prepare, clear it, and 

make it ready for the next step of the pipeline.
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CHAPTER 7

Data Resampling
In statistics, resampling is the method that consists of drawing repeated 

samples from the original data. So, we can say that resampling methods 

are a tool taken from modern statistics. These methods involve repeatedly 

taking a sample from the training set and training the model on each 

sample in order to get additional information about the model.

For example, we can estimate variability of the learning of the model of 

interest. We can draw different samples from the training data, then each 

time we train the model on a given sample, we examine the difference 

in results. An approach like that may allow us to obtain information that 

would not be available to us if we trained our model only one time using all 

of the training dataset.

Using resampling methods might be costly and expensive by way 

of computational power, especially if you think about these approaches 

training the same model many times using a different subset of the training 

dataset. But nowadays computer power has grown, and the requirements 

of these methods are not impossible.

In this chapter we will introduce two of the most commonly used 

methods in data resampling: cross-validation and bootstrap. Both of these 

methods are very important and used a lot in many practical applications, 

and are an essential part of any machine learning pipeline. For example, 

cross-validation can be used to estimate the error coming from a trained 

model to check and evaluate its performance, or to select something called 
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the level of flexibility. Bootstrap is commonly used to give us the accuracy 

of model parameter used in training

•	 Note: The process of evaluating the model’s 

performance is known as model assessment.

•	 Note: The process of selecting the best level of 

flexibility is known as model selection.

�Creating Training and Test Sets
When a dataset is large enough, it’s a good practice to split it into training 

and test sets; the former to be used for training the model and the latter to 

test its performances.

You might wonder why you should do that from the beginning. 

Separating data into training and testing sets is an important part of 

evaluating data mining models. Typically, when you separate a data set 

into a training set and a testing set, most of the data is used for training and 

a smaller portion of the data is used for testing.

The methods that we will discuss in this chapter have a main 

responsibility, which is to randomly sample the data to help ensure that 

the testing and training sets are similar. By using similar data for training 

and testing, you can minimize the effects of data discrepancies and better 

understand the characteristics of the model.

After a model has been processed by using the training set, you test the 

model by making predictions against the test set. Because the data in the 

testing set already contains known values for the attribute that you want to 

predict, it is easy to determine whether the model’s guesses are correct.

To summarize, there are two main rules in performing such an 

operation:
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•	 Both datasets must reflect the original distribution.

•	 The original dataset must be randomly shuffled before 

the split phase in order to avoid a correlation between 

consequent elements.

�Cross-Validation
In a previous chapter we illustrated the difference between the testing error 

rate and the training error rate. The error that comes as a result of using 

a certain model to predict the output of a new observation is called the 

testing error rate.

You can see that:

•	 The lower the testing error rate, the good the model is.

•	 The higher the rate is, the worse the model is.

Note  Do not forget that the testing set was not used to train the 
model.

The training error rate can be easily calculated by applying the model 

to the dataset used in its training. But, you will notice that this error rate 

is often different from the test error rate and lower too, and it’s not a good 

measure for the model because it can underestimate the true accuracy.

As we want a good estimation of the testing error rate, we need a 

large testing set. But what if you cannot get a large dataset for testing? 

Here come some methods to estimate the testing error rate using the 

training dataset. In the next section we will consider a type of method that 

estimates the testing error rate by holding out a small subset of the training 

data, and not to train the model on this subset; it then uses the model to 

predict these subset outputs.
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�Validation Set Technique
The validation set technique is a very simple technique for estimating 

testing error rate associated with training a model on a dataset. It involves 

randomly dividing the available training set into two pieces: a training set 

and a validation set (sometimes called hold-out set). The model trains on a 

training data piece; after training finishes, the model is used to predict the 

responses/outputs for the observations in the validation set and as a result, 

it provides an estimate of the testing error rate (Figure 7-1).

Figure 7-1.  A strategic view of how a validation set works

The first thing we can start with is to load the dataset that we will work 

with in this chapter, the Iris dataset, which we introduced in a previous 

chapter. Then we create two variables: one for input features and another 

one for the target/output feature.

Note T he Iris dataset comes as preloaded dataset in a datasets 
module at sklearn package.

from sklearn import datasets

iris = datasets.load_iris()

print('X shape: {}, y shape: {}'.format(iris.data.shape, iris.

target.shape))
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# Output

# X shape: (150, 4), y shape: (150, )

After loading the dataset into X and y variables, we also print the shape 

of both variables. It’s now time for sampling the data to choose points 

that will be in the training set and ones that will be in the validation and 

testing sets.

So, we import from the sklearn.model_selection module the train_

test_split function that will divide the data into train and test portions.

from sklearn.model_selection import train_test_plit

Then, we use it to divide both X and y into training X, y (to be called 

X_train, y_train) and testing X, y sets (to be called X_test, y_test).

Note T he training set will be equal to 60% of the whole dataset, 
and the testing set will be equal to 40% of the whole dataset.

X_train, X_test, y_train, y_test = train_test_split(iris.data, 

iris.target, test_size=0.4, random_state=47)

After the divide operation is done, and all sets are created from the 

sampling operation, let us print the shape of all sets to see the percentage 

of the divide operation. As we configured it, the training data has 90 

observations of 150 total observations, and this means 60% of the data; and 

the testing set has 60 observations, which means that it is equal to 40% of 

the whole dataset.

print('# Train => X shape: {}, y shape: {}'.format(X_train.shape, 

y_train.shape))

print('# Test  => X shape: {}, y shape: {}'.format(X_test.shape, 

y_test.shape))
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# Output

# # Train => X shape: (90, 4), y shape: (90, )

# # Test  => X shape: (60, 4), y shape: (60, )

Now, we need to create the validation set, as we don’t have any 

function that can create all of the training, validating, and testing sets in 

one step. We need to do the same step of dividing the data on the test set, 

but this time we want the divide the 40% into 20% for testing and 20% for 

validating, so we will divide the testing set in half. In the following code, we 

divided the testing set into 50% testing set and 50% validation set.

X_test, X_valid, y_test, y_valid = train_test_split(X_test,  

y_test, test_size=0.5, random_state=47)

After we divide, again, we print all sets to make sure that we are in the 

right place. As you can see, we did not touch the training set at all, the 90 

observations in the training set remain untouched, while the testing set 

now is 30 observations instead of 60, and there’s a validation set that has 30 

observations too.

print('# Train => X shape: {}, y shape: {}'.format(X_train.shape, 

y_train.shape))

print('# Test  => X shape: {}, y shape: {}'.format(X_test.shape, 

y_test.shape))

print('# Valid => X shape: {}, y shape: {}'.format(X_valid.shape, 

y_ valid.shape))

# Output

# # Train => X shape: (90, 4), y shape: (90, )

# # Test  => X shape: (30, 4), y shape: (30, )

# # Valid => X shape: (30, 4), y shape: (30, )

The model should train on the training set, and after the learning 

process (training) is finished the model is used to predict the outcome 

(responses) for the observations (input row) in the validation set.  
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The resulting validation set error rate should be an estimate of the test 

error rate. The validation set approach is conceptually simple and easy to 

implement, but it has two potential drawbacks:

•	 The estimate of the test error rate that the validation 

set provides can be highly variable, depending on 

the process that selected which observation will be on 

the training set and which observation will be on the 

testing set.

•	 The estimate of the test error rate that the validation set 

provide might overestimate the test error rate. That’s 

because we take a subset of the training and/or testing 

set as a validation set, and that makes the sets smaller 

in size, which means the model may perform worse 

due to fewer training observations.

So, in the next approach, we will introduce an upgrade of the validation 

set called cross-validation; this approach is especially to address the two 

issues just mentioned.

�Leave-One-Out Cross-Validation (LOOCV)
LOOCV is very similar to a validation set and does the same job, but it was 

created to solve the drawbacks of a validation set.

Similar to a validation set, LOOCV splits the set of data into two parts. 

However, the validation set contains only a single observation (just one 

point of the dataset). Let us consider that this one point/observation 

is (x1, y1) and this point is used for the validation set, and all other 

observations {(x2, y2), …, (xn, yn)} are used for training the model (as training 

set). The model now learns from n-1 observations in the training set, and 

validates its learning process on only one observation. We are predicting 

y1 for the x1, since (x1, y1) is not used on the learning process (training 
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model), and the metric used contains errors for the first point (x1, y1) 

that we describe as E y y1 1 1

2
= -( )ˆ  for regression and E y1 1

2
= ¹( )ŷ1  for 

classification.

Now we provide almost an unbiased estimate for the test error. But 

even though this error term is unbiased, it is still a poor estimate because 

it is highly variable; and you can sense it because we are using only one 

observation (x1, y1) for validating our model knowledge.

If we want to fix this problem, we can simply repeat the same process 

by selecting (x2, y2) as the validation set and all other observation as the 

training set. We train our model on n − 1 other observations and compute 

E2 for the validation point x2. We repeat again for (x3, y3), train the model, 

validate, and produce E3. We do it again for (x4, y4) and produce E4 and  

do it for all data points/observations for N times to produces N errors,  

E1, …, En. The LOOCV estimate for the test error now is the average of these 

N validation set error rates.

CV
n

EN
i

N

i( ) = å1

As we can see, LOOCV has a couple of advantages that could not exist 

in the validation set approach:

•	 LOOCV has less bias than a validation set, because we 

repeatedly train the model on n − 1 data observations 

(and that’s almost the entire dataset). That doesn’t 

happen in the validation set approach; in the validation 

set approach, we take a subset of the whole dataset 

as the validation set and train the model on the 

other data subsets. So the LOOCV approach tends 

not to overestimate the test error rate as much as the 

validation set approach does.

Chapter 7  Data Resampling



215

•	 LOOCV produces the same results each time you 

run it; unlike the validation set approach, there is no 

randomness in the train-test splits. LOOCV repeatedly 

takes each data point as validation set one time and 

at the end calculates the mean error rate. There’s no 

randomness generated, because you do not select 

the validation set observations; you simply take each 

observation as validation for one time and iterate.

from sklearn.model_selection import LeaveOneOut

We know that sklearn contains almost any function we need as we 

perform our machine learning pipeline, and it works for most of the 

dataset we will deal with. As a first step, we need to load the LeaveOneOut 

method from the model_selection module in Scikit-learn.

After loading the method, we need to load our data; for simplicity, we 

will use the iris preloaded dataset in the sklearn datasets module.

X = iris.data

y = iris.target

Until now, we have loaded the method and data. Now we will start the 

work, and we’ll do that by initiating the LeaveOneOut class and getting the 

number of possible splits. As you see, there are 150 possible splits.

loo = LeaveOneOut()

loo.get_n_splits(iris.data)

Now we can use the loo instance for us, and we can do that by getting 

the starting and ending indices for both train and testing sets.

from train_index, test_index in loo.split(X):

      X_train, X_test = X[train_index], X[test_index]

      y_train, y_test = y[train_index], y[test_index]
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For each iteration, the class instance will give the test one data point, 

and the rest will be in the training.

LOOCV may have a drawback, which concerns computational power. 

LOOCV can be expensive to implement, since the model has to train N 

times. So, if the dataset is large, this can be very time consuming, and you 

should consider the time the model takes to learn.

�K-Fold Cross-Validation
You might think that this new approach is an upgrade to LOOCV. K-Fold 

CV involves randomly dividing the dataset into k equal subsets/groups and 

they’re called folds. Then we take the first subset (fold) as a validation set 

and train the mode on the other k − 1 fold as a training-set. The validation 

error produced (let’s call it E1) is calculated from the validation set (hold-

out fold). We repeat the process k times; each time, we take one different 

fold as the validation set and all other k − 1 as the training set. This process 

results in k estimate of the test error rate, which is E1, …, Ek, and then we 

take the average:

CV
N

EN
i

N

i( )
=

= å1

1

You can see that LOOCV is a special case of K-Fold CV in which k is 

equal to N. In practice, the developer performs K-Fold CV using k=5 or 

k=10, but most developers do not use k=N due to computational power as 

we mentioned earlier.

from sklearn.model_selection import KFold

kf = KFold(n_split=5)

kf.get_n_split(X)

# Output

# 5
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for train_index, test_index in kf.split(X):

      X_train, X_test = X[train_index], X[test_index]

      Y_train, y_test = y[train_index], y[test_index]

      �Print('# Train => X shape: {} ## Test => X Shape: {}'.

format(X_train.shape, X_test.shape))

# Output

# Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

# Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

# Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

# Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

# Train => X shape: (120, 4) ## Test => X Shape: (30, 4)

�Bootstrap
Bootstrap is a statistical technique used for sampling data with 

replacement.

For now, we have a little introduction for the bootstrap technique. 

We will use a real example that allows you to get a better idea about data 

resampling with bootstrap. There are other resampling techniques like 

Monte Carlo, and randomization techniques, but here we will talk only 

about the bootstrap technique.

The bootstrap method can be used to estimate the quantity of a 

population. This is done by repeatedly taking small samples, calculating 

the statistic, and taking the average of the calculated statistics.
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�Bootstrap in Statistics
Bootstrap is denoted by x∗. Let’s start to generate a bootstrap sample. We 

have N observations and need to sample them; we can get these samples 

from the distribution of population.

 

So, N observations are x1 = 2, x2 = 1, x3 = 7, …, xN = 5 for instance.

The sample we get from N observations we can denote as vector x x( )  

and we can make any operation in this sample, like mean S x= ( )q . This 

action can be done without replacement, or we can do the same but with 

replacement. What’s the difference between replacement and without 

replacement? With replacement means that we can repeat the same 

value more than one in the same observation, but without replacement 

we can’t repeat the value in an observation more than once. Note the 

observation should be IID (independent identical distribution). Identically 

distributed means that there are no overall trends—the distribution 

doesn’t fluctuate, and all items in the sample are taken from the same 

probability distribution. Independent means that the sample items are all 

independent events. So let’s complete the bootstrap.

So N observations are x1 = 2, x2 = 1, x3 = 7, …, xN = 5. The sample we get 

from N-observation can be denoted as Bootstrap x (x∗)
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And we can make any operation in this sample like mean S = (x∗) but 

here with replacement. Let’s see a figure that may make things easier.

Basically, the bootstrap method is a statistical technique for estimating 

quantities about a population by averaging estimates from multiple small 

data samples.

You can see the difference between these two examples in the 

following image.
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�Tips to Use Bootstrap (Resampling 
with Replacement)
To give you the best experience using the bootstrap technique, we 

summarized it into steps, and you can use these steps to create your data 

selection pipeline.

	 1.	 Maintains data structure but reshuffles values, 

extrapolating to the population

	 2.	 The procedure can sample each value multiple 

times, or not at all.

Figure 7-2.  Sample distribution
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	 3.	 Useful for estimating statistic parameters where data 

are nonnormal

	 4.	 Has unknown statistical properties (e.g., PCA— 

we will discuss it in a later chapter).

So, let us give some thought to how this method works, get into more 

details about it, and see how we can make these samples. The process for 

building one sample can be summarized as follows:

	 1.	 Choose the size of the sample.

	 2.	 If the size of the sample is less than the chosen size:

	 a.	 Randomly select an observation from the dataset.

	 b.	 Add it to the sample.

The bootstrap method can calculate the quantity of population in the 

following steps:

	 1.	 Choose a number of bootstrap samples to perform.

	 2.	 Choose a sample size.

	 3.	 For each bootstrap sample:

	 a.	 Draw a sample with replacement with the chosen size.

	 b.	 Calculate the statistic on the sample.

	 4.	 Calculate the mean of the calculated sample 

statistics.

After setting up the theoretical toolbox, let’s take an example to 

demonstrate how these statistical methods work.

Imagine we have a dataset with 6 observations:

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
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The first step is to choose the size of the sample. Here, we will use 4. 

Next, we must randomly choose the first observation from the dataset. 

Let’s choose 0.2.

sample = [0.2]

This observation is returned to the dataset, and we repeat this step 

three more times.

sample = [0.2, 0.1, 0.2, 0.6]

We now have our data sample. The example purposefully 

demonstrates that the same value can appear zero, or one or more times in 

the sample. Here the observation 0.2 appears twice. An estimate can then 

be calculated on the drawn sample.

statistic = calculation([0.2, 0.1, 0.2, 0.6])

Those observations not chosen for the sample may be used as out-of-

bag observations.

oob = [0.3, 0.4, 0.5]

In the case of evaluating a machine learning model, the model is fit on 

the drawn sample and evaluated on the out-of-bag sample.

train = [0.2, 0.1, 0.2, 0.6]

test = [0.3, 0.4, 0.5]

model = fit(train)

statistic = evaluate(model, test)

That concludes one repeat of the procedure. It can be repeated 30 or 

more times to give a sample of calculated statistics.

statistics = [...]
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This sample of statistics can then be summarized by calculating a 

mean, standard deviation, or other summary value to give a final usable 

estimate of the statistic.

estimate = mean([...])

At the end of this section, we should know what sampling is, how we 

use it with replacement and without replacement, and the difference 

between them when we use it with statistical functions.

�Generators
When you are working on developing a machine/deep learning model, you 

might experience lack of memory while feeding datasets into the model. 

The moment you run into memory errors when trying to take the training 

data into memory, you know that you have to switch your data feeding 

strategy.

Even state-of-the-art configurations might go out of memory 

sometimes to process the whole data. That is the reason why we need 

to find other ways to do that task efficiently. The only way to do it is by 

loading the data in real time; hence, we are going to show you how to 

generate your dataset on multiple cores in real time and feed it right away 

to your deep learning models.

�What Are Keras Generators?
A generator is just a module in Keras, which is used to get batches of input 

and corresponding output on the fly during the training process.

An example is reading in a set that contains an input of 100 images, 

getting a corresponding 100 label vector, and then feeding this set to the 

GPU for the training step. We have to keep in mind that, in some cases, 

even the most state-of-the-art configuration won’t have enough memory 
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space to process the data the way we used to do it. That is the reason why 

we need to find other ways to do that task efficiently. We are going to show 

you how to generate your dataset on multiple cores in real time and feed it 

right away to your deep learning models.

Let’s see an example, to get a better idea about data_generator, and 

we will talk about train-on-the-fly module too. Let’s start with the Keras 

package; we need it to use generators, and now you can import it from 

TensorFlow too as a module.

// could not understood the example here

The example we go through is a teaching example to learn how to use 

this package to enhance feeding your data into your model.

Before getting started, let’s go through a few organizational tips that are 

particularly useful when dealing with large datasets. Let ID be the string 

that identifies a given sample of the dataset. A good way to keep track of 

samples and their labels is to adopt the following framework:

	 1.	 Create a dictionary called partition where you 

gather

•	 in partition['train'] a list of training IDs

•	 in partition['validation'] a list of validation IDs

Create a dictionary called labels where for each ID of the dataset, the 

associated label is given by labels[ID].

For example, let’s say that our training set contains id-1, id-2, and 

id-3 with respective labels 0, 1, and 2, with a validation set containing id-4 

with label 1. In that case, the Python variables partition and labels look like:

Partition

{'train': ['id-1', 'id-2', 'id-3'], 'validation': ['id-4']}

Labels

{'id-1': 0, 'id-2': 1, 'id-3': 2, 'id-4': 1}
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Now we get a basic idea about how data is partitioned and labeled,  

and what the folder looks like to separate data, classes, and labeled data. 

A data/ folder is used to save your dataset in it.

folder/

├── my_classes.py
├── keras_script.py
└── data/

�Data Generator
Now, let’s go through the details of how to set up the Python class 

DataGenerator, which will be used for real-time data feeding to your 

Keras model.

So, let’s now write the initialization function of the class as follows:

def __init__(self, list_IDs, labels, batch_size=32,

dim=(32,32,32),n_channels=1,n_classes=10, shuffle=True):

      #'Initialization'

      self.dim = dim

      self.batch_size = batch_size

      self.labels = labels

      self.list_IDs = list_IDs

      self.n_channels = n_channels

      self.n_classes = n_classes

      self.shuffle = shuffle

      self.on_epoch_end()

Now we initialize the variables we need. But let’s consider every 

variable, dimension sizes (e.g., a volume of length 32 will have 

dim=(32,32,32)), number of channels, number of classes, and batch size 

or decide whether we want to shuffle our data at generation. And we store 

important information such as labels and the list of IDs that we wish to 

generate at each pass.
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Now I need to talk about callback functions, and on_epoch_end is one 

of them.

But before talking about the functions we use, as we are accustomed in 

this book, we’ll try to cover the basics about what is a callback.

A callback is a set of functions to be applied at given stages of the 

training procedure. You can use callbacks to get a view on internal 

states and statistics of the model during training. You can pass a list of 

callbacks (as the keyword argument callbacks) to the fit() method of the 

Sequential or Model classes. The relevant methods of the callbacks will 

then be called at each stage of the training.

�Callback
One of the important modules we can use a lot is the keras.callbacks.

Callback() module. This API allows you to specify which metric to 

monitor, such as loss or accuracy on the training or validation dataset. 

You can specify whether to look for an improvement in maximizing or 

minimizing the score. Finally, the filename that you use to store the 

weights can include variables like the epoch number or metric. The Keras 

documentation defines.

•	 params: Dictionary. Training parameters (e.g., 

verbosity, batch size, number of epochs...)

•	 model: an instance of keras.models.Model. Reference 

of the model being trained

The logs dictionary that callback methods take as an argument will 

contain keys for quantities relevant to the current batch or epoch.
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Currently, the fit(...) method of the Sequential model class will 

include the following quantities in the logs that it passes to its callbacks:

•	 on_epoch_end: Logs include acc and loss, and 

optionally include val_loss (if validation is enabled in 

fit), and val_acc (if validation and accuracy monitoring 

are enabled).

•	 on_batch_begin: Logs include size, the number of 

samples in the current batch.

•	 on_batch_end: Logs include loss, and optionally acc (if 

accuracy monitoring is enabled).

For more about callbacks, you can see the documentation at http://

faroit.com/keras-docs/1.1.0/callbacks/.

Now let’s talk about the function on_epoch_end(); as we see, you can 

use it by using its parameters. Let’s see an example. This function is very 

important in training and not just in the generator example; for example, 

if we train a model and this model gets an accuracy that satisfies us and 

it still has many epochs that will waste our time, we use on_epoch_end(). 

Let’s get the definition of on_epoch_end().

class myCallback(tf.keras.callbacks.Callback):

  def on_epoch_end(self, epoch, logs={}):

    if(logs.get('acc')>0.6):

      print("\nReached 60% accuracy so cancelling training!")

      self.model.stop_training = True

In this example, the model will stop training after we get an accuracy of 

60%, which we are satisfied with at this time so we don’t need to initialize 

the number of epochs.
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Since we are talking about generators, after we finish the initialization 

process it’s time to continue this process into a new task. Shuffling the 

order in which examples are fed to the classifier is helpful, so that batches 

between epochs do not look alike. Doing so will eventually make our 

model more robust.

Another method that is core to the generation process is one that 

achieves the most crucial job: producing batches of data. The private 

method in charge of this task is called __data_generation and takes as 

argument the list of IDs of the target batch.

def __data_generation(self, list_IDs_temp):

  �'Generates data containing batch_size samples' # X :  

(n_samples, *dim, n_channels)

  # Initialization

  X = np.empty((self.batch_size, *self.dim, self.n_channels))

  y = np.empty((self.batch_size), dtype=int)

  # Generate data

  for i, ID in enumerate(list_IDs_temp):

      # Store sample

      X[i, ] = np.load('data/' + ID + '.npy')

      # Store class

      y[i] = self.labels[ID]

  �return X, keras.utils.to_categorical(y, num_classes=self.n_

classes)

During data generation, this code reads the NumPy array of each 

example from its corresponding file ID.npy. Since our code is multicore 

friendly, note that you can do more complex operations instead (e.g., 

computations from source files) without worrying that data generation 

becomes a bottleneck in the training process.
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Also, please note that we used the keras.utils.to_categorical 

method to convert our numerical labels stored in y to a binary form—to be 

specific, one-hot vector form—(e.g., in a 6-class problem, the third label 

corresponds to [0 0 1 0 0 0]) suited for classification.

Now comes the part where we build up all these components together. 

Each call requests a batch index between 0 and the total number of 

batches, where the latter is specified in the __len__ method.

def __len__(self):

      'Denotes the number of batches per epoch'

      �return int(np.floor(len(self.list_IDs) / self.batch_size))

A common practice is to set this value to 
#Samples

Batch Size 
 so that the model 

sees the training samples at most once per epoch. Now that we have a 

basic understanding about data generators, we will see an example about 

it with a real dataset. Let’s choose a simple dataset: the cats and dogs 

dataset, www.kaggle.com/c/dogs-vs-cats. Then the data should be in this 

structure:

data/

      training/

            class_Dog/

                   class_a01.jpg

                   class_a02.jpg

                   ...

            class_Cat/

                   class_b01.jpg

                   class_b02.jpg

                   ...

      validation/

            class_Dog/
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                   class_a01.jpg

                   class_a02.jpg

                   ...

            class_Cat/

                   class_b01.jpg

                   class_b02.jpg

                   ...

Let’s see a code for this data set. You don’t need to understand it in 

detail—it will be explained in in detail Part III—but we want you to see the 

data generator used in a real problem.

from keras.preprocessing.image import ImageDataGenerator

import numpy as np

# step 1: load data

img_width = 150

img_height = 150

train_data_dir = 'data/train'

valid_data_dir = 'data/validation'

datagen = ImageDataGenerator(rescale = 1./255)

train_generator = datagen.flow_from_directory(directory=train_

data_dir,

target_size=(img_width,img_height),

classes=['dogs','cats'],

class_mode='binary',

batch_size=16)

validation_generator = datagen.flow_from_

directory(directory=valid_data_dir,

target_size=(img_width,img_height),
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classes=['dogs','cats'],

class_mode='binary',

batch_size=32)

# step-2: build model

...

# Step 3: Train the Model with the Generator

training = model.fit_generator(generator=train_generator,

steps_per_epoch=2048//16, epochs=20,

validation_data=validation_generator,

validation_steps=832//16)

Now that we’ve finished this, you can have fun with generators and 

callbacks. Now you can either evaluate or deploy your model; it’s up to you.

�Summary
In this chapter we have introduced sampling techniques. Sampling is 

a very important step before building a model, and it ensures that the 

model learns the most from the selected data, not to get biased using the 

training data. You learned how to create a good training and testing set. We 

discussed several techniques, one of them being the bootstrap, which is a 

very strong statistical method for sampling the data. And finally, we gave 

a technical example of how the data generator method in Keras works on 

getting data and feeding it to the model.
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CHAPTER 8

Feature Selection  
and Feature 
Engineering
Feature selection and engineering are important steps in a machine 

learning pipeline and involves all the techniques adopted to reduce 

their dimensionality. Most of the time, these steps come after cleaning 

the dataset.

Most algorithms have strong assumptions about the input data, and 

their performance can be negatively affected when raw datasets are 

used. Moreover, the data is seldom isotropic; there are often features 

that determine the general behavior of a sample, while others that are 

correlated don’t provide any additional pieces of information. So, it’s 

important to have a clear view of a dataset and know the most common 

algorithms used to reduce the number of features or select only the  

best ones.

In this chapter, you will learn about three fundamental techniques that 

will help to summarize and compress the information content of a dataset 

by transforming it onto a new feature subspace of lower dimensionality 
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than the original one. Data compression is an important topic in machine 

learning, and it helps us to compress, store, and analyze a huge amount of 

data. So, we will cover the following topics:

•	 Principal component analysis (PCA) for 

unsupervised data compression

•	 Linear discriminant analysis (LDA) is a supervised 

dimensionality reduction technique for maximizing 

class separability

•	 Nonlinear dimensionality reduction via kernel 
principal component analysis

�Dataset Used in This Chapter
Scikit-learn provides some built-in datasets that can be used for testing 

purposes. They’re all available in the module sklearn.datasets and have 

a common structure:

•	 The desc instance variable contains a description 

about the data set you are using.

•	 The data instance variable contains the whole input set X.

•	 While target contains the labels for classification or 

response values for regression.

For example, considering the Boston house pricing dataset (used for 

regression), we have:

from sklearn.datasets import load_boston

boston = load_boston()

X = boston.data

y = boston.target

print('X shape: {}, and y shape: {}'.format(X.shape, y.shape))
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# Output

# X shape: (506, 13), and y shape: (506,)

In the Boston dataset, we have

•	 506 samples or observations

•	 13 features or predictors

•	 single target or response value

In this chapter, we’re going to use both the Boston House Prices dataset 

for regression examples and the MNIST handwritten digit dataset for 

classification tasks. For each concept we will describe in this chapter we 

will go through an example using these datasets to show you how to deal 

with the large number of variables and the hidden knowledge in your data.

from sklearn.datasets import load_digits

digits = load_digits()

X = digits.data

y = digits.target

print('X shape: {}, and y shape: {}'.format(X.shape, y.shape))

# Output

X shape: (1797, 64), and y shape: (1797,)

Similarly, you can import the MNIST handwritten digit dataset from 

the sklearn.datasets module; it’s very simple and saves time for learning 

and experimentation.

The MNIST dataset provided by Scikit-learn is limited for many 

reasons; the first reason is to make it easier for educational purposes.  

If you want to experiment with the original dataset, refer to the web site 

http://yann.lecun.com/exdb/mnist/. Here you can download a full 

version that contains up to 70,000 handwritten digits already, split into 

training and test sets.
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Scikit-learn also provides functions for creating dummy datasets from 

scratch:

•	 make_classification()

•	 make_regression()

•	 make_blobs() (particularly useful for testing cluster 

algorithms)

They’re very easy to use, and in many cases it’s the best choice to test 

a model if you do not have a dataset and without loading more complex 

datasets, or for educational purposes.

You can visit the sklearn datasets web site https://scikit-learn.

org/stable/da for further information about all datasets provided by 

Scikit-learn.

�Dimensionality Reduction—Questions 
to Answer
If you are working in a new project, and you have been provided with a 

dataset that contains dozens of variables, would you ever wonder what 

to do with all those variables? So, the real question is the following: what 

happens when your dataset has too many variables?

You may have faced some of these situations, or at least you might have 

thought of them:

•	 You find that most of the variables are correlated.

•	 You lose patience and decide to run a model on whole 

data. This returns poor accuracy and you feel terrible.

•	 You become indecisive about what to do.

•	 You start thinking of some strategic method to find a 

few important variables.
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So, we need an approach that can choose important variables, or in 

other words, select the important variables that can affect the model and 

produce a good estimation for the output.

Another reason is that the feature selection and extraction topic is 

important to understand in the fields of statistics and data science. But 

when putting a lesson together for students or anyone wants to learn it, we 

found that the resources online were too technical, didn’t fully address our 

needs, and/or provided conflicting information.

As a result, we wanted to put together the “What”, “When,” “How,” and 

“Why” of this topic and answer them in specific detail. Specifically, we 

wanted to present the rationale for this topic, the math under the hood, 

some best practices, and potential drawbacks to each method under this 

topic.

�What Is Dimensionality Reduction?
If you’ve worked with a lot of variables before, you know this can cause 

some problems to you and the model you are building. So you may decide 

to select some variables that are important to help you to get the most of 

your dataset and will make the model reach the highest accuracy. On the 

other hand, you’ll want to remove all the variables those will not do those 

things for you. To do all that—the selecting/removing process—you need 

to answer the following:

•	 Do you understand the relationships between each 

variable?

•	 Do you have so many variables that you are in danger 

of overfitting your model to your data, or you might be 

violating assumptions of whichever modeling tactics 

you’re using?
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You might ask the question How do I take all of the variables I’ve 

collected and focus on only a few of them? In technical terms, you want to 

“reduce the dimension of your feature space” by reducing the dimension 

of your feature space. You’ll have fewer relationships between variables to 

consider and you are less likely to overfit your model.

Note T his doesn’t immediately mean that overfitting, etc. are no 
longer concerns — but we’re moving in the right direction!

Somewhat unsurprisingly, reducing the dimensions of the feature 

space is called dimensionality reduction. There are many ways to achieve 

dimensionality reduction, but most of these techniques fall into one of two 

classes:

•	 Feature elimination

•	 Feature extraction

Feature elimination is what it sounds like: we reduce the feature space 

by eliminating features. Instead of considering every single variable, we 

might drop all variables except the three we think will best predict what the 

United States’ gross domestic product will look like. Advantages of feature 

elimination methods include simplicity and maintaining interpretability of 

your variables.

As a disadvantage, though, you gain no information from those 

variables you’ve dropped. If we only use last year’s GDP, the proportion 

of the population in manufacturing jobs per the most recent American 

Community Survey numbers, and the unemployment rate to predict this 

year’s GDP, we’re missing out on whatever the dropped variables could 

contribute to our model. By eliminating features, we’ve also entirely 

eliminated any benefits those dropped variables would bring.

Feature extraction, however, doesn’t run into this problem. Say 

we have ten independent variables. In feature extraction, we create ten 
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“new” independent variables, where each new independent variable is a 

combination of each of the ten “old” independent variables. However, we 

create these new independent variables in a specific way and order these 

new variables by how well they predict our dependent variable.

You might ask where does the dimensionality reduction come into 

play? Well, we keep as many of the new independent variables as we 

want, but we drop the least important ones. Because we ordered the new 

variables by how well they predict our dependent variable, we know which 

variable is the most important and least important. But — and here’s the 

kicker — because these new independent variables are combinations of our 

old ones, we’re still keeping the most valuable parts of our old variables, 

even when we drop one or more of these “new” variables!

�When Should I Use Dimensionality Reduction?

	 1.	 Do you want to reduce the number of variables, 

but aren’t able to identify what are the important 

variables and what are the variables you consider to 

remove?

	 2.	 Do you want to ensure your variables are 

independent of one another, or there’s no 

correlation between any of the predictor/input 

variables?

	 3.	 Do you care about the interpretability of the 

dataset variables?

If you answered “yes” to all three questions, then dimensionality 

reduction is a good approach to use. If you answered “no” to question 3, 

you should not use dimensionality reduction.

Finally, how and why are subject to the properties of each method, so 

they will be answered while describing and illustrating each method in the 

approach of dimensionality reduction.
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�Unsupervised Dimensionality Reduction via 
Principal Component Analysis (PCA)
As we explained, we can use feature extraction to reduce the number of 

features in a dataset. We can do that by using a feature extraction algorithm 

to transform or project the data onto a new feature space.

In the context of dimensionality reduction, feature extraction can 

be understood as an approach to data compression with the goal of 

maintaining most of the relevant information. Feature extraction is 

typically used to improve computational efficiency but can also help to 

reduce the curse of dimensionality.

Note U sing dimensionality reduction is very good if we are working 
with nonregularized models, and that’s because it reduces the data 
complexity; hence, they are two different problems that work on 
similar areas.

The curse of dimensionality refers to phenomena that arise when 
analyzing and organizing data in high-dimensional spaces. The 
common theme of these problems is that when the dimensionality 
increases, the volume of the space increases so fast that the 
available data becomes sparse.

PCA is an unsupervised linear transformation technique that is 

widely used across different fields, most prominently for dimensionality 

reduction. Other popular applications of PCA include the following:

•	 Exploratory data analyses and denoising of signals in 

stock market trading

•	 The analysis of genome data and gene expression levels 

in the field of bioinformatics
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PCA helps us to identify patterns in data based on the correlation 

between features. In a nutshell, PCA aims to find the direction of 

maximum variance in high-dimensional data and projects it onto a new 

subspace with equal or fewer dimensions than the original one. The 

orthogonal axes (principal components) of the new subspace can be 

interpreted as the direction of maximum variance given the constraint 

that the new feature axes are orthogonal to each other, as illustrated in 

Figure 8-1. Here, x1 and x2 are the original feature axes, and PC1 and PC2 

are the principal components.

Figure 8-1.  The two-principle dimensions of the dataset
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If we use PCA for dimensionality reduction, we construct a dk-

dimensional transformation matrix W. That allows us to map a sample 

vector x onto a new k-dimensional feature subspace that has fewer 

dimensions than the original d-dimensional feature space:

x x x x x x Rd d
d= ¼[ ] Î-1 2 1, , , , ,

¯ Î ´xW W Rd k,

z z z z zk k= ¼[ ]-1 2 1, , , ,

As a result of transforming the original d-dimensional data onto 

this new d-dimensional subspace (typically k ≪ d), the first principal 

component has the largest possible variance, and all subsequent principal 

components will have the largest possible variance given that they are 

uncorrelated (orthogonal) to the other principal components. Note that 

the PCA directions are highly sensitive to data scaling, and we need to 

standardize the features prior to PCA if the features were measured on 

different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in 

more detail, let’s summarize the approach in a few simple steps:

	 1.	 Standardize the d-dimensional dataset.

	 2.	 Construct the covariance matrix.

	 3.	 Decompose the covariance matrix into its 

eigenvectors and eigenvalues.

	 4.	 Select k eigenvectors that correspond to the k largest 

eigenvalues, where k is the dimensionality of the 

new feature subspace (k ≤ d).
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	 5.	 Construct a projection matrix W from the “top” k 

eigenvectors.

	 6.	 Transform the d-dimensional input dataset X using 

the projection matrix W to obtain the new  

k-dimensional feature subspace.

�Total and Explained Variance
In this subsection, we will tackle the first four steps of a PCA:

•	 Standardizing the data

•	 Constructing the covariance matrix

•	 Obtaining the eigenvalues and eigenvectors of the 

covariance matrix

•	 Sorting the eigenvalues by decreasing order to rank the 

eigenvectors

�Feature Selection and Filtering
As we explained earlier, the unnormalized dataset with many features 

contains information proportional to the independence of all features and 

their variance. Let’s consider a small dataset with three features, generated 

randomly from many Gaussian distributions (Figure 8-2).
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Even without further analysis, it’s obvious that the central line (with 

the lowest variance std=0.5) is almost constant and doesn’t provide any 

useful information. On the other hand, the other two variables carry more 

information, as they have a higher variance than the central line and their 

std=5.0.

A variance threshold is therefore a useful approach to remove all those 

elements whose contribution is under a predefined level. Scikit-learn 

provides the class VarianceThreshold that can easily solve this problem. 

By applying it on the previous dataset, we get the following result:

Note T he variance threshold removes the elements based on their 
variability and so, information.

Figure 8-2.  The standard deviation of different datasets
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X[0:3, :]

# Output:

array([[ �6.32000000e-03,   1.80000000e+01,   2.31000000e+00, 

0.00000000e+00,   5.38000000e-01,   6.57500000e+00, 

6.52000000e+01,   4.09000000e+00,   1.00000000e+00, 

2.96000000e+02,   1.53000000e+01,   3.96900000e+02, 

4.98000000e+00] ,

       �[ �2.73100000e-02,   0.00000000e+00,   7.07000000e+00, 

0.00000000e+00,   4.69000000e-01,   6.42100000e+00, 

7.89000000e+01,   4.96710000e+00,   2.00000000e+00, 

2.42000000e+02,   1.78000000e+01,   3.96900000e+02, 

9.14000000e+00],

       �[ �2.72900000e-02,   0.00000000e+00,   7.07000000e+00, 

0.00000000e+00,   4.69000000e-01,   7.18500000e+00, 

6.11000000e+01,   4.96710000e+00,   2.00000000e+00, 

2.42000000e+02,   1.78000000e+01,   3.92830000e+02, 

4.03000000e+00]])

from sklearn.feature_selection import VarianceThreshold

vt = VarianceThreshold(threshold=1.5)

X_t = vt.fit_transform(X)

X_t[0:3, :]

# Output

array([[ �6.32000000e-03,   1.80000000e+01,   2.31000000e+00, 

6.52000000e+01,   4.09000000e+00,   1.00000000e+00, 

2.96000000e+02,   1.53000000e+01,   3.96900000e+02, 

4.98000000e+00],

       �[ �2.73100000e-02,   0.00000000e+00,   7.07000000e+00, 

7.89000000e+01,   4.96710000e+00,   2.00000000e+00, 

2.42000000e+02,   1.78000000e+01,   3.96900000e+02, 

9.14000000e+00],
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       [ �2.72900000e-02,   0.00000000e+00,   7.07000000e+00, 

6.11000000e+01,   4.96710000e+00,   2.00000000e+00, 

2.42000000e+02,   1.78000000e+01,   3.92830000e+02, 

4.03000000e+00]])

The third feature has been completely removed because its variance 

is under the selected threshold=1.5. There are also many univariate 

methods that can be used in order to select the best features according 

to specific criteria based on F-tests and p-values, such as chi-square or 

ANOVA. However, their discussion is beyond the scope of this book, and 

the reader can find further information in Statistics by David Freedman, 

Robert Pisani, and Roger Purves (Norton & Company, 2011). Two 

examples of feature selection that use the classes SelectKBest (which 

selects the best K-score features) and SelectPercentile (which selects 

only a subset of features belonging to a certain percentile) are shown next. 

It’s possible to apply them both to regression and classification datasets, 

being careful to select appropriate score functions:

from sklearn.datasets import load_boston, load_iris

from sklearn.feature_selection import SelectKBest, 

SelectPercentile, chi2, f_regression

regr_data = load_boston()

regr_data.data.shape

# Output

(506, 13)

# Init the algorithm

# This algorithm as the name,

# selects the best k features

kb_regr = SelectKBest(f_regression)

X_b = kb_regr.fit_transform(regr_data.data, regr_data.target)

X_b.shape
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# Output

(506, 10)

kb_regr.scores_

# Output

array([ 88.15124178, 75.2576423, 153.95488314,   15.97151242, 

112.59148028, 471.84673988, 83.47745922,   33.57957033, 

85.91427767, 141.76135658, 175.10554288,   63.05422911, 

601.61787111])

For further details about all Scikit-learn score functions and their 

usage, visit the Scikit-learn feature selection (https://scikit-learn.

org/stable/modules/feature_selection.html#univariate-feature-

selection).

�Principal Component Analysis
In many cases, the dimensionality of the input dataset X is high and so is 

the complexity of every related machine learning algorithm. Moreover, the 

information is spread uniformly across all the features. In general, if we 

consider a Euclidean space, we have

X x x x x where x R x x e x en n i
m

i i im m= ¼{ } Î Ù = +¼+-´ ´ ´ ´ ´ ´ ´ ´1 2 1 1 1, , , ,

So, each point is expressed using an orthonormal basis made 

of m linearly independent vectors. Now, considering a dataset X, a 

natural question arises: is it possible to reduce m without a drastic 

loss of information? Let’s consider Figure 8-3 (without any particular 

interpretation).
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It doesn’t matter which distributions generated X = (x, y); however, the 

variance of the horizontal component is clearly higher than the vertical 

one. As discussed, it means that the amount of information provided by 

the first component is higher and, for example, if the x-axis is stretched 

horizontally keeping the vertical one fixed, the distribution becomes 

similar to a segment where the depth has lower and lower importance.

In order to assess how much information is brought by each 

component, and the correlation among them, a useful tool is the 

covariance matrix (Figure 8-4; if the dataset has zero mean, we can use the 

correlation matrix).

Figure 8-3.  Revisiting principle component image
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C is symmetric and positive semidefinite, so all the eigenvalues are 

nonnegative, but what's the meaning of each value? The covariance matrix C 

for the previous example is symmetric; As expected, the horizontal variance 

is quite a bit higher than the vertical one. Moreover, the other values are close 

to zero. If you remember the definition and, for simplicity, remove the mean 

term, they represent the cross-correlation between couples of components. 

It’s obvious that in our example, X and Y are uncorrelated (they’re orthogonal), 

but in real-life examples, there could be features that present a residual 

cross-correlation. In terms of information theory, it means that knowing Y 

gives us some information about X (which we already know), so they share 

information that is indeed doubled. So, our goal is also to decorrelate X while 

trying to reduce its dimensionality. This can be achieved by considering the 

sorted eigenvalues of C and selecting the best principle component values:

So, it’s possible to project the original feature vectors into this new (sub-)

space, where each component carries a portion of total variance and where 

the new covariance matrix is decorrelated to reduce useless information 

sharing (in terms of correlation) among different features. In Scikit-learn, 

there’s the PCA class, which can do all this in a very smooth way:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.decomposition import PCA

mnist = load_digits()

Figure 8-4.  The covariance equation

Chapter 8  Feature Selection and Feature Engineering 



250

A figure with a few random MNIST handwritten digits is shown in 

Figure 8-5.

Figure 8-5.  The MNIST dataset

Each image is a vector of 64 unsigned int (8 bit) numbers (0, 255), 

so the initial number of components is indeed 64. However, the total 

amount of black pixels is often predominant and the basic signs needed 
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to write 10 digits are similar, so it’s reasonable to assume both high cross-

correlation and a low variance on several components. Trying with 36 

principal components, we get:

pca = PCA(n_components=36)

proj = pca.fit_transform(digits.data)

plt.scatter(proj[:, 0], proj[:, 1], c=digits.target, 

cmap="Paired")

plt.colorbar()

Figure 8-6.  The scatter plot of PCA output

In order to improve performance, all integer values are normalized 

into the range [0, 1] and, through the parameter whiten=True, the 

variance of each component is scaled to one. As also the official Scikit-

learn documentation says, this process is particularly useful when an 

isotropic distribution (any distribution has a simple shape to your eye 
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but very complex shape to the algorithm) is needed for many algorithms 

to perform efficiently. It’s possible to access the explained variance ratio 

through the instance variable explained_variance_ratio_, which shows 

which part of the total variance is carried by each single component:

pca.explained_variance_ratio_

# Output:

array([ �0.14890594, 0.13618771, 0.11794594,  0.08409979, 

0.05782415, 0.0491691,  0.04315987,  0.03661373, 

0.03353248, 0.03078806, 0.02372341,  0.02272697, 

0.01821863, 0.01773855, 0.01467101,  0.01409716, 

0.01318589, 0.01248138, 0.01017718,  0.00905617, 

0.00889538, 0.00797123, 0.00767493,  0.00722904, 

0.00695889, 0.00596081, 0.00575615,  0.00515157, 

0.00489539, 0.00428888, 0.00373606,  0.00353271, 

0.00336678, 0.0032803,  0.0030832,   0.00293777])

A plot for the example of MNIST digits is shown next (Figure 8-7). 

The bottom graph represents the variance ratio, while the top one is the 

cumulative variance. It can be immediately seen how the first components 

are normally the most important ones in terms of information, while the 

following ones provide details that a classifier could also discard.
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As expected, the contribution to the total variance decreases 

dramatically starting from the fifth component, so it’s possible to reduce 

the original dimensionality without an unacceptable loss of information, 

which could drive an algorithm to learn wrong classes. In the preceding 

graph, there are the same handwritten digits rebuilt using the first 36 

components with whitening and normalization between 0 and 1. To obtain 

the original images, we need to inverse-transform all new vectors and 

project them into the original space:

X_rebuilt = pca.inverse_transform(X_pca)

Figure 8-7.  The histogram and CDF plot of the variance per each 
component
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The result is shown in Figures 8-8 and 8-9.

Figure 8-8.  The output of PCA inversion
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This process can also partially denoise the original images by removing 

residual variance, which is often associated with noise or unwanted 

contributions (almost every calligraphy distorts some of the structural 

elements that are used for recognition).

I suggest the reader try different numbers of components (using 

the explained variance data) and also n_components='mle', which 

implements an automatic selection of the best dimensionality (“Automatic 

Choice of Dimensionality for PCA” by Thomas P. Minka (NIPS, 2000: 

598-604)). Scikit-learn solves the PCA problem with SVD (singular value 

decomposition), which can be studied in detail in Linear Algebra by David 

Poole (Brooks Cole, 2015). It’s possible to control the algorithm through 

the parameter svd_solver, whose values are 'auto', 'full', 'arpack', 

and 'randomized'.

Figure 8-9.  The output of PCA inversion vs. the real image
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�Nonnegative Matrix Factorization
When the dataset is made up of nonnegative numbers, it’s possible to use a 

good algorithm called nonnegative matrix factorization (NNMF) instead of 

using standard PCA. The algorithm optimizes a loss function (alternatively 

on W and H) based on the Frobenius norm:

L X WH where A a
Frob Frob

i j
ij= - = åå1

2
2 2 2

,

If dim(X) = n × m, then dim(W) = n × p and dim(H) = p × m with p equal 

to the number of requested components (the n_components parameter), 

which is normally smaller than the original dimensions n and m.

The final reconstruction is purely additive, and it has been shown that 

it’s particularly efficient for images or text where there are normally no 

nonnegative elements. In the following snippet, there’s an example using 

the Iris dataset (which is nonnegative). The init parameter can assume 

different values (see the documentation), which determine how the data 

matrix is initially processed. A random choice is for nonnegative matrices, 

which are only scaled (no SVD is performed):

from sklearn.datasets import load_iris

from sklearn.decomposition import NMF

iris = load_iris()

iris.data.shape

# Output

(150L, 4L)

nmf = NMF(n_components=3, init='random', l1_ratio=0.1)

Xt = nmf.fit_transform(iris.data)

nmf.reconstruction_err_

# Output

1.8819327624141866
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iris.data[0]

# Output

array([ 5.1, 3.5, 1.4, 0.2])

Xt[0]

# Output

array([ 0.20668461, 1.09973772, 0.0098996 ])

nmf.inverse_transform(Xt[0])

# Output

array([5.10401653, 3.49666967, 1.3965409, 0.20610779])

NNMF, together with other factorization methods, will be very useful 

for more advanced techniques, such as recommendation systems and 

topic modeling. NNMF is very sensitive to its parameters (in particular, 

initialization and regularization), so I suggest reading the original 

documentation for further information: http://scikit-learn.org/

stable/modules/generated/sklearn.decomposition.NMF.html.

�Sparse PCA
Scikit-learn provides different PCA variants that can solve particular 

problems. I do suggest reading the original documentation. However, I’d 

like to mention SparsePCA, which allows exploiting the natural sparsity 

of data while extracting principal components. If you think about the 

handwritten digits or other images that must be classified, their initial 

dimensionality can be quite high (a 10x10 image has 100 features). 

However, applying a standard PCA selects only the average most important 

features, assuming that every sample can be rebuilt using the same 

components. Simplifying, this is equivalent to:

y c y c y c y c yR R R g R g g Rg= + +¼+ +-( ) -( )1 1 2 2 1 1
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On the other hand, we can always use a limited number of 

components, but without the limitation given by a dense projection matrix. 

This can be achieved by using sparse matrices (or vectors), where the 

number of nonzero elements is quite low. In this way, each element can 

be rebuilt using its specific components (in most cases, they will always be 

the most important), which can include elements normally discarded by a 

dense PCA. The previous expression now becomes:

y c y c y c y c y ZEROTERMR R R g R g g Rg= + +¼+ +é
ë

ù
û +-( ) -( )1 1 2 2 1 1

ZEROTERM y y y yR g R g R g n R gn= × + × +¼+ × + ×( )+( ) +( ) + -( ) ( )0 0 0 01 2 1

Here the non-null components have been put into the first block (they 

don’t have the same order as the previous expression), while all the other 

zero terms have been separated. In terms of linear algebra, the vectorial 

space now has the original dimensions. However, using the power of 

sparse matrices (provided by scipy.sparse), Scikit-learn can solve this 

problem much more efficiently than a classical PCA.

The following snippet shows a sparse PCA with 60 components. In this 

context, they’re usually called atoms and the amount of sparsity can be 

controlled via L1-norm regularization (higher alpha parameter values lead 

to more sparse results). This approach is very common in classification 

algorithms and will be discussed in the next chapters:

from sklearn.decomposition import SparsePCA

spca = SparsePCA(n_components=60, alpha=0.1)

X_spca = spca.fit_transform(digits.data / 255)

spca.components_.shape

# Output

(60L, 64L)

For further information about SciPy sparse matrices, visit https://

docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html.
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�Kernel PCA
It’s useful to mention the class KernelPCA, which performs a PCA with 

non-linearly separable data sets. Just to understand the logic of this 

approach (the mathematical formulation isn’t very simple), it’s useful 

to consider a projection of each sample into a particular space where 

the dataset becomes linearly separable. The components of this space 

correspond to the first, second, ... principal components, and a kernel PCA 

algorithm therefore computes the projection of our samples onto each of 

them. Let’s consider a dataset made up of a circle with a blob inside:

from sklearn.datasets import make_circles

Xb, Yb = make_circles(n_samples=500, factor=0.1, noise=0.05)

The graphical representation is shown in Figure 8-10. In this case, a 

classic PCA approach isn’t able to capture the nonlinear dependency of 

existing components (the reader can verify that the projection is equivalent 

to the original dataset). However, looking at the samples and using polar 

coordinates (therefore, a space where it’s possible to project all the points), 

it’s easy to separate the two sets, only considering the radius.

Figure 8-10.  The circular dataset we are using

Chapter 8  Feature Selection and Feature Engineering 



260

Considering the structure of the dataset, it’s possible to investigate the 

behavior of a PCA with a radial basis function kernel. As the default value 

for gamma is 1.0/number of features (for now, consider this parameter as 

inversely proportional to the variance of a Gaussian), we need to increase 

it to capture the external circle. A value of 1.0 is enough:

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(n_components=2, kernel='rbf', fit_inverse_

transform=True, gamma=1.0)

X_kpca = kpca.fit_transform(Xb)

The instance variable X_transformed_fit will contain the projection 

of our dataset into the new space. Plotting it, we get Figure 8-11.

Figure 8-11.  The output transformation of the kernel PCA

The plot shows a separation just like expected, and it’s also possible to 

see that the points belonging to the central blob have a curve distribution 

because they are more sensitive to the distance from the center.
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Kernel PCA is a powerful instrument when we think of our dataset as 

made up of elements that can be a function of components (in particular, 

radial-basis or polynomials) but we aren’t able to determine a linear 

relationship among them.

For more information about the different kernels supported by 

Scikit-learn, visit http://scikit-learn.org/stable/modules/metrics.

html#linear-kernel.

�Atom Extraction and Dictionary Learning
Dictionary learning is a technique that allows rebuilding a sample starting 

from a sparse dictionary of atoms (similar to principal components). 

In “Online Dictionary Learning for Sparse Coding” by Julien Mairal, 

Francis Bach, Jean Ponce, and Guillermo Sapiro in Proceedings of the 29th 

International Conference on Machine Learning (2009) there’s a description 

of the same online strategy adopted by Scikit-learn, which can be 

summarized as a double optimization problem, where:

X x x x x where x Rn n i
m= ¼{ } Î-´ ´ ´ ´ , ´1 2 1, , , ,

is an input dataset and the target being to find both a dictionary D and a 

set of weights for each sample.

D R A where Rm k
j j j

kÎ Ù = ¼{ } Î´
-a a a a a´ ´ ´ ,1 2 1, , , ,

After the training process, an input vector can be computed as:

x Di i´ ´= a

Chapter 8  Feature Selection and Feature Engineering 

http://scikit-learn.org/stable/modules/metrics.html#linear-kernel
http://scikit-learn.org/stable/modules/metrics.html#linear-kernel


262

The optimization problem (which involves both D and alpha vectors) 

can be expressed as the minimization of the following loss function:

L D A x D c
i

i i i,( ) = - +å12 2

2

1
a a´ ´

Here the parameter c controls the level of sparsity (which is 

proportional to the strength of L1 normalization). This problem can 

be solved by alternating the least square variable until a stable point is 

reached.

In Scikit-learn, we can implement such an algorithm with the  

class DictionaryLearning (using the usual digits datasets), where  

n_components, as usual, determines the number of atoms:

from sklearn.decomposition import DictionaryLearning

dl = DictionaryLearning(n_components=36, fit_algorithm='lars', 

transform_algorithm='lasso_lars')

X_dict = dl.fit_transform(digits.data)

This piece of code might take a few minutes to run, longer than any code 

we have written in this chapter. But don’t panic; this is just one type of many 

other types of feature selection techniques. So if it does not work in your 

local machine, try Colaboratory (https://colab.research.google.com/

notebooks/welcome.ipynb#recent=true). This will do the job for you, or 

you can limit the number of samples to 20 to 50; it’s up to you.

�Latent Dirichlet Allocation (LDA)
LDA is a shortcut of two descriptions: the first description is related to 

NLP, and the second one is related to data analysis. So, LDA with NLP is 

called latent Dirichlet allocation, and for data analysis it is called linear 
discriminate analysis. But this may seem a little weird. Are we talking 
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about LDA with NLP or about LDA with data analysis? As we will see, we 

need to talk about LDA with NLP. But why not talk about a hot topic like 

linear discriminate analysis and the difference between it and PCA? PCA 

is a shortcut for principle component analysis. In this section, let’s start 

with latent Dirichlet allocation.

�Latent Dirichlet Allocation (LDA in NLP)
Before we go into the definition of LDA, we first need to know the root 

of this technique—topic modeling. The aim is to identify topics that best 

describe a set of documents. These topics will only appear during the 

topic modeling process, which is called a latent or unsupervised learning 

technique. Since LDA is the popular technique for topic modeling, let’s 

make a definition for it. LDA imagines a fixed set of topics. Each topic 

represents a set of words. The goal of LDA is to map all the documents 

to the topics in such a way that the words in each document are mostly 

captured by those imaginary topics.

Let’s take this definition and try to reexplain it more for simplicity. 

You have a set of topics; these topics have a set of words that distribute the 

topic; and every document has a set of topics. LDA needs to map these 

topics in the set X to documents in the set Y by using words. The main idea 

behind LDA is that each document can be described by a distribution of 

topics and each topic can be described by a distribution of words. So let’s 

take an example or create an image to help with the definition of LDA.

As we said, latent Dirichlet allocation is a technique that automatically 

discovers topics that these documents contain. Suppose you have the 

following set of sentences:

•	 I eat fish and vegetables.

•	 Fish are pets.

•	 My kitten eats fish.
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Given the preceding sentences, LDA might classify the red words 

under topic F, which we might label as “food.” Similarly, blue words might 

be classified under a separate topic P, which we might label as “pets.” LDA 

defines each topic as a bag of words, and you have to label the topics as 

you deem fit.

As we see, LDA has two benefits when classifying the data at the word 

level:

	 1.	 We can infer the content spread of each sentence by 

a word count, like if we see the only F in a sentence 

it will be 100% topic F. Let’s see the statistics of our 

example.

•	 Sentence 1: 100% topic F

•	 Sentence 2: 100% topic P

•	 Sentence 3: 33% topic P and 67% topic F

	 2.	 We can derive the proportions that each word 

constitutes in a given topic. For example, topic F 

might comprise words in the following proportions:

•	 40% eat, 40% fish, 20% vegetables, …

Now that we’ve gained some understanding, let’s get our hands dirty 

with some steps about how LDA works; it works in three steps.

To illustrate these steps, imagine that you are now discovering topics 

in documents instead of sentences. Imagine you have two documents with 

the following words (Figure 8-12).
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	 3.	 Step 1: You tell the algorithm how many topics you 

think there are. You can either use an informed 

estimate (e.g., results from a previous analysis) or 

simply trial-and-error. In trying different estimates, 

you may pick the one that generates topics to your 

desired level of interpretability, or the one yielding 

the highest statistical certainty (i.e., log likelihood). 

In our previous example, the number of topics 

might be inferred just by eyeballing the documents.

	 4.	 Step 2: The algorithm will assign every word to a 

temporary topic. Topic assignments are temporary, 

as they will be updated in Step 3. Temporary topics 

are assigned to each word in a semirandom manner 

(according to a Dirichlet distribution, to be exact). 

This also means that if a word appears twice, each 

word may be assigned to different topics. Note that 

in analyzing actual documents, function words (e.g., 

“the,” “and,” “my”) are removed and not assigned to 

any topics.

Figure 8-12.  A table of two documents: X and Y
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	 5.	 Step 3: The algorithm will check and update topic 

assignments, looping through each word in every 

document. For each word, its topic assignment is 

updated based on two criteria:

•	 How prevalent is that word across topics?

•	 How prevalent are topics in the document?

So, how do these two criteria in step three work?

First, how prevalent is that word across topics? Since the word “fish” 

across both documents comprises nearly half of the remaining topic F 

words but 0% of remaining topic P words, “fish” picked at random would 

more likely be about topic F (Figure 8-13).

Figure 8-13.  Prevalent words in both X and Y documents

Second, how prevalent is that word across topics? Since the words 

in Document Y are assigned to topic F and topic P in a 50–50 ratio, the 

remaining “fish” word seems equally likely to be about either topic.

After this example we now know how it works. To adapt with this 

algorithm we will still need some mathematical information for LDA, 

but our aim for this book is only to gain a good understanding about an 

algorithm. If we need to provide some mathematics, it will be in the last 

part. So, we have a code example for LDA and we will continue with PCA 

vs. LDA.
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Last, you should see that LDA is just a feature extraction technique 

used in NLP; it is just an automated algorithm that can read through the 

text documents and automatically output the topics discussed.

�Code Example Using gensim
We will take a real example of the 20 Newsgroups’ dataset and use LDA to 

extract the naturally discussed topics.

First things first: we need to import gensim. Note that if you did not 

download it, please revisit Chapter 2.

import gensim

For reading the data and training the LDA model, we will use a dataset 

that consists of product reviews. We first create a TextCorpus, which is the 

component that reads documents from the file.

corpus = gensim.corpora.textcorpus.TextCorpus('amazon_reviews.txt')

Now we can train the LDA model. For details, see gensim’s 

documentation of the class LdaModel (https://radimrehurek.com/

gensim/models/ldamodel.html).

This training step will take a few minutes, depending on the efficiency 

of your machine and the value you set for passes.

model = gensim.models.LdaModel(corpus, id2word=corpus.

dictionary, alpha='auto', num_topics=10, passes=5)

Let’s discuss the parameters of this LdaModel:

•	 num_topics: The number of topics we’d like to use. We 

set this to 10 here, but if you want, you can experiment 

with a larger number of topics.

•	 passes: The number of iterations to use in the training 

algorithm. Using a higher number will lead to a longer 

training time, but sometimes higher quality topics.
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•	 alpha: A parameter that controls the behavior of the 

Dirichlet prior used in the model. If set to a value close 

to zero, the model will tend to use a fewer number of 

topics per document; conversely, if it’s a higher value, 

there will be more topics per document. If set to auto, 

this parameter will be tuned automatically.

Inspecting topics: The function show_topic(t, n) will display the 

word distribution in topic t, sorted by the word probabilities. Then the 

most probable words will be shown.

model.show_topic(5)

# Output

[ ('film', 0.029852536),

 ('movie', 0.010055234),

 ('films', 0.004800593),

 ('horror', 0.00475024),

 ('story', 0.0038416996),

 ('scene', 0.0034877707),

 ('action', 0.0033171456),

 ('like', 0.0032384025),

 ('dvd', 0.003099864),

 ('scenes', 0.0028694542)]

Predicting the topics for a document: If you have a new document, 

you can use the trained model to estimate the topic proportions for it. This 

is done in two steps:

The first step is to convert the document into a matrix, and the second 

step is to inference.

doc = 'this book describes windows software'.split()

doc_vector = model.id2word.doc2bow(doc)

doc_topics = model[doc_vector]

doc_topics
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# Output

[(0, 0.011552104),

 (1, 0.025947856),

 (2, 0.01148627),

 (3, 0.01466086),

 (4, 0.42382663),

 (5, 0.013418236),

 (6, 0.019740112),

 (7, 0.41398397),

 (8, 0.042892892),

 (9, 0.022491027)]

The result shows a predicted topic distribution. In most cases, there 

will be one or more dominant topics and small probabilities for the rest of 

the topics.

For instance, for the document this book describes, Windows 
software, we will typically get a result that this document is a mix of book-

related topics and software-related topics. (Compare to the topic list you got 

above.) Again, the exact result here will vary between executions because 

of issues related to random number generation.

�LDA vs. PCA
As we talked in the previous section about LDA (latent Dirichlet 
allocation) in NLP, now it’s time to talk about LDA (linear discriminant 
analysis) but with PCA (principal component analysis). This comparison 

pf LDA vs. PCA is one of the most common ones in machine learning. We 

will define it as we discuss it in a simple way for anyone who doesn’t have 

a strong mathematical background. We just need you to know the basic 

ideas behind this.
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Again, what is principal component analysis or PCA? PCA is a 

dimensionality reduction method that is often used to reduce the 

dimensionality of large data sets, by transforming a large set of variables into 

a smaller one that still contains most of the information in the large set.

And what is linear discriminant analysis? LDA is a dimensionality 

reduction technique used as a preprocessing step in machine learning and 

pattern classification applications.

Now we need to know the meaning of dimensionality reduction 

techniques. The main goal of dimensionality reduction techniques is 

to reduce the dimensions by removing the redundant and dependent 

features by transforming the features from higher dimensional space to a 

space with lower dimensions.

The key to this comparison is the supervision feature: PCA uses 

correlation, which is aimed at unsupervised learning; LDA uses classification.

What does PCA do?

•	 It aims to find components that account for maximum 

variance in the data (including error and within-

variable variance). Unlike LDA, it does not take into 

account class membership (i.e., unsupervised), 

and is used when such information is not available. 

Importantly, both LDA and PCA do not require any 

prior notion of how the variables are related among 

themselves, and the resulting components cannot be 

interpreted in terms of an underlying construct.

What does LDA do?

•	 This method identifies components (i.e., a linear 

combination of the observed variables) that maximize 

class separation (i.e., between-class variance) when 

such prior information is available (i.e., supervised). 

For example, you have a training set containing a 

variable specifying the class of each observation.
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But as we compare PCA with LDA, we need to see them in figures—

how they act in data. With data visualization, we can see the data, how our 

models react with it or our tools change in our data, and how we should 

tune our model parameter to get the best for our model with this data. 

We’ll discuss data visualization in another chapter. Let’s visualize the data 

to get more intuitions about PCA and LDA (Figures 8-14 and 8-15).

Figure 8-14.  The PCA algorithm on a dataset
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Both LDA and PCA are linear transformation techniques. As we see 

in the figures, LDA is just a classification, but PCA tries to get the most 

correlated points together. Notice that LDA is supervised, whereas PCA is 

unsupervised

�ZCA Whitening
ZCA whitening is part of PCA. ZCA stands for zero-phase component 
analysis, which is a whitening transformation used to decorrelate (whiten) 

the data (image).

So, what is whitening transformation?

A whitening transformation or sphering transformation is a linear 

transformation that transforms a vector of random variables with a 

known covariance matrix into a set of new variables whose covariance 

Figure 8-15.  The LDA algorithm on a dataset
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is the identity matrix, meaning that they are uncorrelated and each have 

variance. The transformation is called “whitening” because it changes the 

input vector into a white noise vector.

It is used for data augmentation, so let’s see how we can use it. As we 

know that ZCA is an image augmentation technique, let’s talk about data 

augmentation first. What is data augmentation?

It is the performance of deep learning neural networks that often 

improves with the amount of data available.

Data augmentation is a technique to artificially create new training 

data from existing training data. This is done by applying domain-specific 

techniques to examples from the training data that create new and 

different training examples. Image data augmentation is perhaps the most 

well-known type of data augmentation and involves creating transformed 

versions of images in the training dataset that belong to the same class as 

the original image. Transforms include a range of operations from the 

field of image manipulation, such as shifts, flips, zooms, and much more. 

The intent is to expand the training dataset with new, plausible examples. 

This means variations of the training set images that are likely to be seen 

by the model.

For example, a horizontal flip of a picture of a cat may make sense, 

because the photo could have been taken from the left or right. A vertical 

flip of the photo of a cat does not make sense, and would probably not 

be appropriate given that the model is very unlikely to see a photo of an 

upside-down cat.

As such, it is clear that the choice of the specific data augmentation 

techniques used for a training dataset must be chosen carefully and within 

the context of the training dataset and knowledge of the problem domain. 

In addition, it can be useful to experiment with data augmentation 

methods in isolation and in concert to see if they result in a measurable 

improvement to model performance, perhaps with a small prototype 

dataset, model, and training run. Modern deep learning algorithms, such 

as the convolutional neural network, or CNN, can learn features that are 
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invariant to their location in the image. Nevertheless, augmentation can 

further aid in this transform invariant approach to learning and can aid 

the model in learning features that are also invariant to transforms, such 

as left-to-right to top-to-bottom ordering, light levels in photographs, and 

more.

But understand that image data augmentation is typically only applied 

to the training dataset, and not to the validation or test dataset. This is 

different from data preparation such as image resizing and pixel scaling; 

they must be performed consistently across all datasets that interact with 

the model. Some of the data augmentation techniques are

•	 Horizontal and vertical shift augmentation

•	 Horizontal and vertical flip augmentation

•	 Random rotation augmentation

•	 Random brightness augmentation

•	 Random zoom augmentation

•	 ZCA whitening

Most of these algorithms are considered and discussed in the “Data 

Augmentation” section of Chapter 6.

So, we see various techniques for data augmentation but we will 

concentrate on ZCA whitening. A whitening transform of an image is a 

linear algebra operation that reduces the redundancy in the matrix of pixel 

images. Less redundancy in the image is intended to better highlight the 

structures and features in the image to the learning algorithm.

Typically, image whitening is performed using the PCA technique. 

More recently, an alternative called ZCA shows better results, leading to 

transformed images that keeps all of the original dimensions and, unlike 

PCA, result in transformed images that still look like their originals.

You can perform a ZCA whitening transform by setting the zca_

whitening argument to True.
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# ZCA whitening

from keras.datasets import mnist

from keras.preprocessing.image import ImageDataGenerator

from matplotlib import pyplot

from keras import backend as K

K.set_image_dim_ordering('th')

# load data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

# reshape to be [samples][pixels][width][height]

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)

X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)

# convert from int to float

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

# define data preparation

datagen = ImageDataGenerator(zca_whitening=True)

# fit parameters from data

datagen.fit(X_train)

# configure batch size and retrieve one batch of images

for X_batch, y_batch in datagen.flow(X_train, y_train,  

batch_size=9):

       # create a grid of 3x3 images

       for i in range(0, 9):

             pyplot.subplot(330 + 1 + i)

             �pyplot.imshow(X_batch[i].reshape(28, 28), 

cmap=pyplot.get_cmap('gray'))

       # show the plot

       pyplot.show()

       break
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�Summary
In this chapter, you learned about three different, fundamental 

dimensionality reduction techniques for feature extraction: standard 

PCA, LDA, and kernel PCA. Using PCA, we projected data onto a lower 

dimensional subspace to maximize the variance along the orthogonal 

feature axes while ignoring the class labels. LDA, in contrast to PCA, is a 

technique for supervised dimensionality reduction, which means that it 

considers class information in the training dataset to attempt to maximize 

the class separability in a linear feature space. Last, you learned about a 

kernelized version of PCA, which allows you to map nonlinear datasets 

onto a lower dimensional feature space, where the classes become linearly 

separable.

Equipped with these essential preprocessing techniques, you 

are now well prepared to learn about the best practices for building 

and maintaining different deep learning techniques, algorithms, and 

approaches each of which differs in the type of data it deals with and how 

it handles it. You will evaluate the performance of different models in the 

next chapters.
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CHAPTER 9

Deep Learning 
Fundamentals
In this chapter, we will describe a very important topic in deep learning 

fundamentals, the basic functions that deep learning is built on. Then 

we will try to build layers from these functions and combine these layers 

together to get a more complex model that will help us solve more complex 

problems, and all that will be described by TensorFlow examples.

First we will describe the smallest component of almost any deep 

neural network, which is the neuron and sometimes called perceptron. We 

will discuss it in some detail, and we will deep dive because there’s much 

to cover in this chapter. Then we will illustrate the types of possible layers 

in a neural network, such as input, hidden, and output layers. As we are 

showing you the layers, we’ll describe the difference between shallow and 

deep neural networks. After describing the neuron, we will show you some 

of the activation functions you can use to build a better neural network. 

Then we’ll get into the learning procedure called gradient descent, an 

algorithm that helps learning happen. We will describe different types, 

such as full-batch, stochastic, and mini-batch gradient descent. And as 

learning happens, we need to check how good it is. We can do this with loss 

functions, so we will show you the different loss functions you can use to 

validate the learning of your model. Then we need to propagate the errors 

that your model makes to get better weights and good performance; and 
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to do that, we need to show you the backpropagation algorithm and how 

it works. After describing this learning framework of neural networks, we 

think it is fair to show you some traps to avoid falling into in this area, called 

vanishing and exploding gradients. And last, we will go from theoretical to 

practical by refreshing your mind with some TensorFlow basics.

�Perceptron
The most fundamental unit of a deep neural network is called an artificial 

neuron, which takes an input, processes it, passes it through an activation 

function like the sigmoid, and returns the activated output. In this section, 

we are only going to talk about the perceptron model proposed before the 

“activation” part came into the picture.

A Perceptron is the smallest layer in the neural network. It is a linear 

classifier (binary), and it is used in supervised learning. It helps to classify 

the given input data; the output value is f(x) calculated as f(x) = ⟨w, x⟩ + b

where w is a vector of weights and ⟨·, ·⟩ denotes the dot product. We 

use the dot product as we are computing a weighted sum. The sign of f(x) 

is used to classify x as either a positive or a negative instance.

Since the inputs are fed directly to the output via the weights, the 

perceptron can be considered the simplest kind of feedforward network.

Before diving into the mathematics that powers this algorithm, let’s 

see a little history on how they got the concept of the perceptron, which is 

neuron as we talked about in Chapter 1.

The very first step toward the perceptron we use today was taken in 

1943 by Warren MuCulloch (a neuroscientist) and Walter Pitts (a logician), 

by mimicking the functionality of a biological neuron. Figure 9-1 describes 

the neuron notation.

Chapter 9  Deep Learning Fundamentals



281

As we see in Figure 9-1, there are two sides in this node, g and f; one of 

them takes the input. As we can see in the figure, g take a fixed size vector 

of data x1, …, xn, and performs an aggregation operation. On the other 

hand, the f function makes a decision; this decision is made based on the 

aggregated value in f. Let’s elaborate more on this idea.

Let’s suppose that we want to predict a decision: whether to watch a 

random soccer game or not on TV. The inputs are all Boolean (i.e., {0, 1}) 

and my output variable is also Boolean {0 : Will watch it, 1 : Won’t watch it}.

So, now we need to construct our data variables. Let’s assume that x1 

could be isPremierLeagueOn (I like Premier League more), x2 could be 

isItAFriendlyGame (I tend to care less about the friendliness), x3 could 

be isNotHome (I can’t watch it when I’m running errands, can I?), and x4 

could be isManUnitedPlaying (I am a big Man United fan. GGMU!)

We only have four observations about the data we have, like x3. If x3 is 

1 (not home), then my output will always be 0 (I can’t watch it when I’m 

running errands.), so the neuron will never fire, but we need to have a good 

output note at this point. As we see in the example, these inputs can either be 

excitatory or inhibitory. So what is the difference between them (Table 9-1)?

Figure 9-1.  The notation of a biological neuron
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We need to make an equation to deduce how we can fire this 

perceptron and when we can’t fire it. The formula is just a summation 

equation of all the inputs and the gave the output a domain about how we 

can act with the output we have (Figure 9-2).

We can see that g(x) is just doing a sum of the inputs—a simple 

aggregation—and theta here is called the thresholding parameter. For 

example, if I always watch the game when the sum turns out to be 2 or 

more, the theta is 2 here. This is called the thresholding logic.

Let’s see an example of how it works with the AND Boolean gate 

(Figure 9-3).

Table 9-1.  The Difference Between Excitatory and Inhibitory

Excitatory Inhibitory

Inhibitory inputs are those that have 

maximum effect on the decision making, 

irrespective of other inputs.

Inputs are NOT the ones that will make 

the neuron fire on its own, but they might 

fire it when combined together.

Figure 9-2.  The equations that power the perceptron

Chapter 9  Deep Learning Fundamentals



283

An AND function neuron would only fire when ALL the inputs are 

ON, like when g(x) ≥ 3. Researchers should know that the original M-P 

(MuCulloch, Pitts) neuron is not so good at everything we work with. It 

has some limitations, so let’s see those limitations. We’ll explain the M-P 

neuron but we may see some questions that the M-P neuron can’t handle:

•	 What about non-Boolean (say, real) inputs? We haven’t 

any Boolean inputs; we have ranges and variety of 

numbers, like {1, 2, 4, 5}.

•	 Do we always need to hand code the threshold? We 

should have some dynamic work with the threshold 

values.

•	 Are all inputs equal? What if we want to assign more 

importance to some inputs?

•	 What about functions that are not linearly separable, 

say, the XOR function?

We see the limitations in this model. I hope it is now clear why we 

are not using the M-P neuron today. Overcoming the limitations of the 

M-P neuron, Frank Rosenblatt, an American psychologist, proposed the 

classical perception model, the mighty artificial neuron, in 1958. It is a 

more generalized computational model than the McCulloch-Pitts neuron, 

Figure 9-3.  The AND Boolean gate operation— neuron style

Chapter 9  Deep Learning Fundamentals



284

where weights and thresholds can be learned over time. But what’s the 

difference between McCulloch-Pitts and Minsky-Papert.

The perceptron model, proposed by Minsky-Papert (Figure 9-4), is a 

more general computational model than the McCulloch-Pitts neuron. It 

overcomes some of the limitations of the M-P neuron by introducing the 

concept of numerical weights (a measure of importance) for inputs, and 

a mechanism for learning those weights. Inputs are no longer limited to 

Boolean values, as is the case of an M-P neuron; it supports real inputs as 

well, which makes it more useful and generalized. This is the perceptron, 

the most fundamental unit of a deep neural network, called an artificial 

neuron.

Let’s talk about the perceptron model and how it works in a dynamic 

way. As we look at the new version of the perceptron, we see one 

difference: we have a new variable called weights. We take a weighted sum 

of the inputs and set the output as one only when the sum is more than an 

arbitrary threshold (theta). However, according to the convention, instead 

of hand coding the thresholding parameter theta, we add it as one of the 

inputs, with the weight -theta as shown in the following, which makes it 

Figure 9-4.  The Minsky perceptron model
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learnable. This is called the PLA (Perceptron Learning Algorithm); the 

equation will change in this way:

y if w x
i

n

i i= ³
=
å1 0

0

y if w x
i

n

i i= <
=
å0 0

0

where x andw, 0 01= = -q

Let’s go back to our friend predicting whether I would watch a random 

game of soccer on TV or not using the behavioral data available. And let’s 

assume my decision is solely dependent on three binary inputs (binary 

used for simplicity).

Figure 9-5.  The soccer example implementation using a perceptron

One point about the preceding photo is that w0 is the bias value. Now, 

let’s continue the example. A soccer freak may have a very low threshold 

and may watch any soccer game irrespective of the league, club, or 

importance of the game [theta = 0]. On the other hand, a selective viewer 

may only watch a soccer game that is a Premier League game, featuring 

a Man United game, that is not friendly [theta = 2]. The key points are 

the weights and the bias, and they will depend on the data (my viewing 

history, in this case).
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Bias occurs when an algorithm has limited flexibility to learn the true 

signal from the dataset.

Let’s take an example of Boolean functions using a perceptron. We 

will use the OR function, which is the easiest one of all Boolean functions 

(Figure 9-6). We will make you try to solve this equation by using the AND 

Boolean function, but for now, let’s use OR.

But by the way, is XOR (exclusive OR) reliable to use with the 

perceptron model? The answer is no, because we can’t separate nonlinear 

functions to positive and negative tuples. The table of XOR is shown in 

Figure 9-7.

Figure 9-6.  The equation of an OR Gate
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As we see, it isn’t separable output values, where in the OR function it 

is separable; let’s see this in graphs (Figure 9-8).

Figure 9-7.  The XOR Gate implementation using a perceptron
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But what about a multilayer perceptron? We will talk about it later, 

but we should first conclude about these two approaches of perceptron 

(Figure 9-9)

Figure 9-8.  The OR gate (left); the XOR gate (right)

Figure 9-9.  The McCulloch neuron vs. perceptron

We don’t need to make a further comparison; just the preceding 

equations and the explanations will lead you to understand the concept. 

From this section, we aim to allow you get to know the perceptron learning 

algorithm, which is based on two types of perceptron: single perceptron 
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and multiple perceptrons. Before we talk about the types of perceptron, we 

need to list the major components of a perceptron:

•	 Input: All the features become the input for a 

perceptron. We denote the input of a perceptron by 

[x1, …,   xn], where x represents the feature value and n 

represents the total number of features. We also have 

a special kind of input called the bias. In the image 

(Figure 9-10), we have described the value of the  

bias as w0.

•	 Weights: The values that are computed over the time 

of training the model. Initially, we start the value of 

weights with some initial value and these values get 

updated for each training error. We represent the 

weights for a perceptron by [w1, …,   wn].

•	 Bias: A bias neuron allows a classifier to shift the 

decision boundary left or right. In algebraic terms, the 

bias neuron allows a classifier to translate its decision 

boundary. It aims to “move every point a constant 

distance in a specified direction.”

•	 Bias helps to train the model faster and with better 

quality.

•	 Weighted summation: Weighted summation is the sum 

of the values that we get after the multiplication of each 

weight wn associated with each feature value xn. We 

represent the weighted summation by 
i

n

i iw x
=
å

0

.

•	 Step/activation function: The role of activation 

functions is to make neural networks nonlinear. For 

linear classification, for example, it becomes necessary 
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to make the perceptron as linear as possible. We will 

talk about this in the next sections, but it’s good to 

know about it.

•	 Output: The weighted summation is passed to the step/

activation function, and whatever value we get after 

computation is our predicted output.

�Single Perceptron
A single perceptron is a basic fundamental function in the neural network, 

and it only works with a binary classifier. We’ve already talked a lot about 

it. But if we have more than two classes, we will want to get into the 

multilayer perceptron.

Figure 9-10.  The perceptron in detail steps
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�Multilayer Perceptron
A multilayer perceptron (MLP) contains one or more hidden layers (apart 

from one input and one output layer). While a single layer perceptron 

can only learn linear functions, a multilayer perceptron can also learn 

nonlinear functions (Figure 9-11).

Figure 9-11.  Multilayered perceptron architecture
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•	 Input layer: The input layer has three nodes. The bias 

node has a value of 1. The other two nodes take X1 

and X2 as external inputs (which are numerical values 

depending upon the input dataset). As discussed, no 

computation is performed in the input layer, so the 

outputs from nodes in the input layer are 1, X1, and X2, 

respectively, which are fed into the hidden layer.

•	 Hidden layer: The hidden layer also has three nodes, 

with the bias node having an output of 1. The output 

of the other two nodes in the hidden layer depends on 

the outputs from the input layer (1, X1, X2) as well as the 

weights associated with the connections (edges). Then 

these edges are connected to the output layer.

Note  f refers to the activation function. These outputs are then fed 
to the nodes in the output layer.

•	 Output layer: The output layer has two nodes that 

take inputs from the hidden layer and perform similar 

computations as shown for the highlighted hidden node. 

The values calculated (Y1 and Y2) as a result of these 

computations act as outputs of the multilayer perceptron.

�Recap
To recap, we learned in this section that the perceptron is the fundamental 

function of the neural network. When you have only one perceptron, you 

have a single perceptron that will solve binary classification problems; but 

if you have a nonlinear classification problem, you will need to use more 

than one perceptron to solve this problem, like OR and XOR.
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�Different Neural Network Layers
Before we start working with layers in the neural network, we should 

understand exactly what layers are. Layer is a general term that applies to 

a collection of nodes (perceptron), which contain an activation function 

(e.g., sigmoid). Patterns are presented to the network via the input layer, 

which communicates to one or more hidden layers where the actual 

processing is done via a system of weighted connections (edges). The 

hidden layers then link to an output layer.

Figure 9-12 illustrates each layer.

A neural network is made up of an input layer, one or more hidden 

layers, and an output layer. Every layer has one or more perceptrons, which 

combine together to make a layer. Every layer has a name, which describes 

its position.

Figure 9-12.  Multilayered neural network architecture
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�Input Layer
The first layer in Figure 9-12 is called the input layer, which has nodes; the 

nodes of the input layer are passive. Passive means that they do not modify 

the data; they receive a single value on their input and duplicate the value 

to their multiple outputs. All of the input variables are represented as input 

nodes; each value from the input layer is duplicated and sent to all of the 

hidden nodes, which are contained in the hidden layer. This takes us to a 

new question: what is the hidden layer?

�Hidden Layer(s)
All of the input variables that came from the input layer are combined 

across one or more nodes (summation node or activation node) in the 

hidden layer. This essentially creates new features, derived from the input 

data provided, and then through these features to a new hidden layer and so 

on to get into the output layer. All input nodes are connected to all nodes 

in the hidden layer. We should note that the key point of difference between 

shallow and deep neural networks is the number of hidden layers. If you 

have more than one connected hidden layer, it’s a deep neural network, but 

if we have only one hidden layer, it’s a shallow neural network. As we see, 

the input data is going to the hidden layer with bias and weights parameters. 

But is there only one way that data is weighted? The answer is no.

Hidden neural network layers are set up in many different ways. In 

some cases, weighted inputs are randomly assigned. In other cases, they 

are fine-tuned and calibrated through a process called backpropagation. 

But we have many types of neural networks (sequence, convolution, 

feedforward, etc.), so there are different ways to set up these hidden layers 

to generate various results. Convolutional neural networks focus on image 

processing; recurrent neural networks contain an element of memory; 

and simple feedforward neural networks work in a straightforward way on 

training data sets.
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So, a full description of the hidden layer is: artificial neurons take in 

a set of weighted inputs and produce an output through an activation 

function. It is a typical part of nearly any neural network, in which 

engineers simulate the types of activities that go on in the human brain.

�Output Layer
The output layer in an artificial neural network is the last layer of neurons, 

which produces given outputs for the program. Though they are made 

much like other artificial neurons in the neural network, output layer 

neurons may be built or observed in a different way, given that they are the 

last “actor” nodes on the network.

�Shallow vs. Deep Neural Networks
Here we don’t want to get too far into comparison. We will just consider 

what makes a shallow network “shallow,” and the same with deep neural 

networks. Neural networks can be recurrent or feedforward; feedforward 

ones do not have any loops in their graph and can be organized in layers. If 

there are many layers, then we say that the network is deep.

But we have a question about what makes a neural network deep. 

Practically speaking, how many layers does a network have to have in order 

to qualify as deep?

Usually, if we have two or more hidden layers, we call it a deep 

neural network. In contrast, a network with only a single hidden layer is 

conventionally called shallow (Figure 9-13).
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We think that a shallow network could perform as well as the deeper 

ones. But there are still questions about this subject. We don’t have an 

accurate answer, but we can produce some points for consideration about 

deep and shallow, and which performs the best:

	 1.	 Maybe a shallow network is more difficult to train 

with our current algorithms.

	 2.	 Maybe a shallow architecture does not fit the kind of 

problems we are usually trying to solve.

	 3.	 It can be argued that the number of units in a 

shallow network grows exponentially with task 

complexity. It may be that if you have a more 

complex task you want your model to fit, you need 

to have more neurons. So in order to be useful, a 

shallow network might need to have more neurons, 

possibly much bigger than a deep network.

These answers may be good to ponder the differences, but with a 

neural network you never know if using it deep or shallow may fit or not. 

But we will see that in a trial and error sequence. The amount of progress 

achieved in deep learning over the last ten years is truly amazing, but most 

Figure 9-13.  The difference between a shallow vs. deep neural 
network
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of this progress was achieved by trial and error. We still lack very basic 

understanding about what exactly makes deep nets work so well. Even the 

list of things that people consider to be crucial for setting up an effective 

deep network seems to change every couple of years.

The conclusion is that we have two designs of the neural network: 

one if you have only one hidden layer we now talk about a shallow neural 

network if the hidden layers exceeded we now talk about the deep neural 

network, There is nothing that says you must use a deep neural network, 

but we assume it may be good for many types of complex data.

�Activation Functions
Neural network activation functions are a mathematical “gate.” The main 

concept of the activation function is the perceptron, and neural network 

activation functions are a crucial component of deep learning.

Activation functions determine the output of a deep learning model; its 

accuracy; and also the computational efficiency of training a model, which 

can make or break a large-scale neural network. The activation function is 

a very important part in neural network architecture, because activation 

functions have a major effect on the neural network’s ability to converge 

and the convergence speed. In some cases, activation functions might 

prevent neural networks from converging in the first place. Their main 

purpose is to convert an input signal of a node in an ANN to an  

output signal.

Activation functions are mathematical equations that determine the 

output of a neural network. After describing the activation function, we 

may still want to know more about what it does. The function is attached 

to each neuron in the network and determines whether it should be fired 

or not; it does this based on whether each neuron’s input is relevant for the 

model’s prediction. Activation functions also help normalize the output of 

each neuron to a range between 1 and 0 or between -1 and 1.
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The question is asked what is the role of the activation function in a 

model? As we saw in the previous section talking about layers, data points 

are transferred from the input layer to the output layer, passed by hidden 

layers. Each neuron has a weight, and multiplying the input number with 

the weight gives the output of the neuron, which is transferred to the next 

layer.

The activation function is located in between the input feeding the 

current neuron and its output going to the next layer (Figure 9-14). It can 

be as simple as a step function that turns the neuron output on and off, 

depending on a rule or threshold. Or it can be a transformation that maps 

the input signals into output signals that are needed for the neural network 

to function.

Let’s visualize the process, which starts from input: multiply input data 

with weights, add bias to them, go through the activation function, and 

then feed to the next layer (Figure 9-15).

Figure 9-14.  The placement of the activation function

Chapter 9  Deep Learning Fundamentals



299

So, after talking about the process, we need to know the types, how to 

use them, how they work, and which one is the reliable one for our neural 

network model.

�Types of Activation Functions
There are three types of activation functions: binary step function, linear 

activation function, and nonlinear activation function.

First, the binary step function is a threshold-based activation function 

(Figure 9-16). What does this mean? It means that it depends on whether 

it is above or below a certain threshold value. If the neuron output is above 

the threshold, the activation neuron will send exactly the same signal to 

the next layer—and vice versa.

Figure 9-15.  The steps of how activation works in a neuron
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But it is still binary, so we can’t use it in multiclassification problems. 

It’s only a trigger function and can’t change any of the data that comes 

from the previous layer, so we need a more complex activation function. 

So let’s talk about the next type of activation function, which is the linear 
activation function (Figure 9-17). It uses the function A = w ∗ x. It takes the 

inputs, multiplied by the weights for each neuron, and creates an output 

signal proportional to the input. In one sense, a linear function is better 

than a step function because it allows multiple outputs, not just yes and no.

Figure 9-16.  A binary activation function
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But does the linear activation function have no problems? Of course 

it has. The problems lie in that it’s a constant function, so we can’t use 

the backpropagation technique (which we will talk about in the next 

sections) because it depends on derivatives. This is a constant function, 

so it has no derivative. The second thing is that it depends on its linearity. 

However many layers we have, it’s still a linear function; we could almost 

say that a neural network with a linear activation function is simply a linear 

regression model. It has limited power and ability to handle the complexity 

of varying parameters of input data, which makes us need to look to a new 

activation function: the nonlinear activation function. Nowadays many 

neural network models use nonlinear activation functions. They allow 

the model to create complex mappings between the network’s inputs 

and outputs, which are essential for learning and modeling complex data 

such as images, video, audio, and data sets that are nonlinear or have 

high dimensionality. They solve problems that faced the linear activation 

function. The types of nonlinear activation functions that are used today in 

Figure 9-17.  How linear activation works
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neural network models are sigmoid/logistic, tanh/hyperbolic tangent, ReLU 

(rectified linear unit), leaky ReLU, softmax, and swish. Let’s take a tour of 

those functions.

Sigmoid or logistic activation function: when we talk about sigmoid, 

we mean probability between 0 and 1 function. The main reason we use 

sigmoid function is that it exists between 0 and 1.

Therefore, it is especially useful for models where we have to predict 

the probability of an output. Since the probability of anything exists only 

between the range of 0 and 1, sigmoid is the right choice. From only 0 and 1,  

let’s make the range wider; we can make the range from -1 to 1. This takes 

us to a new function: tanh or hyperbolic tangent activation function. 

This function is almost like sigmoid but the range is between -1 and 1 

(Figure 9-18). The advantage is that the negative inputs will be mapped 

strongly negative and the zero inputs will be mapped near zero in the tanh 

graph. And it works very well when we work in classification between two 

classes. But there is a function that may be the same as sigmoid; it’s called 

Softmax. This function will calculate the probabilities of each target class 

over all possible target classes.

Later, the calculated probabilities will be helpful for determining the 

target class for the given inputs. It’s almost like the sigmoid function but it 

is divided by all the possible target classes. If the Softmax function is used 

for a multiclassification model, it returns the probabilities of each class 

and the target class will have a high probability. Its equation is:
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x
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Note  Both tanh and logistic sigmoid activation functions are used in 
feedforward nets.

Although we have good function in the range between -1 and 1, 

we need to have x continuous, so now we need to work with the ReLU 

function. It works from zero to infinity. Let’s see how it works, and why it’s 

called rectified. It is called rectified because it’s rectified under zero; if the 

value is below zero it will be zero, but if it equals 0 or above zero it will be 

the value itself.

The conclusion is f(z) is zero when z is less than zero and f(z) is equal to 

z when z is above or equal to zero.

After working with infinity, we now have to work with zero. We mainly 

waste all data under zero, so we create a new activation that gets some of 

the data under zero. It’s called leaky ReLU.
This function works in the same direction as the ReLU function but 

it has some variations; it mainly tries to improve ReLU range. It works 

Figure 9-18.  The difference between sigmoid and tanh
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As we see in the preceding equations, the variation in function is 

that the first parameter in ReLU is equal to x multiplied by 0, as every 

parameter below 0 will equal zero. In leaky ReLU, x is multiplied by 0.01, 

so for every parameter below zero you will have a negative target for this 

input. Google created a new activation function called swish; it performs 

better than ReLU with a similar level of computational efficiency  

(Figure 9-20). Its equation is:

Swish x
x

x
( ) =

- -( )1 exp

with range - infinity, infinity. That is the main variation (Figure 9-19); the 

equation is:

Relu x x( ) = ( )max 0,

LeakyRelu x x x( ) = *( )max 0 01. ,

Figure 9-19.  ReLU function (left); leaky ReLU function (right)
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�Recap
After all, an activation function is just a perceptron. It works to allow neural 

networks to learn: it should be in the output layer, it may be in hidden 

layers, but it has never been in the input layer.

�Gradient Descent
This is the main core of machine learning—the way we work to decrease 

the loss function. Let’s get an in-depth description of gradient descent; 

you can have more than one description with different meanings, but 

let’s see the abstract definition of gradient descent. Gradient descent is 

an optimization algorithm used to minimize some function by iteratively 

moving in the direction of steepest descent, as defined by the negative of 

Figure 9-20.  The swish activation function
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the gradient. In machine learning, gradient descent is an optimization 

algorithm used to find the values of parameters (coefficients) of a function 

(f) that minimizes a cost function (loss). We talk about the cost function 

in the next sections. Gradient descent is best to use when the parameters 

cannot be calculated analytically (e.g., using linear algebra) and must be 

searched for by an optimization algorithm.

We will not write the gradient descent algorithm manually, as it is 

already implemented in packages like Keras. But we need to understand 

the concept of how we optimize the cost function. Cost function is 

simply equal to Loss = (actual output − predicted output). Let’s see how 

gradient descent minimizes the cost function. Gradient descent is an 

efficient optimization algorithm that attempts to find a local or global 

minimum of a function. Gradient descent enables a model to learn the 

gradient or direction that the model should take in order to reduce errors 

(differences between actual y and predicted y). The direction in the simple 

linear regression example refers to how the model parameters B (bias 

or intercept) and W (slope or coefficient) should be tweaked or corrected 

to further reduce the cost function. As the model iterates, it gradually 

converges toward a minimum where further tweaks to the parameters 

produce little or zero changes in the loss, also referred to as convergence, 

where y = WX + B. Let’s see Figure 9-20 to illustrate this linear function.
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Figure 9-21.  A gradient descent step to the minimum point

Let’s explain what happened in this graph. A random position on the 

surface of the graph is the cost of the current values of the coefficients 

(cost). The bottom of the graph is the cost of the best set of coefficients, the 

minimum of the function. Now you will iterate in the cost to get to the goal, 

which is to continue to try different values for the coefficients, evaluate 

their cost, and select new coefficients that have a slightly better (lower) 

cost. Repeating this process enough times will lead to the bottom of the 

graph, and you will know the values of the coefficients that result in the 

minimum cost.

�Recap
Gradient descent is a way to optimize the cost by trying to get the 

minimum optimal values in the cost function. This concept has 

many applications like mini-batch, full batch, and stochastic gradient 

descent, and we will see them in the next sections. Gradient descent 

is a very popular optimization technique in machine learning and 

deep learning and it can be used with most, if not all, of the learning 

algorithms. A gradient is basically the slope of a function: the degree of 
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change of a parameter with the amount of change in another parameter. 

Mathematically, it can be described as the partial derivatives of a set of 

parameters with respect to its inputs. The more the gradient, the steeper 

the slope. Gradient descent is a convex function.

�Batch vs. Stochastic vs. Mini-Batch 
Gradient Descent
Now, let’s look further into those three types. But before we start, we have 

to remind you that the goal of all supervised machine learning algorithms 

is to best estimate a target function (f) that maps input data (X) onto 

output variables (Y). This describes all classification and regression 

problems.

�Batch Gradient Descent
The concept behind batch gradient descent is to update the parameters of 

neural networks once. This process happens after the training example is 

finished, that is, after all the training examples have been passed through 

the network.

For instance, if the training dataset contains 100 training examples, 

then the parameters of the neural network are updated once the training of 

all 100 examples is finished. Table 9-2 lists advantages and disadvantages 

of batch gradient descent.
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We can see that with batch gradient, it is all about the resources you have.

�Stochastic Gradient Descent
In this method, one training sample (example) is passed through the 

neural network at a time and the parameters (weights) of each layer are 

updated with the computed gradient. The parameters of all the layers 

of the network are updated after every training sample. Let’s take an 

example: you have 1,000 training samples, so you now have 1,000 updated 

parameters and every parameter is updated after every individual sample. 

Table 9-3 lists advantages and disadvantages of stochastic gradient 

descent. Following is the equation for stochastic gradient descent; it is 

iterated over “n” times for “n” training samples in the training set.

q q a
q

qj j
j

J: .= -
¶
¶

( )

Table 9-2.  Pros/Cons of Batch Gradient Descent

Advantages Disadvantages

It produces a more stable gradient descent 

convergence and stable error gradient than 

stochastic gradient descent.

The entire training set can 

be too large to process in the 

memory, therefore, additional 

memory might be needed.

It is computationally efficient, as all computer 

resources are not being used to process a single 

sample but rather are being used for all training 

samples.

Depending on computer 

resources, it can take too 

long for processing all the 

training samples as a batch.

It enhances the steps toward the minimum of 

loss function, due to updating the parameters by 

computing the average of all the training samples 

rather than the value of a single sample.
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As we see, every optimization has its advantages and disadvantages, 

which must be considered when choosing which type of gradient descent 

to use. Now let’s talk about the final type we’ve mentioned in this section, 

the mini-batch gradient descent.

�Mini-batch Gradient Descent
Mini-batch gradient is a hybrid system between stochastic and batch 

gradient descent. It is a variation of the gradient descent algorithm that 

splits the training dataset into small batches that are used to calculate 

model error and update model coefficients. What mini-batch seeks to do 

is to find the balance between what stochastic does and the efficiency of 

batch gradient. Table 9-4 lists advantages and disadvantages of this type.

Table 9-3.  Pros/cons of Stochastic Gradient Descent

Advantages Disadvantages

It is computationally fast, as only one sample is 

processed at a time.

It can take the gradient descent 

into other directions, because 

its frequent updating to local 

minimum is very noisy.

In this type, we have many updates. That means 

the frequent updates of the steps taken toward 

the minima of the loss function have oscillations, 

which can help to get out of local minimums of 

the loss function.

It loses the advantage of 

vectorized operations, as it deals 

with only a single example at a 

time.

It is easier to fit into memory, due to a single 

training sample being processed by the network.

Frequent updates are 

computationally expensive, 

due to using all resources for 

processing one training sample 

at a time.
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Note T he most used gradient is the mini-batch gradient descent, 
especially in deep learning.

�Recap
In this section, we learned the types of gradient descent. As we see, every 

type has its advantages and disadvantages, so we need to choose between 

them and see what will enhance our model more. We said before that 

mini-batch is the state of the art in deep learning nowadays; that may 

change in the future, but for now we will use it in deep learning. We hope 

you had fun with this section on gradient optimizers.

Ultimately, we only need to know that all this will work to optimize 

model learning and change the equation of cost function to allow the 

model to get the best accuracy while reducing the error rate.

Table 9-4.  The Pros/Cons of Mini-batch Gradient Descent

Advantages Disadvantages

The model update frequency is higher than 

batch gradient descent, which allows for 

a more robust convergence, avoiding local 

minima.

The batched updates provide a 

computationally more efficient process than 

stochastic gradient descent.

You need to configure the “mini-batch 

size” hyperparameter for the learning 

algorithm.

Error information must be 

accumulated across mini-batches 

of training examples, as with batch 

gradient descent.
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�Loss function and Backpropagation
To simplify the neural network algorithm, we can say that any neural 

network can be presented as a black box with two methods, learning and 

predicting, as described in Figure 9-22.

Our main concern in this part of the book is the learning process, 

which takes the inputs and the desired outputs and updates its internal 

state accordingly, so the calculated output gets as close as possible to the 

desired output.

In order to achieve this, we will decompose the learning process into its 

several building blocks or steps, which can be stated in the following order:

	 1.	 Model initialization

	 2.	 Forward propagation

	 3.	 Compute loss

Figure 9-22.  The difference between training and predicting 
methods
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	 4.	 Compute differentiation

	 5.	 Back propagation

	 6.	 Update the weights.

	 7.	 Iterate from step 2 to 6 until convergence.

The first step is model initialization before any learning procedure 

happens. This step is the initial hypothesis, or we can say the random 

guess. In this step, the model you will build will guess a random output 

for a given input. Thus, a random initialization of the model is a common 

practice. In order to understand this analogy, take for instance a person 

who has never played soccer in his life. The very first time he tries to shoot 

the ball, he just shoots it randomly.

The natural step to do after initializing the model with random 

weights is to check its performance. And to check the model performance 

we need first to make it work on the inputs we pass them through the 

network layer and we compare the model output with the actual output 

straightforwardly. This step is called forward-propagation, because the 

calculation flow is going in the natural forward direction from the input 

through the neural network to the output.

At this stage, on the one hand we have the model output of the 

randomly initialized neural network. On the other hand, we have the 

actual output we would like the network to learn, the real output of input 

data we feed to the neural network. Returning to the example of our 

soccer player shooting for the first time, the model output will be the final 

position of the ball (most of the time it will be out/missed), and the actual 

output would be that the ball goes inside the goal. In the beginning, our 

player is just shooting randomly. Let’s say the ball went out—or to the right 

side of the goal—most of the time. What he can learn from this is that he 

needs to shoot a bit more to the left and focus his aim to the goal area next 

time he trains. In order to be able to generalize to any problem, we define 

what we call loss function.
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Basically, it is a performance metric on how well the neural network 

manages to reach its goal of generating outputs as close as possible to the 

desired values. The most intuitive loss function is simply loss = (actual 

output − model output).

Obviously, we can use any optimization technique that modifies the 

internal weights of neural networks in order to minimize the total loss 

function that we previously defined. These techniques can include greedy 

search or even a simple brute-force search, but the most used technique is 

to go to the optimal weights that minimize the loss to its minimum value 

step by step using differentiation.

Using searching techniques or even brute-force might work if the 

model has only very few parameters and we don’t care much about 

precision. However, if we are training a neural network over an array 

of 600x600 inputs (like in image processing), we can very easily reach 

models with millions of weights to optimize and brute-force can’t even be 

imaginable, since it’s a pure waste of computational resources!

Basically, differentiation deals with the derivative of the loss function. 

In mathematics, the derivative of a function at a certain point gives the rate 

or the speed at which this function is changing its values at this point. In 

order to see the effect of the derivative, we can ask ourselves how much 

the total error will change if we change the internal weight of the neural 

network with a certain small value δW.

You model might be composed of only one layer inside the neural 

network between the inputs and the outputs. But in many cases, more 

layers are needed, in order to reach more variations in the functionality 

of the neural network. For sure, we can always create one complicated 

function that represents the composition of all the layers of the network. 

Although in most cases composing the functions is very hard; plus, for 

every composition one has to calculate the dedicated derivative of the 

composition (which is not at all scalable and very error prone). In order 

to solve the problem, luckily for us, the derivative is decomposable, thus it 

can be backpropagated. We have the starting point of errors, which is the 
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loss function, and we know how to derive it. So if we know how to derive 

each function from the composition, we can propagate back the error from 

the end to the start.

As we presented earlier, the derivative is just the rate at which the error 

changes, relative to the weight changes.

Note I n real-life problems we shouldn’t update the weights with 
such big steps. Since there are a lot of nonlinearities, any big change 
in weights will lead to chaotic behavior. We should not forget that 
the derivative is only local at the point where we are calculating the 
derivative.

Thus, a general rule of weight updates is the delta rule: 

NewWeight = OldWeight − CalculatedDerivative ∗ LearningRate The 

learning rate is introduced as a constant (usually very small), in order to 

force the weight to get updated very smoothly and slowly (to avoid big 

steps and chaotic behavior).

Since we update the weights with a small delta step at a time, it will 

take several iterations in order to learn. This is very similar to genetic 

algorithms, where after each generation we apply a small mutation rate 

and the fittest survives. In a neural network, after each iteration the 

gradient descent force updates the weights toward less and less global loss 

function. The similarity is that the delta rule acts as a mutation operator, 

and the loss function acts as a fitness function to minimize. The difference 

is that in genetic algorithms, the mutation is blind. Some mutations are 

bad, some are good, but the good ones have a higher chance to survive. 

However, the weight updates in neural networks are smarter, since they are 

guided by the decreasing gradient force over the error.
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�Loss Function
The loss function is the metric that helps a network understand whether 

it is learning in the right direction. To frame the loss function in simple 

words, consider it as the test score you achieve in an examination. Say you 

appeared for tests with several questions on a certain subject: what metrics 

would you use to understand your performance on this test? Obviously, 

the test score. Assume you answered all the questions, comparing your 

answers for each question with the right answer will give you a score 

metric that assesses your performance on the subject itself. Assuming you 

scored 56, 60, 78, 90, and 96 out of 100 in five consecutive language tests, 

you would clearly see that improving test scores are an indication of how 

well you are performing. Had the test scores been decreasing, then the 

verdict would be that your performance is decreasing and you would need 

to change your studying methods or materials to improve.

Similarly, how does a network understand whether it is improving 

its learning process in each iteration? It uses the loss function, which is 

analogous to the test score. The loss function essentially measures the 

loss from the target. Say you are developing a model to predict whether a 

student will pass or fail, and the chance of passing or failing is defined by 

the probability. So, 1 would indicate that he will pass with 100% certainty 

and 0 would indicate that he will definitely fail.

The model learns from the data and predicts a score of 0.87 for the 

student to pass. So, the actual loss here would be 1.00 – 0.87 = 0.13. If it 

repeats the exercise with some parameter updates in order to improve and 

now achieves a loss of 0.40, it would understand that the changes it has 

made are not helping the network to appropriately learn. Alternatively, 

a new loss of 0.05 would indicate that the updates or changes from the 

learning are in the right direction.

Based on the type of data outcome, we have several standard loss 

functions defined in both machine and deep learning. For regression use 

cases (e.g., where the end prediction would be a continuous number like 
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the marks scored by a student, the number of product units sold by a shop, 

the number of calls received from customers in a contact center), here are 

some popular loss functions available:

Mean Squared Error - Average squared difference between the actual 

and predicted value.

The squared difference makes it easy to penalize the model more for 

a higher difference. So, a difference of 3 would result in a loss of 9, but 

difference of 9 would return a loss of 81.

The mathematical equivalent would be

i

n Actual Predicted

k=
å

-( )
0

2

TensorFlow equivalent

tf.losses.mean_squared_error(labels, predictions)

Mean Absolute Error is the average absolute error between actual and 

predicted.

The mathematical equivalent would be

i

n

Actual Predicted
=
å -

0

TensorFlow equivalent is

tf.metrics.mean_absolute_error(labels, predictions)

# OR

tf.losses.absolute_difference(labels, predictions)

Similarly, a few other variants are

•	 MAPE – Mean absolute percentage error

tf.keras.losses.mean_absolute_percentage_error(labels, predictions)
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•	 MSLE – Mean square logarithmic error

tf.keras.losses.mean_squared_logarithmic_error(labels, 

predictions)

For categorical outcomes, your prediction would be for a class, like 

whether a student will pass (1) or fail (0), whether the customer will make 

a purchase or not, whether the customer will default on payment or not, 

and so on. Some use cases may have multiple classes as an outcome, like 

classifying types of disease (Type A, B, or C); classifying images as cats, 

dogs, cars, horses, landscapes; and so on.

In such cases, the losses defined in the preceding cannot be used due 

to obvious reasons. We would need to quantify the outcome of the class 

as probability and define losses based on the probability estimates as 

predictions.

A few popular choices for losses for categorical outcomes in Keras are 

as follows:

Binary cross-entropy defines the loss when the categorical outcome  

is a binary variable, that is, with two possible outcomes: (Pass/Fail) or  

(Yes/No).

The mathematical form would be 

Loss y y y= - * ( )+ -( )* -( )éë ùûlog y logˆ ˆ1 1

TensorFlow equivalent is

tf.backend. binary_crossentropy(y_actual, y_predicted)

Categorical cross-entropy defines the loss when the categorical 

outcomes is nonbinary, that is, more than two possible outcomes: (Yes/

No/Maybe) or (Type 1/ Type 2/… Type n).

The mathematical form would be Loss yij
i

n

j

m

= * ( )
==
åå

00

log y ji
ˆ
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TensorFlow equivalent is

tf.keras.losses.categorical_crossentropy(y_actual, y_predicted)

# OR

tf.losses.softmax_cross_entropy(y_actual, y_predicted)

�Backpropagation
Understanding the backpropagation algorithm can take some time. If you 

are looking for a fast implementation of a neural network, you can skip 

this section, as modern libraries have the capability to autodifferentiate 

and perform the entire training procedure. However, understanding this 

algorithm would definitely give you insights into problems related to deep 

learning (learning problems, slow learning, exploding gradients, and 

diminishing gradients).

Gradient descent is a powerful algorithm, yet it is a slow method when 

the number of weights increases. In the case of neural networks having 

parameters in the range of thousands, training each weight with respect 

to the loss function—or, rather, formulating the loss as a function of all the 

weights—becomes painstakingly slow and extremely complex to use for 

practical purposes.

Thanks to the path-breaking paper by Geoffrey Hinton and his 

colleagues in 1986, we have an extremely fast and beautiful algorithm 

that helps us to find the partial derivative of the loss with respect to each 

weight. This algorithm is the workhorse of the training procedure for every 

deep learning algorithm. More detailed information can be found here: 

www.cs.toronto.edu/~hinton/backprop.html.

It is the most efficient possible procedure to compute the exact 

gradient, and its computational cost is always of the same O() complexity 

as computing the loss itself. The proof of backpropagation is beyond the 

scope of this book; however, the intuitive explanation of the algorithm can 

give you an excellent insight into its complex working.
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For backpropagation to work, two basic assumptions are made 

regarding the error function:

	 1.	 Total error can be written as a summation of 

individual errors of training samples/minibatch, 

E = ∑kEk.

	 2.	 Error can be written as a function of outputs of the 

network.

Backpropagation consists of two parts:

	 3.	 Forward pass, wherein we initialize the weights and 

make a feedforward network to store all the values

	 4.	 Backward pass, which is performed to have the 

stored values update the weights.

Partial derivatives, chain rules, and linear algebra are the main tools 

required to deal with backpropagation (Figure 9-23).

Chapter 9  Deep Learning Fundamentals



321

Initially, all the edge weights are randomly assigned. For every input in 

the training dataset, the ANN is activated and its output is observed. This 

output is compared with the desired output that we already know, and the 

error is “propagated” back to the previous layer. This error is noted, and 

the weights are “adjusted” accordingly. This process is repeated until the 

output error is below a predetermined threshold.

Once the preceding algorithm terminates, we have a “learned” ANN, 

which we consider to be ready to work with “new” inputs. This neural 

network is said to have learned from several examples (labeled data) and 

from its mistakes (error propagation).

Curious readers should investigate the original paper on 

backpropagation. We have provided a list of resources and blogs to 

understand the algorithm in greater depth. However, when it comes to 

Figure 9-23.  How backpropagation works
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implementation, you will hardly write your own code on backpropagation, 

as most of the libraries support automatic differentiation, and you won’t 

really want to tweak the backpropagation algorithm.

In layman’s language, in backpropagation, we try to sequentially 

update the weights, first by making a forward pass on the network, after 

which we first update the weights of the last layer, using the label and last 

layer outputs, then subsequently use this information recursively on the 

layer just before and proceed.

�The Four Fundamental Equations Behind 
Backpropagation

Backpropagation is about understanding how changing the weights and 

biases in a network changes the cost function. Ultimately, this means 

computing the partial derivatives 
¶
¶
C

wjk
l

 and 
¶
¶
C

bj
l

. But to compute those, 

we first introduce an intermediate quantity, d j
l , which we call the error in 

the jth neuron in the lth layer. Backpropagation will give us a procedure to 

compute the error d j
l , and then will relate d j

l  to 
¶
¶
C

wjk
l

 and 
¶
¶
C

bj
l

.

To understand how the error is defined, imagine there is a red square 

in our neural network (red square in Figure 9-24).
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The red square sits at the jth neuron in layer l. As the input to the 

neuron comes in, the red square messes with the neuron’s operation. It 

adds a little change Dz j
l  to the neuron’s weighted input, so that instead 

of outputting s z j
l( ) , the neuron outputs s z zj

l
j
l+( )D . This change 

propagates through later layers in the network, finally causing the overall 

cost to change by an amount 
¶
¶
C

z
z

j
l j

lD .

Now, this square is a good red square, and is trying to help you improve  

the cost, that is, trying to find a Dz j
l  that makes the cost smaller. Suppose 

¶
¶
C

z j
l  has a large value (either positive or negative). Then the red square can 

lower the cost quite a bit by choosing Dz j
l  to have the opposite sign to ¶

¶
C

z j
l

. 

By contrast, if 
¶
¶
C

z j
l  is close to zero, then the red square can’t improve the 

Figure 9-24.  The neuron J in Layer L through the backpropagation 
process
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cost much at all by perturbing the weighted input z j
l . So, as far as the red 

square can tell, the neuron is already pretty near optimal.

This is only the case for small changes Dz j
l , of course. We’ll assume that 

the red square is constrained to make such small changes. And so, there’s a 

heuristic sense in which 
¶
¶
C

z j
l

 is a measure of the error in the neuron.

Motivated by this story, we define the error d j
l  of neuron j in layer l 

by d j
l

j
l

C

z
=
¶
¶

.

To continue, we use δl to denote the vector of errors associated with layer l.  

Backpropagation will give us a way of computing δl for every layer, and then 

relating those errors to the quantities of real interest, 
¶
¶
C

wjk
l

 and 
¶
¶
C

bj
l

.

You might wonder why the red square is changing the weighted input z j
l . 

Surely, it’d be more natural to imagine the red square changing the 

output activation a j
l , with the result that we’d be using 

¶
¶
C

aj
l

 as our 

measure of error. In fact, if you do, these things work out quite similarly 

to the discussion following. But it turns out to make the presentation of 

backpropagation a little more algebraically complicated. So, we’ll stick 

with d j
l

j
l

C

z
=
¶
¶

 as our measure of error.

In classification problems like MNIST, the term “error” is sometimes 

used to mean the classification failure rate. For example, if the neural net 

correctly classifies 96.0 percent of the digits, then the error is 4.0 percent. 

Obviously, this has quite a different meaning from our δ vectors. In 

practice, you shouldn’t have trouble telling which meaning is intended in 

any given usage.

Our target: Backpropagation is based around four fundamental 

equations. Together, those equations give us a way of computing both the 

error δl and the gradient of the cost function. I state the four equations later. 

Be warned, though: you shouldn’t expect to instantaneously assimilate 
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the equations. Such an expectation will lead to disappointment. In fact, 

the backpropagation equations are so rich, that understanding them well 

requires considerable time and patience as you gradually delve deeper into 

the equations. The good news is that such patience is repaid many times 

over. And so, the discussion in this section is merely a beginning, helping 

you on the way to a thorough understanding of the equations.

Here’s a preview of the ways we’ll delve more deeply into the equations 

later in the chapter: I’ll give a short proof of the equations, which helps 

explain why they are true; we’ll restate the equations in algorithm-like 

form as pseudocode, and see how the pseudocode can be implemented 

as real, running Python code; and, in the final section of the chapter, we’ll 

develop an intuitive picture of what the backpropagation equations mean, 

and how someone might discover them from scratch. Along the way we’ll 

return repeatedly to the four fundamental equations, and as you deepen 

your understanding, those equations will come to seem comfortable and, 

perhaps, even beautiful and natural.

Here’s an equation for the error in the output layer, δL. The components 

of δL are given by

d sj
L

j
L j

LC

a
z=

¶
¶

¢( )                                              (Equation 1)

This is a very natural expression. The first term on the right, 
¶
¶
C

aj
L

, 

just measures how fast the cost is changing as a function of the jth output 

activation. If, for example, C doesn’t depend much on a particular output 

neuron, j, then d j
L  will be small, which is what we’d expect. The second 

term on the right, ¢( )s z j
L , measures how fast the activation function σ is 

changing at z j
L .

Notice that everything in Equation 1 is easily computed. In particular, 

we compute z j
L  while computing the behavior of the network, and it’s only 
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a small additional overhead to compute ¢( )s z j
L . The exact form of  

¶
¶
C

aj
L

 will, of course, depend on the form of the cost function. However, 

provided the cost function is known, there should be little trouble 

computing 
¶
¶
C

aj
L

. For example, if we’re using the quadratic cost function, 

then C a y
j

j
L

j= -( )å12
2

, and so 
¶
¶

= -( )C

a
a y

j
L j

L
j , which obviously is easily 

computable.

Equation 1 is a component-wise expression for δL. It’s a perfectly good 

expression, but not the matrix-based form we want for backpropagation. 

However, it’s easy to rewrite the equation in a matrix-based form, as 

δL = ∇aC ⊙ σ′(zL) (Equation 1 a).

Here, ∇aC is defined to be a vector whose components are the partial 

derivatives 
¶
¶
C

aj
L

. You can think of ∇aC as expressing the rate of change 

of C with respect to the output activations. It’s easy to see that Equation 

1 a and Equation 1 are equivalent, and for that reason from now on we’ll 

use Equation 1 interchangeably to refer to both equations. As an example, 

in the case of the quadratic cost we have ∇aC = aL − y, and so the fully 

matrix-based form of Equation 1 becomes δL = (aL − y) ⊙ σ′(zL). As you 

can see, everything in this expression has a nice vector form, and is easily 

computed using a library such as NumPy.

Here is an equation for the error δl in terms of the error in the next 

layer, δl + 1. In particular,

                                   
d d sl l T l lw z= ( )( ) ¢( )+ +1 1 )                                      (Equation 2)

where (wl + 1)T is the transpose of the weight matrix wl + 1 for the (l + 1)th 

layer. This equation appears complicated, but each element has a nice 

interpretation. Suppose we know the error δl + 1 at the (l + 1)th layer. When 

we apply the transpose weight matrix, (wl + 1)T, we can think intuitively of 

this as moving the error backward through the network, giving us some 
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sort of measure of the error at the output of the lth layer. We then take the 

Hadamard product ⊙σ`(zl). This moves the error backward through the 

activation function in layer l, giving us the error δl in the weighted input to 

layer l.

By combining Equation 2 with Equation 1, we can compute the error 

δl for any layer in the network. We start by using Equation 1 to compute δL, 

then apply Equation 2 to compute δL − 1, then Equation 2 again to compute 

δL − 2, and so on, all the way back through the network.

Here’s an equation for the rate of change of the cost with respect to any 

bias in the network. In particular,

                                                    

¶
¶

=
C

bj
l j

ld
                                                           

(Equation 3)

That is, the error d j
l  is exactly equal to the rate of change 

¶
¶
C

bj
l

. This is 

great news, since Equation 1 and Equation 2 have already told us how to 

compute d j
l . We can rewrite Equation 3 in shorthand as 

¶
¶

=
C

b
d , where it 

is understood that δ is being evaluated at the same neuron as the bias b.

Here is an equation for the rate of change of the cost with respect to 

any weight in the network: In in particular,

                                              

¶
¶

= -C

w
a

jk
l k

l
j
l1d

                                                       
(Equation 4)

This tells us how to compute the partial derivatives 
¶
¶
C

wjk
l

 in terms of 

the quantities δl and al − 1, which we already know how to compute. The 

equation can be rewritten in a less index-heavy notation as 
¶
¶

=
C

w
ain outd ,  

where it’s understood that ain is the activation of the neuron input to the 

weight w, and δout is the error of the neuron output from the weight w. 

Zooming in to look at just the weight, w, and the two neurons connected 

by that weight, we can depict this as shown in Figure 9-25.
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A nice consequence of the equation 
¶
¶

=
C

w
ain outd  is that when the 

activation ain is small, ain ≈ 0, the gradient term 
¶
¶
C

w
 will also tend to be 

small. In this case, we’ll say the weight learns slowly, meaning that it’s not 

changing much during gradient descent. In other words, one consequence 

of Equation 4 is that weights output from low-activation neurons learn 

slowly.

There are other insights along these lines, which can be obtained 

from Equation 1 to Equation 4. Let’s start by looking at the output layer. 

Consider the term ¢( )s z j
L  in Equation 1. Recall from the graph of the 

sigmoid function in the last chapter that the σ function becomes very 

flat when s z j
L( )  is approximately 0 or 1. When this occurs, we will have 

¢( ) »s z j
L 0 . And so, the lesson is that a weight in the final layer will learn 

slowly if the output neuron is either low activation (≈0) or high activation 

(≈1). In this case, it’s common to say the output neuron has saturated and, 

as a result, the weight has stopped learning (or is learning slowly). Similar 

remarks also hold for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note the 

σ'(zl) term in Equation 2. This means that d j
l  is likely to get small if the 

neuron is near saturation. And this, in turn, means that any weights input 

to a saturated neuron will learn slowly.

Figure 9-25.  The backpropagation connection between two 
neurons
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This reasoning won’t hold if (w l + 1)Tδl + 1) has large enough entries 
to compensate for the smallness of ¢( )s z j

L . But I’m speaking of the 
general tendency.

Summing up, we’ve learned that a weight will learn slowly if either the 

input neuron is low-activation or if the output neuron has saturated (i.e., is 

either high- or low-activation).

None of these observations is too greatly surprising. Still, they help 

improve our mental model of what’s going on as a neural network 

learns. Furthermore, we can turn this type of reasoning around. The 

four fundamental equations turn out to hold for any activation function, 

not just the standard sigmoid function (that’s because, as we’ll see in a 

moment, the proofs don’t use any special properties of σ). So, we can 

use these equations to design activation functions that have particular 

desired learning properties. As an example, suppose we were to choose 

a (nonsigmoid) activation function σ so that σ′ is always positive and 

never gets close to zero. That would prevent the slowdown of learning that 

occurs when ordinary sigmoid neurons saturate. Later in the book we’ll 

see examples where this kind of modification is made to the activation 

function. Keeping the four equations (Equations 1 to 4) in mind can help 

explain why such modifications are tried, and what impact they can have 

(Figure 9-26).
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�Exploding Gradients
What are exploding gradients?

An error gradient is the direction and magnitude calculated during the 

training of a neural network that is used to update the network weights in 

the right direction and by the right amount.

In deep networks or recurrent neural networks, error gradients can 

accumulate during an update and result in very large gradients. These 

in turn result in large updates to the network weights, and in turn, an 

unstable network. At an extreme, the values of weights can become so 

large as to overflow and result in NaN values.

The explosion occurs through exponential growth by repeatedly 

multiplying gradients through the network layers that have values larger 

than 1.0.

What is the problem with exploding gradients?

In deep multilayer perceptron networks, exploding gradients can result 

in an unstable network that at best cannot learn from the training data 

and at worst results in NaN weight values that can no longer be updated. 

Figure 9-26.  Summing up all of the four equations
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Exploding gradients can make learning unstable. In recurrent neural 

networks, exploding gradients can result in an unstable network that is 

unable to learn from training data and at best a network that cannot learn 

over long input sequences of data.

The exploding gradients problem refers to the large increase in the 

norm of the gradient during training. Such events are due to the explosion 

of the long-term components

How do you know if you have exploding gradients? There are some 

subtle signs that you may be suffering from exploding gradients during the 

training of your network, such as:

•	 The model is unable to get traction on your training 

data (e.g., poor loss).

•	 The model is unstable, resulting in large changes in loss 

from update to update.

•	 The model loss goes to NaN during training.

If you have these types of problems, you can dig deeper to see if you 

have a problem with exploding gradients. There are some less subtle signs 

that you can use to confirm that you have exploding gradients.

•	 The model weights quickly become very large during 

training.

•	 The model weights go to NaN values during training.

•	 The error gradient values are consistently above 1.0 for 

each node and layer during training.

How can we fix exploding gradients? There are many approaches 

to addressing exploding gradients; this section lists some best practice 

approaches that you can use.
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�Re-Design the Network Model
In deep neural networks, exploding gradients may be addressed by 

redesigning the network to have fewer layers.

There may also be some benefit in using a smaller batch size while 

training the network.

In recurrent neural networks, updating across fewer prior time steps 

during training, called truncated backpropagation through time, may 

reduce the exploding gradient problem.

�Use Long Short-Term Memory Networks
In recurrent neural networks, gradient exploding can occur given the 

inherent instability in the training of this type of network, for example, via 

backpropagation through time that essentially transforms the recurrent 

network into a deep multilayer perceptron neural network.

Exploding gradients can be reduced by using the LSTM memory units 

and, perhaps, related gated-type neuron structures.

Adopting LSTM memory units is a new best practice for recurrent 

neural networks for sequence prediction.

�Use Gradient Clipping
Exploding gradients can still occur in very deep multilayer perceptron 

networks with a large batch size and LSTMs with very long input sequence 

lengths.

If exploding gradients are still occurring, you can check for and limit 

the size of gradients during the training of your network.

This is called gradient clipping. Dealing with the exploding gradients 

has a simple but very effective solution: clipping gradients if their norm 

exceeds a given threshold.
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Specifically, the values of the error gradient are checked against a 

threshold value and clipped or set to that threshold value if the error 

gradient exceeds the threshold.

To some extent, the exploding gradient problem can be mitigated 

by gradient clipping (thresholding the values of the gradients before 

performing a gradient descent step).

�Use Weight Regularization
Another approach, if exploding gradients are still occurring, is to check the 

size of network weights and apply a penalty to the network’s loss function 

for large weight values.

This is called weight regularization and often an L1 (absolute weights) 

or an L2 (squared weights) penalty can be used.

Using an L1 or L2 penalty on the recurrent weights can help with 

exploding gradients.

�Vanishing Gradients
The vanishing gradients problem is one example of unstable behavior that 

you may encounter when training a deep neural network.

It describes the situation where a deep multilayer feedforward network 

or a recurrent neural network is unable to propagate useful gradient 

information from the output end of the model back to the layers near the 

input end of the model.

The result is the general inability of models with many layers to learn 

on a given dataset, or they might prematurely converge to a poor solution.

Many fixes and workarounds have been proposed and investigated, 

such as alternate weight initialization schemes, unsupervised pretraining, 

layer-wise training, and variations on gradient descent. Perhaps the most 

common change is the use of the rectified linear activation function that 
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has become the new default, instead of the hyperbolic tangent activation 

function that was the default through the late 1990s and 2000s.

In this section, you will discover how to diagnose a vanishing gradient 

problem when training a neural network model, and how to fix it using an 

alternate activation function and weight initialization scheme.

�Vanishing Gradients Problem
For instance, a neural network is trained using stochastic gradient descent. 

This involves first calculating the prediction error made by the model 

and using the error to estimate a gradient used to update each weight 

in the network so that less error is made next time. This error gradient is 

propagated backward through the network from the output layer to the 

input layer.

It is desirable to train neural networks with many layers, as the 

addition of more layers increases the capacity of the network, making it 

capable of learning a large training dataset and efficiently representing 

more complex mapping functions from inputs to outputs.

A problem with training networks with many layers (e.g., deep neural 

networks) is that the gradient diminishes dramatically as it is propagated 

backward through the network. The error may be so small by the time it 

reaches layers close to the input of the model, that it may have very little 

effect. As such, this problem is referred to as the “vanishing gradients” 

problem.

Vanishing gradients make it difficult to know in which direction the 

parameters should move to improve the cost function.

In fact, the error gradient can be unstable in deep neural networks 

and not only vanish, but also explode, where the gradient exponentially 

increases as it is propagated backward through the network. This is 

referred to as the “exploding gradient” problem.
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The term vanishing gradient refers to the fact that in a feedforward 

network (FFN) the backpropagated error signal typically decreases (or 

increases) exponentially as a function of the distance from the final layer.

Vanishing gradients is a particular problem with recurrent neural 

networks because the update of the network involves unrolling the 

network for each input time step, in effect creating a very deep network 

that requires weight updates. A modest recurrent neural network may have 

200-to-400 input time steps, resulting conceptually in a very deep network.

The vanishing gradients problem may be manifest in a multilayer 

perceptron by a slow rate of improvement of a model during training and 

perhaps premature convergence (e.g., continued training does not result 

in any further improvement). Inspecting the changes to the weights during 

training, we would see more change (i.e., more learning) occurring in the 

layers closer to the output layer and less change occurring in the layers 

close to the input layer.

There are many techniques that can be used to reduce the impact 

of the vanishing gradients problem for feedforward neural networks, 

most notably alternate weight initialization schemes and use of alternate 

activation functions.

Different approaches to training deep networks (both feedforward and 

recurrent) have been studied and applied (in an effort to address vanishing 

gradients), such as pretraining, better random initial scaling, better 

optimization methods, specific architectures, orthogonal initialization, etc.

In this section, we will take a closer look at the use of an alternate 

weight initialization scheme and activation function to permit the training 

of deeper neural network models.

Weight initialization: Update the deep MLP with tanh activation to use 

Xavier uniform weight initialization and report the results.

Learning algorithm: Update the deep MLP with tanh activation to use 

an adaptive learning algorithm such as Adam and report the results.
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Weight changes: Update the tanh and ReLU examples to record and 

plot the L1 vector norm of model weights each epoch as a proxy for how 

much each layer is changed during training and compare results.

Study model depth: Create an experiment using the MLP with tanh 

activation and report the performance of models as the number of hidden 

layers is increased from 1 to 10.

Increase breadth: Increase the number of nodes in the hidden layers of 

the MLP with tanh activation from 5 to 25, and report performance as the 

number of layers are increased from 1 to 10.

�TensorFlow Basics
In Part I, we discussed TensorFlow from installation to its basics; we also 

showed how to build a fully functional model using a toy dataset. We did 

all this in the introduction part to make you feel that it’s easier than you 

think to learn deep learning and start using TensorFlow. But now we need 

to show you the needed fundamentals of TensorFlow, going through the 

same headers but with some depth; for instance, we will reillustrate the 

use of different types of tensor (i.e., placeholder, variable, and constant, 

giving you the concrete tools that you will use to build any TensorFlow 

deep learning models.

So, in this section, we are going to discuss the difference between 

placeholder, variable, and constant tensor types, and also show you the 

properties of tensors. After that we are going to show you the optimization 

framework and approaches that TensorFlow uses in almost any deep 

learning models, going throw the learning rate and understanding 

the mini-batch approach. Last, we will show you the most important 

optimizers in TensorFlow.
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�Placeholder vs. Variable vs. Constant
As we described in Part I, placeholders, variables, and constants are 

key tools for using computational graphs in TensorFlow. So, we have to 

understand the differences and when to best use them to our advantage.

One of the most important distinctions to make with the data is 

whether it is a placeholder or a variable. Variables are the parameters 

of the algorithm and TensorFlow keeps track of how to change these to 

optimize the algorithm. Placeholders are objects that allow you to feed 

in data of a specific type and shape and depend on the results of the 

computational graph, such as the expected outcome of a computation. On 

the other hand, constants have a simple use: while you build a huge model, 

you are going to use some functions that do something for you: matrices 

multiplication or any computational operation. Here you can use the 

constant for these operations to help you do it inside the computational 

graph.

Another important distinction is that in TensorFlow the differences 

between constants and variables are that when you declare some constant, 

its value can’t be changed in the future (also the initialization should be 

with a value, not with an operation). Nevertheless, when you declare a 

variable, you can change its value in the future with tf.assign() method 

(and the initialization can be achieved with a value or operation).

The main way to create a variable is by using the Variable() function, 

which takes a tensor as an input and outputs a variable. This is the 

declaration, and we still need to initialize the variable. Initializing is what 

puts the variable with the corresponding methods on the computational 

graph. Here is an example of creating and initializing a variable:

my_var = tf.Variable(tf.zeros([2,3]))

sess = tf.Session()

initialize_op = tf.global_variables_initializer ()

sess.run(initialize_op)

Chapter 9  Deep Learning Fundamentals



338

Placeholders are just holding the position for data to be fed into the 

graph. Placeholders get data from a feed_dict argument in the session. To 

put a placeholder in the graph, we must perform at least one operation on the 

placeholder. We initialize the graph, declare x to be a placeholder, and define y 

as the identity operation on x, which just returns x. We then create data to feed 

into the x placeholder and run the identity operation. It is worth noting that 

TensorFlow will not return a self-referenced placeholder in the feed dictionary. 

The code is shown here and the resulting graph is shown in the next section:

sess = tf.Session()

x = tf.placeholder(tf.float32, shape=[2,2])

y = tf.identity(x)

x_vals = np.random.rand(2,2)

sess.run(y, feed_dict={x: x_vals})

# Note that sess.run(x, feed_dict={x: x_vals})

# will result in a self referencing error.

We can see what the code looks like in detail with just one variable, 

initialized to all zeros. The gray shaded region is a very detailed view of 

the operations and constants involved. The main computational graph 

with less detail is the smaller graph outside of the gray region in the upper 

right corner. For more details on creating and visualizing graphs. Note 

that TensorFlow will not return a self-refernced placeholder in the feed 

dictionary. In technical speech, running sess.run(x, feed_dict={x: 

x_vals}) in the following graph will return an error .

�Gradient-Descent Optimization Methods 
from a Deep-Learning Perspective
We think that before diving into the TensorFlow optimizers, which is a 

very important topic, it’s also important to understand a few key points 

regarding full-batch gradient descent and stochastic gradient descent, 

including their drawbacks. That is so that one can know and understand 

the need to compare and choose from variants of these optimizers.
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The cost function for a linear neuron with a least square error is quadratic 

(Figure 9-27). When the cost function is quadratic, the direction of the 

gradient resulting from the full-batch gradient-descent method gives the 

best direction for cost reduction in a linear sense, but it doesn’t point to the 

minimum unless the different elliptical contours of the cost function are 

circles. In cases of long elliptical contours, the gradient components might 

be large in directions where less change is required and small in directions 

where more change is required to move to the minimum point.

The problem with this condition is that if we take small steps by 

making the learning rate small, the gradient descent would take a while 

to converge, whereas if we were to use a big learning rate, the gradients 

would change direction rapidly in directions where the cost function had 

curvature, leading to oscillations. The cost function for a multilayer neural 

network is not quadratic but rather is mostly a smooth function. Locally, 

such nonquadratic cost functions can be approximated by quadratic 

functions, and so the problems of gradient descent inherent to elliptical 

contours still prevail for nonquadratic cost functions.

Figure 9-27.  The difference between many cost functions

Chapter 9  Deep Learning Fundamentals



340

The best way to get around this problem is to take larger steps in those 

directions in which the gradients are small but consistent, and take smaller 

steps in those directions that have big but inconsistent gradients. This can 

be achieved if, instead of having a fixed learning rate for all dimensions, we 

have a separate learning rate for each dimension.

Another big problem with neural networks is that the cost functions 

are mostly nonconvex, so the gradient-descent method might get stuck at 

local minimum points, leading to a suboptimal solution.

Note T he nonconvex nature of the neural network is the result of 
the hidden layer units that have nonlinear activation functions, such 
as sigmoid.

Full-batch gradient descent uses the full dataset for the gradient 

computation. While this is good for convex cost surfaces, it has its own 

problems in cases of nonconvex cost functions. For nonconvex cost 

surfaces with full-batch gradients, the model is going to end up with 

the minima in its basin of attraction. If the initialized parameters are in 

the basin of attraction of a local minimum that doesn’t provide good 

generalization, a full-batch gradient would give a suboptimal solution.

With stochastic gradient descent, the noisy gradients computed may 

force the model out of the basin of attraction of the bad local minima—one 

that doesn’t provide good generalization—and place it in a more optimal 

region. Stochastic gradient descent with single data points produces very 

random and noisy gradients. Gradients with mini-batches tend to produce 

much more stable estimates of gradients when compared with gradients of 

single data points, but they are still noisier than those produced by the full 

batches.
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Ideally, the mini-batch size should be carefully chosen such that the 

gradients are noisy enough to avoid or escape bad local minima points 

but stable enough to converge at global minima or a local minimum that 

provides good generalization.

In Figure 9-28, the dotted arrows correspond to the path taken 

by stochastic gradient descent (SGD), while the continuous arrows 

correspond to the path taken by full-batch gradient descent. Full-batch 

gradient descent computes the actual gradient at a point, and if it is in 

the basin of attraction of a poor local minimum, gradient descent almost 

certainly ensures that the local minima L is reached. However, in the case 

of stochastic gradient descent, because the gradient is based on only a 

portion of the data and not on the full batch, the gradient direction is 

only a rough estimate. Since the noisy rough estimate doesn’t always 

point to the actual gradient at point C, stochastic gradient descent may 

escape the basin of attraction of the local minima and fortunately land 

in the basin of a global minima. Stochastic gradient descent may escape 

the global minima basin of attraction too, but generally if the basin of 

attraction is large and the mini-batch size is carefully chosen so that the 

gradients it produces are moderately noisy, stochastic gradient descent 

is most likely to reach the global minima G (as in this case) or some 

other optimal minima that has a large basin of attraction. For nonconvex 

optimization, there are other heuristics as well, such as momentum, 

which when adopted along with stochastic gradient descent increases the 

chances of the SGD’s avoiding shallow local minima. Momentum generally 

keeps track of the previous gradients through the velocity component. 

So, if the gradients are steadily pointing toward a good local minimum 

that has a large basin of attraction, the velocity component would be 

high in the direction of the good local minimum. If the new gradient is 

noisy and points toward a bad local minimum, the velocity component 

would provide momentum to continue in the same direction and not get 

influenced by the new gradient too much.
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Another impediment to optimizing nonconvex cost functions is 

the presence of saddle points. The number of saddle points increases 

exponentially with the dimensionality increase of the parameter space of 

a cost function. Saddle points are stationary points (i.e., points where the 

gradient is zero) but are neither a local minimum nor a local maximum 

point. Since the saddle points are associated with a long plateau of points 

with the same cost as that of the saddle point, the gradient in the plateau 

region is either zero or very close to zero. Because of this near-zero 

gradient in all directions, gradient-based optimizers have a hard time 

coming out of these saddle points. Mathematically, to determine whether 

a point is a saddle point, the Eigenvalues of the Hessian matrix of the cost 

function must be computed at the given point. If there are both positive 

and negative Eigenvalues, then it is a saddle point.

Figure 9-28.  The steps of SGD algorithms
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�Learning Rate in the Mini-batch Approach 
to Stochastic Gradient Descent
When there is high redundancy in the dataset, the gradient computed on a 

mini-batch of data points is almost the same as the gradient computed on 

the whole dataset, provided the mini-batch is a good representation of the 

entire dataset. In such cases, computing the gradient on the whole dataset 

can be avoided, and instead the gradient on the mini-batch of data points 

can be used as the approximate gradient for the whole dataset. This is the 

mini-batch approach to gradient descent, which is also called mini-batch 

stochastic gradient descent. When, instead of using a mini-batch, the 

gradients are approximated by one data point, it is called online learning 

or stochastic gradient descent. However, it is always better to use the mini-

batch version of stochastic gradient descent over online learning, since 

the gradients for the mini-batch method are less noisy compared with the 

online mode of learning. Learning rate plays a vital role in the convergence 

of mini-batch stochastic gradient descent. The following approach tends to 

provide good convergence:

•	 Start with an initial learning rate.

•	 Increase the learning rate if the error reduces.

•	 Decrease the learning rate if the error increases.

•	 Stop the learning process if the error ceases to reduce.

�Summary
As we will see in the next section, the different optimizers adopt an 

adaptive learning-rate approach in their implementations.
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CHAPTER 10

Improving Deep 
Neural Networks
�Optimizers in TensorFlow
We’re still on the subject of gradient descent. But let’s now talk about 

gradient optimization, because of its importance to gradient descent. It is 

an optimization method for finding the minimum of a function, and it’s 

important in deep learning. It works to update the weights of the neural 

network through backpropagation.

So what are the optimizations of the types of gradient descent we 

talked about previously (batch, mini-batch, and stochastic)? Let’s start by 

talking about the benefits of these optimization methods:

	 1.	 Modifying the learning rate component, α

	 2.	 Modifying the gradient component, ∂L/∂w

	 3.	 Modifying both (α, and ∂L/∂w)

We mention ∂L/∂w as a function of the gradient (wnew=w- α ∂L/∂w). 

This is the equation that optimizers try to optimize. To start, I think every 

optimizer is an optimizer of the optimizer. That’s a very weird phrase but 

it's true, for example, Adadelta and RMSprop are optimizers of Adagrad. 

Let’s see an image that may help show the connections between all 

optimizers (Figure 10-1).
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The most used type of optimizer in deep learning is mini-batch. 

We talked before about why it’s the most used, so let’s now get into the 

adaptive learning rate algorithms, Nesterov accelerated gradient (NAG) 

and momentum, and adaptive learning methods.

Usage:

train_op = tf.train.GradientDescentOptimizer (learning_rate).

minimize(cost)

�The Notation to Use
t -> is for time step

w -> weight/parameter which we want to update

α -> learning rate

∂L/∂w -> gradient of L, the loss function to minimize

Figure 10-1.  The optimizers tree
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�Momentum
This gradient optimizer has a variable that makes the gradient converge 

very fast, as it does not depend only on the current gradient to update the 

weight. Gradient descent with momentum replaces the current gradient 

with V (which stands for velocity), the exponential moving average 

of current and past gradients. Momentum-based methods introduce 

a component called velocity V that dampens the parameter update 

when the gradient computed changes sign, whereas it accelerates the 

parameter update when the gradient is in the same direction of velocity. 

This introduces faster convergence as well as fewer oscillations around 

the global minima, or around a local minimum that provides good 

generalization. The update rule for momentum-based optimizers is as 

follows:
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Default value β = 0.9, where α is the momentum parameter and 

η is the learning rate. The terms vi
t  and vi

t+1  represent the velocity at 

iterations t and (t + 1), respectively, for the ith parameter. Similarly, vi
t  

and vi
t+1  represent the weight of the ith parameter at iterations t and 

(t + 1), respectively, when the cost function reaches the local minimum. 

When we use gradient descent, the parameters are stopped updating 

and in this local minimum, but when we use the momentum we will see 

that the parameters don’t stop updating. For example, the velocity is still 

updating because it can’t be a zero value. The prior velocity would drive 

the algorithm out of the local minima, considering the local minima has 

a small basin of attraction. The velocity or the momentum of gradient 

descent would be in that direction, as vi
t+1  would be nonzero because 

of the nonzero velocity from prior gradients. Also, if the prior gradients 
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consistently pointed toward a global minimum or a local minimum with 

good generalization and a reasonably large basin of attraction, the velocity 

or the momentum of gradient descent would be in that direction. So, even 

if there were a bad local minimum with a small basin of attraction, the 

momentum component would not only drive the algorithm out of the bad 

local minima but also would continue the gradient descent toward the 

global minima or the good local minima.

Usage:

train_op = tf.train.MomentumOptimizer.(learning_

rate=0.001,momentum=0.9,use_nesterov=False)

�Nesterov Accelerated Gradient
After momentum had gained in popularity, a similar update was 

implemented using Nesterov accelerated gradient (NAG; Sutskever et al., 

2013). This update utilizes V, the exponential moving average of what I 

would call projected gradients.

w w V

V V
L

w

t t t

t t

+

- *

= -

= + -( ) ¶
¶

1

1 1

a

b b

The last term in the second equation is a projected gradient. This value 

can be obtained by going one step ahead using the previous velocity. 

This means that for this time step t, we have to carry out another forward 

propagation before we can finally execute the backpropagation. Here’s 

how it goes:

	 1.	 Update the current weight w to a projected weight 

w∗ using the previous velocity.

w∗ = wt − αVt − 1
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	 2.	 Carry out forward propagation, but using this 

projected weight.

	 3.	 Obtain the projected gradient ∂L/∂w∗.

	 4.	 Compute V and w accordingly.

Note T he original Nesterov accelerated gradient paper (Nesterov, 
1983) was not about stochastic gradient descent and did not 
explicitly use the gradient descent equation. Hence, a more 
appropriate reference is the aforementioned publication by Sutskever 
et al. in 2013, which described NAG’s application in stochastic 
gradient descent.

�Adagrad
Adaptive gradient (Adagrad) is mostly like gradient descent but with 

some modifications. Instead of having a global learning rate, the learning 

rate is normalized for each dimension on which the cost function is 

dependent. The learning rate in each iteration is the global learning rate 

divided by the l2 norm of the prior gradients up to the current iteration 

for each dimension. It works on the learning rate component by dividing 

the learning rate by the square root of S, which is the cumulative sum of 

current and past squared gradients.

Sometimes sparse features that don’t show up much in the data can 

be very useful to an optimization problem. However, with basic gradient 

descent or stochastic gradient descent, the learning rate gives equal 

importance to all the features in each iteration. Since the learning rate 

is the same, the overall contribution of nonsparse features would be 

much more than that of sparse features. Hence, we end up losing critical 

information from the sparse features. With Adagrad, each parameter is 

updated with a different learning rate.
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The sparser the feature is, the higher its parameter update would be in 

an iteration. This is because for sparse features the quantity would be less 

and the overall learning rate would be high. It may be a very good use in 

NLP or image processing because of data sparsity. Let’s see the equation 

that makes what we’re saying sensible: S is initialized by 0.
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So, we note in this section that we try to adapt the learning rate to get 

the minima of cost function, one of the main reasons for creating these 

optimizations. Instead of a common learning rate for all parameters, we 

want to have separate learning rate for each. So Adagrad keeps the sum 

of squares of parameter-wise gradients and modifies individual learning 

rates using this. As a result, parameters occurring more often have smaller 

gradients.

�Adadelta
Adadelta is an extension of Adagrad and it also tries to lessen Adagrad’s 

aggressive, monotonically reducing of the learning rate, it also focuses on 

the learning rate component. Adadelta is probably short for “adaptive 
delta,” where delta here refers to the difference between the current 

weight and the newly updated weight. In Adadelta we do not need to set 

the default learning rate, as we take the ratio of the running average of the 

previous time steps to the current gradient.
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Usage:

train_op = tf.train.AdadeltaOptimizer(learning_rate=0.001, 

rho=0.95, epsilon=1e-08)

where decay represents α, epsilon represents ε, and η represents the 

learning rate.

�RMSprop
Root mean square prop or RMSprop (Hinton et al., 2012) is another 

adaptive learning rate that is an improvement of Adagrad. Instead of taking 

the cumulative sum of squared gradients like in Adagrad, we take the 

exponential moving average of these gradients.
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Taking an overall view, we will see that RMSprop is mostly like 

Adadelta but it has one difference. The difference between Adadelta and 

RMSprop is that Adadelta removes the use of the learning rate parameter 

completely by replacing it with D, the exponential moving average of 

squared deltas.
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Usage:

train_op = tf.train.RMSPropOptimizer(learning_rate=0.001,  

decay =0.9, momentum=0.0, epsilon=1e-10)

�Adam
Adaptive moment estimation, or Adam (Kingma & Ba, 2014), is a 

combination of momentum and RMSprop. It acts upon the gradient 

component by using V, the exponential moving average of gradients (like 

in momentum) and the learning rate component by dividing the learning 

rate α by the square root of S, the exponential moving average of squared 

gradients (like in RMSprop).
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Note T he ^ terms are actually bias-corrected averages to ensure 
that the values are not biased toward 0.

Proposed default values by the authors:

𝛼 = 0.001

𝛽₁ = 0.9

𝛽₂ = 0.999

𝜀 = 10-8
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Adam is computationally efficient and has very little memory 

requirements. The Adam optimizer is one of the most popular gradient 

descent optimization algorithms.

Usage:

train_op=tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9, 

beta2=0.999,epsilon=1e-08)

�Nadam (Adam + NAG)
Nadam is employed for noisy gradients or gradients with high curvatures. 

The learning process is accelerated by summing up the exponential decay 

of the moving averages for the previous and current gradient, Nadam 

makes use of Nesterov to update the gradient one step ahead by replacing 

the previous V̂  in the earlier equation with the current V̂ :
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Default values (taken from Keras):

α = 0.002

β₁ = 0.9

β₂ = 0.999

ε = 10-7

Usage:

train_op = tf.train.MomentumOptimizer (learning_

rate=0.001,momentum=0.9,use_nesterov=False)

�Choosing the Learning Rate
Choosing the hyperparameters learning rate is one of the hyperparameters. 

Deep learning neural networks are trained using the stochastic gradient 

descent and mini-batch algorithms. So, stochastic gradient descent 

is an optimization algorithm that estimates the error gradient for the 

current state of the model, using examples from the training dataset. 

It then updates the weights of the model using the backpropagation of 

errors algorithm, referred to simply as backpropagation. The amount 

that the weights are updated during training is referred to as the step 

size or the “learning rate.” Specifically, the learning rate is a configurable 

hyperparameter used in the training of neural networks that has a small 

positive value, often in the range between 0.0 and 1.0.
Now that we know what the learning rate is, we need to see how we can 

change it during the training phase. In this phase, the backpropagation 

of error estimates the amount of error for which the weights of a node in 

the network are responsible. Instead of updating the weight with the full 

amount, it is scaled by the learning rate. This means that a learning rate of 

0.1, a traditionally common default value, would mean that weights in the 

network are updated 0.1 ∗ (estimated weight error). So the question is can 

we configure the learning rate to get the best possible learning rate for our 

model? Unfortunately, no. But the learning rate is the best hyperparameter 
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you should tune in your model if you have time. In my opinion it the 

best hyperparameter and deserves attention. Unfortunately, we cannot 

analytically calculate the optimal learning rate for a given model on a given 

dataset. Instead, a good (or good enough) learning rate must be discovered 

via trial and error. You may think you can configure the best learning rate, 

but I say you should listen to more people and books:

•	 The initial learning rate. This is often the single most 

important hyperparameter, and one should always 

make sure that it has been tuned. If there is only time to 

optimize one hyperparameter and one uses stochastic 

gradient descent, then this is the hyperparameter that 

is worth tuning. See “Practical Recommendations for 

Gradient-Based Training of Deep Architectures” in 

Neural Networks: Tricks of the Trade. Lecture Notes in 

Computer Science, vol 7700 (Springer, 2012).

•	 In general, it is not possible to calculate the best 

learning rate a priori. See page 72 of Neural Smithing: 

Supervised Learning in Feedforward Artificial Neural 

Networks by Russell D. Reed and Robert J. Marks II 

(MIT Press, 1998).

You can see more books, but there are some things we can use that 

allow us to tune the learning rate parameter. Diagnostic plots can be 

used to investigate how the learning rate impacts the rate of learning and 

learning dynamics of the model. One example is to create a line plot of 

loss over training epochs during training. The line plot can show many 

properties, such as the rate of learning over training epochs (e.g., fast or 

slow). Has the model learned too quickly (sharp rise and plateau) or is it 

learning too slowly (little or no change)? Is the learning rate too large via 

oscillations in the loss?
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Configuring the learning rate is challenging and time-consuming. 

Or you can try grid search. This can help to both highlight an order of 

magnitude where good learning rates may reside, as well as describe the 

relationship between learning rate and performance. It is common to grid 

search learning rates on a log scale from 0.1 to 10-5 or 10-6. When plotted, 

the results of such a sensitivity analysis often show a “U” shape, where loss 

decreases (performance improves) as the learning rate is decreased with 

a fixed number of training epochs to a point where loss sharply increases 

again because the model fails to converge. Or you can use the learning rate 

schedule: the way in which the learning rate changes over time (training 

epochs) is referred to as the learning rate schedule or learning rate decay. 

Perhaps the simplest learning rate schedule is to decrease the learning rate 

linearly from a large initial value to a small value. This allows large weight 

changes at the beginning of the learning process and small changes or 

fine-tuning toward the end of the learning process. Another option is to 

use the adaptive learning rate, in which the performance of the model on 

the training dataset can be monitored by the learning algorithm and the 

learning rate can be adjusted in response. The simplest implementation 

may be to make the learning rate smaller once the performance of the 

model plateaus, such as by decreasing the learning rate by a factor of two 

or an order of magnitude. Although no single method works best on all 

problems, there are three adaptive learning rate methods that have proved 

to be robust over many types of neural network architectures and problem 

types. They are Adagrad, RMSprop, and Adam, and all maintain and adapt 

learning rates for each of the weights in the model. At last, we should know 

that we can’t choose the best learning rate but we can try to scale it to get 

the best result. In my opinion, the deep learning community may invite an 

analytical tool that makes us choose the best learning rate, but it’s a very 

complicated choice to make.
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�Dropout Layers and Regularization
We want to regularize the overfitting of a neural network. When we talk 

about regularization, we refer to the model as having a large variance and 

a small bias. That is, the model is sensitive to the specific examples, the 

statistical noise, in the training dataset. A model with large weights is more 

complex than a model with smaller weights. It is a sign of a network that 

may be overly specialized in training data. In practice, we prefer to choose 

simpler models to solve the problem. We prefer models with smaller 

weights. But we need to remember that, in deep learning, when fitting a 

neural network model we must learn the weights of the network (i.e., the 

model parameters) using stochastic gradient descent and the training 

dataset. The longer we train the network, the more specialized the weights 

will become, overfitting the training data. The weights will grow in size 

in order to handle the specifics of the examples seen in the training data. 

Large weights make the network unstable. Although the weight will be 

specialized to the training dataset, minor variation or statistical noise on 

the expected inputs will result in large differences in the output.

We will now talk about the neural network dropout layer. This layer 

can be used with most types of layers, such as dense fully connected layers, 

convolutional layers, and recurrent layers such as the long short-term 

memory network layer. It works with all of the hidden layers and with the 

input layer, but not with the output layer. The term “dropout” refers to 

dropping out units (hidden and visible) in a neural network (Figure 10-2). 

It drops some nodes or neurons to dump the variance in weights of a cost 

function that we’re trying to regularize. A new hyperparameter is introduced 

that specifies the probability at which outputs of the layer are dropped out, 

or inversely, the probability at which outputs of the layer are retained. The 

interpretation is an implementation detail that can differ from paper to 

code library. A common value is a probability of 0.5 for retaining the output 

of each node in a hidden layer and a value close to 1.0, such as 0.8 (this is 

called rate or make_prop), for retaining inputs from the visible layer. Some 
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notes to help work with this layer: the dropout rate lets us know how many 

nodes we will drop in this layer, so the default interpretation of the dropout 

hyperparameter is the probability of training a given node in a layer, where 

1.0 means no dropout and 0.0 means no outputs from the layer.

A good value for dropout in a hidden layer is between 0.5 and 0.8. 

Input layers use a larger dropout rate, such as of 0.8.

Like other regularization methods, dropout is more effective on those 

problems where there is a limited amount of training data and the model 

is likely to overfit the training data. Problems where there is a large amount 

of training data may see less benefit from using dropout.

When using dropout regularization, it is possible to use larger networks 

with less risk of overfitting. In fact, a large network (more nodes per layer) 

may be required, as dropout will probabilistically reduce the capacity of 

the network. We can see that the dropout makes something happen in our 

neural network, as it divides the number of nodes by the probability of 

dropout we initialized, so the number of nodes is equal (#nodes in neural 

network/probability). A good rule of thumb is to divide the number of 

nodes in the layer before dropout by the proposed dropout rate and use 

that as the number of nodes in the new network that uses dropout. For 

example, a network with 100 nodes and a proposed dropout rate of 0.5 will 

require 200 nodes (100 / 0.5) when using dropout.

Usage:

tf.layers.dropout(inputs, rate=0.5, noise_shape=None, 

seed=None, training=False, name=None)

Dropout consists of randomly setting a fraction rate of input units to 0 
at each update during training time, which helps prevent overfitting. 
The units that are kept are scaled by 1 / (1 - rate), so that their sum 
is unchanged at training time and inference time.

— TensorFlow official docs
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�Normalization Techniques
Normalization has always been an active area of research in deep learning. 

Normalization techniques can decrease your model’s training time by 

a huge factor. Let’s state some of the benefits of using normalization. It 

is called “normalization” because it tries to dump all the data into the 

same scale: it normalizes each feature so that they maintain the same 

contribution as every feature, because some features have a higher 

numerical value than others. This way, our network can be unbiased (to 

higher value features). By scaling the data in the same scale, it makes 

the optimization faster, because normalization doesn’t allow weights to 

explode all over the place and restricts them to a certain range.

Normalization helps networks with regularization (only slightly, not 

significantly). This is in getting our model to train effectively, but this 

isn’t as easy as it sounds. So we will ask ourselves some questions about 

what makes normalization not so easy; what normalization technique we 

should use; and, most common, which norm technique would be the best 

trade-off for computation and accuracy for our network. The answers may 

be found within a host of normalization techniques. So let’s look at them.

Figure 10-2.  How dropout works
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�Batch Normalization
Let’s explore what we mean by “batch” and why we should use it. For 

a start, we should know that we normalize the input layer by adjusting 

and scaling the activations. For example, when we have features from 0 

to 1, and some from 1 to 1000, we should normalize them to speed up 

learning. If the input layer is benefiting from it, why not do the same 

thing for the values in the hidden layers, which are changing all the time, 

and get ten times or more improvement in the training speed. Batch 

normalization allows each layer of a network to learn by itself a little bit 

more independently of other layers. Batch has many good benefits. One is 

that we can use higher learning rates, because batch normalization makes 

sure that there’s no activation that’s gone really high or really low. And 

that means things that previously couldn’t get to train will start to train. 

It reduces overfitting because it has a slight regularization effect. Similar 

to dropout, it adds some noise to each hidden layer’s activations. Batch 

normalization is a method that normalizes activations in a network across 

the mini-batch of a definite size. For each feature, batch normalization 

computes the mean and variance of that feature in the mini-batch. It then 

subtracts the mean and divides the feature by its mini-batch standard 

deviation (Figure 10-3).

Figure 10-3.  The difference between inferences
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Notice that γ and β are learned during training along with the original 
parameters of the network.

But is there a problem with this technique? Yes, there are many 

problems—not in general, but with some specific things. The first is with 

RNN, which we will talk about in Chapter 12. In an RNN, the recurrent 

activations of each time-step will have a different story to tell (i.e., 

statistics). This means that we have to fit a separate batch norm layer 

for each time-step. This makes the model more complicated and space-

consuming, because it forces us to store the statistics for each time-step 

during training. So now, how can we use it with TensorFlow?

import tensorflow as tf

is_train = tf.placeholder(tf.bool, name="is_train");

x_norm = tf.layers.batch_normalization(x, training=is_train)

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(update_ops):

    train_op = optimizer.minimize(loss)

So, that is the batch normalization technique we can use in our deep 

neural network. There are many more normalization techniques in deep 

learning. Let’s talk about weight normalization.

�Weight Normalization
In batch normalization we normalize the activation function, but now we 

will normalize the weight. Weight normalization is a method developed by 

OpenAI, in which weight normalization reparametrizes the weights of any 

layer in the neural network in the following way:

w
g

v
v=
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It separates the weight vector from its direction. This has a similar 

effect as in batch normalization with variance. As for the mean, the 

developers of this weight normalization combine mean-only batch 

normalization and weight normalization to get the desired output even 

in small mini-batches. It means that they subtract out the mean of the 

minibatch, but do not divide by the variance.

Finally, what we need to know is that they use weight normalization 

instead of dividing by variance.

�Layer Normalization
Layer normalization is a method developed by Geoffrey Hinton. Compared 

with weight normalization, layer normalization is slightly harder to grasp 

intuitively. It normalizes input across the features instead of normalizing 

input features across the batch dimension in batch normalization. So, 

when we talk about batch normalization, Batch normalization normalizes 

the input features across the batch dimension. So, we might say at this 

point that batch and layer normalization may be similar in some way. Let’s 

see the following equations to explore that (Figure 10-4):

Figure 10-4.  The layer and batch normalization
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The equations seem almost identical, so what is the difference? The 

difference is that in batch normalization, the statistics are computed across 

the batch and are the same for each example in the batch. In contrast, in 

layer normalization, the statistics are computed across each feature and 

are independent of other examples.

Let’s see an image (Figure 10-5).

Figure 10-5.  An example of batch and layer normalization

It solves the problem in batch normalization, as layer normalization 

performs better than the batch norm in the case of RNNs. But the 

similarity doesn't end at this point; there is one more similarity to layer 

normalization called instance normalization.

�Instance Normalization
Layer normalization and instance normalization are very similar to 

each other. However, the difference between them is that instance 

normalization normalizes across each channel in each training example 
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instead of normalizing across input features in a training example. Unlike 

batch normalization, the instance normalization layer is applied at test 

time as well (due to the nondependency of mini-batch). This technique 

was originally devised for style transfer. The problem that instance 

normalization tries to address is that the network should be agnostic to 

the contrast of the original image. Experimental results show that instance 

normalization performs well on style transfer when replacing batch 

normalization. Recently, instance normalization has also been used as 

a replacement for batch normalization in GANs (generative adversarial 

networks).

�Group Normalization
Group normalization, as its name suggests, normalizes over a group of 

channels for each training example. We can say that group norm is in 

between instance and layer normalization. How does this hypertechnique 

work? When we put all the channels into a single group, group 

normalization becomes layer normalization and when we put each 

channel into a different group, it becomes instance normalization. Though 

layer normalization and instance normalization were both effective on 

RNNs and style transfer, respectively, they were still inferior to batch 

normalization for image recognition tasks. Group normalization was 

able to achieve much closer performance to batch normalization with 

a batch size of 32 on ImageNet, and outperformed it on smaller batch 

sizes. For tasks like object detection and segmentation that use much 

higher resolution images (and therefore cannot increase their batch size 

due to memory constraints), group normalization was shown to be a 

very effective normalization method. So the question is, if we can only 

use layer normalization or instance normalization, what makes us use 

the hypertechnique between them? The answer is very easy: we need 

what layer normalization adds. One of the implicit assumptions that layer 

normalization makes is that all channels are equally important when 
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computing the mean. This assumption is not always true in convolutional 

layers. So, we need to use an instance that make neurons near the edge 

of an image and neurons near the center of an image have very different 

activation statistics. This means that computing different statistics for 

different channels can give models much needed flexibility. Channels 

in an image are not completely independent though, so being able to 

leverage the statistics of nearby channels is an advantage that group 

normalization has over instance normalization (Figure 10-6).

Figure 10-6.  Different normalization techniques

Now that we’ve finish talking about some of the normalization 

techniques in deep learning, we need to say that there are more techniques 

to normalize the deep learning layers, and the deep learning community 

is still working on methods that enhances performance and prevent 

overfitting. In the next chapters we will discuss the applications of deep 

learning convolution and sequence models, with case studies about them. 

We are getting to the end of the pipeline, which you can make yourself.

�Summary
In this chapter, we worked with optimization techniques that optimize 

the learning rate and make gradients reach the optimum local minimum. 

We talked about dropout—the regularization technique in a neural 

network—and how it is very useful, and the connection between it and 
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normalization. We learned that normalization is a very good tool in deep 

learning, that it comes from statistics and makes the neural network 

more adaptable to data by scaling it. We saw how we can choose the most 

important hyperparameter learning rate and its connection with adaptive 

learning. In the next few chapters we will talk about models, the last stage 

in the deep learning pipeline; we will have some applications about deep 

learning, and we will talk about some case studies. So we hope you had a 

good workout with this chapter.
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CHAPTER 11

Convolutional Neural 
Network
In the previous chapters, we studied fully connected multilayer neural 

networks and their training, using backpropagation. In a typical multilayer 

neural network layer, with n input nodes and m neurons, we need to learn 

n × m parameters or weights. While a multilayer neural network may 

perform well in some cases—in particular, for those where the features 

of different dimensions are independent—there are some additional 

properties in the connection architecture that we might desire. For 

example, if it is known that the dimensions of the input data are strongly 

correlated or that the size of multilayer neural networks (both the number 

of layers and the number of neurons in each layer) must be limited for 

computational considerations, should there be any architectural changes 

introduced to a standard multilayer neural network to accommodate this 

additional constraint about the data or the network complexity?

Deep learning has flourished in recent years in the processing of 

unstructured data, especially images, text, audio, and speech. Taking 

convolutional neural networks (CNNs) into consideration, it works like 

magic when the data is images. Whenever there is a topology associated 

with the data, convolutional neural networks do a good job of extracting 

the important features out of the images.
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From an architectural perspective, CNNs are inspired by multilayer 

perceptrons; by imposing local connectivity constraints between neurons 

of adjacent layers, CNNs exploit local spatial correlation. The core element 

of convolutional neural networks is the processing of data through the 

convolution operation. Convolution of any signal with another signal 

produces a third signal that may reveal more information about the signal 

than the original signal itself.

�What is a Convolutional Neural Network
A convolutional neural network (CNN) is a deep learning algorithm that 

can take in an input image, assign importance (learnable weights and 

biases) to various aspects/objects in the image, and be able to differentiate 

one from the other. The preprocessing required in a CNN is much lower 

as compared with other classification algorithms. Although in primitive 

methods filters are hand engineered, with enough training, CNNs have the 

ability to learn these filters/characteristics.

Figure 11-1.  An example of a CNN
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The architecture of a convolutional neural network (Figure 11-1) is 

analogous to that of the connectivity pattern of neurons in the human 

brain and was inspired by the organization of the visual cortex. Individual 

neurons respond to stimuli only in a restricted region of the visual field 

known as the receptive field. A collection of such fields overlaps to cover 

the entire visual area.

�Convolution Operation
The convolution of a temporal or spatial signal with another signal 

produces a modified version of the initial signal. The modified signal may 

have better feature representation than the original signal, suitable for a 

specific task. For example, by convolving a grayscale image as a 2-D signal 

with another signal, generally called a filter or kernel, an output signal 

can be obtained that contains the edges of the original image. Edges in 

an image can correspond to object boundaries, changes in illumination, 

changes in material property, discontinuities in depth, and so on, which 

may be useful for several applications. Knowledge about the linear time-

invariant or shift-invariant properties of systems helps one appreciate the 

convolution of signals better. We will discuss this first before moving on to 

convolution itself.

�One-Dimensional Convolution
Intuitively, convolution measures the degree of overlap between one 

function and the reversed and translated version of another function. In 

the discrete case, y t x t h t x i h t i
i

( ) = ( )* ( ) = ( ) -( )
=-¥
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Similarly, in the continuous domain the convolution of two functions 

can be expressed as y t x t h t x i h t i di
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Figure 11-2 shows how the equation of 1-dimensional convolution 

works in simple terms. Intuitively, it works like a mask that moves over 

the data input, which is the left vector. In each moving step it takes three 

neighbors, applies the masking values over the three, and assigns the 

output of the whole equation to a single scaler in the output vector.

You can see that in its first steps the mask takes the first three 

neighbors/pair in the input vector, which are [1, 0, 1], then multiplies them 

by the mask values [1, 1, 0][1, 1, 0]. The multiplication is a vector-wise 

operation that multiplies the first input with its equivalent, the mask, and 

then multiplies the second input with the second one on the mask, and so 

on. After three multiplications happen, we add all three outputs of these 

operations, and the final result will be a single scalar that is assigned to 

the second element of the output vector. Wait a second: you wonder now 

Figure 11-2.  An example of 1-D convolution masking
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why we assign the output to the second element in the right output vector, 

because it is not the first step. The first step was taking the input pair and 

adding to them a zero padding, generating the input pair [0, 1, 0].

Seeing the convolution in such way makes it easier to understand 

than the preceding equations. Also, you now may understand why the 

convolution is important, as you change the mask values to extract certain 

knowledge from data input. But if you do not understand or see how 

convolution may extract knowledge/features until now, you will see how in 

a few minutes.

�Two-Dimensional Convolution
As we described, convolution involves both one-dimensional and two-

dimensional operations; one-dimensional is referred to as 1-D convolution 

or just convolution. Otherwise, if the convolution is performed between 

two-dimensions spanning along two mutually perpendicular dimensions 

(i.e., if the single observation is two-dimensional in nature or, practically 

speaking, it is an image or matrix), then it will be referred to as 2-D 

convolution. This concept can be extended to involve multidimensional 

matrices, due to which we can have multidimensional convolution.

In the image/computer vision domain, convolution is performed by 

multiplying and accumulating the instantaneous values of the overlapping 

samples corresponding to two input images, one of which is flipped. This 

definition of 1-D convolution is applicable even for 2-D convolution except 

that, in the latter case, one of the inputs is flipped twice.
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Figure 11-3 shows the kind of operation that is extensively used in the 

field of digital image processing, wherein the 2-D matrix representing the 

image will be convolved with a comparatively smaller matrix called 2-D 

kernel.

�Padding and Stride
Before going deeper into convolution, you need to know one extra thing; 

actually there are two important concepts you need to know and fully 

grasp. Both padding and stride can change the way your model sees the 

input observation; also, changing their parameters impacts the shape of 

the output feature map.

Although the convolutional layer is very simple, it is capable of 

achieving sophisticated and impressive results. Nevertheless, it can be 

challenging to develop an understanding for how the shape of the filters 

impacts the shape of the output feature map and how related configuration 

hyperparameters such as padding and stride should be configured.

In a convolution operation we have a kernel, and to make the final 

output of the operation more informative we use padding in an image 

matrix or any kind of input array. Adding padding to the input makes the 

Figure 11-3.  2-D convolution masking
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kernel start giving more information to the edges of the input observation, 

thus making all the information and features hidden in edges of the input 

appear in our output.

There are three types of padding, stated as follows:

•	 Padding full: This type shows the importance of 

extracting the information from the edges of the input. 

When you use full padding on the input, it makes the 

kernel in the convolution operation treat each pixel with 

the same priority, which means the kernel steps over the 

edges with the same amount as the center pixels.

•	 Padding same: In this type of padding, we need to 

make the output observation shape from convolution 

operation get the same shape as the input observation. 

For instance, if we have a 32×32 image as input, the 

output will have the same shape, 32×32.

•	 Padding valid: Simply, valid convolution means 

no padding at all, and this may work for you as a 

dimensionality reduction for an input observation 

(image). For instance, an image with 32×32 input with 

kernel filter of 3×3 will generate a 30×30 output image.

Figure 11-4.  The difference between valid, full, and same padding
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In Figure 11-4 you can see that on the left the full-padding to the input 

matrix makes the filter walk on each real-value (blue) of the matrix equally. 

So, in the figure the filter will walk/moves/slides on each blue pixel nine 

times wherever the pixel position is, and that creates a bigger output matrix 

size that will have all the representation and more features extracted. On 

the other hand, using no padding or valid padding will create the smallest 

output, as the filter only walks on the input matrix as it is; that means that 

there are pixels the filter will visit only one time and ones that the filter 

will visit many times. However, if you want the output to be equal to your 

input matrix, you can consider using same padding, and that will create an 

output matrix that is similar in shape to the input matrix.

On the other side, stride controls how the filter convolves around the 

input volume. In the examples we had earlier, the filter convolves around 

the input volume by shifting one unit at a time. The amount by which the 

filter shifts is the stride. In that case, the stride was implicitly set at 1. Stride 

is normally set in a way so that the output volume is an integer and not a 

fraction. Let’s look at an example. Let’s imagine a 7×7 input volume, a 3×3 

filter (disregard the 3rd dimension for simplicity), and a stride of 1. This 

is the case that we’re accustomed to. As you can see in Figure 11-5, the 

filter walks through the input with two pixels stepping to the right, and to 

the bottom too, and this will make the output matrix much smaller, as the 

overlaps between steps are reduced.

Figure 11-5.  The difference between the Valid, Full, Same Padding
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�Common Image-Processing Filters
Let’s discuss image-processing filters commonly used on 2-D images. 

Make sure to be clear with notations, since the natural way of indexing an 

image doesn’t align well with how one would prefer to define the x and 

y axes. Whenever we represent an image-processing filter or an image 

in the coordinate space, n1 and n2 are the discrete coordinates for the x 

and y directions. The column index of the image in NumPy matrix form 

coincides nicely with the x axis, whereas the row index moves in the 

opposite direction of the y axis. Also, it doesn’t matter which pixel location 

one chooses as the origin for the image signal while doing convolution. 

Based on whether zero padding is used or not, one can handle the edges 

accordingly. Since the filter kernel is of a smaller size, we generally flip the 

filter kernel and then slide it over the image, not the other way around.

�Mean and Median Filters
The mean filter or average filter is a low-pass filter that computes the local 

average of the pixel intensity at any specific point. Figure 11-6 shows you 

how the mean filter is calculated in different types, based on what the 

application is going to use.

Figure 11-6.  How the mean filter is calculated
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Here, the matrix entry h22 corresponds to the entry at the origin. 

So, at any given point, the convolution will represent the average of the 

pixel intensities at that point. The following code illustrates how one can 

convolve an image with an image-processing filter such as the mean filter.

Please note that in many Python implementations, we would be using 

OpenCV to perform basic operations on the image, such as reading the 

image, converting the image from RGB format to grayscale format, and so 

on. OpenCV is an open source image-processing package that has a rich 

set of methodologies for image processing. Readers are advised to explore 

OpenCV or any other image-processing toolbox in order to get accustomed 

to the basic image-processing functions.

First things first: we need to import all the needed packages and 

functions to make sure that there’s no import error on the way. We 

will import cv2 for OpenCV operations, matplotlib for viewing the 

image, NumPy for creating the filter and any matrix operation, and finally 

convolve2d from scipy.signal for convolution operation.

# IMPORTING PACKAGES

import cv2

import matplotlib.pyplot as plt

import numpy as np

from scipy.signal import convolve2d

After loading the packages, we now need to load the image that we 

want to make the operations on. The Lena Forsen image is one of the most 

famous images in the image processing field. In the following code we will 

load it, and then transform it into a gray image for the sack of simplicity.

# LOADING AND TRANSFORMING IMAGE

img = cv2.imread('/content/lena_forsen.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.imshow(gray,cmap='gray')

Figure 11-7 shows the loaded image in grayscale.
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After loading the image, we need to add some noise to it, to see how 

the filter will somehow fix the noise. In the following code we will add a 

type of noise called Gaussian noise. Then we will try to fix it.

# PROCESSING IMAGE

mean = 0

var = 100

sigma = var**0.5

row,col = 220, 220

gauss = np.random.normal(mean,sigma,(row,col))

gauss = gauss.reshape(row,col)

gray_noisy = gray + gauss

plt.imshow(gray_noisy,cmap='gray')

Figure 11-7.  The gray loaded image
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Now, after we add the noise, we need to know how the noise will affect 

the image quality. In Figure 11-8, you will see the image with the noise all 

over it.

Figure 11-8.  The Guassian noise on the image

# CREATE AND APPLY MEAN FILTER

Hm = np.array([[1,1,1],[1,1,1],[1,1,1]])/float(9)

Gm = convolve2d(gray_noisy,Hm,mode='same')

plt.imshow(Gm,cmap='gray')

At the end, we will create and apply the mean filter to the image; we 

will use convolve2d for that purpose, to apply the filter to the image. In 

Figure 11-9 you can see the resulting image of the operation from the 

preceding code.
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The mean filter is mostly used to reduce the noise in an image. If there 

is some white Gaussian noise present in the image, the mean filter will 

reduce the noise, since it averages over its neighborhood, hence the white 

noise of the zero mean will be suppressed. As we can see from Figure 11-9, 

the Gaussian white noise is reduced once the image has been convolved 

with the mean filter. The new image has fewer high-frequency components 

and thus is relatively less sharp than the image before convolution, but the 

filter has done a good job of reducing the white noise.

One the other hand, a 2-D median filter replaces each pixel in a 

neighborhood with the median pixel intensity in that neighborhood, 

based on the filter size. The median filter is good for removing salt and 

pepper noise. This type of noise presents itself in images in the form of 

black and white pixels, and is generally caused by sudden disturbances 

Figure 11-9.  The image after the mean filter
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while capturing the images. The following code illustrates how salt and 

pepper noise can be added to an image, and then how the noise can be 

suppressed using a median filter.

First, we select some random indices to do the operations (adding the 

noise) on it.

np.random.seed(0)

gray_sp = gray*1

sp_indices = np.random.randint(0,21,[row,col])

Then we will iterate over the indicis and set the values on the image to 

either 0 or 255, creating a salt-like noise. The following code describes the 

iteration, and Figure 11-10 shows the result of the noise on the image.

for i in range(row):

  for j in range(col):

    if sp_indices[i,j] == 0:

      gray_sp[i,j] = 0

    if sp_indices[i,j] == 20:

      gray_sp[i,j] = 255

plt.imshow(gray_sp,cmap='gray')
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Now we need to remove the salty noise from the image. Lucky for us, 

cv2 has an implementation of the image. The following code describes 

how to use it.

gray_sp_removed = cv2.medianBlur(gray_sp,3)

plt.imshow(gray_sp_removed,cmap='gray')

Figure 11-10.  The salt and pepper noise on the image
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As we can see, the salt and pepper noise has been removed by the 

median filter (Figure 11-11).

�Gaussian Filter
The Gaussian filter is a modified version of the mean filter, where the 

weights of the impulse function are distributed normally around the origin. 

Weight is highest at the center of the filter and falls normally away from 

the center. A Gaussian filter can be created with the following code. As we 

can see, the intensity falls in a Gaussian fashion away from the origin. The 

Gaussian filter, when displayed as an image, has the highest intensity at the 

origin and then diminishes for pixels away from the center. Gaussian filters 

Figure 11-11.  The median filter effect on the noise in the image
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are used to reduce noise by suppressing the high-frequency components. 

However, in its pursuit of suppressing the high-frequency components, it 

ends up producing a blurred image, called Gaussian blur.

In Figure 11-12, the original image is convolved with the Gaussian filter 

to produce an image that has Gaussian blur. We then subtract the blurred 

image from the original image to get the high-frequency component of the 

image. A small portion of the high-frequency image is added to the original 

image to improve the sharpness of the image.

f = np.zeros((20,20))

for i in range(20):

  for j in range(20):

    f[i,j] = np.exp(-((i-10)**2 + (j-10)**2)/10)

plt.imshow(f,cmap='gray')

Figure 11-12.  What the filter looks like
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As you can see in Figure 11-12, it seems that the filter focuses on 

the middle pixel. After applying this filter on the image, you can see in 

Figure 11-13 that the image blurred. The following code describes how to 

apply the filter on the image.

gray_blur = convolve2d(gray,f,mode='same')

plt.imshow(gray_blur,cmap='gray')

Figure 11-13.  The image after applying the filter

The following code describes how to get back one step, enhancing the 

image to its real state. And Figure 11-14 shows the image returned to its 

real state without the blurring.

gray_enhanced = gray + 0.025*gray_blur

plt.imshow(gray_enhanced,cmap='gray')

Chapter 11  Convolutional Neural Network



385

�Sobel Edge-Detection Filter
The Sobel operator, sometimes called the Sobel–Feldman operator or 

Sobel filter, is used in image processing and computer vision, particularly 

within edge detection algorithms where it creates an image emphasizing 

edges.

The output response of a Sobel edge convolution detector along 

both the horizontal and vertical axes can be expressed by the following 

Gx and Gy matrices, respectively. The Sobel detectors are extensions of 

the horizontal and vertical gradient filters just illustrated. Instead of only 

taking the gradient at the point, it also takes the sum of the gradients at 

the points on either side of it. Also, it gives double weight to the point of 

interest. See Figure 11-15.

Figure 11-14.  The image after enhancement
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The convolution of the image with the Sobel filters is illustrated in the 

following code:

Hx = np.array([[ 1,0, -1],[2,0,-2],[1,0,-1]],dtype=np.float32)

Gx = convolve2d(gray,Hx,mode='same')

plt.imshow(Gx,cmap='gray')

Figure 11-16 shows the result of the preceding code. In the figure you 

can see that some of the edges appear strongly, and that’s because the filter 

used can be considered a half filter. If you continue, you can see that the 

final result contains all the edges in the image.

Figure 11-15.  The Sobel filter along with the two axes
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And here is the other half filter, the Y-axis filter. Here you will find that 

the result may be similar to the result of the preceding code, but with some 

focus you can see some differences between the results (Figure 11-17).

Hy = np.array([[ -1,-2, -1],[0,0,0],[1,2,1]],dtype=np.float32)

Gy = convolve2d(gray,Hy,mode='same')

plt.imshow(Gy,cmap='gray')

Figure 11-16.  The image after applying the X-axis filter
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Now, by combining the both filters (but squared), you will see the 

wanted result. In Figure 11-18 you can see the output of the following code; 

the result shows how the edges of the images look.

G = (Gx*Gx + Gy*Gy)**0.5

plt.imshow(G,cmap='gray')

Figure 11-17.  The Y-axis filter
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The preceding code has the logic required to convolve the image 

with the Sobel filters. The horizontal Sobel filter detects edges in the 

horizontal direction, whereas the vertical Sobel filter detects edges in 

the vertical direction. Both are high-pass filters, since they attenuate the 

low frequencies from the signals and capture only the high-frequency 

components within the image. Edges are important features for an image, 

and help one detect local changes within an image. Edges are generally 

present on the boundary between the two regions in an image, and are 

often the first step in retrieving information from images. We saw this in 

the outputs of the preceding codes.

Figure 11-18.  The edges of the image
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The equation that runs the combination between both halves of the 

filter is:

C x y I x y I x yx y, , ,( ) = ( )( ) + ( )( )2 2

where C(x, y) denotes the pixel intensity function for the combined Sobel 

filter, and Iy(x, y) denotes the pixel intensity of the image obtained through 

the vertical Sobel filter.

�Identity Transform
The filter for identity transform through convolution is as follows.

Figure 11-19.  The identity filter

Figure 11-19 illustrates a unity transform through convolution. The 

implementation is like the mean filter, but with a simple modification: 

instead of a mean filter with 1/9 at each value of the filter pixel, we put just 

1 in the middle pixel, and all others are 0s.

�Convolutional Neural Networks
Convolutional neural networks (CNNs) are based on the convolution of 

images, and detect features based on filters that are learned by the CNN 

through training. For example, we don’t apply any known filter, such as 
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the ones for the detection of edges or for removing Gaussian noise, but 

through the training of the convolutional neural network the algorithm 

learns image-processing filters on its own that might be very different from 

normal image-processing filters. For supervised training, the filters are 

learned in such a way that the overall cost function is reduced as much 

as possible. Generally, the first convolutional layer learns to detect edges, 

while the second may learn to detect more complex shapes that can be 

formed by combining different edges, such as circles and rectangles, and 

so on. The third layer and beyond learn much more complicated features 

based on the features generated in the previous layer.

The good thing about convolutional neural networks is the sparse 

connectivity that results from weight sharing, which greatly reduces the 

number of parameters to learn. The same filter can learn to detect the same 

edge in any given portion of the image through its equivariance property, 

which is a great property of convolution useful for feature detection.

�Layers of Convolutional Neural Networks
The following are the typical layers of a convolutional neural network:

•	 Input layer: will hold the pixel intensity of the image. 

For example, an input image with width 64, height 64, 

and depth 3 for the red, green, and blue color channels 

(RGB) would have input dimensions of 64x64x3.

•	 Convolutional layer: will take images from the 

preceding layers and convolve with them the specified 

number of filters to create images called output feature 

maps. The number of output feature maps is equal 

to the specified number of filters. Until now, CNNs in 

TensorFlow have used mostly 2-D filters; however, 3-D 

convolution filters have been introduced recently.
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•	 Activation functions: For CNNs they are generally 

ReLUs, which we discussed in a previous chapter. The 

output dimension is the same as the input after passing 

through the ReLU activation layers. The ReLU layer 

adds nonlinearity in the network and at the same time 

provides nonsaturating gradients for positive net inputs.

•	 Pooling layer: will downsample the 2-D activation maps 

along the height and width dimensions. The depth or 

the number of activation maps is not compromised and 

remains the same.

•	 Fully connected layers: contain traditional neurons that 

receive different sets of weights from the preceding 

layers; there is no weight sharing between them as is 

typical for convolution operations. Each neuron in this 

layer will be connected either to all the neurons in the 

previous layer or to all the coordinate-wise outputs 

in the output maps through separate weights. For 

classification, the class output neurons receive inputs 

from the final fully connected layers.

Figure 11-20.  A simple CNN
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Figure 11-20 illustrates a basic CNN that uses one convolutional layer, 

and one pooling layer followed by a fully connected layer and, finally, 

the output classification layer. The network tries to detect the number 

inside the image, which is 2. The output unit can be taken to have a 

sigmoid activation function, since it’s a binary classification problem for 

images. Generally, for most of the CNN architectures, a few to several 

convolutional layer-ReLU layer-pooling layer combinations are stacked 

one after another before the fully connected layers. We will discuss the 

different architectures at a later point in time. For now, let’s look at the 

different layers in much more detail.

�Input Layer
The input to this layer is images. Generally, the images are fed in batches 

as four-dimensional tensors, where the first dimension is specific to the 

image index, second and third dimensions are specific to the height and 

width of the image, and the fourth dimension corresponds to the different 

channels. For a colored image, generally we have the red (R), green (G), 

and blue (B) channels, while for grayscale images we have only one 

channel. The number of images in a batch would be determined by the 

mini-batch size chosen for the mini-batch stochastic gradient descent. 

The batch size is one for stochastic gradient descent. The inputs can be fed 

to the input layer in mini-batches through TensorFlow placeholder tf.

placeholder at runtime

�Convolutional Layer
Convolution is the heart of any CNN network. TensorFlow supports both 

2-D and 3-D convolutions. However, 2-D convolutions are more common, 

since 3-D convolutions are computationally memory intensive. The 

input images or intermediate images in the form of output feature maps 

are 2-D convolved with 2-D filters of the size specified. 2-D convolution 
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happens along the spatial dimensions, whereas there is no convolution 

along the depth channel of the image volume. For each depth channel, 

the same number of feature maps is generated, and then they are summed 

together along the depth dimension before they pass through the ReLU 

activations. These filters help to detect features in the images. The deeper 

the convolutional layer is in the network, the more complicated features 

it learns. For instance, the initial convolutional layer might learn to detect 

edges in an image, while the second convolutional layer might learn to 

connect the edges to form geometric shapes such as circles and rectangles. 

The even deeper convolutional layers might learn to detect more 

complicated features; for example, in cat vs. dog classification it might 

learn to detect eyes, nose, or other body parts of the animals.

In a CNN, only the size of the filters is specified; the weights are 

initialized to arbitrary values before the start of training. The weights of the 

filters are learned through the CNN training process, hence they might not 

represent the traditional image-processing filters such as mean, median, 

Gaussian, Sobel or other kinds of filters. Instead the learned filters would 

be such that the overall loss function defined is minimized or a good 

generalization is achieved based on the validation. Although it might not 

learn the traditional edge detection filter, it would learn several filters 

that detect edges in some form, since edges are good feature detectors for 

images.

Some of the terms with which one should be familiar while defining 

the convolutional layer are as follows:

Filter size: Filter size defines the height and 

width of the filter kernel. A filter kernel of size 

3 × 3 would have nine weights. Generally, these 

filters are initialized and slid over the input image 

for convolution without flipping these filters. 

Technically, when convolution is performed without 

flipping the filter kernel, it’s called cross-correlation 
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and not convolution. However, it doesn’t matter, 

as we can consider the filters learned as a flipped 

version of image processing filters.

Stride: The stride determines the number of pixels 

to move in each spatial direction while performing 

convolution. In normal convolution of signals, we 

generally don’t skip any pixels and instead compute 

the convolution sum at each pixel location, hence 

we have a stride of 1 along both spatial directions 

for 2-D signals. However, one may choose to skip 

every alternate pixel location while convolving, and 

thus choose a stride of 2. If a stride of 2 is chosen 

along both the height and the width of the image, 

then after convolving the output image would be 

approximately 1/4 of the input image sizes. Why it is 

approximately 1/4 and not exactly 1/4 of the original 

image or feature-map sizes will be covered in our 

next topic of discussion.

Padding: When we convolve an image of a specific 

size by a filter, the resulting image is generally 

smaller than the original image. For example, if we 

convolve a 5×5 2-D image by a filter of size 3 × 3, the 

resulting image is 3 × 3.

Padding is an approach that appends zeros to the boundary of an 

image to control the size of the output of convolution. The convolved 

output image length L′ along a specific spatial dimension is given by

¢ =
- +

+L
L K P

S

2
1
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where L denotes the Length of the input image in a specific dimension 

and K is length of the kernel/filter in a specific dimension, while P denotes 

zeros padded along a dimension in either end and S stands for stride of the 

convolution.

In general, for a stride of 1 the image size along each dimension is 

reduced by (K − 1)/2 on either end, where K is the length of the filter 

kernel along that dimension. So, to keep the output image the same as that 

of the input image, a pad length of (K − 1)/2 would be required.

In TensorFlow, padding can be chosen as either “VALID” or “SAME.” 
SAME ensures that the output spatial dimensions of the image are the 

same as those of the input spatial dimensions in cases where a stride of 

1 is chosen. It uses zero padding to achieve this. It tries to keep the zero 

pad length even on both sides of a dimension, but if the total pad length 

for that dimension is odd, the extra length is added to the right for the 

horizontal dimension and to the bottom for the vertical dimension.

For recap, VALID doesn’t use zero padding; hence, the output image 

dimension would be smaller than the input image dimensions, even for a 

stride of 1.

def conv2d(x,W,b,strides=1):

  �x = tf.nn.conv2d(x,W,strides=[1,strides,strides,1],padding= 

'SAME')

  x = tf.nn.bias_add(x,b)

  return tf.nn.relu(x) 

�Pooling Layer
A pooling operation on an image generally summarizes a locality of an 

image, the locality being given by the size of the filter kernel—also called 

the receptive field. The summarization generally happens in the form 

of max pooling or average pooling. In max pooling, the maximum pixel 

intensity of a locality is taken as the representative of that locality. In 
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average pooling, the average of the pixel intensities around a locality is 

taken as the representative of that locality. Pooling reduces the spatial 

dimensions of an image. The kernel size that determines the locality is 

generally chosen as 2 × 2, whereas the stride is chosen as 2. This reduces 

the image size to about 1/4 the size of the original image.

def maxpool2d(x,stride=2):

  return tf.nn.max_pool(x, ksize=[1,stride,stride,1], 

strides=[1,stride,stride,1], padding='SAME')

�Backpropagation Through the Convolutional 
and Pooling Layers
In an earlier chapter we introduced the backpropagation algorithm and 

we described the backward path for perceptrons. Now we will try to 

understand how the backward pass for a single convolutional layer works, 

by taking a simple case wherein the number of channels is one across all 

computations.

Backpropagation through a convolutional layer is much like 

backpropagation for a multilayer perceptron network. The only difference is 

that the weight connections are sparse, since the same weights are shared by 

different input neighborhoods to create an output feature map. Each output 

feature map is the result of the convolution of an image or a feature map 

from the previous layer, with a filter kernel whose values are the weights that 

we need to learn through backpropagation. The weights in the filter kernel 

are shared for a specific input–output feature-map combination.

The following convolution operation takes an input X of size 3x3 

using a single filter W of size 2 × 2 without any padding, and stride = 1, 

generating an output H of size 2 × 2. Also note that, while performing the 

forward pass, we will cache the variables X and filter W. This will help us 

while performing the backward pass (Figure 11-21).
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h11 = W11X11 + W12X12 + W21X21 + W22X22

h12 = W11X12 + W12X13 + W21X22 + W22X23

h21 = W11X21 + W12X22 + W21X31 + W22X32

h22 = W11X22 + W12X23 + W21X32 + W22X33

Note H ere, we are performing the convolution operation without 
flipping the filter. This is also referred to as the cross-correlation 
operation in literature. The preceding figure is provided just for the 
sake of clarity.

Before moving further, make note of the following notations.

¶
¶
¶

¶
¶
¶

h represents
L

h

w represents
L

w

ij
ij

ij
ij

Now, for implementing the backpropagation step for the current layer, 

we can assume that we get 𝜕h as input (from the backward pass of the next 

layer), and our aim is to calculate ∂w and ∂x. It is important to understand 

that ∂x (or ∂h for the previous layer) would be the input for the backward 

pass of the previous layer. This is the core principle behind the success of 

backpropagation.

Figure 11-21.  The input, weights, and output of the convolutional layer

Chapter 11  Convolutional Neural Network



399

∂W11 = X11∂h11 + X12∂h12 + X21∂h21 + X22∂h22

∂W12 = X12∂h11 + X13∂h12 + X22∂h21 + X23∂h22

∂W21 = X21X11 + X22∂h12 + X31∂h21 + X32∂h22

∂W22 = X22X11 + X23∂h12 + X32∂h21 + X33∂h22

Each weight in the filter contributes to each pixel in the output map. 

Thus, any change in weight in the filter will affect all the output pixels. 

Thus, all these changes add up to contribute to the final loss. Therefore, we 

can easily calculate the derivatives as follows.

�Weight Sharing Through Convolution and Its 
Advantages
Weight sharing through convolution greatly reduces the number of 

parameters in the convolutional neural network. Imagine we created a 

feature map of size k × k from an image of n × n size with full connections 

instead of convolutions. There would be k2n2 weights for that one 

feature map alone, which are a lot of weights to learn. Instead, since in 

convolution the same weights are shared across locations defined by the 

filter kernel size, the number of parameters to learn is reduced by a huge 

factor. In cases of convolution, as in this scenario, we just need to learn the 

weights for the specific filter kernel. Since the filter size is relatively small 

with respect to the image, the number of weights is reduced significantly. 

For any image, we generate several feature maps corresponding to 

different filter kernels. Each filter kernel learns to detect a different kind 

of feature. The feature maps created are again convolved with other filter 

kernels to learn even more complex features in subsequent layers.
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�Translation Equivariance and Invariance
The convolution operation provides translational equivariance. That is, if a 

feature Z1 in an input produces a specific feature Z2 in the output, then even 

if feature Z1 is translated around in the image, feature Z2 would continue to 

be generated at different locations of the output (Figure 11-22).

Figure 11-22.  Invariance
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Convolution still produces the same feature for the digit, irrespective 

of the translation. This property of convolution is called translational 

equivariance. In fact, if the digit is represented by a set of pixel intensities, 

x, and f is the translation operation on x, while g is the convolution 

operation with a filter kernel, then the following holds true for convolution: 

g(f(x)) = f(g(x)).

In our case, f(x) produces the translated plan in the Figure 11-23 and 

the translated plan is convolved through g to produce the activated feature 

for the same plan, as seen in the other figure. This activated feature for the 

plan (i.e., (f(x))) could also have been achieved by translating the activated 

figure (i.e., g(x)) through the same translation f.

Figure 11-23.  Equivariance
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Pooling provides some form of translational invariance based on the 

receptor field kernel size of the pooling. Let’s take the case of max pooling. 

The digits in Figure 11-24 at a specific position are detected through 

convolution filters in both sides but are not equal, and that’s the problem 

of the convolutional layers; but if you took a closer look you can see that 

the pooling layers extract a similar value to each other. In this way, max 

pooling provides some translational invariance to feature detection if the 

translation distance is not very high with respect to the size of the receptor 

field or kernel for max pooling.

Similarly, average pooling takes the average of the values in a locality of 

a feature map based on the size of the receptor field kernel. So, if a specific 

feature is detected by high values in its feature map in a locality—let’s say 

at regions of edges—then the averages would continue to be high even if 

the image were a little translated.

Figure 11-24.  The advantage of the pooling layer that solves the 
invariance
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�Case Study—Digit Recognition 
on the CIFAR-10 Dataset
The first thing to do in any project or experiment is import all the needed 

packages. We will import TensorFlow and NumPy for all the deep learning 

model building and matrix operations; also, we need matplotlib for plotting 

the analysis and results. And we will load the rebuilt CIFAR-10 dataset in the 

keras.dataset module in TensorFlow for the sake of ease and simplicity.

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.datasets import cifar10

import time

import math

%matplotlib inline

After importing all the packages, we now need to load the dataset, and 

if you are using this for the first time, it is probably going to download the 

dataset in your machine.

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

x_train.shape

After doing all this, you are ready to build the model. We are going 

to build a class that should define the model and run it too, as well as 

extracting the analysis and reporting the progress. The class CifarNet 

contains three functions as follows:

•	 Init: Function that is responsible for getting and setting 

conv variables (weights)

•	 Forward: Function that is responsible for creating the 

model architecture

Chapter 11  Convolutional Neural Network



404

•	 Run: Function that runs the model and returns the 

report of running

# define net

class CifarNet():

    def __init__(self):

        # conv layer

        # H2 = (H1 - F + 2P)/S +1

        # (32-5)/1 + 1 = 28

        # 28x28x32 = 25088

        �# To ReLu (?x16x16x32) -> MaxPool (?x16x16x32) -> 

affine (8192)

        �self.Wconv1 = tf.get_variable("Wconv1", shape=[5, 5,  

3, 32])

        self.bconv1 = tf.get_variable("bconv1", shape=[32])

        # (32-5)/1 + 1 = 28

        # 28x28x64 = 50176

        �self.Wconv2 = tf.get_variable("Wconv2", shape=[5, 5, 

32, 64])

        self.bconv2 = tf.get_variable("bconv2", shape=[64])

        # affine layer with 1024

        self.W1 = tf.get_variable("W1", shape=[3136, 1024])

        self.b1 = tf.get_variable("b1", shape=[1024])

        # affine layer with 10

        self.W2 = tf.get_variable("W2", shape=[1024, 10])

        self.b2 = tf.get_variable("b2", shape=[10])

    def forward(self, X, y, is_training):

        # conv2d

        # ReLu

        # conv2d

        # ReLu
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        # maxpool

        # Batch Norm

        # Affine

        # Batch Norm

        # ReLu

        # Affine

        # dropout

        # Batch Norm

        # conv layer

        # H2 = (H1 - F + 2P)/S +1

        # (32-5)/1 + 1 = 28

        # 28x28x32 = 25088

        �# To ReLu (?x16x16x32) -> MaxPool (?x16x16x32) -> 

affine (8192)

        # define our graph (e.g. two_layer_convnet) with stride 1

        �conv1 = tf.nn.conv2d(X, self.Wconv1, strides=[1, 1, 1, 

1], padding='SAME') + self.bconv1

        print(conv1.shape)

        # ReLU Activation Layer

        relu1 = tf.nn.relu(conv1)

        print(relu1)

        # Conv

        �conv2 = tf.nn.conv2d(relu1, self.Wconv2, strides=[1, 2, 

2, 1], padding='VALID') + self.bconv2

        print(conv2.shape)

        # ReLU Activation Layer

        relu2 = tf.nn.relu(conv2)

        print(relu2)

        # 2x2 Max Pooling layer with a stride of 2
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        �maxpool = tf.layers.max_pooling2d(relu2, pool_

size=(2,2), strides=2)

        print(maxpool.shape)

        maxpool_flat = tf.reshape(maxpool,[-1,3136])

        �# Spatial Batch Normalization Layer (trainable 

parameters, with scale and centering)

        �bn1 = tf.layers.batch_normalization(inputs=maxpool_

flat, center=True, scale=True, training=is_training)

        # Affine layer with 1024 output units

        affine1 = tf.matmul(bn1, self.W1) + self.b1

        print(affine1.shape)

        # vanilla batch normalization

        affine1_flat = tf.reshape(affine1,[-1,1024])

        �bn2 = tf.layers.batch_normalization(inputs=affine1, 

center=True, scale=True, training=is_training)

        print(bn2.shape)

        # ReLU Activation Layer

        relu2 = tf.nn.relu(bn2)

        print(relu2.shape)

        # dropout

        �drop1 = tf.layers.dropout(inputs=relu2, training=is_

training)

        # Affine layer from 1024 input units to 10 outputs

        affine2 = tf.matmul(drop1, self.W2) + self.b2

        # vanilla batch normalization

        affine2_flat = tf.reshape(affine2,[-1,3136])

        �self.predict = tf.layers.batch_normalization 

(inputs=affine2, center=True, scale=True, training=is_

training)

        print(self.predict.shape)

        return self.predict
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    def run(self, session, loss_val, Xd, yd,

                  epochs=1, batch_size=64, print_every=100,

                  �training=None, plot_losses=False, 

isSoftMax=False):

        # have tensorflow compute accuracy

        if isSoftMax:

            correct_prediction = tf.nn.softmax(self.predict)

        else:

            �correct_prediction = tf.equal(tf.argmax(self.

predict,1), y)

        �accuracy = tf.reduce_mean(tf.cast(correct_prediction, 

tf.float32))

        # shuffle indicies

        train_indicies = np.arange(Xd.shape[0])

        np.random.shuffle(train_indicies)

        training_now = training is not None

        �# setting up variables we want to compute (and 

optimizing)

        �# if we have a training function, add that to things we 

compute

        variables = [mean_loss, correct_prediction, accuracy]

        if training_now:

            variables[-1] = training

        # counter

        iter_cnt = 0

        for e in range(epochs):

            # keep track of losses and accuracy

            correct = 0

            losses = []
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            # make sure we iterate over the dataset once

            �for i in range(int(math.ceil(Xd.shape[0]/batch_

size))):

                # generate indicies for the batch

                start_idx = (i*batch_size)%Xd.shape[0]

                �idx = train_indicies[start_idx:start_idx+batch_

size]

                # create a feed dictionary for this batch

                feed_dict = {X: Xd[idx,:],

                             y: yd[idx],

                             is_training: training_now }

                # get batch size

                actual_batch_size = yd[idx].shape[0]

                �# have tensorflow compute loss and correct 

predictions

                # and (if given) perform a training step

                �loss, corr, _ = session.run(variables,feed_

dict=feed_dict)

                # aggregate performance stats

                losses.append(loss*actual_batch_size)

                correct += np.sum(corr)

                # print every now and then

                �if training_now and (iter_cnt % print_every)  

== 0:

                    �print("Iteration {0}: with minibatch 

training loss = {1:.3g} and accuracy of 

{2:.2g}"\

                          �.format(iter_cnt,loss,np.sum(corr) 

/actual_batch_size))

                iter_cnt += 1
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            total_correct = correct/Xd.shape[0]

            total_loss = np.sum(losses)/Xd.shape[0]

            �print("Epoch {2}, Overall loss = {0:.3g} and 

accuracy of {1:.3g}"\

                  .format(total_loss,total_correct,e+1))

            if plot_losses:

                plt.ylabel('minibatch loss')

                plt.show()

        return total_loss, total_correct

Now we need to run the class. First we will initialize the class and 

create X and y variables for the dataset.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, 32, 32, 3])

y = tf.placeholder(tf.int64, [None, 1])

is_training = tf.placeholder(tf.bool)

net = CifarNet()

Then we will call the forward function to create the model architecture 

as follows.

net.forward(X,y,is_training)

After that, we will create all the needed hyperparameters the model 

uses, such as learning rate, optimizer type, etc.

# Annealing the learning rate

global_step = tf.Variable(0, trainable=False)

starter_learning_rate = 1e-3

end_learning_rate = 5e-3

decay_steps = 10000
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learning_rate = �tf.train.polynomial_decay(starter_learning_

rate, global_step, decay_steps, end_learning_

                �rate, power=0.5)

exp_learning_rate = tf.train.exponential_decay(starter_

learning_rate, global_step, 100000, 0.96, staircase=True)

# Feel free to play with this cell

mean_loss = None

optimizer = None

# define our loss

cross_entr_loss = tf.nn.softmax_cross_entropy_with_

logits(labels=tf.one_hot(y,10), logits=net.predict)

mean_loss = tf.reduce_mean(cross_entr_loss)

# define our optimizer

optimizer = tf.train.AdamOptimizer(exp_learning_rate)

# batch normalization in tensorflow requires this extra dependency

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(extra_update_ops):

    train_step = optimizer.minimize(mean_loss, global_

step=global_step)

Now we will train the model with 10 epochs as a start, to check if 

the model is running correctly. If you have low computational power, 

we recommend you run the model with just 1 or 2 epochs to test if it’s 

functionally running correct.

# train with 10 epochs

sess = tf.Session()

try:

Chapter 11  Convolutional Neural Network



411

    with tf.device("/gpu:0") as dev:

        sess.run(tf.global_variables_initializer())

        print('Training')

        �net.run(sess, mean_loss, x_train, y_train, 10, 64, 200, 

train_step, True)

        print('Validation')

        net.run(sess, mean_loss, x_test, y_test, 1, 64)

except tf.errors.InvalidArgumentError:

    �print("no gpu found, please use Google Cloud if you want 

GPU acceleration")

If the model is running correctly, you will see the following output per 

each epoch the model passes (Figure 11-25).

Iteration 0: with minibatch training loss = 2.79 and accuracy 

of 6.4

Iteration 200: with minibatch training loss = 1.46 and accuracy 

of 6.1

Iteration 400: with minibatch training loss = 1.47 and accuracy 

of 6.3

Iteration 600: with minibatch training loss = 1.49 and accuracy 

of 6.3

Epoch 1, Overall loss = 1.4 and accuracy of 6.55
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With the preceding basic convolutional neural network, which 

comprises two convolutional–max pooling–ReLU pairs along with a fully 

connected layer before the final output softmax unit, we can achieve 

a test-set high accuracy in just 20 to 30 epochs. And if you have low 

computational power, you can always use the cloud to train a larger bunch 

of epochs.

One more thing to emphasize is the importance of tuning the model 

with the correct set of hyperparameters and prior information. Parameters 

such as learning rate selection can be very tricky, since the cost function 

for neural networks is generally nonconvex. A large learning rate can lead 

to faster convergence to a local minimum but might introduce oscillations, 

whereas a low learning rate will lead to very slow convergence. Ideally, the 

learning rate should be low enough that network parameters can converge 

to a meaningful local minimum, and at the same time it should be high 

Figure 11-25.  The loss/mini-batch per epoch
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enough that the models can reach the minima faster. Generally, for the 

preceding neural network a learning rate of 0.01 is a little on the higher 

side, but since we are only training the data on 20 epochs, it works well. 

A lower learning rate wouldn’t have achieved such a high accuracy with 

just 10 epochs. Similarly, the batch size chosen for the mini-batch version 

of stochastic gradient descent influences the convergence of the training 

process. A larger batch size might be good, since the gradient estimates 

are less noisy; however, it may come at the cost of increased computation. 

One also needs to try out different filter sizes as well as experiment with 

different numbers of feature maps in each convolutional layer. The kind of 

model architecture we choose works as prior knowledge to the network.

�Summary
In this chapter, we introduced the fundamental of how neural networks 

deal with images—data-matrices in general—and we introduced the 

modification needed for it. We showed you the transformation from 

regular image processing techniques and filters to convolutional neural 

networks and discussed it in detail.

In the next chapter, we will go through how neural networks deal with 

sequences and text data.

Chapter 11  Convolutional Neural Network



415© Hisham El-Amir and Mahmoud Hamdy 2020 
H. El-Amir and M. Hamdy, Deep Learning Pipeline,  
https://doi.org/10.1007/978-1-4842-5349-6_12

CHAPTER 12

Sequential Models
�Recurrent Neural Networks
So why do we need a recurrent neural network (RNN)? Let’s try to answer 

that with an example, or analogy. When reading a new article, people 

have two options. First, if they can’t understand it, they can read articles 

that the new article is based on, for background information. Otherwise, 

they do understand the new article, based on some prior knowledge of the 

subject, without an immediate need to read similar articles. In both cases, 

their ability to understand the new article is enabled by some preexisting 

or preaquired knowledge. But they don’t need to go back to the phase of 

learning alphabets or numbers; they only need to know what this article is 

about. This is the way recurrent neural networks work.

RNNs add an interesting twist to basic neural networks. The neural 

network takes in a fixed size vector as input, which limits its usage in 

situations that involve a “series” type input with no predetermined size. 

RNNs are designed to take a series of inputs with no predetermined limit 

on size. But one may wonder if you can just repeat the traditional neural 

network. Yes you can, but you will miss the concept of series. Series 

means every input is a neighbor to another input. So, if you repeat this 

neural network more than once, you will miss the series. Inputs mean 

many inputs to the neural network, not series input, so the RNN is a 

sequential model network. An RNN remembers the past, and its decisions 

are influenced by what it has learned from the past. Let’s say that basic 
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feedforward networks “remember” things too; they remember things they 

learned during training. For example, an image classifier learns what a “1” 

looks like during training and then uses that knowledge to classify things in 

production. Now let’s see about the RNN and its types.

RNNs can take one or more input vectors and produce one or more 

output vectors, and the output(s) are influenced by weights applied on 
inputs and “hidden” state vectors representing the context based on 

prior input(s) and output(s). So, the same input could produce a different 

output, depending on previous inputs in the series. This is the “series” 

aspect of an RNN. Now, how can we create the layers of an RNN? First of 

all, the RNN looks quite similar to a traditional neural network except that 

a memory state is added to the neurons. Imagine a simple model with 

only one neuron, fed by a batch of data. In a traditional neural network, 

the model produces the output by multiplying the input with the weight 

and the activation function. With an RNN, this output is sent back to itself 

a number of times. Time step is the amount of time the output becomes 

the input of the next matrices multiplication. Let’s visualize what happens. 

Say the network is composed of one neuron. The network computes 

the matrices multiplication between the input and the weight and adds 

nonlinearity with the activation function. It becomes the output at t − 1. 

This output is the input of the second matrices multiplication.

Figure 12-1.  The abstraction of an RNN
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Figure 12-1 shows an abstract explanation of when you have an input 

and an output; input means batch, but batch per time. Figure 12-2 shows 

the RNN cell in more detail.

Now let’s explain it in detail, but we will look at it from end to start. 

We cache the output from softmax and the output from tanh. You can say 

we save ŷ t  and at to the cache to use it in the next state. The next state 

will take those two parameters as input and multiply the (a) parameter, 

which will be the at − 1 with the weight of this state. At the same time, we 

multiply the input vector with the weight of this state, combine those 

two parameters with the bias, and apply the tanh activation function on 

them. This will generate the next activation (a) and apply softmax on it to 

generate the predicted (y), and cache them to the next state of RNN and 

back again with this cycle from end to start.

So, now that we’ve seen only one cell and had a brief look at its functions, 

let’s connect this cell with other cells and get a big recurrent neural network. 

You will see that in real life the sequence of data goes from the input and 

generates new output every time step. This is an RNN, which depends on 

time and a series of data. Figure 12-3 will make the idea more visible.

Figure 12-2.  The details inside an RNN
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This figure explains how the connection between the activation is 

generated from a state, goes through the next state, and generates a new 

predicted output (y). This makes a series, as we talked about previously. 

Now that you know the structure of the RNN, you should know that there 

is more than one type of RNN. You need to know the size of the input the 

RNN needs and the size of the output that you predicted from the RNN.

We have three  types of RNN. The first type is fully recurrent networks. 

In this type the layered topology of a multilayer perceptron is preserved, 

but every element has a weighted connection to every other element 

in the architecture and has a single feedback connection to itself. Not 

all connections are trained, and the extreme nonlinearity of the error 

derivatives means conventional backpropagation will not work, so the 

backpropagation through time approach or stochastic gradient descent is 

employed.

The next type is recursive neural networks. First, you should know 

that recurrent neural networks are linear architecturally; the recursion 

promotes branching in hierarchical feature spaces and the resulting 

network architecture mimics this as training proceeds. Training is 

achieved with gradient descent by subgradient methods.

The last type is the neural history compressor. Jüergen Schmidhuber 

reported a very deep learner, first in 1991, that was able to perform credit 

assignment over hundreds of neural layers by unsupervised pretraining for 

a hierarchy of RNNs. Each RNN is trained unsupervised to predict the next 

Figure 12-3.  A sequence of RNN cells
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input. Then, only inputs generating an error are feedforward, conveying 

new information to the next RNN in the hierarchy, which then processes at 

a slower, self-organizing time scale.

It was shown that no information is lost, just compressed. The 

RNN stack is a “deep generative model” of the data. The data can be 

reconstructed from the compressed form.

Before we finish this section, we need to talk about the five types of 

RNN architecture (Figure 12-4). Each type is best for certain uses, like 

many to many as an encoder or decoder and many to one for LSTM. So 

let’s talk about each type and what it consists of. One to one is recursive, 

but it takes only one input and produces only one output. The next type is 

one to many: it takes one input and produces many outputs. Many to one 

has many inputs and generates only one output. Many to many actually 

has two types, or two architectures: one is called many to many. One of 

them is fully connected, which is used in video recognition; the second 

type is partially connected, which is used in machine translation.

Unfortunately, we know that RNN is supposed to carry the information 

up to time. However, it is quite challenging to propagate all this information 

when the time step is too long. When a network has too many deep layers, 

it becomes untrainable. This problem is called the vanishing gradient 

Figure 12-4.  The different types of sequences architectures
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problem. If you remember, the neural network updates the weight using 

the gradient descent algorithm. The gradients grow smaller when the 

network progresses down to lower layers. This all is useful information 

to know about RNNs and their architectures. But simply put, an RNN is 

just a sequential model that we use in language models because we need 

sequential, or series, in a language model. So let’s talk about language 

modeling and how RNNs are important in it.

�Language Modeling
For simplification, language modeling is the task of predicting the next 

word or character in a document. A language model is a conditional 

distribution on the identifier of the ith word in a sequence, given the 

identities of all previous words. In language modeling, the probability 

of a sequence of words is computed through the product rule of 

the intersection of events. The probability of a sequence of words 

{w1, w2, w3, …, wn} of length n is given as follows:

P w w w w P w P w w P w w P w wn n
n

1 2 3 1 2 1 3 1
2

1
1, , , , | | |¼( ) = ( ) ( ) ( )¼ ( )-

So, language models assign probabilities to the sequences of words. 

But let’s see the types of language models and how the sequence works 

with each type. We have three types. The simplest model that assigns 

these probabilities to sentences or sequence of words is an N-Gram. An 

N-gram is a sequence of N words; a bi-gram (or bigram) is a two-word 

sequence of words like “please turn,” “turn your,” or “your homework”; 

and a tri-gram (or trigram) is a three-word sequence of words like “please 

turn your,” or “turn your homework.” But what’s the key connection 

between them and the RNN, or sequence model? Let’s start with the 

easiest one: an N-gram’s task is to compute P(w| h), the probability of a 
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word w∗ given some history h∗. Suppose the history h∗ is “its water is so 

transperant that” and we want to know the probability that the next word 

is the, it can be represented as:

P the its water is so transperant that|   ( )

One way to estimate the preceding function is through the relative 

frequency counts, where we would take a substantial corpus, count the 

number of times we see “its water is so transperant that,” and then count 

the number of times it is followed by “the”:

P its water is so transperant that
C its water is so transperant

  
 

( ) =
   

  

that the

C its water is so transperant that

( )
( )

But it isn’t feasible to do this task; we have many groups and we need 

to perform this task every single group! So, you do it by using the chain rule 

of probability:

P w w P w P w w P w w P w wn n
n

1 1 2 1 3 1
2

1
1, , | | |¼( ) = ( ) ( ) ( ) ( )-

This serves as the base procedure of the N-Gram model, where instead 

of computing the probability of a word given its entire history, we will 

approximate the history by just the last few words. The bigram model 

approximates the probability of a word given all the previous words, 

by using only the conditional probability of the preceding word. We 

approximate it with the probability P(w1 | wn − 1); like the example of “the” 

and “that,” you can do in a bi-gram P(the | that). You can do it by using the 

conditional probability:

P w w P w wn
n

n n| |1
1

1
-

-( ) » ( )
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A trigram model models language as a second-order Markov process, 

making the computationally convenient approximation that a word 

depends only on the previous two words. And you can use it with this 

equation:

P w P w w wn
n n n1

1
1

-
-( ) = ( )| ,

So these are the language models in natural language processing (NLP).  

But we didn’t talk about uni-gram, as we don’t need it for the sequence 

models, so at the end, we will see how RNN works with the language 

model and the importance of RNN in the language model, the aim of the 

language model is to predict the next word, so in N-gram we condition the 

word we need to predict based on the previous words. Therefore, the main 

reason for using an RNN is it’s sequential. This is analogous to the fact that 

the human brain does not start thinking from scratch for every word we 

say. Our thoughts have persistence. We’ll give this property of persistence 

to the neural network with the use of an RNN.

A good example is “I had a good time in France. I also learned to speak 

some _____”. If we want to predict what word will go in the blank, we have 

to go all the way to the word France and then conclude that the most likely 

word will be French. In other words, we have to have some memory of our 

previous outputs and calculate new outputs based on our past outputs. 

Another advantage of using RNNs for language modeling is that, due to 

memory constraints, they are limited to remembering only a few steps 

back. This is ideal because the context of the word can be captured in the 

8–10 words before it. We don’t have to remember 50 words of context, 

although RNNs can be used for arbitrarily long sequences if you have 

enough memory at your disposal. And don’t forget the design of the RNN 

(Figure 12-5).
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In RNNs, the output at each step is conditioned on all previous 

words; hence, RNNs do a better job than the n-gram models at language 

model tasks. To understand this, let’s look at the working principals of 

a generative recurrent neural network while considering a sequence 

(X = {x1, x2, …, xn}) of length n. The RNN updates its hidden state ht 

recursively as ht=f(ht−1,xt). The hidden state ht − 1 has information 

accumulated for the sequence of words {x1, x2, …, xt − 1}, and when the 

new word in the sequence xt arrives the updated sequence information 

{x1, x2, …, xt} is encoded in ht through the recursive update.

Now we must predict the next word based on the word sequence seen 

so far.

So now that we know the RNN is important for the language model 

task and have a good explanation for this type of RNN, we will talk about 

LSTM, GRU this the updates of the RNN in this chapter But for now let’s 

see how a new task works with an RNN—backpropagation through time 

(BPTT).

Figure 12-5.  The unroll of the RNN sequence
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�Backpropagation Through Time
Backpropagation through time, or BPTT, is the application of the 

backpropagation training algorithm to a recurrent neural network applied 

to sequence data like a time series. A recurrent neural network is shown 

one input each time step and predicts one output. Backpropagation for 

recurrent neural networks is the same as that for feedforward neural 

networks; the only difference is that the gradient is the sum of the gradient 

with respect to the log loss at each step. So, after having input and output 

every time step, errors are then calculated and accumulated for each time 

step. The network is rolled back up and the weights are updated.

Each time step of the unrolled recurrent neural network may be seen 

as an additional layer given the order dependence of the problem, and 

the internal state from the previous time step is taken as an input on the 

subsequent time step. Based on the predicted output and the actual output 

labels, the loss and the corresponding error at each time step is computed. 

The error at each time step is backpropagated to update the weights. So, 

any weight update is proportional to the sum of the gradients’ contribution 

from errors at all the T time steps. So, let’s go through some calculations 

about the loss function of RNNs. We mentioned before the tanh function 

and softmax function, so now let’s go through the loss function. We also 

defined our loss, or error, to be the cross-entropy loss, given by:

E y y y y
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t t t t t
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Here, yt is the correct word at time step t, and yt is our prediction. We 

typically treat the full sequence (sentence) as one training example, so the 

total error is just the sum of the errors at each time step (word). Let’s see an 

illustration of an RNN (Figure 12-6) to learn how to calculate the BPTT—

the backpropagation.
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This is not a new idea, since we actually learned about it in the previous 

chapters. But let’s remember that we need to calculate the gradients of 

the error with respect to our parameters U, V, and W and then learn good 

parameters using stochastic gradient descent. Just as we sum up the errors, 

we also sum up the gradients at each time step for one training example:

¶
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=
¶
¶åE

W

E

Wt

t

To calculate these gradients, we use the chain rule of differentiation. 

That’s the backpropagation algorithm when applied backward, starting 

from the error. We’ll use E3 as a figure, just to have concrete numbers to 

work with.
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Figure 12-6.  Simple architecture of a model to describe back-
propagation in it
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In the preceding, z3 = Vs3, and circled multiplication is the outer 

product of two vectors. That’s intuitive, but the point is that E3V only 

depends on the values at the current time step: ŷ3 , y3, s3. If you have these, 

calculating the gradient for V is a simple matrix multiplication. But the key 

point is to have this at first, as in the above calculation where 
¶
¶
z

V
3  really 

depends on those three variables, so now let’s get more in-depth with 

calculations. s3 =  tanh (Uxt + Ws2) depends on s2, which depends on W 

and s1, and so on. So, if we take the derivative with respect to W, we can’t 

simply treat s3 as a constant! We need to apply the chain rule again and 

what we really have is this:
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We sum up the contributions of each time step to the gradient. In other 

words, because W is used in every step up to the output we care about, we 

need to backpropagate gradients from t = 3 through the network all the way 

to t = 0. Let’s see a visualization (Figure 12-7) to get a better understanding 

about it. You already know about backpropagation; the only key difference 

is the time between backpropagation and BPTT.

Figure 12-7.  Feed backward backpropagation
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Note T his is exactly the same as the standard backpropagation 
algorithm that we use in deep feedforward neural networks. The key 
difference is that we sum up the gradients for W at each time step.

In a traditional neural network, we don’t share parameters across 

layers, so we don’t need to sum anything. But in my opinion, BPTT is just 

a fancy name for standard backpropagation on an unrolled RNN. But 

we have a problem with this: BPTT can be computationally expensive 

as the number of time steps increases. If input sequences are comprised 

of thousands of time steps, then this will be the number of derivatives 

required for a single update weight update. This can cause weights to 

vanish or explode (go to zero or overflow) and make slow learning and 

model skill noisy. This gets us to a new version of BPTT that tries to 

eliminate or minimize the challenges that BPPT has. So, TBPTT (truncated 

backpropagation through time) is developed. TBPTT is a modified version 

of the BPTT training algorithm for recurrent neural networks, wherein the 

sequence is processed one time step at a time, and periodically (k1 time 

steps) the BPTT update is performed back for a fixed number of time steps 

(k2 time steps). So, we see it depends on the two variables: k1 and k2.

•	 k1: The number of forward-pass time steps between 

updates. Generally, this influences how slow or fast 

training will be, given how often weight updates are 

performed.

•	 k2: The number of time steps to which to apply 

BPTT. Generally, it should be large enough to capture 

the temporal structure in the problem for the network 

to learn. Too large a value results in vanishing 

gradients.
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Let’s go through how TBPTT works, with parameters k1 and k2.  

We have four standard approaches; the last approach is divided into two 

approaches, as we see in the following:

•	 TBPTT(n,n): Updates are performed at the end of the 

sequence across all time steps in the sequence (e.g., 

classical BPTT).

•	 TBPTT(1,n): Time steps are processed one at a time, 

followed by an update that covers all time steps seen so 

far (e.g., classical TBPTT by Williams and Peng).

•	 TBPTT(k1,1): The network likely does not have 

enough temporal context to learn, relying heavily on 

internal state and inputs.

•	 TBPTT(k1,k2), where k1<k2<n: Multiple updates 

are performed per sequence, which can accelerate 

training.

•	 TBPTT(k1,k2), where k1=k2: A common configuration 

where a fixed number of time steps are used for both 

forward and backward-pass time steps (e.g., 10s to 100s).

In libraries like TensorFlow and Keras, things look similar and h 

defines the vectorized fixed length of the time steps of the prepared data. 

In real life, with coding, you will not do this calculation yourself, but we 

need you to understand what happens in the background of this equation. 

Now we will have a case study that makes the sequence model more 

obvious. Try it yourself.
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�Vanishing and Exploding Gradient Problems 
in RNN
We saw in the previous section that BPTT has many problems with time. If 

you have a large time series, you can have many problems that fall under the 

term vanishing and exploding. The key difference between RNNs and neural 

networks is time. The error propagates backward from output to input layer, 

propagating the input error gradient. With deeper neural networks, issues 

can arise from backpropagation, such as vanishing and exploding gradients. 

So, let’s review with a quick definition of vanishing gradients. As we go 

back to the lower layers, the gradient often gets smaller, eventually causing 

weights to never change at lower layers. Exploding gradients are the 

opposite of vanishing gradients; gradient explode on the way back.

Let’s see if the RNN gradient will suffer more from vanishing or 

exploding. In my opinion it will be vanishing, because of RNNs’ large and 

complex structures. So, let’s lay out the problem and get a solution for it. 

The aim of RNNs is to learn long dependencies so that the interrelations 

between words that are far apart are captured. For example, the actual 

meaning that a sentence is trying to convey may be captured well by 

words that are not in close proximity to each other. Let’s assume the input 

sequence to the network is a nine-word sentence: “I grew up in France; 

I speak French fluently.” We can see from the example that for the RNN 

to predict the word “French,” which comes at the end of the sequence, it 

would need information from the word “France,” which occurs further 

back near the beginning of the sentence. This kind of dependence 

between sequence data is called long-term dependencies, because the 

distance between the relevant information “France” and the point where 

it is needed to make a prediction “French” is very wide. Unfortunately, 

in practice, as this distance becomes wider, RNNs have a hard time 

learning these dependencies because they encounter either a vanishing or 

exploding gradient problem.
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So, RNNs should be able to learn those dependencies, but they 

suffer from this inherent problem: failing to capture long-distance 

dependencies between words. This is because the gradients in instances 

of long sequences have a high chance of either going to zero or going to 

infinity very quickly. When the gradients drop to zero very quickly, the 

model is unable to learn the associations or correlations between events 

that are temporally far apart. The equations derived for the gradient of 

the cost function with respect to the weights of the hidden memory layers 

will help us understand why this vanishing gradient problem might take 

place. These problems arise during the training of a deep network when 

the gradients are being propagated back in time all the way to the initial 

layer. The gradients coming from the deeper layers have to go through 

continuous matrix multiplications because of the chain rule. As they 

approach the earlier layers, if they have small values (<1), they shrink 

exponentially until they vanish and make it impossible for the model to 

learn; this is the vanishing gradient problem. On the other hand, if they 

have large values (>1), they get larger and eventually blow up and crash 

the model; this is the exploding gradient problem. So, the definitions of 

vanishing and exploding gradient are as follows:

•	 Exploding gradients: When gradients explode, the 

gradients could become NaN because of the numerical 

overflow, or we might see irregular oscillations in 

training cost when we plot the learning curve.

•	 Vanishing gradients: The basic RNN model has many 

local influences because of recurrent neural networks 

as the earlier information. As the RNN weights vanishes 

thought time and information is lost.
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In Figure 12-8, the output ŷ< >3 is mainly influenced by a value close to 

ŷ< >3 . This local influence makes an output which is later in the sequence to 

be affected by earlier input in the sequence.

Figure 12-8.  All previous inputs participate to generate the current 
output

Figure 12-9.  All previous inputs participate to generate the current 
output

In Figure 12-9, the output y<Ty> cannot be influenced by the early 

inputs in the sequences (x<1>, x<2>, x<3>). It was hard for the error to 

backpropagate to the beginning of the sequence. This is the weakness of 

the basic RNN. So, now that we know about the problems of vanishing and 

exploding gradients, we need to solve them.
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�The Solution to Vanishing and Exploding 
Gradients Problems in RNNs
Let’s start with exploding gradients. A solution to fix this is to apply gradient 

clipping, which places a predefined threshold on the gradients to prevent 

them from getting too large. By doing this, it doesn’t change the direction of 

the gradients; it only changes its length. We can see this in Figure 12-10.

So, we should get to the point that we try to enhance the gradient 

to reach the local minima as fast as it can without getting any errors, 

meaning overfitting, underfitting, vanishing, or exploding. So the solution 

looks easy for exploding, but not so easy for vanishing. We have two 

solutions for vanishing. First, we will talk about identity RNN architecture, 

where the network weights are initialized to the identity matrix and the 

activation functions are all set to ReLU. This ends up encouraging the 

network computations to stay close to the identity function. This works 

well because, when the error derivatives are being propagated backward 

through time, they remain constants of either 0 or 1; hence, they aren’t 

likely to suffer from vanishing gradients. The second, widely used, solution 

Figure 12-10.  Gradient steps with and without clipping
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is LSTM. Long short-term memory architecture is a variant of the regular 

recurrent network, which was designed to make it easy to capture long-

term dependencies in sequence data. The standard RNN operates in such 

a way that the hidden state activation is influenced by the other local 

activations closest to them, which corresponds to “short-term memory.” 

But the network weights are influenced by the computations that take 

place over entire long sequences, which corresponds to “long-term 

memory.” Hence, the RNN was redesigned so that it has an activation state 

that can also act as weights and preserve information over long distances, 

hence the name “long short-term memory.”

We may need to learn more about LSTM, so in the next section we will 

talk about it. But before we end this section, let’s recap. Vanishing means 

that your model tries to learn, but it can’t because it goes so slowly; but 

if you let it complete training, it may get to optimal minima, or may not. 

Exploding is the way that the model goes away from the optimal minima: it 

will go away more and more and it won’t get to its optimal minima, and we 

can’t reduce the cost function—the core of what we’re trying to do. So, let’s 

go to the next section and talk about LSTM.

�Long Short-Term Memory
LSTM networks are just an advanced version of plain RNNs. These networks 

are capable of remembering long-term dependencies. They are designed to 

remember information for long periods of time without having to deal with 

the vanishing gradient problem. They were invented by Sepp Hochreiter and 

Jürgen Schmidhuber in 1997 and were refined and popularized by many 

people in their following work. They work tremendously well on a large 

variety of problems and are now widely used. We know that an RNN is very 

simple compared with LSTM, and LSTM is used to solve vanishing problems, 

so let’s talk about the architecture (Figure 12-11). All RNNs have the form of 

a chain of repeating modules of the neural network. In standard RNNs, this 

repeating module will have a very simple structure, such as a single tanh layer.
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LSTMs also have this chain-like structure, but the repeating module 

has a different structure. Instead of having a single neural network layer, 

there are four, interacting in a very special way.

Let’s talk about the core behind LSTM and what happens to input from 

the first state to the last one. We won’t go to the equations at first; we’ll just 

talk about the diagram (Figure 12-13). Let’s start with the line above. It runs 

straight down the entire chain, with only some minor linear interactions. 

It’s very easy for information to just flow along it, unchanged from the 

previous state, to generate new Ct to the next state, as in Figure 12-13.

Figure 12-11.  The architecture of LSTM

Figure 12-12.  How an LSTM cell works
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LSTM can add or forget or update by using gates. These gates can 

change in this straight line. Let’s build the LSTM architecture together 

step-by-step with data going through the input.

The first step in our LSTM is to decide what information we’re going 

to throw away from the cell state. This decision is made by a sigmoid layer 

called the “forget gate layer.” It looks at ht − 1 and xt, and outputs a number 

between 0 and 1 for each number in the cell state Ct − 1.

A1 when it is 1 represents “completely keep this” while a 0 represents 

“completely get rid of this.” We know that the sigmoid function, which is 0 

or 1, is an activation function, so the input is multiplied by it. If it is zero, 

this means that this input is neglected; but if it’s one, this means we should 

care about this input. You can see an example in Figure 12-14.

Figure 12-13.  How memory step works in LSTM

Figure 12-14.  The forget cell and how it works
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The next step is to decide what new information we’re going to store 

in the cell state. This has two parts. First, a sigmoid layer called the “input 

gate layer” decides which values we’ll update. Next, a tanh layer creates 

a vector of new candidate values, Ct, that could be added to the state. In 

the next step, we’ll combine these two to create an update to the state 

(Figure 12-15).

It’s now time to update the old cell state, Ct − 1, into the new cell state, Ct.  

We multiply the old state by ft, forgetting the things we decided to forget 

earlier. Then we add it∗Ct. This represents the new candidate values, scaled 

by how much we decided to update each state value (Figure 12-16).

Figure 12-15.  How LSTM updates its memory

Figure 12-16.  The combination of forget and updating LSTM 
memory
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Finally, we need to decide what we’re going to output. This output 

will be based on our cell state, but will be a filtered version. First, we run 

a sigmoid layer, which decides what parts of the cell state we’re going to 

output. Then, we put the cell state through tanh (to push the values to 

between −1 and 1) and multiply it by the output of the sigmoid gate, so 

that we only output the parts we decided to (Figure 12-17).

Besides this general use LSTM layer, many papers have been written 

updating this version:

	 1.	 One popular LSTM variant, introduced by F. A. 

Gers and Jürgen Schmidhuber (2000), is adding 

“peephole connections.” This means that we let the 

gate layers look at the cell state (Figure 12-18).

Figure 12-17.  How LSTM calculates the output

Figure 12-18.  How LSTM tooks at memory and how it uses it
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	 2.	 Use coupled forget and input gates. Instead of 

separately deciding what to forget and what we 

should add new information to, we make those 

decisions together. We only forget when we’re going 

to input something in its place. We only input new 

values to the state when we forget something older 

(Figure 12-19).

So, you can see that anyone can update this and adapt LSTM to handle 

their cases. We’ve learned about LSTM and its four functions; the main 

point is that LSTM can solve exploding and vanishing gradient problems.

�Case Study—Digit Identification 
on the MNIST Dataset

�Gated Recurrent Unit
In the section on LSTM, we said that it solves vanishing gradient problems. 

We now have a great new architecture called Gated Recurrent Unit (GRU), 

introduced by Cho, et al. in 2014. GRU aims to solve the vanishing gradient 

problem that comes with a standard RNN. GRU can also be considered as a 

Figure 12-19.  The output of forget/update memory activation 
function
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variation on LSTM because both are designed similarly and, in some cases, 

produce equally excellent results. GRU uses so-called update gate and 

reset gate. Basically, these are two vectors that decide what information 

should be passed to the output. The special thing about them is that they 

can be trained to keep information from long ago, without washing it 

through time or removing information that is irrelevant to the prediction. 

So, let’s see the unit of GRU in a visualization model (Figure 12-20)

Let’s look at each gate individually,

	 1.	 Update gate: We start with calculating the update 

gate zt for time step t (Figure 12-21).

zt = σ(W(z)xt + U(z)ht − 1)

Figure 12-20.  The GRU unit architect
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When xt is plugged into the network unit, it is multiplied 

by its own weight, W(z). The same goes for ht-1, which 

holds the information for the previous t − 1 units and 

is multiplied by its own weight, U(z). Both results are 

added together and a sigmoid activation function is 

applied to squash the result between 0 and 1. The 

update gate helps the model to determine how much 

of the past information (from previous time steps) 

needs to be passed along to the future. That is really 

powerful, because the model can decide to copy all 

the information from the past and eliminate the risk 

of vanishing gradient problem. We will see the usage 

of the update gate later on. For now, remember the 

formula for zt.

Figure 12-21.  The first step of the GRU unit, the update gate
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	 2.	 Reset gate: Essentially, this gate is used by the model 

to decide how much of the past information to forget.

rt = σ(W(r)xt + U(r)ht − 1)

You see that this formula is almost like the update gate, 

but there is a difference in the values of variables and 

the gate position in the architecture. Let’s see the gate 

in Figure 12-22.

As before, we plug in ht − 1 and xt, multiply them with 

their corresponding weights, sum the results, and apply 

the sigmoid function.

Figure 12-22.  The reset gate in GRU unit
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	 3.	 Current memory content: This is a new memory; 

we introduce a new memory content that will use 

the reset gate to store the relevant information from 

the past.

¢ = +( )-h Wx r Uht t t ttanh  1

This works in four steps (Figure 12-23).

We do an element-wise multiplication of ht − 1 and rt 

and then sum the result with the input, xt. Finally, tanh 

is used to produce ht. So, after describing what happens 

in in the image, we need to go in details. The first step 

is to multiply the input xt with a weight W and ht − 1 

Figure 12-23.  How LSTM uses the memeory
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with a weight U. Then the second step calculates the 

Hadamard (element-wise) product between the reset 

gate rt and Uht − 1. That will determine what to remove 

from the previous time steps. Then we sum them up in 

the third step and apply the tanh activation function in 

the last step.

	 4.	 Final memory at current time step: This is the last 

step in the GRU; the network needs to calculate the 

ht vector, which holds information for the current 

unit and passes it down to the network. In order to 

do that, the update gate is needed. It determines 

what to collect from the current memory content, ht, 

and what from the previous steps, ht − 1.

h z h z ht t t t t= + -( )- 1 1 ’

Now let’s see how this memory works. Apply element-

wise multiplication to the update gate zt and ht − 1, then 

apply element-wise multiplication to (1 − zt) and ht 

(Figure 12-24). So far, we can sum the results from the 

previous two steps.
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You can see how zt is used to calculate (1 − zt), which, combined with ht 

produces a result in the dark red line. zt is also used with ht-1 in an element-

wise multiplication. Finally, h is a result of the summation of the outputs 

corresponding to the bright and dark red lines. So after we’ve seen how the 

procedure works in GRU and that it’s almost like LSTM, we now need to 

get some comparison between them—not an actual comparison, but we’ll 

try to get some key points that allow us to choose. It is very hard to choose 

between them, but let’s note some points to consider.

	 5.	 GRU and LSTM have comparable performance, and 

there is no simple way to recommend one or the 

other for a specific task.

Figure 12-24.  What happens to memory state at the final step
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	 6.	 GRUs are faster to train and need fewer data to generalize.

	 7.	 When there is enough data, LSTM’s greater 

expressive power may lead to better results.

	 8.	 Like LSTMs, GRUs are drop-in replacements for the 

simple RNN cell.

Those were just some key points; you can research more about them. 

So we now know the upgrades of the basic RNN neural network: LSTM 

and GRU. They are widely used those days, so make sure you use them. In 

the next section we will see a new application of RNN, Bidirectional RNN 

(Bi-RNN).

�Bidirectional RNN (Bi-RNN)
Bidirectional RNNs are a special type of RNN that makes use of both the 

past and future states to predict the output label at the current state.  

A bidirectional RNN combines two RNNs, one of which runs forward from 

left to right and the other of which runs backward from right to left. A high-

level architecture diagram of a bidirectional RNN is depicted in Figure 12-25.

Figure 12-25.  Bi-directional RNN architecture
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Bidirectional RNNs are really just two independent RNNs put together. 

The input sequence is fed in normal time order for one network, and in 

reverse time order for another. The outputs of the two networks are usually 

concatenated at each time step, though there are other options (e.g., 

summation).

This structure allows the networks to have both backward and forward 

information about the sequence at every time step. The concept seems 

easy enough. But when it comes to actually implementing a neural 

network that utilizes a bidirectional structure, confusion arises.

It has some issues: not actually issues, but some confusion. The first 

confusion is about the way to forward the outputs of a bidirectional RNN 

to a dense neural network. For normal RNNs we could just forward the 

outputs at the last time step. The second confusion is about the returned 

hidden states. In seq2seq models, we’ll want hidden states from the 

encoder to initialize the hidden states of the decoder.

�Summary
In this chapter, we talked about sequence models, and how they became 

so good with language models. We also talked about the problems that 

face the RNN, like vanishing and exploding. Then we looked into LSTM 

and GRU, which solve vanishing and exploding gradient problems with 

sequence models because they can handle the long dependences in 

language models. We then talked about the common application in a 

sequence model called bidirectional RNN, and saw its advantages.
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CHAPTER 13

Selected Topics in 
Computer Vision
After finishing Part III of Deep Learning Pipeline, you are ready now to 

build your pipeline. You now see the whole picture, but it's fair to tell you 

that you are missing some parts in each approach, and we will fill the 

gaps by giving you some advanced concepts in both natural language 

processing and computer vision. Then we will give you some examples, 

using different types of datasets to ensure that you can apply a deep 

learning pipeline correctly and easily.

Now, after finishing Chapter 11 in Part III, it’s good to add some extra 

knowledge that makes it easier for the reader when they work. We’ll be 

discussing and using prebuilt model architectures that made a state-

of-the-art accurate prediction and produced a very high accuracy in 

competitions. We’ll also discuss a new concept—transfer learning. This 

concept will help you to save both time and computational power, and 

we will show you the guidelines for using transfer learning with different 

models.
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�Different Architectures in Convolutional 
Neural Networks
The challenging part of using convolutional neural networks (CNNs) in 

practice is how to design model architectures that best use these simple 

elements: the layer types, the loss function, the optimizer, and all the 

hyperparameters. All these are the issues you may find challenging when 

you are attempting to build a good model.

A useful approach to learning how to design effective CNN architectures 

is to study successful applications. This is particularly straightforward to do 

because of the intense study and application of CNNs through the past 10 

to 20 years for the ImageNet Large Scale Visual Recognition Competition, 

or ILSVRC. This challenge resulted in both rapid advancement in the state 

of the art for very difficult computer vision tasks, and the development of 

general innovations in the architecture of CNN models.

In this section, we will go through a few widely used CNN architectures 

used today. These network architectures can be used in many tasks 

such as classification, but also, with minor modifications, segmentation, 

localization, and detection. Also, there are pretrained versions of each of 

these networks that enable the community to do transfer learning or fine-

tune the models. Except LeNet, almost all the CNN models have won the 

ImageNet competition for classification of a thousand classes.

We will begin with the LeNet-5, which is often described as the first 

successful and important application of CNNs prior to the ILSVRC. Then 

we’ll look at three other winning architectural innovations for CNNs 

developed for the ILSVRC, namely: AlexNet, VGG, and ResNet.

By understanding these milestone models and their architecture 

or architectural innovations from a high-level, you will develop both 

an appreciation for the use of these architectural elements in modern 

applications of CNN in computer vision, and be able to identify and choose 

architecture elements that may be useful in the design of your own models.
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�LeNet
The first successful CNN was developed by Yann LeCunn in 1990 for 

classifying handwritten digits successfully for OCR-based activities such 

as reading ZIP codes, checks, and so on. LeNet5 is the latest offering from 

Yann LeCunn and his colleagues. It takes in 32 × 32 size images as input 

and passes them through a convolutional layer to produce six feature maps 

of size 28 × 28. The six feature maps are then subsampled to produce six 

output images of size 14 × 14. Subsampling can be thought of as a pooling 

operation. The second convolutional layer has 16 feature maps of size 

10 × 10, while the second subsampling layer reduces the feature map sizes 

to 5 × 5. This is followed by two fully connected layers of 120 and 84 units, 

respectively, followed by the output layer of ten classes corresponding to 

ten digits.

This model was developed for use in a handwritten character 

recognition problem and demonstrated on the MNIST standard dataset, 

achieving approximately 99.2% classification accuracy (or 0.8% error rate). 

The network was then described as the central technique in a broader 

system referred to as Graph Transformer Networks.

Compared with modern applications, the number of filters is also 

small, but the trend of increasing the number of filters with the depth 

of the network also remains a common pattern in modern usage of the 

technique.

The flattening of the feature maps and interpretation and classification 

of the extracted features by fully connected layers also remains a common 

pattern today. In modern terminology, the final section of the architecture 

is often referred to as the classifier, whereas the convolutional and pooling 

layers earlier in the model are referred to as the feature extractor.

Figure 13-1 represents the LeNet5 architecture diagram.
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One of the key features that make this architecture different from 

the previous work is that the pooling though subsampling takes 2 × 2 

neighborhood patches and sums up the four-pixel intensity values. The 

sum is scaled by a trainable weight and a bias, and then fed through a 

sigmoid activation function. This is a little different from what is done for 

max pooling and average pooling.

Another key feature is that the filter kernel used for convolution is of 

size 5 × 5, and the output units are radial basis function (RBF) units instead 

of the softmax function. The 84 units of the fully connected layers had 84 

connections to each of the classes and hence, 84 corresponding weights. 

The 84 weights/class represent each class’s characteristics. If the inputs to 

those 84 units are very close to the weights corresponding to a class, then 

the inputs are more likely to belong to that class.

In a softmax we look at the dot product of the inputs to each of the 

class’s weight vectors, while in RBF units we look at the Euclidean distance 

between the input and the output class representative’s weight vectors. 

The greater the Euclidean distance, the smaller the chance of the input 

belonging to that class. The same can be converted to probability by 

exponentiating the negative of the distance and then normalizing over the 

different classes.

Figure 13-1.  The architecture of LeNet
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The Euclidean distances over all the classes for an input record 

would act as the loss function for that input (Figure 13-2). Let 

x = [x1, x2, …, x83, x84]T ∈ R84 × 1 be the output vector of the fully connected 

layer. For each class, there would be 84 weight connections. If the 

representative class’s weight vector for the ith class is wi ∈ R84 × 1, then the 

output of the ith class unit can be given by the following:

d x w x wi
j

j ij,( ) = -( )
=
å

1

84 2

�AlexNet
The work that perhaps could be credited with sparking renewed interest in 

neural networks, and the beginning of the dominance of deep learning in 

many computer vision applications, was the 2012 paper by Alex Krizhevsky, 

Figure 13-2.  How Euclidean distance works
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et al. titled “ImageNet Classification with Deep Convolutional Neural 

Networks.” It won the 2012 ImageNet ILSVRC. It was the first time that a 

CNN architecture beat other methods by a huge margin. Their network 

achieved an error rate of 15.4% on its top five predictions as compared with 

a 26.2% error rate for the second-best entry.

Important in the design of AlexNet was a suite of methods that were 

new or successful, but not widely adopted at the time. Now they have 

become standards when using CNNs for image classification.

AlexNet made use of the rectified linear activation function, or ReLU, 

as the non-linearity after each convolutional layer, instead of S-shaped 

functions such as the logistic or tanh that were common up until that 

point. Also, a softmax activation function was used in the output layer, now 

a staple for multiclass classification with neural networks.

The architectural diagram of AlexNet is represented in Figure 13-3. 

AlexNet consists of five convolutional layers, max pooling layers, and 

dropout layers, and three fully connected layers in addition to the input 

and output layer of a thousand class units.

The average pooling used in LeNet-5 was replaced with a max 

pooling method, although in this case, overlapping pooling was found to 

outperform the nonoverlapping pooling that is commonly used today (e.g., 

stride of pooling operation is the same size as the pooling operation, e.g., 

2 × 2 pixels). To address overfitting, the newly proposed dropout method 

was used between the fully connected layers of the classifier part of the 

model to improve generalization error.

The inputs to the network are images of size 224 × 224 × 3. The first 

convolutional layer produces 96 feature maps corresponding to 96 filter 

kernels of size 11 × 11 × 3, with strides of four-pixel units. The second 

convolutional layer produces 256 feature maps corresponding to filter 

kernels of size 5 × 5 × 48. The first two convolutional layers are followed 

by max pooling layers, whereas the next three convolutional layers are 

placed one after another without any intermediate max pooling layers. 
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The fifth convolutional layer is followed by a max pooling layer, two fully 

connected layers of 4096 units, and finally, a softmax output layer of one 

thousand classes. The third convolutional layer has 384 filter kernels of size 

3 × 3 × 256, whereas the fourth and fifth convolutional layers have 384 and 

256 filter kernels each of size 3 × 3 × 192.

A dropout of 0.5 was used in the last two fully connected layers. You 

will notice that the depth of the filter kernels for convolutions is half 

the number of feature maps in the preceding layer for all but the third 

convolutional layer. And this is because the model was split into two 

pipelines to train on the GPU hardware of the time.

However, if you observe carefully, for the third convolutional 

activity there is cross-connectivity for convolution, so the filter kernel 

is of dimension 3 × 3 × 256 and not 3 × 3 × 128. The same kind of cross-

connectivity applies to the fully connected layers, and hence, they behave 

as ordinary fully connected layers with 4096 units.

Figure 13-3.  The architecture of AlexNet
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We can summarize the key aspects of the architecture relevant in 

modern models as follows:

•	 Use of the ReLU activation function after convolutional 

layers and softmax for the output layer

•	 Use of max pooling instead of average pooling

•	 Use of dropout regularization between the fully 

connected layers

•	 Pattern of convolutional layer fed directly to another 

convolutional layer

•	 Use of data augmentation

�VGG
An important work that sought to standardize architecture design for 

deep convolutional networks and developed much deeper and better 

performing models in the process was the 2014 paper titled “Very Deep 

Convolutional Networks for Large-Scale Image Recognition” by Karen 

Simonyan and Andrew Zisserman.

Their architecture is generally referred to as VGG after the name 

of their lab, the Visual Geometry Group at Oxford. Their model was 

developed and demonstrated in the same ILSVRC competition—in this 

case, the ILSVRC-2014 version of the challenge.

The first important difference that has become a de facto standard is 

the use of a large number of small filters. Specifically, filters with the size 

3 × 3 and 1 × 1 with the stride of one, different from the large sized filters in 

LeNet-5 and the smaller but still relatively large filters and large stride of 

four in AlexNet.

Max pooling layers are used after most, but not all, convolutional 

layers, learning from the example in AlexNet. Yet all pooling is performed 

with the size 2 × 2 and the same stride; that too has become a de facto 
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standard. Specifically, the VGG networks use examples of two, three, and 

even four convolutional layers stacked together before a max pooling 

layer is used. The rationale was that stacked convolutional layers with 

smaller filters approximate the effect of one convolutional layer with a 

larger sized filter, (e.g., three stacked convolutional layers with 3 × 3 filters 

approximates one convolutional layer with a 7 × 7 filter).

Another important difference is the very large number of filters used. 

The number of filters increases with the depth of the model, although it 

starts at a relatively large number of 64 and increases through 128, 256, and 

512 filters at the end of the feature extraction part of the model.

A number of variants of the architecture were developed and 

evaluated, although two are referred to most commonly, given their 

performance and depth. They are named for the number of layers: they are 

the VGG-16 and the VGG-19 for 16 and 19 learned layers, respectively.

Figure 13-4 represents the architecture of VGG16. The input to the 

network is images of size 224 × 224 × 3. The first two convolutional layers 

produce 64 feature maps, each followed by max pooling. The filters for 

convolution are of spatial size 3 × 3, with a stride of 1 and pad of 1. Max 

pooling is of size 2 × 2, with a stride of 2 for the whole network. The third 

Figure 13-4.  The architecture of VGG
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and fourth convolutional layers produce 128 feature maps, each followed 

by a max pooling layer. The rest of the network follows in a similar fashion, 

as shown in Figure 13-4. At the end of the network there are three fully 

connected layers of 4096 units, each followed by the output softmax layer 

of a thousand classes. Dropout is set at 0.5 for the fully connected layers. 

All the units in the network have ReLU activations.

We can summarize the key aspects of the architecture that are relevant 

in modern models as follows:

•	 Use of very small convolutional filters (e.g., 3 × 3 and 

1 × 1 with a stride of one)

•	 Use of max pooling with a size of 2 × 2 and a stride of 

the same dimensions

•	 The importance of stacking convolutional layers 

together before using a pooling layer to define a block

•	 Dramatic repetition of the convolutional-pooling block 

pattern

•	 Development of very deep (16 and 19 layer) models

�ResNet
ResNet is a 152-layer-deep CNN from Microsoft that won the ILSVRC 2015 

competition with an error rate of only 3.6%, which is perceived to be better 

than the human error rate of 5–10%.

A final important innovation in CNNs that we will review was proposed 

by Kaiming He, et al. in their 2016 paper titled “Deep Residual Learning for 

Image Recognition.”

Their model had an impressive 152 layers. Key to the model design is 

the idea of residual blocks that make use of shortcut connections. These are 

simply connections in the network architecture where the input is kept as-is 

(not weighted) and passed on to a deeper layer (e.g., skipping the next layer).
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ResNet implements residual blocks as follows: after each series of 

convolution–ReLUs–convolution operations, the input to the operation 

is fed back to the output of the operation. In traditional methods, while 

doing Convolution and other transformations, we try to fit an underlying 

mapping to the original data to solve the classification task.

Again, a residual block is a pattern of two convolutional layers with 

ReLU activation, where the output of the block is combined with the input 

to the block (e.g., the shortcut connection). A projected version of the 

input is used via 1 × 1 if the shape of the input to the block is different from 

the output of the block, the so-called 1 × 1 convolution. These are referred 

to as projected shortcut connections, compared with the unweighted or 

identity shortcut connections.

However, with ResNet’s residual block concept, we try to learn a 

residual mapping and not a direct mapping from the input to output. 

Formally, in each small block of activities we add the input to the block to 

the output. This is illustrated in Figure 13-5. This concept is based on the 

hypothesis that it is easier to fit a residual mapping than to fit the original 

mapping from input to output.

Figure 13-5.  How ResNet works
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We can summarize the key aspects of the architecture relevant to 

modern models as follows:

•	 Use of shortcut connections

•	 Development and repetition of the residual blocks

•	 Development of very deep (152-layer) models

�Transfer Learning
A neural network is trained on data. This network gains knowledge from 

this data, which is compiled as “weights” of the network. These weights can 

be extracted and then transferred to any other neural network. Instead of 

training the other neural network from scratch, we “transfer” the learned 

features.

Transfer learning in a broad sense refers to storing knowledge gained 

while solving a problem, and using that knowledge for a different problem 

in a similar domain. Transfer learning has been hugely successful in the 

field of deep learning for a variety of reasons. Deep learning models in 

general have a huge number of parameters because of the nature of the 

hidden layers and the connectivity scheme within the different units.

To train such a huge model, lots of data is required or the model will 

suffer from overfitting problems. In many problems, the huge amount 

of data required to train the model is not available, but the nature of the 

problem requires a deep learning solution in order to have a reasonable 

impact. For instance, in image processing for object recognition, deep 

learning models are known to provide state-of-the-art solutions. In such 

cases, transfer learning can be used to generate generic features from 

a pretrained deep learning model, and then use those features to build 

a simple model to solve the problem. So, the only parameters for this 

problem are the ones used to build the simple model.
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�What Is a Pretrained Model, and Why Use It?
Simply put, a pretrained model is a model created by someone else to 

solve a similar problem. Instead of building a model from scratch to solve a 

similar problem, you use the model trained on other problem as a starting 

point.

So, pretrained models are generally trained on a huge corpus of data 

and thus have reliable parameters. When we process images through 

several layers of convolutions, the initial layers learn to detect very 

generic features such as curls and edges. As the network grows deeper, 

the convolutional layers in the deeper layers learn to detect more complex 

features relevant to the specific kind of dataset.

For example, say you want to build a self-learning car. You can spend 

years to build a decent image recognition algorithm from scratch or you 

can take an inception model (a pretrained model) from Google that was 

built on ImageNet data to identify images in those pictures. A pretrained 

model may not be 100% accurate in your application, but it saves the huge 

efforts required to reinvent the wheel.

As another example, in a classification, the deeper layers would learn 

to detect features such as eyes, nose, face, and so forth. Let’s assume we 

have a VGG19 architecture model trained on one thousand categories 

of the ImageNet dataset. Now, if we get a smaller dataset that has fewer 

categories of images similar to those of the VGG19 pretrained model 

dataset, we can use the same VGG19 model up to the fully connected layer 

and then replace the output layer with the new classes. Also, we keep the 

weights of the network fixed until the fully connected layer, and only train 

the model to learn the weights from the fully connected layer to the output 

layer.

This is because the dataset’s nature is the same as the smaller dataset. 

Thus, the features learned in the pretrained model through the different 

parameters are good enough for the new classification problem, and we 

only need to learn the weights from the fully connected layer to the output 
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layer. This is a huge reduction in the number of parameters to learn, and it 

will reduce the overfitting. Had we trained the small dataset using VGG19 

architecture, it might have suffered from severe overfitting because of the 

large number of parameters to learn on a small dataset. What do you do 

when the dataset’s nature is very different from that of the dataset used for 

the pretrained model?

Well, in that case, we can use the same pretrained model but fix 

only the parameters for the first couple of sets of convolutions–ReLUs–

max pooling layers and then add a couple of convolutions–ReLU–max 

pooling layers that would learn to detect features intrinsic to the new 

dataset. Finally, we would have to have a fully connected layer followed 

by the output layer. Since we are using the weights of the initial sets of 

convolutions–ReLUs–max pooling layers from the pretrained VGG19 

network, the parameters with respect to those layers need not be learned. 

As mentioned earlier, the early layers of convolution learn very generic 

features, such as edges and curves, which are applicable to all kinds of 

images. The rest of the network would need to be trained to learn specific 

features inherent to the specific problem dataset.

�How to Use a Pretrained Model?
What is our objective when we train a neural network? We wish to identify 

the correct weights for the network by multiple forward and backward 

iterations. By using pretrained models that have been previously trained 

on large datasets, we can directly use the weights and architecture 

obtained and apply the learning on our problem statement. This is how 

transfer learning works. We “transfer the learning” of the pretrained model 

to our specific problem statement.

We should be very careful while choosing what pretrained model to 

use in an individual case. If the problem statement we have at hand is very 

different from the one on which the pretrained model was trained, the 

prediction we would get would be very inaccurate. For example, a model 
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previously trained for speech recognition would work horribly if we tried 

to use it to identify objects.

We are lucky that many pretrained architectures are directly available 

for us as preloaded weights or in the Keras library. The Imagenet dataset, 

for example, has been widely used to build various architectures, since it is 

large enough (1.2M images) to create a generalized model.

These pretrained networks demonstrate a strong ability to generalize to 

images outside the given dataset via transfer learning. We make modifications 

in the preexisting model by fine-tuning the model. Since we assume that the 

pretrained network has been trained quite well, we would not want to modify 

the weights too soon and too much. While modifying, we generally use a 

learning rate smaller than the one used for initially training the model.

�Ways to Fine-Tune the Model
	 1.	 Feature extraction: We can use a pretrained model 

as a feature extraction mechanism. We can remove 

the output layer (the one that gives the probabilities 

for being in each of the 1,000 classes) and then use 

the entire network as a fixed feature extractor for the 

new data set.

	 2.	 Use the Architecture of the pretrained model: 
We can use the architecture of the model while we 

initialize all the weights randomly, and train the 

model according to our dataset again.

	 3.	 Train some layers while freezing others: Another 

way to use a pretrained model is to train it partially. 

We can keep the weights of initial layers of the 

model frozen while we retrain only the higher layers. 

We can try to test how many layers are to be frozen 

and how many to be trained.
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�Pretrained VGG19
In this section, we are going to demonstrate how to use the pretrained 

VGG19 model. Using such a great model with this less amount of training 

will help you to solve complex problems with less effort. So, let’s import the 

packages that we will use in this example.

from urllib.request import urlretrieve

from os.path import isfile, isdir

from tqdm import tqdm

import tarfile

import pickle

import numpy as np

import matplotlib.pyplot as plt

import skimage

import skimage.io

import skimage.transform

import tensorflow as tf

import tensornets as nets

After importing all the packages, we need to download the CIFAR-10 

dataset. This is the dataset we used before in Chapter 11. You can check 

how we built the model, and how much time and computational power we 

payed to train the model.

Now, after you import the packages we are going to use and loaded the 

CIFAR-10 dataset, it’s now time to build the model.

We first have to create the input/output variables, and also the 

hyperparameters we will use in the model building.

x = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), 

name='input_x')

y = tf.placeholder(tf.float32, shape=(None, 10), name='output_y')
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learning_rate = 0.00001

epochs = 7

batch_size = 32

We will use VGG19 with softmax_cross_entropoy loss, of course, and 

the AdamOptimizer for optimizing the model.

logits = nets.VGG19(x, is_training=True, classes=10)

model = tf.identity(logits, name='logits')

loss = tf.losses.softmax_cross_entropy(y, logits)

train = tf.train.AdamOptimizer(learning_rate=learning_rate).

minimize(loss)

correct_pred = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), 

name='accuracy')

If you called print_outputs of the logits, you will see the model 

architecture summary. It’s similar to the Keras model.summary function 

that shows each layer name, type, its input and output, and the number of 

parameters per each layer.

logits.print_outputs()

# Output

Scope: vgg19

conv1/1/conv/BiasAdd:0 (?, 224, 224, 64)

conv1/1/Relu:0 (?, 224, 224, 64)

conv1/2/conv/BiasAdd:0 (?, 224, 224, 64)

conv1/2/Relu:0 (?, 224, 224, 64)

conv1/pool/MaxPool:0 (?, 112, 112, 64)

conv2/1/conv/BiasAdd:0 (?, 112, 112, 128)

conv2/1/Relu:0 (?, 112, 112, 128)
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conv2/2/conv/BiasAdd:0 (?, 112, 112, 128)

conv2/2/Relu:0 (?, 112, 112, 128)

conv2/pool/MaxPool:0 (?, 56, 56, 128)

conv3/1/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/1/Relu:0 (?, 56, 56, 256)

conv3/2/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/2/Relu:0 (?, 56, 56, 256)

conv3/3/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/3/Relu:0 (?, 56, 56, 256)

conv3/4/conv/BiasAdd:0 (?, 56, 56, 256)

conv3/4/Relu:0 (?, 56, 56, 256)

conv3/pool/MaxPool:0 (?, 28, 28, 256)

conv4/1/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/1/Relu:0 (?, 28, 28, 512)

conv4/2/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/2/Relu:0 (?, 28, 28, 512)

conv4/3/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/3/Relu:0 (?, 28, 28, 512)

conv4/4/conv/BiasAdd:0 (?, 28, 28, 512)

conv4/4/Relu:0 (?, 28, 28, 512)

Now let us print the model summary using print_summary; we will 

see the total layers in the model, the total weights, and the number of 

parameters.

logits.print_summary()

Scope: vgg19

Total layers: 19

Total weights: 114

Total parameters: 418,833,630
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Now, after we’ve built the model architecture, and checked the total 

parameters and total layers in the model, we are ready to train it and see 

what will happen.

save_model_path = './image_classification'

print('Training...')

with tf.Session() as sess:

    # Initializing the variables

    sess.run(tf.global_variables_initializer())

    print('global_variables_initializer ... done ...')

    sess.run(logits.pretrained())

    print('model.pretrained ... done ... ')

    # Training cycle

    print('starting training ... ')

    for epoch in range(epochs):

        # Loop over all batches

        n_batches = 5

        for batch_i in range(1, n_batches + 1):

            �for batch_features, batch_labels in load_

preprocess_training_batch(batch_i, batch_size):

                �sess.run(train, {x: batch_features, y: batch_

labels})

            �print('Epoch {:>2}, CIFAR-10 Batch {}:  '.

format(epoch + 1, batch_i), end=")

            �# calculate the mean accuracy over all validation 

dataset

            valid_acc = 0

            �for batch_valid_features, batch_valid_labels in 

batch_features_labels(tmpValidFeatures, valid_

labels, batch_size):
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                �valid_acc += sess.run(accuracy, {x:batch_valid_

features, y:batch_valid_labels})

            tmp_num = tmpValidFeatures.shape[0]/batch_size

            �print('Validation Accuracy: {:.6f}'.format(valid_

acc/tmp_num))

    # Save Model

    saver = tf.train.Saver()

    save_path = saver.save(sess, save_model_path)

If this code step is running correctly for you, then we can say “well 

done to you.” Now the model is training as in the output below, and after it 

finishes, you will see the result in Figure 13-6.

Training...

global_variables_initializer ... done ...

model.pretrained ... done ...

starting training ...

Epoch  1, CIFAR-10 Batch 1:  Validation Accuracy: 0.510000

Epoch  1, CIFAR-10 Batch 2:  Validation Accuracy: 0.719000

Epoch  1, CIFAR-10 Batch 3:  Validation Accuracy: 0.770200

Epoch  1, CIFAR-10 Batch 4:  Validation Accuracy: 0.814000

Epoch  1, CIFAR-10 Batch 5:  Validation Accuracy: 0.832000

Epoch  2, CIFAR-10 Batch 1:  Validation Accuracy: 0.841600

Epoch  2, CIFAR-10 Batch 2:  Validation Accuracy: 0.850000

Epoch  2, CIFAR-10 Batch 3:  Validation Accuracy: 0.868000

Epoch  2, CIFAR-10 Batch 4:  Validation Accuracy: 0.856600

Epoch  2, CIFAR-10 Batch 5:  Validation Accuracy: 0.857400
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�Summary
In this chapter, we learned about advanced operations in CNNs, and how 

state-of-art architecture models such as LeNet, AlexNet, VGG, and ResNet 

work.

Further, we discussed what transfer learning is, and how to perform 

transfer learning using the pretrained versions of these CNNs. In the 

next chapter, we will discuss some selected topics in natural language 

processing and how they are useful for you to know and understand.

Figure 13-6.  The prediction of the left image

Chapter 13  Selected Topics in Computer Vision



471© Hisham El-Amir and Mahmoud Hamdy 2020 
H. El-Amir and M. Hamdy, Deep Learning Pipeline,  
https://doi.org/10.1007/978-1-4842-5349-6_14

CHAPTER 14

Selected Topics 
in Natural Language 
Processing
In the previous chapter, we showed you some advanced concepts in 

computer vision such as state-of-art architectures and the transfer learning 

approach. It is important for you to understand these concepts when you 

are about to build a model to do a certain task for you.

In this chapter, we will discuss some concepts in natural language 

processing (NLP) that are necessary to fully understand the sequential 

methods, which are considered to be the traditional methods of NLP. They 

are relied on by the bag-of-words model and the vector space of words 

model.

One of the key areas for NLP is the syntactic and semantic analysis 

of language. Syntactic analysis refers to how words are grouped and 

connected in a sentence. The main tasks in syntactic analysis are tagging 

parts of speech, detecting syntactic classes (such as verbs, nouns, and 

noun phrases), and assembling sentences by constructing syntax trees. 

Semantic analysis refers to complex tasks such as finding synonyms, or 

performing word-verb disambiguation.
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�Vector Space Model
In NLP information-retrieval systems, a document is generally represented 

as simply a vector of the count of the words it contains. For retrieving 

documents similar to a specific document, either the cosine of the angle or 

the dot product between the document and other documents is computed. 

The cosine of the angle between two vectors gives a similarity measure 

based on the similarity between their vector compositions. To illustrate this 

fact, let us look at two vectors, x, y = R2 × 1, shown as x = [2 3]T and y = [4 5]T.

Although vectors x and y are different, their cosine similarity is the 

maximum possible value of 1. This is because the two vectors are identical 

in their component compositions. The ratio of the first component to the 

second component for both vectors is 2/32/3; hence, content composition-

wise they are treated as being similar. Therefore, documents with high 

cosine similarity are generally considered similar in nature.

Let’s say we have two sentences: Doc1 = [The dog chased the cat] and 

Doc2 = [The cat was chased down by the dog]. The number of distinct 

words in the two sentences would be the vector space dimension for this 

problem. The distinct words are The, dog, chased, the, cat, down, by, and 

was. So, we can represent each document as an eight-dimensional vector 

of word counts (Table 14-1).

If we represent Doc1 by v1 and Doc2 by v2, then the cosine similarity 

can be expressed as cos v v
v v

v v

T

1 2
1 2

1 2

,( ) =  (Figure 14-1) and the Euclidean 

distance is expressed as d v v v v1 2 1 2

2
,( ) = å -( )  (Figure 14-2),

Table 14-1.  Words per Document Example

Word/Doc The Dog Chased Cat Down By Was

Doc 1 1 1 1 1 0 0 0

Doc 2 1 1 1 1 1 1 1
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where ‖v1‖ is the magnitude or the l2 norm of the vector v1. As stated 

earlier, cosine similarity gives a measure of the similarity based on 

the component composition of each vector. If the components of the 

document vectors are in somewhat similar proportion, the cosine 

distance would be high. It doesn’t take the magnitude of the vector into 

consideration.

In certain cases, when the documents are of highly varying lengths,  

the dot product between the document vectors is taken instead of the cosine 

similarity. This is done when, along with the content of the document,  

the size of the document is also compared. For instance, we can have a  

tweet in which the words global and economics might have word counts of  

1 and 2, respectively, while a newspaper article might have word counts of 

50 and 100, respectively, for the same words. Assuming the other words in 

both documents have insignificant counts, the cosine similarity between the 

tweet and the newspaper article would be close to 1. Since the tweet sizes 

are significantly smaller, the word counts proportion of 1 : 2 for global and 

economics doesn’t really compare to the proportion of 1 : 2 for these words in 

the newspaper article.

Hence, it doesn’t really make sense to assign such a high similarity 

measure to these documents for several applications. In that case, taking 

the dot product as a similarity measure rather than the cosine similarity 

helps, since it scales up the cosine similarity by the magnitude of the word 

vectors for the two documents.

For comparable cosine similarities, documents with higher 

magnitudes would have higher dot product similarity, since they have 

enough text to justify their word composition. The word composition for 

small texts might just be by chance and not be a true representation of its 

intended representation. For most applications where the documents are 

of comparable lengths, cosine similarity is a fair enough measure.
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Figure 14-2.  How Euclidean distance works

Figure 14-1.  How cosine distance works
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�Vector Representation of Words
Just as the documents are expressed as vectors of different word counts, a 

word in a corpus can also be expressed as a vector, with the components 

being counts the word has in each document.

Other ways of expressing words as vectors would be to have the 

component specific to a document set to 1 if the word is present in the 

document or 0 if the word doesn’t exist in the document.

Reusing the same example, a word can be expressed as a two-

dimensional vector [1 1]T in the corpus of two documents. In a huge corpus 

of documents, the dimensionality of the word vector would be large as 

well. Like document similarity, word similarity can be computed through 

either cosine similarity or dot product.

Another way to represent words in a corpus is to one-hot encode 

them. In that case, the dimensionality of each word would be the number 

of unique words in the corpus. Each word would correspond to an index 

that would be set to 1 for the word, and all other remaining entries would 

be set to 0. So, each would be extremely sparse. Even similar words would 

have entries set to 1 for different indexes, so any kind of similarity measure 

would not work.

To represent word vectors better so that the similarity of the words can 

be captured more meaningfully, and also to render less dimensionality to 

word vectors, Word2Vec was introduced.
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�Word2Vec
Word2Vec is an intelligent way of expressing a word as a vector by training 

the word against words in its neighborhood. Words that are contextually 

like the given word would produce high cosine similarity or dot product 

when their Word2Vec representations are considered.

Generally, the words in the corpus are trained with respect to the words 

in their neighborhood to derive the set of the Word2Vec representations. 

The two most popular methods of extracting Word2Vec representations are 

the CBOW (continuous bag of words) method and the Skip-Gram method. 

The core idea behind CBOW is expressed in Figure 14-3.

�Continuous Bag of Words
The Word2Vec family of models is unsupervised. This means that you can 

just give it a corpus without additional labels or information and it can 

construct dense word embeddings from the corpus. But you will still need 

to leverage a supervised, classification methodology once you have this 

corpus to get to these embeddings. But we will do that from within the 

corpus itself, without any auxiliary information. We can model this CBOW 

architecture now as a deep learning classification model such that we take 

in the context words as our input, X and try to predict the target word, Y. 

In fact, building this architecture is simpler than the Skip-gram model 

where we try to predict a whole bunch of context words from a source 

target word.

The CBOW method tries to predict the center word from the context 

of the neighboring words in a specific window length. Let’s look at the 

following sentence and consider a window of five as a neighborhood.

“The cat jumped over the fence and crossed the road.”
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In the first instance, we will try to predict the word jumped from its 

neighborhood the cat over the. In the second instance, as we slide the 

window by one position, we will try to predict the word over from the 

neighboring words cat jumped the fence. This process would be repeated 

for the entire corpus.

As shown in Figure 14-3, the CBOW model is trained on the context 

words as input and the center word as the output. The words in the input 

layer are expressed as one-hot encoded vectors, where the component 

for the specific word is set to 1 and all other components are set to 0. The 

number of unique words V in the corpus determines the dimensionality of 

these one-hot encoded vectors, hence x(t) ∈ RV × 1. Each one-hot encoded 

vector x(t) is multiplied by the input embeddings matrix WI ∈ RN × V to 

extract the word embeddings vector u(k) ∈ RN × 1 specific to that word. The 

index k in u(k) signifies that u(k) is the word embedded for the kth word 

Figure 14-3.  The CBOW model
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in the vocabulary. The hidden-layer vector h is the average of the input 

embeddings vectors for all the context words in the window, therefore 

h ∈ RN × 1 has the same dimension as that of the word embeddings vectors.

h
l

WI x
j i j i

i
j=

-
( )

= -( ) ¹

+( )

å1

1 2

1

where l is the length of the window size.

Similarly, all the word embeddings vectors for the input words are 

extracted, and their average is the output of the hidden layer. The output 

of the hidden layer h is supposed to represent the embeddings of the 

target word. All the words in the vocabulary have another set of word 

embeddings housed in the output embeddings matrix WO ∈ RV × N. Let the 

word embeddings in WO be represented by v(i) ∈ RN × 1, where the index i 

denotes the jth word in the vocabulary in order, as maintained in both the 

one-hot encoding scheme and the input embeddings matrix.

WO h v h v h v h v hT T
i
T

v
T[ ][ ] = ¼ ¼éë ùû1 2, , , , ,

The dot product of the hidden-layer embeddings h is computed with 

each of the vior vi for simplicity by multiplying the matrix WO by h. The 

dot product, as we know, would give a similarity measure for each of the 

output words embeddings vi where j ∈ RN and the hidden-layer computed 

embeddings h. The dot products are normalized to probability through a 

softmax and, based on the target word wt, the categorical cross-entropy 

loss is computed and backpropagated through gradient descent to update 

the matrices’ weights for both the input and output embeddings matrices.

The softmax output probability for the jth word of the vocabulary, w(j), 

given the context words, is given by the following:

p w w h p
e

e
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If the actual output is represented by a one-hot encoded vector y, then 

the loss function for the particular combination of target word and its 

context words can be given by the following:

C y p
i

v

i
i= ( )å log

The different pi are dependent on the input and output embeddings 

matrices’ components, which are parameters to the cost function C. 

The cost function can be minimized with respect to these embeddings 

parameters through backpropagation gradient-descent techniques. To 

make this more intuitive, let’s say our target variable is cat. If the hidden-

layer vector h gives the maximum dot product with the outer matrix word 

embeddings vector for cat while the dot product with the other outer 

word embeddings is low, then the embeddings vectors are more or less 

correct. So, very little error or log loss will be backpropagated to correct the 

embeddings matrices. However, let’s say the dot product of h with cat is 

less, and that of the other outer embeddings vectors is more; the loss of the 

softmax is going to be significantly higher, and thus more errors/log loss 

are going to be backpropagated to reduce the error.

�Implementing Continuous Bag of Words

The CBOW TensorFlow implementation has been illustrated in this 

section. The neighboring words within a distance of two from either side 

are used to predict the middle word. The output layer is a big softmax over 

the entire vocabulary. The word embeddings vectors are chosen to be of 

size 128. The detailed implementation is outlined in the following code. 

See also Figure 14-4.

The first thing in the code is that we need to import the needed 

packages, and as always, these packages include TensorFlow.
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import numpy as np

import tensorflow as tf

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

%matplotlib inline

Then we need to put in the utility functions; these functions will help 

us a lot in processing text data such as text to vector transformations  

and more.

def one_hot(ind,vocab_size):

  rec = np.zeros(vocab_size)

  rec[ind] = 1

  return rec

def create_training_data(corpus_raw,WINDOW_SIZE = 2):

  words_list = []

  for sent in corpus_raw.split('.'):

    for w in sent.split():

      if w != '.':

        words_list.append(w.split('.')[0])

  words_list = set(words_list)

  word2ind = {}

  ind2word = {}

  vocab_size = len(words_list)

  for i,w in enumerate(words_list): # Build the dictionaries

    word2ind[w] = i

    ind2word[i] = w

  print(word2ind)

  sentences_list = corpus_raw.split('.')

  sentences = []

  for sent in sentences_list:
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    sent_array = sent.split()

    sent_array = [s.split('.')[0] for s in sent_array]

    sentences.append(sent_array)

  data_recs = []

  for sent in sentences:

    for ind,w in enumerate(sent):

      rec = []

      �for nb_w in sent[max(ind - WINDOW_SIZE, 0) : min(ind + 

WINDOW_SIZE, len(sent)) + 1] :

        if nb_w != w:

          rec.append(nb_w)

        data_recs.append([rec,w])

  x_train,y_train = [],[]

  for rec in data_recs:

    input_ = np.zeros(vocab_size)

    for i in range(WINDOW_SIZE-1):

      input_ += one_hot(word2ind[ rec[0][i] ], vocab_size)

    input_ = input_/len(rec[0])

    x_train.append(input_)

    y_train.append(one_hot(word2ind[ rec[1] ], vocab_size))

  return x_train,y_train,word2ind,ind2word,vocab_size

Then we load the data. To simplify this process, we put in a dummy 

paragraph for the sack of ease. You can put a real data if you want to.

corpus_raw = "Deep Learning has evolved from Artificial 

Neural Networks, which has been there since the 1940s. Neural 

Networks are interconnected networks of processing units called 

artificial neurons that loosely mimic axons in a biological 

brain. In a biological neuron, the dendrites receive input 
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signals from various neighboring neurons, typically greater 

than 1000. These modified signals are then passed on to the 

cell body or soma of the neuron, where these signals are summed 

together and then passed on to the axon of the neuron. If the 

received input signal is more than a specified threshold, 

the axon will release a signal which again will pass on to 

neighboring dendrites of other neurons. Figure 3-1 depicts the 

structure of a biological neuron for reference. The artificial 

neuron units are inspired by the biological neurons with some 

modifications as per convenience. Much like the dendrites, 

the input connections to the neuron carry the attenuated or 

amplified input signals from other neighboring neurons. The 

signals are passed on to the neuron, where the input signals 

are summed up and then a decision is taken what to output 

based on the total input received. For instance, for a binary 

threshold neuron an output value of 1 is provided when the 

total input exceeds a pre-defined threshold; otherwise, the 

output stays at 0. Several other types of neurons are used 

in artificial neural networks, and their implementation only 

differs with respect to the activation function on the total 

input to produce the neuron output. In the different biological 

equivalents are tagged in the artificial neuron for easy 

analogy and interpretation."

Then we will use our functions to process the data, transforming it to 

x_train and y_train, and also extract some info like vocab_size.

corpus_raw = (corpus_raw).lower()

x_train,y_train,word2ind,ind2word,vocab_size= create_training_

data(corpus_raw,2)
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Now, after loading and processing the data, we need to implement the 

CBOW. But first we need to set the parameters and create variables.

emb_dims = 128

learning_rate = 0.001

x = tf.placeholder(tf.float32,[None,vocab_size])

y = tf.placeholder(tf.float32,[None,vocab_size])

W = tf.Variable(tf.random_normal([vocab_size,emb_dims],mean=0.0, 

stddev=0.02,dtype=tf.float32))

b = tf.Variable(tf.random_normal([emb_dims],mean=0.0,stddev=0.02, 

dtype=tf.float32))

W_outer = tf.Variable(tf.random_normal([emb_dims,vocab_size], 

mean=0.0,stddev=0.02,dtype=tf.float32))

b_outer = tf.Variable(tf.random_normal([vocab_size],mean=0.0, 

stddev=0.02,dtype=tf.float32))

Now, let’s create the model.

hidden = tf.add(tf.matmul(x,W),b)

logits = tf.add(tf.matmul(hidden,W_outer),b_outer)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits=logits, labels=y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate).minimize(cost)

And, after creating the architecture, let’s create the graph and run the 

model.

epochs,batch_size = 100,10

batch = len(x_train)//batch_size

# train for n_iter iterations

with tf.Session() as sess:

  sess.run(tf.global_variables_initializer())
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  for epoch in range(epochs):

    batch_index = 0

    for batch_num in range(batch):

      x_batch = x_train[batch_index: batch_index +batch_size]

      y_batch = y_train[batch_index: batch_index +batch_size]

      sess.run(optimizer,feed_dict={x: x_batch,y: y_batch})

      �print('epoch:',epoch,'loss :', sess.run(cost,feed_

dict={x: x_batch,y: y_batch}))

  W_embed_trained = sess.run(W)

If the model is working, we will see this output.

epoch: 0 loss : 4.867816

epoch: 1 loss : 1.1019261

epoch: 2 loss : 0.7556237

epoch: 3 loss : 0.5196438

epoch: 4 loss : 0.47611102

After running the model and finishing the epochs, we can use the 

following code to plot the model.

W_embedded = TSNE(n_components=2).fit_transform(W_embed_

trained)

plt.figure(figsize=(10,10))

for i in range(len(W_embedded)):

  plt.text(W_embedded[i,0],W_embedded[i,1],ind2word[i])

plt.xlim(-150,150)

plt.ylim(-150,150)
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The word embeddings learned have been projected to a 2-D 

plane through the TSNE plot. The TSNE plot gives a rough idea of the 

neighborhood of a given word. We can see that the word embeddings 

vectors learned are reasonable. For instance, the words deep and learning 

are very close to each other. Similarly, the words biological and references 

are also very close to each other.

Figure 14-4.  The TSNE of the CBOW
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�Skip-Gram Model for Word Embeddings
Skip-gram models work the other way around. Instead of trying to 

predict the current word from the context words, as in CBOW, in Skip-

gram models the context words are predicted based on the current 

word. Generally, given a current word, context words are taken in its 

neighborhood in each window. For a given window of five words, there 

would be four context words that one needs to predict based on the 

current word. Figure 14-5 shows the high-level design of a Skip-gram 

model. Much like CBOW, in the Skip-gram model one needs to learn two 

sets of word embeddings: one for the input words and one for the output 

context words. A Skip-gram model can be seen as a reversed CBOW model.

In the CBOW model, the input to the model is a one-hot encoded 

vector xi ∈ RV × 1 for the current word, where V is the size of the vocabulary 

of the corpus. However, unlike CBOW, here the input is the current word 

and not the context words. The input xi, when multiplied by the input word 

embeddings matrix WI, produces the word embeddings vector uk ∈ RN × 1, 

Figure 14-5.  How Skip-gram works
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given that xt represents the kth word in the vocabulary list. N, as before, 

represents the word embeddings dimensionality. The hidden-layer output 

h is nothing but uk.

The dot product of the hidden-layer output h is computed with every 

word vector v(j) of the outer embeddings’ matrix WO ∈ RV × N by computing 

[WO][h] just as in CBOW. However, instead of one softmax output layer, 

there are multiple softmax layers based on the number of context words 

that we are going to predict. For example, in Figure 14-5 there are four 

softmax output layers corresponding to the four context words. The input 

to each of these softmax layers is the same set of dot products in [WO][h], 

representing how similar the input word is to each word in the vocabulary.

WO h v h v h v h v hT T
i
T

v
T[ ][ ] = ¼ ¼éë ùû1 2, , , , ,

Similarly, all the softmax layers would receive the same set of 

probabilities corresponding to all the vocabulary words, with the 

probability of the jth word wj given the current or the center word wk being 

given by the following:
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If there are four target words, and their one-hot encoded vectors are 

represented by yj − 2, yj − 1, yj + 1, yj + 2 ∈ Rv × 1, then the total loss function C for 

the word combination would be the summation of all four softmax losses 

as represented here:
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Gradient descent using backpropagation can be used to minimize 

the cost function and derive the input and output embeddings matrices’ 

components.
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Here are a few salient features about the Skip-gram and CBOW models:

•	 For Skip-gram models, the window size is not generally 

fixed. Given a maximum window size, the window 

size at each current word is randomly chosen so that 

smaller windows are chosen more frequently than 

larger ones. With Skip-gram, one can generate a lot 

of training samples from a limited amount of text, 

and infrequent words and phrases are also very well 

represented.

•	 CBOW is much faster to train than Skip-gram and has 

slightly better accuracy for frequent words.

•	 Both Skip-gram and CBOW look at local windows for 

word co-occurrences and then try to predict either 

the context words from the center word (as with Skip-

gram) or the center word from the context words (as 

with CBOW). So, basically, we observe in Skip-gram 

that locally within each window the probability of 

the co-occurrence of the context word wC and the 

current word wt, given by P(wc| wt), is assumed to be 

proportional to the exponential of the dot product of 

their word embeddings vectors.

•	 where u and v are the input and output word 

embeddings vectors for the current and context words, 

respectively. Since the co-occurrence is measured 

locally, these models miss utilizing the global co-

occurrence statistics for word pairs within certain 

window lengths. Next, we are going to explore a basic 

method to look at the global co-occurrence statistics 

over a corpus, and then use SVD (singular value 

decomposition) to generate word vectors.
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�Implementing Skip-Gram

In this section, we will illustrate the Skip-gram model for learning word 

vector embeddings with a TensorFlow implementation. The model is 

trained on a small dataset for easy representation. However, the model 

can be used to train large corpuses as desired. As illustrated in the Skip-

gram section, the model is trained as a classification network. However, 

we are more interested in the word embeddings matrix than in the actual 

classification of words. The size of the word embeddings has been chosen 

to be 128. The detailed code is represented as follows. Once the word 

embeddings vectors are learned, they are projected via TSNE on a two-

dimensional surface for visual interpretation.

As always, we have to import the needed packages, including 

TensorFlow.

import numpy as np

import tensorflow as tf

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

%matplotlib inline

And we import the utility functions—all of them.

def one_hot(ind,vocab_size):

  rec = np.zeros(vocab_size)

  rec[ind] = 1

  return rec

def create_training_data(corpus_raw,WINDOW_SIZE = 2):

  words_list = []

  for sent in corpus_raw.split('.'):

    for w in sent.split():

      if w != '.':

        words_list.append(w.split('.')[0])
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  words_list = set(words_list)

  word2ind = {}

  ind2word = {}

  vocab_size = len(words_list)

  for i,w in enumerate(words_list): # Build the dictionaries

    word2ind[w] = i

    ind2word[i] = w

  print(word2ind)

  sentences_list = corpus_raw.split('.')

  sentences = []

  for sent in sentences_list:

    sent_array = sent.split()

    sent_array = [s.split('.')[0] for s in sent_array]

    sentences.append(sent_array)

  data_recs = []

  for sent in sentences:

    for ind,w in enumerate(sent):

      rec = []

      �for nb_w in sent[max(ind - WINDOW_SIZE, 0) : min(ind + 

WINDOW_SIZE, len(sent)) + 1] :

        if nb_w != w:

          rec.append(nb_w)

        data_recs.append([rec,w])

  x_train,y_train = [],[]

  for rec in data_recs:

    input_ = np.zeros(vocab_size)

    for i in range(WINDOW_SIZE-1):

      input_ += one_hot(word2ind[ rec[0][i] ], vocab_size)

    input_ = input_/len(rec[0])
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    x_train.append(input_)

    y_train.append(one_hot(word2ind[ rec[1] ], vocab_size))

  return x_train,y_train,word2ind,ind2word,vocab_size

After this, we need to load the data. For simplicity, we will use the same 

paragraph used in the previous example, so you have to load it or load your 

own data. And do not forget to process it.

Then, we need to set the parameters and create the needed variables 

such as training input and output, weights, and biases for the model.

emb_dims = 128

learning_rate = 0.0001

epochs,batch_size = 100,10

batch = len(x_train)//batch_size

x = tf.placeholder(tf.float32,[None,vocab_size])

y = tf.placeholder(tf.float32,[None,vocab_size])

W = tf.Variable(tf.random_normal([vocab_size,emb_dims], 

mean=0.0,stddev=0.02,dtype=tf.float32))

b = tf.Variable(tf.random_normal([emb_dims],mean=0.0, 

stddev=0.02,dtype=tf.float32))

W_outer = tf.Variable(tf.random_normal([emb_dims,vocab_size], 

mean=0.0,stddev=0.02,dtype=tf.float32))

b_outer = tf.Variable(tf.random_normal([vocab_size],mean=0.0, 

stddev=0.02,dtype=tf.float32))

Now we are ready to create the Skip-gram model. Let’s build it.

hidden = tf.add(tf.matmul(x,W),b)

logits = tf.add(tf.matmul(hidden,W_outer),b_outer)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(logits=logits, labels=y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_

rate).minimize(cost)

Chapter 14  Selected Topics in Natural Language Processing



492

Now you can run the model, the same as the previous model in the 

CBOW example, and see the result using the TSNE plot. We will leave this 

job for you as an exercise.

�GloVe
Now we’ll discuss one of the newer methods of creating vector space 

models of word semantics, more commonly known as word embeddings. 

GloVe, coined from Global Vectors, is a model for distributed word 

representation. The model is an unsupervised learning algorithm for 

obtaining vector representations for words. This is achieved by mapping 

words into a meaningful space where the distance between words is 

related to semantic similarity. Training is performed on aggregated global 

word–word co-occurrence statistics from a corpus, and the resulting 

representations showcase interesting linear substructures of the word 

vector space. It was developed as an open source project at Stanford. 

As a log-bilinear regression model for unsupervised learning of word 

representations, it combines the features of two model families, namely 

the global matrix factorization and local context window methods.

GloVe is a pretrained, readily available, word embeddings vectors 

library from Stanford University. The training method for GloVe is 

significantly different from those for CBOW and Skip-gram. Instead of 

basing predictions on local-running windows for words, GloVe uses global 

word-to-word co-occurrence statistics from a corpus to train the model 

and derive the GloVe vectors. Pretrained GloVe word embeddings are 

available at https://nlp.stanford.edu/projects/glove/.

In NLP, global matrix factorization is the process of using matrix 

factorization methods from linear algebra to perform rank reduction on 

a large term-frequency matrix. These matrices usually represent either 

term–document frequencies, in which the rows are words and the columns 

are documents (or sometimes paragraphs), or term–term frequencies, 

which have words on both axes and measure co-occurrence. Global matrix 
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factorization applied to term-document frequency matrices is more 

commonly known as latent semantic analysis (LSA). In latent semantic 

analysis, the high-dimensional matrix is reduced via singular value 

decomposition (SVD).

Like SVD methods, GloVe looks at the global co-occurrence statistics, 

but the relation of the word and context vectors with respect to the co-

occurrences count is a little different. If there are two words wi and wj and 

a context word wk, then the ratio of the probabilities P(wk| wi) and P(wk| wj) 

provide more information than the probabilities themselves.

	 1.	 Collect word co-occurrence statistics in the form of 

word co-occurrence matrix X. Each element Xij of 

such a matrix represents how often word i appears 

in the context of word j. Usually we scan our corpus 

in the following manner: for each term we look 

for context terms within some area defined by a 

window_size before the term and a window_size 

after the term. Also, we give less weight for more 

distant words, usually using this formula:

decay
offset

=
1

	 2.	 Define soft constraints for each word pair:

w w b b Xi
T

j i j ij+ + = ( )log

	 3.	 Here, wi = vector for the main word, wj = vector for 

the context word, and bi, bj are scalar biases for the 

main and context words.

	 4.	 Define a cost function.

J f X w w b b X
i

V

j

V

ij i
T

j i j ij= ( ) + + - ( )( )åå log
2
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Here, f is a weighting function, which helps us to prevent learning 

only from extremely common word pairs. The GloVe authors chose the 

following function:

f X
X

x
if X XMAX otherwiseij

ij
ij( ) = æ

è
ç

ö

ø
÷ <
µ

{
max

1

�Summary
In this chapter we discussed the traditional methods of natural language 

processing.

In the next and final chapter, we will show you some examples of 

how to build a deep learning pipeline on three different datasets: one 

on a tabular dataset; another on images; and the final one on text data, 

showing you a TensorFlow model from the ground up with progressive 

documentation.
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CHAPTER 15

Applications
�Case Study—Tabular Dataset
�Understanding the Dataset
In this section, we are going to understand the dataset. By understanding, 

we mean that we are going to extract any information we can get from 

this data and we are going to exercise on “Titanic: Machine Learning from 

Disaster” from Kaggle (www.kaggle.com/c/titanic). I was also inspired to 

do some visual analysis of the dataset from some other resources I came 

across. So, let us start coding.

If you browse the dataset page on Kaggle, you will notice that the 

page gives information about the details of the passengers aboard the 

Titanic, and a column on survival of the passengers. Those who survived 

are represented as “1” and those who did not survive are represented as 

“0”. The goal of this exercise is to determine if, with the other features/

information about the passengers, it is possible to determine those who 

are likely to survive.

To check any hypothesis you have in mind, you need a good 

visualization, to see the information inside the data. Data visualization 

allows decision makers to see relationships among multidimensional 

datasets, and provides new ways to understand data through the use of 

heat maps, fever charts, and other rich graphical representations.
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Let us first import all the needed packages. You are free to use another 

package, but these are the ones recommended to get the job done.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

If you do not remember the preceding packages, here is a small 

summary about three of them, but do not hesitate to return to the 

introduction part and read about all the packages this book contains.

•	 pandas is a great library that deals with everything that 

NumPy and SciPy cannot do. Thanks to its specific data 

structures, namely DataFrames and Series, pandas 

allows you to handle complex tables of data of different 

types and time series. Also, you can then slice, dice, 

handle missing elements, add, rename, aggregate, 

reshape, and finally visualize your data as well.

•	 matplotlib​ is a Python 2-D plotting library that 

produces publication quality figures in a variety of 

hard copy formats and interactive environments across 

platforms. Also, it contains all components that are 

required to create quality plots from data and visualize 

them interactively. For simple plotting, the pyplot 

module provides a MATLAB-like interface.

•	 Seaborn is a Python data visualization library based 

on matplotlib. It provides a high-level interface for 

drawing attractive and informative statistical graphics.
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�Scratching the Surface

After loading all needed packages, we need to load the dataset; of course 

we will use pandas to load it as follows:

titanic_df = pd.read_csv('./input/titanic/train.csv')

titanic_df.head()

The head() function will print the first five rows of the DataFrame that 

contain the dataset (Figure 15-1).

Note I f you wonder why you don’t see a similar table, that’s 
because we have Jupyter as the IDE. So, try to download it and 
install it.

Now, before we start visualizing the dataset, we need a bit of 

information about each column of this dataset, and we can achieve this by 

calling the info() function from the DataFrame.

titanic_df.info()

This function outputs the summary of the dataset. The summary 

contains column names, types and number of non-null entries, and it 

outputs the size of the DataFrame in memory as follows (Figure 15-2).

Figure 15-1.  The pandas DataFrame that contains the Titanic 
dataset
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Now we can start visualizing each column and see if we can extract any 

knowledge from it or not.

Let us warm up with the Sex column, which seems simple because 

it consists of only male/female entries. So let us count them up by using 

the factorplot(). This function takes the case sensitive column name, 

the DataFrame, and kind count, because we just need to count them up 

(Figure 15-3).

sns.factorplot('Sex',data=titanic_df,kind='count')

Figure 15-2.  Titanic DataFrame column information
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We can see that the count of males is almost double the count of 

females, but we know that the number of females who survived is greater 

than the number of males who survived. We can prove it by visualizing the 

count of survivors and see the number of survived/not survived males and 

females (Figure 15-4).

We can do that by using the same factorplot(), adding to it one more 

parameter which is hue, as follows:

sns.factorplot('Sex',kind='count',data=titanic_df,hue='Survived')

Figure 15-3.  A sex count visualization

Figure 15-4.  The sex/survived count
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We can now prove the percentage of survived/not survived of both 

males and females, just by looking at two visualization charts.

The next step is to make things more complex, by adding the Pclass 

column to the equation (Figure 15-5).

sns.factorplot('Pclass',data=titanic_df,kind='count')

This column represents the class reserved for each passenger,  

either 1 = first, 2 = second, or 3 = third class. If you look at the chart, you 

can see that almost half of the passengers are in third class. I think it make 

sense that most passengers are in third class, in an expensive type of 

transportation.

Now, let’s see the count of each Sex through each Pclass, and we will 

do the same as we did before. We can see something strange happens here. 

If you look carefully at the chart (Figure 15-6), you might see what I have 

seen, which is the following: In first and second class the count number 

of males almost equals the number of females, but in the third class the 

number of males is almost double. You might intuit that from watching the 

Figure 15-5.  The Pclass count
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“Titanic” movie: when you see Leonardo DiCaprio’s character traveling in 

third class, you can see that most of the class consists of males.

sns.factorplot('Pclass',data=titanic_df,hue='Sex',kind='count')

�Digging Deeper

For now, we think you have some good understanding, but from now on 

we will go deeper. Therefore, we will not only depend on the information 

from columns, we also will extract and fabricate the column dimensions to 

get more and more information.

We need to extract more features. By saying that, we mean we will 

create new columns that contain knowledge that was hidden. For instance, 

we need to calculate the number of children who were in the ship. We can 

extract it from the Age column with some associations from the Sex column, 

and save it as the person column (Figure 15-7), as in the following code:

Figure 15-6.  The Pclass/sex count
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def titanic_children(passenger):

    age , sex = passenger

    if age < 16:

        return 'child'

    else:

        return sex

titanic_df['person'] = titanic_df[['Age','Sex']].apply(titanic_

children,axis=1)

Now, let’s see if the new feature can help us to gain a hypothesis.

sns.factorplot('Pclass',data=titanic_

df,hue='person',kind='count')

Figure 15-7.  The modified Titanic DataFrame

Chapter 15  Applications



503

As always, we will make a factorplot to see if we gain some 

knowledge or not. As you see in Figure 15-8, the count number of children 

(child) in third class is huge compare with both first and second class. But 

the count number of males still is almost the same, so let us find the total 

count of people per age.

We can done this with the hist() function that calculates the 

histogram of the age; simply, it counts the frequency of the variable within 

an interval.

titanic_df['Age'].hist(bins=70)

Figure 15-8.  The Pclass/person count
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As you can see in Figure 15-9, the frequency of people on the ship who 

are between 16 and 35 is much greater than the people above that age or 

children below it.

Let’s go a step further and count the frequency of male/female per age. 

We do it by stacking multiple figures and creating what’s called FacetGrid. 

This FacetGrid is composed of two charts: each of them is a kdeplot type 

that represents either male or female, and each kdeplot represents the Age 

of the owing Sex type.

So, to simplify the process, you can find all the other visualizations in 

the code accompanying this book. Go check it and see if you can extract 

more information and more understanding from this dataset.

Figure 15-9.  The Age histogram
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�Preprocessing Dataset
If you take a look in this table’s features/columns from left to right, you will 

see the following:

•	 PassengerId: This column contains the ID of each 

observation, and it is an almost useless feature for 

any machine learning model; we cannot extract any 

correlation between this feature and the target/output.

•	 Survived: This column is the output feature, 

sometimes called the target or response; it contains 

values per observation—either 1 if the passenger 

survived or 0 if not.

•	 Pclass: This column contains the class of each 

passenger on the ship; it’s values are either 1, 2, or 3.

•	 Age: This column contains the age of each passenger 

on the ship, and it is a good feature. But with some 

tweaking, we can extract a new feature from it: whether 

the passenger is a child or not, and that’s of course with 

the help of the Sex column.

But, if you take a careful look at the Age column, you will see that it 

contains some null/empty values. Theoretically of course, we can fill these 

values. Using some statistics, we can assume that this column follows some 

unknown distribution, and most of the data is repeated as a phenomenon 

called the distribution mean.

So, without digging into the rock of statistics, we can ensure that filling 

the missing values with the most repeated ones will do the job, and by 

saying “most repeated,” we mean the mean value of the column.
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Calculating the mean is not that hard, and thankfully, the pandas 

library provides us with wonderful functionalities that help us not waste 

a lot of time. The function mean() calculates the mean of the Age column 

easily.

titanic_df['Age'].mean()

# 29.69911764705882

Now what remains is to fill the empty value in that column with this 

value, and again we can do that by the fillna() function: by passing a 

certain value to it, we can fill all the empties/nulls in that column.

titanic_df['Age'] = titanic_df['Age'].fillna(titanic_df['Age'].

mean())

In the Titanic dataset, the Cabin column does not provide us with any 

useful knowledge; besides, it is mostly null values. So we will not use it, 

because it is useless and will influence any machine learning model. The 

processing step for this column is to remove it from the DataFrame.

titanic_df.drop('Cabin',axis=1, inplace=True)

As an optional step, you may want to clean and use the Embarked 

column, but we do not recommend that. It did not give us any useful 

knowledge, and we recommend removing it, but we gave you this step if 

you wanted to try this.

titanic_df['Embarked'] = titanic_df['Embarked'].fillna('S')

After filling the empties, now let’s go and check if there are any empties 

existing in the whole dataset or not.

titanic_df.isnull().values.any()

# False
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Now, after we’ve ensured that there are no empties in the whole 

dataset, let’s go and craft some new features that might help the machine 

learning model.

We will start with an easy one, combining both the Parch and SibSp 

columns, and build a new column that is Boolean. It contains either With 

Family or Without Family values, and those are equal to True/False values, 

therefore we consider it a Boolean column.

titanic_df['Alone'] = titanic_df.Parch + titanic_df.SibSp

titanic_df['Alone'].loc[titanic_df['Alone']>0] = 'With Family'

titanic_df['Alone'].loc[titanic_df['Alone'] == 0] = 'Without 

Family'

After that, we will create a new column called person, which is similar 

to the Sex column, but the difference is it also tells us if the passenger is a 

child (if the passenger age is under 16 years).

def titanic_children(passenger):

    age , sex = passenger

    if age <16:

        return 'child'

    else:

        return sex

titanic_df['person'] = titanic_df[['Age','Sex']].apply(titanic_

children,axis=1)

Now, let’s give it a look, and see what our data looks like so far 

(Figure 15-10).

titanic_df.head()

Chapter 15  Applications



508

Now let’s transform the person, alone, and embarked to one-hot 

encoded columns. If you do not know what one-hot encoded means, you 

can search for it. It’s a type of transformation that basically transforms any 

column to a binary format.

person_dummies = pd.get_dummies(titanic_df['person'])

alone_dummies = pd.get_dummies(titanic_df['Alone'])

embarked_dummies = pd.get_dummies(titanic_df['Embarked'])

embarked_dummies.drop('Q',axis=1,inplace=True)

Also, we will transform the Pclass to on-hot-encoding form and 

rename its columns class_1, class_2, and class_3.

pclass_dummies = pd.get_dummies(titanic_df['Pclass'])

pclass_dummies.columns=['class_1','class_2','class_3']

The processing step that we will apply to Age is very simple; we will 

remove the percent of it, as there’s is no age 20.2. We can achieve this by 

calling ceil() and applying it to the age.

And we will do the same processing step to the Fare column too.

titanic_df['Age'] = titanic_df['Age'].apply(math.ceil)

titanic_df['Fare'] = titanic_df['Fare'].apply(math.ceil)

Figure 15-10.  The head() of the data after some preprocessing
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Now, we will add all the new columns to our dataset. Using the 

concat() function, we can add columns to DataFrame with an axis=1 

parameter, and rows with axis=0.

titanic_df = pd.concat([titanic_df,pclass_dummies,person_

dummies,alone_dummies,embarked_dummies],axis=1)

Now, let us drop all the useless columns from the DataFrame, and all 

the repeated/correlated (e.g., the Pclass and its classes) columns too.

titanic_df.drop(['PassengerId','Name','Sex','SibSp','Parch', 

'Ticket','Embarked'],axis=1,inplace=True)

titanic_df.drop(['Alone','person','Pclass','Without Family', 

'male','class_3'],axis=1,inplace=True)

At last, after finishing cleaning and extracting knowledge from this 

dataset, it is fair to take a last look at it (Figure 15-11) before going on to 

the next step. Also, it is recommended to save the data after cleaning the 

pipeline, to make it easier for you and for backup purposes too.

titanic_df.head()

Figure 15-11.  The Titanic DataFrame after the preprocessing step
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For the last step in preprocessing, we will create a checkpoint of the 

data, to make a backup and make sure there’s no data loss.

titanic_df.to_csv('titanic.preprocessing.csv', index=False)

�Building the Model
And here we are at the core of our application, building the model with 

TensorFlow. Now we will use all that we have learned in the previous part 

to build a neural network that is able to classify the observations about 

who survived the Titanic or not.

We will create a function that is called build_neural_network that will 

build the whole network for us and return the graph that we will train. The 

network should take an input that is equal in shape to the preprocessed 

Titanic dataset, and return an output that is either 0 or 1.

# Build Neural Network

from collections import namedtuple

def build_neural_network(hidden_units=10):

    tf.reset_default_graph()

    �inputs = tf.placeholder(tf.float32, shape=[None, x_train.

shape[1]])

    labels = tf.placeholder(tf.float32, shape=[None, 1])

    learning_rate = tf.placeholder(tf.float32)

    is_training=tf.Variable(True,dtype=tf.bool)

    initializer = tf.contrib.layers.xavier_initializer()

    �fc = tf.layers.dense(inputs, hidden_units, 

activation=None,kernel_initializer=initializer)

    fc=tf.layers.batch_normalization(fc, training=is_training)

    fc=tf.nn.relu(fc)
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    logits = tf.layers.dense(fc, 1, activation=None)

    �cross_entropy = tf.nn.sigmoid_cross_entropy_with_

logits(labels=labels, logits=logits)

    cost = tf.reduce_mean(cross_entropy)

    �with tf.control_dependencies(tf.get_collection(tf.

GraphKeys.UPDATE_OPS)):

        �optimizer = tf.train.AdamOptimizer(learning_

rate=learning_rate).minimize(cost)

    predicted = tf.nn.sigmoid(logits)

    correct_pred = tf.equal(tf.round(predicted), labels)

    �accuracy = tf.reduce_mean(tf.cast(correct_pred, 

tf.float32))

    # Export the nodes

    �export_nodes = �['inputs', 'labels', 'learning_rate', 

'is_training', 'logits', 'cost', 

'optimizer', 'predicted', 'accuracy']

    Graph = namedtuple('Graph', export_nodes)

    local_dict = locals()

    graph = Graph(*[local_dict[each] for each in export_nodes])

    return graph

model = build_neural_network()

Now, after we’ve created the whole neural network model, we need to 

make sure the dataset is divided into training observations/batches for the 

model. So, we will create a function that takes the data and yields batches 

that have a size of 32, or whatever size that you set.
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def get_batch(data_x,data_y,batch_size=32):

    batch_n=len(data_x)//batch_size

    for i in range(batch_n):

        batch_x=data_x[i*batch_size:(i+1)*batch_size]

        batch_y=data_y[i*batch_size:(i+1)*batch_size]

        yield batch_x,batch_y

Now we need to define some parameters for the model, such as the 

number of epochs, learning rate, and batch size.

epochs = 200

train_collect = 50

train_print=train_collect*2

learning_rate_value = 0.001

batch_size=16

x_collect = []

train_loss_collect = []

train_acc_collect = []

valid_loss_collect = []

valid_acc_collect = []

Now, we will create a session that we will run the whole network graph 

onto. We will iterate the number of epochs, and inside of each epoch we’ll 

generate some batches that we’ll feed to the model, and generate a loss 

that will be backpropagated to enhance the model weights.

saver = tf.train.Saver()

with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())

    iteration=0

    for e in range(epochs):
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        �for batch_x,batch_y in get_batch(x_train,y_train,batch_

size):

            iteration+=1

            feed = {model.inputs: x_train,

                    model.labels: y_train,

                    model.learning_rate: learning_rate_value,

                    model.is_training:True

                   }

            �train_loss, _, train_acc = sess.run([model.cost, 

model.optimizer, model.accuracy], feed_dict=feed)

            if iteration % train_collect == 0:

                x_collect.append(e)

                train_loss_collect.append(train_loss)

                train_acc_collect.append(train_acc)

                if iteration % train_print==0:

                     �print("Epoch: {}/{}".format(e + 1, epochs),

                      "Train Loss: {:.4f}".format(train_loss),

                      "Train Acc: {:.4f}".format(train_acc))

                feed = {model.inputs: x_test,

                        model.labels: y_test,

                        model.is_training:False

                       }

                �val_loss, val_acc = sess.run([model.cost, 

model.accuracy], feed_dict=feed)

                valid_loss_collect.append(val_loss)

                valid_acc_collect.append(val_acc)
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                if iteration % train_print==0:

                    print("Epoch: {}/{}".format(e + 1, epochs),

                      �"Validation Loss: {:.4f}".format(val_loss),

                      "Validation Acc: {:.4f}".format(val_acc))

    saver.save(sess, "./titanic.ckpt")

If this code is running correctly for you without any errors, you will see 

this progress log in your output shell:

Epoch: 3/200 Train Loss: 0.6199 Train Acc: 0.6770

Epoch: 3/200 Validation Loss: 0.6276 Validation Acc: 0.6425

Epoch: 5/200 Train Loss: 0.6013 Train Acc: 0.6784

Epoch: 5/200 Validation Loss: 0.6085 Validation Acc: 0.6480

...

Epoch: 198/200 Train Loss: 0.3361 Train Acc: 0.8652

Epoch: 198/200 Validation Loss: 0.4740 Validation Acc: 0.8156

Epoch: 200/200 Train Loss: 0.3361 Train Acc: 0.8652

Epoch: 200/200 Validation Loss: 0.4780 Validation Acc: 0.8212

And finally, after the model finishes the training, you can see an analysis 

of it to decide if you need to enhance the model or not (Figure 15-12).
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�Case Study—IMDB Movie Review Data 
with Word2Vec
In this section we will start with the IMDB data and use Word2Vec, the 

most common processing algorithm with the gensim package. We already 

talked about Word2Vec in previous chapters, but in this chapter we’ll try 

to use it with the IMDB dataset; so let’s take a quick tour. In this section 

we have some rows/samples/observations that each one of them is either 

a positive or negative sample, and we will divide those samples into 

training and testing sets. But the new thing that we will do is to transform 

it as numbers as we talked about with word embeddings. Then, after the 

transformation, we will pass it to a new layer to feed the learning layer to 

complete the learning task, or save it in a pickle. In this case, we want you 

to learn how to use this gensim embeddings and understand the concept 

of Word2Vec, so you can then learn more about Word2Vec. This is a very 

well-used case for learning to build good models.

Figure 15-12.  The model progress through the dataset
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import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. 

pd.read_csv)

import html

import os

from nltk.corpus import stopwords

import nltk

nltk.download('stopwords')

import re

from tqdm import tqdm

We need to load files: positive ones, negative ones, and test files.

path = "/content/aclImdb/"

positiveFiles = [x for x in os.listdir(path+"train/pos/")

                 if x.endswith(".txt")]

negativeFiles = [x for x in os.listdir(path+"train/neg/")

                if x.endswith(".txt")]

testFiles = [x for x in os.listdir(path+"test/")

             if x.endswith(".txt")]

positiveFiles contain positive reviews.

positiveReviews, negativeReviews, testReviews = [], [], []

for pfile in positiveFiles:

    with open(path+"train/pos/"+pfile, encoding="latin1") as f:

        positiveReviews.append(f.read())

for nfile in negativeFiles:

    with open(path+"train/neg/"+nfile, encoding="latin1") as f:

        negativeReviews.append(f.read())

for tfile in testFiles:

    with open(path+"test/"+tfile, encoding="latin1") as f:

        testReviews.append(f.read())
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We now need to know the size of positive reviews and negative reviews.

print(len(positiveReviews))

print(len(negativeReviews))

print(len(testReviews))

# Output

# 12500

# 12500

# 2

Let’s put all types of reviews in the same DataFrame so we can see them.

reviews = pd.concat�([pd.DataFrame({"review":positiveReviews, 

"label":1, "file":positiveFiles}),

                    �pd.DataFrame({"review":negativeReviews, 

"label":0, "file":negativeFiles}),

                    �pd.DataFrame({"review":testReviews, 

"label":-1, "file":testFiles})

                    �], ignore_index=True).sample(frac=1, 

random_state=1)

Get the data shape; it should be a number with three as the dimension 

of data.

reviews.shape

# Output

# (25002, 3)

Let’s see the DataFrame of the data (Figure 15-13).

reviews[0:10]

Chapter 15  Applications



518

Stop words in English are to be ignored.

stopWords = stopwords.words('english')

Define the function that does the cleaning process.

def CleanData(sentence):

    processedList = ""

    #convert to lowercase and ignore special charcter

    �sentence = re.sub(r'[^A-Za-z0-9\s.]', r", str(sentence).

lower())

    sentence = re.sub(r'\n', r' ', sentence)

    �sentence = " ".join([word for word in sentence.split() if 

word not in stopWords])

    return sentence

reviews.info()

Figure 15-13.  The first ten rows of reviews
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reviews['review'][0] reviews['review'][0]

# Output

'Level One, Horror.<br /><br />When I saw this film for the 

first time at 10, I knew it would give me nightmares. It did. 

Surprisingly, as I recall, it was the sound as much as the 

sight of the monster that caused them.<br /><br />Level Two, 

Psychoanalytic Theory.<br />

CleanData(reviews['review'][0])

# Output

'level one horror.br br saw film first time 10 knew would give 

nightmares. did. surprisingly recall sound much sight monster 

caused them.br br level two psychoanalytic theory.

reviews['review'] = reviews['review'].map(lambda x: 

CleanData(x))

reviews['review'].head()

# Output

21939    oh god horrible film. film right people involv...

24113    rule states quite clearly movies like resident...

4633     found soso romancedrama nice ending generally ...

17240    forest damned starts five young friends brothe...

4894     first show.br br welcome trinity county. sleep...

Name: review, dtype: object
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tmp_corpus = reviews['review'].map(lambda x:x.split('.'))

#corpus [[w1, w2, w3,...],[...]]

corpus = []

for i in tqdm(range(len(reviews))):

    for line in tmp_corpus[i]:

        words = [x for x in line.split()]

        corpus.append(words)

# Output

# 100%|██████████| 25002/25002 [00:02<00:00,

# 10673.63it/s]

len(corpus)

# Output

# 402194

#removing blank list

corpus_new = []

for i in range(len(corpus)):

    if (len(corpus[i]) != 0):

        corpus_new.append(corpus[i])

num_of_sentences = len(corpus_new)

num_of_words = 0

for line in corpus_new:

    num_of_words += len(line)

print('Num of sentences - %s'%(num_of_sentences))

print('Num of words - %s'%(num_of_words))

# Output

# Num of sentences - 354417

# Num of words – 3265546
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Now let’s see the gensim package and how to use it with Word2Vec.

from gensim.models import Word2Vec

Let’s bulid a Word2Vec model and initialize parameters.

# sg - skip gram |  window = size of the window | size = vector 

dimension

size = 100

window_size = 2 # sentences weren't too long, so

epochs = 100

min_count = 2

workers = 4

model = Word2Vec(corpus_new)

model.build_vocab(sentences= corpus_new, update=True)

for i in range(5):

    �model.train(sentences=corpus_new, epochs=50, total_

examples=model.corpus_count)

After the model is trained, let’s save it.

#save model

model.save('w2v_model')

Load the model into Word2Vec, which is a module in gensim.

model = Word2Vec.load('w2v_model')

Let’s find the most similar movies.

model.wv.most_similar('movie')

# Output

[('film', 0.8756906986236572),

 ('flick', 0.6631126403808594),

 ('movies', 0.6589803695678711),
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 ('it', 0.562816321849823),

 ('films', 0.5470719337463379),

 ('show', 0.5167748928070068),

 ('sequel', 0.5143758654594421),

 ('this', 0.5129573941230774),

 ('thing', 0.5066217184066772),

 ('really', 0.4848993122577667)]

The next step is to extract data using its label.

reviews = reviews[["review", "label", "file"]].sample(frac=1,

          random_state=1)

train = reviews[reviews.label!=-1].sample(frac=0.6, random_state=1)

valid = reviews[reviews.label!=-1].drop(train.index)

test = reviews[reviews.label==-1]

Let’s see the shapes of the train/test datasets:

print(train.shape)

print(valid.shape)

print(test.shape)

# Output

# (15000, 3)

# (10000, 3)

# (2, 3)

valid.head()

See Figure 12-14.
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Now we’ll do some data preprocessing, which the last iteration before 

we train our model.

num_features = 100

index2word_set = set(model.wv.index2word)

model = model

def featureVecorMethod(words):

    featureVec = np.zeros(num_features, dtype='float32')

    nwords = 0

    for word in words:

        if word in index2word_set:

            nwords+= 1

            featureVec = np.add(featureVec, model[word])

    #average of feature vec

    featureVec = np.divide(featureVec, nwords)

    return featureVec

def getAvgFeatureVecs(reviews):

    counter = 0

    �reviewFeatureVecs = np.zeros((len(reviews), num_features), 

dtype='float32')

Figure 15-14.  Five rows of valid DataFrame
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    for review in reviews:

        if counter%1000 == 0:

            print("Review %d of %d"%(counter, len(reviews)))

        reviewFeatureVecs[counter] = featureVecorMethod(review)

        counter = counter+1

    return reviewFeatureVecs

clean_train_reviews = []

for review in train['review']:

    clean_train_reviews.append(list(CleanData(review).split()))

# print(len(clean_train_reviews))\

trainDataVecs = getAvgFeatureVecs(clean_train_reviews)

# Output

Review 1000 of 15000

Review 2000 of 15000

Review 3000 of 15000

Review 4000 of 15000

Review 5000 of 15000

Review 6000 of 15000

Review 7000 of 15000

Review 8000 of 15000

Review 9000 of 15000

Review 10000 of 15000

Review 11000 of 15000

Review 12000 of 15000

Review 13000 of 15000

Review 14000 of 15000

len(valid['review'])

# Output

10000
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clean_test_reviews = []

for review in valid['review']:

    clean_test_reviews.append(list(CleanData(review).split()))

testDataVecs = getAvgFeatureVecs(clean_test_reviews)

# Output

Review 1000 of 10000

Review 2000 of 10000

Review 3000 of 10000

Review 4000 of 10000

Review 5000 of 10000

Review 6000 of 10000

Review 7000 of 10000

Review 8000 of 10000

Review 9000 of 10000

print(len(testDataVecs))

# Output

10000

�Case Study—Image Segmentation
You might wonder what image segmentation is. In computer vision, image 

segmentation is the process of partitioning a digital image into multiple 

segments. The goal of segmentation is to simplify and/or change the 

representation of an image into something that is more meaningful and 

easier to analyze. Let’s understand image segmentation using a simple 

example. Consider Figure 15-15.
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We can divide or partition the image into various parts called 

segments. It’s not a great idea to process the entire image at the same time, 

as there will be regions in the image that do not contain any information. 

By dividing the image into segments, we can make use of the important 

segments for processing the image. That, in a nutshell, is how image 

segmentation works.

An image is a collection or set of different pixels. We group together 

the pixels that have similar attributes, using image segmentation. Take 

a moment to look at Figure 12-16 (it’ll give you a practical idea of image 

segmentation):

Figure 15-15.  An example image that we are going to segment
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So, let’s now build an application that is able to segment any image and 

extract instances from it. To start doing this, we need to import all the packages 

we are going to use. It seems that there’s a new package, skimage; this package 

contains a lot of operations that help you to deal with images data.

import os

import sys

import random

import math

import numpy as np

import skimage.io

import matplotlib

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

Figure 15-16.  The difference between object detection and instance 
segmentation
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Now we need to illustrate a new architecture model called Mask 

R-CNN. Data scientists and researchers at Facebook AI Research (FAIR) 

pioneered a deep learning architecture, called Mask R-CNN, which can 

create a pixel-wise mask for each object in an image. This is a really cool 

concept, so follow along closely!

Mask R-CNN is an extension of the popular Faster R-CNN object 

detection architecture. Mask R-CNN adds a branch to the already existing 

Faster R-CNN outputs. The Faster R-CNN method generates two things for 

each object in the image:

	 1.	 Its class

	 2.	 The bounding box coordinates

Mask R-CNN adds a third branch to this that outputs 

the object mask as well. Take a look at Figure 15-17 to 

get an inside look at how Mask R-CNN works.

	 3.	 We take an image as input and pass it to the 

ConvNet, which returns the feature map for that 

image

Figure 15-17.  How Mask R-CNN works
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	 4.	 The region proposal network (RPN) is applied 

on these feature maps. This returns the object 

proposals along with their object score.

	 5.	 An RoI pooling layer is applied on these proposals to 

bring down all the proposals to the same size.

	 6.	 Finally, the proposals are passed to a fully 

connected layer to classify and output the bounding 

boxes for objects. It also returns the mask for each 

proposal.

First, we will download the model that we are going to use from GitHub 

by using the command:

git clone https://github.com/matterport/Mask_RCNN.git

Then we should set the path of the model, to make sure our code sees 

the model downloaded.

# Root directory of the project

ROOT_DIR = os.path.abspath("/content/Mask_RCNN")

Then we will import the model and its visualization and utilities.

# Import Mask RCNN

sys.path.append(ROOT_DIR)  # To find local version of the 

library

from Mask_RCNN.mrcnn import utils

import Mask_RCNN.mrcnn.model as modellib

from mrcnn import visualize

# Import COCO config

sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))   

# To find local version

import coco

%matplotlib inline
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After this, we are going to set the logs folder for future analysis and 

debugging. Also, we are going to load the weight from the h5 data file.

# Directory to save logs and trained model

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file

COCO_MODEL_PATH = os.path.join(", "mask_rcnn_coco.h5")

# Download COCO trained weights from Releases if needed

if not os.path.exists(COCO_MODEL_PATH):

    utils.download_trained_weights(COCO_MODEL_PATH)

Now we need to set the image directory that our model will read the 

data from, and set the machine configuration. Also, we will instantiate the 

model and load its weight.

# Directory of images to run detection on

IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class InferenceConfig(coco.CocoConfig):

    # Set batch size to 1 since we'll be running inference on

    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU

    GPU_COUNT = 1

    IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

# Create model object in inference mode.

model = modellib.MaskRCNN(mode="inference", model_dir='mask_

rcnn_coco.hy', config=config)

# Load weights trained on MS-COCO

model.load_weights('mask_rcnn_coco.h5', by_name=True)
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Now we will create the class names; these names come from the COCO 

dataset that the model was trained on.

# COCO Class names

class_names = �['BG', 'person', 'bicycle', 'car', 'motorcycle', 

'airplane', 'bus', 'train', 'truck', 'boat', 

'traffic light', 'fire hydrant', 'stop sign', 

'parking meter', 'bench', 'bird', 'cat', 'dog', 

'horse', 'sheep', 'cow', 'elephant', 'bear', 

'zebra', 'giraffe', 'backpack', 'umbrella', 

'handbag', 'tie', 'suitcase', 'frisbee', 

'skis', 'snowboard', 'sports ball', 'kite', 

'baseball bat', 'baseball glove', 'skateboard', 

'surfboard', 'tennis racket', 'bottle', 'wine 

glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 

'banana', 'apple', 'sandwich', 'orange', 

'broccoli', 'carrot', 'hot dog', 'pizza', 

'donut', 'cake', 'chair', 'couch', 'potted 

plant', 'bed', 'dining table', 'toilet', 'tv', 

'laptop', 'mouse', 'remote', 'keyboard', 

'cell phone', 'microwave', 'oven', 'toaster', 

'sink', 'refrigerator', 'book', 'clock', 

'vase', 'scissors', 'teddy bear', 'hair drier', 

'toothbrush']

Now we need to test if the model that we loaded is working correctly, 

so we will load a test image and feed it to the model and see the output.
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# Load a random image from the images folder

image = skimage.io.imread('/content/Mask_RCNN/

images/1045023827_4ec3e8ba5c_z.jpg')

# original image

plt.figure(figsize=(12,10))

skimage.io.imshow(image)

As you can see in Figure 15-18, the image contains many objects, and 

the network should extract the objects and classify their labels. When  

Mask R-CNN extracts each object, it generates the bond box of the object  

to tell where the object is, and its label too. There’s another output that  

we consider amazing: it creates a mask-like boundary over the object.  

Figure 15-18.  The image contains some pedestrians that the network 
should extract
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To do that, the network classifies each pixel as to whether it belongs to the 

given object or not.

Now let’s see the Mask R-CNN output; to do that, we write a simple line 

of code that makes the network prediction work.

# Run detection

results = model.detect([image], verbose=1)

# Visualize results

r = results[0]

visualize.display_instances(image, r['rois'], r['masks'], 

r['class_ids'], class_names, r['scores'])

Figure 15-19.  The extracted output of the network
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As you see in Figure 15-19, the network output extracted the 

pedestrians exactly. It even extracted the person who is inside the car on 

the right. Isn’t that awesome work? But it’s not only pedestrians/persons 

that the network extracts; there are many classes that the network can 

classify. You can see the class variables in the preceding code to see how 

many classes and what classes/objects that Mask R-CNN can extract.

To extract a certain object inside the image, you can simply iterate 

over the objects until you find the wanted one, and do whatever you want 

(Figure 15-20).

mask = r['masks']

mask = mask.astype(int)

mask.shape

for i in range(mask.shape[2]):

    �temp = skimage.io.imread('/content/Mask_RCNN/

images/1045023827_4ec3e8ba5c_z.jpg')

    for j in range(temp.shape[2]):

        temp[:,:,j] = temp[:,:,j] * mask[:,:,i]

    plt.figure(figsize=(8,8))

    plt.imshow(temp)
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�Summary
In this chapter, we showed you some examples to learn how to apply the 

knowledge you have gained from this book. All the applications in this 

book are designed to make sure that you learn every single concept from 

tabular dataset to text to images dataset, and apply these concepts in a 

practical manner.

We hope that you have enjoyed this chapter, as there’s no theory and it 

contains a lot of code, and enjoyed the whole book too.

By ending this chapter, you have finished the journey of learning what 

the deep learning pipeline is and how to apply it in real life.

Figure 15-20.  The each object segmented from the network
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SelectPercentile class, 246, 247
VarianceThreshold  

class, 244–246
Gaussian filter, 382–385
Gaussian noise, 377
Gensim, 53
Geometric mean, 135
Gradient descent, 305–308
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gradients() function, 91
Group normalization, 364, 365

H
head() function, 497
Hidden nodes, 61
Hold-out set, 210
Horizontal Sobel filter, 389

I
Identity filter, 390
Identity matrix, 29
Image data augmentation, 169
ImageNet Large Scale Visual 

Recognition Competition 
(ILSVRC), 450

Image-processing filters
column index, 375
filter kernel, 375
Gaussian filter, 382–385
identity transform, 390
Mean and median filters (see 

Mean filters)
sobel edge-detection filter (see 

Sobel filter)
2-D images, 375

Image segmentation, 526
class names, 531
definition, 525
extraction, 533, 534
GitHub, 529

image directory, 530
import, 529
logs folder, 530
Mask R-CNN, 528
network, 532, 533, 535
vs. object detection, 526, 527
skimage, 527
testing, 531

IMDB movie review data
cleaning process, 518
dataframe, 517, 518, 523
data shape, 517
Doc2Vec, 515
extraction, 522
load files, 516
load model, 521
preprocessing, 523–525
save model, 521
size, 517
Word2Vec, 521

Independent identical distribution 
(IID), 218

info() function, 497
Information theory, 4, 5
Input nodes, 61
Instance normalization, 363, 364
Interval level, 130
Invariance, 400, 402
ipynb file

cell, 48
code cell, 48
definition, 47
kernel, 48
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Markdown cell, 48
Markdown  

command, 49
Python command, 49

IPython
definition, 41
features, 41, 42
installation, 42

J
Jupyter, 43

advantage, 44
browser, 45
IDEs, 44
installation

command, 45
new file, 46, 47
tree file, 45, 46

IPython, 43

K
Keras, 56
keras.callbacks.Callback()  

module, 226
Keras generators, 223–225
keras.models.Model, 226
keras.utils.to_categorical  

method, 229
Kernel PCAs, 259

graphical representation, 259
output, 260
radial basis function, 260

L
Language modeling

advantage, 422
aim, 422
bi-gram, 420, 421
definition, 420
N-gram, 420
probability, 420
relative frequency  

counts, 421
tri-gram, 420, 422

Latent dirichlet  
allocation (LDA), 53

definition, 262
genism

inspecting topics, 268
LdaModel, 267, 268
predicting topics, 268
TextCorpus, 267

NLP
aim, 263
benefits, 264
prevalent words, 266
topics, 263

vs. PCA, 269–272
Latent semantic analysis (LSA), 53
Layer normalization, 362, 363
leaky ReLU, 303
Leave-One-Out Cross-Validation 

(LOOCV)
definition, 213
error rates, 214
learning process, 213
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__len__ method, 229
Lena Forsen image, 376
Linear activation  

function, 301–302
Linear discriminant analysis 

(LDA), 234, 262
Linear regression

dataset
create session, 97
data points, 95
importing packages, 94
model line, 98
declaring name_scope, 96
using np.random.randn(), 94

definition, 93, 94
source code, 99–101

Linear time-invariant, 369
loc() method, 165
Logistic regression, 7
Long short-term memory networks 

(LSTM), 26, 332
architecture, 433, 434
cell, 434
forget cell, 435
forget gate layer, 435
input gate layer, 436
memory state, 434, 435
output, 437
uses, 437, 438

Long-term dependencies, 429
Loss function, 313, 316

backpropagation, 319
equations, 322–329
error function, 320

error neuron, 323
parts, 320
works, 321

M
Model assessment, 208
Model selection, 208
Machine learning, 148

approaches, 12
checkpoint, 16, 17
vs. deep learning, 19–23
definition, 10, 20
diagram, 11
math notations

functions, 33
indexing, 32
matrices, 29
sets/graphs, 31
statistics, 34
summary, 30
vectors, 28

models, 116
predictive analytics, 11, 12
reinforcement learning, 17
semisupervised learning, 16
supervised learning

classification problem, 13
observations, 13
regression model, 14
regression problem, 14

vs. traditional  
programming, 10

tree of classical, 17
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typical system, 18
unsupervised learning

algorithm clusters, 15
Mask R-CNN, 528
matplotlib library, 51, 496
max pooling method, 454
McCulloch-Pitts neuron, 283
Mean Absolute Error, 317
Mean filters

calculation, 375
convolution operation, 376
Gaussian noise, 377, 378
gray loaded image, 377
noise reduction, 379
packages and functions, 376
pixel intensity, 375
resulting image, preceding 

code, 378
RGB format to grayscale  

format, 376
salt and pepper  

noise, 379, 381
mean() function, 506
Mean Squared Error, 317
Median filter, 379, 382
Median pixel intensity, 379
Mini-batch gradient descent, 310

pros/cons, 311
Minsky perceptron model, 284
Missing data

empties, 159
features, 160, 161
zeros, 159, 160

model initialization, 313

Modified National Institute of 
Standards and Technology 
database (MNIST), 142

Momentum-based methods
Adadelta, 350, 351
Adam, 352
adaptive gradient, 349, 350
gradient, 347
Nadam, 353, 354
NAG, 348, 349
RMSprop, 351
velocity, 347

M-P neuron, 283
Multilayered neural network 

architecture, 293
Multilayer perceptron (MLP), 63, 

291, 292

N
Nonnegative matrix factorization 

(NNMF), 256
Natural language processing 

(NLP), 52, 422
Natural language  

toolkit (NLTK), 52
Nesterov accelerated gradient 

(NAG), 346, 348
Neural Network Layers

hidden layers, 293–295
input layer, 293, 294
output layer, 293, 295

Neural networks (NNs), 25, 279
Neuron, 58
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Nominal level
balance point, 124
mathematical operations, 124
mode, 125

Normalization techniques
batch, 360, 361
deep learning, 359
group, 364, 365
instance, 363, 364
layer, 362, 363
weight, 361, 362

NumPy package, 50, 128

O
1-D convolution masking, 370
One-hot encoding, 189, 190
Optimization method, 345, 346
Ordinal level

incremental level of 
measurement, 126

mathematical operations, 127
mean and median, 128, 129

Output nodes, 62

P
Padding, 373
pandas library, 51, 496
Perceptron

AND Boolean gate operation, 283
bias, 286
biological neuron,  

notation of, 281

Boolean functions, 286
components

activation functions, 289
bias, 289
input, 289
output, 290
weights, 285, 289

excitatory and inhibitory, 282
feedforward network, 280
learning algorithm, 288
vs. McCulloch neuron, 288
McCulloch-Pitts  

neuron, 284
Minsky perceptron  

model, 284
MLP, 291, 292
M-P neuron, 283
neural network, 280
OR gate, 286, 288
recap, 292
single, 290
soccer example 

implementation, 285
thresholding parameter, 282
XOR gate, 287, 288

Perceptron learning algorithm 
(PLA), 285, 288

Placeholders vs. variables vs. 
constants, 337

Pooling layer, 396
Preprocessing, 117
Pretrained VGG19 model

AdamOptimizer, 465
architecture, 467
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CIFAR-10 dataset, 464
input/output variables, 464
output, 465, 466
package importing, 464
print, 466
training, 468

Primitive methods filters, 368
Principal component analysis 

(PCA), 234, 263
automatic selection, 255
covariance matrix, 248, 249
cross-correlation, 249
explained_variance_ratio_

variable, 252
histogram and CDF  

plot, 252, 253
MNIST dataset, 250
NNMF, 256, 257
output, 254, 255
scatter plot, 251
unsupervised dimensionality 

(see Unsupervised 
dimensionality, PCA)

Probability theory, 6–8
Python

definition, 37
installation, 38, 39
packages, 40, 41

Python 2 vs. Python 3, 38

Q
Quantitative vs. qualitative data, 

119, 120

R
Radial basis function (RBF), 452
Ratio level, 134, 135
Recap, 292
Receptive field, 369, 396
Recommendation engine, 12
Rectified linear activation function 

(ReLU), 454
Recurrent neural networks  

(RNNs), 67, 422, 423
abstraction, 416, 417
architecture, 419
cell, 417
parameters, 417
sequence, 417, 418
softmax, 417
tanh, 417
types, 418
vanishing/exploding  

gradients, 429
aim, 429
definitions, 430
inherent problem, 430
output, 431
vanishing, 432, 433

vectors, 416
working principals, 423

Region proposal network  
(RPN), 529

Regularization, 357, 358
Reinforcement learning, 17
Reinforcement learning vs. 

supervised learning, 19
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ReLU activations, 394
Root mean square prop, 351

S
Scikit-learn, 52, 53
SciPy, 50
Seaborn library, 496
SelectKBest class, 246
SelectPercentile class, 246, 247
Self-organizing map (SOM), 67
Semistructured data, 116
Semisupervised learning, 16
Set membership functions, 124
Shallow neural network, 27
Shallow vs. deep neural networks, 

26, 27, 295–297
Shift-invariant properties, 369
Sigmoid/logistic activation 

function, 302, 303
Single-layer perceptron, 62
Single perceptron, 290
sklearn.datasets, 234
sklearn.model_selection  

module, 211
Sobel filter

convolution of image, 386
edges of image, 389
horizontal and vertical axes, 385
horizontal Sobel filter, 389
image processing and computer 

vision, 385
pixel intensity function, 390
preceding code, 386, 389

X-axis filter, 387
Y-axis filter, 388

Softmax, 302
Sparse PCA, 257, 258
Standard deviation, 133, 134
Stemming algorithm, 202–204
Stochastic gradient  

descent (SGD), 309, 341
pros/cons, 310

Structured data, 115
Supervised learning, 13
swish activation function, 305

T
Tabular data

divide and conquer, 121
interval level, 130
levels, 122
mathematical operations

measures of center, 131, 132
nominal level, 123
ordinal level, 125
quantitative vs.  

qualitative, 119, 120
ratio level, 134, 135
standard deviation, 133, 134
structured format, 122
typical value, 123

Tabular dataset
age histogram, 503, 504
build

batches, 511
model progress, 514, 515
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output, 514
parameter, 512
session, 512–514

data visualization, 495
FacetGrid, 504
importing, 496
pandas dataframe, 497
Pclass count, 500
Pclass/person count, 503
Pclass/sex count, 500, 501
processing

Boolean columns, 507
checkpoint, 510
distribution mean, 505
Embarked column, 506
features/columns, 505
Titanic dataframe, 509
transformation, 508

sex count, 498, 499
sex/survived count, 499
Titanic dataframe, 497, 498,  

501, 502
TensorFlow (TF), 279, 336

code, 76, 77
cost functions, 339
Data Flow Graph, 78

advantages, 81
kernel, 80
node, 79
normal edges, 79
operation, 80
session, 80
special edges, 79

data structure, 75

definition, 53, 74
Eigenvalues, 342
features, 75
gradient descent, 338
gradients() function, 91, 92
hello world, 86
installation, Mac and  

Linux, 54, 55
installation, Windows, 56
iterations, 87, 88
library, 77
nonconvex cost  

functions, 340
placeholders vs. variables vs. 

constants, 337, 338
prepare input, 89, 90
SGD, 341

mini-batch approach, 343
XOR implementation

cost function, 105
create placeholders, 102
create session, 105
input and output, 102
model code, 104
plot modeling line, 106
run output, 106
source code, 107–109

Tensor rank, 82
Tensor shape, 83
Text data, 190–194

CIFAR-10 dataset, 143
data images, 139, 140
IMDB, 138, 139
MNIST database, 142
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text processing, 137, 138
type of images, 140–142

tf.assign() method, 337
tf.global_variables_initializer() 

function, 88
Tfidf vectorizer, 195–200
Thresholding parameter, 282
Tidy data, 117, 118
Time step, 416
titanic_df.head() function, 507, 508
Tokens, 201, 202
Traditional programming

diagram, 11
vs. machine learning, 10

Training and testing sets
rules, 208

Training vs. predicting methods, 312
train_test_split function, 211
Transfer learning

pretrained model
architectures, 463
convolutions–ReLUs–max 

pooling layers, 462
dataset’s nature, 461
definition, 461
detect features, 461
fine-tuning, 463
ImageNet data, 461, 463
VGG19 architecture, 462

state-of-the-art solutions, 460
working, 462

Translational equivariance, 400, 401
Transpose matrix, 29

Truncated backpropagation 
through time (TBPTT)

definition, 427
standard approaches, 428

2-D convolution masking, 372

U
unique() method, 165
Unstructured data, 116
Unsupervised dimensionality, PCA

d-dimensional feature space, 242
dk-dimensional transformation 

matrix, 242
principal components, 241
steps, 242
variance, 243

Unsupervised learning  
technique, 14, 263

V
Validation set technique, 210

drawbacks, 213
error rate, 213
observations, 211, 212
variables, 210

Valid padding, 374
Vanishing gradients, 333, 419, 430

problem, 334–336
Variable() function, 337
VarianceThreshold class, 244–246
Vector representation, words, 475
Vector space model

Text data (cont.)
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cosine distance, 473, 474
cosine similarities, 473
Euclidean distance, 472, 474
words per document, 472

Vertical Sobel filter, 389

W, X, Y
Weighted summation, 289
Weight normalization, 361, 362
Weight regularization, 333
Weight sharing through 

convolution, 399
Whitening transformation, 272, 273
Word2Vec

CBOW, 477
backpropagation gradient-

descent techniques, 479
code, 484
cost function, 479
creation, 483
cross-entropy loss, 478
dot product, 478
embeddings  

vectors, 477, 478
encoded vectors, 477
hidden-layer vectors, 478
implementation, 483

load data, 481
loss function, 479
output, 484
prediction, 476
run, 483, 484
softmax, 478
TensorFlow, 479, 480
TSNE plot, 485
utility functions, 480, 481
vocab_size, 482

definition, 476
Skip-gram model, 486

vs.CBOW, 488
creation, 491
gradient descent, 487
hidden-layer, 487
load data, 491
loss function, 487
probability, 487
softmax layer, 487
TensorFlow, 489
utility functions, 489, 490
variables, 491

Z
Zero-phase component analysis 

(ZCA), 272
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